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Many natural, engineered and social systems can be represented using the framework of a layered network,
where each layer captures a different type of interaction between the same set of nodes. The study of such
multiplex networks is a vibrant area of research. Yet, understanding how to quantify the correlations
present between pairs of layers, and more so present in their co-evolution, is lacking. Such methods would
enable us to address fundamental questions involving issues such as function, redundancy, and potential
disruptions. Here, we show first how the edge set of a multiplex network can be used to construct an
estimator of a joint probability distribution describing edge existence over all layers. We then adapt an
information-theoretic measure of general correlation called the conditional mutual information, which uses
the estimated joint probability distribution, to quantify the pairwise correlations present between layers.
The pairwise comparisons can also be temporal, allowing us to identify if knowledge of a certain layer
can provide additional information about the evolution of another layer. We analyse datasets from three
distinct domains—economic, political, and airline networks—to demonstrate how pairwise correlation in
structure and dynamical evolution between layers can be identified and show that anomalies can serve as
potential indicators of major events such as shocks.

Keywords: multiplex networks; dynamics of networks; information theory.

1. Introduction

Over the last two decades, network analysis has become a useful tool for understanding social, biolog-
ical, physical and engineered complex systems [1]. At its most basic, a network is a set of nodes and
edges, where edges denote pairwise interactions between nodes. Although this ignores many details and
higher-order interactions, such as multivariate dependencies beyond dyadic, this network approximation
has yielded important insights into the formation and dynamics of complex systems. Beyond a simple

© The authors 2020. Published by Oxford University Press. All rights reserved.
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2 H. WU ET AL.

network, many real systems are composed of layers of individual networks, ranging from multimodal
transportation networks to the Internet protocol stack and interpreting such a system as a single-layer
network of homogeneous interactions is often an oversimplification [2]. In many instances each network
layer contains the same set of nodes, but the edges in each distinct layer represent a distinct type of
interaction between nodes. We use the terminology multiplex network to describe such a system. In the
transportation setting, a multiplex network can be constructed where the nodes are geographic locations
and each layer represents connectivity of a different transport type between locations, such as automo-
bile, airplane, train, passenger ship, etc. In recent years, there has been a vibrant study of multiplex
networks [3–5].

Generally, layers within a multiplex network are not independent. Consider the multiplex transporta-
tion network above. Due to geographic constraints, there will be little overlap between edges in the
automobile and in the passenger ship layers, so the presence of an edge in one layer implies the likely
absence in the other.

The straightforward approach of estimating the edge overlap rate between two layers (i.e. the frequency
at which two layers contain an edge between the same pair of nodes) and then comparing that to a random
network null model has demonstrated that correlation between layers are commonly found in multiplex
networks [6]. Yet, basic edge overlap does not account for many important features such as anti-correlation
in the location of edges which may depend on the characteristics of the system. For instance, the layers
can variously either cooperate or compete with one another, or their structures can be complementary or
redundant, which all influence edge overlap. Likewise, measures are still needed to quantify correlations
present during evolution.

Such measures would allow a more nuanced understanding of the dynamics underlying multiplex
networks. For instance, do some layers evolve independent of all others? Can we find temporal correlations
indicating that one layer influences the evolution of another? In addition, we can use these measures to
understand real-world multiplex networks across domains. For instance, there are principled arguments
based on political and economic considerations that alliance treaties between nation states are related to
their trade relationships [7]. Quantitative measures would allow us to establish this explicitly and also
identify if specific types of goods are more dependent on the alliance than others. This, in turn, may reveal
potential trade interventions that can impact the stability of alliances. Likewise, while diplomatic disputes
between nations may lead to war, which among the various classes of disputes is most influential? In a
different realm, airline companies compete and cooperate with each other, but to what extent does one
company’s decision influence another’s?

Our focus here is on multiplex networks which evolve in time in a discrete manner. Our goal is to
develop measures to quantify the correlation present between a pair of layers and in the co-evolution
between a pair of layers, this includes anti-correlations. Our primary contributions are two-fold. First,
we develop a method for constructing an estimator of the joint probability distribution describing the
simultaneous existence of edges across layers of the multiplex network and also the discrete-time evolution
of the edges. Second, using the joint probability distributions, we develop a mutual information measure to
quantify correlations present between pairs of layers in a static multiplex network, and also a conditional
mutual information measure to quantify the extent to which one layer influences another during their
discrete co-evolution. We apply these measures to empirical datasets from airline, political and trade
networks to explore interlayer relationships and also determine the temporal order of changes between
layers. This reveals non-trivial relationships with some pairs of layers evolving in a more correlated
manner than other pairs and also asymmetrical levels of influence between co-evolving layers. The
details of the measures for particular datasets, including anomalous spikes, provide some insights useful
for the questions posed above, such as trade and alliance relationships between nations.
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CORRELATED STRUCTURAL EVOLUTION WITHIN MULTIPLEX NETWORKS 3

The development is organized as follows. Section 2 discusses previous related work. Section 3
describes how we characterize a multiplex network and its correlated internal structural evolution with a
joint probability distribution, and it also defines our conditional mutual information measure and tests for
statistical significance. Section 4 then applies our method to multiple datasets, demonstrating its utility.
Finally, Section 5 concludes by summarizing potential limitations and promising future directions.

2. Related work

Techniques from information theory offer quantitative methods to extract correlations in time series data
but have not yet been extended to the multivariate setting required to analyse large networks. That said,
techniques from network science for analysing multiplex networks provide insight into similarity of
dynamics on layers or provide measures of ensemble properties, yet they do not extract correlations in
structure and structural evolution. Here, we review these works organized along the two broad categories
of approaches to provide some context and challenges.

2.1 Information theory

A multitude of existing techniques can be applied to time series data to quantify the correlations that
are present, including delay-coordinate embedding, Granger analysis and time-delayed mutual infor-
mation [8]. Unfortunately, these techniques have yet to be extended to the multivariate setting required
for networks beyond a few nodes in size. Extending these informational measures to multivariate cases
is an active area of current research [9, 10] which remains an open question. For example, transfer
entropy [11, 12] measures the time-asymmetric information shared between two random processes. And,
it subsumes Granger causality [12], which served for decades as the de facto detector of time-series
causality [13]. As such, transfer entropy is now widely used in a variety of contexts including economic,
biological and chemical processes [14, 15]. Yet, it was recently shown that such applications must take
care to not interpret transfer entropy as detecting information flow or causal organization [9, 10]. As we
scale up from two random processes to the size of networks, this will be an increasingly pertinent issue.

With respect to network systems, there is of course the classic discipline of network information theory
which concerns itself with the information transmission capacity of a communication network [16].
There, given a network of rate-bound links, one measures the aggregate rate at which multiple sources
can communicate without error to multiple receivers. One hallmark result is that for a single source and
single receiver, the capacity is determined by the max-flow min-cut theorem which identifies bottlenecks
due to network topology [16]. This approach, though, has a rather different focus from ours as we want
to quantify information of correlated evolution across network layers.

