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Extensive variational computations are reported for the ground state energy of the non-
relativistic two-electron atom. Several different sets of basis functions were systematically11

explored, starting with the original scheme of Hylleraas. The most rapid convergence is
found with a combination of negative powers and a logarithm of the coordinate s =13

r1 +r2. At N = 3091 terms we pass the previous best calculation (Korobov’s 25 decimal
accuracy with N = 5200 terms) and we stop at N = 10257 with E = −2.90372, 43770,15

34119, 59831, 11592, 45194, 40444, . . .

Previous mathematical analysis sought to link the convergence rate of such cal-17

culations to specific analytic properties of the functions involved. The application of
that theory to this new experimental data leaves a rather frustrating situation, where19

we seem able to do little more than invoke vague concepts, such as “flexibility.” We
conclude that theoretical understanding here lags well behind the power of available21

computing machinery.

Keywords: Variational calculations; Helium atom; convergence rates.23

PACS numbers: 31.15.Ar, 31.15.Pf, 02.70.-C

1. Introduction25

For thousands of years mathematicians have enjoyed competing with one another

to compute ever more digits of the number π. Among modern physicists, a close27

analogy is computation of the ground state energy of the Helium atom, begun 75

years ago by E. A. Hylleraas.129

Many have contributed incremental steps in this endeavor, flexing their compu-

tational muscle and ingenuity, often trying to use mathematical insight for advan-31

tage. The strongest line of theory has been to focus on the analytic properties of

the wavefunction, especially following the 1954 work of V. A. Fock2 which showed33

a weak logarithmic singularity at the three-particle coalescence.

The recent work of V. I. Korobov3 stands out for its simplicity and its success.35

His trial functions use the three scalar coordinates packaged as e−αr1−βr2−γr12 , with

many sets of the complex nonlinear parameters α, β, γ selected in a quasirandom37

manner within specified intervals Ai ≤ αi ≤ Bi, etc. With a linear combination of

1



1st Reading
March 31, 2006 15:25 WSPC/143-IJMPE 00464

2 C. Schwartz

0

5

10

15

20

25

30

35

40

125 250 500 1000 2000 4000 8000 N (Log scale)

Accuracy (the number of correct decimal digits)
vs. N (the number of basis functions)

��������������A

����������B

����������B′

�
�

�
�

�
��

!
!

!
!

!
!!

C,D

E

F

�
�

�
�

�
��

K

G

Fig. 1. Comparative convergence rates of different basis sets.

N = 2200 terms of this type, grouped into four sets [Ai, Bi], Korobov surpassed1

the best previous work by three decimals of accuracy in the Helium ground state

energy; and more recently he went on to N = 5200 and added four more decimal3

places.

What struck me as surprising in Korobov’s work was the fact that it seemed to5

ignore that earlier “wisdom” about analytic properties of wavefunctions. His basis

functions are, analytically, no different from the original Hylleraas basis; yet his7

computational results appear to converge so much more rapidly. This perception

motivated the investigations reported below.9

Section 2 presents the new experimental data — systematic variational calcu-

lations using a variety of different basis functions that have been suggested over11

the years: these include negative powers, fractional powers and logarithms of the

coordinates. Vastly different rates of convergence are observed, as illustrated in13

Fig. 1.

Section 3 offers a qualitative discussion and attempts to interpret this wealth of15

new data. Section 4 is a review, and an attempt to apply, the theoretical approach

for understanding, at least semi-quantitatively, the observed convergence rates. We17

conclude that this state of the theory is far from satisfactory.
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Table 1. Energy accuracy — summary data.

