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Cramér type moderate deviation theorems for
self-normalized processes
QI-MAN SHAO1 and WEN-XIN ZHOU2,3

1Department of Statistics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
E-mail: qmshao@cuhk.edu.hk
2Department of Operations Research and Financial Engineering, Princeton University, Princeton,
NJ 08544, USA. E-mail: wenxinz@princeton.edu
3School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia

Cramér type moderate deviation theorems quantify the accuracy of the relative error of the normal ap-
proximation and provide theoretical justifications for many commonly used methods in statistics. In this
paper, we develop a new randomized concentration inequality and establish a Cramér type moderate devia-
tion theorem for general self-normalized processes which include many well-known Studentized nonlinear
statistics. In particular, a sharp moderate deviation theorem under optimal moment conditions is established
for Studentized U -statistics.

Keywords: moderate deviation; nonlinear statistics; relative error; self-normalized processes; Studentized
statistics; U -statistics

1. Introduction

Let Tn be a sequence of random variables and assume that Tn converges to Z in distribution.
The problem we are interested in is to calculate the tail probability of Tn, P(Tn ≥ x), where x

may also depend on n and can go to infinity. Because the true tail probability of Tn is typically
unknown, it is common practice to use the tail probability of Z to estimate that of Tn. A natural
question is how accurate the approximation is? There are two major approaches for measuring the
approximation error. One approach is to study the absolute error via Berry–Esseen type bounds
or Edgeworth expansions. The other is to estimate the relative error of the tail probability of Tn

against the tail probability of the limiting distribution, that is,

P(Tn ≥ x)

P(Z ≥ x)
, x ≥ 0.

A typical result in this direction is the so-called Cramér type moderate deviation. The focus of
this paper is to find the largest possible an (an → ∞) so that

P(Tn ≥ x)

P(Z ≥ x)
= 1 + o(1)

holds uniformly for 0 ≤ x ≤ an.
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The moderate deviation, and other noteworthy limiting properties for self-normalized sums
are now well-understood. More specifically, let X1,X2, . . . ,Xn be independent and identically
distributed (i.i.d.) non-degenerate real-valued random variables with zero means, and let

Sn =
n∑

i=1

Xi and V 2
n =

n∑
i=1

X2
i

be, respectively, the partial sum and the partial quadratic sum. The corresponding self-normalized
sum is defined as Sn/Vn. The study of the asymptotic behavior of self-normalized sums has a
long history. Here, we refer to [27] for weak convergence and to [20,21] for the law of the
iterated logarithms when X1 is in the domain of attraction of a normal or stable law. [4] derived
the optimal Berry–Esseen bound, and [18] proved that Sn/Vn is asymptotically normal if and
only if X1 belongs to the domain of attraction of a normal law. Under the same necessary and
sufficient conditions, [13] proved a self-normalized analogue of the weak invariance principle. It
should be noted that all of these limiting properties also hold for the standardized sums. However,
in contrast to the large deviation asymptotics for the standardized sums, which require a finite
moment generating function of X1, [30] proved a self-normalized large deviation for Sn/Vn

without any moment assumptions. Moreover, [31] established a self-normalized Cramér type
moderate deviation theorem under a finite third moment, that is, if E|X1|3 < ∞, then

P(Sn/Vn ≥ x)

1 − �(x)
→ 1 holds uniformly for 0 ≤ x ≤ o

(
n1/6), (1.1)

where �(·) denotes the standard normal distribution function. Result (1.1) was further ex-
tended to independent (not necessarily identically distributed) random variables by [23] under
a Lindeberg type condition. In particular, for independent random variables with EXi = 0 and
E|Xi |3 < ∞, the general result in [23] gives

P(Sn/Vn ≥ x)

1 − �(x)
= 1 + O(1)(1 + x)3

∑n
i=1 E|Xi |3

(
∑n

i=1 EX2
i )

3/2
(1.2)

for 0 ≤ x ≤ (
∑n

i=1 EX2
i )

1/2/(
∑n

i=1 E|Xi |3)1/3.
Over the past two decades, there has been significant progress in the development of the self-

normalized limit theory. For a systematic presentation of the general self-normalized limit theory
and its statistical applications, we refer to [14].

The main purpose of this paper is to extend (1.2) to more general self-normalized processes,
including many commonly used Studentized statistics, in particular, Student’s t -statistic and Stu-
dentized U -statistics. Notice that the proof in [23] is lengthy and complicated, and their method is
difficult to adopt for general self-normalized processes. The proof in this paper is based on a new
randomized concentration inequality and the method of conjugated distributions (also known as
the change of measure method), which opens a new approach to studying self-normalized limit
theorems.

The rest of this paper is organized as follows. The general result is presented in Section 2. To
illustrate the sharpness of the general result, a result similar to (1.1) and (1.2) is obtained for Stu-
dentized U -statistics in Section 3. Applications to other Studentized statistics will be discussed in
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our future work. To establish the general Cramér type moderation theorem, a novel randomized
concentration inequality is proved in Section 4. The proofs of the main results and key technical
lemmas are given in Sections 5 and 6. Other technical proofs are provided in the Appendix.

2. Moderate deviations for self-normalized processes

Our research on self-normalized processes is motivated by Studentized nonlinear statistics. Non-
linear statistics are the building blocks in various statistical inference problems. It is known that
many of these statistics can be written as a partial sum plus a negligible term. Typical exam-
ples include U -statistics, multi-sample U -statistics, L-statistics, random sums and functions of
nonlinear statistics. We refer to [12] for a unified approach to uniform and non-uniform Berry–
Esseen bounds for standardized nonlinear statistics.

Assume that the nonlinear process of interest can be decomposed as a standardized partial sum
of independent random variables plus a remainder, that is,

1

σ

(
n∑

i=1

ξi + D1n

)
,

where ξ1, . . . , ξn are independent random variables satisfying

Eξi = 0 for i = 1, . . . , n and
n∑

i=1

Eξ2
i = 1, (2.1)

and where D1n = D1n(ξ1, . . . , ξn) is a measurable function of {ξi}ni=1. Because σ is typically
unknown, a self-normalized process

Tn = 1

σ̂

(
n∑

i=1

ξi + D1n

)

is more commonly used in practice, where σ̂ is an estimator of σ . Assume that σ̂ can be written
as

σ̂ =
{(

n∑
i=1

ξ2
i

)
(1 + D2n)

}1/2

,

where D2n is a measurable function of {ξi}ni=1. Without loss of generality and for the sake of
convenience, we assume σ = 1. Therefore, under the assumptions in (2.1), we can rewrite the
self-normalized process Tn as

Tn = Wn + D1n

Vn(1 + D2n)1/2
, (2.2)

where

Wn =
n∑

i=1

ξi, Vn =
(

n∑
i=1

ξ2
i

)1/2

.
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Essentially, this formulation (2.2) states that, for a nonlinear process that be can written as a
linear process plus a negligible remainder, it is natural to expect that the corresponding normal-
izing term is dominated by a quadratic process. To ensure that Tn is well-defined, it is assumed
implicitly in (2.2) that the random variable D2n satisfies 1 + D2n > 0. Examples satisfying (2.2)
include the t -statistic, Studentized U - and L-statistics. See [38] and the references therein for
more details.

In this section, we establish a general Cramér type moderate deviation theorem for a self-
normalized process Tn in the form of (2.2). We start by introducing some of the basic notation
that is frequently used throughout this paper. For x ≥ 1, write

Ln,x =
n∑

i=1

δi,x, In,x = E exp
(
xWn − x2V 2

n /2
)=

n∏
i=1

E exp
(
ξi,x − ξ2

i,x/2
)
, (2.3)

where δi,x = Eξ2
i,xI (|ξi,x | > 1) +E|ξi,x |3I (|ξi,x | ≤ 1) with ξi,x := xξi . For i = 1, . . . , n, let D

(i)
1n

and D
(i)
2n be arbitrary measurable functions of {ξj }nj=1,j �=i , such that {D(i)

1n ,D
(i)
2n } and ξi are inde-

pendent. Moreover, define

Rn,x = I−1
n,x ×

(
E
{(

x|D1n| + x2|D2n|
)
e
∑n

j=1(ξj,x−ξ2
j,x/2)}

(2.4)

+
n∑

i=1

E
[
min

(|ξi,x |,1
){∣∣D1n − D

(i)
1n

∣∣+ x
∣∣D2n − D

(i)
2n

∣∣}e∑j �=i (ξj,x−ξ2
j,x/2)])

.

Here, and in the sequel, we use
∑

j �=i =∑n
j=1,j �=i for brevity.

Now we are ready to present the main results.

Theorem 2.1. Let Tn be defined in (2.2) under condition (2.1). Then there exist positive absolute
constants C1–C4 and c1 such that

P(Tn ≥ x) ≥ {
1 − �(x)

}
exp{−C1Ln,x}(1 − C2Rn,x) (2.5)

and

P(Tn ≥ x) ≤ {
1 − �(x)

}
exp{C3Ln,x}(1 + C4Rn,x)

(2.6)
+ P

(
x|D1n| > Vn/4

)+ P
(
x2|D2n| > 1/4

)
for all x ≥ 1 satisfying

max
1≤i≤n

δi,x ≤ 1 (2.7)

and

Ln,x ≤ c1x
2. (2.8)
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Remark 2.1. The quantity Ln,x in (2.3) is essentially the same as the factor �n,x in [23], which
is the leading term that describes the accuracy of the relative normal approximation error. To
deal with the self-normalized nonlinear process Tn, first we need to “linearize” it in a proper
way, although at the cost of introducing some complex perturbation terms. The linearized term is
xWn −x2V 2

n /2, and its exponential moment is denoted by In,x as in (2.3). A randomized concen-
tration inequality is therefore developed (see Section 4) to cope with these random perturbations
which lead to the quantity Rn,x given in (2.4). Similar quantities also appear in the Berry–Esseen
bounds for nonlinear statistics. See, for example, Theorems 2.1 and 2.2 in [12].

Theorem 2.1 provides the upper and lower bounds of the relative errors for x ≥ 1. To cover
the case of 0 ≤ x ≤ 1, we present a rough estimate of the absolute error in the next theorem, and
refer to [32] for the general Berry–Esseen bounds for self-normalized processes.

Theorem 2.2. There exists an absolute constant C > 1 such that for all x ≥ 0,∣∣P(Tn ≤ x) − �(x)
∣∣≤ CR̆n,x, (2.9)

where

R̆n,x := Ln,1+x +E|D1n| + xE|D2n|
(2.10)

+
n∑

i=1

E
[
ξiI

{|ξi | ≤ 1/(1 + x)
}{∣∣D1n − D

(i)
1n

∣∣+ x
∣∣D2n − D

(i)
2n

∣∣}]
for Ln,1+x as in (2.3).

The proof of Theorem 2.2 is deferred to the Appendix. In particular, when 0 ≤ x ≤ 1, the
quantity Ln,1+x satisfies

Ln,1+x = (1 + x)2
n∑

i=1

Eξ2
i I
{|ξi | > 1/(1 + x)

}+ (1 + x)3
n∑

i=1

E|ξi |3I
{|ξi | ≤ 1/(1 + x)

}
≤ (1 + x)2

n∑
i=1

Eξ2
i I
(|ξi | > 1/2

)+ (1 + x)3
n∑

i=1

E|ξi |3I
(|ξi | ≤ 1

)
≤ (1 + x)2

n∑
i=1

Eξ2
i I
(|ξi | > 1

)+ (1 + x)2
n∑

i=1

Eξ2
i I
(
1/2 < |ξi | ≤ 1

)
+ (1 + x)3

n∑
i=1

E|ξi |3I
(|ξi | ≤ 1

)
,

which can be further bounded, up to a constant, by

n∑
i=1

Eξ2
i I
(|ξi | > 1

)+
n∑

i=1

E|ξi |3I
(|ξi | ≤ 1

)
.
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Remark 2.2. 1. When D1n = D2n = 0, Tn reduces to the self-normalized sum of independent
random variables, and thus Theorems 2.1 and 2.2 together immediately imply the main result
in [23]. The proof therein, however, is lengthy and fairly complicated, especially the proof of
Proposition 5.4, and can hardly be applied to prove the general result of Theorem 2.1. The proof
of our Theorem 2.1 is shorter and more transparent.

2. D1n and D2n in the definitions of Rn,x and R̆n,x can be replaced by any non-negative random
variables D3n and D4n, respectively, provided that |D1n| ≤ D3n, |D2n| ≤ D4n.

3. Condition (2.1) implies that ξi actually depends on both n and i; that is, ξi denotes ξni ,
which is an array of independent random variables.

3. Studentized U -statistics

As a prototypical example of the self-normalized processes given in (2.2), we are particularly in-
terested in Studentized U -statistics. In this section, we apply Theorems 2.1 and 2.2 to Studentized
U -statistics and obtain a sharp Cramér moderate deviation under optimal moment conditions.

Let X1,X2, . . . ,Xn be a sequence of i.i.d. random variables and let h : Rm → R be a sym-
metric Borel measurable function of m variables, where 2 ≤ m < n/2 is fixed. The Hoeffding’s
U -statistic with a kernel h of degree m is defined as (Hoeffding [22])

Un = 1(
n
m

) ∑
1≤i1<···<im≤n

h(Xi1 , . . . ,Xim),

which is an unbiased estimate of θ = Eh(X1, . . . ,Xm). Let

h1(x) = E
{
h(X1,X2, . . . ,Xm)|X1 = x

}
, x ∈ R

and

σ 2 = Var
{
h1(X1)

}
, σ 2

h = Var
{
h(X1,X2, . . . ,Xm)

}
. (3.1)

Assume 0 < σ 2 < ∞, then the standardized non-degenerate U -statistic is given by

Zn =
√

n

mσ
(Un − θ).

The U -statistic is a basic statistic and its asymptotic properties have been extensively studied
in the literature. We refer to [25] for a systematic presentation of the theory of U -statistics. For
uniform Berry–Esseen bounds, see [1,2,5,8,9,16,17,19,29,35,39] and [12]. We refer to [15,24]
and [6,7] for large and moderate deviation asymptotics.

Because σ is usually unknown, we are interested in the following Studentized U -statistic
(Arvensen [3]), which is widely used in practice:

Tn =
√

n

ms1
(Un − θ),
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where s2
1 denotes the leave-one-out Jackknife estimator of σ 2 given by

s2
1 = (n − 1)

(n − m)2

n∑
i=1

(qi − Un)
2 with

(3.2)

qi = 1(
n−1
m−1

) ∑
1≤�1<···<�m−1≤n

�j �=i,j=1,...,m−1

h(Xi,X�1, . . . ,X�m−1).

