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A multivariate cure model for left-censored and right-censored 
data with application to colorectal cancer screening patterns

Yolanda C. Hagara,*,†, Danielle J. Harveyb, and Laurel A. Beckettb

aDepartment of Applied Mathematics, University of Colorado Boulder, Boulder, CO, U.S.A

bDepartment of Public Health Sciences, University of California, Davis, Davis, CA, U.S.A

Abstract

We develop a multivariate cure survival model to estimate lifetime patterns of colorectal cancer 

screening. Screening data cover long periods of time, with sparse observations for each person. 

Some events may occur before the study begins or after the study ends, so the data are both left-

censored and right-censored, and some individuals are never screened (the ‘cured’ population). We 

propose a multivariate parametric cure model that can be used with left-censored and right-

censored data. Our model allows for the estimation of the time to screening as well as the average 

number of times individuals will be screened. We calculate likelihood functions based on the 

observations for each subject using a distribution that accounts for within-subject correlation and 

estimate parameters using Markov chain Monte Carlo methods. We apply our methods to the 

estimation of lifetime colorectal cancer screening behavior in the SEER-Medicare data set.
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 1. Introduction

Colorectal cancer (CRC) is the third most common cancer in the USA, both in incidence and 

mortality rates [1]. Because this cancer is largely asymptomatic, it is important for 

individuals to be screened regularly. Not only can screening detect CRC at earlier stages, but 

it can also detect pre-cancerous polyps, which can be removed [1]. The effectiveness of CRC 

screenings led the United States Preventive Task Force to set screening guidelines in 1996 

[2]. In this work, we focus on colonoscopy screenings, which are currently recommended to 

be performed once every 10 years for average-risk individuals starting at age 50. While more 

expensive and risky, a colonoscopy is the most thorough form of screening as it can examine 

the entire colon with few false negatives or false positives and can remove polyps and even 

some cancers during an examination [3]. Little is known about lifetime colonoscopy 

screening behavior, as it is challenging to estimate due to incomplete data. Many individuals 

are not observed for the entirety of their eligibility, possibly censoring observations that 
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occur before or after the study period. Additionally, individuals can have zero to many 

screenings in a lifetime and can have a screening immediately upon becoming due or can 

delay varying lengths of time.

Previous studies have examined rates of CRC screening in different populations, including 

the Medicare population (such as those found in Winawer et al. [3], Seeff et al. [4], Smith et 
al. [5], and Gross et al. [6]). However, while these studies report that screening and 

adherence rates are low, the methods used do not account for screening behavior that may 

have occurred before or after the study observation period. In addition, these studies do not 

quantify the average amount of time individuals wait between screenings or how many 

screenings individuals receive in a lifetime. Because of this lack of information, it has been 

difficult for researchers to confirm optimal screening guidelines. While screening for CRC 

reduces cancer risk [1–3], the colonoscopy procedure itself can be risky, requires a trained 

specialist [7, 8], and unnecessary screenings put an avoidable financial burden on the 

Medicare system (for example, see Vijan et al. [9]). Without knowledge of lifetime screening 

patterns, it has been difficult to perform long-term cost-benefit analyses for outcomes in 

CRC. Given the importance of determining lifetime colonoscopy screening behavior, we 

develop a multivariate survival model that allows for a proportion of subjects to never be 

screened, and we use our model to estimate patterns in lifetime colonoscopy screening 

behavior.

 2. SEER-Medicare data

We used the Surveillance, Epidemiology and End Results (SEER)-Medicare data set to 

quantify lifetime colonoscopy screening behavior. This large, public data set is a linkage 

between the SEER program of cancer registries and Medicare claims files and is one of the 

largest and most complete data sets containing colonoscopy screening information [10]. 

However, subjects in the SEER-Medicare data set are age 65 years or older and were only 

observed between 1991 and 2003. Possible screenings occurred before age 65, before 1991, 

or after 2003 and were not observed, so lifetime behavior was left-censored and/or right-

censored for many individuals. Additionally, some individuals were never screened through 

colonoscopy, while some individuals were screened more than once in a lifetime. Examples 

of the complexities of screening behavior can be observed in Figure 1. Note that although 

the actual colonoscopy screening behaviors of hypothetical subjects A and B are different, 

the observed trajectories are the same. Similarly, hypothetical subjects C and D have 

identical observed screening patterns but different true lifetime behaviors. Statistical 

methods that can account for screening patterns that occur outside the observation window 

are necessary for proper estimation of lifetime screening behavior.

In addition to estimation of the time and rates of colonoscopy screenings, we are also 

interested in the impact of health policy changes on screening behavior. Medicare changed 

insurance coverage policy rules in 1998 to provide increased coverage for colonoscopy 

screenings. Before 1998, no colonoscopy screenings were covered by Medicare (‘phase 0’). 

Between 1998 and 30 June 2001 (‘phase 1’), colonoscopy screenings were covered for high-

risk individuals (e.g., those with family history of CRC), and starting 1 July 2001 (‘phase 

2’), coverage was provided to all Medicare patients, regardless of risk level. Previous work 
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has shown that an increase in Medicare colonoscopy coverage led to an increase in 

screenings [6]; however, this has not been examined in the context of lifetime screening 

patterns or in the quantification of the time to being screened. Understanding the impact of 

changes in guidelines is important to understanding barriers and patterns of screening 

behaviors.

The model we propose will answer a number of open questions; we will be able to quantify 

the number of times individuals are screened in a lifetime and the length of time individuals 

wait between screenings, while quantifying how insurance policy changes affect screening 

behaviors. To do this, we develop and implement a multivariate cure model that accounts for 

both left-censoring and right-censoring, within-subject correlation, the estimation of 

multiple event times, and the average number of events per person. This model is 

particularly well suited for the estimation of lifetime CRC screening, as these events are 

sparse over the course of an individual’s lifetime and cover long periods of time. The 

resulting estimates are robust, despite the left-censoring, right-censoring, and number of 

subjects who are never screened. The rest of this article is organized as follows: In Section 3, 

we discuss the multivariate survival methodology we have developed for left-censored and 

right-censored data, including the Gibbs sampler algorithm used for parameter estimation. 

We also discuss how covariates are incorporated into the model through the parameters. In 

Section 4, we present results of a simulation to validate our approach for settings similar to 

the SEER-Medicare data. In Section 5, we use our methodology to estimate colonoscopy 

screening behavior in the Medicare population, using the SEER-Medicare data set, assuming 

individuals can have up to two screenings in a lifetime. Section 6 contains a discussion and 

concluding remarks.

 3. Model

Many methods have been used to examine colonoscopy screening behavior (e.g., [3–6]). 