ω N A-basis B-basis B′-basis

9 125 7.9 8.7 9.4

12 252 8.7 10.2 10.7

16 525 10.4 11.7 12.3

21 1078 11.6 13.2 13.9

27 2135 12.8

ω N C-Basis D-Basis

7 139 9.5 9.6

9 249 11.2 11.3

12 503 13.4 13.5

16 1049 15.8 16.0

21 2155 18.3 18.5

ω N E-Basis E′ -Basis F-Basis

7 139 9.5 9.8 9.4

9 249 11.7 11.6 11.5

12 503 14.5 14.5 14.3

16 1049 18.2 18.3 18.1

21 2155 22.5 22.4

27 4269 27.2 27.6

34 8093 29.7 33.0

Accuracy = Number of correct decimals

2. Experiments — Data1

Several different sets of basis functions were used in the standard variational cal-

culations for the ground state energy of the Hamiltonian (with Z = 2),3

H = −
1

2
[52

1 + 52
2] − Z/r1 − Z/r2 + 1/r12 , (2.1)

and they are detailed below in terms of the Hylleraas coordinates,5

s = r1 + r2, t = r1 − r2, u = r12 = |~x1 − ~x2| . (2.2)

Table 1 presents summary results for the primary bases studied. The Accuracy of7

any energy value E is defined as Log10[E
∗/(E∗−E)] where E∗ is our best estimate

of the exact value. Thus, the numerical value of Accuracy tells how many correct9

decimal places there are in the calculated result. Generally, we see that convergence

was found to be more rapid as one progressed through this series, A, B, C, D, E,11

F. More detailed discussion of the results will be deferred to the following sections.

• Basis A is just the original Hylleraas set:

ψ =
∑

Cl,m,ne
−ks/2slumtn (2.3a)

l,m = 0, 1, 2, 3, . . . , n = 0, 2, 4, 6, . . . (2.3b)
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and we use the order parameter ω = l + m + n to group the terms. We also1

designate a calculation of order ω to mean a basis set including all terms with

l + m + n ≤ ω. The total number of terms, N, grows asymptotically as ω3/12.3

This same organizational scheme is used for all the experiments listed below.

• Basis B allows negative powers of s, which were introduced by Kinoshita4:5

e−ks/2sl(u/s)m(t/s)n (2.4)

and we can rearrange the terms as7

e−ks/2sl(u/s)m+nPn(t/u) , (2.5)

using the Legendre polynomials to get the selection rule ∆n = 0,±2. This tech-9

nique follows the work of Goldman5 and leads to more efficient use of computer

space and time.11

• Basis C allows fractional powers of s, which were first introduced by

H. M. Schwartz6:13

(1, s1/2)e−ks/2slumtn (2.6)

which doubles the size N of the basis for each order ω. (The s1/2 term is omitted15

for ω = 0.)

• Basis D uses the logarithm of s, first introduced by Frankowski and Pekeris7:17

(1, ln(s))e−ks/2slumtn (2.7)

(The ln(s) term is omitted for ω = 0, 1. The values of N shown in Tables 1 and19

2 are two units off for bases D and F.)

• Basis E has both negative powers and fractional powers of s.21

(1, s1/2)e−ks/2sl(u/s)m(t/s)n . (2.8)

• Basis F has both the logarithm and negative powers of s.23

(1, ln(s))e−ks/2sl(u/s)m(t/s)n . (2.9)

For each of the basis sets described above, the scale parameter k was varied25

somewhat to find the lowest energy at each order. For the Table 1 data on Basis A,

k varied from 5.0 to 8.2; for Basis B, from 3.8 to 5.9; for Basis C, from 4.7 to 6.6;27

and for Basis D, from 4.6 to 6.6. For Bases E and F, it was found that the optimum

value of k stayed close to 2.0 for the mid-size and larger orders, so k was fixed at29

this value for all the data shown.

In two cases I replaced the set of functions e−ks/2sl by the set e−αls, using31

Korobov’s quasi-random method for selecting the (real) nonlinear parameters α in

a single group. The results for these experiments are shown as Bases B′ and E′ in33

Table 1.

Several variants of these basis sets were also explored briefly but discarded

when they appeared less effective, as functions of N, than their counterparts above.
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Among these were the use of:

Negative powers of s and u: (u/s)m(t/u)n , (2.10a)

Third roots of s instead of the square root , (2.10b)

Two or more powers of ln(s) , (2.10c)

The coordinate r =
√

r21 + r22 , (2.10d)

The coordinate R = |~x1 + ~x2|. (See the Appendix.) (2.10e)
1

In Table 2 are the detailed results for the two bases — E and F — that show the

most rapid convergence. This table uses a compact format which omits repetition3

Table 2. Calculated results with the two best bases.

