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Local error estimates for adaptive simulation of the Reaction–
Diffusion Master Equation via operator splitting

Andreas Hellander1,*, Michael J Lawson2, Brian Drawert2, and Linda Petzold2

1Department of Information Technology, Uppsala University, Box 337, SE-75105, Uppsala, 
Sweden

2Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 
93106-5070, USA

Abstract

The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is 

severely limited by the large number of diffusion events if the mesh is fine or if diffusion 

constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation 

methods limit the efficiency of parallel implementations. Several approximate and hybrid methods 

have appeared that enable more efficient simulation of the RDME. A common feature to most of 

them is that they rely on splitting the system into its reaction and diffusion parts and updating 

them sequentially over a discrete timestep. This use of operator splitting enables more efficient 

simulation but it comes at the price of a temporal discretization error that depends on the size of 

the timestep. So far, existing methods have not attempted to estimate or control this error in a 

systematic manner. This makes the solvers hard to use for practitioners since they must guess an 

appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are 

adapted to control the error. Here, we derive estimates of the local error and propose a strategy to 

adaptively select the timestep when the RDME is simulated via a first order operator splitting. 

While the strategy is general and applicable to a wide range of approximate and hybrid methods, 

we exemplify it here by extending a previously published approximate method, the Diffusive 

Finite-State Projection (DFSP) method, to incorporate temporal adaptivity.

1 Introduction

To understand biological systems on the cellular level, it is often essential to account for the 

impact of noise due to small molecule count. For example, it has been demonstrated that 

stochasticity can have a profound effect on gene regulatory systems [23, 8]. Spatial 

distribution of molecules in a cell can result in locally small populations of key chemical 

species, such that noise drives essential behavior, as in the case of symmetry breaking across 

many eukaryotic cell types [30]. Spatial stochastic modeling has already begun to yield new 
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insights in systems such as spatiotemporal oscillators [10, 27, 26], MAPK signaling [28], 

self-organization of proteins into clusters [7] and polarization of proteins on the cell 

membrane in yeast [1]. Several modeling frameworks are used to model spatial stochastic 

system, the two most commonly used in systems biology being continuous space Brownian 

Dynamics (BD) methods exemplified by GFRD [31] and the mesoscopic Reaction-Diffusion 

Master Equation (RDME), the latter being the focus of this paper.

In the traditional RDME, space is subdivided into subvolumes that can individually be 

treated as well-mixed. Reactions within a subvolume are expressed in the form of the 

chemical master equation (CME) [13] and realizations of the process can be generated using 

Gillespie’s stochastic simulation algorithm (SSA) [12]. Molecules can move freely between 

neighboring voxels via diffusive jumps, which are modeled as linear jump events in a 

Markov process. Optimized exact simulation methods such as the Next Subvolume Method 

(NSM) [7] can be used to generate statistically correct realizations of the RDME. As with all 

exact methods applied to RDME models, the NSM suffers from a potentially high 

computational cost due to having to explicitly simulate each diffusion event. The number of 

diffusive transfers between voxels grows rapidly as the mesh resolution is made finer, and as 

a result the majority of computation time tends to be spent on sampling diffusion events. 

Additionally, these methods are also inherently serial, which has thwarted attempts to 

increase efficiency via parallelization.

To speed up simulation of the RDME many methods rely on operator splitting. By splitting 

the operators, most often with a Lie-Trotter scheme [29], the reaction and diffusion steps can 

be solved independently. While diffusion carries the bulk of the computational burden in 

exact solvers, it is often possible to take advantage of the structure and linear nature of the 

discretized diffusion equation to speed up this step in an operator-split solver. Examples of 

approximate methods that have been proposed to speed up the simulation of the RDME by 

reducing the cost of the diffusive step include methods based on tau-leaping [25, 21], the 

multinomial simulation algorithm [19], spatially adaptive hybrid methods [11] and the 

diffusive finite state projection method (DFSP) [6]. While splitting in itself does not resolve 

the issue of the inherent stiffness of the diffusion operator, the continued introduction of 

methods for simulating the RDME via operator splitting highlights the potential of this 

approach. Another recent use of operator splitting in the RDME context is the use of Lie-

