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Abstract
Problem: Epigenetic age indices are markers of biological aging determined from 
DNA	methylation	patterns.	Accelerated	epigenetic	age	predicts	morbidity	and	mor-
tality.	Women	tend	to	demonstrate	slower	blood	epigenetic	aging	compared	to	men,	
possibly	due	to	female-specific	hormones	and	reproductive	milestones.	Pregnancy	
and the post-partum period are critical reproductive periods that have not been stud-
ied	yet	with	respect	to	epigenetic	aging.	The	purpose	of	this	paper	was	to	examine	
whether	pregnancy	 itself	and	an	 important	pregnancy-related	variable,	changes	 in	
body	mass	index	(BMI)	between	pregnancy	and	the	post-partum	period,	are	associ-
ated with epigenetic aging.
Method of Study: A	pilot	sample	of	35	women	was	recruited	as	part	of	the	Healthy	
Babies	Before	Birth	(HB3)	project.	Whole	blood	samples	were	collected	at	mid-preg-
nancy	and	1	year	post-partum.	DNA	methylation	at	both	time	points	was	assayed	
using	Infinium	450K	and	EPIC	chips.	Epigenetic	age	indices	were	calculated	using	an	
online calculator.
Results: Paired-sample	t-tests	were	used	to	test	differences	in	epigenetic	age	indices	
from	pregnancy	to	1	year	after	birth.	Over	 this	critical	 time	span,	women	became	
younger with respect to phenotypic epigenetic age,	GrimAge,	DNAm PAI-1,	and	epige-
netic	age	indices	linked	to	aging-related	shifts	in	immune	cell	populations,	known	as	
extrinsic epigenetic age.	Post-partum	BMI	retention,	but	not	prenatal	BMI	increases,	
predicted accelerated epigenetic aging.
Conclusion: Women	appear	to	become	younger	from	pregnancy	to	the	post-partum	
period	based	on	specific	epigenetic	age	indices.	Further,	BMI	at	1	year	after	birth	that	
reflects weight retention predicted greater epigenetic aging during this period.

K E Y W O R D S
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1  | INTRODUC TION

Immune cell-derived epigenetic age indices are indicators of biologi-
cal aging1,2 that are highly correlated with chronological age but cap-
ture	different	processes.	Epigenetic	age	robustly	predicts	morbidity,	
such	as	risk	of	breast	and	lung	cancer,3,4 and earlier mortality.5-7	Sex	
differences	in	epigenetic	age	are	also	observed,	with	women	showing	
slower rates of epigenetic aging compared with men.8-11 Reproductive 
biology	 and	 key	 reproductive	 periods,	 and	 their	 hormonal	 drivers	
have been proposed as one possible mechanism accounting for these 
sex	differences.	For	example,	earlier	onset	of	menopause,	whether	
naturally	occurring	or	surgically	 induced,	 is	associated	with	acceler-
ations in epigenetic aging in women.12	 Also,	 faster	 onset	 and	 pro-
gression of puberty in girls have been associated with epigenetic age 
accelerations	in	one	study,13 though not in another.14

Pregnancy	is	a	normative	reproductive	experience	with	86%	of	
US	women	giving	birth.15	The	role	of	pregnancy	in	biological	aging	
in	 general,	 and	 epigenetic	 aging	 in	 particular,	 is	 not	 well	 studied.	
Telomere	length,	another	marker	of	biological	aging,	was	examined	
in one study of 81 women followed from mid-pregnancy to 9 weeks 
post-partum,	with	 results	 indicating	 no	 significant	 change	 in	 telo-
mere length over this time frame.16	 However,	 the	 effect	 of	 preg-
nancy	on	epigenetic	age	remains	relatively	unexplored.

Several	 epigenetic	 age	 indices	 exist	 that	 capture	 different	 as-
pects	of	biological	 aging.	Here,	we	examined	 three	classes	of	epi-
genetic	 age	 indices:	 those	 based	 on	 chronological	 age,	 specific	 to	
immune	cells,	and	based	on	clinical	or	phenotypic	indicators	of	mor-
tality	risk.	Horvath's	DNA	methylation	age	is	based	on	chronological 
age	 and	 is	 calculated	 from	DNA	methylation	 sites	 strongly	 associ-
ated with chronological age across tissue types.2	 The	 association	
between	DNA	methylation	age	and	chronological	age	is	imperfect,	
suggesting	a	decoupling	between	chronological	age	and	DNA	meth-
ylation-derived	age.	The	age	acceleration	residual	captures	the	dif-
ference between chronological age and biological age estimated by 
Horvath's	DNA	methylation	age.

Immune-specific	biological	 age	 is	determined	by	both	 intrinsic,	
i.e.,	 within-cell	 biological	 age,	 and	 age-driven	 changes	 in	 immune	
cell	 proportions.	 As	 such,	 immune cell-specific epigenetic indices 
also consider cell proportions. Immune cell proportions change as 
a	function	of	age,	with	increases	in	exhausted	or	senescent	CD8+	T	
cells	and	decreases	in	naïve	CD8+	T	cells	over	time.8,17	Proportions	
of	immune	cells	 in	blood	can	be	estimated	from	whole	blood	DNA	
methylation profiles.18	 Intrinsic	 epigenetic	 age	 acceleration	 (IEAA)	
captures	 intrinsic	 biological	 age	 of	 immune	 cells,	 independent	 of	
age-related changes in immune cell proportions.19	 In	 contrast,	 ex-
trinsic	 epigenetic	 age	 acceleration	 (EEAA)	 captures	 biological	 age	
due to both intrinsic immune cell age and age-driven changes in im-
mune cell populations.19