In contrast to the standardized U -statistics, few optimal limit theorems are available for Studen-
tized U -statistics in the literature. A uniform Berry–Esseen bound for Studentized U -statistics
was proved in [38] for m = 2 and E|h(X1,X2)|3 < ∞. However, a finite third moment of
h(X1,X2) may not be an optimal condition. Partial results on Cramér type moderate deviation
were obtained in [36,37] and [26].

As a direct but non-trivial consequence of Theorems 2.1 and 2.2, we establish the following
sharp Cramér type moderate deviation theorem for the Studentized U -statistic Tn.

Theorem 3.1. Assume that σp := (E|h1(X1) − θ |p)1/p < ∞ for some 2 < p ≤ 3. Suppose that
there are constants c0 ≥ 1 and τ ≥ 0 such that

{
h(x1, . . . , xm) − θ

}2 ≤ c0

[
τσ 2 +

m∑
i=1

{
h1(xi) − θ

}2

]
. (3.3)

Then there exist positive constants C1 and c1 independent of n such that

P(Tn ≥ x)

1 − �(x)
= 1 + O(1)

{
(σp/σ)p

(1 + x)p

np/2−1
+ (

√
am + σh/σ)

(1 + x)3

√
n

}
(3.4)

holds uniformly for

0 ≤ x ≤ c1 min
{
(σ/σp)n1/2−1/p, (n/am)1/6},

where |O(1)| ≤ C1 and am = max{c0τ, c0 + m}. In particular,

P(Tn ≥ x)

1 − �(x)
→ 1 (3.5)

holds uniformly in x ∈ [0, o(n1/2−1/p)).

It is easy to verify that condition (3.3) is satisfied for the t -statistic (h(x1, x2) = (x1 + x2)/2
with c0 = 2 and τ = 0), sample variance (h(x1, x2) = (x1 − x2)

2/2, c0 = 10, τ = θ2/σ 2), Gini’s
mean difference (h(x1, x2) = |x1 − x2|, c0 = 8, τ = θ2/σ 2) and one-sample Wilcoxon’s statistic
(h(x1, x2) = I (x1 + x2 ≤ 0), c0 = 1, τ = 1/σ 2). Although it may be interesting to investigate
whether condition (3.3) can be weakened, it seems that it is impossible to remove condition (3.3)
completely. We also note that result (3.5) was earlier proved in [26] for m = 2. However, the
approach used therein can hardly be extended to the case m ≥ 3.
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4. A randomized concentration inequality

To prove Theorem 2.1, we first develop a randomized concentration inequality via Stein’s
method. Stein’s method (Stein [34]) is a powerful tool in the normal and non-normal approxi-
mation of both independent and dependent variables, and the concentration inequality is a useful
approach in Stein’s method. We refer to [10] for systematic coverage of the method and recent
developments in both theory and applications and to [12] for uniform and non-uniform Berry–
Esseen bounds for nonlinear statistics using the concentration inequality approach.

Let ξ1, . . . , ξn be independent random variables such that

Eξi = 0 for i = 1,2, . . . , n and
n∑

i=1

Eξ2
i = 1.

Let

W =
n∑

i=1

ξi, V 2 =
n∑

i=1

ξ2
i (4.1)

and let �1 = �1(ξ1, . . . , ξn) and �2 = �2(ξ1, . . . , ξn) be two measurable functions of ξ1, . . . , ξn.
Moreover, set

β2 =
n∑

i=1

Eξ2
i I
(|ξi | > 1

)
, β3 =

n∑
i=1

E|ξi |3I
(|ξi | ≤ 1

)
.

Theorem 4.1. For each 1 ≤ i ≤ n, let �
(i)
1 and �

(i)
2 be random variables such that ξi and

(�
(i)
1 ,�

(i)
2 ,W − ξi) are independent. Then

P(�1 ≤ W ≤ �2) ≤ 17(β2 + β3) + 5E|�2 − �1| + 2
n∑

i=1

2∑
j=1

E
∣∣ξi

{
�j − �

(i)
j

}∣∣. (4.2)

We note that a similar result was obtained by [12] with E|W(�2 − �1)| instead of E|�2 −
�1| in (4.2). However, using the term E|W(�2 − �1)| will not yield the sharp bound in (3.4)
when Theorem 2.1 is applied to Studentized U -statistics. This provides our main motivation for
developing the new concentration inequality (4.2).

Proof of Theorem 4.1. Assume without loss of generality that �1 ≤ �2. The proof is based on
Stein’s method. For every x ∈R, let fx(w) be the solution to Stein’s equation

f ′
x(w) − wfx(w) = I (w ≤ x) − �(x), (4.3)

which is given by

fx(w) =
{√

2πew2/2�(w)
{
1 − �(x)

}
, w ≤ x,√

2πew2/2�(x)
{
1 − �(w)

}
, w > x.

(4.4)
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Set fx,y = fx − fy for any x, y ∈ R, δ = (β2 + β3)/2 and

�1,δ = �1 − δ, �2,δ = �2 + δ, �
(i)
1,δ = �

(i)
1 − δ, �

(i)
2,δ = �

(i)
2 + δ.

Noting that ξi and (�
(i)
1 ,�

(i)
2 ,W(i) = W − ξi) are independent and Eξi = 0 for i = 1, . . . , n,

we have

E
{
Wf�2,δ ,�1,δ

(W)
} =

n∑
i=1

E
{
ξif�2,δ ,�1,δ

(W)
}

=
n∑

i=1

E
[
ξi

{
f�2,δ ,�1,δ

(W) − f�2,δ ,�1,δ

(
W(i)

)}]
(4.5)

+
n∑

i=1

E
[
ξi

{
f�2,δ ,�1,δ

(
W(i)

)− f
�

(i)
2,δ ,�

(i)
1,δ

(
W(i)

)}]
:= H1 + H2.

By (4.4),

∂

∂x
fx(w) =

{
−e(w2−x2)/2�(w), w ≤ x,
e(w2−x2)/2

{
1 − �(w)

}
, w > x.

Clearly, supx,w | ∂
∂x

fx(w)| ≤ 1 and it follows that

|H2| ≤
n∑

i=1

2∑
j=1

E
∣∣ξi

{
�j − �

(i)
j

}∣∣. (4.6)

As for H1, let k̂i (t) = ξi{I (−ξi ≤ t ≤ 0) − I (0 < t ≤ −ξi)} satisfying k̂i (t) ≥ 0 and∫
R

k̂i (t) dt = ξ2
i . Observe by (4.3) that

ξi

{
f�2,δ ,�1,δ

(W) − f�2,δ ,�1,δ

(
W(i)

)}
= ξi

∫ 0

−ξi

f ′
�2,δ ,�1,δ

(W + t) dt

=
∫
R

f ′
�2,δ ,�1,δ

(W + t)k̂i (t) dt

=
∫
R

(W + t)f�2,δ ,�1,δ
(W + t)k̂i (t) dt

+ ξ2
i

{
�(�1,δ) − �(�2,δ)

}+
∫
R

I (�1,δ ≤ W + t ≤ �2,δ)k̂i (t) dt.
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Adding up over 1 ≤ i ≤ n gives

H1 =
n∑

i=1

E

∫
R

(W + t)f�2,δ ,�1,δ
(W + t)k̂i (t) dt +E

[
V 2{�(�1,δ) − �(�2,δ)

}]
+

n∑
i=1

E

∫
R

I (�1,δ ≤ W + t ≤ �2,δ)k̂i (t) dt (4.7)

:= H11 + H12 + H13

for V 2 given in (4.1). Following the proof of (10.59)–(10.61) in [10] (or see (5.6)–(5.8) in [12]),
we have

H13 ≥ (1/2)P(�1 ≤ W ≤ �2) − δ, (4.8)

where δ = (β2 + β3)/2. Assume that δ ≤ 1/8. Otherwise, (4.2) is trivial. To finish the proof
of (4.2), in view of (4.5), (4.6), (4.7) and (4.8), it suffices to show that

|H12| ≤ 0.6E|�2 − �1| + β2 + 0.5β3 (4.9)

and

E
{
Wf�2,δ ,�1,δ

(W)
}− H11 ≤ 1.75E|�2 − �1| + 7β2 + 6β3. (4.10)

Next we prove (4.9) and (4.10), starting with (4.9).

Proof of (4.9). Recall that �1 ≤ �2 and
∑n

i=1 Eξ2
i = 1. Let ξ̄i = ξiI (|ξi | ≤ 1), we have

|H12| = E
[
V 2{�(�2) − �(�1)

}]
≤

n∑
i=1

Eξ2
i I
(|ξi | > 1

)+E

[{
�(�2) − �(�1)

} n∑
i=1

ξ2
i I
(|ξi | ≤ 1

)]

= β2 +E
[{

�(�2) − �(�1)
}] n∑

i=1

Eξ̄2
i +E

[{
�(�2) − �(�1)

} n∑
i=1

(
ξ̄2
i −Eξ̄2

i

)]

≤ β2 + 1√
2π

E(�2 − �1) +E

{
min

(
1,

�2 − �1√
2π

)∣∣∣∣∣
n∑

i=1

(
ξ̄2
i −Eξ̄2

i

)∣∣∣∣∣
}

≤ β2 + 1√
2π

E(�2 − �1) + 1

2
Emin

(
1,

�2 − �1√
2π

)2

+ 1

2
E

{
n∑

i=1

(
ξ̄2
i −Eξ̄2

i

)}2

≤ β2 + 1√
2π

E(�2 − �1) + 1

2
√

2π
E(�2 − �1) + 1

2
β3

≤ 0.6E(�2 − �1) + β2 + 0.5β3,

as desired. �
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Proof of (4.10). Observe that

E
{
Wf�2,δ ,�1,δ

(W)
}− H11

= E
{
Wf�2,δ ,�1,δ

(W)
(
1 − V 2)}

(4.11)

+
n∑

i=1

E

∫ {
Wf�2,δ ,�1,δ

(W) − (W + t)f�2,δ ,�1,δ
(W + t)

}
k̂i (t) dt

:= H31 + H32.

Recall that supx,w | ∂
∂x

fx(w)| ≤ 1. This, together with the following basic properties of fx(w)

(see, e.g., Lemma 2.3 in [10]) ∣∣wfx(w)
∣∣ ≤ 1,

∣∣fx(w)
∣∣≤ 1, (4.12)∣∣wfx(w) − (w + t)fx(w + t)

∣∣ ≤ min
{
1,
(|w| + √

2π/4
)|t |} (4.13)

and |fx,y(w)| ≤ |x − y|, yields

H31 = E

[
Wf�2,δ ,�1,δ

(W)

n∑
i=1

{
Eξ2

i I
(|ξi | > 1

)− ξ2
i I
(|ξi | > 1

)}]

+E

{
Wf�2,δ ,�1,δ

(W)

n∑
i=1

(
Eξ̄2

i − ξ̄2
i

)}

≤ 2β2 + 2E

{
I (�2 − �1 > 1)

∣∣∣∣∣
n∑

i=1

(
Eξ̄2

i − ξ̄2
i

)∣∣∣∣∣
}

+E

{
Wf�2,δ ,�1,δ

(W)I (�2 − �1 ≤ 1)

n∑
i=1

(
Eξ̄2

i − ξ̄2
i

)}
≤ 2β2 +E(�2 − �1) + β3

(4.14)

+E

{
|W |(2δ + �2 − �1)I (�2 − �1 ≤ 1)

n∑
i=1

(
Eξ̄2

i − ξ̄2
i

)}

≤ 2β2 +E(�2 − �1) + β3 + 0.5E
{
(2δ + �2 − �1)

2I (�2 − �1 ≤ 1)
}

+ 0.5E

[
W 2

{
n∑

i=1

(
Eξ̄2

i − ξ̄2
i

)}2]

≤ 2β2 +E(�2 − �1) + β3 + 2δ2 + 0.75E(�2 − �1) + 2β3

≤ 2.125β2 + 3.125β3 + 1.75E(�2 − �1),
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where we used the facts that δ ≤ 1/8,

E

{
n∑

i=1

(
ξ̄2
i −Eξ̄2

i

)}2

≤ β3 and E

{
W

n∑
i=1

(
Eξ̄2

i − ξ̄2
i

)}2

≤ 4β3.

To see this, set U =∑n
i=1 ηi with ηi = ξ̄2

i −Eξ̄2
i , then by standard calculations,

EU2 =
n∑

i=1

Eη2
i ≤

n∑
i=1

Eξ̄4
i ≤

n∑
i=1

E|ξ̄i |3 = β3

and

E
(
W 2U2) =

∑
i,j,k,�

E(ξiξj ηkη�) =
n∑

i=1

E
(
ξ2
i η2

i

)+
∑
i �=j

Eξ2
i Eη2

j + 2
∑
i �=j

EξiηiEξjηj ≤ 4β3.

As for H32, by (4.13)

H32 ≤
n∑

i=1

E

∫
R

2 min
{
1,
(|W | + √

2π/4
)|t |}k̂i (t) dt

≤ 2
n∑

i=1

E

∫
|t |>1

k̂i (t) dt + 2
n∑

i=1

E

∫
|t |≤1

(|W | + √
2π/4

)|t |k̂i (t) dt

≤ 2β2 +E

{(|W | + √
2π/4

) n∑
i=1

|ξi |min
(
1, ξ2

i

)}
(4.15)

≤ 2β2 +E

[(|W | + √
2π/4

){ n∑
i=1

|ξi |I
(|ξi | > 1

)+
n∑

i=1

|ξ̄i |3
}]

≤ 2β2 + (2 + √
2π/4)(β2 + β3)

≤ 4.7β2 + 2.7β3,

where we used the inequalities

E
{|W | · |ξi |I

(|ξi | > 1
)}≤ E

∣∣W(i)
∣∣ ·E|ξi |I

(|ξi | > 1
)+Eξ2

i I
(|ξi | > 1

)≤ 2Eξ2
i I
(|ξi | > 1

)
and E(|W | · |ξ̄i |3) ≤ E|W(i)| · E|ξ̄i |3 + Eξ̄4

i ≤ 2E|ξ̄i |3. Combining (4.11), (4.14) and (4.15)
yields (4.10). �

�
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5. Proof of Theorem 2.1

5.1. Main idea of the proof

Observe that Vn is close to 1 and 1 + D2n > 0. Remember that we are interested in a particular
type of nonlinear process that can be written as a linear process plus a negligible remainder.
Intuitively, the leading term of the normalizing factor should be a quadratic process, say V 2

n .
The key idea of the proof is to first transform Vn(1 + D2n)

1/2 to (V 2
n + 1)/2 + D2n plus a small

term and then apply the method of conjugated distributions and the randomized concentration
inequality (4.2). It follows from the elementary inequalities

1 + s/2 − s2/2 ≤ (1 + s)1/2 ≤ 1 + s/2, s ≥ −1

that (1 + D2n)
1/2 ≥ 1 + min(D2n,0), which leads to

Vn(1 + D2n)
1/2 ≥ Vn + Vn min(D2n,0)

≥ 1 + (
V 2

n − 1
)
/2 − (

V 2
n − 1

)2
/2 + Vn min(D2n,0)

(5.1)
≥ V 2

n /2 + 1/2 − (
V 2

n − 1
)2

/2 + {
1 + (

V 2
n − 1

)
/2
}

min(D2n,0)

≥ V 2
n /2 + 1/2 − (

V 2
n − 1

)2 + min(D2n,0).