These studies examined screening rates using simple approaches, such as counting the 

number of colonoscopy screenings that occur each year or more sophisticated approaches 

using Poisson regression [6]. While these statistical approaches provide basic information on 

colonoscopy screening trends, to quantify lifetime screening behavior, a model is needed 

that can account for both the left-censoring and right-censoring inherent in the SEER-

Medicare data set, as well as allow for some people to never be screened. In the succeeding 

sections, we formulate a multivariate survival model that determines how long people wait 

between screenings, as well as the average number of screenings individuals get in a 

lifetime.

 3.1. Background

Cure models allow for the estimation of time to an event when a subset of the population is 

risk-free and will never experience the event. In the estimation of lifetime screening 

behavior, the event of interest is a colonoscopy screening, and those individuals who will 

never be screened are part of the population that will never experience the event and hence 

are ‘cured’ in traditional model terminology. The time to event is calculated as the time an 

average-risk individual waits between becoming due for a screening (occurs at age 50 or 10 
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years after the previous colonoscopy screening) and actually getting screened, which we 

refer to as the ‘lag time’. (The lag time is depicted by solid lines in Figure 1.)

Cure models have been examined at length. Initial work by Boag [11] presents the mixture 

model Spop(t; ψ) = π + (1 − π)S(t; ψ), where S(t; ψ) represents the survival function for 

individuals who will experience the event and limt→∞ Spop(t; ψ) = π. This model has been 

studied extensively and can be seen in Berkson and Gage [12], Haybittle [13, 14], Farewell 

[15], Goldman [16], Maller and Zhou [17, 18], and others, but can be complex 

computationally and is difficult to extend to the multivariate case.

In addition to the possibility that some individuals may never be screened, some individuals 

may receive many screenings in a lifetime, so the possibility of multiple, dependent events 

(i.e., colonoscopy screenings) must be accounted for. To this end, there are many existing 

multivariate survival models that have been studied. A large body of work has been devoted 

to using Cox models and a marginal hazards approach to investigate the effects of covariates 

on the hazard rate(s), such as that by Wei et al. [19], Liang et al. [20], Lin [21], Prentice and 

Hsu [22], Spiekerman and Lin [23], and others. These models obtain population-averaged 

covariate effects but are mainly attractive when the correlation between observations is not 

of interest. Hougaard has done much work with a frailty term in multivariate survival and 

competing-risks models [24–29]; however, these models do not include the possibility of a 

cured population. Extensive work on multivariate survival models has been performed by 

Chen et al. [30, 31] and perhaps matches our work most closely as some of the models allow 

for a cured population for right-censored data. In this work, the authors integrate over latent 

variables representing the number of risks for each subject, as well as a frailty parameter (to 

account for within-subject correlation) to get a likelihood function that can accommodate 

multiple events as well as a proportion of subjects who are cured. However, in addition to 

right-censoring, we are also interested in the case of left-censoring, and require a model that 

incorporates this type of missingness.

We introduce a type of multivariate cure model that allows for the estimation of multiple lag 

times for each individual and the probability that an individual will receive zero through 

many lifetime screenings. Correlation between lag times is accounted for with a frailty term.

 3.2. Notation

Assume an individual has M screenings in his or her lifetime, where M is a random variable 

such that 0 ≤ M ≤ ℓ < ∞, with ℓ denoting the maximum number of lifetime screenings 

possible for any individual. (The time frame for CRC screening is finite, so the assumption ℓ 

< ∞ is natural.) The probability that an individual will have m lifetime screenings, that is, 

P(M = m), is equal to θm, m = 1, …, ℓ, and the probability an individual will never be 

screened is equal to . Individuals are left-censored if they enter their study 

after eligibility begins, and individuals are right-censored if observation stops or the study 

ends before their eligibility is over. In these instances, we may only observe k of the M 
screenings, where k ≤ M ≤ ℓ, possibly obscuring part of the lifetime screening pattern. We 

estimate the lag times and probability of individuals receiving M lifetime screenings via the 

likelihood function and the multivariate survival distribution developed by Hougaard [25]:
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For individuals who receive at least one screening, let Yij represent the jth lag time for the ith 

subject (j = 1, …, Mi, i = 1, …, n). The lag times for each individual are correlated through a 

subject-specific frailty quantity, and conditioned upon this frailty quantity, the lag times are 

independent within each subject. Let Zi be the subject-specific quantity for the ith subject. 

Assume the Zi’s are independent and follow a positive stable distribution with parameter α. 

The distribution is given by the Laplace transform

with α ∈ (0, 1]. The case of α = 1 represents the case of independent observations within 

each subject. The choice of the positive stable distribution for the frailty parameter is 

common (for examples, see Clayton [32], Oakes [33, 34], and Chi and Ibrahim [35]), is a 

smooth distribution that allows for varying degrees of skewness, and is mathematically 

convenient. For the ith subject, conditional on M and z, the joint distribution for the lag times 

is then

where Λj(.) is the cumulative hazard of the jth lag time. For all individuals, the multivariate 

survival distribution, given M, then becomes

(1)

Using this multivariate survival function, we can calculate the probability of a colonoscopy 

screening occurring before, at, or after certain time points. For example, the probability of a 

colonoscopy screening occurring at time y1 is calculated as

(2)

and the probability of observing all M screenings can be calculated as

(3)

These calculations are akin to finding the cdf f (y) = −d/dyS(y) in the univariate case. We use 

the notation P(Y = y) here rather than the standard notation f (y) for the probability density 

function for the continuous random variable Y with time of colonoscopy screening y, in 

order to simplify presentation of the joint distribution of all lifetime screening times.
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 3.3. Likelihood function

Denote the observed data for individual i by , where tLi and tRi 

represent the left-censoring and right-censoring times (with tLi = 0 if an individual is not 

left-censored and tRi equal to the end of the observation period if the individual is not right-

censored) and  denoting the ki observed screening times, with 0 ≤ ki ≤ Mi ≤ ℓ. The 

case of ki equal to zero represents the case of no colonoscopy screenings observed in the 

study period. Using the multivariate survival distribution in Equation (1), we can then write 

a complete data likelihood function as follows:

(4)

where  denotes the parameter vector for the survival distribution for M = j lag times and 

ηij = Ii(M = j) is an indicator variable that equals one if subject i has j true colonoscopies in a 

lifetime (with ) and 0 otherwise. The  are 

probabilities associated with the ith person having j lifetime screenings and are calculated 

using the multivariate survival function in Equation (1) based on the screening pattern 

observed for the ith individual. An example of the calculation of these probabilities is shown 

in Section 3.4. For the case of no observed screenings (i.e., M = 0), the probability of zero 

screenings, pi0(.), is not defined and the only likelihood contribution in this instance is θ0.