Finally,	 clinical or phenotypic-derived epigenetic age indices are 
calculated	 using	 DNA	methylation	 sites	 that	 are	 highly	 correlated	
with	clinical	risk	factors	or	outcomes.	Phenotypic	epigenetic	age	ac-
celeration	(PEAA)	was	developed	as	an	epigenetic	biomarker	of	“phe-
notypic	age,”	defined	by	nine	biological	markers	(albumin,	creatinine,	

glucose,	C-reactive	protein,	lymphocyte	percent,	mean	cell	volume,	
red	cell	distribution,	alkaline	phosphatase,	and	white	blood	cell	count)	
and chronological age.20	GrimAge	was	constructed	as	a	composite	
marker calculated from epigenetic surrogate markers for 12 plasma 
proteins	 (adrenomedullin,	 β-2-microglobulin,	 CD56,	 ceruloplasmin,	
cystatin	 C,	 EGF	 fibulin-like	 ECM	 protein	 1,	 growth	 differentiation	
factor	15,	leptin,	myoglobin,	plasminogen	activator	inhibitor	1,	serum	
paraoxonase/arylesterase	1,	and	tissue	inhibitor	metalloproteinases	
1)	and	smoking	pack-years,	based	on	self-reported	smoking	data,21 
and	 is	 strongly	 predictive	 of	 death.	 DNAm	 plasminogen	 activator	
inhibitor-1	(PAI-1)	 is	the	epigenetic	surrogate	marker	for		PAI-1,21 a 
glycoprotein involved in suppressing fibrinolysis or the breakdown of 
blood	clots,	and	which	is	a	risk	marker	for	cardiovascular	disease.22 In 
sum,	each	epigenetic	age	index	captures	different	facets	of	biological	
aging,	as	indexed	by	differences	in	DNA	methylation	patterns.

Weight	change	between	pregnancy	and	the	post-partum	period	
could also be factors that affect epigenetic age during the child-bear-
ing	years.	 In	healthy	adults,	obesity	and	weight	gain	have	been	as-
sociated with accelerations in epigenetic age.23	Weight	gain	during	
pregnancy,	however,	is	considered	normative.24 It might be hypothe-
sized	that	insufficient	or	excess	weight	gain	in	pregnancy	and/or	re-
tention of post-partum weight for longer than clinically recommended 
are	associated	with	more	rapid	epigenetic	aging.	However,	 it	 is	not	
clear whether variation in weight change over pregnancy and varia-
tion in weight loss during the post-partum period are associated with 
changes in epigenetic age in a manner similar to non-pregnancy pop-
ulations.	The	purpose	of	the	present	study	was	to	examine	changes	
in epigenetic age variables between the second trimester and 1 year 
post-birth,	and	test	associations	between	epigenetic	age	indices	and	
weight change during pregnancy and the post-partum period.

2  | METHODS

2.1 | Participants

A	 sample	 of	 35	women	was	 studied	who	were	 recruited	 into	 the	
Healthy	 Babies	 Before	 Birth	 (HB3)	 project,	 which	 is	 a	 longitudi-
nal study designed to test the impact of antenatal maternal mood 
on pregnancy and post-partum outcome. Inclusion criteria were 
18 years of age or older and singleton pregnancies up to 12 weeks 
gestation	at	time	of	recruitment.	Exclusion	criteria	were	current	sub-
stance	abuse,	HIV-positive	status,	current	smoking,	or	medications	
that	 could	 affect	 inflammatory	 processes,	 for	 example,	 glucocor-
ticoids	at	 the	 time	of	 recruitment.	The	current	 sample	 focused	on	
women	 recruited	at	only	one	of	 the	 two	study	 sites	 (Los	Angeles,	
CA),	who	had	whole	blood	samples	collected	at	study	entry	in	early	
pregnancy	and	again	at	1	year	after	birth.	Sample	characteristics	are	
presented	in	Table	1.	The	majority	of	participants	were	White	(43%),	
married	(91%),	and	primiparous	(57%).	Few	adverse	pregnancy	out-
comes	 were	 reported	 for	 the	 current	 sample,	 with	 only	 two	 par-
ticipants	 (6%)	giving	birth	preterm	 (<37	weeks	gestation),	 and	one	
(3%)	giving	birth	to	a	low	birthweight	baby	(<	2500	g).	Less	than	half	
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(43%)	reported	at	least	one	obstetric	risk,	that	is,	serious	infection,	
hypertension,	diabetes,	or	anemia,	either	during	 this	or	a	previous	
pregnancy.	Study	data	were	collected	and	managed	using	REDCap	
electronic data capture tool.25

2.2 | Protocol

Women	 completed	 a	 maximum	 of	 six	 assessments,	 three	 over	
pregnancy	 (8-16	 weeks	 gestation,	 20-26	 weeks	 gestation,	 and	
30-36	 weeks	 gestation)	 and	 three	 over	 the	 post-partum	 period	
(6	weeks,	6	months,	and	1	year	post-birth).	Women	were	included	in	
the current analyses if they had information available on all variables. 
Demographics and previous pregnancy information were obtained at 
study	entry.	Height	and	weight	were	taken	at	each	assessment.	Whole	
blood samples were collected at the first or second pregnancy visit 
(16.3	±	2.78	weeks	gestation;	8	-26	weeks	gestation)	and	at	the	1-year	
post-birth	final	study	visit	(11.5	±	0.505	months).	On	average,	there	
were	16.9	±	0.938	months	between	the	two	assessments.

2.3 | DNA methylation

DNA	was	extracted	from	whole	blood	and	assayed	for	DNA	methyla-
tion	 by	 the	UCLA	Neurosciences	Genomics	 Core.	 The	 first	wave	 of	
participants	(n	=	19)	was	batched	together	using	the	Illumina	Infinium	

HumanMethylation450	 BeadChip	 (Illumina,	 Inc;	 485,577	 CpG	 sites).	
The	second	wave	of	participants	(n	=	16)	was	run	a	year	later	using	a	
different	 chip,	 the	 Infinium	MethylationEPIC	 BeadChip	 Kit	 (Illumina,	
Inc;	868,464	CpG	sites).	A	change	in	chip	used	was	necessary	because	
Illumina had discontinued the previous chip between the two runs. 
Approximately	90%	of	the	CpG	sites	on	the	450K	chip	are	also	included	
on	 the	850K	chip.	Both	pregnancy	 and	post-partum	 samples	 from	a	
given participant were run on the same chip and in the same batch.