Using the inequality 2ab ≤ a2 + b2 yields the reverse inequality

Vn(1 + D2n)
1/2 ≤ (1 + D2n)/2 + V 2

n /2 = V 2
n /2 + 1/2 + D2n/2.

Consequently, for any x > 0,

{Tn ≥ x} ⊆ {
Wn + D1n ≥ x

(
V 2

n /2 + 1/2 − (
V 2

n − 1
)2 + D2n ∧ 0

)}
(5.2)

= [
xWn − x2V 2

n /2 ≥ x2/2 − x
{
x
(
V 2

n − 1
)2 + D1n + xD2n ∧ 0

}]
and

{Tn ≥ x} ⊇ {
xWn − x2V 2

n /2 ≥ x2/2 + x(xD2n/2 − D1n)
}
. (5.3)

Proof of (2.6). By (5.2), we have for x ≥ 1,

P(Tn ≥ x)

≤ P
{
Wn ≥ xVn(1 + D2n ∧ 0) − D1n, |D1n| ≤ Vn/4x, |D2n| ≤ 1/4x2}

+ P
(|D1n|/Vn > 1/4x

)+ P
(|D2n| > 1/4x2) (5.4)

≤ P
(
xWn − x2V 2

n /2 ≥ x2/2 − x�1n

)+ P
{
Wn ≥ (x − 1/2x)Vn,

∣∣V 2
n − 1

∣∣> 1/2x
}

+ P
(|D1n|/Vn > 1/4x

)+ P
(|D2n| > 1/4x2),
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where

�1n = min
{
x
(
V 2

n − 1
)2 + |D1n| + xD2n ∧ 0,1/x

}
. (5.5)

Consequently, (2.6) follows from the next two propositions. We postpone the proofs to Sec-
tion 5.2. �

Proposition 5.1. There exist positive absolute constants C1,C2 such that

P
(
xWn − x2V 2

n /2 ≥ x2/2 − x�1n

)≤ {
1 − �(x)

}
exp(C1Ln,x)(1 + C2Rn,x) (5.6)

holds for x ≥ 1 satisfying (2.7) and (2.8).

Proposition 5.2. There exist positive absolute constants C3,C4 such that

P
(
Wn/Vn ≥ x − 1/2x,

∣∣V 2
n − 1

∣∣> 1/2x
)≤ C3

{
1 − �(x)

}
exp(C4Ln,x)Ln,x (5.7)

holds for all x ≥ 1.

Proof of (2.5). By (5.3),

P(Tn ≥ x) ≥ P
(
xWn − x2V 2

n /2 ≥ x2/2 + x�2n

)
, (5.8)

where �2n = xD2n/2 − D1n. Then (2.5) follows directly from the following proposition.

Proposition 5.3. There exist positive absolute constants C5,C6 such that

P
(
xWn − x2V 2

n /2 ≥ x2/2 + x�2n

)≥ {
1 − �(x)

}
exp(−C5Ln,x)(1 − C6Rn,x) (5.9)

for x ≥ 1 satisfying (2.7) and (2.8).

The proof of Theorem 2.1 is then complete. �

5.2. Proof of Propositions 5.1, 5.2 and 5.3

For two sequences of real numbers an and bn, we write an � bn if there is a universal constant C

such that an ≤ Cbn holds for all n. Throughout this section, C,C1,C2, . . . denote positive con-
stants that are independent of n. We start with some preliminary lemmas. The first two lemmas
are Lemmas 5.1 and 5.2 in [23]. Let X be a random variable such that EX = 0 and EX2 < ∞,
and set

δ1 = EX2I
(|X| > 1

)+E|X|3I(|X| ≤ 1
)
.

Lemma 5.1. For 0 ≤ λ ≤ 4 and 0.25 ≤ θ ≤ 4, we have

EeλX−θX2 = 1 + (
λ2/2 − θ

)
EX2 + O(1)δ1, (5.10)

where O(1) is bounded by an absolute constant.
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Lemma 5.2. Let Y = X − X2/2. Then for 0.25 ≤ λ ≤ 4, we have

EeλY = 1 + (
λ2/2 − λ/2

)
EX2 + O(1)δ1,

E
(
YeλY

) = (λ − 1/2)EX2 + O(1)δ1,

E
(
Y 2eλY

) = EX2 + O(1)δ1,

E
(|Y |3eλY

) = O(1)δ1 and
{
E
(
YeλY

)}2 = O(1)δ1,

where the O(1)’s are bounded by an absolute constant. In particular, when λ = 1, we have

e−5.5δ1 ≤ EeY ≤ e2.65δ1 . (5.11)

Lemma 5.3. Let Y = X − X2/2, Z = X2 −EX2 and write

δ11 = EX2I
(|X| > 1

)
, δ12 = E|X|3I(|X| ≤ 1

)
.

Then ∣∣E(ZeY
)∣∣ ≤ 4.2δ11 + 1.5δ12, (5.12)

E
(
Z2eY

) ≤ 4δ11 + 2δ12 + 2δ2
11, (5.13)

E
(|YZ|eY

) ≤ 2δ11 + δ12, (5.14)

E
(|Y |Z2eY

) ≤ 3.1δ11 + δ12 + δ2
11. (5.15)

Proof. See the Appendix. �

The next lemma provides an estimate of In,x given in (2.3).

Lemma 5.4. Let ξi be independent random variables satisfying (2.1) and let Ln,x be defined as
in (2.3). Then there exists an absolute positive constant C such that

In,x = exp
{
O(1)Ln,x

}
(5.16)

for all x ≥ 1, where |O(1)| ≤ C.

Proof. Applying (5.11) in Lemma 5.1 to X = xξi and Y = X − X2/2 yields (5.16) with
|O(1)| ≤ 5.5. �

Our proof is based on the following method of conjugated distributions or the change of mea-
sure technique (Petrov [28]), which can be traced back to Harald Cramér in 1938. Let ξi be
independent random variables and g(x) be a measurable function satisfying Eeg(ξi ) < ∞. Let ξ̂i

be independent random variables with the distribution functions given by

P(ξ̂i ≤ y) = 1

Eeg(ξi )
E
{
eg(ξi )I (ξi ≤ y)

}
.
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Then, for any measurable function f : Rn → R and any Borel measurable set C,

P
{
f (ξ1, . . . , ξn) ∈ C

}=
n∏

i=1

Eeg(ξi ) ×E
[
e−∑n

i=1 g(ξ̂i )I
{
f (ξ̂1, . . . , ξ̂n) ∈ C

}]
.

See, for example, [23] and [33] for the applications of the change of measure method in deriving
moderate deviations.

Proof of Proposition 5.1. Let Yi = g(ξi) = ξi,x − ξ2
i,x/2 with ξi,x = xξi , and let ξ̂1, . . . , ξ̂n be

independent random variables with ξ̂i having the distribution function

Vi(y) = E
{
eYi I (ξi ≤ y)

}
/EeYi , y ∈R.

Put Ŷi = g(ξ̂i) = xξ̂i − x2ξ̂2
i /2 and recall that xWn − x2V 2

n /2 =∑n
i=1 Yi := SY . Then using the

method of conjugated distributions gives

P
(
xWn − x2V 2

n /2 ≥ x2/2 − x�1n

)
= P

{
n∑

i=1

g(ξi) ≥ x2 − x�1n(ξ1, . . . , ξn)

}
(5.17)

=
n∏

i=1

EeYi ×E
{
e−ŜY I

(
ŜY ≥ x2/2 − x�̂1n

)}
:= In,x × Hn,

where ŜY =∑n
i=1 Ŷi , Hn = E{e−ŜY I (ŜY ≥ x2/2 − x�̂1n)} and �̂1n = �1n(ξ̂1, . . . , ξ̂n).

Set

mn =
n∑

i=1

EŶi , σ 2
n =

n∑
i=1

Var(Ŷi) and vn =
n∑

i=1

E|Ŷi |3.

Then it follows from the definition of ξ̂i that

EŶi = E
(
Yie

Yi
)
/EeYi ,

Var(Ŷi) = E
(
Y 2

i eYi
)
/EeYi − (EŶi )

2,

E|Ŷi |3 = E
(|Yi |3eYi

)
/EeYi .

Applying Lemma 5.3 with X = xξi and λ = 1 yields

EeYi = eO(1)δi,x , E
(
Yie

Yi
)= (

x2/2
)
Eξ2

i + O(1)δi,x,
(5.18)

E
(
Y 2

i eYi
) = x2

Eξ2
i + O(1)δi,x, E

(|Yi |3eYi
)= O(1)δi,x
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and {E(Yie
Yi )}2 = O(1)δi,x . In view of (5.11) and (2.7), using a similar argument as in the proof

of (7.11)–(7.13) in [23] gives

mn =
n∑

i=1

E
(
Yie

Yi
)
/EeYi = x2/2 + O(1)Ln,x, (5.19)

σ 2
n =

n∑
i=1

{
E
(
Y 2

i eYi
)
/EeYi − (EŶi )

2}= x2 + O(1)Ln,x, (5.20)

vn =
n∑

i=1

E
(|Yi |3eYi

)
/EeYi = O(1)Ln,x, (5.21)

where all of the O(1)’s appeared above are bounded by an absolute constant, say C1. Taking into
account the condition (2.8), we have σ 2

n ≥ x2/2, provided the constant c1 in (2.8) is sufficiently
large, say, no larger than (4C1)

−1.
Define the standardized sum Ŵ := Ŵn = (ŜY − mn)/σn, and let

εn = σ−1
n

(
x2/2 − mn

)
, rn = εn + σn.

By (5.19)–(5.21) and (2.8) with c1 ≤ (4C1)
−1,

|εn| ≤ √
2C1x

−1Ln,x, vnσ
−3
n ≤ √

8C1x
−3Ln,x, (5.22)

|rn − x| ≤ |εn| +
∣∣σ 2

n − x2
∣∣/(σn + x) ≤ 2C1x

−1Ln,x ≤ x/2, (5.23)

which leads to

Hn ≤ E
{
exp(−σnŴ − mn)I (Ŵ − εn ≥ −x�̂1n/σn)

}≤ H1n + H2n (5.24)

with H1n = E{exp(−σnŴ − mn)I (Ŵ ≥ εn)} and

H2n = E
{
exp(−σnŴ − mn)I (−x�̂1n/σn ≤ Ŵ − εn < 0)

}
.

Denote by Gn the distribution function of Ŵ , then H1n reads as

H1n =
∫ ∞

εn

e−σnt−mn dGn(t)

= e−x2/2
∫ ∞

0
e−σns dGn(s + εn)

(5.25)

= e−x2/2
{∫ ∞

0
e−σns d

{
Gn(s + εn) − �(s + εn)

}+
∫ ∞

0
e−σns d�(s + εn)

}
:= e−x2/2(J1n + J2n).
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Using integration by parts for the Lebesgue–Stieltjes integral, the Berry–Esseen inequality, (5.22)
and the following upper and lower tail inequalities for the standard normal distribution

t

1 + t2
e−t2/2 ≤

∫ ∞

t

e−u2/2 du ≤ 1

t
e−t2/2 for t > 0, (5.26)

we have

|J1n| ≤ 2 sup
t∈R

∣∣Gn(t) − �(t)
∣∣≤ 4vnσ

−3
n ≤ C2e

x2/2{1 − �(x)
}
x−2Ln,x.

For J2n, by the change of variables we have

J2n = e−ε2
n/2

√
2π

∫ ∞

0
exp

{−(σn + εn)t − t2/2
}
dt = e−ε2

n/2

√
2π

�(rn),

where

�(x) = 1 − �(x)

�′(x)
= ex2/2

∫ ∞

x

e−t2/2 dt.

By (5.26),

�(s) ≥ s

1 + s2
and 0 < −� ′(s) = 1 − ses2/2

∫ ∞

s

e−t2/2 dt ≤ 1

1 + s2
for s ≥ 0.

In view of (5.23), x/2 ≤ rn ≤ 3x/2. Consequently, |�(rn) − �(x)| ≤ 4|rn − x|/(4 + x2), which
further implies that

J2n ≤ 1√
2π

{
�(x) + 4

4 + x2
|rn − x|

}
≤ ex2/2{1 − �(x)

}(
1 + C3x

−2Ln,x

)
.

By (5.25) and the above upper bounds for J1n and J2n,

H1n ≤ {
1 − �(x)

}(
1 + C4x

−2Ln,x

)
. (5.27)

As for H2n, note that x�̂1n ≤ 1 by (5.5). Therefore,

H2n ≤ e1−x2/2 × P(εn − x�̂1n/σn ≤ Ŵ < εn). (5.28)

Applying inequality (4.2) to the standardized sum Ŵ gives

P(εn − x�̂1n/σn ≤ Ŵ ≤ εn)
(5.29)

≤ 17vnσ
−3
n + 5xσ−1

n E|�̂1n| + 2xσ−2
n

n∑
i=1

E
∣∣Ŷi

{
�̂1n − �̂

(i)
1n

}∣∣,
where �̂

(i)
1n can be any random variable that is independent of ξ̂i . By (5.22), it is readily known

that vnσ
−3
n ≤ √

8C1x
−3Ln,x . For the other two terms, recall that the distribution function of ξ̂i
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is given by Vi(y) = E{eYi I (ξi ≤ y)}/EeYi with Yi = g(ξi). Then

E|�̂1n| =
∫

· · ·
∫

�1n(x1, . . . , xn) dV1(x1) · · ·dVn(xn)

= I−1
n,x

∫
· · ·

∫
�1n(x1, . . . , xn)

n∏
i=1

{
eg(xi ) dFξi

(xi)
}

(5.30)

= I−1
n,x ×E

(|�1n|e
∑n

i=1 Yi
)
.

