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polynomial models
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Department of Mathematics, Castilla–La Mancha University, Spain.
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DATAI institute, Navarra University, Spain

Weng Kee Wong
Department of Biostatistics, UCLA, USA.

Abstract

Fractional polynomials (FP) have been shown to be more flexible than polynomial models for 

fitting data from an univariate regression model with a continuous outcome but design issues for 

FP models have lagged. We focus on FPs with a single variable and construct D-optimal designs 

for estimating model parameters and I-optimal designs for prediction over a user-specified region 

of the design space. Some analytic results are given, along with a discussion on model uncertainty. 

In addition, we provide an applet to facilitate users find tailor made optimal designs for their 

problems. As applications, we construct optimal designs for three studies that used FPs to model 

risk assessments of (a) testosterone levels from magnesium accumulation in certain areas of the 

brains in songbirds, (b) rats subject to exposure of different chemicals, and (c) hormetic effects 

due to small toxic exposure. In each case, we elaborate the benefits of having an optimal design in 

terms of cost and quality of the statistical inference.

Keywords

Approximate design; D-optimal design; Equivalence theorem; I-optimal design; Mathematica 
applet

1 Introduction

Polynomial models of low degrees are widely used to model a continuous response using 

a couple of covariates. Royston and Altman (1994) noted that polynomial models tend 

to fit poorly at the extreme values of the covariates and fitting data using high order 
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polynomials often has ill-conditioning problems. They proposed polynomials with fractional 

powers, called them fractional polynomials (FPs) and demonstrated their utility for fitting 

data from the biological sciences. The popularity of FPs can be seen in the huge number 

of citations of Royston and Altman (1994). There are more than 1200 at the time of 

writing this paper and they come from different disciplines, particularly, in the epidemiology 

literature and the biological sciences. For instance, in epidemiology, Royston, Ambler, and 

Sauerbrei (1999) showed that several continuous risk and confounding variables can be 

used in FP models to assess risk accurately in epidemiological studies and Shkedy, Aerts, 

Molenberghs, Beutels, and Van Damme (2006) proposed FPs to model the force of infection 

for infectious diseases using cross-sectional seroprevalence data. Other areas of applications 

of FPs include microbiology (Namata, Aerts, Faes, & Teunis, 2008) oncology (Atzpodien, 

Royston, Stoerkel, & Reitz, 2007; Royston, Reitz, & Atzpodien, 2006; Royston & Sauerbrei, 

2004; Sauerbrei, Royston, Bojar, Schmoor, & Schumacher, 1999), rheumatology (Krishnan, 

Tugwell, & Fries, 2004; Wolfe, 2000) or toxicology (Groten et al., 1997), to name a 

few. Additionally, Mayer, Keller, Syrovets, and Wittau (2016) used FP models to estimate 

half-life periods in antibiotic tissue concentrations in visceral surgery, nephropharmacology 

and clinical pharmacology.

In environmental sciences, Knafl (2015) gave an example of using FPs to model mercury 

level (in ppt) in fish depending on weight of the fish caught in two rivers. Related with 

risk assessment Silke, Kellett, Rooney, Bennett, and O’riordan (2010) proposed an improved 

medical admissions risk system using multivariable fractional polynomial logistic regression 

modelling. And Austin, Park-Wyllie, and Juurlink (2014) described the relationship between 

cumulative duration of use of amiodarone (an antiarrhythmic drug) and the risk of thyroid 

dysfunction. Finally about risk assessment in toxicity studies, Geys, Molenberghs, Declerck, 

and Ryan (2000) and Faes, Geys, Aerts, and Molenberghs (2003) considered FP models for 

dose-response modelling to determine safe dose levels of an exposure on developing fetuses. 

We will use in this work these latter studies.

In addition, several software statistical packages provide an option for fitting FP models. 

For example, the commercial software package STATA has a built in command fp for fitting 

FP models and in R, there is a package, mfp, for fitting FPs and studying influence of the 

continuous covariates on the outcome in the regression model. This R package was updated 

by Axel Benner in 2015 and now allows for models with binary or categorical variables, 

which are not subject to FP transformation. And more recently, in 2021, have been uploaded 

to CRAN the bfp package which implements the Bayesian paradigm for FPs. This suggests 

that FP models are gaining recognition as an modelling tool in statistics.

Despite the increasing use of FPs model, design issues for such models have not been 

addressed. Our goal is to develop optimal designs for estimating parameters in a FP model 

or for estimating its mean response surface across a user-specified region S with possibly 

different interests in different parts in S. Additionally, we create an online interactive tool 

to facilitate practitioners, who may not be familiar with the design theory, to implement the 

optimal designs. The tool is an interactive applet to find and compare optimal designs for 

FP models up to degree 3. The applet, OEDforFPmodels, is available at https://github.com/

victormanuelcasero/OED_FPmodels and is created from Mathematica.
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Section 2 discusses FP models and briefly reviews fundamentals for finding and verifying 

whether a design is optimal. Section 3 constructs D-optimal designs for estimating all 

parameters in the model and I-optimal designs for estimating the mean response averaged 

over a user-specified region. In addition, Section 3 discusses design issues when there is 

model uncertainty in the mean function. Section 4 applies our design techniques to find 

a few types of optimal designs for FP models useful for biomedical, environmental and 

toxicity studies. Section 5 offers a summary where we also mention challenging design 

issues for FP models. The appendix contains proofs of theorems for our optimal designs for 

low degree FP models.

2 Fractional polynomial models and design fundamentals

We first give an overview of FP models, describe approximate designs and present design 

optimality criteria. We then discuss the theory behind the construction of the optimal designs 

and present properties of D- and I-optimal designs.

2.1 Fractional polynomial models

Let x be a continuous variable assumed to take on only positive values, let m be a positive 

integer and let p = (p1,…,pm) be a real-valued vector of powers (p1 ≤ … ≤ pm). A fractional 

polynomial (FP) is given by ϕm x; α, p = α0 + ∑j = 1
m αjHj x , where αj are the real-valued 

coefficients and Hj(x) are defined sequentially, H1(x) = x(p1),

Hj x = x pj , if pj ≠ pj − 1,
Hj − 1 x ln x , if pj = pj − 1,

for j = 2, …, m . (1)

The powers are defined by x(pj) = xpj if pj ≠ 0, otherwise x(0) = ln[x]. For applications, 

Royston and Altman (1994) recommended ‘powers’ in a FP be selected from the set 

{−2,−1,−0.5,0,0.5,1,2, …,max(3,m)}.

