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Detection of Intracranial Hypertension using Deep Learning
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Abstract

Intracranial Hypertension, a disorder characterized by elevated pressure in the brain, is typically 

monitored in neurointensive care and diagnosed only after elevation has occurred. This reaction-

based method of treatment leaves patients at higher risk of additional complications in case of 

misdetection. The detection of intracranial hypertension has been the subject of many recent 

studies in an attempt to accurately characterize the causes of hypertension, specifically examining 

waveform morphology. We investigate the use of Deep Learning, a hierarchical form of machine 

learning, to model the relationship between hypertension and waveform morphology, giving us the 

ability to accurately detect presence hypertension. Data from 60 patients, showing intracranial 

pressure levels over a half hour time span, was used to evaluate the model. We divided each 

patient’s recording into average normalized beats over 30 sec segments, assigning each beat a 

label of high (i.e. greater than 15 mmHg) or low intracranial pressure. The model was tested to 

predict the presence of elevated intracranial pressure. The algorithm was found to be 

92.05± 2.25% accurate in detecting intracranial hypertension on our dataset.

I. Introduction

In patients suffering from traumatic brain injuries, intracranial pressure is a metric closely 

monitored because, during hypertension episodes, they become susceptible to a host of other 

serious complications. Standard treatment of hypertension requires fluid drainage through 

lumbar puncture or surgically placed CSF valves, should drug therapy be unsuccessful or not 

recommended. Through our Deep Learning model, we hope to provide a framework for 

clinicians to treat hypertension in a proactive manner.

Recent improvements in computer hardware and interest in big data have led to 

advancements in machine learning. One sub-field of machine learning that holds immense 

promise for biomedical imaging applications is Deep Learning [1], [2]. It has proven to be 

an effective method of pattern recognition and has been applied to a wide variety of 

problems, including handwritten character recognition [3], face detection [4], anatomical 

classification [5] and speech recognition [6]. These systems could provide valuable inputs to 

physicians in terms of computer-aided diagnosis, image segmentation, image annotation, 

image registration, and multimodal image analysis. Convolutional Neural Networks (CNN), 

a form of Deep Learning, has been shown to excel in categorization of data through learning 

of characteristic features [7]. The use of convolution is especially advantageous for imaging 

and signal analysis because there is no reliance on specific spatial arrangements of inputs, 

allowing patterns to be recognized regardless of misalignment. Its application in the medical 
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field, however, is limited because of low training efficiency as well as implementation 

complexity. The advent of modular methods of Deep Learning has largely solved these 

issues, giving researchers the ability to utilize these algorithms while minimizing 

development time.

Numerous studies have been conducted suggesting use of machine learning methods and 

probabilistic frameworks to understand the characteristics in waveform morphology linked 

to elevated intracranial pressure [8], [9], [10]. A study by colleagues at UCLA demonstrated 

key relationships between ICP sub-peaks and hypertension [11]. Using the Morphological 

Clustering and Analysis of Intracranial Pressure (MOCAIP) algorithm, they were able to 

identify 24 metrics to be used as inputs to a quadratic classifier function. This method, 

however, requires manual search over a large number of features to find an optimal solution. 

Further studies suggested a more efficient use of MOCAIP through Linear Regression 

Analysis in conjunction with Randomized Decision Trees to generate a predictive model an 

AUC score of 0.98 [12]. Accessibility remains an issue because these models are not easily 

understood by bedside clinicians, limiting their practical use.

Detection of elevated ICP is a clinically relevant problem in that, for patients suffering from 

traumatic brain injuries, alarms are utilized to alert nurses of elevated pressure levels. These 

bedside alarms can have high false positive rates, taking valuable time away from clinicians 

and creating alarm fatigue [9]. An accurate method for detecting elevated ICP levels would 

enable clinicians to spend less time addressing false alarms, increasing overall response and 

treatment times in Intensive Care Units.