One definition of information in a network, called graph entropy, uses the frequency of a node’s
occurrence in the orbits of the graph’s automorphism group [17, 18]. Reference [19] gives a brief history
and surveys its applications. Graph entropy is easily (and helpfully) interpreted for small graphs with
substantial symmetry. It usually generates trivial or ambiguous results on large networks, however, due
to their generic lack of perfect or near-perfect group symmetries.

As we will demonstrate, using information measures to quantifying relationships that arise in net-
works, and more generally in complex systems, is advantageous for several reasons. For one, informational
measures are system-agnostic: so long as what is being studied is well-described by random variables,
it matters little over what coordinates and with what units those variables are defined. For example, it is
irrelevant if a random variable describes fluctuations in voltage, a child’s gender or counts of chemical
species. For another, as an extension to mathematical statistics, information measures quantify non-linear
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4 H. WU ET AL.

dependencies, expanding the common notions of correlation beyond their implied linear models. And
so, information is model independent, operating directly on the data distributions with no assumptions
as to the form of dependency. Finally, and key to our uses, information provides the ability to compare
the relative strength of correlations across layer pairs.

2.2 Network theory

Approaching the analysis of multiplex networks from the network theory perspective, a natural considera-
tion is the graph Laplacian of a network. For instance, in [20] they construct a probability distribution from
a network’s Laplacian. Once normalized, the Laplacian is mathematically similar to a density matrix,
the object from which the von Neumann entropy is computed in quantum mechanics [21]. Using the
Laplacian for each layer in a multiplex network as a probability distribution-like object for that layer, the
similarity between layers can be quantified by using measures such as the Kullback–Leibler divergence
between two probability distributions [22]. Since the Laplacian expresses the “local” curvature about
nodes in a network, it is commonly used to analyse diffusion-like dynamics on multiplex networks [23].
As such, Laplacian-based analysis can capture the similarity of diffusion processes among layers. How-
ever, this does not reveal layer similarities and differences that are due to complex structures to which
diffusion is insensitive.

Entropy methods have been developed to characterize multiplex network ensembles such as Ref. [24]
which uses the ensemble entropy to analyse multiplex networks with correlated layer overlaps. Yet,
ensemble considerations average over the detailed structures needed to describe pairwise interactions
between layers in a multiplex network.

A stochastic block model also provides a probabilistic framework for a multiplex network ensemble,
and very recently it was shown how edge-correlations could be incorporated into that framework [25].
This provides a rigorous model for generating correlated multiplex networks and a maximum-likelihood
estimate of correlations present between layers. While such an approach is neat and well-defined, it is a
form of linear Pearson correlation which can be limiting when non-linear correlation is present.

In making their approaches tractable several studies [26, 27] assumed bilayer networks in which,
by definition, only one type of coupling between layers exists. Similarly, treating multiplex networks as
tensors [28, 29] implicitly assumes different layers can be decomposed into linear, statistical-dependency
structures. Our empirical analyses show that each layer may have distinct dynamical evolution and that
there can be non-linear relationships between layers.

Finally, Ref. [30] introduced a multiplex Markov chain to model the correlated evolution between
different layers in a multiplex network. The premise is that each multiplex edge in the network evolves
according to an independent and identically distributed random process. One can then compare the
difference between when that random process uses a multiplex-dependent null model to a null model
that assumes each layer evolves independently. For two-layer networks this method can identify strong
statistical correlations in structural evolution. Yet, this method does not scale well with the number of
layers. Nor does it allow us to compare how strongly layers are coupled during structural evolution.

There is some progress in developing information-theoretic approaches to networks which rely on
defining a variety of network-derived probability distributions. Degree distributions [31], deviation from
mean degree distributions [32], motif distributions and even configuration distributions over a network
ensemble [33] are all example probability distributions that represent distinct aspects of a network or
network ensemble. Each captures some specific a priori selected features. Yet, these features do not
capture the correlated structural evolution of layers in a multiplex network.
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CORRELATED STRUCTURAL EVOLUTION WITHIN MULTIPLEX NETWORKS 5

Our approach, complementary to the above, is to formulate a multiplex network as a joint probability
distribution over the multiplex edge set including the discrete-time evolution of the network. We can
then apply this approach to empirical datasets, which may contain non-linear correlations, to quantify
the correlations present and track the enhanced predictive power that one layer can provide about the
evolution of another layer.

3. Methods

3.1 Notation

We begin by introducing formal notation for defining multiplex networks. A multiplex network is a
network with many layers which share the same node set. We use calligraphic letters such as U , V , W
to refer to the name of each individual layer. The multiplex network can be represented by the graph
G = (N , EU , EV , EW , . . .

)
, where N is the node set and EU , EV , EW are the edge sets for each of the

different layers. EU , EV , EW ⊆ [N ]2, where [N ]2 denotes a Cartesian square of set N and, for example,
(i, j) ∈ EU if there is an edge between nodes i and j in layer U . In the rest of the article, for simplicity, we
consider only the case of undirected networks, so we have the additional constraint that if (i, j) ∈ EU then
(j, i) ∈ EU . However, our approach can be extended to directed networks in a straightforward manner.

We define the multiplex edge vector for a pair of nodes i and j in an l-layered multiplex network as
eij = e1

ije
2
ij . . . el

ij, where each vector element eU
ij = 1 if (i, j) ∈ EU and eU

ij = 0 otherwise. The layers are
ordered in an arbitrary but fixed manner.

A particular multiplex edge vector eij = e1
ije

2
ij . . . el

ij between nodes i and j can be represented as an
l-gram, where l is the number of layers. When the number of layers is small, rather than using eU

ij , eV
ij and

eW
ij , we will use uij, vij and wij, or even simply u, v and w to refer the element in the vector corresponding

to layer U , V and W , respectively.
An illustrative example is shown in Fig. 1, where the multiplex edge vectors eij for all possible pairs

of nodes i and j are enumerated for a particular example with l = 3 layers. Since there are only three
layers in this specific example, we could simplify notation and, rather than write eij = eU

ij eV
ij eW

ij , instead
write eij = uvw.

In what follows, we will need to consider a random instance of eij, and we will use capital letters U, V ,
W to refer the random variables corresponding to u, v, w. Thus, we use different forms of the same letter
depending on context. For instance, we use U , u and U, to refer to different concepts associated with that
layer: namely U for the name of the layer; u ∈ {0, 1} for the value of the element in the edge-existential
vector corresponding to that layer; and U for the random variable corresponding to that element in the
joint probability distribution describing the multiplex network.

We also use some basic notation from information theory. Following the tradition in the literature,
we use H to denote Shannon entropy and I to denote mutual information.

Briefly, we are interested in the interactions between random variables. Let X denote a random
variable which takes on values x drawn from a discrete set, that is, an alphabet X , with probability p(x).
The entropy of a random variable, H[X], is defined as:

H[X] = −
∑
x∈X

p(x) log2 p(x), (3.1)

it measures the average uncertainty of random variable X. H is also used for defining joint entropy. Given
a set of discrete random variables X1, ..., Xn and their joint distribution p(x1, ..., xn), the joint entropy
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6 H. WU ET AL.