Trotter splitting to simulate fractional diffusion [2]. Yet another advantage of splitting is that 

it converts a largely serial problem, which is known to be difficult to parallelize in an 

efficient manner, into a naturally parallelizable one. For the existing approximate and hybrid 

methods for the RDME, splitting the physics (reaction and diffusion) is necessary. For 

parallel implementations, another possibility is to split the computational grid into blocks, as 

proposed by [14], where the error introduced by operator splitting at block boundaries was 

analyzed. Our analysis here is different since it applies to the case of splitting the reaction 

and diffusion operators.

Splitting the operators introduces an error that depends on the size of the splitting time step, 

however previous algorithms that rely on operator splitting have not attempted an a priori 

error estimator. Without such an estimator these methods have no way to automatically 

control the splitting error. This limits their usefulness for practitioners. From an efficiency 

Hellander et al. Page 2

J Comput Phys. Author manuscript; available in PMC 2016 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



point of view, not knowing and controlling the error might lead to the use of unnecessary 

small timesteps at the price of slower simulations. In this work we seek to address theses 

issues by presenting estimators of the local error in probability, mean and variance for a first 

order Lie-Trotter splitting of the RDME. The estimators allow control of the splitting error 

for spatial stochastic simulation and enables any method based on operator splitting to be 

implemented adaptively.

This paper is organized as follows: in Section 2 we introduce the RDME. In Section 3 we 

outline how to simulate the RDME using operator splitting. We derive our estimator for the 

local error in the PDF, mean and variance, and demonstrate the accuracy of the estimator for 

an example problem. Finally, in Section 4 we present how the local error estimates can be 

used to extend an approximate method for the RDME to incorporate temporal adaptivity.

2 Spatial Stochastic Simulation using the RDME

Given a system with Ns chemical species Xs reacting in a physical domain Ω, discretize Ω 

into Nv non-overlapping voxels , with volume , and let the state of the system be 

described by the (Nv × Ns) state matrix x, where the element xis is the copy number of 

species Xs in voxel . Let xi,·denote the i-th row of x and x.,s the s-th column. The reaction 

network consists of Nr chemical reactions r = 1 … Nr. The (1 × Ns) stoichiometry vector nir 

describes the change in the state, , when reaction r occurs in voxel i and the 

propensity function for that reaction is air(xi,·).

Diffusion of species Xs along the edge (2D) or face (3D) connecting voxels  and  is 

modeled as a linear jump event, or diffusive transfer,

(1)

with propensity function μ(x) = dijsxis. The change in state due to the diffusive transfer is 

described by the (Nv × 1) stoichiometry vector νijs, such that the new state is . 

All entries of νijk are zero except νijs(i) = −1 and νijs(j) = 1. In the case of reactions only, the 

probability density function p(x, t) ≡ p(x, t|x0, 0) obeys the master equation

(2)

For the case of one subvolume, Nv = 1, (2) reduces to the CME for a well stirred system. For 

a system with only diffusion, the master equation takes the form
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(3)

For a system with both diffusion and reactions, the full RDME is then given by

(4)

The values of the diffusion rate constants dijs depend on the diffusion constant γs of species 

Xs and the shapes and sizes of voxels  and . Let us(ζ, t) = E[Xs/|Ω|], i.e. the the expected 

value of the concentration process corresponding to (3). In the thermodynamic limit Xs/|Ω| 

→ ∞, us is governed by the diffusion equation

(5)

Here, ζ is a spatial coordinate in a Cartesian coordinate system. Similarly, the Fokker-Planck 

equation that describes the time evolution of the probability density of a single particle 

undergoing Brownian motion is given by

(6)

Hence, by choosing dijs according to a consistent spatial discretization of the Laplace 

operator Δ, we obtain mesoscopic jump coefficients that are motivated both from a 

microscale and macroscale perspective. To comply with the description of the RDME, the 

discretization used needs to couple only nearest neighbors in the mesh. For a uniform, 