The degree of the fractional polynomial is the number of terms in the FP not counting 

the intercept term. The value of m is user-selected and its value suggests how large the 

class of FP models we are willing to consider as a plausible model for the study. A larger 

integer-valued of m suggests that we are willing to consider a more complex FP model 

with more terms for inference purposes. We focus on FP models of degree m = 3 or lower 

because FPs of degree 3 or lower are widely used in practice. We denote FP models of 

degree 1, 2 and 3 by FP1, FP2 and FP3, respectively, and more specific ones by their 

explicit powers taken from P = −2, − 1, − 0.5, 0, 0.5, 1, 2, 3 . There are 8 FP1 models, 28 

FP2 models with different values of p1 and p2, hereafter p1 = p and p2 = q, and 36 FP2s 

when repeated values of p and q are allowed. Specifically, if y is the continuous outcome 

variable, 7 FP2 models have mean outcome given by Ey = α0 + α1 ln[x] + α2xq when 0 = p 
< q or Ey = α0 + α1xp + α2 ln[x] when p < q = 0, where Ey stands for the expectation of y. 

There are 8 FP2s with repeated values of p and q and their mean outcome is given by Ey = 

α0 + α1xp + α2xp ln[x] if p ≠ 0 and Ey = α0 + α1 ln[x] + α2 ln2[x] if p = 0. Table 1 shows 

all possible FP2 models. Figure 1 in Royston and Altman (1994) displays shapes of various 
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FP2 models. It is clear that some of them cannot be modeled satisfactorily by polynomials or 

FP1 models.

FP3 models are more flexible than FP1 and FP2 models for approximating the shapes of the 

mean response. When all the powers are different and nonzero, the mean response is Ey = 

α0 +α1xp +α2xq +α3xr with p, q, r ∈ P and p < q < r. Other mean functions for different 

values of p,q and r can be worked out directly using the rule near (1).

2.2 Approximate designs and design criteria

Throughout we consider approximate designs, which are probability measures ξ defined on 

a user-selected design space Ω. An approximate design ξ has k points at x1,…,xk ∈ Ω and 

positive weight wi at xi,i = 1,…,k such that w1 + … + wk = 1. We assume the sample size 

n is predetermined either by budgetary constraint or the number of subjects available in the 

study. Such an approximate design ξ is implemented by taking [nwi] observations at xi,i = 

1,…,k, where each [nwi] is a positive integer rounded from nwi subject to [nw1] + …[nwk] 

= n. For instance in a dose response study, Ω typically represents the dose interval of interest 

and [nwi] represents the number of subjects assigned to dose xi. Approximate designs were 

proposed by Kiefer in 1950’s and while they were controversial at that time, they are now 

commonly used as benchmarks for designing studies when we have a parametric model (J. 

C. Kiefer, 1985).

Our regression function is f(x)T = (f1(x),…, ft(x)) and its components are linearly 

independent. For FP models of degree m, the number of parameters in the model is t = 

m + 1. We assume all errors are independent and normally distributed, each with mean 0 and 

common variance, and note these assumptions can be relaxed when finding optimal designs. 

Following convention, we measure the worth of a design by its information matrix. This t × 

t information matrix constructed from an observation at x is proportional to f(x)f(x)T and the 

normalized information matrix from an approximate design ξ is proportional to

M ξ = ∫Ω
f x f x Tξ dx .

Several commonly used design criteria are formulated as convex functions of the 

information matrix. For example, the popular D-optimality criterion given by ΦD(ξ) = −ln|

M(ξ)| is a convex function of the information matrix and the design ξD that minimizes the 

criterion over all approximate designs on Ω is called D-optimal. D-optimal designs minimize 

the volume of the confidence ellipsoid for the model parameters when errors are normally 

distributed and so provide the most accurate inference for model parameters in the mean 

function.

Another useful convex design criterion is I-optimality for predicting the mean response at a 

given point x0. The variance of the prediction of the response using design ξ is proportional 

to

d x0, ξ = f x0
TM ξ −1f x0 = tr f x0 f x0

TM ξ −1
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where tr is the matrix trace, and so the best design for making inference at x0 is the design 

that minimizes d(x0,ξ) among all approximate designs on Ω. If x0 is inside Ω, we have 

an interpolation design problem and if it is outside of Ω, we have an extrapolation design 

problem (J. Kiefer & Wolfowitz, 1964). Extrapolation design problems typically arise in 

dose response studies where there is interest to make inference on the mean response at a 

dose, which frequently is outside the known safety limits of the drug. As another example, 

in the maintenance of a nuclear plant, it is desirable to have observations at extremely low 

temperature settings of certain variables. However, in practice, it is frequently problematic or 

risky to obtain such data and they will have to be inferred by extrapolation.

For estimating the mean response over a user-selected region S with varying interest, an 

appropriate design criterion is I-optimality defined by

ΦI ξ = ∫
S

f x
T

M ξ −1f x μ dx = ∫
S

d x, ξ μ dx = tr AM ξ −1, (2)

where A = ∫Sf x f x Tμ dx  and µ is a user-selected weighting measure over S that assigns 

greater weights to more interesting areas in S. For example, if there is equal interest 

throughout S, µ is the uniform measure. For a given weight measure µ, the design ξI that 

minimizes ΦI(ξ) over all approximate designs on Ω is called I-optimal. The I-optimality 

criterion is also differentiable, and algorithms are available for finding I-optimal designs.

2.3 Theoretical and computational tools

For convex design criteria, equivalence theorems are available to check optimality of a 

design. Equivalence theorems are based on directional derivatives and are discussed widely 

in design monographs (Fedorov, 1972; Pázman, 1986, among others). A convex analysis 

argument shows that if there are t parameters in the mean function, the design ξD is 

D-optimal if and only if for all x ∈ Ω,

f x TM ξD
−1f x − t ≤ 0. (3)

Similarly the design ξI is I-optimal if and only if for all x ∈ Ω

f x TM ξI
−1AM ξI

−1f x − tr AM ξI
−1 ≤ 0. (4)

Further, if the design is optimal among all designs on Ω, the above inequalities become an 

equality at the design points. The functions on the left hand sides of the inequalities are 

sometimes called sensitivity functions. To verify if a design ξ is D- or I-optimal, one plots 

the corresponding sensitivity function and observes if the function has the desired properties. 

With one variable, the optimality of a design can be quickly confirmed by plotting the 

sensitivity function across Ω.

Algorithms are available for generating D- and I-optimal designs and equivalence theorems 

can also be used to confirm optimality of the designs. The theorems can also evaluate the 

Casero–Alonso et al. Page 5

Stoch Environ Res Risk Assess. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proximity of the generated design to the optimum if the generated design is not optimal, 

or more general, evaluate the proximity of any design to the optimum without knowing 

the optimum, including designs obtained when the algorithm is prematurely terminated, see 

page 128 of Pázman (1986) for details when he discussed D- and I-optimality.

The proximity of a design ξ to the optimal design is measured in terms of design efficiency. 

For example, the D-efficiency and I-efficiency of a design ξ are, respectively, defined by

M ξ
M ξD

1/t
and

ΦI ξI
ΦI ξ .