Fig. 1. An example of a 3-layer multiplex network and how to build the associated joint probability distribution for the multiplex
edge vectors. For each pair of nodes i, j, we consider the l-gram, eij , describing the presence or absence of an edge between them
respectively in each layer of the network. If an edge exists in a particular layer, we denote the corresponding element in the l-gram
as 1, otherwise 0. We then take this edge as an instantiation of a joint probability distribution. For instance, between the two yellow
nodes, there is no edge in layer U , but there are edges in layers V and W , so we have an instance of the 3-gram e = 011 which
contributes to the tally of counts in the table row for l-gram 011. We then repeat this process for all possible pairs of nodes and use
the final counts to estimate the probability of having different l-grams. The right-hand column gives the values for these estimators
of the joint probability distribution of the l-grams describing the multiplex edge vectors, as shown formally in Eq. 3.5.

H[X1, ..., Xn] is defined as

H[X1, ..., Xn] = −
∑

x1∈X1

...
∑

xn∈Xn

p(x1, ..., xn) log2 p(x1, ..., xn). (3.2)

The mutual information I[X; Y ] between two random variables X and Y is defined as:

I[X; Y ] =
∑
x∈X

∑
y∈Y

p(x, y) log2

p(x, y)

p(x)p(y)
. (3.3)

It measures how much information one random variable contains about the other.
For convenience, we also often use H(p1, ..., pn) to denote the entropy of a random variable with

probability p1, ..., pn for each of its possible values. For example, H(0.3, 0.7) represents the entropy of a
random variable that has two possible outcomes where the first outcome has a probability of 0.3 and the
second has a probability of 0.7.

We will define more complex information measures as needed and the interested reader can refer to
the classic text by Cover and Thomas [34] for more information on this topic.
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CORRELATED STRUCTURAL EVOLUTION WITHIN MULTIPLEX NETWORKS 7

3.2 The joint probability distribution of a multiplex network

Here, we show how it is possible to characterize a multiplex network by a joint probability distribution.
The overall idea is straightforward, given that all layers have the same node set. In the classical Erdös–
Rényi random graph model with N nodes, each edge is independently included in the network with
probability p [35]. If we only care about the existence of an arbitrary edge, the probability of existence
for that particular edge is drawn from a Bernoulli distribution with probability p. Similarly in a multiplex
network with l layers, there is an analogous construction where all of the l elements of a particular eij can
be drawn from an arbitrary joint probability distribution over l discrete events.

First we must introduce a basic formulation of a multiplex network. Consider the following simple
model to generate a N-node multiplex network, starting from N isolated nodes. Assume that for each
pair of nodes i and j, the multiplex edge vector eij, is formed following the same independent stochastic
process. Recall that each element of the multiplex edge vector eij indicates whether there is an edge or not
in the corresponding layer. Let P(uvw . . .) denote the probability that a randomly chosen eij is equal to
the particular l-gram uvw..., where P(u = 1) and P(u = 0) are respectively the marginalized probability
that i and j are connected or not connected in layer U . Then, we can generate random eij’s drawn from
this distribution for all i, j pairs and from that construct a corresponding instance of an N-node multiplex
network.

Under these same assumptions, given a real system, we can get an estimate of the distribution P(uvw...)
from the given data. We assume that each eij follows the same distribution independently between all i, j
pairs, thus each multiplex edge vector observed in a real network can be treated as a sample for inference.
In a N-node multiplex network, there are N(N−1)

2 pairs of nodes, therefore there are N(N−1)

2 number of eij’s.
Note, that there are only 2l distinct values that the eij’s can take on (since each vector element must be
either 0 or 1), and each distinct value can be written as a distinct l-gram. Note that we may not see the
occurrence of all possible l-grams in a specific real-world instance of a multiplex network.

We next will use the frequency of occurrence for each distinct l-gram to construct an estimator of
P(uvw...). First we count the number of times a particular l-gram occurs, and introduce the following
function to do so:

count(uvw . . .) =
∑
i,j∈N

[[
(i, j) ∈ EU] = u

]
[[

(i, j) ∈ EV] = v
]

[[
(i, j) ∈ EW] = w

]
. . . ,

(3.4)

where we have used Iverson brackets, [P], a generalization of the Kronecker delta; it evaluates to 1 if the
proposition P inside it is True and 0 otherwise [36].

With the counts in place, we can construct an estimator of the probability distribution P(uvw...),
explicitly:

P̂ (U = u and V = v and W = w . . .)

= count(uvw . . .)

N(N − 1)/2
,

(3.5)
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8 H. WU ET AL.

Fig. 2. An example of how to construct random variables describing the discrete-time evolution of a two-layer multiplex network.
In this simple example there are three pairs of nodes and the evolution of each pair can be encoded by a 4-gram describing the
presence or absence of edges. Each 4-gram encodes a specific pattern of evolution. For instance, the 4-gram 1110 describes the
evolution of the edges between the red and green nodes, while 1010 describes the evolution of the edges between the green and
yellow nodes. A count of the 4-grams observed across all pairs of nodes provides an estimator of the joint probability distribution
for each possible 4-gram.

where N = |N |. Once we have the estimated probability distribution, we can construct random variables
and directly calculate information-theoretic measures.

Figure 1 shows an example of how the estimator of a joint probability distribution can be constructed
from an instance of a multiplex network with three layers U , V and W . It is established by counting
the frequency of occurrence for the different values of the multiplex edge vectors (which are 3-grams
for this example). Each layer of the multiplex network has a corresponding random variable in such a
joint probability distribution which we denote by U, V and W , respectively. The random variables take
on the values of either one or zero indicating, respectively, the presence or absence of an edge in the
corresponding layer.

A similar method can also be applied to analyse the discrete-time dynamics of a multiplex network.
For each time step t, t + 1, . . ., all of the layers can be included in a composite multiplex network

G =
(
N , EU t

, EU t+1
, EV t

, EV t+1
, . . .

)
. We can then construct a time-labelled probability distribution for

the network at each of these time steps. This process is demonstrated in Fig. 2 for a two-layered multiplex
network with layers U and V . For each particular pair of nodes, we can denote their specific evolution
over two consecutive time steps by a 4-gram defined as utvtut+1vt+1 , where ut = 0 if there is no edge in
layer U between these two nodes in time step t and ut = 1 if there is an edge (and respectively for vt and
vt+1). For example, the 4-gram 1011 represents the case that in time step t there is an edge between these
two nodes in layer U but not in layer V and there are edges in both layers U and V in time step t + 1.
By counting the frequency of these 4-grams among all pairs of nodes in the multiplex networks, we can
have an estimator of the joint probability distribution P(utvtut+1vt+1).
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CORRELATED STRUCTURAL EVOLUTION WITHIN MULTIPLEX NETWORKS 9

3.3 Correlations between layers: mutual Information

Given the estimator of the joint probability distribution we can construct information measures using
that inferred distribution. Most important in our context is the mutual information between layers which
provides us a way to quantify the extent of their correlation. This has a clean null model that all layers are
statistically independent, in which case the mutual information between them is 0. Another advantage of
utilizing the mutual information is that it also captures anti-correlation, the scenario where existence of
edge in one layer signals the decreased likelihood of having an edge between the same pair of nodes in
another layer, which is not captured by basic edge overlap considerations [6].