Cartesian mesh such as shown in Figure 1 (a), the most natural choice is a centered finite 

difference discretization, giving dijs = γs/h2 where h is the side length of the voxels and γs is 

the diffusion constant of species s. For unstructured, tetrahedral meshes which will be used 

later in this paper, dijs can be obtained from a finite element (FE) discretization using linear 

Lagrange elements. For a detailed description of that methodology, see [9]. Figure 1 (b) 

shows a triangular, unstructured mesh. The local volume where the molecules are assumed 

to be well mixed are given by the dual mesh.

3 Operator splitting method for the RDME

In this section we describe how an operator splitting method can be applied to generate 

realizations from the RDME with a controlled temporal discretization error.

In the remainder of this paper we will tacitly assume that we can impose a bound on the 

state space. For every species in the system we assume that P (Xis > xmax, t) = 0, for all t. 

The state space is then finite (but very large). Technically, this will not necessarily hold true 
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for an open system, but from a biophysical perspective it is a reasonable assumption since a 

system would require infinite energy to blow up. In the finite case, the operators in the 

RDME can be represented by finite matrices. Hereafter we will use the notation  and  to 

mean representations of the bounded operators resulting from the above truncation of the 

state space. The solution of (4) can then simply be written

(7)

We point out that even though this representation of the solution is simple, it is not feasible 

to solve (4) this way since the state state space is too large except for trivial models and 

discretizations. In the well mixed case, however, deterministic methods to solve the CME 

have been developed for small to medium-sized models, see for example [24, 3, 20, 18, 22].

Using a first order splitting method (Lie-Trotter splitting), p(x, t + Δt) can be approximated 

by

(8)

Simulation based on (8) proceeds in two half-steps, with the diffusion operator and the 

reaction operator acting sequentially

(9)

Provided that the time step Δt is sufficiently small, the local error in the scheme (9) is 

 and from standard theory for numerical solution of differential equations, the global 

error in the PDF is then proportional to Δt, i.e.

(10)

We note that it is not in general necessary for the operators to be bounded for the splitting 

method to result in a global error proportional to Δt. Jahnke and Altintan show in [16] that 

the global error for Strang splitting applied to the CME is second order under certain 

assumptions on the chemical reactions. Unfortunately, as Jahnke and Altintan point out, 

while those conditions can be expected to hold for many systems, they are not easily verified 

in practice. Error bounds for exponential operator splitting have also been studied in other 

contexts in e.g. [17].

In the next subsection we derive estimates of the local error. In a subsequent section we will 

then illustrate how these estimates can be used to enable temporal adaptivity in an 

approximate method for the RDME.

Local error

Following standard theory for the analysis of scheme (9), the local error in the PDF (i.e. in 

probability) in the n+1-th timestep is given by
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(11)

where  is the commutator of the operators. This follows directly 

from a series expansion of the left hand side in Δt. Computing ∈n+1 from (11) is obviously 

not tractable in general since knowledge of pn requires the solution of the full RDME. Even 

if an approximation of pn were available, the state space is still very large and the cost of 

evaluating the commutator would be prohibitive. Also, our goal is a strategy to estimate the 

error during the course of the generation of individual trajectories, whereas an estimation of 

pn would require very large ensembles of trajectories. By conditioning on the currently 

observed state xn in timestep n of a specific realization, we obtain the following sequence of 

conditional errors,

(12)

where δ is the Dirac delta function, hence δ(xn) corresponds to P(X(tn) = xn) = 1. Note that 

ℰn is a random vector for each n with unconditional expectation E[ℰn+1] = ∈n+1.

