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Abstract

Normative accounts of decision-making predict that people at-
tempt to balance the immediate rewards associated with correct
responses against the costs of deliberation. However, humans
frequently deliberate longer than normative models say they
should. We propose that people try to optimize not only their
rate of material rewards, but also their rate of information gain.
A computational model that implements this idea successfully
mimics human decision makers, reproducing key patterns of
behavior not predicted by alternative models. Moreover, sim-
ulations reveal a normative basis for our model: An agent that
exchanges even a small amount of immediate reward for infor-
mation will improve its decision-making ability through learn-
ing, allowing it to earn more reward in the long run than an
agent disinterested in information. Maximizing a combination
of reward and information rate is a simple yet effective strat-
egy for solving the speed-accuracy tradeoff that may resolve
lingering mysteries about human decision-making.

Keywords: learning; decision-making; drift-diffusion model;
optimality; reward maximization; information theory

Introduction
Normative models of decision-making predict that humans
try to maximize the rate at which they are rewarded by op-
timizing how long they spend deliberating: long enough to
make informed decisions, but not so long as to waste precious
time (Drugowitsch, Moreno-Bote, Churchland, Shadlen, &
Pouget, 2012; Gold & Shadlen, 2002). Mysteriously, this
prediction is often violated. Humans systematically fail to
maximize their reward rate by spending too much time delib-
erating (Bogacz, Hu, Holmes, & Cohen, 2010; Balci et al.,
2011).

Overly long deliberation has been attributed to two main
sources (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006;
Zacksenhouse, Bogacz, & Holmes, 2010): a preference for
accuracy (operationalized as an error penalty), and imperfect
estimates of temporal delays between trials (operationalized
as temporal uncertainty). However, these factors fail to fully
explain the phenomenon of overly long deliberation. They
erroneously predict that the tendency to spend too long de-
liberating vanishes when the decision at hand is particularly
difficult. The intuition behind this result is that decision-
makers—even those who care about accuracy and represent
temporal uncertainty—will spend minimal time deliberating

if the correct response seems impossible to divine. As sen-
sible as it would seem, this behavior is not observed em-
pirically. On the contrary, it is precisely when choices are
very difficult that overly long deliberation is most pronounced
(Balci et al., 2011; Holmes & Cohen, 2014; Ması́s, Chapman,
Rhee, Cox, & Saxe, 2023).

To solve this puzzle, a new model is needed that hews
closer to the empirical data. We propose such a model by
drawing on evidence that humans and non-human animals are
driven to accumulate not just rewards, but also information
(Bromberg-Margin & Hikosaka, 2009; Litovsky, Loewen-
stein, Horn, & Olivola, 2022; Bennett, Bode, Brydevall, War-
ren, & Murawski, 2022; Cogliati Dezza, Schulz, & Wu, 2022;
Melnikoff, Carlson, & Stillman, 2022). We suggest that when
determining how long to deliberate, decision-makers have a
default tendency to optimize not their rate of reward, but their
rate of information gain. A model that implements this idea
mimics the human tendency to deliberate too long regardless
of the difficulty of the choice at hand. Thus, the basic drive
to consume information may play a crucial role in the speed-
accuracy trade-off.

Beyond better capturing people’s behavior, why might
decision-makers prioritize information over reward in the first
place? According to recent theorizing, overly slow respond-
ing may promote learning, allowing decision-makers to im-
prove their performance and, ultimately, accrue more reward
in the long run (Ması́s, Musslick, & Cohen, 2021). So, by en-
couraging overly slow responding, information seeking may
yield more cumulative reward through the improvement of
decision-making performance. In line with this idea, we find
that when our model is endowed with the ability to learn, its
cumulative reward increases the more it prioritizes informa-
tion. This result supports our model from a normative stand-
point as well as an empirical one. Specifically, it matches
behavior recently observed in rodents (Ması́s et al., 2023):
Much like our model, rats unlock higher future rewards by
exchanging immediate rewards for the learning benefits of
overly slow responding. Our model shows how this seem-
ingly sophisticated, forward-looking process can be achieved
through the simple, myopic policy of maximizing one’s cur-
rent rate of information gain.
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Figure 1: Model description. (a) Accumulator state. Pos-
itive values correspond to evidence in favor of stimulus
‘A’ (the true stimulus) and negative values correspond to
evidence in favor of stimulus ‘B’. (b) p(stimulus = ‘A’)k
(black line) and subjective probability of correct response
π(correct)k (blue line). (c) Instantaneous information ik (blue
lines) via eq. 6, and total information ∑

k
j=0 i j (black line).

