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Abstract

Bimodules associated to twisted modules of vertex operator algebras
by

Yiyi Zhu

Let V be a vertex operator algebra, T € N and (M k'y k) for k =1,2,3 be a gi-twisted

module, where g; are commuting automorphisms of V such that gz =1fork=1,2,3
M3
and g3 = g1g>. Suppose I(+, z) is an intertwining operator of type . We
M'M?

construct an Ay, (V)-Ag, (V)-bimodule Ag, g, o, (M') which determines the action of

M from the bottom level of M? to the bottom level of M3.

iv



To my parents.



Acknowledgments

I’d like to express my deep gratitude to my Ph.D. adviser Professor Chongying Dong for

his insightful advice. I am grateful to Professor Qifen Jiang for valuable discussions.

vi



Chapter 1

Introduction

Ever since its appearance, vertex (operator) algebra has played an important role
in conformal field theory [MS], and in the study of moonshine and Monster [FLM],
[B]. A vertex operator algebra is a vector space equipped with a linear map that sends
each vector to a sequence of operators. These sequences of operators satisfy some
axioms, among which the most important one is the so-called Jacobi identity. While
they may look very different, vertex operator algebras can be viewed as analogs of Lie
algebras and commutative associative algebras. In fact, the Jacobi identity is equivalent
to associativity and commutativity [FHL].

In this thesis, we mainly focus on the associative aspect of vertex operator algebras.
In [Z], the famous Zhu’s algebra was constructed. Given a vertex operator algebra V,

Zhu constructed an associative algebra A(V) which is obtained from all weight-zero



components of vertex operators modulo some relations hiding in Jacobi identity. Zhu
in [Z] also established a one-to-one correspondence between the set of equivalence
classes of irreducible A(V)-modules and the set of equivalence classes of irreducible
admissible V-modules. On the other hand, Zhu proved for an admissible V-module
M = &,cnM(n), the bottom level M(0) is an A(V)-module. For an A(V)-module
U, one can construct an admissible V-module whose bottom level is exactly U. In
[DLM3], Zhu’s construction was generalized to the twisted case. Given a vertex operator
algebra V and an automorphism g of V with finite order 7, an associative algebra
Ag(V) was constructed, and the notion of g-twisted V-module was introduced. It was
established in [DLLM3] that there is a one-to-one correspondence between the set of
equivalence classes of irreducible Ag(V)-modules and the set of equivalence classes
of irreducible admissible g-twisted V-modules. For an admissible g-twisted V-module
M = &,enM (7), the bottom level M (0) is an Az (V)-module. For an Az (V)-module U,
one can construct an admissible g-twisted V-module whose bottom level is exactly U.
The Zhu’s construction can also be generalized to any V-module, see [FZ]. For

this purpose, the notion of intertwining operator jumps in, see [FHL]. Let M', M?

M3
and M? be three V-modules. An intertwining operator of type is a linear
Mm?

map I: M' — Homec(M?, M3){z} satisfying similar axioms as in the definition of V-
modules, including the Jacobi identity. Each homogeneous vector in M ' corresponds to

a sequence of operators in Home (M2, M?3). Since Home (M?(0), M3(0)) has an A(V)-



A(V)-bimodule structure, in [FZ], Frankel and Zhu focus on weight-zero operators
and constructed an A(V)-A(V)-bimodule A(M'), which is a quotient of M'. As an
application, a bijection between Homy ) (A(M 1 ® M?(0), M3(0)) and V%? 220 the

M3
space of intertwining operators of type , was established, see [FZ], [LL1], and
M'M?

[L2]. Theoretically, this provides us one way to compute fusion rules. There have been
many generalizations of Zhu’s A(V) theory (see for examples, [DJ], [DLM4], [DR],
[JJ], [IMT].)

The goal of this thesis is to generalize the A(V)-A(V)-bimodule construction to

twisted case. Let M’ be a g;-twisted module, i = 1,2, 3. There is also the notion of

M3
intertwining operator of type , see [X], [DLM1]. Instead of Jacobi identity,
M'M?
generalized Jacobi identity is required in the definition. In this thesis, we shall construct
an Ag,(V)-A,, (V)-bimodule Ay, 4, (M 1) in the case g3 = g1g», which is true if there
exists a nonzero intertwining operator of this type. In the future, we will build a bijection
3
between Homy, . (v)(Ag g0, (M"') ® M?(0), M(0)) and A

This thesis is organized as follows: In Section 2, we recall some definitions and

results required for reading this thesis. In section 3, we present the construction of

Agigrgr (M)



Chapter 2

Preliminary

Throughout this thesis, we denote the field of complex numbers by C, the field of

rational numbers by Q, the ring of integers by Z, and the set of natural numbers by N.

§2.1 Formal calculus

In this section, we shall present some elementary formal calculus which is basic to the
theory of vertex (operator) algebra. For more details, see [FHL] and [FLM]. Let V be a

vector space. Throughout the thesis, we adopt the following notations:

Vliz] = {Z v,7"|v, € V,all but finitely many v, = 0} ,
neN

V[z 'z = {Z vaZ" vy € V, all but finitely many v, = 0} ,

nez



VIIzll = {Zvnzﬂvn € v},

neN

VI[z" 2]l = {Zvnz"|vn € v},

nez

V((z)) = {Z vnZ"vn € V, v, = 0 for n sufficiently small} ,

nez

V{z} = {Z 02t vy € V} .

A1eC

These notations can be extended to multivariable cases in a similar way. In the theory
of vertex operator algebras, we will be dealing with a lot of formal series in the space
End(V)[[z7!,z]]. These formal series are called vertex operators. We shall also
need to consider formal sums of infinitely many formal series, as well as products of
finitely many formal series frequently. Thus we might get formal series with coefficients
represented by a infinite sum of operators in End(V). This could lead to formal series
with coefficients represented by a infinite sum of vectors in V after apply these formal
series to vectors. This is not allowed in the context of vertex operator algebras. So we

need the following definitions:

Definition 2.1.1. Let V be a vector space and ( f;);c; be a family of operators in End(V).
We say (f;)ier is summable if for any vector v € V, ' ;c; fi(v) is a finite sum. In this

case, we call ) ;c; fi exists.