In using the likelihood function presented in Equation (4), we assume that the left-censoring 

and right-censoring patterns are independent of the screening process. While this is a 

reasonable assumption for left-censored subjects, right-censoring could possibly be 

dependent on the screening process, particularly if an individual is no longer observed 

because of diagnosis of or death due to CRC. However, our analysis is primarily concerned 

with the screening pattern for average-risk subjects. Because CRC is slow to progress and is 

easy to prevent or catch early with regular screenings [3], it seems unlikely that many of the 

average-risk subjects in this data set are dependently right-censored.

For subjects who are left-censored and/or right-censored and who do not have ℓ observed 

screenings, the value of M (the true number of lifetime screenings) may be unknown and 

therefore some or all of  may be unobserved. To overcome this obstacle 

and to estimate parameters in the presence of a complex likelihood function, we use a 

Bayesian approach. Within a Markov chain Monte Carlo (MCMC, [36, 37]) routine, for 

subjects without a fully observed lifetime screening pattern, we sample the number of 

lifetime screenings using the individual-level probability of the subject receiving 0,…, ℓ 

screenings in a lifetime. The  values are then set corresponding to the sampled number of 

lifetime screenings. Conditioned on these sampled values, the parameters are then sampled 

using Gibbs sampler [38, 39]. This method for estimation allows us to determine posterior 
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densities for the parameters and then perform statistical inference on our model. Examples 

of likelihood contributions and probability calculations are shown in Section 3.4.

 3.4. Examples

To fix ideas, we provide example likelihood contributions and functions for the univariate 

case, the case of two maximum lifetime screenings (i.e., ℓ = 2). Following, we provide a 

general algorithm for deriving the likelihood for more than two maximum lifetime 

screenings.

 3.4.1. Example: univariate likelihood—To illustrate our model in its simplest form, 

we first cover the univariate case of ℓ = 1 (i.e., individuals can only get one colonoscopy in a 

lifetime). In the univariate instance, the likelihood function in (4) can be simplified to

(5)

In the univariate model, subject i who has an observed screening at time ti1 contributes the 

probability  to the likelihood function (as ηi is known 

and equal to 1). Conversely, subjects who have no observed screenings and who are not left-

censored or right-censored contribute (1 − θ) to the likelihood function, with a known ηi = 0. 

However, a left-censored subject with no observed screening, who enters the study at time 

tiL, does not have complete information, and it is not known whether a screening occurred 

before time tiL or did not occur at all. On this occasion, , 

accounting for a possible screening before study entry. Whether the individual received a 

screening or not is unknown, and thus the value of the true M (equal to either 0 or 1) is 

sampled at each iteration of the MCMC routine with the probability πi1 of a screening at the 

rth iteration calculated as

The probability of zero screenings for subject i can be calculated as . If the sampled 

value is equal to 1, then ηi is set to 1, otherwise it is set to 0. Similar probability calculations 

can be made for right-censored or left-censored and right-censored subjects. In the univariate 

likelihood, the within-subject correlation parameter α is not necessary, as each subject only 

has one screening. Note that the probability that individual i receives one screening is not the 

same as P(M = 1) = θ, which represents the probability of one screening for the entire 

population.
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The univariate likelihood is similar to the complete data likelihood presented in Sy and 

Taylor [40] for the univariate case of right-censored subjects. This formulation of the cure 

model does not reduce to the standard cure model as t → ∞; however, this definition allows 

for a simpler likelihood function in the estimation of left-censored screening behavior.

 3.4.2. Example: two possible lifetime screenings—We now extend the univariate 

example to the multivariate case of ℓ = 2. In the instance of cure models, one issue that arises 

is identifiability, where distinguishing between models with low cure rates and long survival 

times and models with high cure rates and short survival times can become difficult. The 

identifiability of cure models been examined extensively (for example, see Farewell [41], Li 

et al. [42], Yu et al. [43]). In this manuscript, we take a simple approach and employ the 

following reasonable assumptions to mitigate this issue:

• A maximum recommended screening age exists. Because colonoscopy is not 

risk-free and benefits are long-term (due to the slow progression of CRC) [3], 

colonoscopy screening is generally not recommended for average-risk older 

patients [2].

• The maximum number of lifetime screening colonoscopies, ℓ is fixed. In this 

example, we set ℓ = 2. (This is the maximum number observed in the SEER-

Medicare data set for average-risk patients).

Using these assumptions, we examine the following subject: An individual i is left-censored 

at time tiL, is observed until the maximum screening age (i.e., is not right-censored), and has 

one screening observed at time ti1. Because the individual is left-censored and less than two 

screenings were observed, there are two possible true trajectories for this subject (Figure 2):

1. The one observed screening is the only lifetime screening (i.e., M = 1).

2. A screening also occurred before observation of the individual began, and so 

the subject was screened twice in his or her lifetime (i.e., M = 2).

If the one observed screening is the only lifetime (case 1 earlier, represented by trajectory 1 

in Figure 2), then the individual would contribute the following to the likelihood function:

(6)

The likelihood contribution for the second case (represented by trajectory 2 in Figure 2) is 

calculated under the assumption that one screening occurred before the left-censoring time, 

and the observed screening is the second lifetime screening (i.e., M = 2) and is written as

(7)
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Note that we do not actually observe the length of y1 (the length of the first lag time), we 

only know that it is less than the left-censoring time tiL. Similarly, we do not observe y2, the 

length of the second lag time, and only know that y2 is equal to the length of time between 

the first screening at time y1 and the second screening at ti1, minus the 10-year waiting 

period.

In this instance, the true number of lifetime screenings is unknown for subject i is unknown, 

so at each iteration of the MCMC routine, the value of M is sampled. In this example, the 

individual-level probabilities at the rth MCMC iteration of either one or two lifetime 

screenings are calculated as

(8)

(9)

where pi1(.) and pi2(.) are calculated using Equations (6) and (7). Note that for this subject, 

because at least one screening was observed, πi0 = 0 and ηi0 = 0. If the sampled value of M 
at the rth iteration is equal to 1, then ηi1 = 1, and ηi2 = 0, with the reverse occurring if the 

sampled value of M is equal to 2. As mentioned previously, πi0, πi1 and πi2 are the 

individual-level probabilities of 0, 1, or 2 lifetime screenings, while θ0, θ1, and θ2 represent 

the population probabilities of 0, 1, or 2 lifetime screenings.

 3.5. Case of more than two lifetime screenings

Our methodology can be extended to instances where more than two lifetime screenings are 

possible. In this section, we examine the general algorithm for more than two lifetime 

screenings (i.e., ℓ > 2). We employ the same assumptions as with the previous multivariate 

model, fixing a maximum screening age. In the general case, subjects can fall into one of 

four categories, which are outlined in the succeeding sections.