ω N E-basis energies Ratios F-basis energies Ratios

4 43 −2.90372 183 −2.90371 941

5 67 −2.90372 42300 17.9 −2.90372 415 22.5

6 99 ” 43643 11.3 −2.90372 43610 14.2

7 139 43762 2 15.8 ” 43758 7 14.0

8 189 43769 759 14.3 43769 382 12.2

9 249 43770 28348 10.5 43770 25283 11.2

10 321 43770 33352 7.32 43770 33068 8.35

11 405 ” 34036 9.37 ” 34000 4 8.80

12 503 34109 6 8.30 34106 294 8.94

13 615 34118 444 8.63 34118 13633 9.02

14 743 34119 46685 8.79 34119 44847 10.1

15 887 34119 58229 8.06 34119 57846 7.33

16 1049 ” 59667 10.4 ” 59620 10.0

17 1229 59806 6.32 59797 5.90

18 1429 59828 5 10.5 59827 3 9.38

19 1649 59830 654 5.12 59830 456 5.50

20 1891 59831 06419 9.69 59831 03831 8.89

21 2155 59831 10650 5.08 59831 10381 6.18

22 2443 ” 11482 9.14 ” 11442 8.22

23 2755 11573 8 5.62 11571 6 7.25

24 3093 11589 997 7.94 11589 408 6.66

25 3457 11592 03902 6.18 11592 08081 8.87

26 3849 11592 36947 5.29 11592 38154 4.79

27 4269 ” 43186 4.80 ” 44444 11.0

28 4719 44484 2.97 45017 4 3.57

29 5199 44922 2.88 45177 752 13.1

30 5711 45074 35 2.32 45189 95689 3.00

31 6255 45139 97 2.29 45194 02040 14.8

32 6833 45168 66 2.16 45194 29566 2.76

33 7445 45181 95 2.11 ” 39521 15.1

34 8093 45188 24 2.06 40182 2.78

35 8777 45191 29 2.02 40420 7 13.5

36 9499 45192 80 40438 342 3.11

37 10259 40444 00495

Extrapolate: E∗ = −2.90372, 43770, 34119, 59831, 11592, 45194, 40444, 6
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of the leading digits. One quantitative measure of the rate of convergence is the1

Ratio of successive differences and this is also shown in the table.

Technical notes. For these computations, I wrote a set of subroutines3

for multiple-precision arithmetic (in C), eschewing more professional pack-

ages which are available. [My source code is available at the website5

http://socrates.berkeley.edu/~schwrtz/mppkg.html] The last row of data in

Table 2 used 101 decimals of precision and took one week running on an other-7

wise idle desktop computer equipped with a 300 MHz processor and 320 MB of

memory.9

3. Experiments Discussion

Figure 1 provides a visual comparison of the convergence rates for the different11

variational basis sets (A–F), plotting Accuracy versus the Log of N, the number of

basis functions used. I found a number of surprises in these results.13

Surprise 1. Basis B (negative powers of s) shows a significant improvement over

basis A (the original Hylleraas basis).15

Surprise 2. Bases E and F do a great deal better than any of the others. Some-

how, the benefits of B and C (or B and D) are cumulative.17

Surprise 3. The performance of C and D are nearly identical, as with E and F

(until we reach very high orders.)19

Surprise 4. The performance of basis E drops off dramatically after ω = 27; but

basis F keeps up its rapid convergence, although with marked oscillation, as seen21

from the Ratios in Table 2.

The surprising performance of Korobov’s basis has already been noted: his pub-23

lished results are shown by the line labelled with the letter “K” in Fig. 1.

The fact that Basis C performs a lot better than Basis A was not a surprise,25

since earlier work8 had already shown that. Ditto for Basis D.7 Also, the smallness

of the gain shown by basis B′ over B (and by E′ over E) is as expected, based upon27

the analytic equivalence of exponentials and power series.