DNA	 methylation	 data	 were	 pre-processed	 as	 per	 standard	
protocols.2,26 Raw data were normalized using Noob in the minify 
package in R.27	CpG	cites	 that	were	missing	on	 the	450K	or	EPIC	
chips	were	added,	and	processed	data	were	uploaded	into	the	epi-
genetic	clock	online	calculator	(https://dnama	ge.genet	ics.ucla.edu/).	
The	online	calculator	also	produces	quality	control	checks.	All	sam-
ples	were	correctly	identified	as	being	female	in	origin,	with	tissue	
sources	of	either	whole	blood	or	blood	PBMCs,	and	had	sample	and	
gold	standard	correlations	>.80	(mean	r	=	.96).

2.4 | Epigenetic age variables

2.4.1 | DNA methylation age and age 
acceleration residual

The	 epigenetic	 age	 of	 each	 blood	 sample	 was	 estimated	 using	
several	well-defined	algorithms	available	 through	an	online	DNA	

Variable Mean ± SD or % (N) Range

Age	(years) 33.6	±	5.29 23.0-45.0

Marital	status	(married) 91%	(32)  

Per	Capita	Household	income	($1000) 46.2	±	29.8 4.06-125

Education	(y) 16.9	±	2.90 12.0-26.0

Race/ethnicity

White 43%	(15)  

Black 14%	(5)  

Latina 26%	(9)  

Asian 11%	(4)  

Multi-Race 6%	(2)  

BMI	(kg/m2)

Pre-pregnancy	BMI 25.0	±	5.82 16.8-36.4

Late	pregnancy	change	in	BMI	(T3-T1) 3.02	±	1.15 0.930-5.15

Post-partum	change	in	BMI	(P3-P1) -1.26	±	2.50 -10.3-2.51

Total	change	in	BMI	(P3-Pre-pregnancy) 0.433	±	2.64 -10.7-5.15

Parity	(Primiparous) 57%	(20)  

Baby	sex	(female) 34%	(12)  

Breastfeeding	at	12	mo	post-partum 49%	(17)  

GA	at	first	assessment	(weeks) 16.3	±	2.78 13.3	-	24.4

Months	post-partum	at	P3	(months) 11.5	±	0.505 11.0-12.0

Time	between	assessments	(mo) 16.9	±	0.938 15.0-19.0

Assay	run	(April	–	450K) 54%	(19)  

TA B L E  1  Sample	characteristics	
(n	=	35)

https://dnamage.genetics.ucla.edu/
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methylation calculator.2	DNA	methylation	age	(DNAm	age;	years),	
or	biological	age,	was	calculated	using	the	Horvath	method,2 which 
uses the weighted average of regression coefficients obtained 
from	353	CpG	“epigenetic	clock”	sites.	The	age	acceleration	resid-
ual represents the difference between chronological and biological 
age,	which	is	calculated	by	taking	the	residual	from	the	linear	re-
gression model of biological age regressed onto chronological age. 
Again,	positive	values	indicate	accelerated	biological	aging.

2.4.2 | Estimates of immune cell proportions

Additional	age-adjusted	estimates	of	proportions	of	immune	cells	in	
circulation and biological age estimates specific to blood were ob-
tained using the advanced analysis option in the online epigenetic 
clock calculator.2	Proportions	of	plasmablast	cells,	exhausted	or	se-
nescent	CD8+	T	cells	(CD8+	CD28-CD45FA-	T	cells),	naïve	CD8+	T	
cells,	and	naïve	CD4+	T	cells	were	calculated	using	Houseman's	es-
timation	technique,	which	is	based	on	DNA	methylation	signatures	
derived	from	purified	samples	of	leukocytes,18 and then adjusted for 
chronological age.

2.4.3 | Intrinsic and extrinsic epigenetic age 
acceleration

IEAA	 is	 estimated	 using	 the	 353	 CpG	 sites	 from	 the	 Horvath	
method2 to calculate the residual of biological age regressed onto 
chronological	 age,	 adjusting	 for	 imputed	measures	 of	 blood	 cell	
counts	known	to	change	with	age,	specifically	CD8+	naïve	T	cells,	
senescent	 CD8+	 T	 cells,	 and	 plasmablasts.19	 EEAA	 is	 estimated	
using	the	71	CpG	sites	used	by	the	Hannum	method	of	calculating	
DNAm	Age9 and is then enhanced using static weighted averages 
of	blood	cell	counts	that	vary	with	age,	that	is,	CD8+	naïve	T	cells,	
senescent	CD8+	T	cells,	and	plasmablasts.28	The	weights	are	cal-
culated from the correlation between chronological age and each 
individual variable.28

2.4.4 | Phenotypic epigenetic age acceleration

Phenotypic	epigenetic	 age	acceleration	was	 calculated	by	Morgan	
Levine	using	R	syntax	as	described	elsewhere.20	PEAA	is	calculated	
from 513 CpG sites that were selected based on ability to predict 
both	chronological	age	and	phenotypic	indicators	of	aging.	PEAA	is	
associated	with	all-cause	mortality,	cancers,	physical	function,	and	
Alzheimer's	disease.20

2.4.5 | GrimAge and DNAm PAI-1

GrimAge	 and	 DNAm	 PAI-1	 are	 epigenetic	 age	 markers	 enriched	
for	DNA	methylation	sites	that	are	surrogate	biomarkers	for	blood	

plasma proteins related to morbidity and mortality and cigarette 
smoking	(packs	per	year).21	DNAm	PAI-1	is	one	of	seven	surrogate	
DNA	 methylation	 indices	 validated	 by	 identifying	 the	 CpG	 sites	
most	associated	with	blood	plasma	protein	concentrations.	DNAm	
PAI-1	emerged	as	the	blood	plasma	protein	surrogate	 index	most	
associated with risk for cardiovascular disease and physical func-
tioning.	 GrimAge	 is	 a	 composite	 biomarker	 calculated	 from	 the	
DNAm-based	 surrogate	 epigenetic	 indices	 determined	 for	 seven	
blood	plasma	proteins	and	the	epigenetic	index	capturing	smoking	
pack-years.	Both	GrimAge	and	DNAm	PAI-1	are	powerful	predic-
tors of morbidity and mortality.21