In this paper, we investigate the use of CNN’s to automatically extract features in waveform 

morphology that are linked to intracranial hypertension. By not defining the feature set, we 

give the system the freedom to recognize any properties that are characteristic of 

hypertension, providing an unbiased analysis of the waveforms. A CNN operates by training 

on labeled data to create filters that, when convolved with new inputs, generate outputs that 

detect proper hypertension classification. Following training, these filters and their 

respective outputs can be further analyzed to understand what patterns the system is 

identifying, perhaps revealing previously unknown connections between morphology and 

hypertension.

II. Methods

A. Dataset Acquisition and Properties

The dataset originates from the University of California, Los Angeles (UCLA) Medical 

Center, with approval from the institutional review board (IRB) for use in this study. This is 

a retrospective study on patients who were being treated for various intracranial pressure 

related conditions including idiopathic intracranial hypertension, Chiari syndrome, and slit 

ventricle patients with clamped shunts. A total of 60 patients were considered for this study 

and their ICP and electrocardiogram (ECG) signals were recorded continuously. ICP was 

sampled continuously at 400 Hz using an Codman intraparenchymal microsensor (Codman 

and Schurtleff, Raynaud, MA) placed in the right frontal lobe. An expert researcher 

retrospectively identified intracranial hypertension (IH) episodes and annotated the time of 
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the elevation onset, elevation plateau, and invasive cerebrospinal fluid drainage in each 

patient recording. Within our cohort, 30 patients did not present any IH episodes and were 

excluded from the study. An additional 5 patients were excluded due to signal drop and 

artifacts that did not let the expert identify IH episodes with a high level of confidence. A 

total of 70 IH episodes were extracted from the ICP signal of the remaining 25 patients. 

Each segment included 20-minute of data, capturing the transition from a state of normal (0–

15 mmHg) to elevated ICP (> 15 mmHg). The segments were time-aligned such that they 

contain 15 min of data before the plateau and 5 min after.

The data used for training and testing consisted of 89, 174 ICP beat samples collected from 

25 patients. Figure 1 gives a visualization of a single ICP beat sample. Prior to 

normalization, the labels were generated based on each beat’s pressure level; 1 for levels 

above 15 mmHg and 0 for those below, leading to a binary classification problem. Each beat 

sample was scaled to a length of 200 time points and normalized to range [0, 1].

B. Normalization

Because the ICP beat segments are of variable size, it is necessary to scale each signal f(x) to 

a uniform length without losing any pertinent information. We make use of Cubic 

interpolation to accomplish this, providing a higher order precision than that of linear 

approximation [13]. The scaled output fscaled(x), defined over a new interval [a, b] with N 
points, is calculated as a convolutional operation,

where the xk, ck, and the cubic kernel u(υ) are defined as

The beat segments are then normalized to range [0, 1] using rescaling,
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generating for each segment a vector of values [Z⃗1 … Z⃗M].

C. Deep Learning Model

The main contribution of this work is to provide a framework for the hypertension detection 

that consists of a two major components: an autoencoder and a convolutional neural 

network. Autoencoders are a form of unsupervised learning that utilize neural networks to 

generate encoded representations of data and, if used as a pre-training method, have been 

shown to improve the performance of deep networks [14], [15]. This form of pre-training 

consists of training the autoencoder on beat samples and then using the generated layers to 

initialize a neural network, allowing it to perform supervised learning on these encoded 

representations.

D. Neural Network Components

1) Convolutional Layer—In constructing a Neural Network, we are able to generate 

learnable filters that can identify features linked to an input’s proper classification. 

Convolutional layers can consist of many filters and, when stacked together, can expand the 

number of detectable features used for learning. For each layer’s filter, the convolutional 

operation between filter W and input x is calculated as

The activation function is then applied to f(τ), providing a standardized measurement of the 

convolutional outputs. Use of a rectifier function

has been shown to create networks that converge faster than those utilizing sigmoidal or 

hyperbolic functions [7].