While there are many possible states that can have a non-zero value after one application of 

the commutator, hereafter called reachable states, it is possible to obtain simple and 

computable expressions for ℰn+1 in (12), due to the sparsity of δ(xn)

The L = 1+2NeNs+NvNr+2NvNrNeNs reachable state  in  are xn, xn + νijs, xn + 

nkr and xn + nkr + νijs, s = 1 … Ns, r = 1 … Nr, i, j, k = 1, …, Nv and Ne is the number of 

connections in the mesh. Below, the term to the left of the colon is a reachable state and the 

term to the right is the value of that state after applying the indicated operator to δ(xn). We 

note that this value is the corresponding term from the matrix-matrix-vector multiplication 

that results from applying the reaction and then the diffusion operators (or vice versa) to the 

previous probability vector, it is not the propensity of the reachable state.

For example, the application of the diffusion operato  on δ(xn),  results in

(13)

(14)

where i, j are connected subvolumes and . Equation (13) 

enumerates the new states with non-zero value after one application of  to δ(xn).

Applying  to  then gives the following reachable states and associated values.

(15)
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(16)

(17)

(18)

where we have defined . By computing the analogous values 

for  and taking the difference, we obtain the following expressions for the 

commutator error ℰn+1 for the reachable states 

(19)

(20)

(21)

(22)

As seen in the expression for the cross-terms in (19), large parts of the operators commute. 

Only terms pertaining to degrees of freedom that are sharing an edge in the mesh will be 

non-zero. Furthermore, (19) will be non-zero only if the reaction described by nkr depends 

on species s, i.e. nkrs is non-zero. A graphical representation of the reachable states is given 

in Fig. 2.

Local error in mean and variance

Equations (19) – (22) give expressions for the local error in the PDF in one timestep (at 

tn+1), given that we observe state xn at time tn. The obvious advantage of computing these 

expressions directly is that they can be used to derive many estimates of the error such as l1, 

l∞ in PDF, Kolmogorov distance for marginal distributions, or moments. However, they are 

rather expensive to compute directly, even with appropriate optimizations. In many cases it 

is sufficient to control a weak error such as the errors in mean and variance. This is 

particularly true if the error in the individual methods for propagating the reaction operator 

and the diffusion operator is controlled only in a weak sense. For example, this would be the 

case if the diffusion operator were updated with τ-leaping such as in [11].
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Based on (19) – (22) we can calculate the local error in the expected value of an arbitrary 

bounded function g(Xis)

(23)

where the subscript  denotes expectation under the approximate PDF obtained from solving 

with the operator split method (9) and K is the length of the error vector. For brevity, we 

have here dropped the superscript n + 1 on x and ℰ.

We introduce the notation  and 

 and . By summing up outflow 

and inflow of differences in probability to state Xis and using the fact that 

, we obtain

(24)

To obtain the error in the mean, set g(x) = x. After simplification, we obtain

(25)

where the values of the vector resulting from the operator R acting on x are defined by

(26)

and

Hellander et al. Page 8

J Comput Phys. Author manuscript; available in PMC 2016 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(27)

The (NvNs × NvNs) matrix D is defined to have diagonal elements  and off-

diagonal elements dijs.

Equation (25) is an exact (up to ) formula for the estimate of the local error in mean 

for any functional form of the propensity functions ar(x). For zeroth-order mass action 

reactions we have σirs′ = 0. For a first order reaction with a linear propensity (such as 

creation or monomolecular conversion) of the form air(xi,·) = k1xis we have

and (25) simplifies to

(28)

in agreement with the analogous expression for the commutator error for the reaction-

diffusion PDE.

To find the error in the second moment, set g(x) = x2 in (24), to obtain

(29)

Here, |D| is defined as the element-wise absolute value of the matrix D. While this 

expression is more complicated than (25), the amount of additional work required to 

compute it is not that great since the complexity of the extra terms are all  and most of 

the expensive propensity function evaluations can be overlapped with the computations 

involved in (25). A more commonly used second order statistic is the variance V[X] = E[(X 

− E[X])2]. While this quantity is not readily obtained from (24), an approximate formula for 

V[X] can be found from the observation

(30)

where Ef[X] is the expected value under the operator split PDF. Hence
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(31)

In the asymptotic regime,  terms are small by definition and ΔV[Xis] is a good 

approximation to the true local error in variance.

