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Highlights         24 

● A new signal processing algorithm identifies seasonal transitions from daily flow data. 25 

● Application to 223 unimpaired gages in California highlights algorithm performance. 26 

● Algorithm identifies statistically distinct seasonal timing across diverse flow regimes. 27 

Abstract 28 

Seasonal flow transitions between wet and dry conditions are a primary control on river conditions, 29 

including biogeochemical processes and aquatic life-history strategies. In regions like California with 30 

highly seasonal flow patterns and immense interannual variability, a rigorous approach is needed to 31 

accurately identify and quantify seasonal flow transitions from the annual flow regime. Drawing on 32 

signal processing theory, this study develops a transferable approach to detect the timing of seasonal 33 

flow transitions from daily streamflow time series using an iterative smoothing, feature detection, and 34 

windowing methodology. The approach is shown to accurately identify and characterize seasonal flows 35 

across highly variable natural flow regimes in California. A quantitative error assessment validated the 36 

accuracy of the approach, finding that inaccuracies in seasonal timing identification did not exceed 37 

10%, with infrequent exceptions. Results for seasonal timing were also used to highlight the 38 

statistically distinct timing found across streams with varying climatic drivers in California. The 39 

proposed approach improves understanding of spatial and temporal trends in hydrologic processes and 40 

climate conditions across complex landscapes and informs environmental water management efforts 41 

by delineating timing of seasonal flows. 42 

 43 

Keywords 44 

Streamflow hydrology, environmental flows, time series analysis, California 45 
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1. Introduction 48 

Streams and rivers in semi-arid/Mediterranean climates are physically, chemically, and biologically 49 

driven by predictable, seasonal periods of wet and dry conditions over an annual cycle (Gasith and 50 

Resh, 1999). Seasonal flow regimes support predictable river processes such as disturbance regimes 51 

(Rood et al., 2005), seasonal habitat provision (Aadland, 1993, Booker and Acreman, 2007, Jacobson, 52 

2013), and native species life-history cues (Yarnell et al., 2010). While streamflow characteristics 53 

including magnitude, duration, frequency, and rate of change are useful for describing components of 54 

the flow regime (Poff et al., 1997), the timing of seasonal flow transitions within the annual flow 55 

regime is particularly important for understanding seasonally-adapted ecological processes such as 56 

migration, spawning, or vegetation recruitment (Cambray, 1991, Greet et al., 2011, Poff and 57 

Zimmerman, 2010). It is critical to identify these distinct wet and dry conditions and when they occur 58 

across different flow regimes to improve understanding of physical climate and watershed controls on 59 

these seasonal transitions and their sensitivity to change. 60 

 61 

Numerical descriptors of the flow regime, known as flow metrics, are routinely quantified from daily 62 

streamflow time series to link streamflow patterns to river processes (Buttle, 2011, Poff and Ward, 63 

1989) and biological response (Mazor et al., 2017, Olden and Poff, 2003). Existing flow metrics used 64 

to identify and quantify the timing of seasonal flow transitions are limited, especially across large 65 

regions and in hydrologically variable settings. These measurements of timing are often simplified by 66 

calculating flow metrics within predetermined timing windows instead of identifying the occurrence of 67 

seasonal transitions and key events based on annual flow patterns. The Hydroecological Integrity 68 

Assessment Process (Henriksen et al., 2006) and the Indicators of Hydrologic Alteration (Richter et al., 69 

1996) incorporate timing through calculations such as monthly average flows or the date of annual 70 

minimum and maximum flow. However, in variable flow regimes such as flashy rain-sourced streams, 71 

the timing of seasonal flow transitions varies significantly between water years and hydroclimatic 72 

settings (Lane et al., 2018). This wide inter-annual variability suggests that metrics describing a 73 

particular aspect of seasonal flow, such as dry season flow magnitude, cannot be accurately quantified 74 

based on the same months in each water year. Calculation of the annual maximum or minimum 75 



 

  
 

3 

similarly may oversimplify understanding of seasonal flow components, because these calculations do 76 

not account for annual or seasonal patterns of flow or events other than the most extreme conditions 77 

(Déry et al., 2009). 78 

 79 

To better quantify flow regimes based on variable seasonal patterns, signal processing techniques can 80 

be used to identify sub-annual hydrologic patterns from daily flow time series. Signal processing 81 

theory provides well-established techniques, such as data smoothing, peak detection, and time 82 

windowing, that have been applied in hydrology (Kusche et al., 2009, Mann, 2004) and can be used to 83 

detect features from a time series of daily streamflow data. Time series smoothing is used to enhance 84 

certain frequencies (i.e., the signal) while attenuating others (i.e., the noise), and many smoothing 85 

techniques are available such as moving average, exponential moving average, empirical mode 86 

decomposition, regression smoothing (e.g. LOESS, Cleaveland and Loader, 1996), wavelet, and 87 

splines (Janert, 2010). Smoothing functions generate fitted curves to time series data that emphasize 88 

different frequency signals depending on the function and level of smoothing (Pollock, 1999). Feature 89 

detection is used to extract peaks or valleys of interest from the smoothed data and can depend on 90 

attributes such as magnitude or slope (Schneider, 2011, Scholkmann et al., 2012). Dynamic 91 

windowing around a detected feature constrains further analysis to a particular period of interest and 92 

allows for increased resolution of subsequent analysis (Palshikar, 2009). 93 

 94 

In previous work, signal processing techniques have been applied to hydrologic time series for 95 

applications such as detecting long-term trends (Letcher et al., 2001), modeling hydrologic processes 96 

(Zhang et al., 2016), and predicting future trends (Adamowski and Sun, 2010, Cannas et al., 2006). 97 