The reason for having the ratio of the determinants in the D-efficiency raised to the power of 

1/t is to standardize interpretation of design efficiency. For example, if the D- or I-efficiency 

of ξ is 0.5, the practical implication is that ξ needs to be replicated twice to perform as well 

as the optimal design. In practice, designs with high efficiencies are sought.

We finish this section introducing the well-known uniform designs, which we will use in 

Sections 3.1 and 4.1 as a benchmark. Uniform designs have points equally spread out in the 

design space with equal number of observations at each point. They are easy to implement 

and intuitively appealing which explains in part their popularity. However the number of 

points in a uniform design has to be carefully selected; otherwise, too many points can 

reduce their efficiencies (Wong & Lachenbruch, 1996). We denote a uniform design with 

k design points by Uk and will evaluate efficiencies of uniform designs under various FP 

models.

3 Optimal designs for FP models

We provide D- and I-optimal designs for FP models and present justifications for them. 

Algorithms can be directly used to find optimal designs but it is desirable to have analytical 

descriptions whenever possible because they facilitate studying properties of the optimal 

designs under model mis-specifications. For example, Chang and Lay (2002) found analytic 

D-, A- and E-optimal designs for the growth curve model with regression function f(x) 

= (1,x,xp)T and p is known and larger than one and used them to study properties of the 

optimal designs.

In the next two subsections, we present D- and I-optimal designs for FP models. Section 

3.3 discusses the common case when the choice of the model is uncertain and we determine 

designs for the FP models that are robust to mis-specification in the mean function.

Throughout, we assume we have a known design space Ω = [ϵ,a], where for all practical 

purposes, we may assume that the left extreme point of the design space is 0, unless it causes 

numerical problems, as for example, when one or more of the powers in the FP are negative. 

For such situations, we replace the left extreme point by a very small positive constant ϵ, 

say, ϵ = 0.0001.
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3.1 D-optimal designs

FP models like other models are used to approximate the unknown true response function, 

which may be linear or non-linear model. This means that the parameters in the FP models 

may no longer have meaningful physical interpretations. However, using an adequately fitted 

FP model for prediction is both practical and useful because of the celebrated equivalence 

theorem of J. Kiefer and Wolfowitz (1960), which established that D- and G-optimal designs 

are equivalent when errors in the model are homoscedastic. This is a remarkable result 

because the two criteria are very different with the latter aiming to find a design that 

minimizes the maximal variance of the fitted response across the design space. It follows 

that D-optimal designs for FP models are also G-optimal for estimating the response surface 

over the design space. D-optimal designs for FP models up to degree 2 can be obtained using 

the theory of Tchebycheff systems and the above equivalence theorems; proofs are in the 

appendix.

Theorem 1 Let ξD denote the D-optimal design for a given FP model on the design space Ω 
= [ϵ,a].

1. For FP1 models with values of p ∈ P,

ξD = ϵ a
1/2 1/2 ,

that is, it is equally supported at the extreme points of Ω, and

2. For FP2 models with values of p and q ∈ P, ξD is equally supported at three 

points: ϵ,s and a, where the interior point s is given by

s = aq − ϵq p
ap − ϵp q

1/ q − p
(5)

and p and q are both unequal and nonzero. The remaining cases are:

s =

aq − ϵq
ln a − ln ϵ q

1/q
, p = 0 ≠ q (and

analogously for p ≠ 0 = q),

ϵexp ln a − ln ϵ ap
ap − ϵp − 1

p , p=q≠0,

ϵ a, p=q = 0 .

Theorem 1 applies more generally to other real numbers outside the set P (see the proof). 

When p = 0 ≠ q, p = q ≠ 0 or p = q = 0 the formula (5) for obtaning s leads to an 

indeterminate value. Then the formulae for s is obtained using the corresponding FP2 model. 

But they can be obtained by evaluating the limit of s as p or/and q tends to zero, or p tends 

to q. We observe that when p + q = 0, the interior point s becomes ϵ a, and the D-optimal 

design is the same for 4 different FP2 models, namely FP2(−2,2), FP2(−0.5,0.5), FP2(0,0) 

and FP2(−1,1).
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It is helpful to list FP2s in a systematic way with each FP2 identified uniquely by a model 

number. We propose the following system. We first arrange the value of the interior support 

point s of each of the 3-point D-optimal design for all 36 models from the smallest to the 

largest. The FP2 model with the smallest interior point is assigned model number 1, and so 

on (see Table 1). When the models have the same interior support point, see for example 

models 13–16 in Table 1, the numbering for these models start from the smallest power to 

the largest power starting with the power p first and then q in an ordered manner. Unlike 

another numbering system for FP models (Duong & Volding, 2015), there are advantages 

in our numbering system when we study robustness properties of optimal designs for FP 

models in section 3.3.

A desirable property of D-optimal designs for polynomial models is that they are invariant 

under linear transformation on the design space. This property does not hold for FP models 

as can be seen from the formula for the interior point; if c ≠ 0 and d are constants and x is 

replaced by cx + d, the interior point of the new design space does not move to an interior 

point given by cs+d, unless d = 0. This suggests studying properties of D-optimal designs for 

FP models is more challenging than for polynomial models, which may be another reason 

for the lack of design work for FP models.

Are uniform designs with 3 and 4 points efficient for estimating parameters in FP2 models? 

Figure 1 plots the D-efficiencies of the 3-point uniform design U3 under different FP2(p,q) 

models. Its maximum D-efficiency of 1 is attained at p = 1 and q = 2 when the interior point 

of the D-optimal design s = 0.50005 coincides with the middle point of the interval. The 

minimum D-efficiency of this 3-point uniform design is near zero and is attained when p 
= q = −2. A general observation is that when q and p decrease, the interior support point 

of the D-optimal design tends to 0 and the optimal design is supported at nearly 2 points. 

Consequently, the design U3 becomes very inefficient and is to be avoided. Conversely, 

when both p and q increase, the interior support points increase and the D-efficiency 

increases.

The uniform design U3 cannot be used to diagnose model misfit in a FP2 model because 

it has only 3 points. U4 is appealing because it has an additional support point and can be 

used to assess model adequacy. Figure 1 shows the D-efficiencies of the 4-point uniform 

design U4 for various FP2 models. The maximum D-efficiency of U4 is 0.905375, which 

is attained for the model FP2(0.5,3); otherwise the trends observed for U3 apply for U4 as 

well. We do not consider uniform designs with more points for FP2 models because they 

can be inefficient when they have many points, just like in polynomial models (Wong & 

Lachenbruch, 1996).

Theoretical results are not available for FP3 models but they can be directly generated using 

one of the standard algorithms discussed in the literature. The first row of figures in Figure 

2 displays the D-optimal designs for two FP2 and two FP3 models defined on the interval 

[ϵ,a] = [0.0001,1], along with their sensitivity plots that confirm their optimality. The figures 

in the second row are examples and similar plots for I-optimal designs to be discussed next. 