We point out that (11), and hence (25) and (29) are only good estimates of the local error if 

the  terms are small. It is well known that an error estimate based on (11) will 

deteriorate in quality for large timesteps if  or  are stiff. As the norm of  increases 

rapidly with finer mesh resolution, this will lead to overly conservative estimates for large Δt 

≫ h2/γs (in the non-asymptotic regime). For this reason, error estimates that perform better 

in the non-asymptotic regime have been devised in the PDE case [4]. However, it is not 

clear how those approaches would apply to the RDME. In the following section we will 

demonstrate that (11) is simple enough to lead to a strategy that is both computable in 

practice during the coarse of a single realization of RDME and local in space so that it has 

potential to be efficiently implemented in parallel.

4 Results

To illustrate the accuracy and correctness of the estimate of the local splitting errors (25) and 

(29), we simulated a model of Min oscillations in E. Coli [7] in one spatial dimension for a 

single timestep. To isolate the splitting error, the reaction and diffusion steps were solved 

exactly by simulating them with SSA and NSM respectively. Fig. 3 shows the estimated 

conditional error in mean (25) and the true conditional error in mean as a function of the 

spatial coordinate (left) and for different timesteps (right). Fig. 4 shows the corresponding 

estimate of error in second moment based on (29). As can be seen, the estimated error 

accurately captures the true local error, and the quality of the estimate improves for smaller 

timesteps as expected from the  error in the estimates. When computing the error in 

mean, the observed error is a combination of sampling error caused by a finite number of 

realizations, and the error caused by operator splitting. For small splitting errors, a large 

number of realizations are necessary to distinguish the sampling error from the splitting 

error, especially if we want to measure the error in e.g. the L1 norm, in which case the 

variances in the different voxels add up. We note that to achieve tight confidence intervals 

on the true error for this simple system (see to the top row of Figs. 3 and 4) required 1011 

realizations.

4.1 Example: Adaptive Diffusive Finite State Projection method

To illustrate the use of the local error estimate, we extended a previously published 

approximate method for the RDME, the Diffusive Finite State Projection (DFSP) method [6] 

with temporal adaptivity. This results in increased robustness of the solver.

Hellander et al. Page 10

J Comput Phys. Author manuscript; available in PMC 2016 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DFSP relies on Lie-Trotter splitting to separate the reaction and diffusion updates over a 

discrete timestep Δt. The reactions are then updated in each voxel using Gille-spie’s direct 

method [12]. Diffusion is updated by sampling from probability density functions that are 

precomputed by solving the diffusion master equation (3) locally up to the given timestep 

Δt. For an unstructured mesh, there is one such PDF for each vertex in the mesh and for each 

Δt. The (spatial) locality of the PDFs are enforced by applying an absorbing boundary 

condition at a certain distance away from the vertices. The timestep is assumed to be small 

enough that the majority of probability is located close to the vertex where the molecule is 

located at the beginning of the timestep so that the error due to the truncation of the 

statespace is small. It is shown in [6] that this strategy can speed up simulations by 

effectively aggregating the effects of many fast diffusive transfers over the splitting 

timestep, and in [5] it is discussed under what conditions one can expect DFSP to be more 

efficient than NSM for the MinCDE model [15].

DFSP has been implemented previously as an add-on solver in the URDME framework [5]. 

URDME is a modular framework that uses unstructured meshes for spatial stochastic 

simulations. URDME includes interfaces for handling of the geometry, mesh and 

computation of diffusion jump rates for the unstructured mesh. It has a modular design 

which facilitates the implementation of new algorithms as add-on solvers. In the current 

implementation of DFSP in URDME, Δt has to be chosen by trial and error by manually 

picking a timestep that results in satisfactory error in the computed solutions, judged by a 

posteriori checks.