It can be similarly obtained that for each i = 1, . . . , n,

E
∣∣Ŷi

{
�̂1n − �̂

(i)
1n

}∣∣= I−1
n,x ×E

[∣∣Yi

{
�1n − �

(i)
1n

}∣∣e∑n
j=1 Yj

]
. (5.31)

Assembling (5.28)–(5.31), we obtain from (5.26) that

H2n ≤ C5
{
1 − �(x)

}(
x−2Ln,x + I−1

n,x × xE
(|�1n|e

∑n
j=1 Yj

)
+ I−1

n,x

n∑
i=1

E
[∣∣Yi

{
�1n − �

(i)
1n

}∣∣e∑n
j=1 Yj

])

≤ C5
{
1 − �(x)

}[
x−2Ln,x + I−1

n,x × xE
(|�1n|e

∑n
j=1 Yj

)
+ 2I−1

n,x

n∑
i=1

E
{
min

(|ξi,x |,1
)∣∣�1n − �

(i)
1n

∣∣e∑n
j �=i Yj

}]
,

where the last step follows from the inequality |t − t2/2|et−t2/2 ≤ 2 min(1, |t |) for t ∈ R.
Recall that �1n ≤ x(V 2

n − 1)2 + |D1n| + x|D2n|. To finish the proof of (5.6), we only need to
consider the contribution from x(V 2

n − 1)2. For notational convenience, let Zi = ξ2
i − Eξ2

i for
1 ≤ i ≤ n, such that V 2

n − 1 =∑n
i=1 Zi and(

V 2
n − 1

)2 − {(
V 2

n − 1
)2}(i) = Z2

i + 2Zi ·
∑
j �=i

Zj .

By Lemma 5.5, (5.28) and (5.29),

H2n ≤ C6
{
1 − �(x)

}{
Rn,x + x−2Ln,x(1 + Ln,x)e

C7 maxi δi,x
}
. (5.32)

Together, (5.17), (5.24), (5.27), (5.32) and Lemma 5.4 prove (5.6). �

Lemma 5.5. For x ≥ 1, we have

E
{(

V 2
n − 1

)2
e
∑n

j=1 Yj
}
� In,x × x−4Ln,x(1 + Ln,x) (5.33)
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and

n∑
i=1

E

{∣∣∣∣Yi

(
Z2

i + 2Zi

∑
j �=i

Zj

)∣∣∣∣e∑n
j=1 Yj

}
� In,x × x−4Ln,x(1 + Ln,x). (5.34)

Proof. Recall that V 2
n − 1 =∑n

i=1 Zi . By independence,

E

{(
n∑

i=1

Zi

)2

e
∑n

j=1 Yj

}

=
n∑

i=1

E
(
Z2

i e
Yi
)
Ee

∑
j �=i Yj +

∑
i �=j

E
(
Zie

Yi
) ·E(Zje

Yj
) ·Ee

∑n
k=1,k �=i,j Yk (5.35)

= In,x

{
n∑

i=1

E
(
Z2

i e
Yi
)
/EeYi +

∑
i �=j

E
(
Zie

Yi
) ·E(Zje

Yj
)
/
(
EeYiEeYj

)}
.

It follows from Lemma 5.3 that |E(Zie
Yi )| � x−2δi,x and E(Z2

i e
Yi ) � x−4(δi,x + δ2

i,x). Substi-
tuting these into (5.35) proves (5.33) in view of (5.11).

Again, applying Lemma 5.3 gives us

E
(|ZiYi |eYi

)
� x−2δi,x and E

(
Z2

i |Yi |eYi
)
� x−4(δi,x + δ2

i,x

)
,

which together with Hölder’s inequality imply

n∑
i=1

E

{∣∣∣∣Yi

(
Z2

i + 2Zi

∑
j �=i

Zj

)∣∣∣∣e∑n
j=1 Yj

}
� In,x × x−4Ln,x(1 + Ln,x)

+ 2
n∑

i=1

E
(|ZiYi |eYi

){
E

(∑
j �=i

Zj

)2

e
∑

j �=i Yj

}1/2

· (Ee
∑

j �=i Yj
)1/2

� In,x × x−4Ln,x(1 + Ln,x),

where we use (5.33) in the last step. This completes the proof of (5.34). �

Proof of Proposition 5.2. This proof is similar to the argument used in [31]. First, consider the
following decomposition:

P
(
Wn/Vn ≥ x − 1/2x,

∣∣V 2
n − 1

∣∣> 1/2x
)

≤ P
{
Wn/Vn ≥ x − 1/2x, (1 + 1/2x)1/2 < Vn ≤ 4

}
+ P

{
Wn/Vn ≥ x − 1/2x,Vn < (1 − 1/2x)1/2} (5.36)
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+ P(Wn/Vn ≥ x − 1/2x,Vn > 4)

:=
3∑

ν=1

P
{
(Wn,Vn) ∈ Eν

}
,

where Eν ⊆R×R
+, 1 ≤ ν ≤ 3 are given by

E1 = {
(u, v) ∈ R×R

+ : u/v ≥ x − 1/2x,
√

1 + 1/2x < v ≤ 4
}
,

E2 = {
(u, v) ∈ R×R

+ : u/v ≥ x − 1/2x, v <
√

1 − 1/2x
}
,

E3 = {
(u, v) ∈ R×R

+ : u/v ≥ x − 1/2x, v > 4
}
.

To bound the probability P{(Wn,Vn) ∈ E1}, put t1 = x
√

1 + 1/2x and λ1 = t1(x − 1/2x)/8.
By Markov’s inequality,

P
{
(Wn,Vn) ∈ E1

}≤ x2e− inf(u,v)∈E1 (t1u−λ1v
2)
E
{(

V 2
n − 1

)2
et1Wn−λ1V

2
n
}
,

where it can be easily verified that

inf
(u,v)∈E1

(
t1u − λ1v

2)= x2 + x/2 − λ1(1 + 1/x) − 1/2 − 1/4x.

However, recall that V 2
n −1 =∑n

i=1 Zi with Zi = ξ2
i −Eξ2

i , it follows from the independence
and (5.10) that

E
{(

V 2
n − 1

)2
et1Wn−λ1V

2
n
}

=
n∑

i=1

E
(
Z2

i e
t1ξi−λ1ξ

2
i
)×

∏
j �=i

E
(
e
t1ξj −λ1ξ

2
j
)

(5.37)
+
∑
i �=j

E
(
Zie

t1ξi−λ1ξ
2
i
)
E
(
Zje

t1ξj −λ1ξ
2
j
)×

∏
k �=i,j

E
(
et1ξk−λ1ξ

2
k
)

� x−4Ln,x(1 + Ln,x) exp
(
t2
1 /2 − λ1 + CLn,x

)
,

where we use the fact t2
1 /2 − λ1 > 0. Consequently,

P
{
(Wn,Vn) ∈ E1

}
/
{
1 − �(x)

}
(5.38)

� x−2Ln,x(1 + Ln,x) exp(−3x/8 + CLn,x) � Ln,x exp(−3x/8 + CLn,x).

Likewise, we can bound the probability P{(Wn,Vn) ∈ E2} by using (t2, λ2) instead of (t1, λ1),
given by

t2 = x
√

1 − 1/2x, λ2 = 2x2 − 1.
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Note that inf(u,v)∈E2(t2u−λ2v
2) = x2 −x/2−1/2+1/4x −λ2(1−1/2x). Together with (5.37),

this yields

P
{
(Wn,Vn) ∈ E2

}
/
{
1 − �(x)

}
(5.39)

� x−2Ln,x(1 + Ln,x) exp(−3x/4 + CLn,x)� Ln,x exp(−3x/4 + CLn,x).

For the last term P{(Wn,Vn) ∈ E3}, we use a truncation technique and the probability estima-
tion of binomial distribution. Let Ŵn =∑n

i=1 ξiI (xξi ≤ a0), where a0 is an absolute constant to
be determined (see (5.43)). Observe that

P
{
(Wn,Vn) ∈ E3

} ≤ P

(
Ŵn ≥ 2x − 1/x,

n∑
i=1

ξ2
i I
(
x|ξi | ≤ 1

)≥ 3

)

+ P

(
Ŵn ≥ 2x − 1/x,

n∑
i=1

ξ2
i I
(
x|ξi | > 1

)≥ 13

)

+ P

(
n∑

i=1

ξiI {xξi > a0} ≥ (x − 1/2x)Vn/2

)
:= J3n + J4n + J5n.

Let

V̄ 2
n =

n∑
i=1

ξ̄2
i with ξ̄i = ξiI

(
x|ξi | ≤ 1

)
,1 ≤ i ≤ n,

such that

J3n = P
(
Ŵn ≥ 2x − 1/x, V̄ 2

n ≥ 3
)≤ (

√
e/4)e−x2

E
{(

V̄ 2
n − 1

)2
exŴn/2}

≤ e−x2

(
E

[{
n∑

i=1

(
ξ̄2
i −Eξ̄2

i

)}2

exŴn/2

]
+ x−4L2

n,xEexŴn/2

)
.

Noting that E{ξiI (xξi ≥ a0)} = −E{ξiI (xξi > a0)} ≤ 0 for every i, and

es ≤ 1 + s + s2/2 + |s|3emax(s,0)/6 for all s,

we obtain

EexŴn/2 ≤
n∏

i=1

[
1 + x2

8
Eξ2

i + ea0/2x3

48
E
{|ξi |3I

(|xξi | ≤ a0
)}]

≤
n∏

i=1

{
1 + x2

8
Eξ2

i + ea0/2x3

48
E|ξi |3I

(
x|ξi | ≤ 1

)+ a0e
a0/2x2

48
Eξ2

i I
(
x|ξi | > 1

)}
(5.40)

≤ exp
{
x2/8 + O(1)Ln,x

}
.
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Similar to the proof of (5.37), it follows that

J3n � x−4Ln,x(1 + Ln,x) exp
{−7x2/8 + O(1)Ln,x

}
. (5.41)

To bound J4n, let Ŵ
(i)
n = Ŵn − ξiI (xξi ≤ a0), then applying (5.40) gives, for any i,

EexŴ
(i)
n /2 ≤ exp

{
x2/8 + O(1)Ln,x

}
.

Subsequently,

J4n ≤ (
√

e/13)e−x2
n∑

i=1

E
{
ξ2
i e(x/2)ξi I (xξi≤a0)I

(
x|ξi | > 1

)}×EexŴ
(i)
n /2

(5.42)
≤ (√

e1+a0/13
)
x−2Ln,x exp

{−7x2/8 + O(1)Ln,x

}
.

Finally, we study J5n. By Cauchy’s inequality,

J5n ≤ P

{
n∑

i=1

I
(|xξi | > a0

)≥ (x − 1/2x)2/4

}

≤ 4e−(x−1/2x)2

(x − 1/2x)2

n∑
i=1

E
{
e4I (|xξi |>a0)I

(|xξi | > a0
)}×

∏
j �=i

Ee4I (|xξj |>a0)

� x−2e−x2
n∑

i=1

e4
P
(|xξi | > a0

)×
∏
j �=i

{
1 + e4

P
(|xξj | > a0

)}
(5.43)

� a−2
0 exp

{(
e4a−2

0 − 1
)
x2} n∑

i=1

Eξ2
i I
(
x|ξi | > 1

)
� x−2Ln,x exp

(−x2/2 − x2/22
)

by letting a0 = 11.
Adding up (5.41)–(5.43), we get

P
{
(Wn,Vn) ∈ E3

}
�
{
1 − �(x)

}
Ln,x exp(CLn,x).

This, together with (5.38) and (5.39) yields (5.7). �

Proof of Proposition 5.3. Retain the notation in the proof of Proposition 5.1, and recall that
�2n = xD2n/2 − D1n, Ŵ =∑n

i=1 Ŷi . Analogous to (5.17) and (5.24), we see that

P
(
xWn − x2V 2

n /2 ≥ x2/2 + x�2n

)
= In,xE

{
e−Ŵ I

(
Ŵ ≥ x2/2 + x�̂2n

)}
(5.44)
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≥ In,x

[
E
{
exp(−σnŴ − mn)I (Ŵ ≥ εn)

}
−E

{
exp(−σnŴ − mn)I (εn ≤ Ŵ < εn + x�̂2n/σn)

}]
≥ In,x

{∫ ∞

εn

e−σnt−mn dGn(t) − e−x2/2
P(εn ≤ Ŵ < εn + x�̂2n/σn)

}
:= In,x

(
H1n − H ′

2n

)
,

for H1n given in (5.24), and where εn = σ−1
n (x2/2 − mn),

�̂2n = �2n(ξ̂1, . . . , ξ̂n), H ′
2n = e−x2/2

P(εn ≤ Ŵ < εn + x�̂2n/σn).

Following the proof of (5.27), it can be similarly obtained that

H1n ≥ {
1 − �(x)

}(
1 − Cx−2Ln,x

)
. (5.45)

Replacing �̂1n with �̂2n in (5.28) and using the same argument that leads to (5.32) implies

H ′
2n ≤ C

{
1 − �(x)

}
Rn,x. (5.46)

Substituting (5.16), (5.45) and (5.46) into (5.44) proves (5.9). �

6. Proof of Theorem 3.1

Throughout this section, we use C,C1,C2, . . . and c, c1, c2, . . . to denote positive constants that
are independent of n.

6.1. Outline of the proof

Put h̃ = (h − θ)/σ and h̃1 = (h1 − θ)/σ , such that h̃1(x) = E{h̃(X1,X2, . . . ,Xm)|X1 = x} and
h̃1(X1), . . . , h̃1(Xn) are i.i.d. random variables with zero means and unit variances. Using this
notation, condition (3.3) can be written as

h̃2(x1, . . . , xm) ≤ c0

{
τ +

m∑
i=1

h̃2
1(xi)

}
. (6.1)

By the scale-invariance property of Studentized U -statistics, we can replace, respectively, h

and h1 with h̃ and h̃1, which does not change the definition of Tn. For ease of exposition, we
still use h and h1 but assume without loss of generality that Eh1i = 0 and Eh2

1i = 1, where
h1i := h1(Xi) for i = 1, . . . , n.

For s2
1 given in (3.2), observe that

(n − m)2

(n − 1)
s2

1 =
n∑

i=1

(qi − Un)
2 =

n∑
i=1

q2
i − nU2

n .
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Define

T ∗
n =

√
n

ms∗
1
Un, s∗2

1 = (n − 1)

(n − m)2

n∑
i=1

q2
i , (6.2)

then by the definition of Tn,

Tn = T ∗
n

/(
1 − m2(n − 1)

(n − m)2
T ∗2

n

)1/2

,

such that for any x ≥ 0,

{Tn ≥ x} = {
T ∗

n ≥ x/
(
1 + x2m2(n − 1)/(n − m)2)1/2}

. (6.3)

Therefore, we only need to focus on T ∗
n , instead of Tn.