2.4.6 | Assay reliability

A	total	of	16	mid-pregnancy	samples	were	assayed	on	both	the	450K	
and	850K	DNA	methylation	chips,	 allowing	 for	a	 test	of	 reliability	
of epigenetic age variables produced by the two assays. Estimates 
of	 DNA	 methylation	 age,	 EEAA,	 PEAA,	 GrimAge,	 DNAm	 PAI-1,	
and	 age-adjusted	CD8+	Naïve	 cells	were	 fairly	 reliable	 or	 consist-
ent	between	the	two	chips,	r's >	.60.	Age	acceleration	residuals	and	
IEAA,	however,	were	only	moderately	reliable,	r's	=	.40-.50,	and	age-
adjusted	proportion	of	CD8pCD28nCD45RAn	were	not	consistent	
between	runs,	r	=	−.01.	To	account	for	potential	between-person	dif-
ferences	generated	by	assay,	a	covariate	capturing	assay	batch	was	
included	in	all	linear	regression	models.	(Within-person	comparisons	
would not be affected by between-chip differences because sam-
ples from the same participant were always assayed on the same 
chip).

2.5 | Weight changes over pregnancy and the post-
partum period

Participant	height	 in	 inches	was	assessed	at	study	 intake,	and	par-
ticipants	 self-reported	 their	 last	 known	 pre-pregnancy	weight.	 At	
each	assessment,	weight	in	pounds	was	measured	by	study	person-
nel	using	a	balance	beam	scale.	Body	mass	index	(BMI;	kg/m2)	was	
calculated	by	converting	height	and	weight	to	metric	units,	then	di-
viding	weight	(kg)	by	height	squared	(m2)	for	reported	pre-pregnancy	
weight and weight at each time point.

Pregnancy	 BMI	 change	 was	 calculated	 by	 subtracting	 first	
pregnancy	 assessment	 of	 BMI	 from	 last	 pregnancy	 assessment	 of	
BMI.	 Post-partum	BMI	 change	was	 calculated	 by	 subtracting	 first	
post-partum	 assessment	 of	 BMI	 from	 the	 last	 post-partum	 as-
sessment	of	BMI.	Total	BMI	change	was	calculated	by	subtracting	
pre-pregnancy	BMI	from	last	post-partum	assessment	BMI.

2.6 | Covariates

Assay	 batch	 (54%	 [19]	 on	 Illumina	 450K;	 46%	 [16]	 on	 Illumina	
EPIC)	was	included	in	all	models.	Given	the	small	sample	size,	only	
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covariates significantly associated with epigenetic age variables 
were	 included	 in	 analyses,	 specifically	 race/ethnicity	 (coded	 as	
White	or	not	White),	years	of	education,	parity	(coded	as	primipar-
ity	or	multiparity),	marital	status	(married	and/or	cohabiting	or	not),	
gestational	age	at	pregnancy	blood	sampling	(weeks),	breastfeeding	
(stopped	 breastfeeding	 before	 1	 year	 post-partum	 or	 still	 breast-
feeding	at	1	year	post-partum),	and	pre-pregnancy	BMI.	Note	that	
gestational age at pregnancy blood sampling was only included in 
models	 examining	 pregnancy-to-post-partum	 change	 in	 epigenetic	
age indices.

Per	 capita	 household	 income	was	 also	 considered	 as	 a	 covari-
ate,	but	was	not	significantly	associated	with	epigenetic	age	indices.	
Given	 power	 considerations,	 it	was	 not	 included	 as	 a	 covariate	 in	
analyses.

2.7 | Analytic strategy

All	analyses	were	run	using	SPSS	v.	24.29 Data were inspected for 
outliers and normality prior to analyses. Outliers were defined as 
values	>	±	3	standard	deviations	from	the	respective	means.	First,	
trends in epigenetic age variables between pregnancy and the post-
partum	period	were	inspected.	Bivariate	correlations	were	used	to	
test	associations	between	chronological	age	and	DNA	methylation	
age	at	the	pregnancy	and	post-partum	period	assessments.	Paired-
sample t-tests were used to determine whether there were signifi-
cant changes in the epigenetic age variables from mid-pregnancy to 
1 year post-partum.

Next,	 associations	 between	 BMI	 changes	 between	 pregnancy	
to	1	year	post-birth	and	epigenetic	age	variables	in	pregnancy,	and	
change	over	 the	 follow-up,	as	appropriate,	were	assessed.	Change	
in epigenetic age variables was calculated by subtracting pregnancy 
values	 from	 1-year	 post-birth	 values.	 Bivariate	 correlations	 were	
inspected to identify significant associations and were followed by 

linear regression analyses controlling for assay batch and covariates 
as	noted	above.	Linear	regression	models	predicting	change	in	epi-
genetic age variables also co-varied for baseline or mid-pregnancy 
epigenetic values.30,31	 Given	 the	 small	 sample	 size	 (N	 =	 35),	 both	
significant	(P	<	.05)	and	marginally	significant	(P	<	.10)	effects	were	
reported.	Bivariate	associations	significant	at	P	<	.10	were	followed	
by linear regression models.

3  | RESULTS

3.1 | Change in epigenetic age from pregnancy to 
the post-partum period* 

Mean	epigenetic	age	indices	at	mid-pregnancy	and	1	year	after	birth	
are	 reported	 in	 Table	 2.	 At	 study	 entry,	 women	were	 on	 average	
33.6	±	5.29	years	old	chronologically,	but	36.3	±	5.52	years	old	with	
respect	to	DNA	methylation	age.