We implemented our error estimation strategy in URDME for arbitrary processes (i.e. it uses 

the same input files as all the core solvers) for structured and unstructured meshes, and 

supplemented the DFSP solver with an adaptive selection of the timestep. To compute the 

next proposed timestep, we control the per species error in mean (25) in the L1 norm such 

that

(32)

with ∈s being a user specified relative error tolerance. The L1 norm is a natural choice in the 

context of DFSP since the error in the diffusion lookup-tables has a natural bound in the l1 

norm [6]. Figure 5 shows an overlay of the pole-to-pole oscillation pattern of membrane 

bound MinD in E. coli along with time steps selected by the adaptive step size selection 

algorithm. The timesteps are themselves stochastic variables and fluctuate during the course 

of the simulation. In the figure they have been smoothed by taking the average of the 10 last 

timesteps to more clearly visualize how they adapt to the dynamics of the solution.

We simulated the MinCDE model from [15] in 3D in three different ways: using the 

adaptive timestep control, using a fixed manually determined timestep and using the exact 

NSM solver, and compared the execution times. The geometry and diffusion constants were 

taken to be the same as in [10].The model files for URDME that contains all parameters of 

the model is included in the online Supplementary material of this paper. In DFSP, the 
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diffusion step is conducted by computing new positions for each molecule individually by 

sampling from a precomputed lookup-table. All the molecules’ new positions can then be 

sampled in parallel. During the reaction update, all the voxels can be treated independently 

and in parallel. Note that the local error estimators used here have the same characteristics 

when it comes to the spatial access pattern as the DFSP diffusion operator. Thus the overall 

adaptive algorithm should parallelize quite well on a shared memory multicore architecture. 

To demonstrate this, we implemented a na¨ýve parallel version using openMP. Table 1 

shows simulation speeds for the adaptive DFSP method, with error estimation conducted 

every tenth timestep, on a machine with an Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz 

(Nehalem) processor and 6GB of RAM using one core and using 4 cores (8 threads). For 

comparison, we also include simulation times of the (serial) NSM solver in URDME. As can 

be seen, the DFSP algorithm shows an almost ideal speedup on 4 cores, and for this error 

tolerance, the adaptive code is roughly two times faster than NSM on a single core.

5 Discussion

In this work we have derived local error estimators for first order operator splitting in 

stochastic reaction-diffusion simulations based on the RDME. Operator splitting provides a 

way to decouple reactions and diffusion in spatial stochastic simulations, and the local error 

estimates enable this to be accomplished with a controlled error.

Decoupling the operators allows for approximate methods to be applied to the diffusion 

operator to reduce the cost of frequent diffusive transfers. The method we considered as an 

example in this paper, DFSP, falls into this category. Enabling temporal adaptivity for such 

approximate and hybrid methods has several benefits. Possibly the most important is the 

robustness it adds to the solver. While it is possible to prescribe an error tolerance that is 

likely to give a reasonable result across a range of models, the same is not possible by 

selecting a fixed timestep a priori. Adaptivity has long been available in state-of-the art 

software for e.g. numerical solution of ODEs and PDEs, but was previously lacking for this 

class of approximate methods for the RDME. Another major benefit is one of efficiency; 

using a globally conservative fixed timestep can lead to sub-optimal simulation speeds. We 

found that the adaptive version of the DFSP method presented here was roughly 1.5 times 

faster than the corresponding fixed timestep method using a conservative timestep for the 

oscillatory MinCDE model problem we considered. Even though this experiment is 

somewhat artificial since the conservative fixed timestep could not be known before running 

the adaptive code (which again illustrates the utility of adaptivity), it illustrates the potential 

efficiency benefits of an adaptive solver.