 3.5.1. Case 1, all screenings observed—For subjects who are not left-censored or 

right-censored, or the maximum number of lifetime screenings (ℓ) are observed, all 

information is known. For these subjects, we know the value of M (M = 0,…, ℓ), the true 

number of lifetime screenings for subject i. The likelihood contribution for this subject is

(10)
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If no screenings are observed for subject i (and there is no censoring), the equation earlier is 

reduced to θ0. Because all information is known for this subject, ηiM = 1 and all other values 

of ηij≠M are set equal to 0. The probabilities (i.e., P(Y1 = y1,…, Yℓ = yℓ)) can be calculated 

using techniques akin to those in Equations (2) and (3).

 3.5.2. Case 2, subjects only left-censored—Assume subject i is only left-censored, 

with k observed screenings occurring after tiL (k = 0, …, M − 1 ≤ ℓ − 1). In addition, subject 

i has p screenings before time tiL, with p = 0, …, pmax, with pmax =⌊ti1 ÷ 10⌋ (where ⌊.⌋ is 

the floor function) is the maximum number of possible screenings that can occur before the 

first observed screening. (If no screening is observed, than pmax is calculated based on the 

maximum age for screening or the left-censoring time.) The likelihood contribution for 

subject i is then

(11)

where , s = 1,…,p. When there are no observed 

screenings, and if p = 0, the equation is reduced to θ0. In this instance, the true value of M is 

unknown for subject i, but can be sampled. The probability of subject i getting j (j = k, …, k
+p ≤ ℓ) lifetime screenings is calculated as

(12)

 3.5.3. Case 3, subjects only right-censored—Assume subject i is only right-

censored, with k observed screenings occurring before tiR, with k = 0, …, M − 1 ≤ ℓ − 1. If p 
screenings occur after the right-censoring time, with p = 0, …, pmax, with pmax =⌊(tmax − tik) 

÷ 10⌋ (the maximum number of screenings that can occur between the last observed 

screening and the maximum time for screening), and tmax representing the maximum time a 

person can get screened. (In the instance of k = 0, pmax is instead calculated based on the 

length of the screening period or the right-censoring time.) The likelihood contribution for 

subject i is

(13)
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where . If no screenings are observed and p = 

0, subjects contribute θ0 to the likelihood function. The probability of subject i getting j 
lifetime screenings is calculated as in Equation (12).

 3.5.4. Case 4, subjects left-censored and right-censored—Assume subject i is 

left-censored and right-censored, with k observed screenings occurring between tiL and tiR, 

with k = 0, …, M − 1 ≤ ℓ − 1. If pL screenings occur before the left-censoring time (pL = 0, 

…, pL,max = ⌊ti1 ÷ 10⌋) and pR screenings occur after the right-censoring time (pR = 0,…, 

pR,max = min{⌊(tmax − tiR) ÷ 10⌋, ℓ − k − pL}), then the likelihood contribution for subject i 
is

(14)

where , sL = 1,…,pL and 

, sR = 1, …,pR. At the r(th) iteration of 

the MCMC routine, the probability subject i receives j lifetime screenings that can then be 

calculated as

(15)

In the instance of pR = 0 (i.e., no screenings occur after the right-censoring time), the 

equation is reduced to the form shown in (11). Similarly, when pL = 0 (no screenings occur 

before the left-censoring time), the equation is reduced to the form shown in (13). For the 

instance where no screenings are observed (i.e., k = 0) and both pL and pR are equal to 0, the 

likelihood contribution is θ0.

 3.6. Parameter estimation

Because the likelihood is high-dimensional and the observed screening colonoscopies are 

sparse, we use Gibbs sampler [38] to estimate the posterior distributions of each parameter, 

iterating through the following steps:
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1. Draw  from the conditional posterior distribution

where Dir(.) denotes the Dirichlet distribution [44].

2. Sample each γj, j = 0, …, ℓ, the parameters of the Dirichlet prior for , 

assuming an exponential hyperprior with parameter sj, from the conditional 

posterior distribution

where  denotes the vector or γ parameters without the jth element.

3.
Sample each element in , for all , j = 1, …, ℓ. If 

, k = 1, …, q, the conditional distribution is as follows:

where  is the parameter vector for the prior distribution of ϕjk.

In an exploratory examination of colonoscopy screening patterns observed in 

the SEER-Medicare data set, the hazard rate of the lag times is very flat 

(Figure 3), so an exponential distribution for the lag times was used in our 

analysis of lifetime colonoscopy screening patterns (i.e., f(t) = λ exp{−λt}). In 

the exponential case, , as each of the j screenings has one 

associated parameter. The cumulative hazard Λjk(t) = λjkt. Let λjk ~ Gamma 

(κjk1, κjk2), with the following posterior distribution:

for k = 1, …, j and j = 1, …, ℓ.

4. Sample each element of , the prior parameters for ϕjk from the conditional 

posterior distributions. In the exponential case, κjk = (κjk1, κjk2), with κjk1 ~ 

Exp(bjk) and κjk2 ~ IG(cjk, djk), where IG(.) is the Inverse Gamma distribution. 

In this instance, the conditional posterior distributions become:
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5. Sample the correlation parameter, α, from the conditional posterior

where α ~ Beta(τ1, τ2).

6. Sample the prior parameters for α, τ1 and τ2, with both parameters distributed 

Exp(1), such that the conditional posterior distributions are

7. For subjects with an unknown number of lifetimes screenings (i.e., unknown 

M), sample the number of lifetime screenings using their corresponding 

probabilities πij and the parameter values of the r(th) iteration of the MCMC 

routine. After this value is sampled, update the unknown ηij correspondingly.

 3.7. Covariates

Following previous work performed by Ghitany and Maller [45] and others [30, 31, 45], 

covariates are added to the model by incorporating them into the parameter(s) of interest or 

by stratifying the model. The elements of the parameter vector  can be modeled using an 

appropriate link function relating the parameter(s) to the covariate(s) of interest. If  only 

has one element, then , where Zi is the covariate vector for the ith subject, 

 are the effects of the covariates on the lag time, and h(·) is an appropriate link function. 

(If  has more than one element, each element may be modeled with the same covariates 

and link function, or this may vary based on the constraints on the parameters in  and the 

biological rationale behind the covariate modeling.) In the exponential example, the link 

function h(.) needs to be such that the parameter λj is positive. A natural function that 

ensures this is the exponential link function , so that the resulting λj are all 

greater than 0.

In the univariate case, the probability that an individual i has a lifetime colonoscopy 

screening can be modeled as , where Xi is a 1 × p covariate vector for the 

ith subject and  are the effects of the p covariates on the probability of a 

lifetime colonoscopy screening. The expit(.) function, defined as expit(a) = exp{a}/(1 + 

exp{a}), is used to ensure that the resulting θi estimates will be between 0 and 1. However, 
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because of the constraint that , in the instance of multiple screenings, it is easier 

to stratify the covariate and sample the θ values separately for each covariate level.