Strength	 of	 associations	 between	 chronological	 age	 and	 DNA	
methylation age was compared for pregnancy and post-birth as-
sessments	 (Figure	 1).	 Consistent	 with	 studies	 of	 general	 adult	
populations,	 chronological	 age	 and	 DNA	methylation	 were	 highly	
correlated	(r's	=	 .758	and	.770,	at	each	time	point).	Strength	of	as-
sociations	between	the	two	periods	was	not	statistically	different,	
z	=	−0.120,	P	=	.905,	suggesting	that	the	relation	between	chrono-
logical	age	and	DNA	methylation	age	remains	constant	from	preg-
nancy to the post-partum.

Paired-sample	 t-tests	were	used	 to	determine	whether	change	
in epigenetic age variables occurred between mid-pregnancy and 
1	year	post-birth	 (Table	2).	As	expected,	DNA	methylation	age	 in-
creased	 significantly	 between	 the	 two	 time	 points,	 t(34)	 =	 2.34,	
p	=	.0.025,	M	=	1.21	years,	SD	=	3.05	years.	Considerable	variation	
was	present,	however,	with	changes	in	DNA	methylation	age	ranging	
from	increases	of	5.51	years	to	decreases	of	3.07	years	(Figure	2A).	

TA B L E  2  Epigenetic	age	variable	descriptive	statistics	(n	=	35)

Variable

Mid-pregnancy 1 y post-partum Difference (PP - Preg)

Mn ± SD Range Mn ± SD Range Mn ± SD Range P

Chronological	age	(y) 33.6	±	5.29 23.0-45.0 35.1	±	5.19 24.0-46.0 1.46	±	0.505 1.0-2.00 <.001

DNA	methylation	age	(y) 36.3	±	5.52 30.0-42.6 37.5	±	5.20 30.4-45.3 1.21	±	3.05 −3.07-5.51 .025

Age	acceleration	residual 0.014	±	3.51 −3.82-3.37 0.181	±	3.12 −3.99-6.59 0.167	±	3.04 −3.68-4.30 .747

EEAA	(BioAge4HAStaticAdjAge) 1.06	±	3.77 −2.79-7.33 −1.97	±	4.28 −5.79-5.97 −3.03	±	3.78 −7.76-8.00 <.001

IEAA	(AAHOAdjCellCounts) 0.158	±	3.35 −2.68-2.89 −0.043	±	2.92 −4.09-3.16 −0.201	±	3.01 −4.23-3.63 .695

Senescent	CD8+	T	cells 0.775	±	2.35 −1.76-4.13 −1.70	±	2.87 −4.99-2.74 −2.48	±	2.54 −5.86-2.75 <.001

Naïve	CD8+	T	cells −5.69	±	37.4 −45.2-49.9 23.8	±	46.7 −35.2-89.8 29.5	±	29.1 −23.7-62.8 <.001

PEAA 1.32	±	5.96 −8.65-11.0 −3.18	±	5.41 −10.1-8.09 −4.50	±	4.98 −13.4-3.31 <.001

DNAm	PAI-1 663	±	1970 −2430-5777 −387	±	2580 −5411-7501 −1049	±	1584 −6086-1723 <.001

GrimAge 1.08	±	3.38 −4.88-11.3 −1.56	±	3.35 −9.34-7.06 −2.65	±	1.50 −6.22-0.45 <.001

Abbreviatons:	EEAA,	extrinsic	epigenetic	age	acceleration	(ie,	not	adjusted	for	cell	populations,	combination	of	age	intrinsic	to	cells	and	due	to	age-
related	changes	in	cell	populations);	IEAA,	intrinsic	epigenetic	age	acceleration	(ie,	adjusted	for	cell	populations,	intrinsic	to	immune	cells);	PEAA,	
phenotypic epigenetic age acceleration.
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On	average,	there	were	no	significant	changes	in	rate	of	DNA	age	ac-
celeration	from	pregnancy	to	the	post-partum	period,	t(34)	=	0.326,	
P	=	.747,	indicating	that	rate	of	epigenetic	aging	did	not	change	over	
this	period	(Figure	2B).

Significant	 changes	 were	 observed	 for	 PEAA,	 GrimAge, and 
DNAm PAI-1.	 In	 contrast	 to	 studies	 of	 non-pregnant	 adults,	 sig-
nificant	 decreases	 in	PEAA,	 t(34)	 =	−5.34,	P	 <	 .001,	M	=	−4.50,	
SD	=	4.98	(Figure	2C),	GrimAge,	t(34)	=	−10.5,	P	<	.001,	M	=	−2.65,	
SD	=	1.50	(Figure	2D),	and	DNAm	PAI-1,	t(34)	=	−3.92,	P	<	 .001,	
M	 =	 −1050,	 SD	 =	 1584	 (Figure	 2E),	 were	 observed	 between	
mid-pregnancy	and	1	year	post-birth.	This	 suggests	 that	women	
become on average younger	with	respect	to	PEAA,	GrimAge,	and	
DNAm	PAI-1	between	pregnancy	and	the	post-partum	period.

Immune-specific epigenetic age indices also evidenced sig-
nificant	 changes	 over	 time.	 Specifically,	 there	 were	 significant	
decreases in EEAA observed from mid-pregnancy to 1 year 
post-partum,	 t(34)	 =	 −4.73,	 P	 <	 .001,	 M	 =	 −3.03,	 SD	 =	 3.78	
(Figure	 2F),	 but	 IEAA did not significantly change over the fol-
low-up,	t(	34)	=	−0.396,	P	=	 .695	(Figure	2G).	 IEAA	captures	epi-
genetic aging that is independent of age-related shifts in immune 
cell	populations,	whereas	EEAA	is	an	indicator	of	immune	epigene-
tic age enriched for age-related shifted in immune cell populations. 
Given	that	decreases	 in	only	EEAA	were	observed,	this	suggests	
that women become younger with respect to age-related shifts in 
immune	cell	populations	specifically.	Consistent	with	this	pattern,	
changes were also detected in age-adjusted proportions of immune 
cells.	Again,	contrary	to	what	 is	expected	based	on	observations	
in	non-pregnant	adults,	proportion	of	senescent	CD8+	T	cells	sig-
nificantly	 decreased	 from	pregnancy	 to	 the	 post-partum	period,	
t(34)	=	−5.78,	P	<	.001,	M	=	−2.48,	SD	=	2.54	(Figure	2H),	and	naïve	
CD8+	T	cells	increased,	t(34)	=	5.99,	P	<	.001,	M	=	29.5,	SD	=	29.1	
(Figure	2I).