Definition 2.1.2. Suppose F;(z) = X,z fi(n)Z",1 < i < r are a finite family in



End(V)[[z!, z]]. We say the product

F@QR@-F@=) > A)hm)-fn)|

nezZ \ ny+ny+---+n,=n

exists if for every n € Z, the family

(fl (nl)f2(n2) T fr(nr))n1+n2+---+nr:n
is summable.
We shall also need the notion of "formal limit".

Definition 2.1.3. Let f(z1,22) = Xz f(m, n)z’fzg € (End(V)) [[z[l, zgl, 71, 22]].

We say that lim f(z1,z2) exists if for every n € Z, the family (f(m,n —m)) _ is
2122

mez

summable.

Definition 2.1.4. (binomial expansion convention) Throughout the thesis, for any real

number @, we define (z; + z2)® to be the formal series

(z1+22) = Z (Cl:)z‘f_kzlﬁ,

keN
where
a\ al@-1)---(a-k+1)
k| k! '
Note that
(z1+22)* # (2 +21)°
for o ¢ N.



A distinguished formal series in C[[z, z~!]] which plays an important role in formal
calculus is the formal delta function,

o(z) = Zz”.

nez

Below are several properties of 6(z), see chapter 2 and chapter 8 in [FLM] or chapter 2
in [LL].

(1). zglé(%) = z;la(%).

2. Zalé(%) - 2515(%0”‘) = zglé(%).

(3). Let f(z1,22) € (End(V))[[z;', 25", 21, 22]] be such that lim f(z1,22) exists.

1/22

Then

f(ZI’ZZ)fS(Z—I) = f(Zl,Z1)5(Z—l) = f(zz,zz)é(z—l).
22 22 2
(4). Let f(z1,22) € (End(V))[[2}", 25", 21, 22]] be such that Z}i_rng(zl,zz) exists.

Then

4

f(Zla22)5(Z1 +Z0) = f(z1, 21 +Z0)6(Z1 +ZO)'
2 .

We will use these properties of delta function a lot in calculation in Chapter 3.

§2.2 Vertex operator algebras and their modules

Below are some definitions related to vertex (operator) algebras, see [B], [DLM2],

[FHL], [FLM], and [LL].



Definition 2.2.1. A vertex algebra is a triple (V,Y, 1), where V is a vector space, Y:
Vi EndV)[[z,z '], v — Y(v,2) = 3 v,z is a linear map and vacuum vector
nez

1€ V, satisfying the following conditions:

(V1). Truncation condition: for u,v € V, Y(u,z)v = 3 uyvz" ! and u,v = 0 for
nez

sufficiently large n;
(V2). Vacuum property: Y (1, z) = idy;
(V3). Creation property: Y (u,z)1 € V[[z]] and liII(l) Y(u,z2)1=uforu e V;
7

(V4). Jacobi identity: for u,v € V,

-2+

‘16( 2y (u, 20)Y (v, 22) ~z5'6( )Y (v, 22)Y (u, z1)

_ 22+ Z
1(5(2 0

)Y (Y (u, 20)v, 22).

As a consequence of Jacobi identity, we have the following associativity and com-
mutativity.

Associativity: for any a, ¢ € V, there is a nonnegative integer r such that forall b € V
(z0+22)"Y(a,z0 +22)Y (b, 22)c = (22 + 20)"Y (Y (a, 20) b, 22)c.

Commutativity: for any a,b € V, there is a nonnegative integer k such that for any
ceV

(21 = 22)*Y (@, 2)Y (b, 22)¢ = (21 — 22)*Y (b, 22)Y (a, 21)c.



In fact, the Jacobi identity is equivalent to the commutativity and the associativity, see

[FHL] and [LL].

Example 2.2.2. Let A be a unital commutative associative algebra with a derivation D.
Define

Y(a,z)b = (e??)b forany a,b € A.
Then (A, Y, 1) is a vertex algebra, see [B].

Definition 2.2.3. A vertex operator algebra is a quadruple (V,Y, 1, w), where (V,Y,1)

is a vertex algebra, and w € V satisfying the following conditions:
V5. V=11V, dimV, <occandV, =0if n <« 0;

nez

(V6). Virasoro relations:
13
[L(m),L(n)] = (m —n)L(m+n) + - 1) 0n4n,0CV
where Y(w,2) = Yz 0nz "' = X,z L(n)z7"72, cy € C;

(V7). L(0)-eigenspace decomposition: L(0)u = nu for u € V,,. That is, the weight of

u, denoted by wtu, is the corresponding eigenvalue of L(0);
(V8). L(—1)-derivative property: Y(L(-1)u,z) = diZY(u, 2);

Example 2.2.4. For affine vertex operator algebras, see [FZ] and [LL]. For Virasoro
vertex operator algebras, see [LLL.] and for lattice vertex operator algebras, see [FLM]

and [LL].



Definition 2.2.5. An automorphism g of a vertex operator algebra V is a linear auto-

morphism of V such that:
(). g¥(u,z)g™' =Y(gu,z) forallu € V;
2). gw = w.

Definition 2.2.6. A weak module of vertex operator algebra V is a vector space M,

equipped with a linear map Yy, : V +— (EndM)[[z~', z]] such that:
M1). Yu(1,z) =idum;
(M2). ForueVandw e M, Yy (u,2)w = Y,,c7 upywz "' and u,w = 0 if n > 0;

(M3). Foru,v eV,

21—
<0

—22+21

25 6 (222 Y (u 21) Yaa (0, 22) — 256 )Yar (0, 22)Yar (14, 21)

= Z1_15( ZO)YM(Y(M, 20)V, 22)-

o+
11

Definition 2.2.7. A weak V-module M is called admissible if the following hold:
(1). Itis equipped with an N-grading, M = @,enM,,;
(2). For homogeneous u € V, u,M,;, C M, +wiy—n—1-

That is, M is an N-graded space and for homogeneous u € V, u,, is a homogeneous
map of degree wtu — n — 1. In particular, uy,—1 preserves all homogeneous subspaces

of M, which we denote by 0y, (u), following [Z].