Common techniques such as harmonic analysis using Fourier or wavelet transform methods can be 98 

effective in analyzing hydrologic time series characteristics, such as periodicity, trends, coherence and 99 

cross-phase among deriving and response variables, or complexity determined by wavelet entropy 100 

(Pasternack and Hinnov, 2003, Sang, 2013). Additionally, many techniques have been developed to 101 

identify baseflow recession (Hall, 1968); recent attempts include identifying a consecutive number of 102 

days of negative slope in the hydrograph (Bart and Hope, 2014), combining requirements of negative 103 

slope with a percentile-based magnitude threshold (Sawaske and Freyberg, 2014), or automatic 104 

identification of recession curves based on parameters balancing accuracy and coverage (Smith and 105 
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Schwartz, 2017). While some methods share similarities with components of the proposed method, to 106 

the authors’ knowledge there has not yet been a method developed to automatically isolate and 107 

quantify all major seasonal flow transitions from annual streamflow time series. 108 

 109 

To identify ecologically significant flow transitions from the annual hydrograph, this study applied 110 

signal processing methods to identify functional flows found in the highly seasonal Mediterranean 111 

streams of California, USA. Functional flows refer to sub-annual aspects of the flow regime that 112 

support key ecological, geomorphic or biogeochemical processes in riverine systems (Escobar-Arias 113 

and Pasternack, 2010, Yarnell et al., 2015). Yarnell et al. (2015) aggregated flow ecology literature to 114 

identify four functional flow components relevant to Mediterranean streams with a distinct wet and dry 115 

season: wet-season initiation flows, peak magnitude flows, spring recession flows, and dry-season low 116 

flows. Building on those efforts and more recent work highlighting key functional flows specific to 117 

California (Yarnell et al., 2020), this study identifies the timing of four functional flow components 118 

applicable to California’s natural streamflow regimes: fall pulse flow, wet season flow (encompassing 119 

both wet season baseflow and peak flow conditions), spring recession, and dry season baseflow (Fig. 120 

1). Once the timings of functional flow transitions are identified from the annual hydrograph, each 121 

functional flow component can be further quantified using additional flow metrics such as magnitude, 122 

timing, frequency, duration, or rate of change, and can be used to design functional flow regimes in 123 

managed river systems (Yarnell et al., 2020). 124 

 125 
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Fig. 1. Identification of the start timing of four functional flows identified for California (Yarnell et al., 126 

2020) using the proposed signal processing algorithm. The timing of flow transitions identified by the 127 

algorithm are marked with arrows. Hydrographs indicate the 10th, 25th, 50th, 75th, and 90th 128 

percentiles of flow in a mixed rain-snow river system (modified from Yarnell et al., 2020). A water 129 

year in California is defined as October 1 to September 30. 130 

 131 

Drawing on signal processing theory, this study develops an algorithm in the open-source Python 132 

programming language to calculate the timing of seasonal flow transitions from daily flow time series, 133 

allowing for improved characterization of seasonal flows. This research addresses the following 134 

questions: (1) is it possible to automatically identify timing of seasonal streamflow components from 135 

annual hydrographs, and if so what is the level of error?; and (2) does the timing of seasonal flow 136 

components calculated through this study reveal distinctions among streams with varying climatic 137 

drivers? Using data from the highly seasonal streams of California as a testbed, this study assesses 138 

the accuracy and limitations of the algorithm for quantifying functional flows across a wide range of 139 

natural flow regimes and climate conditions, including flow regimes exhibiting snowmelt, rain, or 140 

mixed rain and snowmelt signatures. To further achieve confidence in the results, algorithm outputs 141 

are analyzed in the context of California hydrology and tested for the extent that results align with 142 

expectations for regional hydrologic regimes. 143 

 144 

2. Methods 145 

The study design describes development, calibration, and performance assessment of the algorithm 146 

for detecting the timing of functional flow transitions from daily streamflow time series, with algorithm 147 

steps summarized in Fig. 4. 148 

2.1. Study region 149 

California has a Mediterranean climate with pronounced wet and dry seasons, as well as high 150 

interannual variability and spatial heterogeneity (Dettinger et al., 2011, Liu et al., 2018). Much of this 151 

variability stems from California’s wide latitudinal extent (800 km) and physiographic diversity, with 152 
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multiple mountain ranges and valleys of different sizes, shapes, and relief (Abatzoglou et al., 153 

2009, LaDochy et al., 2007). California rainfall is characterized by the capability of a limited number of 154 

high intensity storm events to contribute to the majority of annual precipitation; Dettinger et al. 155 

(2011) found that 20–50% of California’s long-term rainfall average derives from these high 156 

precipitation storm events. California’s rivers and streams reflect the state’s climatic and 157 

physiographic diversity, ranging from small, intermittent streams in the southwest deserts to larger 158 

snowmelt-fed rivers draining the western slopes of the Sierra Nevada mountain range (Lane et al., 159 

2018, Mount, 1995). 160 

 161 

For this study, nine natural hydrologic classes previously identified for California by Lane et al. 162 

(2018) were aggregated into three dominant stream types recognized throughout the state (Mount, 163 

1995): snowmelt-, rainfall-, and mixed snowmelt and rain-sourced streams (Fig. 2). Snowmelt-164 

sourced flow regimes are largely controlled by the timing and rate of snowmelt, which are driven by 165 

seasonal patterns of precipitation and temperature. Rain-sourced flow regimes are controlled by the 166 

intensity of winter rainfall and characteristics of individual storm events. Mixed-source streams 167 

experience both rain-driven flows in the winter and a snowmelt pulse in the spring, or they occur in 168 

large drainages that receive both snowmelt and rainfall contributions from upstream. 169 
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  170 

Fig. 2. The three dominant stream types in California based on aggregated natural hydrologic classes 171 

developed by Lane et al. (2018): snowmelt (yellow), mixed snow and rain (green), and rain (blue). 172 