(d) Rate of information gain yk (black line) via eq. 7 and go
signal (warm tone lines, with reward priority λ increasing as
colors darken) via eq. 8. (e) A decision is made when the go
signal xk reaches a local maximum, i.e. its velocity is vk ≤ 0
(black dots denote this moment for various values of λ). (f)
Accumulator state at the decision time determines the trial
outcome.

Model
Background
In a standard drift-diffusion model (DDM), decision-makers
accumulate noisy evidence over time (Ratcliff & McKoon,
2008). Given a set of prior beliefs about the evidence-
generating process, decision-makers can use the accumulated
evidence to compute, at each moment in time, the poste-
rior probability that a given option is correct (Calder-Travis,
Bogacz, & Yeung, 2020; Drugowitsch et al., 2012; Moran,
2015). A decision is made once the accumulated evidence
reaches a predetermined bound (Ratcliff & McKoon, 2008),
which denotes how confident a decision-maker needs to be
about which option is correct before making a decision. This
bound can be constant or change over time (Drugowitsch
et al., 2012; Moran, 2015), and its location will impact the
agent’s reward rate. There exists an optimal bound for every
signal-to-noise ratio (SNR) and inter-trial interval that can be
parametrized as a relation between decision time (DT) and
error rate (ER) called the optimal performance curve (OPC)
(Bogacz et al., 2006). Overly slow responding is defined as
any response that lies above the OPC.

Model Overview
We propose that decision-makers have a default tendency to
maximize their rate of information gain, but can strategically
increase their rate of reward. In our model, this behavior
is implemented through the computation of a “go signal” at
each time step k of deliberation. A decision is made when

the go signal reaches a local maximum. The trajectory of
the go signal depends on two things. First, it depends on
the decision-maker’s rate of information gain, which changes
throughout deliberation. Second, it depends on whether, and
to what extent, the decision-maker prioritizes reward rate. If
the decision-maker assigns zero priority to reward rate, the go
signal and the information rate will reach local maximums at
approximately the same time, resulting in a decision that pro-
motes information seeking. However, to the extent that the
decision-maker does prioritize its reward rate, the go signal
will be biased to plateau at a closer to reward-rate-optimal
time step.

We present our model in three parts. First, we describe
the basic process through which the go signal evolves over
time. Second, we describe how the rate of information gain
is computed and used to guide the trajectory of the go signal.
Finally, we describe how the trajectory of the go signal can
be biased in order to increase the decision-maker’s rate of
reward.

Model Description
The Go Signal. ∆t is a small time interval between each
step of the decision-making process. Over the course of this
time interval, the go signal changes at a constant velocity.
Accordingly, the projected value of the go signal at time step
k is given by

x̂k = xk−1 +∆tvk−1 (1)

where x̂k is the projection, xk−1 is the go signal at the previ-
ous time step, and vk−1 is the velocity of the go signal at the
previous time step. The projected velocity v̂k is simply

v̂k = vk−1 (2)

The go signal evolves in a closed loop manner. At each time
step, its projected value x̂k is compared to a target value yk,
and the residual (i.e., the difference between the projection
and the target value) rk is used to adjust the go signal and its
velocity in such a way as to minimize the residual at the next
time step. rk is computed according to

rk = yk − x̂k (3)

and is used to compute the new go signal xk and its velocity
vk as follows:

xk = x̂k +αrk (4)

vk = v̂k +
β

∆t
rk (5)

where 0 < α < 1 and 0 < β ≤ 2 control the amount of ad-
justment applied to the projections. Equations (1)–(5) are
equivalent to an α–β filter and, for certain values of α and
β, a steady-state Kalman filter. They ensure that the trajec-
tory of the go signal hews closely to that of the target value
by reducing the magnitude of the residual at each time step.
In addition, when 0 < β < 1, noise in the go signal is sup-
pressed, making its trajectory smoother than that of the target
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value. The suppression of noise is critical, since the decision-
maker’s policy is to make a decision when the go signal
reaches a local maximum; random noise may produce “false
maximums,” causing the decision-maker to choose well be-
fore a “true maximum” occurs in the underlying signal. In all
simulations, we set the initial state values xk=0 = vk=0 = 0.