The likelihood function in Equation (4) can then be rewritten as follows:

where s is the covariate stratum with , the total number of covariate strata. A 

similar Gibbs sampler routine to that presented in 3.6 is used for estimation. However, 

instead of sampling all , at once, the vectors are sampled by covariate strata from a 

Dirichlet posterior:

For the  values, elements can be sampled from the posterior:

Each element of , j = 1, …, ℓ and k = 1, …, pj, with .

 4. Simulation studies

To determine the efficiency, accuracy, and consistency of our method and algorithm in the 

SEER-Medicare data context, we conducted a simulation study for the multivariate 

screening case. We set the maximum number of possible lifetime screenings at two (ℓ = 2), 

which is the maximum number of observed colonoscopy screenings in the SEER-Medicare 

data set and is a value consistent with medical practice in the oldest old. Data were 

generated varying the percentages of 0, 1, or 2 lifetime screenings, and assuming different 

lag times for subjects with only one screening when compared with subjects with two 

screenings. As is suggested by the SEER-Medicare data (Figure 3), we assumed an 

exponential distribution for the lag times. Under the exponential distribution for the lag 

times, the multivariate survival distribution for subjects with two screenings becomes

(16)

where  and λ21t1 is the cumulative hazard for the lag time to the first of two 

screenings, and λ22t2 is the cumulative hazard for the lag time to the second of two 
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screenings. For subjects who only receive one lifetime screening, the survival function 

reduces to the standard survival function for the exponential distribution and is given by

To prevent the identifiability issues between the probability of a screening and the lag times 

(previously discussed in Section 3.4), we assumed that the maximum possible lag time was 

10 years (as subjects who are overdue by more than 10 years are no longer ‘average-risk’ 

because of the rate of CRC progression [3]) and that subjects were only eligible for 

colonoscopy screenings between the age of 50 and 90 years. It is rare that a colonoscopy 

screening would be recommended for a patient over 90 years old because the risks 

associated with the colonoscopy screening procedure outweigh the long-term benefits of 

colonoscopy [2]. The length of the simulated study was 25 years. Three different lag time 

scenarios were used to generate data and are denoted as ‘LT1’, ‘LT2’, and ‘LT3’ (Table I). 

The three different lag time scenarios were paired with two different scenarios for the 

number of lifetime screenings (denoted as ‘NLS1’ and ‘NLS2’) and can be seen in Table II. 

The correlation parameter α was set at 0.9 (light correlation between screenings) as a 

biologically plausible value, consistent with descriptive summaries for SEER-Medicare data, 

where lag times when known are neither independent nor strongly correlated. The parameter 

values used to simulate data were chosen based on observed lag times in the SEER-

Medicare data set and the possible true number of lifetime screenings. Paired together, there 

were six different types of simulated data sets, each containing 1000 subjects and generated 

200 times. Left-censoring and right-censoring percentages ranged from approximately 40% 

to 50%. About 40% of subjects had at least one observed screening and about 15% of 

subjects had two observed screenings. In addition, we examined results for a model with 

covariates using simulations. The parameter values and results are outlined in Section 4.2.

Markov Monte Carlo (MCMC) chains were run on each data set, each for 50 000 iterations, 

with the first 10 000 iterations burned and thinned by 10 to reduce autocorrelation. Point 

estimates were calculated as the median of the marginal posterior distribution of each 

parameter.

 4.1. Simulation results

Performance of the algorithm was assessed through the bias and the square root of the mean 

square error (RMSE). The bias was calculated as the average difference between the 

parameter estimate and the true value of the parameter, and the RMSE was calculated as the 

square root of the average squared difference between the parameter estimate and the true 

value of the parameter.

Table III presents the bias (RMSE) of the parameter estimates across all simulated data sets 

as percentages of the total parameter range (0 to 1 for α and all θ parameters, and 0–10 for 

median lag times). Across all data set variations, the average bias (RMSE) of the median lag 

times, Ỹ11, Ỹ21, and Ỹ22, were −1.75% (2.14%), −0.08% (0.85%), and 0.25% (0.64%) 

(corresponding to approximately 9.1 (11.1), 0.4 (4.4), and 1.3 (3.3) weeks) for the only 

lifetime screening, the first of two screenings, and the second of two screenings, 
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respectively. The bias (RMSE) for the percentage of screenings is also small, with values 

equal to −1.67% (2.49%), 1.69% (2.49%), and −0.05% (1.42%) for θ0, θ1, and θ2, 

respectively. The largest bias and RMSE percentages were for the correlation parameter α, 

but numbers remained relatively small and ranged from about 4.5% to 6.3%.

 4.2. Simulations with covariates

A subset of our simulations were performed incorporating a binary insurance covariate, 

representing whether the subject had colonoscopy coverage or not. For subjects who did 

have coverage, the probability or 0, 1, or 2 screenings was equal to 20%, 35%, and 45% 

respectively. For subjects who did not have coverage, these probabilities were 60%, 25%, 

and 15%. The lag times were modeled as a function of β0 and β1, such that

were I{coverage} is an indicator variable denoting whether the individual had colonoscopy 

coverage or not. For the group with coverage, the average time to the only screening was 3 

years, and the average time to the first and second of two screenings was 1.5 and 1 year. For 

the group without coverage, the average time to the only screening was 4 years, and the 

average time to the first and second of two screenings was 2 and 1 year. Results of the 

simulations can be observed in Table IV. As with the previous simulations, the bias and 

RMSE percentages were low for both covariate groups (less than 4%). The results for the 

parameters were similar, with RMSE percentages ranging from 0.90% to 5.34%. The 

correlation parameter, α, behaved similarly to the previous set of simulations.