Reference streamflow gages used in this study are shown as circles, and the number of total water 173 

years of data in each stream type are shown. (For interpretation of the references to colour in this 174 

figure legend, the reader is referred to the web version of this article.) 175 

 176 
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2.2. Data 177 

Streamflow data used for this analysis come from 223 gage stations with unimpaired or naturalized 178 

daily streamflow records in California (refer to Kennard et al., 2010 for definitions of unimpaired and 179 

naturalized streamflow) (Fig. 2). Unimpaired gage data was sourced from the dataset compiled 180 

by Zimmerman et al. (2017), who followed a 3-step protocol to obtain unimpaired daily streamflow. 181 

Their process designated gage stations as unimpaired based on: (1) designation as a “least disturbed” 182 

site from a U.S. Geological Survey database of watershed attributes (Falcone et al., 2010), (2) status 183 

of unimpairment based on annual gage station reports and appearance of natural conditions from 184 

satellite imagery, and (3) historical flow records that pre-date anthropogenic disturbance such as 185 

dams and urbanization. Seven gages with simulated unimpaired (i.e., naturalized) daily streamflow 186 

data were also added to the dataset to cover the Central Valley region of California (CDWR, 2007), 187 

which was otherwise poorly represented by unimpaired gage stations. A final screening of the annual 188 

hydrographs of the resulting dataset was performed, and several gages were removed from the 189 

analysis that had flow patterns appearing irregular, impaired, or too low to exhibit seasonal patterns. 190 

The resulting dataset of 223 reference gages includes periods of record as early as 1891 and as recent 191 

as 2015, with an average period of record of 34 years and a range of 6 to 65 years. 192 

2.3. Seasonal flow detection algorithm development 193 

The following sections provide the theory and rationale for the Seasonal Flow Detection Algorithm 194 

(SFDA), explain the signal processing methods applied, and describe individual calculation steps. 195 

Additional description of signal processing methods is described in the Supplemental Materials.  196 

2.3.1. Data smoothing 197 

Data smoothing is a type of filtering in which low-frequency components are retained while high-198 

frequency components are attenuated, enabling detection of features of interest at different 199 

frequencies or time-scales (Press and Teukolsky, 1990). Common finite-difference smoothing 200 

techniques include simple running averages, weighted moving averages, and exponential filters 201 
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(Janert, 2010). In this study, a Gaussian weighted moving average filter was used to generate a 202 

smoothed time series using the function gaussian_filter1d from the SciPy Image Processing package 203 

(Verveer, 2003) in Python. This smoothing method was selected for its ability to retain local maxima 204 

in the output function, while avoiding abrupt distortions in the filtered data. The Gaussian filter sets 205 

the weighting factors of the smoothing window wj according to a Gaussian normal distribution 206 

 207 

𝑓(𝑥, 𝜎) 	= 	
1

√2𝜋𝜎-
	𝑒𝑥𝑝 0−

1
2 2	

𝑥
𝜎	3

-
4 208 

     [1] 209 

such that any new streamflow observation that enters the smoothing window is only gradually added 210 

to the moving average and then gradually removed. The standard deviation of the Gaussian function 211 

(σ) dictates the width of the distribution and consequently the degree of smoothing applied. In this 212 

study, low and high levels of streamflow data smoothing were associated with σ < 5 and σ > 8, 213 

respectively. For example, a daily streamflow time series smoothed with a high standard deviation 214 

Gaussian filter (σ = 12, Fig. 3) will dampen daily to weekly hydrologic variability while preserving 215 

major seasonal patterns. Alternatively, a low standard deviation Gaussian filter (σ = 4, Fig. 3) will 216 

preserve storm events occurring on weekly scales. High levels of smoothing are often applied first in 217 

the algorithm to identify coarse resolution temporal patterns such as the distinction between the 218 

annual wet and dry season, while removing the signal noise caused by individual storm events. 219 

Increasingly lower levels of smoothing are then applied to identify hydrologic features on finer 220 

temporal scales. 221 
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  222 

Fig. 3. Daily streamflow time series (black) plotted for one water year (Oct. 1–Sept. 30) with two 223 

levels of filters using Gaussian weighted moving averages with different σ parameter values. 224 

 225 

2.3.2 Splines 226 

Splines are functions constructed from segments of polynomials between each time series observation 227 

that are constrained to be smooth at the junctions (Letcher et al., 2001). Splines, which are used in 228 

the SFDA for derivative estimation of smoothed streamflow, have been shown to generate nearly 229 

optimal derivative estimates of noisy data such as streamflow time series due to low interpolation 230 

error (Craven and Wahba, 1979, Ragozin, 1983, Thomas et al., 2015). The SFDA employs a cubic 231 

spline function (three degrees of freedom) for derivative estimates, which is generally considered an 232 

optimal interpolation function for large time series (Carter and Signorino, 2010, Kimball, 233 

1976, Wahba, 1978). For further explanation on spline fitting, refer to Hastie and Tibshirani (1990). In 234 

this study, derivative estimation using a cubic spline was performed on smoothed and windowed 235 

streamflow time series using the one-dimensional univariate spline fitting function available from the 236 

SciPy library in Python (Jones et al., 2001). 237 
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2.4. Seasonal flow detection algorithm (SFDA) general steps 238 

The SFDA consists of six general steps used to detect seasonal flow transitions, although some 239 

applications may require either a subset of these steps or multiple iterations (Fig. 4). Steps are 240 

applied to each water year in a dataset, which in California is defined as October 1 to September 30. 241 

Step 1 (Fig. 4a): A high standard deviation Gaussian filter (G1) is applied to the observed daily 242 

streamflow time series to detect dominant peaks, valleys, or trends in the annual hydrograph. 243 