The two plots in the right most column seem to show the two optimal designs are supported 

at 3 points but there are actually 4 support points for both the D- and I-optimal designs for 
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the FP3 models. The vertical lines in both plots signify that the two smallest support points 

of each of the two optimal designs are very close together.

3.2 I-optimal designs

In contrast to G-optimality, which seeks to minimize the largest possible prediction variance 

across the design space, I-optimality assumes the researcher knows a priori which part or 

parts of the response surface are of interest to predict at the design stage. Naturally, a 

larger weight is assigned to parts that are deemed more important or interesting. In practice, 

numerical methods are used to find I-optimal designs unless the model is relatively simple as 

the below result shows. The proof is deferred to the appendix.

Theorem 2 Suppose the regression model is FP1 with values of p ∈ P and the weight 

measure µ is uniform on S = Ω = [ϵ,a], the design space. The I-optimal design has the form

ξI = ϵ a
w 1 − w ,

where

1. if p ≠ −1, −0.5, 0:

1/w = 1 +
p + 1 a2p + 1 + a 2p + 1 p + 1 ϵ2p − 2 aϵ p − 2p2ϵ2p + 1

2p2a2p + 1 − p + 1 2p + 1 ϵa2p + ϵ 2 2p + 1 aϵ p − p + 1 ϵ2p ;

2. otherwise,

1/w =

1 + a2ϵ a2 + 4aϵln ϵ − 2aϵln aϵ − ϵ2
a3ϵ3 a2 − 4aϵln a + 2aϵln aϵ − ϵ2 , p = − 1,

1 + aϵ−1 − 4a aϵ −0.5 + ln a − ln ϵ + 3.
−ϵa−1 + 4ϵ aϵ −0.5 + ln a − ln ϵ − 3.

, p = − 0.5,

1 + 2 a − ϵ + a ln a − ln ϵ − 2 ln a − ln ϵ
2 a − ϵ + ϵ ln a − ln ϵ ln a − ln ϵ + 2 , p = 0.

3. When p > 0 and ϵ = 0, 1/w = 1 + 1 + p /2p2, independent of the value of the 

right end point a of the design space.

When p = −1,−0.5 or 0 the above ‘general’ formula for obtaning 1/w, given in 1., leads to 

an indeterminate value. Then the appropriate value is obtained using the corresponding FP1 

model. But in the cases p = −1 or −0.5 the weights can be obtained by evaluating the limit of 

1/w when p tends to −1 or −0.5. However it is not the case for p = 0.

The optimal weights depend on the given weight measure and S, and both can be arbitrary. 

For example, suppose S = [b,c] and the weight measure takes on the form µ = α+βx or µ 
= exp[−abs(x−δ)], reflecting different prediction interests over S. A direct calculation shows 

that the I-optimal design is always supported at the extreme ends of the design space. The 

weights of the I-optimal design at the support points can be directly computed for selected 
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values of b, c, α, β or δ. The general formulae for the weights at the support points for the 

I -optimal design with an arbitrary weight function µ can be derived analytically and the 

results are complicated and not necessarily useful. The applet we have created can assist in 

this task to find the optimal design analytically. For instance, from (2) one can find a more 

general formula for the weights of the I-optimal design. For FP1 models, the optimal designs 

are supported at the two ends of the design interval and knowing the matrix A is symmetric,

A =
μ11 μ12
μ12 μ22

,

the weight at the lower endpoint when p ≠ 0 is

1/w = 1 +
ϵ2pμ11 − 2ϵpμ12 + μ22
α2pμ11 − 2apμ12 + μ22

.

As an application, suppose we have 3 possible weight measures over S = [b,c]: a uniform 

measure, say µ = α = 1/(c−b), a linear measure, say µ = x−b, implying greater interest near 

c, the right limit of S, and a linear measure, say µ = c − x, implying less interest near c. 

Suppose the model is FP1(3), Ω = [0.0001,1] and the weight measure is uniform on S, then 

the mass at the smaller extreme end is w = 0.6796 when S = Ω and w = 0.2281 when S = 

[1,1.2]. The corresponding weights for the increasing and decreasing linear measure over S 
described above are w = 0.2518 and w = 0.1829, respectively. Our results show that for all 

values of p, the linear increasing weight measure requires a larger value of w and its lowest 

value comes from the linear decreasing measure. We note that when we use the uniform 

measure over Ω = [ϵ,a] for the model FP1(1), the I-optimal design is equally weighted at 

both ends of the design interval and so coincides with the D-optimal design.

Theoretical I-optimal designs for FP2 and FP3 models are not available but they are special 

cases of L-optimality discussed in Fedorov (1972). In particular, they can be generated 

directly using a modified version of Fedorov’s algorithm and have their optimality verified 

using (4). Table 2 lists I-optimal designs for FP2 and FP3 models and different measures µ 
across Ω and beyond.

Tables 1 and 2 show that the interior support points of the I-optimal and D-optimal designs 

for FP2 models are generally different but close. There are two exceptions: (i) for model 

FP2(0,0), the interior support points of the D-optimal and I-optimal designs are 0.01 and 

0.0334 respectively, and (ii) for model FP2(1,2), both optimal designs have the same interior 

support point 0.50005. In all cases, the I-optimal designs do not have equal weights, unlike 

D-optimal designs. We note that if ϵ = 0, the above I-optimal design for the FP2(1,2) 

model is the Ds-optimal design for estimating the parameter α2 of the FP2 model; see, 

for example, Atkinson, Donev, and Tobias (2007), p.160, Table 11.2. We also note that the 

interior support point of the I-optimal design increases when either value of p or q increases.

Table 2 shows selected I-optimal designs for the FP3 models on Ω = [0.0001,1]. For these 

designs, the middling support points of the equally weighted D-optimal designs are 0.0068 
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and 0.6667 for FP3(−2,2,3), 0.0004 and 0.3507 for FP3(−2,0,3), 0.0745 and 0.5861 for 

FP3(0.5,0.5,3) and 0.2765 and 0.7236 for FP3(1,2,3). The second row in Figure 2 shows 

examples and the sensitivity plots of the I-optimal designs for 2 FP2 and 2 FP3 models from 

Table 2 with weight measure U[ϵ,1].

3.3 Optimal designs when there is model uncertainty

Model assumptions can be wrong in various ways and to fix ideas, we focus on finding 

an efficient design when there is mis-specification in the mean function. We postulate that 

the true mean response function belongs to a class of user-specified functions. A traditional 

choice for this class is polynomial models up to a given degree, see for example, Stigler 

(1971), Studden (1982) or Song and Wong (1999). Here, the natural choice for this class 

is the class of FPs up to a user-specified degree, or a subclass thereof. The practitioner can 

either find a design that has high D- or I-efficiencies among all the models in the class or the 

subclass, that is, the most robust design to the mean specification.