3.2 | Body mass index (BMI) change and post-
partum epigenetic variables† 

Participants	 on	 average	 gained	 3.02	 ±	 1.15	 kg/m2 during preg-
nancy,	lost	1.26	±	2.50	kg/m2	during	the	year	after	birth,	and	gained	
0.433	 ±	 2.64	 kg/m2 from before pregnancy to 1 year after birth. 
In	 bivariate	 correlations,	 increases	 in	 BMI	 during	 pregnancy	were	
associated	with	 lower	 post-birth	DNA	methylation	 age,	 r	 =	 −.329,	
P	=	.053,	lower	GrimAge,	r	=	−.389,	P	=	.021,	and	lower	DNAm	PAI-
1,	r	=	−.351,	P	=	 .039.‡ 	After	covariates	were	added	to	models,	 in-
creases	in	BMI	during	late	pregnancy	only	predicted	lower	post-birth	
GrimAge,	b	=	−1.35,	SE	=	0.507,	P	=	.013	(Table	3).

Having	no	decrease	 in	BMI	during	 the	year	post-birth	 (reflect-
ing	 weight	 retention)	 was	 associated	 with	 higher	 post-birth	 DNA	
methylation	age,	 r	 =	 .395,	P	 =	 .021,	higher	 age	acceleration	 resid-
ual,	r	=	.362,	P	=	.035,	higher	IEAA,	r	=	.401,	P	=	.019,	higher	PEAA,	
r	=	.489,	P	=	.003,	higher	GrimAge,	r	=	.639,	P	<	.001,	higher	DNAm	
PAI-1,	r	=	 .409,	P	=	 .016,	smaller	decreases	 in	GrimAge	from	preg-
nancy	to	1	year	after	birth,	r	=	.446,	P	=	.008,	and	smaller	decreases	
in	DNAm	PAI-1,	r	=	.491,	P	=	.003.	Each	of	these	associations	per-
sisted	after	adjusting	for	covariates,	p's	<	.028	(Table	3;	Figure	3).

Next,	change	in	BMI	during	pregnancy	and	during	the	first	year	
post-birth were both entered into linear regression models with co-
variates.	Having	no	decrease	in	BMI	by	1	year	post-birth	continued	
to	 predict	 higher	 1-year	 age	 acceleration	 residuals,	 IEAA,	 PEAA,	
GrimAge,	change	in	GrimAge,	and	change	in	DNAm	PAI-1,	p's	<	.041.	
In	 contrast,	 BMI	 change	during	 pregnancy	was	 not	 independently	
associated	with	any	epigenetic	age	indices,	p's >	.217.

Finally,	 bivariate	 correlations	 between	 total	 BMI	 change	 from	
before pregnancy to the post-birth and epigenetic age indices were 
computed.	 Greater	 total	 increases	 in	 BMI	 from	 preconception	 to	
1	 year	 post-birth	 were	 associated	 with	 higher	 post-birth	 PEAA,	
r	=	 .331,	P	=	 .052,	GrimAge,	 r	=	 .430,	P	=	 .010,	and	higher	DNAm	
PAI-1,	r	=	.351,	P	=	.038;	smaller	decreases	in	PEAA,	r	=	.440,	P	=	.08,	
smaller	 decreases	 in	GrimAge,	 r	 =	 .451,	P	 =	 .007,	 and	 smaller	 de-
creases	 in	 DNAm	 PAI-1,	 r	 =	 .496,	 P	 =	 .002,	 from	 pregnancy	 to	
1	 year	 post-birth;	 and	 large	 increases	 in	 IEAA	 from	 pregnancy	 to	
1	year	post-birth,	r	=	.316,	P	=	.064.	After	adjusting	for	covariates,	
greater	 total	 increases	 in	BMI	 from	preconception	 to	1	year	post-
birth	continued	to	be	associated	with	increases	in	IEAA,	b	=	0.504,	
SE	 =	 0.216,	P	 =	 .028,	 and	 smaller	 decreases	 in	 PEAA,	 b	 =	 0.700,	
SE	=	0.326,	P	=	.042,	GrimAge,	b	=	.0.439,	SE	=	0.098,	P	<	.001,	and	
DNAm	PAI-1,	b	=	336,	SE	=	130,	P	=	.017	(Table	3).

4  | DISCUSSION

The	purpose	of	this	study	was	to	evaluate	changes	in	immune	cell	epi-
genetic age indices between pregnancy and the post-partum period 
and	explore	associations	with	important	pregnancy-related	factors,	
namely weight change from mid-pregnancy to 1 year post-partum. 
The	results	suggest	that	some	epigenetic	age	variables	changed	 in	

F I G U R E  1  Scatterplot	showing	the	association	between	
chronological	age	and	DNA	methylation	age	during	pregnancy	
and	at	1	y	post-partum.	At	the	mid-pregnancy	assessment,	DNA	
methylation	age	and	chronological	age	are	correlated,	r	=	.758,	and	
at	the	1	y	post-partum	assessment,	r	=	.770
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counterintuitive ways between mid-pregnancy and 1 year post-par-
tum,	with	women	appearing	to	become	biologically	younger	with	re-
spect	to	PEAA,	GrimAge,	DNAm	PAI-1,	and	immune	cell	population	
epigenetic	age	indices	(EEAA,	age-adjusted	proportion	of	senescent	
CD8+	T	cells	and	naïve	CD8+	T	cells).	There	is	also	evidence	that	epi-
genetic age between mid-pregnancy and 1 year post-partum could 
be affected by weight change during pregnancy and the post-partum 
period.	In	particular,	weight	retention	over	the	post-partum	period	
was predictive of epigenetic age acceleration from pregnancy to the 
post-partum.	Collectively,	 these	preliminary	 findings	 shed	 light	on	
how epigenetic aging processes operate during pregnancy and the 
post-partum period.