Depending on the level of smoothing, different frequency patterns (e.g., seasonal, sub-seasonal) are 244 

attenuated or left intact. Step 2 (Fig. 4b): A hydrologic feature of interest is identified from G1, such 245 

as annual peak flow. Step 3 (Fig. 4b): A localized search window is set around the feature of interest 246 

to constrain subsequent analysis to a hydrologically relevant period (e.g., 30 days before and after the 247 

feature of interest). Step 4 (Fig. 4c): Within the search window, a low standard deviation Gaussian 248 

filter (G2) is applied to the observed daily time series to extract high-resolution hydrologic patterns 249 

(e.g., individual storm events). Step 5 (Fig. 4d): A spline curve is fitted to smoothed data G2, and the 250 

derivative is taken to identify the slope of the hydrograph (S1′). Step 6 (Fig. 4d): A feature of interest 251 

is characterized in one of two ways: i) directly from G2 using relevant flow characteristics (i.e. 252 

magnitude), or ii) using the derivative of the spline curve (S1′) to detect peaks or valleys of interest 253 

based on slope or sign change (triangles represent peak features of interest, and the black diamond is 254 

the final selected feature). 255 

 256 
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 257 

 258 

Fig. 4.Six general steps of the SFDA use data smoothing, windowing, and feature detection to identify 259 

seasonal flow transitions from daily streamflow data.  260 

 261 

The SFDA steps are iterative and can be repeated multiple times to consistently and accurately 262 

identify flow transitions across water years and stream types. For example, the calculation of spring 263 

recession requires three iterations of smoothing and feature detection, while the calculation for dry 264 

season start timing only requires one iteration. The parameter values (e.g., smoothing parameter σ, 265 

window size, or magnitude thresholds) can be adjusted to suit the needs of particular flow regimes or 266 

hydrologic features of interest. For example, in flashy rain-driven streams the start of the dry season 267 

is generally indicated by the last significant storm event of the water year, which can be found using a 268 

low standard deviation Gaussian filter that closely fits daily streamflow data. Meanwhile, the start of 269 
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the dry season in a snowmelt-driven stream may be better identified by the general trend of flow 270 

reduction representing catchment drainage, which is best represented with a high standard deviation 271 

Gaussian filter to capture broader trends. 272 

 273 

To contextualize the parameterization process, the algorithm for the dry season start timing may be 274 

considered. The dry season start timing is identified in the receding limb of the annual hydrograph 275 

through a combination of relative magnitude and slope, which are determined by parameterization. 276 

The start timing will be identified later in the water year, for example, if the relative magnitude 277 

threshold is reduced (requiring lower magnitude) or if the slope threshold is reduced (requiring a 278 

flatter slope), essentially creating more stringent hydrologic requirements. Further, the degree of 279 

smoothing applied to raw daily streamflow dampens fluctuations in flow and can allow a stabilized 280 

slope to be detected earlier in the water year as the level of smoothing is increased. The combinations 281 

of parameters for each algorithm were determined by expert opinion of the co-authors to best achieve 282 

timing of the functional flows illustrated conceptually in Fig. 1 across a diversity of hydrologic inputs, 283 

and this parameterization is available as default values in the SFDA code.  284 

2.5. Application of the SFDA to functional flows in California 285 

Four distinct applications of the SFDA were used to calculate the timing of functional flow component 286 

transitions based on reference-condition California streamflow gages (Fig. 2). In these applications, 287 

the SFDA steps were repeated up to three times to accurately identify functional flow transitions 288 

across the variety of stream types found in California. The parameter values (e.g., smoothing 289 

parameter σ or window size) were determined heuristically by the co-authors for each functional flow 290 

component to achieve timing results aligning with the conceptual timing of functional flow transitions 291 

illustrated in Fig. 1 and described in Yarnell et al. (2020). In the calibration process, parameters for 292 

each functional flow identification algorithm were empirically and incrementally adjusted to achieve 293 

hydrologically meaningful results; for example, the parameters for spring recession start timing 294 

(smoothing parameter σ, window sizes, and magnitude thresholds) were adjusted so that the timing 295 

would occur after wet season high flows, but before flows had receded to baseflow conditions. 296 

Supplemental Materials and associated online resources provide more information about the 297 
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calculation of each functional flow timing metric, how to download the SFDA code, and how to modify 298 

algorithm parameters to achieve desired results. To demonstrate SFDA application to a specific 299 

functional flow component, the calculation of wet season start timing is described in Section 2.5.1. 300 

 301 

The timing metrics from the SFDA can be used to calculate additional functional flow metrics 302 

describing the magnitude, duration, frequency, and rate of change of flow within each functional flow 303 

component (e.g., baseflow magnitude or duration of the dry season) (Yarnell et al., 2020). The full 304 

suite of SFDA-based functional flow metrics can be visualized and downloaded at eFlows.ucdavis.edu, 305 

a website developed to view and interact with California's natural hydrology. 306 

 307 

2.5.1. Functional flow calculation for wet season start timing 308 

Wet season start timing delineates the portion of the water year during which streams receive the 309 

greatest inputs from storm runoff or snowmelt, and flows are elevated above dry season baseflow 310 

levels (Yarnell et al., 2020). The calculation for wet season start timing is presented as an example of 311 

the SFDA application to California functional flows. This calculation uses one iteration of the SFDA 312 

steps (Fig. 5). Within each water year, a high standard deviation Gaussian filter (G1, σ = 10) is 313 

applied (Fig. 5, Step 1) to detect the water year’s global peak (P1) and preceding global valley (V1) 314 