For the example shown in Fig. 1, the mutual information between the random variables U, V and
W can be constructed in a pairwise manner. With the standard Shannon entropy and mutual information
notation [34] the mutual information between layer U and V is:

I [U; V ] = H [U] + H [V ] − H [U, V ]

= H (0.5, 0.5) + H (0.5, 0.5)

− H (0.0, 0.5, 0.5, 0.0)

= 1 bit

(3.6)

H[U] is obtained by counting the 1-grams present in layer U . There we have 5 edges (‘1’s) and 5 non-
edges (‘0’s) and therefore H[U] = H(5/10, 5/10). H[V ] is obtained the analogous manner. For H[U, V ],
we count the 2-grams formed by layers U and V . We then have 0 ‘00’ and ‘11’s values, 5 ‘01’s values
and 5 ‘10’s values. Therefore, H[U, V ] = H(0/10, 5/10, 5/10, 0/10). The resulting mutual information
of 1 bit is consistent with intuition: layers U and V are complementary, and therefore there is maximal
mutual information between them.

We can also calculate the mutual information between layer U and layer W and between layer V or
layer W:

I [U; W ] = H [U] + H [W ] − H [U, W ]

= H (0.5, 0.5) + H (0.4, 0.6)

− H (0.3, 0, 2, 0.3, 0.2)

= 0 bit

(3.7)

I [V ; W ] = H [V ] + H [W ] − H [V , W ]

= H (0.5, 0.5) + H (0.4, 0.6)

− H (0.3, 0.2, 0.3, 0.2)

= 0 bit

(3.8)

Thus, for this example, knowing whether an edge is in either layer U or layer V is not helpful for predicting
the existence of the edge in layer W and vice versa; the pairwise mutual information between U and W
and between V and W is 0.

Note that this is a case where even though layers U and W have overlaps, it is due to simple randomness
and therefore the existence of an edge in one layer is uninformative as to the existence of the same edge
in the other layer.
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10 H. WU ET AL.

We next turn to the main focus of the manuscript, which is conditional mutual information. We do
further consider mutual information and apply it to real data, with the details found in Appendix B. There
we show that some pairs of layers are much more correlated than others.

3.4 Correlated structural evolution: conditional mutual information

In this section, we introduce conditional mutual information and establish how to use this to develop
information-theoretic measures to quantify the correlations present in the structural evolution of multiplex
networks.

Given three random variables X , X ′ and Y , the conditional mutual information I
[
X ′; Y |X]

is defined as
the relative entropy between the joint probability distribution of X ′ and Y and the product of distributions
of X ′ and Y each conditioned on X . Formally:

I
[
X ′; Y |X] =

∑
x′∈X ′
y∈Y

p
(
x′, y|X)

log
p (x′, y|X)

p (x′|X) p (y|X)
. (3.9)

This quantifies the amount of additional information available to predict X ′ knowing both Y and X,
beyond simply knowing X alone. This is related to the notion of transfer entropy discussed briefly in
Section 2 which is widely used in time series analysis to quantify if one time series can be used to predict
another. One nicety of this measure is that if Y and X ′ are correlated to some other confounding variable
X, conditioning on X can filter out such effects.

We introduce the notion of information-theoretic influence (denoted I-INF or simply IINF) which is
calculated by applying conditional mutual information to the correlated structural evolution of a multiplex
network. Using the notation introduced in Section 3.1, a pair of layers at time t is represented by the
random variables Ut , V t . Information-theoretic influence (IINF) from layer U to V then can be defined
as the mutual information between layer U at time step t and layer V at time step t + 1 conditioned on
layer V at time step t, that is the conditional mutual information I[Ut; V t+1|V t]. Formally,

IINFt→t+1
U→V = I[Ut; V t+1|V t]. (3.10)

Unlike mutual information discussed in Section 3.3, IINF is asymmetric due to the existence of chrono-
logical order among the random variables. In general IINFt→t+1

U→V is not equal to IINFt→t+1
V→U . Intuitively,

what IINFt→t+1
U→V quantifies is the amount of extra information available to predict layer V in time t + 1

if we also have information of layer U in time t in addition to information of layer V at time t. Here,
conditioning on layer V at time t allows for the filtering out of some effects generated by node level
factors or exogenous events that happen in layer V .

We then use the IINF defined in equation 3.10, which is essentially a one-step transfer entropy, to
quantify the degree to which the evolution of network layer U affects layer V . The intuition here is that we
wish to quantify the influence that Ut has on V t+1 above and beyond the influence of V t . This is qualitatively
similar to Granger causality [13], where vector auto-regression is used to determine if observations of
a time-series X improves predictions of a time-series Y beyond utilizing only observations of Y . By
definition, the IINF from a layer to itself IINFU→U = I[Ut; Ut+1|Ut] is always zero – no additional
information is gained through redundant knowledge of the network itself. Of course, the history of a
particular layer may best inform the evolution of that layer, but in order to measure only the influence
between layers we condition on knowledge of that particular layer.
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CORRELATED STRUCTURAL EVOLUTION WITHIN MULTIPLEX NETWORKS 11

The Python implementations of above measures are made available [37], which makes use of the dit
information theory package [38].

3.5 Illustrative examples

IINF measures information-theoretic influence from one layer to another. The larger the value of IINF
from layer U to layer V , the better that we can predict layer V by also knowing layer U’s history, beyond
knowing layer V’s history alone. From our construction, IINF is an information-theoretic measure applied
to a binary random variable and therefore the value is always between 0 and 1. However, dependent upon
the edge density of the layers, the theoretical maximum is sometimes smaller than 1. IINF complements
other common information-theoretic measures for binary random variables, such as entropy or mutual
information. As it is difficult to normalize IINF across different systems, it is often more useful to compare
IINF between different pairs of layers or time steps in the same multiplex network. More discussion about
possible normalization of IINF are provided in Section 5.

Consider the following simple cases which should serve as illustrative scenarios:

(1) Layer U and layer V are both independent Erdös–Rényi networks and they evolve to other indepen-
dent Erdös–Rényi networks in the next time step. Let us denote their probability for having an edge
between two nodes in each respective layer and time step as p(U t), p(V t) and p(V t+1). This repre-
sents the extreme case where two layers are totally independent and there is no information-theoretic
influence at all from layer U to layer V .

In such case, the information-theoretic influence is:

IINFt→t+1
U→V = I

[
Ut; V t+1|V t

]
= I

[
Ut; V t+1

]
= H

[
Ut

] + H
[
V t+1

] − H
[
Ut , V t+1

]
= H

(
0, p

(U t
)) + H

(
0, p

(V t+1
))

= 0 bit.