To	 the	 best	 of	 our	 knowledge,	 this	 is	 the	 first	 study	 to	 assess	
changes in immune cell proportions during pregnancy and the 
post-partum	 period,	 and	 results	 suggest	 that	 pregnancy	 physiol-
ogy	 could	 influence	 proportion	 of	 immune	 cells,	with	 implications	

for understanding immune activity during pregnancy. In non-preg-
nant	adults,	EEAA	and	age-adjusted	proportions	of	senescent	CD8+	
T	 cells	 increase	 over	 time,	 and	 age-adjusted	 proportion	 of	 naïve	
CD8+	T	 cells	 decrease	over	 time.8,17,32	We	observed	 the	opposite	
from	pregnancy	to	the	post-partum	period.	EEAA	and	age-adjusted	
proportion	of	 senescent	CD8+	T	cells	decreased,	 and	age-adjusted	
proportion	of	naïve	CD8+	T	cells	 increased from pregnancy to the 
post-partum	period.	This	pattern	suggests	a	regeneration	of	T	cells	
from	 pregnancy	 to	 the	 post-partum	 period,	 potentially	 indicating	
that,	following	major	changes	in	the	maternal	immune	system	during	
normal	pregnancy	and	recovery	from	labor	and	delivery,33-35 there 
is	a	partial	post-partum	rejuvenation.	 In	addition,	PEAA,	GrimAge,	
and	DNAm	PAI-1,	which	are	all	enriched	for	DNA	methylation	sites	
associated	with	 clinical	 indicators	 of	morbidity	 and	mortality	 risk,	
and	which	also	increase	with	biological	age	in	non-pregnant	adults,	
decreased	 between	 pregnancy	 and	 the	 post-partum	 period.	 This	

F I G U R E  2  Spaghetti	plots	of	change	between	mid-pregnancy	and	1	y	post-partum	for	(A)	DNA	methylation	age,	(B)	age	acceleration	
residual,	(C)	phenotypic	epigenetic	age	acceleration	(PEAA),	(D)	GrimAge,	(E)	DNAm	PAI-1,	(F)	extrinsic	epigenetic	age	acceleration	(EEAA),	
(G)	intrinsic	epigenetic	age	acceleration	(IEAA),	(H)	senescent	CD8+	T	cells,	and	(I)	naïve	CD8+	T	cells.	DNA	methylation	age	and	naïve	
CD8+	T	cells	significantly	increased	(p's	<	.025),	PEAA,	GrimAge,	DNAm	PAI-1,	EEAA,	and	senescent	CD8+	T	cells	significantly	decreased	
(p's	<	.001),	and	age	acceleration	residual	and	IEAA	did	not	significantly	change	(p's >	.695)	between	mid-pregnancy	and	1	y	post-partum
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suggests that overall pregnancy may slow some aspects of aging. 
It	 is	 possible	 that	 this	 is	 driven	by	 the	unique	neuroendocrine	 ac-
tivity	 that	 characterizes	 pregnancy	 and	 the	 post-partum	 period,	
particularly	for	growth	and	thyroid	hormones,24 although additional 
research	is	needed	to	explore	this	possibility.	Collectively,	then,	our	
findings	suggest	that	in	some	ways,	women's	immune	indicators	of	
biological age become younger between mid-pregnancy and 1 year 
post-partum,	consistent	with	a	protective	health	effect	of	parity36-40 
and slower biological aging in women compared to men.8-11

Post-partum	weight	change	emerged	as	a	strong	predictor	of	
epigenetic	age	indices.	In	non-pregnant	adult	samples,	obesity	and	
higher body weight are associated with accelerated epigenetic 
age.23	 In	 the	 current	 sample,	weight	 gain	 during	 pregnancy	was	
not consistently associated with post-partum epigenetic age indi-
ces. It is possible that processes linking weight gain and biological 
aging	are	interrupted	during	pregnancy	in	an	adaptive	manner,	or	
that no association was found because weight gain during preg-
nancy	can	be	driven	by	other	factors,	for	example,	fluid	retention,	

and	 placenta	 and	 fetal	 growth.	 This	 finding	 along	with	 the	 oth-
ers	 requires	 replication.	 In	 contrast,	weight	 retention	during	 the	
post-partum	 period	 was	 associated	 with	 accelerations	 in	 DNA	
methylation	age	and	higher	PEAA	at	12	months	post-partum,	and	
this	was	 independent	of	weight	change	during	pregnancy.	These	
findings	are	important	in	the	context	of	prior	work	suggesting	that	
post-partum weight gain and weight retention increases risk for 
later health issues.41-44

There	are	several	limitations	to	consider,	and	foremost	is	that	
this was a pilot study with a relatively small sample size. It is not 
possible to determine whether null results indicate a lack of as-
sociation	or	a	lack	of	power	to	detect	associations.	Nevertheless,	
meaningful	 and	 potentially	 important	 patterns	 were	 detected,	
supporting	 the	 usefulness	 of	 pursuing	 these	 questions	 in	 future	
research.	 Second,	 although	 a	 clear	 strength	 of	 the	 study	 is	 use	
of	 data	 collected	 in	 a	 prospective	 design,	 the	 time	 period	 from	
mid-pregnancy to 1 year post-partum does not capture the full 
length	 of	 pregnancy,	 which	 would	 be	 of	 interest	 to	 do.	 Future	