(Fig. 5, Step 2). A relative magnitude threshold M1 is then set based on the magnitude of P1 and V1 315 

as an upper limit (M1 = γ*(P1-V1), where γ = 0.2), to ensure that the wet season start timing is not 316 

set after flows have already increased during the water year (Fig. 5, Step 3). A spline curve is fit to G1 317 

so that its derivative can be used as a hydrologic requirement in the final feature detection step. 318 

Finally, searching backwards in time from P1, the date that discharge first falls below M1 and below a 319 

rate of change equaling (δ*P1, where δ = 0.002) is selected as the wet season start timing (Fig. 5, 320 

Step 4). The values for γ and δ were adjusted for California reference streamflow based on the co-321 

authors’ expert opinions to achieve identification of the functional flows described conceptually in Fig. 322 

1 and Yarnell et al. (2020). 323 
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 324 

Fig. 5. SFDA steps to calculate the wet season start timing metric using data smoothing and feature 325 

detection based on magnitude and rate of change requirements. 326 

2.6. Performance assessment 327 

The calibrated SFDA was evaluated based on its ability to accurately determine the timing of functional 328 

flow transitions across all years in the California unimpaired streamflow dataset. The analyzed results 329 

consist of four flow timing metrics calculated annually for each gage (6–65 years per gage). 330 

Performance assessment included: 1) a comparison of results across stream types, 2) visual 331 

inspection of results, and 3) calculation of assessment indices to quantify issues in algorithm 332 

performance. 333 

 334 

2.6.1. Comparison of functional flow timing results across stream types 335 

Results were grouped by stream type (rain-, snowmelt-, or mixed rain and snowmelt-sourced) and 336 

visualized with violin plots, which use a rotated kernel density plot to depict the distribution of results. 337 

Distinct letters above the violin plots denote groups with statistically distinct mean values based on 338 

Tukey’s Honestly Significant Difference statistical test with a confidence level of 95% (Abdi and 339 

Williams 2010). Groups with no statistical difference share the same letter above the violin plot. 340 
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Results were interpreted according to the co-authors’ expert knowledge of California streamflow 341 

hydrology and supported where possible with relevant region-specific literature.  342 

 343 

2.6.2. Visual performance assessment 344 

Visual inspection of functional flow timing results was performed as a preliminary step to inform 345 

quantitative inspection (Section 2.6.3). The four annual flow timing metrics were reviewed for each 346 

water year in the dataset (n = 7475 years), yielding 29,900 visual inspections. Accuracy was visually 347 

assessed based on the authors’ knowledge of California seasonal flow components and when they 348 

were expected to occur across a range of water year types. Results that appeared incorrect were 349 

tabulated, grouped according to functional flow component and stream type, and reviewed by multiple 350 

experts in California hydrology from the co-author team to ensure consistency. After performing the 351 

29,900 visual inspections of the four timing metrics, issues were characterized based on the bias in 352 

timing (e.g., early or late timing) and the stream type in which it occurred. 353 

 354 

2.6.3. Quantitative analysis with assessment indices 355 

The purpose of this analysis was to quantify issues in algorithm performance observed during visual 356 

assessment. The issues characterized during visual assessment were quantified using programmed 357 

rules defined to identify occurrence of each issue across the dataset. For example, one rule identified 358 

years in rain-sourced streams in which dry season start timing was set after August 1. This was based 359 

on repeated observation that flow magnitude and slope generally decrease to baseflow levels in this 360 

stream type before August 1, and dry season start timing set after August 1 was usually inaccurate. 361 

The developed rules were quantified across relevant stream types and resulting values were termed 362 

assessment indices. Many of the assessment indices attempt to quantify cases in which functional flow 363 

timing was either earlier or later than expected for a given water year, and these issues with timing 364 

were often stream type-specific. For example, seasonal timing metrics tend to occur later in the water 365 

year for snowmelt-sourced streams than rain-sourced streams, so a dry season timing metric of March 366 

1 could be considered anomalously early in snowmelt streams but normal in rain streams. Early or late 367 

occurrence was defined either through an empirical, evidence-based cut-off point (such as Aug. 1) or 368 

if possible through a relative hydrologic relationship, such as the number of high-flow events that 369 

occur before or after a particular timing metric is set. Other assessment indices quantify water year 370 
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features that make characterization with the SFDA difficult, such as dry water years in which only one 371 

or two peak flow events occur. Table 1 lists performance assessment indices used to quantify issues in 372 

algorithm timing calculations, based on final results from the SFDA. 373 

3. Results and discussion 374 

The SFDA was found to consistently identify functional flow components across a wide range of 375 

hydrologic input data, enabling quantitative differentiation across stream types based on the timing of 376 

seasonal functional flows. Example SFDA timing results are presented in Fig. 6 for individual water 377 

years spanning a range of stream types (rain-, mixed-, and snowmelt-sourced streams) and water 378 

year types (dry, moderate, and wet years) across a variety of watersheds, illustrating the ability of the 379 

SFDA to capture the timing of functional flow transitions in California across a diversity of hydrologic 380 

regimes. 381 

 382 
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 383 

Fig. 6. Select SFDA results for the timing of functional flow transitions across three stream types (rain, 384 

mixed rain and snow, and snowmelt) and three water year types in California (dry, moderate, and 385 

wet). Individual hydrographs are from USGS gages 11529000 (rain), 11413100 (mixed rain and 386 

snow), and 11266500 (snowmelt).  387 

3.1. Comparison of results across stream types  388 

3.1.1. Fall pulse flow timing 389 

The timing of the fall pulse flow marks the first peak flow of the water year when magnitude surpasses 390 

baseflow in a distinct pulse. Unlike the other functional flow components, the fall pulse flow is 391 

constrained to only occur during a subset time of the water year (Oct. 1-Dec. 15) when hydrologic 392 

requirements for relative magnitude and duration are met, and it does not necessarily occur in each 393 

water year. A fall pulse flow was identified in 60–65% of water years across all stream types. Although 394 

there were significant differences in event timing (p < 0.05) between snowmelt streams and other 395 
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stream types, wide overlap exists across all stream types (Fig. 7A). This is due in part to large-scale 396 

temperature and precipitation patterns that affect California streamflow. Early in the water year (Oct.-397 