(3.11)

(2) Layer V is an Erdös–Rényi network with a static structure that does not evolve in time. Then no
matter what layer U is, the information-theoretic influence is:

IINFt→t+1
U→V = I

[
Ut; V t+1|V t

]
= H

[
Ut|V t

] + H
[
V t+1|V t

]
− H

[
Ut , V t+1|V t

]
= H

[
Ut|V t

] + 0 − H
[
Ut|V t

]
= 0 bit.

(3.12)

This represents the extreme case where layer V can be perfectly predicted from itself in the previous
time step and there is nothing more that we can learn from another layer no matter what.
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12 H. WU ET AL.

(3) Layer U and layer V are both independent Erdös–Rényi networks and layer V mimics layer U in
next time step, or formally V t+1 = U t . In this case, layer V fully depends on layer U in the previous
time step, therefore, it has maximum information-theoretic influence from layer U to layer V .

The information-theoretic influence then will be:

IINFt→t+1
U→V = I

[
Ut; V t+1|V t

]
= H

[
Ut|V t

] + H
[
V t+1|V t

]
− H

[
Ut , V t+1|V t

]
= H

[
Ut

] + H
[
Ut

] − H
[
Ut

]
= H

[
Ut

]
= H

(
p

(U t
))

.

(3.13)

(4) Layer U and layer V are both independent Erdös–Rényi networks and layer V is a combination of
layer U and layer V in next time step. For the extreme case, say in the next time step the existence
of an edge between two nodes in layer V is the xor of the existence of the edge between the same
pair of nodes in layer U and layer V in the previous time step, where layer V is determined by a
synergy effort of both layer U and layer V .

The information-theoretic influence then will be:

IINFt→t+1
U→V = I

[
Ut; V t+1|V t

]
= H

[
Ut|V t

] + H
[
V t+1|V t

]
− H

[
Ut , V t+1|V t

]
= H

[
Ut

] + H
[
V t+1

] − H
[
Ut

]
= H

[
V t+1

]
= H

(
ρ

(V t+1
))

,

(3.14)

where ρ
(V t+1

)
is the density of layer V in time step t + 1.

In all four extreme scenarios described above, our measure agrees with intuition, and for all other
scenarios the IINF will fall between these extreme cases. A few more practical examples are provided in
Appendices F, G and H.

3.6 Testing for statistical significance

When applied to empirical data, it is also important to be able to distinguish true signal from random
fluctuations. Fortunately, methods for statistical testing of information-theoretic measures have been
established and can be adopted easily.

According to Goebal et al. [39], in a joint probability distribution ω, consider three random variables
X, Y , Z . If X and Y are independent when conditioned on Z , then we can simply use the frequency as
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CORRELATED STRUCTURAL EVOLUTION WITHIN MULTIPLEX NETWORKS 13

an estimator for probability. The inferred conditional mutual information Î [X; Y |Z] by M independent
samples generated from ω is approximately gamma distributed:

Î [X; Y |Z] ∼ �

( |Z|
2

(|X | − 1) (|Y| − 1) ,
1

M ln 2

)
, (3.15)

where the alphabet for these random variables are X , Y and Z respectively. Applying this to network
data, where the presence of an edge is binary, therefore |X | = |Y| = |Z| = 2, the gamma distribution
then reduces to an exponential distribution, we find:

ˆIINFt→t+1
U→V ∼ Exp

(
1

M ln 2

)
, (3.16)

where M = N(N − 1)/2 is the number of possible edges in a network with N nodes. Then, for a given

pair of layers with ˆIINFt→t+1
U→V = a, the p-value would be the probability that Î

[
Ut; V t+1|V t

] ≥ a if Ut

and V t+1 are conditionally independent given V t . This provides a method to calculate p-values present
in real datasets. Section 4 uses it to establish when a correlation observed in the structural evolution is
statistically significant.

4. Applications: correlated structural evolution

Now that we have developed a measure to quantify the enhanced predictive power that one layer provides
about another during structural evolution of a multiplex network, we can show the applicability of the
method.

In this article, we restrict our analysis to only networks evolving at consecutive time steps in order to
give a simple and clear picture. This is analogous to a Markov assumption, or the even weaker assumption
that the most recent time step provides the most predictive single measurement. However, it is straight
forward to extend our framework to incorporate more time steps with more data as well. Some details
about such extensions are discussed later.

We present results for three kinds of multiplex networks that have intrinsically different correlation
patterns between their layers: political interactions between nation states, the commercial US airline
network made of multiple carriers and trade and alliance networks between nations. The differences
between these networks are highlighted here with details later. In the political events network, layers
are different types of actions and the correlations among the different actions are relatively stable over
time. In the airline network, layers represent the flight route maps of individual airline companies within
the USA and the IINF between them can change abruptly around certain events such as mergers. In the
ally-trade network of nation states, we have two categories of layers: one layer representing the alliances,
and then many other layers representing trade of distinct types of goods respectively, with correlations
among two trading layers distinct from correlations between the alliances layer and a specific trading
layer.

In all three domains, we demonstrate that IINF can quantify the correlated structural evolution and
be used to detect anomalies. We find that, in general, there is a strong statistically significant information
theoretic influence present in the correlated structural evolution between the layers of real-world multiplex
networks. Of course there are limitations and we will discuss them in Section 5.

Although we do not currently have prior knowledge about how to quantify this measure across
different multiplex networks, it is very useful when applied to a specific multiplex network. Indeed, the
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14 H. WU ET AL.

Fig. 3. IINF between 20 different classes of events during the period from 2012 to 2013, with event-types labelled by their corre-
sponding CAMEO code [40] (given in Appendix A). Each pixel represents the IINF from the event type in X-axis to the event type
in Y-axis. The values that are not statistically significant from 0 in a p = 0.001 level are omitted. The IINF from 03 (express intent
to cooperate) to 05 (engage in diplomatic cooperation) is much higher from 03 to 15 (exhibit military posture), which indicates that
knowing whether countries expressed intent to cooperate in the previous time step allows us to better predict whether they actually
engage in diplomatic cooperation, but knowing so will not help with better predicting actions such as military postures. We can
also see that actions coded by 01 to 05, in general, provide more power for predicting other layers but that the relationship is not
symmetrical.

IINF varies greatly for different pairs of layers within the same network. The IINF of the most strongly
coupled pairs of layers can be several orders of magnitude larger than the IINF of the majority of the rest,
which indicates a significant potential connection between how those layers choose to create or destroy
edges. Moreover, we also find a correspondence between IINF spikes and major events occurring in some
of the networks, which makes IINF a tool for probing potential shocks to network structures.