Predictor Outcome B SE β P

Preg	BMI	change PP	DNA	methylation	
age

1.23- 0.952 −.271 .207

 PP	GrimAge −1.35 0.507 −.464 .013

 PP	DNAm	PAI-1 −680 376 −.302 .082

PP	BMI	change PP	DNA	methylation	
age

1.02 0.435 .484 .028

 PP	Age	accel	resid 0.730 0.253 .577 .008

 PP	IEAA 0.795 0.229 .671 .002

 PP	PEAA 1.30 0.393 .592 .003

 PP	GrimAge 0.874 0.217 .645 <.001

 PP	DNAm	PAI-1 497 179 .476 .010

 Change	GrimAgea  0.450 0.118 .744 .001

 Change	DNAm	PAI-1a  323 140 .519 .030

Total	BMI	change PP	PEAA 0.728 0.426 .356 .099

 PP	GrimAge 0.472 0.253 .373 .074

 PP	DNAm	PAI-1 277 189 .284 .154

 Change	in	IEAAa  0.504 0.216 .443 .028

 Change	in	PEAAa  0.700 0.326 .372 .042

 Change	in	GrimAgea  0.439 0.098 .212 <.001

 Change	in	DNAm	
PAI-1a 

336 130 .561 .017

Abbreviations:	Age	accel	resid,	age	acceleration	residual;	BMI,	body	mass	index;	EEAA,	extrinsic	
epigenetic	age	acceleration;	IEAA,	intrinsic	epigenetic	age	acceleration;	PEAA,	phenotypic	
epigenetic	age	acceleration;	PP,	post-partum;	Preg,	pregnancy.
aindicates	models	for	which	baseline	(pregnancy)	epigenetic	age	indices	and	gestational	age	at	
pregnancy assessment were additionally included as covariates. 

TA B L E  3  Linear	regression	models	
predicting epigenetic age variables from 
pregnancy-related variables

F I G U R E  3  Associations	between	post-birth	change	in	BMI	with	(A)	post-partum	DNA	methylation	age,	(B)	post-partum	age-adjusted	
acceleration	residuals,	(C)	post-partum	IEAA	(intrinsic	epigenetic	age	acceleration),	(D)	post-partum	PEAA	(phenotypic	epigenetic	age	
acceleration),	(E)	post-partum	GrimAge,	(F),	post-partum	DNAm	PAI-1,	(G)	change	in	GrimAge	from	mid-pregnancy	to	1	y	post-partum,	and	
(H)	change	in	DNAm	PAI-1	from	mid-pregnancy	to	1	y	post-partum,	adjusting	for	covariates.	Baseline	or	mid-pregnancy	values	were	also	
included as covariates for models of change
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work should consider tracking epigenetic aging from preconcep-
tion through pregnancy and possibly longer into the post-birth pe-
riod and to test additional factors that are associated with rates 
of	 aging.	 Third,	 there	 was	 a	 change	 in	 DNA	 methylation	 chips	
mid-way	 through	 our	 pilot	 project	 (450K	 vs	 EPIC),	 and	 indica-
tions of systematic between-person differences in epigenetic age 
variables	were	detected	by	chip.	Within-person	differences	how-
ever were not due to chip differences because samples drawn for 
each participant from the two different time points were always 
included	on	 the	 same	chip.	Thus,	observed	change	 in	epigenetic	
age	could	not	be	due	 to	batch.	 Likewise,	batch	was	adjusted	 for	
in	 our	models.	Optimally,	 future	 research	 should	 replicate	 these	
findings	using	a	 single	chip	 to	 reduce	batch	effects.	Fourth,	 it	 is	
possible	that	adverse	pregnancy	outcomes,	such	as	preterm	birth,	
or	 obstetric	 risk	 factors,	 such	 as	hypertension,	 diabetes,	 serious	
infections,	 or	 anemia,	 could	 affect	 epigenetic	 age	 indices	 in	 im-
mune cells during pregnancy. Due to the small sample size and 
low	frequency	of	specific	pregnancy	complications,	we	were	not	
able to test associations between pregnancy complications and 
change in epigenetic age indices between pregnancy and a year 
post-partum. Future work should consider how epigenetic aging 
during pregnancy and the post-partum is affected by pregnancy 
complications and adverse outcomes.

5  | CONCLUSIONS

From	 pregnancy	 to	 post-partum,	 women's	 epigenetic	 age,	 as	 in-
dexed	by	the	EEAA,	PEAA,	GrimAge,	and	DNAm	PAI-1,	decreased	
from	pregnancy	to	the	post-partum,	indicating	deceleration	of	bio-
logical	aging.	This	is	the	reverse	of	what	has	been	observed	in	non-
pregnant	adults.	Importantly,	not	all	women	exhibited	deceleration.	
When	examining	predictors	of	 rates	of	epigenetic	 aging,	post-par-
tum weight gain was associated with increases in epigenetic aging. 
These	findings	shed	light	on	the	unique	biological	states	that	consti-
tute pregnancy and the post-partum period and highlight a possible 
mechanism through which pregnancy and post-partum associated 
factors could affect maternal health over the long-term.
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ENDNOTE S
	*	 Pregnancy	and	post-partum	epigenetic	age	indices	were	adjusted	for	

gestational age at pregnancy at time of blood sampling using repeated 
measure	ANCOVAs.	Magnitude	of	change	over	the	follow-up	was	not	
affected	by	gestational	age	at	sampling,	and	the	same	pattern	of	re-
sults emerged. 

 †	 Pattern	of	 results	was	similar	and	consistent	when	timing	of	weight	
measurement	(pregnancy	gestational	age	or	weeks	post-partum)	and	
timing between weight measurements were included in models as 
covariates. 

 ‡ Given that there is no theoretical reason to assume that mid-preg-
nancy epigenetic age values would drive changes in weight over the 
follow-up,	pregnancy	epigenetic	age	variables	were	not	considered.	
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