Nov.), temperatures across the state including the Sierra Nevada mountains are often above freezing, 398 

causing precipitation to fall as rain or rapidly melting snow (Lundquist et al., 2008, Serreze et al., 399 

1999). Additionally, atmospheric river events can cause correlated streamflow patterns across much of 400 

the state (Cayan and Peterson, 1989), which are most pronounced when all precipitation is falling as 401 

rain. Therefore, a high degree of similarity is expected in the timing of fall pulse flows across all 402 

stream types. Further reason for the limited distinction among stream classes stems from the 403 

algorithm itself, which detects events over a narrow search window of 75 days (Oct.1-Dec. 15) 404 

considered ecologically significant for California streams (Yarnell et al., 2015). The upper and lower 405 

bounds of the violin plots span nearly the entire available time window of 75 days (Fig. 7A), indicating 406 

that fall pulse flow varies widely across all stream types. These results broadly align with Ahearn et al. 407 

(2004), who state that the season of flushing flows in California typically begins in November. 408 

 409 

 410 
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Fig. 7. Functional flow timing distributions across all stream types of California unimpaired streamflow. 411 

Letters above violin plots indicate statistical significance. The y-axis spans the California water year 412 

(Oct.-Sept. 31) for all components except the fall pulse flow, which is constrained from October 1-413 

December 15.  414 

 415 

3.1.2. Wet season start timing 416 

Wet season start timing is the date that the water year begins to experience consistently elevated 417 

flows from either rainfall or snowmelt (Yarnell et al., 2020). The differences in these values were 418 

statistically significant (p < 0.05) across the three stream types (Fig. 7B). The timing occurred three 419 

to four months later in snowmelt-sourced streams (average Mar. 4) than rain-sourced streams 420 

(average Dec. 12), and timing from mixed-source streams occurred across a wide range of values 421 

whose mean (Dec. 30) closely resembles rain-sourced streams. These differences were expected due 422 

to differing geographic and climatic drivers of wet season flow across California. In rain-sourced 423 

streams, the timing of wet season flow closely reflects patterns of winter precipitation, which occurs 424 

primarily during the winter months (Dec.-Feb.), although these peak flows also experience high 425 

interannual variability in timing (Cayan and Peterson, 1989, Dettinger, 2011). In high elevation 426 

snowmelt-sourced streams, peak flows are initiated by the snowmelt pulse as air temperatures warm 427 

enough to melt snowpack in the spring. In mixed-source streams, wet season start timing may be 428 

cued by either winter storms or a snowmelt pulse, resulting in a wide range of possible values driven 429 

either by precipitation timing or temperature-driven snowmelt (Fig. 8). The proportion of streamflow 430 

driven by rain versus snow is an important consideration in mid- and high-elevation basins, as runoff 431 

is expected to shift towards more rain-driven flow with warming climate in the western United States 432 

(Hamlet et al., 2005, Stewart et al., 2015, Sultana and Choi, 2018). 433 
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 434 

Fig. 8. Hydrographs of two different water years from a mixed-source stream (USGS gage 11414000) 435 

show varying contributions of snowmelt and winter rain storms, resulting in a wide range of results for 436 

spring recession start timing and wet season start timing.  437 

 438 

3.1.3. Spring recession start timing 439 

The spring recession represents the seasonal transition from wet season high flows to dry season low 440 

flows. The spring recession start timing is statistically distinct (p < 0.05) across the three California 441 

stream types, with timing occurring progressively later in the water year from rain-sourced to 442 

snowmelt-sourced streams (Fig. 7C). This distinction in timing is expected due to climatic influences 443 

on hydrology that shift as streams progress from lower to higher elevations and snowpack provides 444 

increasing amounts of storage that delay streamflow response to precipitation (Aguado et al., 1992). 445 

In California’s highest elevations (above 2300 m), the spring recession is cued by a distinct 446 

temperature-driven snowmelt pulse. As the snowmelt influence diminishes and warming occurs earlier 447 

in lower elevation mixed-source streams (Fig. 2), the snowmelt pulse may arrive earlier or may not 448 

occur at all in dry years with very little snowpack relative to rainfall. In rain-sourced streams the 449 

spring recession is expected to occur after the last rain storm of the wet season, which tends to occur 450 

several months earlier in the year than the snowmelt pulse on average. The distribution of spring 451 

recession start timings in snowmelt-sourced streams is relatively narrow, with the majority of start 452 

dates occurring between May 23 and July 6 (average June 6), indicating predictable recession timing 453 

in snowmelt streams regardless of water year type (Yarnell et al., 2010). 454 
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 455 

The most variability in spring recession start timing occurs in mixed-source streams, which due to 456 

their occurrence at mid-elevation regions are highly sensitive to changes in temperature and 457 

snowpack (Lundquist et al., 2004, Stewart, 2008). Fig. 8 demonstrates how a greater snowmelt pulse 458 

is associated with later spring recession timing, occurring 31 days later in water year 1952 than in 459 