A detailed discussion and analysis about the possible speedups of a hybrid or approximate 

method has to consider the particular method that is used to update the diffusion step in the 

splitted scheme. In this paper we use the DFSP method as an example of an approximate 

method, and the DFSP method is described in greater detail in the reference [6]. There are 

certain tradeoffs specific to DFSP when it comes to computing and sampling from the 

lookup tables, and if the timesteps that are required based on the error estimate become too 

small, the speed benefit from DFSP will be modest since the number of effective diffusion 

events that can be aggregated are small. There is also an overhead from estimating the 

Hellander et al. Page 12

J Comput Phys. Author manuscript; available in PMC 2016 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



splitting error. Again, this overhead will depend on the value chosen for the error tolerance, 

since this dictates the timestep. While DFSP as such can yield speedup for stiff systems 

(when the diffusion events are numerous), we expect the biggest performance gain 

compared to NSM to come from a parallel implementation since the splitted scheme enables 

more parallelism, while kMC methods like NSM are intrinsically very hard to parallelize 

efficiently. For the example in this paper we showed speedups of 7-10x over serial NSM for 

the approximate scheme on a 4 core machine, using a simplistic OpenMP implementation. A 

key property of the error estimator is that it can be efficiently applied in a parallel, shared 

memory implementation.

Finally, operator splitting allows the flexibility of coupling different types of models 

(possibly at different scales) and solvers. Thus this error estimator opens avenues of research 

in the development of hybrid algorithms with controlled errors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The molecules are assumed to be well mixed in the dual elements (depicted in pink) of the 

primal mesh (solid thick lines). On a Cartesian grid (a), the duals are simply the volumes of 

the staggered grid. The dual of the triangular mesh in (b) is obtained by connecting the 

midpoints of the edges and the centroids of the triangles. In the conventional RDME, 

molecules are allowed to jump between immediate neighboring voxels.
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Figure 2. 
Illustration of the reachable states in Eq. (19) for k = i. On the left side, the diffusion 

operator is applied first, as in Eq. (14), followed by the reaction operator, resulting in the 

value derived in Eq. (18). On the right side the order of the operators is reversed, resulting in 

a change in the final value for the reachable state xn + nir + νijs (note that the reachable state 

is, by definition, the same using both orders of the operators, but the value associated with 

that state is different). The terms in the box represent the difference between the two orders 

of applying the operators and show terms that do not commute. Note that if we had defined 

the reachable state as k ≠ i, j in Eq. (19) then the reaction would occur in neither the 

originating subvolume nor the destination subvolume for the diffusion event and the terms 

would commute (and the value in the box would be zero).
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Figure 3. 
The local error in mean for a single input point x0 vs the estimated error. Top: True (square) 

and estimated error (*) for each species and voxel for t = 0.001s (voxels are divided by black 

dotted lines). Blue: species 1, cyan: species 2, green: species 3, red: species 4, orange: 

species 5. Bottom: The L1-norm across species and voxels of the value in Equation (32) for 

various time-steps. The solid blue is the estimated error from Equation (25). The dashed red 

line is the true local error. The values in the legend are the slope of the curves in the loglog 
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plot. Note that as the time step decreases the estimator converges toward the true error, 

which in turn approaches the expected  convergence rate.
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Figure 4. 
The local error in second moment for a single input point x0 vs the estimated error. Top: 
True (squares) and estimated error (*) for each species and voxel for t = 0.001s (voxels are 

divided by black dotted lines). Blue: species 1, cyan: species 2, green: species 3, red: species 

4, orange: species 5. Bottom: The L1-norm across species and voxels of the value in 

Equation (32) for various time-steps. The solid blue is the estimated error from Equation 

(29). The dashed red line is the true error.
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Figure 5. 
The figure shows the time steps selected by the adaptive DFSP method, along with the 

oscillation pattern of the membrane bound MinD protein for a representative trajectory. Note 

that the timestep adapts to the dynamics of the MinD oscillation. Due to the oscillatory 

nature of this model, picking the most conservative timesteps based on the maximal errors 

would lead the solver to take unnecessarily many steps, resulting in suboptimal 

performance.
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Table 1

Simulation time(s) for the adaptive version of the DFSP solver and for the exact NSM solver for the MinCDE 

problem with varying mesh resolution. The trajectories were simulated to a final time of 2000 s, and the state 

was sampled every second.

# Voxels

Adaptive DFSP (∊s = 0.05)

NSM (serial)1 core 4 cores

588 124 35 337

1009 228 65 537

2818 757 190 1282
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