 5. Application to SEER-medicare data

We applied our multivariate survival model to the SEER-Medicare data set to investigate 

colonoscopy screening behavior between 1991 and 2003, assuming the maximum number of 

lifetime screenings was equal to 2 (i.e., ℓ = 2), as that is the maximum number we observed 

in our data set. This data set contains 403 842 individuals age 65 years or older at study 

entry after the removal of subjects who used other CRC screening methods (such as fecal 

occult blood tests or sigmoidoscopy) or who did not have average-risk screening patterns 

(such as very frequent colonoscopy screenings). Individuals were considered eligible for 

screening colonoscopy in 1991; while current screening guidelines recommend screening 

starting at age 50, very few people received colonoscopies before the early 1990s (as the 

USPSTF did not even provide official guidelines until 1996 [2]), and therefore the 

probability of an unobserved screening on an average-risk individual occurring before 1991 

is very small. Among these subjects, 62% were left-censored, with average left-censoring 

times equal to 4.5 years (range: 0.1–9.9 years). In addition, 22% had one observed 

colonoscopy and 0.11% had two observed colonoscopies. Among individuals who had at 

least one colonoscopy, the median lag time before the first observed screening was 5.7 years 

(range: 0.01–10 years), and among individuals with two colonoscopies, the median lag time 

before the second observed screening was 0.1 years (range: 0.01–2.7 years). An 

approximated hazard rate showed the rate of screening was constant (Figure 3), so we 

assumed an exponential distribution for all lag times.
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We examined both univariate models (estimating the time to the first screening), including a 

covariate to account for insurance coverage levels, as well as multivariate models estimating 

parameters for zero to two screenings. The univariate models were created to provide initial 

estimates of the median time to the first screening (regardless of whether it was the only 

screening or the first of two), as well as the probability an individual would never be 

screened. In addition, we were able to include an insurance level coverage covariate in the 

univariate model, which allowed us to quantify the effects of at least some insurance 

coverage on the probability of receiving at least one lifetime colonoscopy screening. We 

then examined multivariate models with two possible lifetime screenings. This allowed us to 

quantify differences between the lag time to the first lifetime screening and the lag time to 

the first of two lifetime screenings. We were also able to examine if the lag time to the first 

screening was longer or shorter than the lag time to the second screening. Among both the 

univariate and multivariate models, we compared the results when individuals were eligible 

for screening until age 75 or eligible for screening until age 80, which are commensurate 

with current screening guidelines [2]. In the multivariate model, we assumed a maximum lag 

time of 10 years to prevent issues with identifiability.

Three separate MCMC chains were run for each model for a total of 50 000 iterations, each 

with a burn-in of 10 000 and thinned by 10 to reduce autocorrelation, leaving a total of 4000 

thinned iterations in each chain for each parameter for analysis. Convergence was 

determined through the Geweke diagnostic [46], graphical diagnostics (such as trace plots 

and density plots), and Gelman–Rubin tests [47, 48]. Point estimates were calculated as the 

median of the posterior marginal distributions for each parameter, and 95% central credible 

intervals were used for inference.

 5.1. Univariate model results

We first examined univariate models, which provided us with initial estimates on the 

probability of never receiving a colonoscopy screening and the time to the first screening 

(based on the likelihood function in equation 5). The simple univariate model shows that 

before age 75 years, approximately 38% (95% CI: 37.6–37.9%) of the Medicare population 

gets a colonoscopy screening, with a median lag time (calculated based on λ) equal to about 

5.2 years (95% CI: 5.16–5.20 years). These numbers change slightly when the maximum 

screening age is raised to age 80 years with slight increases in screening rates as well as 

increases in median lag times (Table V).

To determine the impact of changes in levels of insurance coverage for colonoscopy 

screenings (i.e., differences between coverage phase 0, phase 1, and phase 2) on 

colonoscopy screening rates, we included a covariate in the estimate of θ in the following 

manner:

In the covariate model, the baseline group (represented by β0) were subjects who became 

eligible for screening when no colonoscopy coverage was offered, and β1 represents the 

change in this probability when some or all coverage was available. (A covariate was not 
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included in the parameter for the lag time, as there was not enough information to reliably 

run the Gibbs Sampler for this particular data set.) Results from the covariate model show 

that screening rates increased almost 15 percentage points for subjects age 75 years and 

younger when at least some insurance coverage was offered, and increased almost 17 

percentage points for subjects 80 and younger when at least some insurance coverage was 

offered. These results show that providing at least some insurance coverage for colonoscopy 

screenings dramatically improves the rate of screening (Table V).

Figure 4 shows the estimated ‘survival curves’ (i.e., the probability of no lifetime screening 

colonoscopy) for subjects who have no colonoscopy insurance coverage compared with 

subjects who have some or all colonoscopy insurance coverage. In our analysis of CRC 

screening, a higher survival curve indicates a worse screening pattern (i.e., lower numbers 

and longer lag times), and it can be observed that (not surprisingly) the subjects who had no 

colonoscopy coverage had lower rates of screening. Among patients eligible for screening 

up to age 75 years, 26% of patients without coverage were screened by age 60 years and 

33% of patients without coverage were screened by age 70 years. However, when at least 

some coverage for colonoscopy was available, 36% of patients were screened by age 60 

years and 45% of patients were screened by age 70 years. This can also be observed in 

Figure 5, which shows the densities of the survival curves (i.e., probability of no 

colonoscopy screening) for subjects at age 55, 60, and 70 years. The figure shows that at age 

55, the two densities are the closest together, and each density is narrow. However, by age 

70, the densities are farther apart from each other, meaning that differences in screening 

patterns between subjects with and without insurance coverage become bigger with 

increasing age. Note that in all three graphs, the densities do not overlap, providing evidence 

that the probability of never being screened via colonoscopy is statistically significantly 

different when subjects have some insurance coverage compared with those who have no 

insurance coverage.

 5.2. Multivariate model results

In the multivariate case, we examined the case of two maximum possible lifetime 

screenings, as we had no individuals with three or more observed colonoscopies in our data 

set, and we assumed both lag times were distributed exponentially. No covariates were 

included in the multivariate model; by the nature of the multiple screenings model, the lag 

times and screening percentages at different points in the study inherently include temporal 

changes such as insurance coverage levels.

Results show that up to age 75, the probability of never being screened is approximately 

68% (95% CI: 67.6–67.9%). The probability of one lifetime screening is about 27% (95% 

CI: 26.8–27.0%), and the probability of two lifetime screenings is about 5% (95% CI: 5.3% 

– 5.4%) . Among subjects who are only screened once, the estimated median lag time is 2.9 

years (95% CI: 2.89–2.92 years). Among subjects who are screened twice, the median lag 

time for the first screening is 1 year (95% CI: 1.01–1.07 years), and the median lag time for 

the second screening is 1.6 years (95% CI: 1.57–1.63 years) . The parameter α, which 

represents the correlation between screenings, is equal to 0.92 (95% CI: 0.912–0.923), 

which means the within-subject correlation between screenings is low. Numbers changed 
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little when subjects were eligible for screening up to age 80 (see Table VI for model results). 

Note that the probability of never being screened through colonoscopy before age 75 is 

similar in the multivariate and univariate models. Lag times between the univariate and 

multivariate models differ because of the unrestricted possible maximum lag time in the 

univariate models.