If the postulated class of models is FP1 models, all D- and I-optimal designs are supported at 

the extreme endpoints. The D-optimal designs are equally supported and so designs equally 

supported at the extremes of the design space have a D-efficiency of 1 regardless which FP1 

model is the true model. For I-optimality with the uniform weighting measure on [ϵ,1], the 

I-efficiency of the I-optimal design for a FP1 model varies depending which FP1 model is 

the true model. Our calculation shows that the I-optimal design for the FP1(0.5) model is the 

most robust across all FP1 models. Its minimum I-efficiency is 63.8% when the true model 

is FP1(−2). I-optimal designs with non-uniform weight measures can be found and similarly 

assessed.

For FP2 models, a similar investigation suggests that some D-optimal designs have high 

efficiencies among some FP2 models. For example, the 4 D-optimal designs for FP2 models 

with p+q = 0, all have the same interior point, so their relative efficiencies are 1. When 

the class of interest includes all FP2 models, one can compare efficiencies of an optimal 

design under one model across all other models and pick the design that has high efficiencies 

across all models of interest. Figure 3 shows the D-efficiencies of the D-optimal design 

for each FP2 model relative to other D-optimal designs for FP2 models in two ways. The 

top sub-figure uses a contour plot and the bottom sub-figure displays these efficiencies 

using boxplots, with one per assumed model. In the top subfigure, the D-efficiencies of the 

D-optimal design for the assumed model on the horizontal axis under another model can 

be read off directly from the contour plot. Generally, we look for models with the most 

light patches above their model number (see Table 1) on the x-axis in the sub-figure. This 

suggests that the D-optimal designs for these models are robust to model mis-specification. 

For example, the sub-figure shows that the D-optimal design of the assumed model has 

high efficiencies when the true model has a number close to that of the assumed model. 

Conversely the top left and right bottom corners of the plot vividly shows FP2 models 

with very different model numbers are very incompatible in the sense that if one model is 

assumed and the true model has a very different model number, the D-optimal design for the 

assumed model is going to have very poor D-efficiency. Our proposed numbering of the FP2 
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models described in section 3.1 was motivated after several attempts to make such a contour 

plot easier to interpret for the reader.

The bottom sub-figure helps us to select a design robust to mean mis-specification. There 

are 36 boxplots, each showing the distribution of the D-efficiencies of the D-optimal design 

for an assumed FP2 model when one of the other models is the true model. If the user is 

uncertain which FP2 model is appropriate at the onset and is satisfied if the design has at 

least 50% D-efficiency across all FP2 models, the sub-figure suggests that the D-optimal 

design for the FP2 model numbered 21 is most appropriate because its boxplot has the 

largest median and is larger than 84%. If the first quartile was used as a robustness criteria 

instead of the median, the most robust design is the one numbered 29, which is also 

the design with the minimum interquartile range of D-–efficiencies across all models. In 

contrast, the D-optimal design for the FP2 model numbered 1 is to be avoided because its 

25%, 50% and 75% D-efficiencies are consistently the smallest among all other D-optimal 

designs.

4 Optimal designs for FP models with applications to risk assessments

The design methodology described in the previous sections is general and can be applied 

to any regression problems where the response can be adequately modeled by a FP. This 

section describes three applications to detect various health risk assessments using a well 

designed study and the model is a fractional polynomial. In what is to follow, we use 

real studies that were conducted seemingly with minimal design considerations because no 

rationale was provided for the number of doses, the choices of the doses, and the number of 

replicates at each of the doses. For each of the three applications, we determine the D and 

I-optimal designs and show the benefits of using optimal designs.

4.1 Optimal designs for assessing risk of brain damage in songbirds

Serroyen, Molenberghs, Verhoye, Van Meir, and Van der Linden (2005) conducted an 

experiment to study the impact of testosterone on the dynamics of Mn2+ accumulation 

using data measured by magnetic resonance imaging in three songbird brain areas. We are 

interested in data from the high vocal center (HVC) area because they applied FP models to 

fit the data. Serroyen et al. (2005) determined the best fitting model was FP2(0,0.5) given by 

Ey = α0 +α1ln(t)+α2t0.5, where t is the time. In this study, the range of the time variable is 

from 0.25 to 7 hours.

From Theorem 1, assuming independent observations, the equally weighted D-optimal 

design for FP2(0,0.5) model has support at the two extreme ends, 0.25 and 7, and an interior 

point at s = 1.66 from formula (5). The I-optimal design for the same model has support at 

0.25, 1.90 and 7, with weights at the left and right extremes equal to 0.1389 and 0.3663, 

respectively, when the weight measure µ is the uniform distribution U[0.25,7]. Both optimal 

designs have different weights but are supported at about the same points. The D-efficiency 

of the I-optimal design is 87.5% and the I-efficiency of the D-optimal design is 83.1% 

suggesting these optimal designs are relative robust under a change of criterion variation. 

The implemented design is not well described in the study and our best guess is that it is a 

uniform design U28 with every 15-minute measurements between 0.25 and 7 hours. A direct 
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calculation shows the D-efficiency of this design is 54.3% ant its I-efficiency is 75.2%. In 

either case, a substantial amount of cost and effort could have been saved if the I-optimal or 

D-optimal design was used.

If there is interest to predict the mean response with different interests in a region S outside 

the design space Ω, an I-optimal design is appropriate. Table 3 shows the I-optimal design 

for two different regions S and 3 different measures µ that reflects the varying interest 

in predicting the outcome over different regions in S. One measure has uniform interest 

across S, the second measure signifies increasingly more interest in region in S further away 

from Ω, and the third measure signifies increasingly more interest in region in S nearer 

to the design space Ω. The two regions for S are similar except one is a slightly longer 

interval. All the I-optimal designs have three design points with two at the end-points of 

the design interval, 0.25 and 7 and an interior point around 1.7 hours. The main differences 

among these optimal designs are in their weight distributions. The I-optimal designs over 

the extrapolated regions S at least 75% of observations to be taken at 7 hours whereas the 

corresponding proportion of observations required by the I-optimal design with the uniform 

weighting measure on the interval [0.25,7] is only about 36%.

The take home message from our proposed optimal designs is that the implemented design 

that take observations from the HVC area every 15 minutes can be time consuming and 

laborious without a substantial gain in accuracy in the statistical inference. Our results show 

that when we believe the postulated models based on these data are adequate, then future 

studies should collect the data from the HVC area at 3 time periods only. Such a design 

provides maximal statistical efficiency for the desired inference, saves time and labor in 

terms of not having to collect data from 28 time periods as in the original experiment.