4.1 ICEWS events network

The Integrated Crisis Early Warning System (ICEWS) is an automatically generated dataset of inter-
national events [41]. The data contain multiple different types of political interactions between nation
states ranging from making statements about one another to conducting military operations against one
another. Using these data, we build a series of snapshots of this multiplex network of nation states over
distinct years, where each layer corresponds to a distinct type of interaction. During the 17-year time
period of our data, spanning from 1997 to 2013, the IINF pattern is stable with just small fluctuations
(see Appendix C). We show in Fig. 3 the typical behaviour of the pattern for the transition between two
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CORRELATED STRUCTURAL EVOLUTION WITHIN MULTIPLEX NETWORKS 15

recent years. Thus we can use such stable patterns to help promote future predictions. This is in contrast
to what we will show next in the airline networks, where IINF patterns can rapidly spike. The yearly
transitions of a full 17-year period for the ICEWS data, in addition to the weekly transitions of a recent
period, can be found in Appendices C and D.

We find that the relative correlation strength observed between layers is consistent with intuition. As
mentioned in a previous section, the diagonal elements measure the IINF from a layer to itself IINFU→U
and they are always zeros. IINF is a directional measure and is not symmetric, which means extra
information can be more easily gained from one direction of evolution over the other. For example, we
find that the IINF from both action 03 (express intent to cooperate) or action 04 (consult) to action 05
(engage in diplomatic cooperation) is quite high when compared to other actions, indicating that knowing
whether countries expressed intent to cooperate or consult in the previous time step allows us to better
predict whether they actually engage in diplomatic cooperation in the current time step. In contrast, the
IINF from action 03 or action 04 to action 14 (protest) or action 15 (exhibit military posture) is relatively
low, indicating that knowing whether countries expressed intent to cooperate or consult in the previous
time step does not allow us to better predict the onset of actions such as protests and military posturing.
Note that our measure only quantifies the strength of the influence, it does not establish whether the
influence is in the positive or negative direction.

Consistent with the use of information theory, IINF can be related to how much information a source
layer has and how much extra information can be possibly gained with this knowledge in a target layer.
This explains some of other features in Fig. 3. For instance, events with code 20 (use of unconventional
mass violence) happen rarely and contain little information. As such, they are very hard to predict from
the occurrence of other actions (i.e. the row for code 20 has entries that are mostly close to 0). Code 20
actions also provide little information for predicting other actions (i.e. the column for code 20 has entries
that are mostly close to 0). Actions with codes 01 to 05 contain more information useful for predicting
events such as 11, but in general those actions are difficult to predict given other actions (i.e. the columns
for codes 01 to 05 have higher values than other columns, but the rows do not).

4.2 US airline network

The USA Department of Transportation, Bureau of Transportation Statistics maintains a public database
of the monthly report it receives from all certified USA air carriers [42]. Every domestic flight segment
is recorded therein. For our purposes, we focus on the ‘scheduled passenger service’ flights as this is
representative of the air carriers’ regular flight network structure. We do not include flights such as ‘non-
scheduled passenger service’ flights and flights with no passengers as they occasional and ad hoc and do
not seem to reflect a carrier’s network-building strategy.

We find that the spikes observed in IINF often are important signals, revealing the interactions between
different layers. To demonstrate such a result, we first show that when a relatively high spike in IINF is
observed between two layers, we often find co-occurring real-world events associated with this spike.
Conversely, we also provide evidence that when an expected event with high impact happens, such as a
merger between carriers, we see a spike in the IINF measure.

Figure 4 shows how IINF behaves between the 15 major airline companies during a 17-year period.
In general, there are statistically significant information flows between all carrier pairs. However, when
comparing this to the IINF values present in the ICEWS events network, the magnitude of the values in
the airline network are generally much lower, which suggests that the amount of influence between layers
is much smaller in airline networks than in the ICEWS network. Another notable observation is that a
transition happened during 2001 which could be related to the September 11 attacks (also referred to as
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16 H. WU ET AL.

Fig. 4. IINF between 15 major carriers from 1997 to 2013. (The IATA codes are indicated for every other carrier in each figure, the
full list from top to bottom and also left to right are: AA, DL, NK, UA, EV, WN, US, YX, AS, MQ, ZW, QX, HA, FL, F9.) Each
distinct panel is the IINF between two distinct consecutive years, with each pixel representing the strength of IINF from the carrier
in X-axis to the carrier in Y-axis. Values that are not statistically significant from 0 at the p = 0.001 level are omitted. In general,
we can see that the interactions among carriers decreased significantly after the 9/11 attacks. After that, there are a few cases with
unusual spikes in IINF. These are generally explainable by large events. For example, in 2009 (blue circle), Midwest Airlines (YX)
is acquired by Republic Airways. The latter inherited the same IATA code from the former. They then adjusted the flight routes to
compete with US Airways (US) and Air Wisconsin (ZW). Also in 2005 (green circle), Air Wisconsin (ZW) invested heavily into
US Airways (US) and signed a long-term contract operating as US Airways Express.

9/11) [43]. The information-theoretic influence was higher before the attacks and fell-off dramatically
after it. This suggests that heavy regulation after 9/11 may have had a significant impact, preventing
carriers from adjusting their route map relative to other carriers.

We now demonstrate a correspondence between spikes in IINF and significant real-world events. We
manually identified the top three, post-9/11, IINF hot-spots and corroborated that each one corresponds
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CORRELATED STRUCTURAL EVOLUTION WITHIN MULTIPLEX NETWORKS 17

Fig. 5. Changes in IINF during three different large merger events between air carriers showing a spike in IINF as the carriers merge.
(Note that carriers are required to continue reporting separately for one more year beyond the official merger date.) American West
Airlines (HP) merged with US Airways (US) in 2005. Northwest Airlines (NW) merged with Delta Air Lines (DL) in 2008 (The
additional green solid line is Mesaba Airlines (XJ) who was operating routes for NW). Continental Airlines (CO) merged with
United Airlines (UA) in 2010. The statistical significance level for IINF is also included.

to some associated event, including an acquisition and the signing of a long-term cooperation contract, as
explained in the caption of Fig. 4. This is consistent with our expectation that carriers adjust their flight
routes to take into account the routes of the carriers that they acquire or sign major contracts with. When
it is know in advance that mergers are underway, it is expected that the merging carriers will adjust their
flight networks accordingly, and we hypothesize that this will result in an increase in IINF. Note that after
a merger, carriers are still required to separately report their flight information for one additional year
which allows us to corroborate this hypothesis with our dataset. Figure 5 shows details for three different
airline carrier mergers.

We also provide a heatmap of IINF among all 60 air carriers in recent years in Appendix E. It is
interesting to note that IINF between major carriers is generally larger than among smaller carriers and
with more frequent spikes.

4.3 Alliance and trade network

To study the alliance and trade network between nations, we combined two different datasets. The
trade network is compiled from the publicly accessible COMTRADE data maintained by the United
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18 H. WU ET AL.

Fig. 6. (a) The IINF from all the trade layers to the alliance layer is not statistically significant at a p = 0.001 level. (b) The
values of IINF from the alliance layer to the trade layers are statistically significant at a p = 0.001 level. and normally distributed
around non-zero values, which indicates the information flows from alliance to trade relationships are unidirectional and somewhat
ubiquitous. (The p = 0.001 level corresponds to an IINF of 0.0034. It falls within the first bin and we omit it for aesthetic reasons.)
This could be due to the relative stability of the alliance network in the short term and quantifies prior arguments based on political
and economic reasoning.