To reformulate T ∗
n = √

nUn/(ms∗
1 ) in the form of (2.2), set

Wn =
n∑

i=1

ξi, V 2
n =

n∑
i=1

ξ2
i , (6.4)

where ξi = n−1/2h1i for 1 ≤ i ≤ n. Moreover, put

r(x1, . . . , xm) = h(x1, . . . , xm) −
m∑

i=1

h1(xi). (6.5)

For Un, using Hoeffding’s decomposition gives
√

nUn/m = Wn + D1n, where

D1n =
√

n

m
(
n
m

) ∑
1≤i1<i2<···<im≤n

r(Xi1 , . . . ,Xim). (6.6)

However, a direct calculation shows that s2
1 = V 2

n (1 + D2n), where

(n − 1)D2n = 1 + V −2
n

{
1(

n−2
m−1

)2
�2

n + (m − 1){(m + 1)n − 2m}n
(n − m)2

W 2
n

(6.7)

+ 2
√

n(
n−2
m−1

) n∑
i=1

ξiψi + 2m(m − 1)n

(n − m)2
WnD1n

}
,

�2
n =

n∑
i=1

ψ2
i , ψi =

∑
1≤�1<···<�m−1≤n

�j �=i,j=1,...,m−1

r(Xi,X�1, . . . ,X�m−1). (6.8)
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In particular, (6.7) generalizes (2.5) in [26] for m = 2. Combining the above decompositions of
Un and s2

1 , we obtain

T ∗
n = Wn + D1n

Vn(1 + D2n)1/2
. (6.9)

To prove (3.4), by (6.3), it is sufficient to show that there exists a constant C > 1 independent
of n such that

P
(
T ∗

n ≥ x
)≤ {

1 − �(x)
}
eCLn,1+x

{
1 + C(

√
am + σh)

(1 + x)3

√
n

}
(6.10)

and

P
(
T ∗

n ≥ x
)≥ {

1 − �(x)
}
e−CLn,1+x

{
1 − C(

√
am + σh)

(1 + x)3

n1/2

}
(6.11)

hold uniformly for

0 ≤ x ≤ C−1 min
{
(σ/σp)n1/2−1/p, (n/am)1/6}, (6.12)

where Ln,x = nEξ2
1,xI (|ξ1,x | > 1) + nE|ξ1,x |3I (|ξ1,x | ≤ 1) with ξi,x = xξi for x ≥ 1.

The main strategy of proving (6.10) and (6.11) is to first partition the probability space into
two parts, say Gn,x and its complement Gc

n,x such that P(Gc
n,x) is sufficiently small, then find a

tight upper bound for the tail probability of |D2n| on Gn,x , and finally apply Theorem 2.1.
First, by Lemma 3.3 of [26], P(V 2

n ≤ σ 2/2) ≤ exp{−n/(32a2)} for all n ≥ 1, where a > 0 is
such that Eh2

1iI (|h1i | ≥ aσ) ≤ σ 2/4. In particular, we take

a = 41/(p−2)(σp/σ )p/(p−2) ≤ (2σp/σ)p/(p−2).

Then it follows from the inequality that sup2<p≤3 sups≥0(s
p/2−1e−s) ≤ 1 and (5.26) that (recall

that σ 2 = 1)

P
(
V 2

n ≤ 1/2
)≤ C1

{
1 − �(x)

}
(σp/σ)p(1 + x)n1−p/2 (6.13)

for all 0 ≤ x ≤ c1(σ/σ1)n
p/2−1. We can therefore regard {V 2

n }n≥1 as a sequence of positive
random variables that are uniformly bounded away from zero. For Wn/Vn, applying Lemma 6.4
in [23] implies that for every t > 0,

P
{|Wn| ≥ t (4 + Vn)

}≤ 4 exp
(−t2/2

)
. (6.14)

In view of (6.13) and (6.14), define the subset

Gn,x = {|Wn| ≤ √
xn1/4(4 + Vn),V

2
n ≥ 1/2

}
, (6.15)

such that

P
(
Gc

n,x

)≤ C2
{
1 − �(x)

}
(σp/σ)p(1 + x)n1−p/2 (6.16)
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holds uniformly for

0 ≤ x ≤ c2 min
{
(σ/σ1)n

p/2−1,
√

n
}
. (6.17)

Next, we restrict our attention to the subset Gn,x . Recall the definition of D2n in (6.7). For any
ε > 0, we have ∣∣∣∣∣

n∑
i=1

ξiψi

∣∣∣∣∣≤ (4ε)−1V 2
n + ε�2

n. (6.18)

In particular, taking ε = σ/(xnm−1σh) for σ 2
h as in (6.18) yields

|D2n| ≤ C3
{
σhxn−1/2 + (σhx)−1n3/2−2mV −2

n �2
n

(6.19)
+ n−1(Wn/Vn)

2 + n−1V −2
n |Wn||D1n|

}
.

In addition to the subset Gn,x given in (6.15), put

En,x = Gn,x ∩ {|D1n|/Vn ≤ 1/4x
}
. (6.20)

Together, (6.19) and (6.20) imply that

|D2n| ≤ C4
{
σhxn−1/2 + (σhx)−1n3/2−2m�2

n

} := D3n (6.21)

holds on En,x for all 1 ≤ x ≤ √
n.

Proof of (6.10). By (2.6), Remark 2.2, (6.9), (6.19) and condition (6.17), we have

P
(
T ∗

n ≥ x
) ≤ {

1 − �(x)
}
eC5Ln,x (1 + C6Rn,x)

(6.22)
+ P

(|D1n|/Vn ≥ 1/4x,Gn,x

)+ P
(|D2n| ≥ 1/4x2,En,x

)+ P
(
Gc

n,x

)
for all x ≥ 1 satisfying (6.17) and

Ln,x ≤ c3x
2, (6.23)

where Rn,x is given in (2.4) but with D2n replaced by D3n. In particular, for 2 < p ≤ 3, we have
Ln,x ≤ (σp/σ)pxpn1−p/2, and thus the constraint (6.23) is satisfied whenever

1 ≤ x ≤ (
c

1/p

3 /2
)
(σ/σp)1/pn1/2−1/p. (6.24)

However, for 0 ≤ x ≤ 1, it follows from (2.9) that

P
(
T ∗

n ≥ x
)≤ P

(
Gc

n,x

)+ {
1 − �(x)

}
(1 + C7R̆n,x),

for R̆n,x as in (2.10) with D2n replaced with D3n.
In view of (6.16) and (6.22), (6.10) follows directly from the following two propositions. �
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Proposition 6.1. Under condition (3.3), there exists a positive constant C independent of n such
that

P
(|D1n|/Vn ≥ 1/4x,Gn,x

)+ P
(|D2n| ≥ 1/4x2,En,x

)
(6.25)

≤ C
√

am

{
1 − �(x)

}
x2n−1/2,

holds for all x ≥ 1 satisfying (6.12), where am = max{c0τ, c0 + m}, Gn,x and En,x are given in
(6.15) and (6.20), respectively.

Proposition 6.2. There is a positive constant C independent of n such that

Rn,x ≤ Cσhx
3n−1/2 (6.26)

for all x ≥ 1 and

R̆n,x ≤ Cσhn
−1/2 (6.27)

for 0 ≤ x ≤ 1, where σh is given in (3.1).

Proof of (6.11). Observe that

P
(
T ∗

n ≥ x
) ≥ P

{
Wn + D1n ≥ xVn(1 + D2n)

1/2,Gn,x

}
≥ P

{
Wn + D1n ≥ xVn(1 + D3n)

1/2}− P
(
Gc

n,x

)
.

Then (6.11) follows from (2.5), Remark 2.2, (6.16) and Proposition 6.2. Finally, assembling
(6.17) and (6.24) yields (6.12) and completes the proof of Theorem 3.1. �

6.2. Proof of Propositions 6.1 and 6.2

We begin with a technical lemma, the proof of which is presented in the Appendix.

Lemma 6.1. There exist an absolute constant C and constants B1–B4 independent of n, such
that for all y ≥ 0,

P
{
�2

n ≥ amy
(
B1 + B2V

2
n

)
n2m−2}≤ Ce−y/4 (6.28)

and

P

{ |∑1≤i1<···<im≤n r(Xi1 , . . . ,Xim)|√
am(B3 + B4V 2

n )1/2nm−1
≥ y

}
≤ Ce−y/4, (6.29)

where am = max{c0τ, c0 + m}, and V 2
n and �2

n are given in (6.4) and (6.8), respectively.
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The above lemma generalizes and improves Lemma 3.4 of [26] where m = 2 and the bound
was of the order ne−y/8 instead of e−y/4. Lemma C.2 in the Appendix makes it possible to
eliminate the factor n.

Proof of Proposition 6.1. By (6.19) and the definition of En,x in (6.20), we get

P
(|D2n| ≥ 1/4x2,En,x

)≤ P
(
�2

n ≥ c4V
2
n x−4n2m−1,Gn,x

)
,

provided that 1 ≤ x ≤ c5n
1/4. Because V 2

n ≥ 1/2 on Gn,x , it is easy to see that

V 2
n ≥ (2B1 + B2)

−1(B1 + B2V
2
n

)
for B1 and B2 as in Lemma 6.1. Therefore, taking

y = c4

2B1 + B2
· n

amx4

in (6.28) leads to

P
(|D2n| > 1/4x2,En,x

)≤ C exp
{−c6n/

(
amx4)}. (6.30)

Using (6.29), it can be similarly shown that

P
(|D1n|/Vn > 1/4x,Gn,x

)≤ C exp
{−c7n

1/2/
(
a

1/2
m x

)}
. (6.31)

Together, (6.30), (6.31) and (5.26) imply (6.25) as long as

1 ≤ x ≤ c8(n/am)1/6. (6.32)
�

Proof of Proposition 6.2. For x ≥ 0 and 1 ≤ i ≤ n, put Yi = xξi − x2ξ2
i /2, and let

Lk := E
(
r1,...,ke

Y1+···+Yk
)
, L̃k := E

(
r1,...,ke

Y2+···+Yk |X1
)

for 2 ≤ k ≤ m, where r1,...,k := E{r(X1, . . . ,Xm)|X1, . . . ,Xk} for r(X1, . . . ,Xm) as in (6.5).
In particular, put r1,...,m := r(X1, . . . ,Xm) and note that Er2

1,...,m ≤ σ 2
h . The following lemma

provides the upper bounds for Lm and L̃m.

Lemma 6.2. For any 0 ≤ x ≤ √
n/2, we have

|Lm| ≤ Cσhx
2n−1, (6.33)

|L̃m| ≤ C
{
E
(
r2

1,...,m|X1
)}1/2

xn−1/2. (6.34)

We postpone the proof of Lemma 6.2 to the end of this section. Recall the definition of D1n

in (6.6). Using Hölder’s inequality, we estimate

E

{(∑
ri1,...,im

)2
e
∑n

j=1 Yj

}
=
∑∑

E
(
ri1,...,imrj1,...,jme

∑n
j=1 Yj

)
.
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Put

C = {
(i1, j1, . . . , im, jm) : 1 ≤ i1 ≤ · · · ≤ im ≤ n,1 ≤ j1 < · < jm ≤ n

}
=

m⋃
k=0

{
(i1, j1, . . . , im, jm) ∈ C : ∣∣{i1, . . . , im} ∩ {j1, . . . , jm}∣∣= k

} :=
m⋃

k=0

Ck.

By (5.11),

E

{(∑
ri1,...,im

)2
e
∑n

j=1 Yj

}
=

m∑
k=0

∑
(i1,j1,...,im,jm)∈Ck

E
(
ri1,...,imrj1,...,jme

∑n
j=1 Yj

)

=
m∑

k=0

(
n

m

)(
n − k

m − k

)
E
(
r1,...,mr1,...,k,m+1,...,2m−ke

∑2m−k
j=1 Yj

) · (EeY1
)n−2m+k

=
(

n

m

)2 (
EeY1

)−2m
In,xL

2
m +

(
n

m

)(
n − 1
m − 1

)(
EeY1

)1−2m
In,xE

(
L̃2

meY1
)

+
m∑

k=2

(
n

m

)(
n − k

m − k

)(
EeY1

)k−2m
In,xE

(
r1,...,mr1,...,k,m+1,...,2m−ke

∑2m−k
j=1 Yj

)
≤ CIn,xn

2m
(
L2

m + n−1
EL̃2

m + σ 2
hn−2),

which together with Lemma 6.2 yields for x ≥ 1,

E

{(∑
ri1,...,im

)2
e
∑n

j=1 Yj

}
≤ Cσ 2

h In,xx
4n2m−2.

This, together with (6.6) gives

E
(|D1n|e

∑n
j=1 Yj

)≤ CσhIn,xx
2n−1/2. (6.35)

Recall that ψi =∑
1≤�1≤···≤�m−1(�=i)≤n r(Xi,X�1, . . . ,X�m−1). Then it can be similarly derived

that

E
(
ψ2

i e
∑n

j=1 Yj
)≤ Cσ 2

h In,xx
2n2m−3. (6.36)

Together with (6.21), this yields

E
(
D3ne

∑n
j=1 Yj

)≤ CσhIn,xxn−1/2. (6.37)
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Next, for each 1 ≤ i ≤ n, let D
(i)
1n and D

(i)
3n be obtained from D1n and D3n, respectively, by

throwing away the summands that depend on Xi . Then, by (6.6) and (6.21), we have

∣∣D1n − D
(i)
1n

∣∣≤ √
n

m
(
n
m

) |ψi |

and

x
∣∣D3n − D

(i)
3n

∣∣
≤ Cσ−1

h n−2m+3/2
{
ψ2

i +
∑
j �=i

( ∑
1≤j1<···<jm−2(�=i,j)≤n

ri,j,j1,...,jm−2

)2

+ 2
∑
j �=i

∣∣∣∣( ∑
1≤j1<···<jm−2(�=i,j)≤n

ri,j,j1,...,jm−2

)( ∑
1≤j1<···<jm−1(�=j)≤n

rj,j1,...,jm−1

)∣∣∣∣}.

Using a conditional analogue of the argument that leads to (6.36) implies

E
(
ψ2

i e
∑

j �=i Yj |Xi

)≤ CIn,xx
2n2m−3 ×E

(
r2

1,...,m|Xi

)
, (6.38)

as a consequence of which (recall that ξi,x = xξi )

n∑
i=1

E
{
min

(|ξi,x |,1
)∣∣D1n − D

(i)
1n

∣∣e∑n
j �=i Yj

}
≤ Cn−m+1/2

n∑
i=1

E
[
min

(|ξi,x |,1
){
E
(
ψ2

i e
∑

j �=i Yj |Xi

)}1/2{
E
(
e
∑

j �=i Yj
)}1/2]

(6.39)

≤ CIn,xx
2n−1

n∑
i=1

(
Eξ2

i

)1/2(
Er2

1,...,m

)1/2

≤ CσhIn,xx
2n−1/2.