While I cannot explain the surprising results, I can readily offer suggestions on29

how one might interpret them. The virtue of Bases C and D lies in providing more

flexibility to the “radial” behavior of the wavefunction (coordinate s); while that31

of the negative powers lies in providing more flexibility in the “angular” behavior

(ratios u/s and t/s). The similarity between C and D (and between E and F) indi-33

cates that the precise analytic behavior in the “radial” coordinate is not important

— any flexibility will do — until one gets to the very high orders.35

This appeal to “flexibility” is just armwaving; it lacks any mathematical founda-

tion. Such appeal to flexibility is also the best way I know to understand the success37

of Korobov’s calculations: his work seems akin to the “adaptive” techniques used in

numerical integration, where one puts additional mesh points into any region that39

shows a slower rate of convergence.

In varying the scale parameter k, I most always found a simple minimum in the41
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Table 3. Double minimum in E(k) for Basis E at ω = 21.

k 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4

E 10567 10697 10691 10650 10635 10640 10636 10603

These numbers for the energy E follow the first 20 decimal places.

energy. However, in one case — Basis E at ω = 21 — a more complex behavior1

emerged: see Table 3. While the variation shown here is not very great, this does

raise the general question of how effectively one may search for the minimum of3

a complicated function of many nonlinear parameters. This is a possible source of

worry in using Korobov’s technique, especially when it comes to error estimation5

and extrapolation.

4. Theories7

The first lesson in analysis of atomic wavefunctions concerns the two-particle cusps:

linear behavior as any one of the coordinates r1, r2, or r12 goes to zero. All of the9

basis functions studied in this paper are correct in that regard; we are concerned

here with what comes next.11

Take the Hylleraas expansion (2.3a) and put it into the Schrodinger equation

(2.1). Then collect the coefficients of each monomial in s, u, and t and set that equal

to zero. Early in this infinite set of algebraic equations for the expansion coefficients

Cl,m,n one finds the following inconsistent equations

C1,0,0 + ZC0,0,0 = 0 , (4.1a)

−2C1,1,0 + C1,0,0 = 0 , (4.1b)

4C1,1,0 − C1,0,0 = 0 . (4.1c)

This contradiction in the Hylleraas basis was discovered by Bartlett, Gibbons

and Dunn9 in 1935 and it led them to consider an alternative expansion: one that13

involved logarithms of the hyperradius r =
√

r21 + r22 . Later, Fock2 independently

developed a systematic expansion of the wavefunction with such terms.15

In 1962 this author10 developed a general theory about the convergence rate of

variational calculations, based upon analogy with least-squares fitting of functions17

and one-dimensional model problems. This line of analysis was expanded by others11

and in some cases given a more rigorous mathematical basis.1219

That theoretical work10 led directly to the idea that the convergence rate in

Hylleraas-type calculations for the Helium ground state was controlled by the Fock21

logarithmic singularity; and the semi-quantitative analysis seemed to fit the avail-

able data. It also led to the successful exploitation of the fractional power basis C.823

Shortly thereafter, Frankowski and Pekeris7 took logarithmic terms explicitly into

their trial functions and this also seemed to confirm the importance of the Fock25

behavior.

However, when Kinoshita4 considered the systematic use of negative powers —27

in the form (2.10a), not (2.4) — he found that there was no contradiction of the
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type noted above. I have confirmed that this conclusion holds also for the basis1

(2.4) used in the current work.

Thus, one might be drawn to believe that the logarithmic singularity is not3

an intrinsic property of the He atom wavefunction itself but rather results from a

particular analysis that relies on the six-dimensional coordinate r. This idea may5

be dispelled by reading the work of Myers et al.,13 where they take one for a walk

around the three-particle coalescence and show that the (finite) discontinuity in the7

local energy disappears when one includes the full set of terms that accompany the

Fock logarithm.9

This approach helps us understand some other experimental results. We noted

earlier that inclusion of negative powers t/u gave poorer results than t/s. Each of11

these ratios shows a (finite) discontinuity when one walks around the place where

the denominator vanishes — something that the correct wavefunction should not13

allow. In the case of (t/u) this error occurs along a line, while in the case of (t/s) this

error occurs only at a point. A similar situation appears in the work of Goldman,515

who used a basis of size up to N=8066. His use of the coordinates r<, r> led to a

very efficient computational scheme, but demonstrates relatively slow convergence.17