4.2 Optimal Designs for risk assessment of rats exposed to various chemicals

Geys et al. (2000) and Faes et al. (2003) investigated the use of FP models for modelling 

a dose-response problems, as part of a Quantitative Risk Assesment (QRA). Specifically, 

the goal was to ascertain the effects in mice exposed to three chemicals: ethylene glycol 

(EG), di(2-ethyhexyl)-phthalate (DEHP) and diethylene glycol dimethyl ether (DYME). 

We discuss each of them sequentially and demonstrate there are benefits of using optimal 

designs versus the implemented design.

Using data from the EG study, the authors concluded that the FP2 model with the best 

fitting was the FP2(0.5, 1) model given by Ey = α0+α1d0.5+α2d, where d is the dose. From 

our earlier results, we observe that (i) the D-optimal design for the FP2 model on the dose 

space Ω = [0,3000] (mg/kg/day) is equally supported at the doses 0,750 and 3000, i.e. each 

of these dose has the same number of mice, and (ii) the I-optimal design with a uniform 

weight function for predicting across Ω is at doses: 0,853.65 and 3000 and the corresponding 

weights at these points are 13.2%,52.7% and 34.1%, respectively. In contrast, the original 

experiment was designed with approximately equal number of observations at the following 

four doses: 0,750,1500 and 3000, i.e. 25,24,22, and 23 pregnant dams at these doses. A 

direct calculation shows that this design has a D-efficiency of 91.8% and an I-efficiency 

of 87.4%. That means that practitioners have a very good initial design, but the D- and 

I-optimal designs could have helped the investigators obtained the same inference accuracy, 
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saving an additional 8% or 13% of efficiency, depending on the criterion. We note that for 

this application, the D-efficiency of the I-optimal design is 86% and the I-efficiency of the 

D-optimal design is 80.6%, implying that the two criteria are not competitive and either 

one of the two optimal designs performs roughly the same under the two criteria. Even 

though the implemented design was a reasonably good design for inference purposes, the 

optimal designs are less costly to use because fewer observations are required for the same 

level of statistical efficiency. Thus the two optimal designs satisfy more adequately than 

the implemented design a federal guideline to always use the least number of animals for 

experimental studies.

For the other two studies there can be substantial gains applying optimal designs rather than 

the original designs. A noticeable percentage of experiments/mice, and related costs, can be 

saved.

For the DEHP study, the FP model selected was FP2(−1,−2). Specifically, the model is Ey 
= α0 + α1(d + 1)−

1 + α2(d + 1)−
2, where a transformation on the dose is carried out to 

fit the data and to avoid numerical problems, since such a FP model needs strictly positive 

values of the explanatory variable due to its negative powers. The doses of the D-optimal 

design were at 0,0.0698 and 0.150 with the same number of mice at each dose. The 

I-optimal has doses at 0,0.0704 and 0.150 with weights, respectively, equal to 23.8%,49.9% 

and 26.3%. The implemented design in the study had doses at 0,0.025,0.050,0.100, and 

0.150 (% DEHP) and the number of dams at these doses were 25,26,26,17, and 9. For this 

example the D(I)-efficiency of the implemented design is 70.7% (70.6%), suggesting that 

the implemented design does equally well for estimating model parameters and estimating 

the response surface. A direct calculation shows the D-efficiency of the I-optimal design is 

94.4% and the I-efficiency of the D-optimal design is 88.9%.

In the study using the chemical DYME, the doses selected for the study were 

0,62.5,125,250, and 500 mg/kg/day and the number of pregnant dams were 21,20,24,23, 

and 23, respectively. The best fitting FP model for the data was a FP1 given by Ey = α0 + 

α1d−
1. There was no mention about working with transformed doses, but to avoid numerical 

problems we assume a small strictly positive minimum dose of 0.1. By Theorem 1, the 

D-optimal design for the FP1(−1) is equally supported at the control and maximum doses, 

i.e. 0.1 and 500. The I-optimal design has the same doses but requires very unequal number 

of mice at these doses: 1.4% at control dose and 98.6% at the other dose. For this example 

the implemented design has a D-efficiency of 78.3% and an I-efficiency of 83.2%.

The I-optimal designs found in this subsection assumes a uniform weight function for 

prediction in Ω. If there is different interest in predicting over different parts of the design 

space Ω, another suitable weight function will have to be used and the above efficiency 

results may be different. The same applies if we have an extrapolation problem where 

interest is in predicting outside the design space. For such situations, the Mathematica online 

tools we provide in this work can be readily applied to obtain the designs and produce the 

figures similar to what we show here.
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4.3 Optimal Designs for detecting hormesis

Hormesis is a characteristic of many biological processes, and sometimes informally 

referred to as instances when a little poison can be healthy. Such observances occur 

frequently in the biological and health sciences, see for example, Calabrese (2004); 

Calabrese and Baldwin (2001).

We focus on an aquatic toxicological experiment that was conducted by the US 

Environmental Protection Agency (https://www3.epa.gov/) to ascertain possible existence 

of hormesis, when organisms were subject to low exposures of toxins. A species of water 

flea, Ceriodaphnia dubia, was exposed in a static renewal system, in brood cups, to different 

concentrations of effluent. Test results were based on their survival and reproduction 

abilities, modeled by an extended Gompertz model and a linear Logistic model. Casero-

Alonso, Pepelyshev, and Wong (2018) considered design issues and provided different 

optimal designs for detecting different aspects of hormesis as efficiently as possible.

We have fitted a FP model to the available data and Figure 4 shows the best fitting FP2 

model FP2(0.5, 2), along with the fitted Gompertz and Logistic models used in the paper. 

To obtain that FP2 model, we used the R-package mfp mentioned in the introduction. The R 

output gives an AIC 321.7, close to the AIC obtained for linear Logistic model (321.4) and 

slightly better than the AIC for the extended Gompertz model (323.3). For the fit of the FP2 

model, the dose (d) is transformed to match those from the eGompertz and linear logistic 

models: Ey = α0 + α1[(d + 1.6)/10]0.5 + α2[(d + 1.6)/10]2.

Theorem 1 provides the D-optimal design for the fitted model on the dose interval Ω = 

[0,12.5]: the doses are 0,4.96 and 12.5 with equal number of brood cups at the three doses. 

The I-optimal design on Ω with a uniform weight function was obtained numerically: the 

doses are 0,5.08 and 12.5 with 17.5%,54.3% and 28.2% of the experiment units respectively. 

The implemented design with 10 brood cups at doses 0,1.56,3.12,6.25 and 12.5, has a D-

efficiency of 82.9% and an I-efficiency of 85.2%. This means that with that the implemented 

is about equally efficient for estimating model parameters in the FP model and for predicting 

when there is uniform interest across the design space. However, if an optimal design were 

used, substantial gain can still be realized in terms of cost, without loss of accuracy for 

inference.