1970. This finding aligns with other research on streamflow in the western US, that has indicated both 460 

temperature and annual flow volume are significant drivers of spring snowmelt runoff timing (Aguado 461 

et al., 1992, Kormos et al., 2016). Adding to this variability, snowmelt-receiving streams in mid-462 

elevation regions of California have been subject to significant changes in the timing of snowmelt 463 

recession peaks due to climate warming (Stewart, 2008). Hamlet et al. (2005) for example estimated 464 

peak accumulation of snowmelt runoff in mid-elevation areas of California as occurring 15–45 days 465 

earlier throughout the last century, which adds additional variation to the spring recession start timing 466 

results in mixed snowmelt and rain regimes. Although rain-sourced streams also exhibit high 467 

variability in spring recession timing, the average spring recession start timing across rain-sourced 468 

streams (April 7) broadly aligns with the generally accepted end of the rainy season for California (Liu 469 

et al., 2018). 470 

  471 

3.1.4. Dry season baseflow start timing 472 

The start timing of the dry season marks the beginning of the low flow, low variability portion of the 473 

water year, in which the rate of recession flows has stabilized and magnitudes reach baseflow level. 474 

Similar to spring recession start timing, dry season start timing is statistically distinct among the three 475 

stream types (p < 0.05) and occurs gradually later on average from rain-sourced (June 6), to mixed-476 

source (July 16), to snowmelt-sourced streams (August 7) (Fig. 7D). The timing distribution ranges 477 

more than 100 days in rain-sourced streams, which is consistent with the high inter-annual variability 478 

of precipitation magnitude and timing (and consequently streamflow) exhibited in California (Dettinger 479 

et al., 2011). 480 

 481 

Despite high variability across rain-sourced streams, the average dry season start timing in these 482 

streams is surprisingly consistent from small to large streams. For instance, the average dry season 483 
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start timing is June 8 in larger north coast streams (average annual flow 23 cms), and is similar in 484 

flashy ephemeral streams (average annual flow 0.5 cms), with an average start timing of May 27 485 

(from Lane et al., 2017). However, interannual variability in dry season start timing within a single 486 

stream can be high, suggesting that central tendencies do not represent dry season timing conditions 487 

well in rain-sourced streams. 488 

     489 

3.2. Performance assessment indices 490 

Assessment indices were created to quantify the accuracy of the SFDA for identifying the timing of 491 

functional flow transitions in California reference streamflow. Assessment indices are presented 492 

in Table 1, and the following section highlights key issues and limitations for each functional flow. The 493 

frequency of most identified issues was less than 10%, except for Snow-early-wet and Mixed-early-494 

spring, which are explained in Table 1 and below. 495 

 496 

Table 1. Assessment indices for SFDA timing results.   497 

Index name Stream 
type 

Issue Assessment index 
calculation 

Frequency 

Fall-day1 All types Fall pulse flow timing can occur on the very 
first day of the water year (Oct. 1), when it 
is difficult to determine from an annual 
hydrograph if the set date represents an 
actual peak or if it is capturing a recessing 
flow carried over from the previous water 
year. 

Percentage of years in 
which the fall pulse 
timing is on day one of 
the water year (Oct. 1). 

1% 

Wet-season All types Occasionally the requirements for wet 
season start timing are not met so the 
metrics are not calculated. 

Percentage of years in 
which spring recession 
or dry season start 
timing are calculated, 
but wet season start 
timing is not calculated. 

2% 

Spring-dry-
gap 

All types A lag between spring recession and dry 
season start timing of more than five 
months indicates an anomaly within the 
water year, such as early spring recession 
or late dry season start timing, or a year in 
which the component timings were based 
off of a very limited number of storms. 

Percentage of years in 
which the number of 
days between spring 
recession and dry 
season start timing is 
greater than 150 days 
(five months). 

5% 

Snow-late-
spring 

Snowmelt Spring recession start timing can be 
calculated late into the recession period 
such that it occurs at the end of the 
snowmelt pulse instead of the beginning. 
Dry season start timing consequently occurs 
very soon after the spring recession timing. 

Percentage of years in 
which spring recession 
start timing and dry 
season start timing 
occur within 21 days of 
each other. 

1% 

Snow-early-
wet 

Snowmelt Wet season start timing in snowmelt 
streams can be triggered by large rainstorm 

Percentage of years in 
which wet season start 

25% 



 

  
 

24 

flows early in the climatic wet season (Nov.-
Jan.), and other years it is triggered by the 
snowmelt pulse (Apr.-May). This results in a 
wide range of start timing in the snowmelt 
stream type, triggered by differing 
hydrologic cues. Identification of timing 
before February 1 approximates how often 
wet season start timing is triggered by 
rainstorms instead of snowmelt. 

timing occurs before 
February 1. 

Mixed-spring-
wet/Rain-
spring-wet 

Mixed-
source and 
Rain 

In especially dry years, the annual 
hydrograph can be defined by a single 
large, brief storm event. This may cause 
wet season and spring recession start 
timing to be set based on a single storm 
such that they occur in close proximity. 

Percentage of years in 
which wet season and 
spring recession start 
timing occur within 
30 days of each other. 

Mixed-spring-
wet: 4%/ 
Rain-spring-
wet: 4% 

Mixed-early-
spring/Rain-
early-spring 

Mixed-
source and 
Rain 

Spring recession start timing can occur 
before the end of wet season occurrence. 
This most commonly occurs in hydrographs 
without a strong snowmelt presence. 

Percentage of years in 
which any high flows 
(>5th percentile) occur 
after that year’s spring 
recession start date. 

Mixed-early-
spring: 
21%/Rain-
early-spring: 
5% 

Mixed-late-
spring 

Mixed-
source 

Dry season start timing can occur 
immediately after spring recession start 
timing, with a small gap of time between. 
This often occurs when the spring recession 
is identified too late into the period of 
receding high flows. 

Percentage of years in 
which spring recession 
and dry season start 
timing occur within 
21 days of each other. 

1% 

Rain-late-wet Rain Wet season start timing can occur late after 
the first high flows of the wet season. 

Percentage of years in 
which any high flows 
(>5th percentile) occur 
before that year’s wet 
season start date. 