Rate of Information Gain. The target value toward which
the go signal is adjusted is the decision-maker’s rate of infor-
mation gain, computed as follows.

Faced with a binary forced-choice, a decision-maker accu-
mulates evidence according to a standard DDM (Ratcliff &
McKoon, 2008) (Fig. 1a). Assuming a Bayesian observer,
the accumulator state (i.e., the total evidence accumulated)
is used to compute, at every time step, the decision-maker’s
“confidence,” denoted as ck. Confidence is the log odds of
the decision-maker choosing correctly at time k assuming a
“greedy” response policy of always choosing the most prob-
able option (Calder-Travis et al., 2020; Drugowitsch et al.,
2012; Moran, 2015) .

ck defines the probability distribution πk, over decision out-
comes (correct vs. incorrect) (Fig. 1b), which is used to com-
pute information gain at each time step:

ik = DKL[πk||πk−1] (6)

DKL is Kullback-Leibler divergence, which, in this case,
quantifies the relative entropy from πk−1 to πk. Therefore,
ik quantifies the amount of information that the decision-
maker’s kth accumulator state provides about its probabil-
ity of responding correctly (Fig. 1c, blue). In other words,
ik tells the decision-maker the marginal information benefit
from having accumulated evidence for one more time step.1

At each time step, the agent uses i0:k to track its rate of in-
formation gain yk—that is, the total information gained (Fig.
1c, black) divided by time spent deliberating k, non-decision
time t0, and the mean response-to-stimulus interval (RSI). We
express this value in units of bits-per-second (bps) (Fig. 1d,
grey):

yk =
∑

k
j=0 i j

k+ t0 +RSI
(7)

yk is used to compute xk and vk according to (4) and (5), re-
spectively. With a small β, this results in a smooth go signal
that tracks the trajectory of the decision-maker’s rate of in-
formation gain. Accordingly, a decision-maker that makes
its choice when the go signal reaches a local maximum will
come close to maximizing its information rate. The reason
the decision-maker optimizes its go signal, as opposed to its
information rate directly, is because the decision-maker may
wish to optimize a combination of information rate and re-
ward rate. The decision-maker can accomplish this by opti-
mizing the go signal, which is sensitive to both rates, as we
will now show.

1DKL is defined so long as the probability of a particular decision
outcome never reaches 1 or 0—a condition that is always satisfied
due to the noise in the accumulation process.

Rate of Reward. Our model allows decision-makers to bias
the go signal by increasing or decreasing its velocity. In other
words, the decision-maker can accelerate or decelerate the go
signal. This entails the following modifications to (1) and (2).
The projected go signal at time step k becomes

x̂k = xk−1 +∆tvk−1 +
1
2 ∆t2ak−1 (8)

and its projected velocity becomes

v̂k = vk−1 +∆tak−1 (9)

where ak−1 is the acceleration applied by the decision-maker
at time step k−1.

The acceleration is a function of two quantities. First, it is a
function of the degree to which the decision-maker prioritizes
reward λ ∈R≥0. Second, it is a function of the difference be-
tween the decision-maker’s current level of confidence ck and
its optimal confidence threshold cop. The optimal confidence
threshold is the value of ck at which the decision-maker must
make its choice in order to maximize its reward rate. cop can
be computed numerically for any given SNR and inter-trial
interval (Bogacz et al., 2006). Acceleration at time step k is
computed according to:

ak = λ(cop − ck) (10)

According to (10), when cop > ck, amplifying reward prior-
ity λ will accelerate the go state. This, in turn, will make
the go state less likely to reach a local maximum, prevent-
ing the decision-maker from making its choice prior to the
time step at which it would maximize its reward rate. Con-
versely, when cop < ck, amplifying reward priority will decel-
erate the go signal, which will make it more likely to reach a
local maximum, thereby preventing the decision-maker from
deliberating longer than it should to maximize its rate of re-
ward. In the limit λ → ∞ the decision-maker will optimize
only its reward rate. When λ = 0, the decision-maker will
optimize only its rate of information gain. For all other val-
ues of λ the decision-maker will optimize some combination
of information rate and reward rate, with greater emphasis on
reward rate as λ increases.