(See the letter “G” in Fig. 1.) This may be attributed to the discontinuity of his

basis functions on the 2-dimensional surface r1 = r2.19

4.1. Fitting the data

The goal of a good theoretical understanding should be the ability to predict or

to explain, at least semi-quantitatively, the observed rates of convergence for sys-

tematic variational calculations with different basis sets. In my earlier work,10 the

attempt to do this was based upon analogies with one-dimensional model problems,

doing least-squares fit with appropriate orthogonal bases to represent functions with

various types of singularities:

Minimize

∫

ρ(x)dx[f(x) −

n−1
∑

i=0

Ciui(x)]
2 , (4.2a)

Ci =

∫

ρ(x)dxf(x)ui(x) , (4.2b)

Error ≈ (Cn)2 . (4.2c)

For one example we find:

f(x) = xν lnx, ρ(x) = xµ on the interval (0,1) ,

Cn ∼ 1/nµ+2ν+3/2; (4.3)

and an alternative example is:

f(x) = xν lnx, ρ(x) = xµe−x on the interval (0,∞) ,

Cn ∼ 1/nµ/2+ν+1 . (4.4)
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The difference in convergence rates for these two examples may be understood1

qualitatively as follows. The basis functions xne−x peak at x = n. Therefore, at

higher n these basis functions on the interval (0,∞) get farther and farther away3

from the singularity, which is at x = 0. One may improve the situation by using basis

functions xne−kx, where k is a scale parameter that may grow as one proceeds to5

higher orders. I do not have a quantitative theory for this result but it is qualitatively

relevant to the current study. (See also Ref. 14.)7

In my 1962 work I applied this simple modeling to the He atom problem, iden-

tifying the Fock term r2 ln r as the dominant singularity which is neglected in con-9

ventional Hylleraas coordinates. This led me to predict a convergence rate formula,

E(ω) −E(ω − 1) ∼ const./ωp , (4.5)11

and I estimated that p should be between 5.5 and 10, due to uncertainties in re-

placing the real 3-dimensional problem with the one-dimensional model. The then13

best results with Hylleraas variables (work of Pekeris,15 up to order 21, using a

cleverly orthogonalized basis) fit the convergence rate formula (4.5) with a value of15

p between 7 and 8. This was good confirmation of the theory. The extended com-

putations reported here (Basis A data in Table 1) fit the convergence rate formula17

(4.5) with a value of p which varies from 7, at the lower orders, to a value about 12

at the higher orders. This improvement is probably due to my allowing the scale19

parameter k to vary, which was not done in the earlier work.

Also, in 1962, I introduced the half-powers of coordinate s, explicitly for the21

purpose of increasing the convergence rate, following this theory. That was success-

ful, with the observed value of p approximately doubled to 14 or 15 at ω ≤ 8. The23

extended computations reported here (Basis C data in Table 1) are fit to values of

p which vary from about 16 to 21. Again, this is fairly good confirmation of the the-25

ory; and again we acknowledge some improvement by allowing the scale parameter

to vary.27

Following that earlier theory one would certainly not expect Basis D to converge

at the same rate as Basis C – but this is exactly the behavior we have found in the29

present experiments.

What can I say about the observed convergence rate of Basis B, introducing31

negative powers into the Hylleraas functions? The data in Table 1 are fit with a

value of the exponent p around 13. I do not understand this but will only offer a33

guess that it may have to do with fitting the complex “angular” behavior around

the Fock singularity, which was described in Ref. 13. Maybe this is connected with35

the difference in convergence rates noted above, in Eqs. (4.3) and (4.4), for the

model problems on (0,1) and on (0,∞ ).37

Finally, look at the results for Bases E and F. The data in Tables 1 and 2 are

fit with values of the exponent p which grow from the 20’s to the 40’s in the middle39

range of ω; at the top end, the data for Basis E drop to around p=25, while the data

for Basis F climb to about p=65. I am at a loss to explain these large exponents41

following the former analysis.