Estimated marginal survival curves (i.e., the probability of not being screened) for each of 

the lag times of the multivariate model are shown in Figure 6. As with the univariate model, 

high survival curves indicate a poor screening rate. On the left, it is observed that the number 

of two or more screenings is very low, and differences between the first and second of two 

screenings are minor. The number of individuals receiving one lifetime colonoscopy 

screening is higher, but still poor. On the right, the survival curves are again shown, but 

conditional on getting one or two lifetime screenings (i.e., θ is not used in the calculation of 

the survival curve). These estimates show that among individuals who get two screenings, 

the time to the first screening is shorter than the time to the second screening, with 96% of 

these subjects acquiring the first screening within 5 years of becoming due, and 88% of 

subjects acquiring the second screening within 5 years of becoming due. Subjects who only 

get one lifetime colonoscopy screening waited longer, with 77% of these subjects getting 

screened within the first 5 years of becoming due. Our results show that while the actual 

rates of screening are poor, those who are getting screened are diligent, with a large majority 

of individuals getting screened within 5 years after becoming due.

Figure 7 shows the posterior distributions for the probability of at least one screening by age 

55, 65, and 75 years. We see that by age 55, about 25% of individuals have had at least one 

screening. By age 65, at least 31.5% of individuals have had at least one screening, and by 

age 75, at least 32% of individuals have had at least one screening. The densities of the 

probability of at least one screening are very narrow, and the curve for 55-year old subjects 

is far from the other two curves, indicating there is a significant difference in the 

probabilities. There is less difference between the 65-year-olds and 75-year-olds.

Figure 8 shows the bivariate survival distribution in a contour plot. While the figure is fairly 

symmetric (meaning there is little difference between the lag time to the first screening and 

second screening), the gray shading extends slightly higher up the y-axis (the axis that 

denotes the time to the second screening), which means that the time to the second screening 

is delayed slightly longer when compared with the first screening. The bivariate survival 

distribution is only shown for the first 5 years, as the probabilities for years 5 through 10 are 

very small, and it is difficult to discern differences in the distribution after this time point.

 6. Discussion

We have proposed a cure rate model for multivariate survival data that can account for both 

left-censored and right-censored data. We have demonstrated theory that works for the 

general case of multiple lifetime screenings and then applied it to the case of two 

colonoscopy screenings. The case of two colonoscopy screenings in a lifetime is common, 

but more than that is perhaps unrealistic, as beyond a certain age the risks outweigh the 

long-term benefits of screenings and are often not recommended in the later stages of life. 
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Our approach and sampling of missing information allows us to provide robust estimates 

with narrow credible intervals, even in the difficult setting of considerable left-censoring and 

right-censoring and with the inclusion of subjects who never get screened. In addition, our 

estimates are sufficiently accurate to detect both demographic differences and the time-

varying impact of policy shifts.

Using this method, we have shown that many individuals are never being screened for CRC, 

with overall estimates of at least one screening at only 30%. However, screening behavior 

was dramatically improved following increases in Medicare payments, with an estimated 

reduction in the probability of never being screened for CRC of around 15% or more when 

colonoscopy coverage was provided. These results agree with previous work, which has 

shown that screening incidence is generally low but can be improved with increased levels of 

coverage [49, 50]. In addition, among subjects who do get screened, they are diligent and do 

not wait long periods of time after becoming due for a screening. We have extended these 

results to quantify the exact rates of incidence and how adherent individuals are to current 

screening guidelines.

Future work with this model and the SEER-Medicare data set includes linking lifetime 

screening behavior to cancer incidence rates, as well as the inclusion of other screening 

modalities, such as sigmoidoscopy and fecal occult blood testing (FOBT). This link will 

greatly inform the debate on optimal screening guidelines, as well as improve current cost-

benefit analyses of CRC screening and Medicare expenditures.

We have only presented simulations for the case of two lifetime screenings, which are 

reasonable for analysis of the SEER-Medicare data set. The extension to three or more 

lifetime screenings is more difficult computationally, although it can be performed with time 

and care. Another extension would be an exploration of the assumption that the frailty term 

follows a positive stable distribution, such as that found in Qiou et al. [51], or using 

Bayesian modeling to sample the frailty parameter at every iteration of the MCMC sampling 

routine. In addition, we make the assumption that the right-censoring process is independent 

of the screening process, which is likely true for most individuals, but it would be interesting 

to examine how this assumption impacts the parameter estimates using strategies like 

imputation (for example, see Daniels and Hogan [52]) for dependently censored data.

Our model not only has answered very important questions about CRC screening behavior 

but it also has broad applicability to situations with multiple events where there may be 

patterns unobserved before study entry or after study exit. These types of analyses will 

become more prevalent as time progresses, particularly with major changes in health care 

coverage because of the Affordable Care Act. Accurate assessment of patterns of lifetime 

preventive medical care will become more necessary as government-funded health care 

becomes more prevalent, and this information is required to determine the effectiveness of 

different medical procedures.
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Figure 1. 
Four hypothetical lifetime colonoscopy screening trajectories and the observed information 

(unshaded region) available from the SEER-Medicare data set. In the figure, a circle denotes 

the time an individual becomes due for a screening (occurs either at age 50 or 10 years after 

the previous screening), and an ‘X’ denotes the time of a colonoscopy screening. The solid 

lines represent periods of time where the subject is overdue for a colonoscopy (called a ‘lag 

time’), and the dashed lines represent the 10-year period during which average-risk subjects 

are not due for a screening. Among the hypothetical trajectories, subject A is screened twice, 

once before 1991 and then again in the observation window. Subject B has only one 

screening, which is observed. However, based on information provided in the observation 

window, it is not possible to tell if the lifetime trajectory for subject A is different than it is 

for subject B. Similarly, neither subject C or D has an observed screening, but subject C 
does get a colonoscopy screening after the study ends, while subject D does not. In this 

example, all four hypothetical subjects are both left-censored and right-censored.
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Figure 2. 
The figure shows two possible trajectories for a left-censored subject who enters the the 

observation period at time tL and has one observed screening at time t1. Lag times are 

denoted with solid lines, and represent periods of time when the subject is due for a 

screening, and the 10-year post-screening period is denoted with a dashed line. Screenings 

are marked with ‘X’, and time points when the subject becomes due for a screening are 

marked with a circle. In this example, it is possible that (1) the one observed screening is the 

only lifetime screening or (2) the subject may have had two lifetime screenings, the first one 

occurring before the left-censoring time tL and the second being observed. In the first case, 

the length of the first lag time, y1, is equal to the time to the first screening, t1, and can be 

written as . In the second case, we can only determine that the time to 

the first screening, y1, is less than the left-censoring time, and the second lag time, y2, is the 

remaining period of time between the observed screening and the previous screening (t1 − 10 

− y1). This can be written as . This subject is not 

right-censored because he or she reaches the maximum screening age before the observation 

period ends.
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Figure 3. 
Approximated hazard rate of the time to the first screening between years 1991 and 1996 