10



Definition 2.2.8. A weak V-module M is called ordinary if the following hold:
(1). M =@ ecM, with dimM, < oo, M4, = 0 for all sufficiently negative integer n;
2). My={weM|LOw=Aw}.

It’s straightforward to show that ordinary modules are admissible. By V-modules

we always mean ordinary V-modules.

§ 2.3 Twisted modules and associative algebras
Let V be a vertex operator algebra, g an automorphism of V with order 7 < co. Then
V=el V',

where

2nir

Vi={veV]|gv=eT v}.

The following definitions and results can be found in [DLM3], [Z].

Definition 2.3.1. A weak g-twisted V-module M is a vector space equipped with a

linear map Yy;: V +— (EndM){z} such that:
M1). Forue V',we M, Yy(u,z)w = Zne%% wwz "V and u,w =0if n > 0;

M2). Yu(1,2) =idy;

11



(M3). Twisted Jacobi identity: foru € V', v € V,

— 1 — X2 _ -2+ 71
1015( 20 Yy (u, 21)Ym (v, 22) — 1015( YWYy (v, 22)Yn(u, z1)
1e,22+t20,,22+t20.
=z7"6( el )TY (Y (u, 20)0, 22).-

Definition 2.3.2. A weak g-twisted V-module M is called admissible if the following

hold:
(1. M= EBHE%NMH;
(2). For homogeneous u € V, u,M,, € My, +wtu—n—1-
For u, in Yy;(u, z) where n € %Z, again, like in untwisted case, we set
wtu,, = wtu —n — 1

and set

om(u) = Uwu-1-
As we can see, if M is admissible, then

unMn c Mn+wtun
and o0 (u) stabilizes each homogeneous subspace M,,.

Definition 2.3.3. A g-twisted V-module M is a weak g-twisted V-module carrying a

C-grading such that the following hold:

12



(). M =@ 1ecMy withdimM, < co, M| A+n = 0 for all sufficiently negative integers n;
2). My={we M| LOw=Aw}.

Like in untwisted case, a g-twisted V-module is admissible.
Following [DLM3], for r € N, define 6(r) = 1 if r = 0 (mod T) and §(r) = 0
otherwise. Foru € V", v € V, define

( 1+ Z)wtu—1+6(r)+§
Zl+(5(r)

uo, v =Res; Y (u, z)v.

Let O4(V) be the linear span of all u og v and (L(—1) + L(0))u, define A, (V) to be the

quotient space V /O, (V). Also define

Res, 9™y, (u, 2)o, ifu € V" withr =0

U*g U=

0, otherwise

The following results were obtained in [DLM3].
Proposition 2.3.4. V" C O,(V) forO <r <T.
Proposition 2.3.4 tells us that A, (V) is a quotient of %48

Theorem 2.3.5. Let V be a vertex operator algebra, g an automorphism of V with
finite order T. Then Ag(V) is an associative algebra with respect to the operation x,.

Furthermore, 1+ O,4(V) acts as the identity and w + O4(V) lies in the center of Az(V).

13



Theorem 2.3.6. Let V be a vertex operator algebra, g an automorphism of V with finite

orderT. Let M = &,enM 1 be an admissible g-twisted V-module. Then

oy (u)op (v) = op(u +g )

and
o(u')=0
hold in End(My) for every u,v € V and u’ € O4(V). Thus, the bottom level M is a left

Ag(V)-module with u + O, (V) acting as oy (u).

Remark 2.3.7. If g = id, then g-twisted V-modules are just V-modules and A, (V)
coincides with Zhu’s algebra A (V) which was constructed in [Z]. In this special case,

the untwisted version of theorem 2.3.5 and 2.3.6 were established in [Z].

§ 2.4 Intertwining operators

Let gx (k = 1,2, 3) be three commuting automorphisms of vertex operator algebra V and
T € N, a finite number such that gi =1fork =1,2,3. Let (MK,Y,;x) be a gx-twisted
(k =1,2,3) V-module. Since g1g> = g2g1, we have the following common eigenspace
decomposition:

V= ®Osj1,j2<TV(]l’J2)’

where
L 2nij
VLR = {p eV | grv = o k= 1,2}.

14



The following definition can be found in [X], [DLM1].

Definition 2.4.1. An intertwining operator of type is a linear map /(-, z) :
M'M?
M' — (Hom(M?, M?)){z} such that:

(1) For w' € M',w? € M?, I(w', 2)w? = ¥, ccw,w?z7""" and w!,,w? = 0 for a
fixedc e C,n> 0,and n € Q.
(2) Generalized Jacobi identity: for u € VU2 w; € M', wy € M?, and 0 <

j19j2 < T_ 15

21— 224
)T Yy (u, z1) I (wy, z2)wo

1,222
25 6( = )(

22—21.4

-2+ 2Z
2750 )P 1w, )Yy (4 20)w

—Z615(

22+ 20 22

2+ Z J2
2720 ) 1 (s z0)wn, )2

<1

:Z_I(S(
(3) L(—1)-derivative property: for w; € M',
d

I(L(-Dwi,z) = ——1(w1, 2).
dz

Remark 2.4.2. Note that Y (-, z) acting on V is an example of an intertwining operator

|4
of type and Yy (-, z) acting on a g-twisted module M is an example of an
4%
M
intertwining operator of type
VM

15



. .. 3
Denote the space of intertwining operators of type by V%l 22 and set
M'M?
M3 . M3
Nyjigpe =dimVy, .