A further and important advantage of implementing an optimal design for a fractional 

polynomial is that, if the fractional polynomial provides an adequate fit, its optimal designs 

(D- or I-) are independent on the nominal values of the model parameters. In contrast, 

optimal designs for nonlinear models depend on the nominal parameters and they can be 

sensitive to mis-specifications in the nominal values, as can be seen for the two nonlinear 

models used to fit the data displayed in Tables 1 and 2 in Casero-Alonso et al. (2018). We 

also note that the number of support points of the optimal designs for these models are 

different, 3 for the FP and 4 for the fitted nonlinear models. Depending on the problem 

at hand, cost can vary substantially when we take observations at a new dose; so design 

considerations can guide our choice for the implemented design.
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5 Conclusions and Discussion

FP models are increasingly used in many areas of biomedical and environmental studies 

because they are more flexible than polynomials. Different types of optimal designs 

for polynomial models have been found analytically many decades ago and there is 

no corresponding work for FP models. The mathematical derivation of optimal designs 

for FP models seems challenging and they are hard to study them analytically. We 

constructed D- and I-optimal designs up to degree 3 and when analytical formulae of 

the optimal designs are not available, we provide a user-friendly applet for finding the 

optimal designs for FPs up to degree 3. Figure 5 displays a screen shot from the applet. 

The applet, OEDforFPmodels, is freely available at https://github.com/victormanuelcasero/

OED_FPmodels and is created from Mathematica. To use the applet, the user first 

downloads a free ‘Wolfram Player’ from Wolfram.com. In the second step, the user selects 

one of the two design criteria and inputs the degree and powers of the FP model. In the third 

step, the applet is run to obtain the D- or I-optimal design, whereupon the sensitivity plot 

is also automatically shown. Our Mathematica codes can also be directly modified to find 

other types of optimal designs.

We also discussed robustness properties of optimal designs for FPs to mis-specifications 

in the model assumptions. Here we follow traditional design work in the literature and 

assume the model is known (apart from the parameters’ values). This may not be a 

realistic assumption in practice, which is why we have included Section 3.3 that addresses 

model uncertainty issues. Using some illustrative examples, our recommendation there is 

to implement a design that is most robust to model assumptions, to the extent possible. 

In addition, we provided illustrative applications of how such optimal designs can be 

constructed and implemented for different type of studies. Our examples are in risk 

assessments but the design methodology can be applied generally to other problems. As 

mentioned in the introduction, multivariate FP models may be of great interest, even the 

case of correlated observations. That deserves further research, especially for additive and 

multiplicative models formed from marginal FP functions, or nonlinear models with random 

effects.

Since a particular FP model has to be chosen at the end, criteria for discriminating among 

all possible models should be considered in future work (López-Fidalgo, Tommasi, & 

Trandafir, 2007). Actually robust designs for both selecting the model and then estimating 

the parameters will be of great interest.

We close by offering a mathematical challenge for FP models. Royston and Altman (1994) 

recommended selected powers for FP models without theoretical justifications and it is not 

clear to date whether their collection of power indices has desirable mathematical properties. 

For example, given compact design space, can we show that their recommended restricted 

class of FPs can always approximate any continuous function ‘adequately’ in some sense? If 

not, can the set of the recommended powers be expanded to have desirable properties?
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Appendix

This appendix provides proofs for Theorem 1: D-optimal designs for FP1 and FP2 models 

and Theorem 2: I-optimal designs for the FP1 models.

Proof (Theorem 1: construction of D-optimal designs)

Suppose that a design ξ for a FP1 model defined on [ϵ,a] with 3 points at ϵ ≤ s1 < s2 < 
s3 ≤ a. From the General Equivalence Theorem of J. Kiefer and Wolfowitz (1960), if ξ 
were D-optimal, its sensitivity function c(x) must satisfy c(x) = fT(x)M−1(ξ)f(x) − 2 ≤ 0 for 

all x ∈ [ϵ,a] with equality at the support points. If p ≠ 0, the component functions in c(x) 

are 1,xp,x2p. These 3 component functions form a Tchebycheff system on the interval [ϵ,a] 

because the determinant of the matrix

1 x1
p x1

2p

1 x2
p x2

2p

1 x3
p x3

2p

= − x1
p − x2

p x1
p − x3

p x2
p − x3

p ,

has the same sign for any ϵ ≤ x1 < x2 < x3 ≤ a. It follows that for each 0 ≠ p ∈ P, the 

sensitivity function has at most 2 zeros and since the D-optimal design for a FP1 model 

has at least 2 points for it to have a nonsingular information matrix, the D-optimal design 

is equally supported at 2 points (Fedorov, 1972; Pukelsheim, 1993). A similar argument 

shows that the same conclusion applies when p = 0 and the component functions are 

{1,ln[x],ln[x]2}. Direct calculus shows that the sensitivity function of the design equally 

supported at the two end-points is c(x) = 4(ap − xp)(ϵp − xp)/(ap − ϵp)2 when p ≠ 0. Clearly, 

this function satisfies the conditions required in the equivalence theorem for D-optimality in 

(3) and so the design is D-optimal for FP1 models. A similar argument applies when p = 0.

Note that the previous reasoning about p ≠ 0 is valid for any real number value of p. Thus 

the result proved here is more general than for p ∈ P. The same applies for the following 

results.

For the FP2 models, we first establish that the D-optimal design ξD has three points. 

For such models, the sensitivity function c(x) has at most 6 component functions, i.e. 

1,xp,x2p,xq,x2q and xp+q. In selected cases, such as when p = −0.5 and q = −1, the sensitivity 
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function has only 5 component functions. A direct calculation shows that the associated 

Wronskians for this system of functions are positive for any values of p and q and so 

the component functions form a Tchebycheff system (Gasull, Lázaro, & Torregrosa, 2012). 

It follows that there are at most 5 zeroes (counting multiplicities). The interior support 

points have multiplicity two, because the maximum value of the sensitivity function of the 

D-optimal design has to be less than or equal to zero in the interval with the maximum value 

attained at the support points. This implies only three support points are possible, either two 

interior points and one extreme point of the design interval or one interior support point and 

the two extreme points of the interval [ϵ,a]. Because the number of support points is the 

same as the number of parameters, the D-optimal design is equally weighted (Pukelsheim, 

1993). We next argue that the optimal designs have to include the two extreme points.