An alternative to the power law convergence rate formula (4.5) is the exponential43
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rate formula1

E(ω) −E(ω − 1) ∼ const.(σ)ω , (4.6)

which one could expect from a model fitting problem that involved no singularities3

at all. For example, expanding e−ax in terms of xne−bx would yield the formula

(4.6) with σ = (a−b
a+b )2. If one plots the data for Basis F (Log of increments in E5

versus ω), it does look close to a straight line; and the smoothed data in Table 2

may be fitted with a value of σ in the range 0.13 - 0.16 for ω > 16. If one looks at7

the asymptotic behavior of the He wavefunction as r1 goes to infinity, the behavior

in r2 should be as e−Zr2 with Z = 2. The trial functions I used for this basis have9

the exponential envelope e−k(r1+r2)/2 with k = 2. Using the formula quoted above,

this model gives us the parameter σ as ( 2−1
2+1 )2 = 0.11. This looks like a fairly good11

fit to the data; but accepting this explanation would lead us to doubt the relevance

of the Fock singularities for the He wavefunction.13

Also, I know of no published theoretical attempts to explain the excellent conver-

gence found by Korobov with his highly nonlinear fitting of the trial wavefunction.15

John Morgan has suggested (in private communication) that Korobov’s approach

may be likened to the work of fitting the Hydrogen radial wavefunction with a set17

of gaussians, using “floating exponents”.16 This is plausible, but at present it is just

more handwaving about “flexibility”.19

I conclude that theoretical understanding of the convergence of variational cal-

culations on the two-electron atom is far outstripped by the raw computing power21

of available machinery.

Some may ask if any of this is really relevant to current issues in physics. One23

response is to point to high accuracy measurements performed on atomic systems

which may check the current theories of fundamental particles and interactions. Re-25

cent work17 aims to determine the fine structure constant to a few parts-per-billion,

based upon measurements of the 23PJ states in Helium and detailed calculations27

that rely upon an accurate representation of the atomic wavefunction.

Then, again, all this may be nothing more than an expression of π-envy.29

Acknowledgement
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Appendix: Integrals

Integrals of the following type were needed in the calculations reported here:33

∫

∞

0

dse−ssp(ln(s))q . (A.1)

There is a simple recursion formula on the index p; and for the minimum values of35

p I used a particular technique of numerical integration. (See Ref. 18.) First change
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variables, s = exp(y); then use the simple rule,1

∫

∞

−∞

f(y)dy ≈ h

∞
∑

n=−∞

f(nh) . (A.2)

The summation is truncated when terms are smaller than the desired accuracy; and3

the answer converges exponentially as the interval h is decreased.

For the two-electron atom, one can evaluate the most conventional integrals5

from the formula,19

∫

d3x1

4π

∫

d3x2

4π

e−ar1

r1

e−br2

r2

e−cr12

r12
=

1

(a+ b)(b+ c)(c+ a)
, (A.3)

7

and derivatives of this simple result with respect to the parameters a, b, c.

In exploring more complicated functions, I was able to find another simple

formula for the following integral, which involves R = |~x1 + ~x2|,
∫

d3x1

4π

∫

d3x2

4π

e−ar1

r1

e−br2

r2

e−cr12

r12

e−dR

R

=
1

(a2 + b2 − 2c2 − 2d2)
ln

(a+ b+ 2c)(a+ b+ 2d)

2(a+ c+ d)(b+ c+ d)
. (A.4)

To derive this, insert the Laplacian operators into the middle of the integral and let9

them work both ways. It appears that one could almost deduce these results (A.3)

and (A.4) purely by arguments of analyticity and symmetry. Consider, for example,11

how the integral behaves as r1 → ∞: by counting powers one sees the nature of the

singularity as (a+ c), or (a+ c+ d), goes to zero.13

As noted earlier, using this variable R in the He trial wavefunction did not

produce good results — as one might expect since it introduces a spurious cusp15

when the two electrons are on opposite sides of the nucleus. I have, nevertheless,

recorded the above information here in case it might be useful to others.17

The result (A.4) can be generalized with R = |µ~x1 + ν~x2|.
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