These numbers are called fusion rules associated to these data. If
NM >0,
then
83 = 8182

(see [X]).

For the rest of the thesis, let (M*,Y,;c) (k = 1,2, 3) be a gx-twisted V-module such

that
_ k
M —eaneNth_i,%’
where
LO) [ye = (hi+2)1d
M}']fk+%_ k T ’
and

83 = 8182-

For convenience, we denote M }’fk# by M* () and forw € M k (%), we set
T

n
d =—.
egw =

M3

Let (-, z) be an intertwining operator in V', »,

we have the following associativity.

16



Proposition 2.4.3. (Associativity) For homogeneous u € VU2 w; € M' and w, €

M?(0), we have

_ Ve d2
(20 + 22)™ W IOUTT Y 3 (u, 2o + 22) (w1, 22)wn
_ a2
=(Z2 + ZO)wtu 146 (jo)+7 I(YMI (u’ Zo)wl ’ Zz)w2_

wtu—1+6(jo)+ %

Proof. Forhomogeneousu € VU172 w; € M'andw, € M?(0), applying Res;, z,

to the generalized Jacobi identity gives

71 — 22 4

_ V422
wtu—1+6(j2)+5 )TYM3 (u, 20) (w1, 22)wn

1,81 =22
82124 79 O(

<0

Re

)(

22+ 20
<1

22+20,2
)( o YT I(Yyp (u, z0)wi, 22)wy.

Wtu—1+5(j2)+j—2 —1
=Res;, z, Tz0(

Since (see [FLM])

—22.,21 — 22 20+ 22 _le

)

L) o sy

_ 21
z5'6(
20 20 <1 <1

we have

_ a2
(20 + 22) W IHOUTT Y 3 (u, 20 + 22) I (w1, 22)wo

VL
=(22 + 20)"" T [(Vy (u, 20wy, 22)ws.
This completes the proof. O

The following proposition is an easy corollary of the generalized Jacobi identity and

L(—1)-derivative property. (See [FHL] and [FZ].)

Proposition 2.4.4. Let

IO(',Z) — Zhl+h2_h31(',Z)-

17



Then for wy € M,

Nl
e
e

I°(wy, 2) € (Hom(M?, M®)[[zT, 2

Set

then for every homogeneous wy € M', n € %Z andm € %N,
wi(n)M?*(m) € M>(m + degw; —n — 1).

Denote w (degw; — 1) by o;(w;). It’s obvious that /°(-, z) also satisfies the gener-

alized Jacobi identity and associativity.

18



Chapter 3

Bimodules associated to twisted

modules

With the same setting as in chapter 2, in this chapter, we will construct an A, 4, (V)-
Ag, (V)-bimodule Ag,,, ., (M) and explain why we define it in such way. For r € N,
denote the remainder of r divided by T by [r].

For homogeneous u € V and w; € M 1 we define

(1 + Z)Wtu—1+6(j2)+j72

UOgigrg W1 = Res; Yy (u, 2wy,

.. J1
oG-

19



where u € VU172 and
I, j2=0
6172 =91, jp#0,j1+jp>T

0, p#0,j1+j2<T

Note that 6(0, j2) = d6(j2).
Define

(1+Z)wtu—l+6(j2)+%

Res, Y, (u, z)w; J1+Jj2=0(modT)

-2 ’
U *gigr00 W1 = ¢
0, otherwise
Define
(1+Z)wtu—l .
Res. Y, (u, z)wl—l_j1 , J2=0
— T
W1 *gs,g180 U = ¢
0, otherwise

Let OE’,Igz’gz(Ml) be the subspace of M! spanned by all u og, ¢, o, W1.

Remark 3.0.1. Let gy = g2 = 1, then og 4, o), *g,g,.6, aNd %4, ¢, o, give the same products
as in [FZ], where the authors constructed an A(V)-A(V)-bimodule A(M); Let M! =V,
then these three products give the same construction as in [DLM3], where the authors

constructed an associative algebra Ag (V).

Lemma 3.0.2. For homogeneous u € V, w € M m,neZandm > n > 0, we have

(1 + Z)wtu—1+6(j2)+j72+n

Res , Y (u, 2)w; € O (Ml),
) Z1+5(j1,j2)—‘171+m MEA 8182,82

20



The proof of lemma 3.0.2 is fairly standard (cf. [DLM3] and [Z]).

Lemma 3.0.3. Foru €V, u *g4,4, 4, O (M") (MY).

g1g2 82 g1g2 82

Proof. 1t suffices to show it holds for homogeneous u € vUni2) | where J1+j2=0

(mod T). Letu € VU2 p e VUsia) € M" and j| + j» = 0 (mod T), then

U *gigr.80 (U Og182.82 wl)

(1 +Z1)wtu—1+6(j2)+j72 (1 _'_Zz)wtu—1+6(j4)+j74
=Res; Res,,

- - Y1u21Y11)Zzwl
—]Tl 1+5(]'3»J'4)—]73 M ( s ) M ( s )

| )
(1 +73 )wtu 1+6(J2)+T (1 +2o )wtu 1+5(j4)+

=Res;, Res,, 7 Yy (v, 22)Y )y (1, z1)wy
-7 1+6(J3 ]4)——
| )
Ny N
(1 +Z1)wtu—1+6(]2)+72 (1 +Z2)th_1+5(14)+T4 2+ 720
+ Res, Res; Res;, r P L o( )
Zl—% Z1+5(j3,j4)—73 21
1 2

J

D42
(2Z 0) Yy (Y (u, zo)v, 22)wy
1

Nl

(I+z+ ZO)"V”‘—1+5(j2)+j72 (1+ Zz)wtv—l+(5(j4)+jT4

i Tk
(z2+20)'°7 Z;+5(]3,]4) T

=Res, Res;,

Yo (Y (i, 20)0, 22) w1 (mod 0, . gz(Ml))

wtu — 1 +6(j) + 2\ | ,
EReSZOReSZZ Z ( l (.]2) T )Z6(1 + 2o )wtu 1+6(j2)+——l Z
i>0 >0