Suppose the equally weighted design ξ is supported at s1 < s2 < a, where ϵ < s1. The 

determinant of the information matrix of this design for model FP2(p,q) with 0 ≠ p ≠ q ≠ 0 is

M ξ = 1
27

1 s1
p s1

q

1 s2
p s2

q

1 ap aq

= 1
27D2 > 0

since D is always either positive or negative for any values of s1,s2 and a because we have a 

Chebyshev system. Further,

∂D
∂s1

= qs1
q − 1 ap − s2

p − ps1
p − 1 aq − s2

q ≠ 0

implies that

∂ M ξ / ∂s1 = 2/27 D∂D/ ∂s1 ≠ 0

and so D is a decreasing function of s1. Consequently, ϵ is a support point of the 

D-optimal design. We note that the last equation holds if and only if s1
q − pq ap − s2

p

p aq − s2
q ≠ 1, 

i.e. 
s1
c

q − p
≠ 1. For the first equivalence we note that ps1

p − 1 aq − s2
q ≠ 0. The last 

equivalence obtains because by the mean value theorem, there exists a c ∈ [s2,a] such that 

ap − s2
p / aq − s2

q = cp − qp/q. Consequently, since s1 < c and q > p without loss of generality, 

(s1/c)q−p < 1 proving the result. It follows that ∂ M ξ / ∂s1 is negative, otherwise the optimal 

design is singular. It is easy to verify that the determinant of the information matrix is a 

decreasing function of s1 and its maximum is obtained at s1 = ϵ, the left end-point of the 

design space. Similar reasoning leads to the optimal design as being supported at ϵ < s2 < 
s3 and its determinant is maximized when s3 = a. The upshot is that the D-optimal design 

is equally supported at the two end-points of the design space and at an interior point. The 

above arguments apply to other cases of p and q (p and q unequal and one of them zero, p 
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and q equal and p = q = 0). In either case, the interior support point s is the unique root of 

the derivative of the sensitivity function.

□

Proof (Theorem 2: construction for I-optimal designs)

The previous reasoning can be used to directly prove that I-optimal designs for FP1 models 

are unequally supported at the end-points of the design space. We note that the component 

functions in the sensitivity function of (4) are 1,xp,x2p when p ≠ 0 and {1,ln[x],ln[x]2} when 

p = 0, and they form a Tchebycheff system on [ϵ,a]. Similarly, the weights in section 3.2 are 

found by finding the roots of the sensitivity function of the I-optimal design evaluated at x = 

ϵ and x = a.

In addition, a direct calculation, from 1/w given in 1., shows the result 3. for p > 0 and ϵ = 0.

□
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Fig. 1. 
D-efficiencies of the uniform designs U3 (top) and U4 (bottom) for the FP2(p,q) models with 

p ≤ q.
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Fig. 2. 
D- (first row) and I-optimal (second row) designs and their sensitivity plots on the design 

space [ϵ,a] = [0.0001,1] for selected FP models starting from left: FP2(1,3), FP2(0,0), 

FP3(1,2,3) and FP3(−2,2,3). The I-optimal designs were computed using the uniform weight 

measure on [ϵ,1].
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Fig. 3. 
D-efficiencies of the D-optimal design for an assumed FP2 model when one of the 36 FP2 

model is the true model in a contour plot (top) and in boxplots (bottom).
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Fig. 4. 
Plot of the response (number of offsprings Ceriodaphnia dubia) versus dose concentration 

from a whole effluent toxicity test [circles]. Models fitted: extended Gompertz (dotted line), 

Linear Logistic (dashed line), FP2(0.5,2) (blue solid line)
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Fig. 5. 
Applet showing I-optimal design with the uniform weight measure on the design space 

[0.0001,1] for model FP1(3).
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Table 1

FP2 models and their assigned unique model numbers based on the sorted values of their interior support point 

s of the D-optimal design for design space Ω = [0.0001,1]

Model number FP2 (p,q) mean response Ey = α0 + … interior point s

1 (−2,−2) α1x−2 + α2x−2 ln[x] 0.00016

2 (−2,−1) α1x−2 + α2x−1 0.00019

3 (−2,−0.5) α1x−2 + α2x−0.5 0.00025

4 (−1,−1) α1x−1 + α2x−1 ln[x] 0.00027

5 (−1,−0.5) α1x−1 + α2x−0.5 0.00039

6 (−2,0) α1x−2 + α2 ln[x] 0.00042

7 (−0.5,−0.5) α1x−0.5 + α2x−0.5 ln[x] 0.00067

8 (−1,0) α1x−1 + α2 ln[x] 0.00092

9 (−2,0.5) α1x−2 + α2x0.5 0.00109

10 (−0.5,0) α1x−0.5 + α2 ln[x] 0.00216

11 (−2,1) α1x−2 + α2x 0.00271

12 (−1,0.5) α1x−1 + α2x0.5 0.00339

13 (−2,2) α1x−2 + α2x2 0.01

14 (−1,1) α1x−1 + α2x 0.01

15 (−0.5,0.5) α1x−0.5 + α2x0.5 0.01

16 (0,0) α1 ln[x] + α2 ln2[x] 0.01

17 (−2,3) α1x−2 + α2x3 0.02316

18 (−0.5,1) α1x−0.5 + α2x 0.02943

19 (−1,2) α1x−1 + α2x2 0.03684

20 (0,0.5) α1 ln[x] + α2x0.5 0.04621

21 (−1,3) α1x−1 + α2x3 0.07598

22 (−0.5,2) α1x−0.5 + α2x2 0.09139

23 (0,1) α1 ln[x] + α2x 0.10856

24 (0.5,0.5) α1x0.5 + α2x0.5 ln[x] 0.14853

25 (−0.5,3) α1x−0.5 + α2x3 0.16124

26 (0,2) α1 ln[x] + α2x2 0.23299

27 (0.5,1) α1x0.5 + α2x 0.25502

28 (0,3) α1 ln[x] + α2x3 0.33077

29 (1,1) α1x + α2x ln[x] 0.36821

30 (0.5,2) α1x0.5 + α2x2 0.39951

31 (0.5,3) α1x0.5 + α2x3 0.49032

32 (1,2) α1x + α2x2 0.50005

33 (1,3) α1x + α2x3 0.57737
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Model number FP2 (p,q) mean response Ey = α0 + … interior point s

34 (2,2) α1x2 + α2x2 ln[x] 0.60653

35 (2,3) α1x2 + α2x3 0.66666

36 (3,3) α1x3 + α2x3 ln[x] 0.71653
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Table 3

I-optimal designs for the FP model in the testosterone example for extrapolation over two regions S outside the 

design space [0.25,7] and three weighting measures µ. Each of the I-optimal designs has weight wi at xi, i = 

1,2,3.

µ S I-optimal designs

Uniform
[7,8]

x i 0.25 1.6974 7

w i 0.0254 0.104 0.8706

[7,9]
x i 0.25 1.6914 7

w i 0.0437 0.1729 0.7834

Increasing
[7,8]

x i 0.25 1.6741 7

w i 0.0301 0.1211 0.8488

[7,8]
x i 0.25 1.6713 7

w i 0.0502 0.1951 0.7547

Decreasing
[7,8]

x i 0.25 1.7156 7

w i 0.0187 0.0784 0.9029

[7,8]
x i 0.25 1.709 7

w i 0.0336 0.1363 0.8301
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