Summary. The go signal evolves in a closed loop fashion.
Its value and velocity are adjusted at each time step to re-
duce the difference between its trajectory and the trajectory
of the decision-maker’s information rate. In addition, the
decision-maker can prioritize reward rate by accelerating or
decelerating the go signal, which will encourage it to plateau
closer to the reward-rate-maximizing time step. In our model
simulations, a decision is made when the velocity of the go
signal becomes non-positive. The response is considered cor-
rect if, at that time step, the accumulator state favors the cor-
rect answer. Otherwise, the response is considered incorrect.
We set α = .0248 and β = .0003. These settings apply suf-
ficient noise suppression to produce smooth go signal tra-
jectories, and render our model equivalent to a steady-state
Kalman filter with process noise σ2

p = .0001 and observation
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Figure 2: Information seeking produces realistic response
times. Inverse Gaussian fits to model decision times. Warm-
tone colors denote information to reward priority (increasing
λ parameter). Top, middle, and bottom row show all, correct,
and error trials respectively

noise σ2
o = 1000. The reward priority λ was always held con-

stant throughout the decision-making process. For our simu-
lations, we compare the performance of our model to that of
a standard DDM agent set to optimize its instantaneous rate
of reward (iRR)—that is, an iRR-optimal policy—, as well as
agents with an error penalty and with temporal uncertainty.

Results
Information Seeking Produces Realistic Response
Times
Any plausible model of decision-making must produce realis-
tic distributions of response times. To confirm that our model
clears this initial hurdle, we used it to simulate 1000 response
times across a range of λ values, and used these data to fit In-
verse Gaussian (also known as Wald) distributions, which de-
scriptively capture the response time distributions of human
and non-human decision-makers (Luce et al., 1986; Matzke
& Wagenmakers, 2009). We consistently obtained reasonable
fits, confirming that our model produces empirically valid dis-
tributions of response times (Fig. 2).

Information Seeking Produces Overly Slow
Responding Across all Levels of Difficulty
There are two main alternative models of overly slow re-
sponding (Bogacz et al., 2006; Zacksenhouse et al., 2010;
Holmes & Cohen, 2014). The error penalty model intro-
duces a negative utility q for errors, leading subjects to dis-
play accuracy-bias-like behavior:

iRREP =
1−ER−qER
DT + t0 +RSI

(11)

The temporal uncertainty model assumes subjects have a
noisy estimate of the intertrial intervals, with some propor-
tionality constant a capturing the presumed level of uncer-
tainty:
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Figure 3: Model performance in speed-accuracy space. (a)
information gain model ER & DT as functions of SNR (dots),
and reward priority λ (warm tones). OPC in grey. Overly
slow responding (i.e., distance above OPC), is amplified with
greater priority on information rate. At low SNR (dashed
box), model produces large range of response times. (b) iRR-
optimal (black), error penalty (light blue), temporal uncer-
tainty (pink) optimal models. At low SNR, optimal models
converge to OPC.

iRRTU =
1−ER

DT +(1+a)(t0 + RSI)
(12)

Thresholds can then be optimized according to these reward
rate equations, resulting in alternative optimal performance
curves (Zacksenhouse et al., 2010).

Our model mimics the behavior of non-human animals and
people (Ması́s et al., 2023; Balci et al., 2011; Bogacz et al.,
2010; Zacksenhouse et al., 2010) by spending longer deliber-
ating that it should to maximize its reward rate (Fig. 3a). This
was the case across all parameter settings, but especially for
small values of λ (when information rate is prioritized most).
Critically, unlike the alternative models (error penalty, and
temporal uncertainty, Fig. 3b), our model responds too slowly
even when the decision at hand is so difficult that accuracy is
at chance. These results support our hypothesis that a deci-
sion policy that maximizes a combination of reward rate and
information rate reproduces key patterns of human decision-
making that existing models on their own cannot capture.
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Information Seeking Yields Faster Learning and
Higher Reward
To investigate the potential benefits of a decision policy that
prioritizes information, we endow our model with the ability
to improve its decision-making performance through learn-
ing. Recent modeling work shows that longer deliberation
times lead to faster learning (Ması́s et al., 2023). Thus, to
capture learning, we assume that SNR improves as a func-
tion of deliberation time; the longer an agent deliberates, the
more they are able to learn (i.e., reduce SNR) and, in turn, im-
prove their future performance. Under this assumption, our
model learns faster than an iRR-optimal agent endowed with
the same learning abilities (Fig. 4a). In fact, even a small
regard for information (large λ) yields considerable learning
benefits over pure reward rate maximization (Fig. 4a,b; dark
purple vs. grey).