(before Medicare insurance coverage changes or guidelines were set). The hazard rate is 

very flat, providing evidence that an exponential parametric distribution is appropriate. The 

hazard rate is approximated dividing the number of observed failures by the number of 

subjects at risk (provided by survfit() in R) and then smoothed using smooth.spline() in R.
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Figure 4. 
Univariate model results showing estimated survival curves (i.e., the probability of not being 

screened via colonoscopy) for the time to the first screening, comparing subjects with no 

colonoscopy insurance coverage to those with at least some colonoscopy insurance 

coverage. In the colonoscopy screening context, a high survival curve indicates a poor rate 

of screening. It can be observed that the subjects with the higher survival curve are those 

without colonoscopy coverage.
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Figure 5. 
Univariate model results showing the densities for the probability of not being screened for 

colorectal cancer via colonoscopy by age 55, 60, and 70 years, comparing those with no 

coverage (solid line) and those with at least some coverage (dashed line). Note that while the 

x-axes on all three graphs cover a different range of probability values, the size of the range 

is 15% for all three graphs. We can observe that the two densities are closest together at 55 

years and are farthest apart at 70 years. Note that in all three figures, the densities do not 

overlap, providing evidence that the probability of screening under some and no coverage is 

statistically significantly different across the different time points. The densities are 

calculated using the density() function in R on the MCMC chain of survival probabilities, 

calculated at each iteration of the thinned and burned chains. Results are shown for the 

model with a maximum screening age of 75 years.
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Figure 6. 
Left: Multivariate model results showing the marginal estimated survival curves (i.e., 

probability of not being screened for colorectal cancer via colonoscopy) for the only lifetime 

screening (solid line) or the first and second of two screenings (dashed and dotted lines). As 

expected, more people get only one screening in a lifetime rather than two lifetime 

screenings, and therefore that survival curve is lowest. Right: The estimated survival curves 

conditional on the number of lifetime screenings. These curves show that among subjects 

who will receive two screenings, the first screening happens quickly when compared with 

the second screening. Subjects who only get one colonoscopy take the longer than those who 

get two colonoscopies. As with the univariate models, a high survival curve indicates poor 

screening rates. Estimates were calculated from the multivariate model that assumes 75 is 

the maximum eligible age for screening.
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Figure 7. 
Left: Multivariate model results showing the densities of the probability of getting at least 

one screening before the age of 55, 65, or 75 years. (Densities calculated using the density() 

function in R.) The densities are narrow, and the probability of at least one screening for 55-

year-olds is far from the other two age groups, indicating that there may be a statistically 

significant difference in the probability of screening for individuals who are 55 years old 

when compared with 65- or 75-year-olds. The probability does not increase as rapidly 

between age 65 and 75 years. Estimates were calculated from the multivariate model that 

assumes 75 is the maximum eligible age for screening.
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Figure 8. 
A contour plot of the multivariate model results showing the joint survival curve (i.e., the 

probability of not being screened via colonoscopy), conditional on subjects who get two 

screenings (i.e., the probability of two screenings, θ2, is not used in the calculation of the 

survival probabilities) for the first 5 years. The figure shows minor differences between the 

time to the first screening and time to the second screening, as the contour plot is fairly 

symmetric. However, the gray shading extends slightly higher up the y-axis (which 

represents the time to the second screening), meaning that the probability of not being 

screened is higher for a longer time period before the second screening. As with the 

univariate models, a high survival curve indicates poor screening rates. Years 5 through 10 

are omitted from the figure as the probabilities are very small and difficult to discern in the 

figure. Estimates were calculated from the multivariate model that assumes 75 is the 

maximum eligible age for screening.
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Table I

Three different lag time (‘LT’) scenarios used to generate data sets used in our simulation study. The lag times 

shown are the median lag times (in years) from the survival distribution that is used to generate the lag time to 

colonoscopy screenings for individuals who are screened at least once in their lifetime.

Scenario

Only one screening Two screenings

Lag time (λ11) 1st Lag time (λ21) 2nd Lag time (λ22)

LT1 4.3 (0.02)    1 (0.70)    1 (0.70)

LT2 3.5 (0.09) 4/3 (0.50) 2/3 (1.05)

LT3   2.25 (0.35) 4/3 (0.50) 2/3 (1.05)
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Table II

Two different scenarios for the number of lifetime screenings (‘NLS’) used to generate data sets of the number 

of lifetime screenings (0, 1, or 2) for each subject in the simulated data sets.

Scenario Probability of 0 screenings (θ0) Probability of 1 screening (θ1) Probability of 2 screenings (θ2)

NLS1 1/3 1/3 1/3

NLS2 1/2 1/4 1/4
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Table VI

Estimates and 95% credible intervals (calculated as the median and 2.5% and 97.5% of the marginal posterior 

for each parameter) for the probability of receiving none, one, or two screenings in a lifetime and the median 

time to the only screening or the first and second of two screenings for colorectal cancer in the SEER-

Medicare data set, as well as the parameter α, which represents the correlation between screenings. Results are 

similar regardless of the maximum eligible age for screening.

Covariate

Cap at age 75 Cap at age 80

Estimate 95% CI Estimate 95% CI

Probability of no screenings 0.677 (0.676, 0.679) 0.686 (0.685, 0.688)

Probability of one screening 0.269 (0.268, 0.270) 0.224 (0.222, 0.225)

Probability of two screenings 0.054 (0.053, 0.054) 0.090 (0.089, 0.091)

Median time to only 1 screening 2.905 (2.886, 2.924) 3.176 (3.154, 3.202)

Median time to 1st of two screenings 1.038 (1.010, 1.067) 1.270 (1.249, 1.293)

Median time to 2nd of two screenings 1.597 (1.571, 1.625) 1.564 (1.541, 1.589)

Correlation parameter α 0.917 (0.912, 0.923) 0.960 (0.956, 0.965)

Note: CI, confidence interval; SEER, Surveillance, Epidemiology and End Results.

Stat Med. Author manuscript; available in PMC 2017 August 30.


	Abstract
	1. Introduction
	2. SEER-Medicare data
	3. Model
	3.1. Background
	3.2. Notation
	3.3. Likelihood function
	3.4. Examples
	3.4.1. Example: univariate likelihood
	3.4.2. Example: two possible lifetime screenings

	3.5. Case of more than two lifetime screenings
	3.5.1. Case 1, all screenings observed
	3.5.2. Case 2, subjects only left-censored
	3.5.3. Case 3, subjects only right-censored
	3.5.4. Case 4, subjects left-censored and right-censored

	3.6. Parameter estimation
	3.7. Covariates

	4. Simulation studies
	4.1. Simulation results
	4.2. Simulations with covariates

	5. Application to SEER-medicare data
	5.1. Univariate model results
	5.2. Multivariate model results

	6. Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Table I
	Table II
	Table III
	Table IV
	Table V
	Table VI