2) Max-Pooling Layer—The ability of CNN’s to extract features can be computationally 

intensive due to the large number of parameters present. To combat this, max-pooling can be 

used to select only key values in a local region, disregarding other non-critical elements and 

thereby reducing the number of network parameters. The input, with length N, is divided 

into  sub-regions, each of length L, and from each sub-region a single maximum value is 

sampled. The result,
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is a down-sampling that maintains the relative locations of the local maxima.

3) Dense Layer—Dense layers operate through element-wise multiplication of an input xm 

and a filter matrix wmn that is summed and passed through an activation function.

These dense outputs can generate meaningful probabilistic results through use of a softmax 

activation, shown to be an effective output stage for classification in CNN’s because its 

ability to characterize multi-class regressions [7], [16]. The softmax activation gives a 

likelihood function

for input xj and model parameter vectors θk. A maximum likelihood estimator is then used 

to predict the correct label

E. Back-Propagation

Proper weight calibration can be achieved using a feed-forward back-propagation algorithm 

that is able to fine-tune each filter’s parameters through gradient descent of an error function 

E. For predicted labels Lj and ground truths yj, the categorical cross-entropy error is defined 

as

Upon each feed-forward iteration, consisting of the layers mentioned in prior sections, the 

gradient of the error with respect to the layer weights is calculated using the chain rule

where uj and yj are the inputs and outputs of a given network layer. The weights wi are 

adjusted in the direction of the negative gradient, thus decreasing the error function’s value.

F. Autoencoder Structure

Autoencoders consist of two stages: an encoder and a decoder that consist of opposite layer 

structures. An encoder transforms the data into feature space using a combination of 

convolutional, max-pooling, and dense layers. The output is then fed into a decoder that 
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attempts to reconstruct the original signal through upscaling and convolution. Upscaling is 

performed to reverse the effects of max-pooling and can be implemented using nearest-

neighbor interpolation. Autoencoder training is performed in an unsupervised fashion, where 

the objective is to minimize the squared error E = (X⃗ − Y⃗)2 between the original data X⃗ and 

reconstructed data Y⃗. Feed-forward back-propagation is used to perform layer-wise training 

of the autoencoder.

III. Experiments

A. Training Process

Following normalization of the ICP beats, the autoencoder was trained over 20 epochs with 

a learning rate of σ = 0.01 to create encoded outputs of size 20. Figure 2 shows the 

autoencoder’s layer architecture, consisting of a encoder and decoder stage. The final 

weights of the encoder were used as pre-training for the neural network, using the encoded 

inputs to perform learning.

Our CNN model was constructed using 3 layers: 2 convolutional layers, and a dense output 

layer, with the convolutional layers each consisting of 10 filters with size 5. A grid search 

was used to determine the combination of these layer parameters that minimized training 

loss, finding that a large number of filters had little effect on detection accuracy.

The CNN layer structure described is detailed in Table I and visualized in Figure 2. A 

learning rate of σ = 0.1 was used to train the network in a supervised fashion on the beats 

and their respective binary labels over 50 epochs. The network was then used as a model for 

hypertension detection by applying the trained layers on new beat samples to retrieve a 

binary output.

B. Results

The CNN model described was trained and tested on 76,137 beat samples using 3-fold 

cross-validation. The data was divided into three equal sets of 25,379 samples where we 

performed training on two sets and testing on the remaining set, repeating the process for 

each set. The model was found to correctly detect elevated levels of ICP with 92.05 ± 2.25% 

accuracy. In terms of performance, we can see in Table II that use of an autoencoder for pre-

training enhances the CNN’s detection accuracy. Table III summarizes the binary 

classification metrics of the network on these test samples. These results indicate that 

Convolutional Neural Networks are effective in characterizing ICP waveform morphology 

for detection of intracranial hypertension.