_1+j_1 » __ 1+Z wto— 1+6(]4)+
( T)ZJZ +3-i ( ) Yy (Y (u, 20)v, 22) w1

02 Z;+5(13,]4)—7
(mOd Oglgz gz(Ml))
wt — 1 +6(j2) + 2\ (-1 + L
=Res,, ZZ( ; (U2)+7 Y (i ju, 22)wy
i20 j>0 J

21



1+ wtu—1+6(j2)+j72—i+wtv—1+6(j4)+j74
(1+2) (mod o’ (Ml))

1= +j41+5(3.ja) -3 sr8sz
)
wtu — 1 +6(j2) + 2\ (-1 + 4
=Res,, Z Z ( ; r i T Y (uiy jv, z2)w
i20 j>0
(1 + ) Wiuiso) =140 o)+ 2L 5 )40 (o) =0 o)+ 274 278
1+ (s ot faD) =258 4 146 s o)== =0 (L) it ) + 2
2
1
(mod 0, (M1)
1
=0 (mod 010000 (M )) .
Here we explain the last congruence. We compare
+Jja L2+ Jjal
n—6(J4)+6(Jz)+J—5(Jz+J4)+ T T

and

i+j3] ji+)s
T T

m=j+1+06(j3,js) —0([j1 +j3l. [j2 + ja]) +

case by case. Note that fori,j € Zand0 <i,j <T,[i+j] =i+ j wheni+j <T and
[i+jl=i+j—-Twheni+j>T.Since0 < jiy <Tfork=1,2,3,4and j; +j> =0
(mod T'), we divide it into two cases:
(HDIfji+j2=0,ie. jy=jo=0,thenn=j+landm=j+1,m=mn;
) If j1 + jo =T, then ji, jo # 0;

When j, + jy < T: if j4 =0,thenn=j+1and m = j + 1 whether j; + j3 < T or
not. Som =n; If j4 #0,thenn = jandm = j +6(J3, j4) when j1 + j3 <T andm = j
when j| + j3 > T, either way we will have m > n.
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When j, + j4 = T: then j4 # 0 and j3 + j4 = j1 + j3. Hence, 6(J3, ja) — 6([J1 +
Jal Ln + jal) + LBl _ I~y Therefore, n = j, m = j, m = n.

When j, + j4 > T: then j4 # 0. Thenn = j+ 1, m = j + 1 whether j; + j3 < T or
not. Either case, we have m = n.

Now by lemma 3.0.2, the last congruence holds. O
’ 1 ’ 1
Lemma 3.0.4. Foru €V, Oy o, o.(M") g, 616, U C O 4, o, (M").

Proof. 1t suffices to show it holds for homogeneous u € VU122 where j» = 0. Let

ue Vi) e vUsia) andw, € M!, then

(v Og12.82 wr) *g2.8180 U

(1 +Zl)wtu—1 (1 +Z2)wtv—1+6(j4)+‘174
-4 14+5(j3.ja) =%
< 2
(1 +Z1)wtu—1 (1 _I_Zz)wtv—1+6(j4)+174

i

=Res;, Res, Yy (u, 21) Yy (v, 22)wi

=Res; Res,, —— Yy (v, 22)Y )y (1, z1)wy
1+0(j3.j4)—F

| 2
Lt
(1 +Zl)wtu—1 (1 +Z2)Wt”_1+6(14)+T »

. . 7, 0(
AT U7 21
1 2

22t 20
+ Res ,Res; Res;,

)

~l=

2+2
(2z 0) Yy (Y (u, 20)v, 22)wy
1

(1 +2 +Z0)wtu—1 (1 +Z2)wtv—1+6(j4)+j74

_ )23
(z2+20)'"7 2, VT

=Res, Res;,

Y (Y (u, z0)v, 22)wy

(mod 0, 4, ¢, (M"))

wtu — 1\ (=1 + Ji (1 + Zz)wtv—l+6(j4)+’%“+wtu—l—i
— T
:ReSZ2 Z Z ( l )( ] ) 1

o B dl..
i20 j>0 ;“5(]3’]4) TH =T
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Y (uisjv, 22)wi (mod O’glgz,gz(Ml))

wiu — 1\ (-1 + £
EReSZ2ZZ( ; )( jT)YMl(Mi+jU,Z2)w1

i>0 j>0

(1 + Zz)wt(u,urjv)—1+(5(j4)+’74+j

oLl je)- ULs) 15 (s, ja) =2 +1= 2L =5 ([j1+3] )+ L3L 1

2

(mod o’ (Ml))

8182-82

=0 (mod 0(’glg2’g2(M1))

Here we explain the last congruence. We compare

and

i+j3]  Jji+)s
T T

m=j+6(j3,js) +1=06([j1+j3],ja) +

case by case:

(1) If j4 =0,thenm = j+1 when j; + j3 < T and m = j when j| + j3 > T. Either way,
we have m > n;

) If j4 #0,thenm = j+6(j3,ja) + 1 —6(j1 + J3,ja) = j when j; + j3 < T and
m=j+06(j3,ja) —0(j1+j3—T, js) = jwhen j| + j3 > T. Either way, we have m > n.