For the contributions from |D3n − D
(i)
3n |, we have

E
{
min

(|ξi,x |,1
)
ψ2

i e
∑

j �=i Yj
} = E

{
min

(|ξi,x |,1
)×E

(
ψ2

i e
∑

j �=i Yj |Xi

)}
≤ CIn,xx

2n2m−3 ×E
{
min

(|ξi,x |,1
)
r2

1,...,m

}
,

and for each pair (i, j) such that 1 ≤ i �= j ≤ n,

E

{
min

(|ξi,x |,1
)∣∣∣(∑ψi,j,j1,...,jm−2

)(∑
ψj,j1,...,jm−1

)∣∣∣e∑k �=i Yk

}
≤ E

[
min

(|ξi,x |,1
)
E

{(∑
ψi,j,j1,...,jm−2

)2
e
∑

k �=i Yk
∣∣Xi

}1/2
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×E

{(∑
ψj,j1,...,jm−1

)2
e
∑

k �=i Yk

}1/2]
≤ CIn,xx

2n2m−7/2 ×E|ξir1,...,m| × (
Er2

1,...,m

)1/2

≤ Cσ 2
h In,xx

2n2m−4,

where we used (6.36) in the second step. Similarly, it can be proved that

E

{
min

(|ξi,x |,1
)(∑

ri,j,j1,...,jm−2

)2
e
∑

k �=i Yk

}
= E

[
min

(|ξi,x |,1
)
E

{(∑
ri,j,j1,...,jm−2

)2
e
∑

k �=i Yk
∣∣Xi

}]
≤ Cσ 2

h In,xn
2m−4.

Adding up the above calculations, we get

n∑
i=1

E
{
x min

(|ξi,x |,1
)∣∣D3n − D

(i)
3n

∣∣e∑j �=i Yj
}≤ CσhIn,xx

2n−1/2.

This, together with (6.35), (6.37) and (6.39) implies (6.26).
Finally, we consider the case of 0 ≤ x ≤ 1. By Hölder’s inequality,

E|D1n| ≤ Cn1/2
(

n

m

)−1 {
E

(∑
ri1,...,im

)2}1/2 ≤ Cσhn
−1/2 (6.40)

and

ED3n ≤ C
(
σhn

−1/2 + σ−1
h n−2m+3/2

E�2
n

)≤ Cσhn
−1/2. (6.41)

Moreover, for any pair (i, j) such that 1 ≤ i �= j ≤ n,

Eψ2
i ≤ Cσ 2

hn2m−3, E

(∑
ψi,j,j1,...,jm−2

)2 ≤ Cσ 2
hn2m−4

and

E

{∣∣∣(∑ ri,j,�1,...,�m−2

)(∑
rj,j1,...,jm−1

)∣∣∣∣∣Xi

}
≤
[
E

{(∑
ri,j,�1,...,�m−2

)2∣∣Xi

}]1/2 ×
{
E

(∑
ψj,j1,...,jm−1

)2}1/2

≤ Cσhn
2m−7/2 × {

E
(
r2

1,...,m|Xi

)}1/2
.

Combining the above calculations, we obtain

n∑
i=1

E
∣∣ξi

(
D1n − D

(i)
1n

)∣∣≤ Cn−m+1/2
n∑

i=1

(
Eξ2

i

)1/2(
Eψ2

i

)1/2 ≤ Cσhn
−1/2 (6.42)
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and

n∑
i=1

E
∣∣xξiI

{|ξi | ≤ 1/(1 + x)
}(

D3n − D
(i)
3n

)∣∣
≤ Cσ−1

h n−2m+3/2

[
n∑

i=1

Eψ2
i +

∑
i �=j

E

(∑
ψi,j,j1,...,jm−2

)2

(6.43)

+ 2
∑
i �=j

E

{
|ξi | ×

∣∣∣(∑ ri,j,�1,...,�m−2

)(∑
rj,j1,...,jm−1

)∣∣∣}]

≤ Cσhn
−1/2.

Assembling (6.40)–(6.43) proves (6.27) and completes the proof of Proposition 6.2. �

Proof of Lemma 6.2. We prove (6.33) by the method of induction, and (6.34) follows a similar
argument. First, for m = 2, observe that

L2 = E
(
r1,2e

Y1+Y2
)= E

{
r1,2

(
eY1 − 1

)(
eY2 − 1

)}
.

Using the inequality ∣∣et−t2/2 − 1
∣∣≤ 2|t | for all t ∈ R, (6.44)

we have (recall that ξi = n−1/2h1i )

|L2| ≤ 4x2n−1
E|r1,2h11h12| ≤ 4σhx

2n−1.

Similarly, noting that L̃2 = E{r1,2(e
Y2 − 1)|X1}, we get

|L̃2| ≤ 2
{
E
(
r2

1,2|X1
)}1/2

xn−1/2,

as desired.
For the general case where m > 2, we derive

E
(
r1,...,meY1+···+Ym

)
= E

{
r1,...,m

(
eY1 − 1

) · · · (eYm − 1
)}+

∑
1≤i1<···<im−1≤m

E
(
r1,...,me

Yi1 +···+Yim−1
)

−
∑

1≤i1<···<im−2≤m

E
(
r1,...,me

Yi1+···+Yim−2
)+ · · · + (−1)m−1

∑
1≤i1<i2≤m

E
(
r1,...,meYi1 +Yi2

)
= E

{
r1,...,m

(
eY1 − 1

) · · · (eYm − 1
)}+ mLm−1

−
(

m

m − 2

)
Lm−2 + · · · + (−1)m−1

(
m

2

)
L2,
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where for each k-tuple (i1, . . . , ik) (2 ≤ k ≤ m − 1) satisfying 1 ≤ i1 < · · · < ik ≤ m,

E
(
r1,...,meYi1+···+Yik

) = E
[
eYi1 +···+Yik E

{
r(X1, . . . ,Xm)|Xi1, . . . ,Xik

}]
= E

(
ri1,...,ik e

Yi1 +···+Yik

)= Lk,

by definition. Using inequality (6.44) again gives∣∣E{r1,...,m

(
eY1 − 1

) · · · (eYm − 1
)}∣∣≤ 2mxmn−m/2

E|r1,...,mh11 · · ·h1m| ≤ σh(2x)mn−m/2,

completing the proof of (6.33) by induction and under the condition that x ≤ √
n/2. �

Appendix A: Proof of Theorem 2.2

The main idea of the proof is to first truncate ξi at a suitable level, and then apply the randomized
concentration inequality to the truncated variables.

For x ≥ 0 and i = 1, . . . , n, define Yi = xξi − x2ξ2
i /2, and

ξ̄i = ξiI
{|ξi | ≤ 1/(1 + x)

}
, Ȳi = YiI

{|ξi | ≤ 1/(1 + x)
}
.

Moreover, put SY =∑n
i=1 Yi and SȲ =∑n

i=1 Ȳi .
We first consider the case of x > 0. Proceeding as in (5.2) and (5.3), we have

P
(
SY ≥ x2/2 + x�2n

)≤ P(Tn ≥ x) ≤ P
(
SY ≥ x2/2 − x�1n

)
, (A.1)

where �1n = x(V 2
n − 1)2 + |D1n| + xD2n ∧ 0 and �2n = xD2n/2 − D1n. Replacing the ξ2

i ’s

with their truncated versions, we put �3n = x(
∑n

i=1 ξ̄i
2 − 1)2 + |D1n| + xD2n ∧ 0, such that∣∣P(SY ≥ x2/2 − x�1n

)− P
(
SȲ ≥ x2/2 − x�3n

)∣∣
(A.2)

≤ P

{
max

1≤i≤n
|ξi | > 1/(1 + x)

}
≤ (1 + x)2

n∑
i=1

Eξ2
i I
{|ξi | > 1/(1 + x)

}
,

and the same bound holds for |P(SY ≥ x2/2 + x�2n) − P(SȲ ≥ x2/2 + x�2n)|.
It suffices to estimate the probabilities of the truncated random variables. Consider the follow-

ing decomposition:

P
(
SȲ ≥ x2/2 − x�3n

)≤ P
(
SȲ ≥ x2/2

)+ P
(
x2/2 − x�3n ≤ SȲ < x2/2

)
, (A.3)

where SȲ =∑n
i=1 Ȳi denotes the sum of the truncated random variables. Write m̄n =∑n

i=1 EȲi ,
σ̄ 2

n =∑n
i=1 Var(Ȳi ) and v̄n =∑n

i=1 E|Ȳi |3. By a similar calculation to that leading to (5.18),

EȲi = −(
x2/2

)
Eξ2

i + O(1)
(
x + x2)

Eξ2
i I
{|ξi | > 1/(1 + x)

}
,

EȲ 2
i = x2

Eξ2
i + O(1)

[
x2
Eξ2

i I
{|ξi | > 1/(1 + x)

}+ x3
E|ξ̄i |3

]
,

E|Ȳi |3 = O(1)x3
E|ξ̄i |3



Self-normalized moderate deviations 2063

and

Var(Ȳi) = x2
Eξ2

i + O(1)
[
x2
Eξ2

i I
{|ξi | > 1/(1 + x)

}+ x3
E|ξ̄i |3

]
,

where |O(1)| ≤ C1 for some absolute constant C1. Combining these calculations, we have

m̄n = −x2/2 + O(1)
(
x + x2) n∑

i=1

Eξ2
i I
{|ξi | > 1/(1 + x)

}
,

(A.4)

σ̄ 2
n = x2 + O(1)x2

n∑
i=1

[
Eξ2

i I
{|ξi | > 1/(1 + x)

}+ xE|ξ̄i |3
]≥ x2/2,

where the last inequality holds as long as (1 + x)−2Ln,1+x ≤ (2C1)
−1. Otherwise, if this con-

straint is violated, then (2.9) is always true provided that C > 2C1.
Applying the Berry–Esseen inequality to the first addend in (A.3) gives

P
(
SȲ ≥ x2/2

) = 1 − �(ε̄n) + O(1)v̄nσ̄
−3
n

(A.5)
= 1 − �(x) + O(1)(1 + x)−1Ln,1+x,

where ε̄n := σ̄−1
n (x2/2 − m̄n) = x + O(1)(1 + x)−1Ln,1+x by (A.4).

For the second addend in (A.3), applying the concentration inequality (4.2) to W̄n = σ̄−1
n (SȲ −

m̄n) and noting that |Ȳi | ≤ 3x|ξ̄i |/2, we obtain

P
(
x2/2 − x|�3n| ≤ SȲ < x2/2

)
= P(ε̄n − x�3n/σ̄n ≤ W̄n ≤ ε̄n)

(A.6)

≤ 17σ̄−3
n

n∑
i=1

E|Ȳi |3 + 5xσ̄−1
n E|�3n| + 2xσ̄−2

n

n∑
i=1

E
∣∣Ȳi

{
�3n − �

(i)
3n

}∣∣
≤ C

[
n∑

i=1

E|ξ̄i |3 +E|�3n| +
n∑

i=1

E
∣∣ξ̄i

{
�3n − �

(i)
3n

}∣∣],

where �3n = x(
∑n

i=1 ξ̄2
i − 1)2 + |D1n| + x|D2n|. For i = 1, . . . , n, put

di =
(

n∑
i=1

ξ̄2
i − 1

)2

−
(∑

j �=i

ξ̄2
j − 1

)2

= ξ̄2
i

[
ξ̄2
i + 2

∑
j �=i

(
ξ̄2
j −Eξ̄2

j

)− 2Eξ̄2
i − 2

n∑
i=1

Eξ2
i I
{|ξ̄i | > 1/(1 + x)

}]
.
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Direct calculation shows that

E

(
n∑

i=1

ξ̄2
i − 1

)2

≤ C(1 + x)−4(Ln,1+x + L2
n,1+x

)
,

n∑
i=1

E|ξ̄idi | ≤ C(1 + x)−5(Ln,1+x + L2
n,1+x

)
.

Substituting this into (A.6), we get

P
(
x2/2 − x|�3n| ≤ SȲ < x2/2

)
≤ C

[
(1 + x)−2Ln,1+x +E|D1n| + xE|D2n|

+
n∑

i=1

E
{|ξ̄i |

(∣∣D1n − D
(i)
1n

∣∣+ x
∣∣D2n − D

(i)
2n

∣∣)}].

This, together with (A.1), (A.2), (A.3) and (A.5) implies

P(Tn ≤ x) ≤ �(x) + CR̆n,x

for all x > 0, where R̆n,x is given in (2.10). A lower bound can be similarly obtained by noting
that P(SȲ ≥ x2/2 + x�2n) ≥ P(SȲ ≥ x2/2) − P(x2/2 ≤ SȲ < x2/2 + x�2n).

We next consider the case of x = 0. It is straightforward that∣∣P(Tn ≤ 0) − �(0)
∣∣

= ∣∣P(Wn + D1n ≤ 0) − �(0)
∣∣≤ ∣∣P(Wn ≤ 0) − �(0)

∣∣+ P
(−|D1n| ≤ Wn ≤ |D1n|

)
.

A uniform Berry–Esseen bound (see, e.g., [11]) gives |P(Wn ≤ 0)−�(0)| ≤ 4.1Ln,1. As before,
we can use the truncation technique and the concentration inequality (4.2) to upper bound the
probability P(−|D1n| ≤ Wn ≤ |D1n|). The rest of the proof is almost identical to that for the case
of x > 0 and is therefore omitted.

Appendix B: Proof of Lemma 5.3

Recall that Z = X2 −EX2 and Y = X − X2/2. Using the inequality |es − 1| ≤ |s|es∨0 implies

E
{
ZeY I

(|X| ≤ 1
)} = E

[
Z
{
1 + O(1)|Y |eY∨0}I(|X| ≤ 1

)]
= E

{
ZI

(|X| > 1
)}+ O(1)E

{|Z| · |Y |eY∨0I
(|X| ≤ 1

)}
,

where |O(1)| ≤ 1. Because |Y |eY∨0I (|X| ≤ 1) ≤ 1.5|X|I (|X| ≤ 1), we have

E
{|Z| × |Y |eY∨0I

(|X| ≤ 1
)}≤ 1.5E

{|X|3I(|X| ≤ 1
)}

. (B.1)
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Note that if both f and g are increasing functions, then Ef (X)Eg(X) ≤ E{f (X)g(X)}. In par-
ticular, we have EX2 × P(|X| > 1) ≤ E{|X|2I (|X| > 1)}, which further implies

E
{|Z|eY I

(|X| > 1
)}≤ √

eE
{
X2I

(|X| > 1
)}

.