The autoencoder weights (Fig 3.) appear to resemble segments of ICP beat waveforms, 

indicating features, as opposed to noise, are being learned. In Figure 4, we see the shape of 

the network’s loss function decays exponentially towards an asymptote, confirming that the 

model is learning at an appropriate rate [17] [18]. The curve approaching this asymptote 

after 30 epochs indicates an appropriate number of training cycles were performed. We also 

see that the CNN’s validation accuracy increases as loss decreases (Fig. 5), indicating that 

the network is learning and its predictive power rises as a result.
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IV. Discussion

The results of our experiments indicate that deep neural networks are able to accurately 

detect intracranial hypertension in patients using waveform morphology. Among Deep 

Learning methods, CNN’s provide the unique ability to extract features from a signal in a 

translationally invariant manner, allowing us to objectively analyze these data. Because of 

the capability of Deep Learning to generate complex functions, over-fitting becomes an 

issue during the training phase, preventing the model to generalize well over new data. 

Using autoencoder pre-training, we are able to guide the network to perform learning on 

waveform characteristics, which we know to be predictive of hypertension [19].

A major difficulty in designing both the autoencoder and CNN frameworks was the selection 

of layer parameters. For each convolutional layer, an arbitrary number of filters and filter 

sizes could be used, giving us hundreds of possible combinations to choose from. The lack 

of theoretical methods for layer parameter selection meant manual search was required. A 

systematic search over a wide range of parameters might lead to further improvement in 

accuracy and will be considered as future work.

While these results are promising, fully evaluating the model’s performance requires a more 

extensive test set. Testing on an independent set does not ensure the data is uncorrelated and 

further analysis is needed to understand how generalizable the network is.

Despite these concerns, use of Deep Learning has demonstrated to be a viable approach for 

intracranial hypertension detection. The natural extension to the issue addressed is the ability 

to perform predictions prior to onset, analyzing instead waveforms of low ICP levels to 

predict when hypertension is likely to next occur. Clinically, such a feat would be ground-

breaking and enable patients to be treated in a proactive manner, reducing the need for 

surgical procedures.

Accurately measuring intracranial pressure is also an invasive process, requiring a hole to be 

drilled into the skull for placement of a monitoring device. Non-invasive techniques for 

measuring ICP have been researched, one study suggesting the use of cerebral blood flow 

velocity (CBFV) as a predictor of ICP pulse shape [20]. Advancements in prediction 

methods and analysis of CBFV-ICP relationships could be the key to providing clinicians 

with truly non-invasive procedures for predicting and treating intracranial hypertension.

V. Conclusion

Neural networks, and Convolutional Neural Networks (CNN) in particular, have shown to be 

effective in learning properties of ICP beat waveforms to detect the presence of intracranial 

hypertension. Methods to characterize hypertension in a non-invasive manner have been 

extensively researched, but still have not been realized. We anticipate the Deep Learning 

model described in this paper to be a stepping stone towards achieving this goal.
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Fig. 1. 
ICP waveform indicating pressure levels in mmHg versus time in ms.
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Fig. 2. 
The top figure depicts the encoder and decoder stages used to train the autoencoder. The 

bottom figure is a full representation of the CNN detection model that utilizes autoencoder 

pre-training.
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Fig. 3. 
Encoder weights generated from training on ICP beat samples.
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Fig. 4. 
Training loss versus number of epochs completed. The curve begins to approach an 

asymptote after 30 epochs.
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Fig. 5. 
Validation accuracy versus number of epochs completed. The increasing curve indicates the 

model is learning as opposed to over-fitting.
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TABLE I

Neural network layer architecture

Layer Type Size

Input 200 samples

Convolutional 10 filters × 5 samples

Max-Pooling 4 samples

Dense 20 outputs

Convolutional 10 filters × 5 samples

Convolutional 10 filters × 5 samples

Dense 2 outputs
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TABLE II

Comparisons of Model Performance

Learning Model Accuracy

Autoencoder + CNN 92.05%

CNN 87.19%

Regression 73.55%
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TABLE III

Results of the network on 7,694 beat samples

Metric

True Positive Rate (TPR) 93.74%

True Negative Rate (TNR) 91.20%

False Positive Rate (FPR) 8.80%

False Negative Rate (FNR) 6.26%

Total Accuracy 92.05%
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