Nations [44]. This dataset includes yearly trade information for many different categories of goods
which are hierarchically classified into a 6-digit system. For example, code 260111 represents ‘Iron ore,
concentrate, not iron pyrites, unagglomerate’, 2601XX represents ‘Iron ores’ and 26XXXX represents
‘general ores and concentrates’. In this research, we limited ourselves to an aggregation to the first two
digits to get a denser and more reliable network, which results in a 96-layer network where each layer is
a distinct trade category of commodities.

The alliance network is generated from the Alliance Treaty Obligations and Provisions Project [45],
containing the alliance treaties signed by nation states. We manually matched these two datasets to
construct a multiplex network with one alliance layer and 96 trade layers and then studied the IINF
between all the distinct alliance and trade layer pairs.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/8/2/cnaa014/5849334 by C
olum

bia U
niversity user on 03 M

arch 2021



CORRELATED STRUCTURAL EVOLUTION WITHIN MULTIPLEX NETWORKS 19

We find that for this discrete-time formulation, the IINF is unidirectional, from the alliance network
to the trade network, corroborating prior research establishing this fact from political and economic
considerations [7]. Figure 6 shows that at this yearly time scale there is no statistically significant non-
zero IINF from any commodity trade network to the alliance network, but for different commodities there
is typically some information that can be gained from knowledge of the alliance network in the previous
year. This means that in the short term we can use the alliance network to help predict the change in the
trade network but not vice versa. We also notice that the information flows from the alliance network to
trade networks are small, and there is no statistically significant difference when comparing IINF values
to different commodity layers. Thus we can say, at least at this level of aggregation of the commodity
categories, each category receives roughly the same IINF from the alliance network.

5. Conclusions

We have shown that it is possible to use the edge set of a multiplex network to construct a joint probability
distribution characterizing the network. Information-theoretic measures over this probability distribution
enable us to quantify correlations between pairs of layers, including temporal considerations. To specif-
ically capture the extent of correlation present in the structural evolution between pairs of layers in a
multiplex network, we introduce a measure called the information-theoretic influence (IINF) which is
based on conditional mutual information. Applying this to several empirical datasets, we find that the
extent of information sharing between different pairs of layers can vary dramatically in real-world multi-
plex networks with some sets of layers evolving in a highly correlated manner while other layers evolve
independently, especially when the number of layers is large.

In addition, we show that IINF also detects asymmetric relationships between layers. For instance,
political scientists theorize that for short-term considerations the influence between trade and alliance
networks is unidirectional: that the alliance network drives the trade network, but that there is signifi-
cantly less influence the other direction [7]. Our IINF measure quantifies this phenomena showing that,
conditioned on the previous time step, a trade network provides no information for predicting the alliance
network in the next step, but the alliance network does provide information for the evolution of trade
networks.

Furthermore, our approach of mapping a multiplex network onto a joint probability distribution allows
for many other information measures to be calculated. One potential direction is to use the newly developed
autonomy of three-way mutual information, related to synergy and redundancy of information, to divide
three-way mutual information into two types of factors [46]. One might be able to identify different
signatures for different types of correlations present, such as cooperative or competitive. Likewise, one
may be able to use these three-way measures to identify the higher-order organization in a system, beyond
the dyadic organization.

We used IINF to understand the structure and structural evolution internal to several real-world net-
works, but we do not currently use IINF to compare different networks. One of the major challenges is
that the edge density in a particular multiplex network can affect the magnitude of all of our measures.
This does not pose a problem for the results here, since we compare features within the same multiplex
network. However, extending our method to comparing measures among different multiplex networks
requires a proper way to normalize IINF across networks of different sizes and types of probability distri-
butions. There are many ways to normalize the results so that different perspectives can be brought into
consideration. For instance, the IINF I

[
Ut; V t+1|V t

]
can be normalized by either the entropy H

[
V t+1

]
or the conditional entropyH

[
V t+1|V t

]
. These, respectively, would consider the ratio of IINF to the max-

imum information that can actually be obtained from the data with the layer V in time step t + 1 itself,
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20 H. WU ET AL.

or the layer V in time step t + 1 conditioned on layer V in time step t. As our intent here is to use IINF
within an individual multiplex network, we leave normalization considerations for future work.

Of course there are many ways to refine the considerations introduced herein. For example, the
assumption that all the multiplex edge vectors are drawn from a same joint probability distribution is
not always valid. Such an assumption is analogous to the foundational Erdös–Rényi model but ignores
important characteristics found in empirical networks such as degree distribution or clustering coefficient.
In future works, it may be possible to extend our method to include such features by building a probability
distribution over the multiplex edge set of higher-order than the simple edge-existence considered here.
Similarly, the weaknesses [9, 10] of the conditional mutual information should be addressed explicitly in
future efforts. However, we believe this provides a useful framework for quantifying correlations present
between layers in a multiplex network including in their co-evolution.

Acknowledgements

We thank Brandon Kinne and Martin Hilbert for many useful discussions and for providing us with the
ICEWS and COMTRADE datasets. We are grateful to a number of others from the SPINS, complexnets
and Complexity Sciences Center at UC Davis who provided insightful discussions and feedback.

Funding

U.S. Army Research Office under Multidisciplinary University Research Initiative (Award No. W911NF-
13-1-0340) and Cooperative Agreement No. (W911NF-09-2-0053); the U.S. Department of Defense
Minerva (W911NF-15-1-00502); DARPA (Award No. W911NF-17-1-0077); and Intel Corporation
through the Intel Parallel Computing Center at the UC Davis Complexity Sciences Center.

References

1. Newman, M. (2010) Networks: An Introduction. New York, NY, USA: Oxford University Press.
2. Zanin, M. (2015) Can we neglect the multi-layer structure of functional networks? Phys. A, 430, 184–192.
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Appendix

A. CAMEO code for ICEWS data

Table A1 gives the codebook for different layers classified with CAMEO code [40] in the ICEWS data.
Each layer corresponds to a different type of interaction between nation states. Refer to the codebook
cited for more details.

Table A2 is a sample of the explanation taken from the codebook for a subcategory of 01 (MAKE
PUBLIC STATEMENT).

B. Mutual information in real multiplex networks

Mutual information explained in Section 3.3 can be used to quantify the correlation between two layers
in a multiplex network when defined as described in the main text. It provides a principled way of
quantifying the relationships between layers without assumptions such as linear correlation and it frees
us from consulting a null model to verify that the correlation is not from sheer randomness. With the
maturity of information theory, we can also easily obtain many statistical tools to test the significance of
the results.