Now by lemma 3.0.2, the last congruence holds. O

1
Lemma 3.0.5. Foru,v € Vandw; € M", (%g,4,.0, W1) *gy.018: V= U ¥g102.00 (W1 *45 010

0) € 055, (M1).
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Proof. 1t suffices to show it holds for homogeneous u € v y e VU4 | where
ji+j2=0 (mod T) and js = 0. Let u € VU172 p € VU39 where j; + j» = 0 (mod
T), then

(1 %ggy.00 W1) *gy 0100 U= U %g1g5 09 (w1 *¢2.8182 U)

(1 +Zl)wtu—1+6(j2)+% (1 +Z2)wtv—1

Yo (0, 22)Y )y (u, z1)wy

=Res; Res;, " B
4 %)
. 2
(1 +Z])Wtu_l+5(]2)+7 (1 +Z2)wtv—l
— Res_,Res,, - Vi (u, 1) Yy (v, 22)wy
Zl_T ZI_T
1 2
_ V492 _
(1 +Z1)wtu 1+6(/2)+T (1 +Z2)wtv 1 120+ 20
= — Res_,Res; Res;, m R o(—)
z, T 2 T “
1 2
i
2+20\7
( Yy (Y (u, z0)v, z2)wy
_ )92 _
(1 +Z2+ZO)WW 146 (j2)+7 (1 +Z2)wtv 1 .22+ 20
= — Res; Res; Res;, 21 o( )
—2 Zl

_h
(z2+20)°7 z, T

Y (Y (u, 20)v, 22)wy

1+2)+7 wtu—1+(5(j2)+j72 1+2 wto—1
(1+22+20) (1+22) Yps (¥ (1t 20)0, 22)u01

= —Res Res,, 7 "
(Z2+Z0) T ZZ T
wiu — 1 +6(ja) + 2\ | N
= —Res, Res;, Z( ) (2) T Zé)(l +Z2)Wtu 1+6(jo)+—i
i>0 !
-1+ Jry —1+j—'—j (1 + Z2)wtu—l
Z ( L i Yy (Y (u, 20)0, 22)wy
' -7
j=0 2,
; L2 Ji to—1+wiu—1+6(jo)+22 —i
— _Res. ZZ (Wtu— 1 +5(]2)+7)(_1 +T)(1 + 7o) WO AWtu—146(j2)+ 7 i
2 . . _j_]_j_3 -
i>0 j>0 ! J Zi 77+

Yy (s jv, 22)wi
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wti — 1+ 6(j2) + 2\ (=1 + L\ (1 + zo) Wit =148 (2)+ 7]
e P ()1

i>0 j>0 ! J Zi_jl#ﬂ

Yy (Ui jv, 22)wn

€ OIgng’gZ(Ml)'
Again, we used lemma 3.0.2 in the last step. .

To construct the desired bimodule, we need to modulo out a bigger subspace than

(M") from M'. Let O”

219222 (M) be the linear span of all (i #g,¢, V) *¢, .05

/7
O¢100.0
’
W1 — U g gy 0 (Vg gy WI)s W1 gy g0, (Vg, 1) = (W1 #gy.0100 V) %y 0100 Us U g 1gy.g, W1

and Wy #g, ¢,g, Vs Where u, v € V, u' € Og,4,(V), V' € O, (V) and wy € M. Let

1 1 1
Ogi0.5,(M") = Oiglgz,gz(M )+ Oglgz,gz(M ),

and

Agir.e (Ml) = Ml/Oglgz,gz (Ml)

Lemma3.0.6. Fora € V, axg g, ¢,0¢,¢,.0, (Ml) - Oglgz,gz(Ml) and Oyg, g, ¢, (Ml)*gz,glgz

ac Oglgz,gz (Ml)

(Ml) < Ogng»EZ(Ml) and Oy (Ml)*nglgz

144
Proof. Itsuffices to show axg, ¢, ¢, O 212,92

818282

a C Og,gy.0,(M") due to lemmas 3.0.3 and 3.0.4. We verify it for all 4 types of spanning

: ” 1
vectors in OF o, o, (M").
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For u,v € V and w; € M,

a *g1¢5.8> ((u *2182 U) *g182,80 W1 — U *g1g5 0, (v *2182.82 wl))
=a *g1g2.82 ((” *g180 V) *g192.22 w1) —a *gig5.8 (” *g12.82 (U *g1g0.80 wl))

by the definition of Oy ,, ,, (M),

E(a g9y (U *g,g, U)) *g182.0 W1 — (a *g182 ”) *g182.80 (U *g1g0.g0 W1) + O:g’/lgz,gz (Ml)
:((a *g1go U) *g1g, U) *g182.82 W1 — (a *g182 ”) *g182.g2 (U %gg0,g0 W1) + Oglgz,gz (Ml)
:(a *2182 ”) *2182.82 (v *2182.82 wy) — (a *g182 ”) *2182.82 (v *2182.82 wy) + Oglgz,gz (Ml)
=07 , (M) C Oy o (M").

8182,82

The second equality holds because A, 4, (V) is associative, see theorem 2.3.5, thus

a g g, (U #gg, V) € (A #gg, U) #g1, U+ g, (V),

and

” 1
Og|g2(v) *g182.82 W1 € Oglgz,gz(M )

by the definition of Oy ,, ., (M.

For u,v € Vand w; € M,

((” *g182 V) *g1g2.80 W1 — U *g1g, 07 (U g 0) 05 wl)) *g2.8182 @
:((” *g185 V) *¢122.80 wl) *g2,8182 4 — (” *g182.82 (U %g1g2,02 wl)) *g2.8182 @
applying lemma 3.0.5 to both terms,

1
(1 *g,g, ) *g105.00 (W1 %4100 a) — U *g105. 05 (U %g100.05 W1) *g50100 @) + Ogglgz,gz (M")
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by the definition of OF o, .. (M 1) and applying lemma 3.0.5 to the second term,

CU *g 2.8 (U *2182.82 (w1 *¢2.8182 a)) — U Fgig5.8 (U *2182.82 (wy *¢2,8182 a))

MY +0! MYH+o?! (MY

+U ¥g g0, O 2182.82 2182.82

/
818282

by lemma 3.0.3,
COgygr0:(M").

Similarly, one can prove

1
a *g1g1.82 (wl gy 19 (U %g, ) = (W1 %gy.0105 V) *g5.0105 ”) € Og 14,6, (M)

and

1
(w1 gy 0120 (U gy U) = (W1 %gy 0100 V) *g5.010, “) *gy8190 4 € Og1gy.0)(M7).