8% 

Rain-late-dry Rain Dry season start timing can occur late into 
the dry season in rain-sourced streams, well 
after flows have already receded. This is 
usually the case when dry season start 
timing is set in August or later, based on 
repeated visual inspection. 

Percentage of years in 
which dry season start 
timing occurs later than 
August 1. 

10% 

 498 

The methods presented here to identify hydrologic features and determine error differ from previous 499 

hydrologic studies, which can often take advantage of validated training sets to determine accuracy 500 

(Cannas et al., 2006, Letcher et al., 2001, Smith and Schwartz, 2017). The heuristic methods used in 501 

this research are similar to other approaches that require some subjectivity for parameterization of 502 

peak detection (Palshikar, 2009), and qualitative visual assessment methods are similar to approaches 503 

used to validate climate patterns in climate modeling studies that pair qualitative and quantitative 504 

model assessment (Gyalistras et al., 1994, Paul and Hsu, 2012). Performance assessment based on 505 

validation of known hydrologic conditions employed in this study is similar to the approach of Déry et 506 

al. (2009), who assessed a new method of spring recession identification across different river types in 507 

their study region. The proposed methods, although subjective in the choice of parametrization, 508 

present a consistent and repeatable way to identify functional flow components, advancing previous 509 

methods of quantifying seasonal streamflow patterns. 510 
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 511 

3.2.1. Issues in SFDA performance  512 

Fig. 9 presents common issues in the SFDA for each functional flow component, which were often 513 

attributed to uncommon hydrologic patterns or effects from smoothing filters that occasionally have 514 

the undesired effect of over-dampening storm peaks while detecting broad hydrologic trends. In some 515 

water years, the first day of the water year (Oct.1) was identified as the date of the fall pulse flow, 516 

which presents ambiguity as to whether the first day of the water year is an actual peak event or is 517 

instead part of a continual decline from a peak in the previous water year (Fig. 9A). This situation 518 

occurs most often in naturalized gage data, with a 3.5% occurrence rate across all naturalized water 519 

years and an average occurrence rate of 1% across the entire dataset (Table 1, index WSI-day1). 520 

 521 

 522 

Fig. 9. Examples in which timing metrics are affected by uncommon hydrologic patterns (A and B) or 523 

are identified earlier or later than expected given expert understanding (C and D). Panels C and D 524 

illustrate the algorithm results compared to proposed improvements based on the co-authors’ 525 
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understanding of California hydrology. Hydrographs from USGS gages 11213500 (A), 11046300 (B), 526 

11033000 (C), and 11120520 (D).  527 

 528 

Both mixed- and rain-sourced streams experienced some water years in which a single large high flow 529 

event dominated the annual hydrograph such that start timings of wet season and spring recession 530 

were based on the same peak flow (Fig. 9B). This occurred in 4% of mixed-source streams and 4% of 531 

rain-sourced streams (Table 1, indices Mixed-spring-wet/Rain-spring-wet) and could result in 532 

anomalous functional flow metrics based on these rare hydrologic conditions. In mixed-source 533 

streams, early identification of spring recession start timing was found with a frequency of 21% (Table 534 

1, index Mixed-early-spring), sometimes due to the effect of over-dampening rainstorm peaks with 535 

smoothing filters when attempting to detect broad hydrologic trends (Fig. 9C). Conversely, spring 536 

recession start timing occurred late in 10% of snowmelt stream water years, when the algorithm was 537 

triggered by small peaks along the recession limb instead of the main snowmelt pulse (Table 1, index 538 

Snow-early-spring). The algorithm for dry season start timing assesses the change in magnitude and 539 

slope along the recession limb, so dry water years with very little change in these features are more 540 

likely to have issues with component detection. This was often the case when dry season start timing 541 

was identified late in the water year (Fig. 9D), which occurred in 10% of rain-sourced water years 542 

(Table 1, index Rain-late-dry). These issues are expected to improve when SFDA parameters are 543 

calibrated for smaller regions of streamflow data, instead of applying the same set of parameters 544 

across a wide array of input data, as was done in this statewide case study. 545 

 546 
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4. Conclusions 547 

This study developed an objective signal processing algorithm to address the need for a robust 548 

method to characterize the timing of seasonal flow transitions from daily streamflow time series. The 549 

Seasonal Flow Detection Algorithm (SFDA) improved on existing methods that rely on fixed time steps 550 

through the novel application of established signal processing techniques to identify the timing of 551 

seasonal flow transitions. The application to California streams demonstrated the ability of this 552 

approach to identify the timing of functional flow components from unimpaired daily streamflow time 553 

series across a wide range of climatic and geographic settings and extreme seasonal and interannual 554 

hydrologic variability. Results highlight hydrologic distinctions among varying drivers of streamflow, 555 

such as progressively later timing of spring recession flow as streams shift from rainfall-sourced to 556 

snowmelt-sourced flow regimes. Limitations of the approach were determined through a combination 557 

of visual expert-based assessment and quantitative performance assessment. In general, the 558 

percentage error in timing calculations did not exceed 10% across relevant water years for any 559 

assessment index, with infrequent exceptions. In a parallel effort, functional flow metrics produced by 560 

the SFDA for California reference gages are being extrapolated to ungaged streams to inform 561 

statewide environmental flow recommendations. Likewise, the SFDA has potential to be applied to 562 

other regions or countries sharing highly seasonal climates similar to California, by adjusting algorithm 563 

parameters to suit local hydrology. For instance, the SFDA metrics could be applied to assess shifts in 564 

streamflow due to climate change, with particular focus on potential changes in timing of seasonal 565 

flows. The proposed approach supports improved understanding of high-resolution spatial and 566 

temporal trends in hydrologic processes and climate conditions across complex landscapes and can 567 

inform environmental water management efforts. 568 
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