Together with (B.1), this yields (5.12).
For (5.13), it is straightforward that

E
(
Z2eY

) = E
{
Z2eY I

(|X| ≤ 1
)}+E

{
Z2eY I

(|X| > 1
)}

≤ √
e
[
E
{
X4I

(|X| ≤ 1
)}+ (

EX2)2
P
(|X| ≤ 1

)− 2EX2 ×E
{
X2I

(|X| ≤ 1
)}]

+E
{
X4eX−X2/2I

(|X| > 1
)}+ √

e
(
EX2)2 × P

(|X| > 1
)

≤ √
eE

{
X4I

(|X| ≤ 1
)}+ 4E

{
X2I

(|X| > 1
)}

+ √
e
(
EX2)2 − 2

√
eEX2 ×E

{
X2I

(|X| ≤ 1
)}

≤ √
eE

{
X4I

(|X| ≤ 1
)}+ 4E

{
X2I

(|X| > 1
)}

+ √
eEX2 ×E

{
X2I

(|X| > 1
)}− √

eEX2 ×E
{
X2I

(|X| ≤ 1
)}

≤ √
eE

{|X|3I(|X| ≤ 1
)}+ 4E

{
X2I

(|X| > 1
)}+ √

e
{
EX2I

(|X| > 1
)}2

,

where in the third inequality we use the inequality sup|x|>1{x2 exp(x − x2/2)} ≤ 4.
Moreover, noting that

sup
|x|≤1

{
(1 − x/2) exp

(
x − x2/2

)}≤ 1 and sup
x∈R

{∣∣x − x2/2
∣∣ exp

(
x − x2/2

)}≤ √
e/2,

we obtain

E
(|YZ|eY

) = E
{|YZ|eY I

(|X| ≤ 1
)}+E

{|YZ|eY I
(|X| > 1

)}
≤ E

{∣∣X2 −EX2
∣∣× |X|I(|X| ≤ 1

)}+
√

e

2
E
{
X2I

(|X| > 1
)}

≤ 2E
{
X2I

(|X| > 1
)}+E

{|X|3I(|X| ≤ 1
)}

,

which proves (5.14).
Finally, for (5.15), it follows from the inequality sup|x|>1{|x3 − x4/2| exp(x − x2/2)} < 3.1

that

E
(|Y |Z2eY

)
= E

{
Z2|Y |eY I

(|X| ≤ 1
)}+E

{
Z2|Y |eY I

(|X| > 1
)}

≤
√

e

2
E
{
Z2I

(|X| ≤ 1
)}+ max

[
3.1E

{
X2I

(|X| > 1
)}

,

√
e

2

(
EX2)2

P
(|X| > 1

)]
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≤
√

e

2
E
{|X|3I(|X| ≤ 1

)}
+ max

[
3.1E

{
X2I

(|X| > 1
)}

,

√
e

2
E
{
X2I

(|X| > 1
)}+

√
e

2

{
EX2I

(|X| > 1
)}2

]
,

as desired.

Appendix C: Proof of Lemma 6.1

We start with two technical lemmas. The first follows [26].

Lemma C.1. Let {ξi,Fi , i ≥ 1} be a sequence of martingale differences with Eξ2
i < ∞, and put

D2
n =

n∑
i=1

{
ξ2
i + 2E

(
ξ2
i |Fi−1

)+ 3Eξ2
i

}
.

Then we have

P

(∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣≥ xDn

)
≤ √

2 exp
(−x2/8

)
(C.1)

for all x > 0. In particular, if {ξi, i ≥ 1} is a sequence of independent random variables with zero
means and finite variances, write

Sn =
n∑

i=1

ξi, V 2
n =

n∑
i=1

ξ2
i and B2

n =
n∑

i=1

Eξ2
i ,

such that D2
n = V 2

n + 5B2
n . Then for any x ≥ 0,

P
(|Sn| ≥ xDn

)≤ √
2 exp

(−x2/8
)

(C.2)

and

E
[
S2

nI
{|Sn| ≥ x(Vn + 4Bn)

}]≤ 23B2
n exp

(−x2/4
)
. (C.3)

The following result may be of independent interest.

Lemma C.2. Let {ξi, i ≥ 1} and {ηi, i ≥ 1} be two sequences of arbitrary random variables.
Assume that the ηi ’s are non-negative, and that for any u > 0,

E
{
ξiI (ξi ≥ uηi)

}≤ cie
−cu, (C.4)
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where {c, ci, i ≥ 1} are positive constants. Then, for any u > 0, v > 0 and n ≥ 1,

P

{
n∑

i=1

ξi ≥ u

(
v +

n∑
i=1

ηi

)}
≤ e−cu

cu2v

n∑
i=1

ci . (C.5)

Proof. For any u > 0 and v > 0, applying Markov’s and Jensen’s inequalities gives

L.H.S. of (C.5) ≤ P

{
n∑

i=1

(ξi − uηi) ≥ uv

}

≤ 1

uv
E

{
n∑

i=1

(ξi − uηi)

}
+

(C.6)

≤ 1

uv

n∑
i=1

E(ξi − uηi)+,

where x+ = max(0, x) for all x ∈R. For each 1 ≤ i ≤ n fixed, it follows from (C.4) that

E(ξi − uηi)+ = E

∫ ∞

uηi

I (ξi ≥ s) ds

=
∫ ∞

1
uE

{
ηiI (ξi ≥ tuηi)

}
dt

≤
∫ ∞

1
t−1

E
{
ξiI (ξi ≥ tuηi)

}
dt

≤ ci

∫ ∞

1
t−1 exp(−cut) dt ≤ e−cu

cu
ci,

which completes the proof of (C.5) by (C.6). �

To prove Lemma 6.1, we use an inductive approach by formulating the proof into three steps.
Here, C and B1,B2, . . . denote positive constants that are independent of n. Recalling (6.1), it is
easy to verify that

r2(x1, . . . , xm) ≤ 2am

{
1 + h2

1(x1) + · · · + h2
1(xm)

}
, (C.7)

where am = max{c0τ, c0 + m}. In line with (6.4), let Wn = n−1/2 ∑n
i=1 h1i and V 2

n =
n−1 ∑n

i=1 h2
1i . Here, and in the sequel, we write

h1i = h1(Xi), hj,i1,...,ij = E
{
h(X1, . . . ,Xm)|Xi1 , . . . ,Xij

}
, 2 ≤ j ≤ m,

for ease of exposition. The conclusion is obvious when 0 ≤ y ≤ 2, therefore we assume y ≥ 2
without loss of generality.
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Step 1. Let m = 2, then (C.7) reduces to

r2(x1, x2) ≤ 2a2
{
1 + h2

1(x1) + h2
1(x2)

}
, (C.8)

where a2 = max{c0τ, c0 + 2}. We follow the lines of the proof of Lemma 3.4 in [26] with the
help of Lemma C.2.

Retaining the notation in Section 6 for m = 2, we have

�2
n =

n∑
i=1

ψ2
i , ψi =

n∑
j=1,j �=i

ri,j =
n∑

j=1,j �=i

r(Xi,Xj ), 1 ≤ i ≤ n.

Conditional on Xi , note that ψi is a sum of independent random variables with zero means. To
apply inequality (C.3), put

ti = vi + 4bi, v2
i =

∑
j �=i

r2
i,j , b2

i =
∑
j �=i

E
(
r2
i,j |Xi

)
for 1 ≤ i ≤ n. By (C.3), E{ψ2

i I (ψ2
i ≥ yt2

i )|Xi} ≤ 23b2
i e

−y/4. Taking expectations on both sides
yields

E
{
ψ2

i I
(
ψ2

i ≥ yt2
i

)}≤ 23(n − 1)e−y/4
E
(
r2

1,2

)
.

Applying Lemma C.2 with ξi = ψ2
i , ηi = ti , u = y and v = a2n(n − 1) gives

P

{
�2

n ≥ y

(
n∑

i=1

t2
i + a2n(n − 1)

)}
≤ C

(
a2y

2)−1
e−y/4

E
(
r2

1,2

)
. (C.9)

Direct calculation based on (C.8) shows

n∑
i=1

v2
i ≤ a2(n − 1)n

(
2 + 4V 2

n

)
,

n∑
i=1

b2
i ≤ a2(n − 1)n

(
4 + 2V 2

n

)
,

which further implies

n∑
i=1

t2
i + a2n(n − 1) ≤ 17

n∑
i=1

(
v2
i + b2

i

)+ a2n(n − 1) ≤ a2(n − 1)n
(
103 + 102V 2

n

)
.

Substituting this into (C.9) with y ≥ 2 proves (6.28).
As for (6.29), let Fj = σ {Xi : i ≤ j} and write

∑
1≤i<j≤n

ri,j =
n∑

j=2

j−1∑
i=1

ri,j =
n∑

j=2

Rj , Rj =
j−1∑
i=1

ri,j , 2 ≤ j ≤ n.



Self-normalized moderate deviations 2069

Note that {Rj ,Fj , j ≥ 2} is a martingale difference sequence. Then using the sub-Gaussian
inequality (C.1) for self-normalized martingales yields

P

{∣∣∣∣ ∑
1≤i<j≤n

ri,j

∣∣∣∣>√
2y

(
Q2

n + 2Q̂2
n + 3

n∑
j=2

ER2
j

)1/2}
≤ √

2e−y/4, (C.10)

where

Q2
n =

n∑
j=2

R2
j , Q̂2

n =
n∑

j=2

E
(
R2

j |Fj−1
)
.

Observe that Q2
n and �2

n have same structure, thus it can be similarly proved that

P
{
Q2

n ≥ a2yn2(102V 2
n + 103

)}≤ Ca−1
2 e−y/4

E
(
r2

1,2

)
. (C.11)

For Q̂2
n, write

t̂j = uj + 4dj where u2
j =

j−1∑
i=1

r2
i,j , d2

j =
j−1∑
i=1

E
(
r2
i,j |Xj

)
, 2 ≤ j ≤ n, (C.12)

then it follows from a conditional analogue of (C.3) that

E
{
R2

j I
(
R2

j ≥ yt̂2
j

)|Xj

}≤ 23d2
j e−y/4. (C.13)

Therefore, for y ≥ 2,

P

[
Q̂2

n > y

{
n∑

j=2

E
(
t̂2
j |Fj−1

)+ a2n(n − 1)

}]

≤ P

[∑n
j=2 E{R2

j I (R2
j ≤ yt̂2

j )|Fj−1}∑n
j=2 E(t̂2

j |Fj−1)
> y

]
(C.14)

+ P

[
n∑

j=2

E
{
R2

j I
(
R2

j > yt̂2
j

)|Fj−1
}≥ ya2n(n − 1)

]

≤ 1

a2yn(n − 1)

n∑
j=2

E
{
R2

j I
(
R2

j > yt̂2
j

)}≤ Ca−1
2 e−y/4

E
(
r2

1,2

)
,

where in the last step we used (C.13).
For d2

j and u2
j given in (C.12), we have

E
(
u2

j |Fj−1
) =

j−1∑
i=1

E
(
r2
i,j |Xi

)≤ 4a2(j − 1) + 2a2

j−1∑
i=1

h2
1i ,
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E
(
d2
j |Fj−1

) =
j−1∑
i=1

r2
i,j ≤ 2a2(j − 1) + 2a2

j−1∑
i=1

(
h2

1i + h2
1j

)
,

leading to

n∑
j=2

E
(
t̂2
j |Fj−1

)≤ 17
n∑

j=2

{
E
(
u2

j |Fj−1
)+E

(
d2
j |Fj−1

)}≤ a2(n − 1)n
(
104 + 136V 2

n

)
.

Substituting this into (C.14) yields

P
{
Q̂2

n > a2yn2(136V 2
n + 104

)}≤ Ca−1
2 e−y/4

E
(
r2

1,2

)
. (C.15)

Together, (C.10), (C.11), (C.15) and the identity
∑n

j=2 ER2
j = 1

2n(n − 1)E(r2
1,2) prove (6.29).

Step 2. Assume m = 3. By (C.7),

r2(x1, x2, x3) ≤ 2a3
{
1 + h2

1(x1) + h2
1(x2) + h2

1(x3)
}

(C.16)

and for r2(x1, x2) = E{r(X1,X2,X3)|X1 = x1,X2 = x2},
r2

2 (x1, x2) ≤ 2a3
{
2 + h2

1(x1) + h2
1(x2)

}
. (C.17)

Again, starting from �2
n =∑n

i=1 ψ2
i with

ψi =
∑

1≤j<k≤n

j,k �=i

r(Xi,Xj ,Xk) :=
∑

1≤j<k≤n

j,k �=i

ri,j,k

=
n∑

j=2
j �=i

j−1∑
k=1
k �=i

(ri,j,k − ri,j ) +
n∑

j=2
j �=i

j−1∑
k=1
k �=i

ri,j (C.18)

:=
n∑

j=2
j �=i

Ri,j +
n∑

j=2
j �=i

{
j − 1 − 1(j > i)

}
ri,j .

Conditional on (Xi,Xj ), Ri,j is a sum of independent random variables with zero means. Define
ti,j = vi,j + 4bi,j , where

t2
i,j =

j−1∑
k=1
k �=i

(ri,j,k − ri,j )
2 =

j−1∑
k=1
k �=i

(h3,ijk − h2,ij − h1k)
2,

b2
i,j =

j−1∑
k=1
k �=i

E
{
(ri,j,k − ri,j )

2|Xi,Xj

}=
j−1∑
k=1
k �=i

[
E
{
(h3,ijk − h1k)

2|Xi,Xj

}− h2
2,ij

]
.
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Applying (C.3) conditional on (Xi,Xj ) gives

E
{
R2

i,j I (Ri,j ≥ √
yti,j )|Xi,Xj

}≤ 23b2
i,j e

−y/4.

Then it follows from Lemma C.2 that

P

{
n∑

i=1

(
n∑

j=2,j �=i

Ri,j

)2

≥ yn

(
n∑

i=1

n∑
j=2,j �=i

t2
i,j + a3n

3

)}

≤ P

{
n∑

i=1

n∑
j=2,j �=i

R2
i,j ≥ y

(
n∑

i=1

n∑
j=2,j �=i

t2
i,j + a3n

3

)}

≤ C
e−y/4

a3n3

n∑
i=1

n∑
j=2,j �=i

(j − 1)E
(
r2

1,2,3

)≤ Ca−1
3 e−y/4

E
(
r2

1,2,3

)
.

This, combined with the inequality
∑n

i=1
∑n

j=2,j �=i t
2
i,j ≤ a3n

3(B1 + B2V
2
n ) implies

P

{
n∑

i=1

(
n∑

j=2,j �=i

Ri,j

)2

≥ a3yn4(B1 + 1 + B2V
2
n

)}≤ Ca−1
3 e−y/4

E
(
r2

1,2,3

)
. (C.19)

For the second addend in (C.18), consider r̃i,j = {j − 1 − I (j > i)}ri,j as a new (degenerate)
kernel satisfying E(̃ri,j |Xi) = E(̃ri,j |Xj) = 0. Then by similar arguments as in step 1, we obtain

P

(
n∑

i=1

[
n∑

j=2,j �=i

{
j − 1 − 1(j > i)

}
ri,j

]2

≥ a3yn4(B3 + B4V
2
n

))
(C.20)

≤ Ca−1
3 e−y/4

E
(
r2

1,2,3

)
.