Foru’ € Og,q,(V) and wy € M,

’
a #1087 (U #1700 W)

1
€(a *g122 u') *g1g2.80 W1 T Oglgz,gz (M")

since Oy ,,(V) is an ideal of V with respect to #,,4,,

1
COgy5, (V) #4188 W1 + Oglgz,gz(M )

CO”

1 1
8182782(M ) < Oglgz,gz(M )
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For v’ € O,,(V) and w; € M,

4
(u *2182.82 wl) *g2.81820 @

by lemma 3.0.5,

1
eu’ *2182.82 (w *82,8182 a) + Og’lgz,gz (M)

” 1 1
gog1g27g2(M ) + Oiglgz’gZ(M )

:Oglgz,gz (Ml)

Similarly, we can prove

1
a *gig.82 (wy *22,8182 Ul) € Oglgz,gz (M)

and

1
(wy *22.8182 U/) *g1.8182 4 € Oglgz,gz (M7).

The proof is completed. O

Theorem 3.0.7. Ay g, 0, (M) is an Ag, g, (V)-Ag, (V)-bimodule with left action #¢,q, 4,

and right action g, 4, ¢,
Proof. Combining lemmas 3.0.3, 3.0.4, 3.0.5 and 3.0.6, we see it immediately. O

Remark 3.0.8. Consider two special cases. (1): g1 = g» = 1. This special case was dealt

with in [FZ]. The A(V)-A(V)-bimodule A(M') constructed in [FZ] is just Aj1(M");

M

(2): M' = V. In this case, g; = 1 and any intertwining operator I(-,z) € VMT 2 18 just
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a g>-twisted V-module map. The associative algebra A, (V) constructed in [DLM3]
is just Ag, ¢,(V). It’s worth to point out that in these two special cases, they were
both able to prove that O, 4, o, (M =0 (M"). It’s reasonable to conjecture that

8182,82

Oglgz,&(Ml) = OIglgz,gz(Ml) holds in general, but we are not able to prove it in this

thesis.
Next, we are going to explain our bimodule construction by connecting it to repre-
. 3 Cne
sentation theory. Suppose I(-,z7) € V%le- Recall that I°(wy, z) = Zne%Z wy(n)z"!

and o7 (wy) = wy(degw; — 1).

Lemma 3.0.9. For homogeneous u € VY72 w, € M' and wy € M*(0), o;(u 102,22

w)wr = 0y (u)or(wi)wy, 01(W1 *g,.0,0, WW2 = 07(w1)0 2 (U)W3.

Proof. By the definition of twisted module, action *g, ¢, o,, and action g, ¢ ¢,:

if
Jitj2#0 (modT),
then
01(U *g,g, 6, W1)W2 = 0 = 053 () o (wr)wo;
If
J2#0,
then

0[(U)1 *gz,glgz u)wZ =0= 01(w1)0M2 (u)wz
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So it suffices to prove the two identities for j; + j, = 0 (mod T') and j, = O respectively.
With the help of associativity, for homogeneous u € VU172) ji + j, =0 (mod T),

homogeneous w; € M' and w» € M?(0), we have

oy (u)or(wr)w;
tu—1_degw;—1
=Res; Res;, 21" 'z, SNy s (u, 20) I (wy, 22)wo
_R R R _16 i1~ 22 wtu—1 degwl_IY IO
=RES;,R€87 KE€S7, 7 ( 0 24 2y w3 (U, 20) 17 (wy, z2)wo
_ -1 20+ 22 wtu—1_degw;—1 o
=Res; Res; Res ,z; 6 ( - 7] Z, Yy (u, z1)I°(wy, 22)wy
—1 _degw;—1
=Res; Res;, (20 +22)"" 725" Vyps (1, 20 + 22) 1° (w1, 22) w2
_ degw;—1 ~6(j2)-2 wiu—146(j2)+ 2 o
=Res  Res_,z, (20 +22) T (20 + 22) T Y3 (u, 20 + 22)1° (w1, 22)wn
. —6(ja)-2 ~5(j2)-% .
Expanding (zo + z2)™°"/*~ T, we can see that only the first term z,, remains
after applying Res,, .
degui—1_—6(j2)~% —1+6(jo)+2
:ResZOReszzzz g - T (Z() + Zz)wm 1+6(2)+7 YM3 (u, zZo + Zz)lo(wl, Zz)wz
degui—1_—6(j2)~% —1+6(jo)+2
ZRQSZORGSZZZ2 g - T (Zz + Zo)Wtu 1+6(/2)+7 IO(YMl (u, Zo)wl, z2)w2

Wit — 1+ 6(j2) + 2\ deqwi—1+wtu—1+6(jo)+ 2 —i_~5(j2)~2+i
ZRGSZUReSmZ( ; T Z, T Zy T

i>0
I° (Y (u, zo)wi, 22)wn
wtu — 1 + 5(]2) + 2 degw1—1+wtu—l+6(j2)+j—2—i
=Res;, ) ( i gk TGy p e )W
T

i>0

wtu — 1 +(5(j2)+j72
=01 Z ( ; Uis(jn)-2 102
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(1 +Z)wtu—1+6(j2)+172
=0y |Res, Y1 (u, z)w; - wy
Z5(j2)+%

(1 + Z)wtu—1+6(j2)+j72

=0y |Res; Yy (u, 2)w; wy

_I
77T
The last equality holds because when j; + j» = 0 (mod T), either j; = j, = 0 or
Ji+ja=T,506(h) +2=1-1.