We apply this measure to different data sets and report here in Figs B1, B2 and B3. Figure B1
shows the mutual information for four biological interaction network built from the BioGrid dataset [47].
The multiplex networks represent different types of interactions between proteins/genes in four different
species. Figures B2 and B3 give the mutual information between layers in the Transtat and ICEWS
datasets described in Sections 4.2 and 4.1, respectively. Note that mutual information between layers is
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Table A1 CAMEO codes used in the ICEWS dataset.

Code Meaning

01 MAKE PUBLIC STATEMENT
02 APPEAL
03 EXPRESS INTENT TO COOPERATE
04 CONSULT
05 ENGAGE IN DIPLOMATIC COOPERATION
06 ENGAGE IN MATERIAL COOPERATION
07 PROVIDE AID
08 YIELD
09 INVESTIGATE
10 DEMAND
11 DISAPPROVE
12 REJECT
13 THREATEN
14 PROTEST
15 EXHIBIT FORCE POSTURE
16 REDUCE RELATIONS
17 COERCE
18 ASSAULT
19 FIGHT
20 USE UNCONVENTIONAL MASS VIOLENCE

Table A2 Sample CAMEO code from codebook.

CAMEO 011

Name Decline comment
Description Explicitly decline or refuse to comment on a situation.
Usage Notes This event form is a verbal act. The target could be who the

source actor declines to make a comment to or about.
Example NATO on Monday declined to comment on an estimate that

Yugoslav army and special police troops in Kosovo were
losing 90 to 100 dead per day in NATO air strikes.

symmetric:

I[U; V ] = I[V ; U]. (B.1)

The diagonal elements are mutual information between one layer and itself,

I[U; U] = H[U] (B.2)
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Fig. B1. Mutual Information between layers in four different biology networks. The elements on the diagonal can be seen as layers’
entropy.

therefore can been seen as the entropy of the layer and all other mutual information are strictly less
than the entropy. As mentioned in Section 3.3, these results show a great variety of correlation strength
between different layers. Note that these figures use log scales and there could often be several orders of
magnitudes difference between different layers.

C. Stable patterns in ICEWS data

In Section 4.1, we show a typical pattern of the IINF in ICEWS data, here we provide a 17-year period
of IINF in ICEWS data demonstrating the patterns of IINF among different years remain to be similar.
This is indicating that the underlying mechanism of how different types of interactions affect each other
holds constant over the studied time period. In contrast, we see that in airline networks the influence of
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Fig. B2. Mutual Information between airline carriers in 2013. Carriers are ordered from left to right and top to bottom and every
other carriers are labelled. The values that are not statistically significant from 0 in a p = 0.001 level are truncated. The elements
on the diagonal can be seen as layers’ entropy.

one carrier upon another changes over time which reflects the changing interaction among carriers over
different years. This can be seen in Fig. C1.

D. Time scale and aggregation

When applying the information-theoretic influence to quantifying the correlated structural evolution of
multiplex networks, one must also be aware that this measure is sensitive to the choice of time step like
transfer entropy. Here, we provide a weekly IINF of ICEWS data for comparison in Figs D1 and D2.

The result from weekly snapshots is qualitatively similar to what we have from yearly snapshots. The
patterns remain stable with slight variations. Quantitatively, the magnitude of weekly IINF is smaller
which indicate a weaker influence between layers. This is suggesting that for a shorter time period, how
one types of interaction helps predicting another is qualitatively similar to a longer time period, but the
predicting power is weaker and more volatile.

Another notable factor is how the layer is constructed from the data. Often times there are many
ways to interpret data into a multiplex network, the correlated structural evolution according to those
different constructions are likely to behave differently as well. As an example, ICEWS data can also
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Fig. B3. Mutual Information between layers in ICEWS events network from 1997 to 2012. Types of interactions are labelled by
their CAMEO codes from 01 to 20, ordered from left to right and top to bottom. The elements on the diagonal can be seen as layers’
entropy.

be classified into a multiplex network using events’ penta class, which is a higher level aggregation of
CAMEO code [48]. The results with this method is also presented here. This specific observation also
shows a potential direction we could pursue. By minimizing the information-theoretic influence between
layers, we might be able to divide a multiplex network into a few relatively independent components and
study them independently.

E. IINF of airline network

See Fig. E1 for the information-theoretic influence among airlines between the years 2012 and 2013.
There are two notable points as mentioned in Section 4.2: the IINF varies greatly among layers and most
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Fig. C1. IINF between layers in ICEWS events network from 1997 to 2013. Types of interactions are labelled by their CAMEO
codes from 01 to 20, ordered from left to right and top to bottom. The elements on the diagonal are all 0 by definition.

of influence happens between major carriers, suggesting that some carriers influence each other much
more and those influence happen more frequently among major carriers that may be caused by their
cooperation or competition.

F. MI and IINF in network formation

At the first glance, it may not be clear whether this framework also works for network formation models
beyond Erdös–Rényi, but a carefully thought could show that it is not unreasonable to apply it to others.
Let’s consider a configuration model where two layers are independently generated from two arbitrary
degree sequences. For every pairs of nodes i, j, the probability that there is an edge between i and j in
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Fig. D1. IINF between layers in ICEWS events network during first 26 weeks of 2014. Types of interactions are labelled by their
CAMEO codes from 01 to 20, ordered from left to right and top to bottom. The elements on the diagonal are all 0 by definition.

layer U is p
(
Uij

)
. The estimated mutual information and information-theoretic influence through our

method then will still be 0 since p
(
Uij|Vij

) = p
(
Uij

)
for all the edges.

G. MI and IINF for random rewiring

Consider a network with N nodes and M edges, let � = N(N − 1)/2 and ρ = M/�. If we randomly
rewire k edges in such a network, the mutual information between the network before rewiring and after
rewiring is then:

I
(
G; G′) = H (ρ) −

[
ρH

(
k

M

)
+ (1 − ρ) H

(
k

� − M

)]
. (G.1)
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Fig. D2. IINF between layers in ICEWS events network during first 26 weeks of 2014. Aggregated to penta class [48]. The elements
on the diagonal are all 0 by definition.

Suppose instead we have two networks G and H both with N nodes and M edges and rewire k edges
of G results G′ that is the same as H, then the information-theoretic influence is:

IINFH→G = I
(
H : G′|G)

= ρH

(
k

M

)
+ (1 − ρ) H

(
k

� − M

)
.

(G.2)
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Fig. E1. IINF between all pairs of carriers in 2012–2013 in log scale. Carriers are ordered from left to right and top to bottom and
every other carriers are labelled. The values that are not statistically significant from 0 in a p = 0.001 level are truncated. Here,
we can see that the information-theoretic influence are mainly between those major carriers. Smaller carriers are generally neither
influential nor influenced by others. The elements on the diagonal are all 0 by definition.

H. IINF during merge

Consider two networks G and H with N nodes and M1 and M2 edges, respectively. Suppose the number
of overlapped edges are k and G′ is the simple aggregation between G and H, then we have:

IINFH→G = I
(
H : G′|G)

= H

(
M2 − k

� − M1

)

− M1

�

[
H

(
M2 − k

� − M1

)
+ H

(
k

M1

)] (H.1)
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