This stark difference arises because, as noted above, our
model spends more time deliberating, with the difference in
deliberation being more pronounced as a decreasing function
of λ—that is, as information is prioritized over reward (Fig.
4b). Notably, this difference in deliberation is highest at the
start of learning when it is (fortuitously) most beneficial for
improvement, and lowest as the agent’s skill level reaches
mastery (ER ≈ 0).

One would expect an information seeking policy to result
in reward rate opportunity costs, and indeed this is the case.

Our model initially accrues less reward than an iRR-optimal
agent (Fig. 4e). However, this difference is surprisingly small
when noting the considerable differences in decision time be-
havior (Fig. 4b). Despite this initial reward opportunity cost,
across a broad swath of reward priority values λ, our model
earns more cumulative reward over learning than an iRR-
optimal agent (Fig. 4f). We note that at high skill levels (re-
sulting in low ERs and low DTs), the differences in behavior
between information seeking and reward-maximizing agents
shrink. This observation is important because it demonstrates
that the reward opportunity costs for information seeking ex-
perienced at low skill levels are compensated for with the
learning benefit that comes precisely with information seek-
ing. Thus, although it would be preferable to maximize re-
ward rate in the narrow case of a completely non-stationary
environment, in the more realistic and much broader set of
cases where learning is possible because there is periodic sta-
tionarity, information seeking becomes preferable.

These findings suggest that our model has a normative ba-
sis. In addition, they align with the vast literature on auto-
maticity and skill learning (Newell & Rosenbloom, 1981),
and recent empirical results: rats, like our model, have been
found to outperform an iRR-optimal policy in terms of cu-
mulative reward by making overly slow responses on early
decision-making trials, and speeding up as their learning
plateaus (Ması́s et al., 2023).

Discussion
We have proposed a novel account of a pervasive and per-
plexing finding: human and non-human decision-makers sys-
tematically deliberate longer than they should to optimize
their rate of reward. On our account, this (apparent) sub-
optimality arises because decision-makers wish to maximize
not only their reward rate, but also their information rate.
A model embodying this hypothesis confirms that informa-
tion seeking can produce overly slow responding. Critically,
our model produces overly slow responding at all levels of
difficulty—even at difficulty levels where decision-makers re-
spond with chance accuracy—which is a commonly observed
phenomenon that alternative models miss.

Beyond empirical support, our model enjoys normative
support: When learning is taken into account, it improves
its performance faster and, ultimately, accrues more rewards.
Maximizing a mix of reward and information rates is a rel-
atively simple and myopic strategy that solves the difficult
intertemporal choice problem of how to weigh present re-
wards against information that can help with future rewards.
Previous work has proposed solving this problem via cogni-
tive control, assigning more cognitive control to prioritize in-
formation over reward when the expectation to learn is high
(Ması́s et al., 2021). This model, built upon the Expected
Value of Control (EVC) theory (Shenhav, Botvinick, & Co-
hen, 2013), formulates the previously described intertemporal
choice problem across trials, and as such requires a prediction
of future discounted reward. The model presented herein for-
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mulates the problem within a trial, resulting in desirable be-
havior across trials, without the need for a prediction of future
states. In the absence of metacognitive control, our model
thus provides a candidate heuristic, or default algorithm, that
solves this problem naturally and myopically. Modulating the
reward priority λ (through metacognitive control) could serve
as a proxy for expected learning prospects, and as such could
be annealed over time with experience.

Our model raises the question of whether the speed-
accuracy trade-off can be reduced to a trade-off between re-
ward seeking and information seeking. Indeed, according to
our model, the only mechanism through which a decision-
maker can modulate its rate of responding is by changing
its reward priority λ—that is, the degree to which it prior-
itizes the maximization of information rate relative to re-
ward rate. This is implausible, however, because it implies
that decisions-makers are incapable of responding faster than
reward-rate optimal. Our model’s decision-making speed is
maximized in the limit λ → ∞, at which point it becomes
a pure optimizer of reward rate. It seems unlikely that hu-
man decision-makers are incapable of faster-than-optimal re-
sponding. This suggests that decision-makers attempt to op-
timize not just reward rate and information rate, but other
variables as well—some of which favor particularly fast re-
sponding. Identifying these additional variables will be an
important direction for future work.
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