For homogeneous u € 174% 1’0), homogeneous w; € M landw, e M 2(0), we have

01(W *gy.¢,8, U)W2

wtu — 1
:01(2 ( ; )ui_l+jTll,U1)LL)2

i=0
wtu — 1 i
:Z( . )(u. jlwl)(degw1+wtu—i—J—1—l)w2
i i1+ T
i>0
wtu — 1\ 4 w—i-2L-1 o
:ReSZZZ( . )Zzegw1+wu =7 I (”~_1 j_1w1,22)w2
I t=l+7
i>0

wtu — 1) deguw;+wtu—i-ZL—1 i—1+4
=Res,,Res,, Z ( )Z2 Tz T Yy (s zo)wr, 22)wn

)Wtu—lzdegwl—jTl

_1+ﬂ
=Res; Res, (22 + 20 > zo (Vg (s 20)wi, 22)wn

_q degw -2 -1+ 20+ 20
=Res,,Res; Res,, (22 +20)"" 'z, - 1z, Tzl15(T)I°(YM1(M,za)wl,zz)wz

J1 J1
_ wu—1_degwi—7 —l+7 _1..22+20, ;0
=Res_ Res. Res;, 2" 'z, %y 2 6(T)I (Yapr (u, zo)wi, z2)w2
wtu—1 degwl—]TlZ—HjTl

71 — 22,4
=Res; Res; Res;,z; ’ 0

— 22 J1 o
)T Yo (u, 20)I°(wr, z2)wr

1.2
zolé( 1z
0

)(

—22+ 21
20

22— 21 4

_1 degw—ZL 144 i
wiu—1 _degwi—7 T )Tlo(wl,ZZ)YM2(u,Z1)w2

-1
— Res; Res; Res;, 2" 'z, Zg 2o O(

)(

_1_degwi—2 _14dL
=Res; Res;, 2} 125" T (22— 21) T I° (w1, 22) Vg (1, 21) w2

=o7(wy)oye (u)w;.
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1
The last equality holds because z}"“Y)2 (u, z1)w2 € M 2[ [z 1]. O
Proposition 3.0.10. For all w € Og, g, o,(M"), 07(w)|p2() = 0.

. . , 1 o
Proof. First we prove it for w € Op , .. (M"). Letu € V(72 be homogeneous,

wp € M' and wy € MZ(O)

or(u Og182.82 wi)w;

(1 + Z)wtu—l+6(j2)+j72

=os(Res; Yy (u, 2)wy ) wy

.. J1
Z1+6(]11./2)_T

:Z(wtu—l+6(j2)+j72)
i

i>0

. .. N1
(u,-_l_(;(jl,jz)g%wl)(degwl +wtu —i+06(j1,/2) — i Dws

wtu — 1 +8(j +j—2 d Swtu—itS (i i) =211
:Reszzz( . (J2) T Zzegwl wu—i+6(j1,j2) =7

i>0 !
I°(

u, LW w
i—1=6(j1.j2)+% 1> 22)w2

Wit — 1+6(j2) + 2\ im1-6(j1.j)+2 degwr+wiu—ids(ju,jo)— b1
=Res; Res;, Z ( ; T Z, Tz, T

i>0

I° (Y (u, zo)wi, z2)wr

—1=6(j1.j2)+2L degu+8(j1.j2)=0(jn)— L2
=Res Res;, z, ! ) " (22+2z

wiu—1+8(j2)+22
0) (2)+7F

I° (Y (u, zo)wi, 22)wn

~1-6(j1.ja)+ 4t _deguwi+5(j1.j2)~6(jn) - L2
:RCSZOResZZZO T Z P (2042

wiu—1+6(j,)+22
5 (J2)+F

Y3 (u, 2o + 22)1° (w1, 22) w2
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Since the power of z; in I°(wy, z2)w; is > —degw; and 6(j1, j2) — 6(Jj2) — % > -1,
we get 0 after evaluating Res.,.

For those vectors in O7 (M), we prove it for one case:

818282
01((u *g1g2 V) *gig0.g0 W1 — U *gi0007 (Vg0 0 wl)) |M2(0): 0,

the proof for other cases are similar. Use lemma 3.0.9 and remark 3.0.8,
01((” %9120 U) *g1g,80 W1 — U %gy0 05 (Vg 0505 wl)) |a2(0)
=03 (U #g,6, V)O1(W1) |pr200) =0 n3(U)01(V %145 6, W1) |a12(0)

=03 (u)op3(v)or(wi) o) —ous (W)oys (v)or(wi) a2

=0
This completes the proof. m|

By theorem 2.3.6, M*(0) is a left Ag, (V) module and M3(0) is a left Ag e, (V)
module, hence Homc(M?(0), M>(0)) would be an Ag g, (V) — Ag, (V) bimodule with

the following left and right actions:
(U+0g0,(V)) - f=0y3(u) 0 f,

f(0+0g (V) =fooy(v)
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where f € Home(M?(0), M3(0)), u + Og,4,(V) € Ag e, (V) and v + Oy, (V) € Ag, (V).
Consider the set

St = A{or(w)) |y 1 w1 € M'}.

It is a subspace of Homc(M?(0), M>(0)). Lemma 3.0.9 tells us that S; is actually a
subbimodule of Home (M?(0), M>(0)). Regarding o; as a linear map from M' to S;,
we obtain that M1 /ker o; = S; also has an Ay, 4, (V)-Ag, (V)-bimodule structure. From

lemma 3.0.10, we see that

M3

iy there exists an

Proposition 3.0.11. For every intertwining operator 1(-,z) € V

Ag 0, (V)-Ag, (V)-bimodule epimorphism from Ag, g, ¢, (M) 10 S|.

Proof. By proposition 3.0.10, Oy,¢, o, (M') C ker o;. The statement follows immedi-

ately. m|

Remark 3.0.12. Though not a perfect explanation, proposition 3.0.10 and 3.0.11 do give
us a clue why we should modulo Oy, g, o,(M') out. We have a series of Ag g, (V) —
Ag, (V)—bimodules, i.e. S;, where I ranges through all intertwining operators of type

M’

i But these S;’s are not good enough, because they rely on the choice of 7. We

want something that is universal or at least independent of the choice of /. Proposition

3.0.11 makes Ag, ¢, o, (M) a good candidate.
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