Together, (C.18), (C.19) and (C.20) prove (6.28).
To prove (6.29) for m = 3, consider the following decomposition:∑

1≤i1<i2<i3≤n

r(Xi1 ,Xi2,Xi3)

=
∑

1≤i1<i2<i3≤n

ri1,i2,i3

=
n∑

k=3

∑
1≤i1<i2<k

(ri1,i2,k − ri1,i2) +
n∑

k=3

∑
1≤i1<i2<k

ri1,i2

=
n∑

k=3

∑
1≤i1<i2<k

(ri1,i2,k − ri1,i2) +
n−1∑
j=2

j−1∑
i=1

(n − j)ri,j (C.21)
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=
n∑

k=3

k−1∑
j=2

j−1∑
i=1

(ri,j,k − ri,j − rj,k) +
n∑

k=3

k−1∑
j=2

(j − 1)rj,k +
n−1∑
j=2

j−1∑
i=1

(n − j)ri,j

:=
n∑

k=3

k−1∑
j=2

r∗
1,jk +

n∑
k=3

k−1∑
j=2

r∗
2,jk +

n−1∑
j=2

r∗
j ,

where

r∗
1,jk =

j−1∑
i=1

(ri,j,k − ri,j − rj,k), r∗
2,jk = (j − 1)rj,k and r∗

j =
j−1∑
i=1

(n − j)ri,j .

Put R∗
k = R∗

1,k +R∗
2,k , R∗

1,k =∑k−1
j=2 r∗

1,jk and R∗
2,k =∑k−1

j=2 r∗
2,jk . We see that {R∗

k ,Fk, k ≥ 3}
is a sequence of martingale differences, and by (C.1),

P

(∣∣∣∣∣
n∑

k=3

R∗
k

∣∣∣∣∣≥√
2y

[
n∑

k=3

{
R∗

k + 2E
(
R∗2

k |Fk−1
)+ 3ER∗2

k

}]1/2)
≤ √

2e−y/4. (C.22)

Note that conditional on (Xj ,Xk), r∗
1,jk is a sum of independent random variables with zero

means, and given Xk , r∗
2,jk are independent with zero means. Then it is straightforward to verify

that
n∑

k=3

ER∗2
k ≤ 2

n∑
k=3

(k − 2)

k−1∑
j=2

Er∗2
1,jk + 2

n∑
k=3

R∗2
2,k ≤ Ca3n

4. (C.23)

Moreover, by noting the resemblance in structure between R∗
k and ψi (see (C.18)), it can be

shown that

P

{
n∑

k=3

R∗2
k ≥ a3yn4(B5 + B6V

2
n

)}≤ Ce−y/4, (C.24)

which is analogous to (6.28).
It remains to bound the tail probability of

∑n
k=3 E(R∗2

k |Fk−1). In view of (C.21), let t∗j,k =
v∗
j,k + 4b∗

j,k for 2 ≤ j < k ≤ n, where

v∗2
j,k =

j−1∑
i=1

(ri,j,k − ri,j − rj,k)
2, b∗2

j,k =
j−1∑
i=1

E
{
(ri,j,k − ri,j − rj,k)

2|Xj ,Xk

}
,

and for 3 ≤ k ≤ n, put

t∗k = v∗
k + 4b∗

k , v∗2
k =

k−1∑
j=2

r∗2
2,jk, b∗

k =
k−1∑
j=2

E
(
r∗2

2,jk|Xk

)
.
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Recall that R∗
k = R∗

1,k + R∗
2,k = ∑k−1

j=2(r
∗
1,jk + r∗

2,jk). We proceed in a similar manner as
in (C.14):

n∑
k=3

E
(
R∗2

k |Fk−1
)

≤ 2
n∑

k=3

(k − 2)

k−1∑
j=2

E
(
r∗2

1,jk|Fk−1
)+ 2

n∑
k=3

E
(
R∗2

2,k|Fk−1
)

= 2
n∑

k=3

k−1∑
j=2

(k − 2)E
[
r∗2

1,jk

{
I
(∣∣r∗

1,jk

∣∣≤ √
yt∗j,k

)+ I
(∣∣r∗

1,jk

∣∣> √
yt∗j,k

)}|Fk−1
]

+ 2
n∑

k=3

E
[
R∗2

2,k

{
I
(∣∣R∗

2,k

∣∣≤ √
yt∗k

)+ I
(∣∣R∗

2,k

∣∣> √
yt∗k

)}|Fk−1
]
.

By (C.3) and the Markov inequality, we have (recall that y ≥ 2)

P

[
n∑

k=3

(k − 2)

k−1∑
j=2

E
{
r∗2

1,jkI
(∣∣r∗

1,jk

∣∣> √
yt∗j,k

)|Fk−1
}≥ a3yn4

]
(C.25)

≤ (
a3yn4)−1

n∑
k=3

(k − 2)

k−1∑
j=2

E
{
r∗2

1,jkI
(∣∣r∗

1,jk

∣∣> √
yt∗j,k

)|Fk−1
}≤ Ce−y/4

and

P

[
n∑

k=3

E
{
R∗2

2,kI
(∣∣R∗

2,k

∣∣> √
yt∗k

)|Fk−1
}≥ a3yn4

]
(C.26)

≤ (
a3yn4)−1

n∑
k=3

E
{
R∗2

2,kI
(∣∣R∗

2,k

∣∣> √
yt∗k

)|Fk−1
}≤ Ce−y/4.

However, it follows from (C.16) and (C.17) that

n∑
k=3

(k − 2)

k−1∑
j=2

E
{
r∗2

1,jkI
(∣∣r∗

1,jk

∣∣≤ √
yt∗j,k

)|Fk−1
} ≤ a3yn4(B7 + B8V

2
n

)
, (C.27)

n∑
k=3

E
{
R∗2

2,kI
(∣∣R∗

2,k

∣∣≤ √
yt∗k

)|Fk−1
} ≤ a3yn4(B9 + B10V

2
n

)
. (C.28)
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Assembling (C.22)–(C.28), we obtain

P

{∣∣∣∣∣
n∑

k=3

R∗
k

∣∣∣∣∣≥ √
a3yn2(B11 + B12V

2
n

)1/2

}
≤ Ce−y/4.

By induction, a similar result holds for
∑n−1

j=2 r∗
j ; that is,

P

{∣∣∣∣∣
n∑

j=2

r∗
j

∣∣∣∣∣≥ √
a3yn2(B13 + B14V

2
n

)1/2

}
≤ Ce−y/4.

This completes the proof of (6.29) for m = 3.
Step 3. For a general 3 < m < n/2,

r2
k (x1, . . . , xk) ≤ 2am

{
m − k + 1 +

k∑
j=1

h2
1(xj )

}
, (C.29)

where rk(x1, . . . , xk) = E{r(X1, . . . ,Xm)|X1 = x1, . . . ,Xk = xk} for k = 2, . . . ,m.
To use the induction, we need the following string of equalities:

ψi =
∑

1≤�1<···<�m−1≤n

�1,...,�m−1 �=i

r�1,...,�m−1,i

=
n∑

�m−1=m−1
�m−1 �=i

∑
1≤�1<···<�m−2<�m−1

�1,...,�m−2 �=i

(r�1,...,�m−2,�m−1,i − r�2,...,�m−1,i )

(C.30)
+

∑
2≤�2<···<�m−1≤n

�2,...,�m−1 �=i

{
�2 − 1 − 1(i < �2)

}
r�2,...,�m−1,i

:= ψ1,i + ψ2,i .

Moreover,

ψ1,i =
n∑

�m−1=m−1
�m−1 �=i

∑
1≤�1<···<�m−2<�m−1

�1,...,�m−2 �=i

(r�1,...,�m−2,�m−1,i − r�2,...,�m−1,i )

=
n∑

�m−1=m−1
�m−1 �=i

∑
1≤�1<···<�m−2<�m−1

�1,...,�m−2 �=i

r̆�1,...,�m−1,i
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=
n∑

�m−1=m−1
�m−1 �=i

�m−1−1∑
�m−2=m−2

�m−2 �=i

. . .

�3−1∑
�2=2
�2 �=i

(
�2−1∑
�1=1
�1 �=i

r̆�1,...,�m−1,i

)

=
n∑

�m−1=m−1
�m−1 �=i

�m−1−1∑
�m−2=m−2

�m−2 �=i

. . .

�3−1∑
�2=2
�2 �=i

R̆�2,...,�m−1,i

with

r̆�1,...,�m−1 = r�1,...,�m−2,�m−1,i − r�2,...,�m−1,i , R̆�2,...,�m−1,i =
�2−1∑
�1=1
�1 �=i

r̆�1,...,�m−1,i .

Conditional on (Xi,X�2, . . . ,X�m−1), R̆�2,...,�m−1,i is a sum of independent random variables
with zero means. Also, it is straightforward to verify that

ψ2
1,i ≤

(
n − 1

m − 2

) n∑
�m−1=m−1

�m−1 �=i

�m−1−1∑
�m−2=m−2

�m−2 �=i

. . .

�3−1∑
�2=2
�2 �=i

R̆2
�2,...,�m−1,i

.

Next, let t̆� = v̆� + 4b̆�, where

v̆� =
�−1∑

�1=1,�1 �=i

r̆2
�1,...,�m−1,i

, b̆2
� =

�−1∑
�1=1,�1 �=i

E
(
r̆2
�1,...,�m−1,i

|Xi,X�,X�3, . . . ,X�m−1

)
.

Similar to the proof of (C.19), we derive from Lemma C.1 that for every y ≥ 2,(
n − 1

m − 2

)−1 n∑
i=1

ψ2
1,i ≤ y

{
am

(
n − 1

m − 1

)
+

n∑
i=1

n∑
�m−1=m−1

�m−1 �=i

. . .

�3−1∑
�2=2
�2 �=i

t̆2
�2

}

holds with probability at least 1 − C exp(−y/4). This, together with the following inequality

n∑
i=1

n∑
�m−1=m−1

�m−1 �=i

. . .

�3−1∑
�2=2
�2 �=i

t̆2
�2

≤ am

(
n

m

)(
B15 + B16V

2
n

)

which can be obtained by using (C.29) repeatedly, gives

P

{
n∑

i=1

ψ2
1,i ≥ amyn2m−2(B17 + B18V

2
n

)}≤ Ce−y/4. (C.31)
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For ψ2,i , note that the summation is carried out over all (m − 2)-tuples and∣∣{�2 − 1 − 1(i < �2)
}
r�2,...,�m−1,i

∣∣≤ n|r�2,...,�m−1,i |.
Regarding {�2 − 1 − 1(i < �2)}r�2,...,�m−1,i as a (weighted) degenerate kernel with (m − 1) argu-
ments, it follows from induction that

P

{
n∑

i=1

ψ2
2,i ≥ amyn2m−2(B19 + B20V

2
n

)}≤ Ce−y/4. (C.32)

Assembling (C.30), (C.31) and (C.32) yields (6.28).
Similarly, using the decomposition∑

1≤i1<···<im≤n

r(Xi1 , . . . ,Xim)

=
∑

1≤i1<···<im≤n

ri1,...,im

=
n∑

k=m

∑
1≤i1<···<im−1<k

(ri1,...,im−1,k − ri1,...,im−1) +
∑

1≤i1<···<im−1≤n−1

(n − im−1)ri1,...,im−1 .

Because E(ri1,...,im−1,k|Fk−1) = ri1,...,im−1 ,{
R∗

k :=
∑

1≤i1<···<im−1≤k

(ri1,...,im−1,k − ri1,...,im−1),Fk

}
k≥m

is a martingale difference sequence, such that the following analogue of (C.22) holds:

P

(∣∣∣∣∣
n∑

k=m

R∗
k

∣∣∣∣∣≥√
2y

[
n∑

k=m

{
R∗2

k + 2E
(
R∗2

k |Fk−1
)+ 3ER∗2

k

}]1/2)
≤ √

2e−y/4.

For m ≤ k ≤ n fixed, extending (C.21) gives

R∗
k =

∑
1≤i1<···<im−1<k

(ri1,...,im−1,k − ri1,...,im−1)

=
k−1∑

im−1=m−1

. . .

i2−1∑
i1=1

(ri1,i2,...,im−1,k − ri1,...,im−1 − ri2,...,im−1,k + ri2,...,im−1)

+
k−1∑

im−1=m−1

. . .

i3−1∑
i2=2

w2(ri2,...,im−1,k − ri2,...,im−1 − ri3,...,im−1,k + ri3,...,im−1)

+ · · · +
k−1∑

im−1=m−1

wm−1rim−1,k,
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where wj := (ij −1
j−2

)
for 2 ≤ j ≤ m − 1, and set w1 ≡ 1 for convention. Moreover, for 1 ≤ j ≤

m − 2, put

r∗
j,ij+1,...,im−1,k

=
ij+1−1∑
ij =j

wj (rij ,...,im−1,k − rij ,...,im−1 − rij+1,...,im−1,k + rij+1,...,im−1)

and r∗
m−1,k =∑k−1

im−1=m−1 wm−1rim−1,k , such that

R∗
k =

∑
2≤i2<···<im−1≤k−1

r∗
1,i2,...,im−1,k

(C.33)
+

∑
3≤i3<···<im−1≤k−1

r∗
2,i3,...,im−1,k

+ · · · + r∗
m−1,k.

For j = 1, . . . ,m− 2, conditional on (Xij+1, . . . ,Xim−1,Xk), r∗
j,ij+1,...,im−1,k

is a sum of indepen-

dent random variables with zero means, and so is r∗
m−1,k conditional on Xk .

In particular, we have

n∑
k=m

ER∗2
k ≤ (m − 1)

n∑
j=m

{
E

( ∑
2≤i2<···<im−1≤k−1

r∗
1,i2,...,im−1,k

)2

+E

( ∑
3≤i3<···<im−1≤k−1

r∗
2,i3,...,im−1,k

)2

+ · · · +Er∗2
m−1,k

}

≤ (m − 1)

n∑
k=m

{(
k − 2
m − 2

) ∑
2≤i2<···<im−1≤k−1

Er∗2
1,i2,...,im−1,k

+
(

k − 3
m − 3

) ∑
3≤i3<···<im−1≤k−1

Er∗2
2,i3,...,im−1,k

+ · · · +Er∗2
m−1,k

}

≤ C(m − 1)E
{
r2(X1, . . . ,Xm)

} n∑
k=m

{(
k − 2
m − 2

)(
k − 1
m − 1

)

+
(

k − 3
m − 3

) ∑
2≤i2<···<im−1≤k−1

(i2 − 1)2 + · · · +
k−1∑

i=m−1

(
i − 1
m − 2

)2
}

≤ Camn2m−2,

which extends inequality (C.23). In view of (C.33), inequalities (C.24)–(C.28) can be similarly
extended by using Lemmas C.1 and C.2 in the same way as in step 2. The proof of Lemma 6.1 is
then complete.
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