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Abstract

Flexibility of behavior and the ability to rapidly switch actions is critical for adaptive living in 

humans. It is well established that the right-inferior frontal gyrus (R-IFG) is recruited during 

outright action-stopping, relating to increased beta (12-30 Hz) power. It has also been posited that 

inhibiting incorrect response tendencies and switching is central to motor flexibility. However, 

it is not known if the commonly reported R-IFG beta signature of response inhibition in action-

stopping is also recruited during response conflict, which would suggest overlapping networks for 

stopping and switching. In the current study, we analyzed high precision magnetoencephalography 

(hpMEG) data recorded with multiple within subject recording sessions (trials n > 10,000) from 

8 subjects during different levels of response conflict. We hypothesized that a R-IFG-triggered 

network for response inhibition is domain general and therefore also involved in mediating 

response conflict. We tested whether R-IFG showed increased beta power dependent on the level 

of response conflict. Using event-related spectral perturbations and linear mixed modeling, we 

found that R-IFG beta power increased for response conflict trials. The R-IFG beta increase was 

specific to trials with strong response conflict, and increased R-IFG beta power related to less 
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error. This supports a more generalized role for R-IFG beta, beyond simple stopping behavior 

towards response switching.

Keywords

R-IFG beta; response conflict; switching; hpMEG; pre-SMA theta

1. Introduction

Sometimes we plan or start to execute an action, but then need to suddenly execute a 

different action instead. In experiments, this has been called switching, response overriding, 

or overcoming response conflict; here we use the term response conflict. One notable theory 

suggests that during motoric response conflict, inhibition of the incorrect response tendency 

is necessary (see Wiecki & Frank, 2013). This inhibitory control mechanism may be the 

same as that of outright action-stopping (e.g., Wessel & Aron, 2017; Wessel et al. 2019), 

although a subsequent response is not required when stopping. However, it remains an open 

question to what extent response conflict resolution and stopping rely on shared mechanisms 

of inhibition.

Communication from the right-inferior frontal gyrus (R-IFG) to the STN of the basal ganglia 

has been implicated in stopping movement (for review, see Aron et al., 2016; Hannah & 

Aron, 2021). Specifically, previous studies have found increased beta (12-30 Hz) power 

in R-IFG (Swann et al., 2009; Wagner et al., 2018; Schaum et al. 2021; Sundby et al., 

2021) and STN (for review, see Zavala et al., 2015) during successful stopping. The notion 

that mechanisms of response inhibition are important for overcoming response conflict 

by inhibiting incorrect response tendencies has been supported by computational models 

(Wiecki & Frank, 2013) and empirical work (Forstmann et al., 2008a; 2008b; Neubert et 

al., 2010; Brittain et al., 2012; Wessel et al., 2019). However, scant research has implicated 

R-IFG in response conflict, despite it being a key node in the putative inhibitory control 

network. Neubert et al. (2010) found using transcranial magnetic stimulation (TMS) that 

response conflict increased the inhibitory influence of R-IFG over primary motor (M1) 

cortical representations of incorrect responses. Using fMRI, Forstmann and colleagues 

(2008a, 2008b) found that R-IFG activation related to behavioral indices of response 

inhibition during response conflict, although only for some trials. This suggests that R-IFG 

may be recruited to inhibit incorrect responses during response conflict, but the limited 

evidence has not yet been supported by high resolution electrophysiology. Brittain et al. 

(2012) reported increased STN beta during Stroop conflict, which might suggest that beta-

band communication from R-IFG to STN is involved in overcoming response conflict. 

However, to date there has not been a direct electrophysiological investigation of the role of 

R-IFG beta during response conflict, which is the primary focus of the current study.

Other cortical regions are thought to facilitate the control of action during conflict as well. 

Communication from pre-SMA to the STN has been implicated in conflict (for review, 

see Aron et al., 2016). Medial prefrontal cortex (mPFC), including pre-SMA, has been 

implicated during response conflict paradigms using neuroimaging (Garavan et al., 2003; 
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Nachev et al., 2005), brain stimulation (Neubert et al., 2010), electrophysiology (Zavala 

et al., 2018; Wessel et al., 2019), and single-unit recordings (Isoda & Hikosaka, 2007). A 

common electrophysiological readout during response conflict is increased theta (4-8 Hz) 

power in mPFC (Zavala et al., 2018; Wessel et al., 2019) – plausibly originating from 

pre-SMA – and in STN (Zavala et al., 2018). This theta increase has been interpreted as a 

“pause” of motor output while evidence accumulates to a decision threshold (see Wiecki & 

Frank, 2013). It is a secondary focus of the current study to attempt to replicate previous 

findings implicating mPFC theta power during response conflict.

We re-analyzed a head-cast, high precision MEG (hpMEG) dataset with > 10,000 trials 

from a small cohort of healthy controls (N = 8) during a random dot kinematogram (RDK) 

response conflict paradigm (Bonaiuto et al., 2018; Little et al., 2019). We reconstructed 

source activity in R-IFG, left-IFG (L-IFG; R-IFG control region), and pre-SMA. We then 

utilized event-related spectral perturbations and linear mixed modeling to evaluate power 

changes associated with response conflict at the single-trial level, following an imperative 

cue which could be congruent or incongruent with the preparatory cue. We hypothesized that 

R-IFG beta is recruited for response inhibition during response conflict, and tested whether 

R-IFG beta power increased on response conflict trials, particularly strong response conflict. 

We also evaluated classical mPFC theta activity by testing whether pre-SMA theta power 

increased on response conflict trials. Lastly, we tested whether changes in R-IFG beta and 

pre-SMA theta power during response conflict related to motor behavior.

2. Materials and Methods

We report how we determined our sample size, all data exclusions (if any), all data 

inclusion/exclusion criteria, whether inclusion/exclusion criteria were established prior to 

data analysis, all manipulations, and all measures in the study.

2.1 Data and code availability

The analyses presented in this paper were performed on a pre-existing hpMEG dataset, 

collected with subject-specific head-casts to maximize signal-to-noise ratio (SNR) (see 

Little et al., 2018). Raw data are available via the Open Science Framework (OSF) at 

https://osf.io/eu6nx, and via the Open MEG Archive (OMEGA; Niso et al., 2016) at http://

dx.doi.org/10.23686/0015896 (register at https://www.mcgill.ca/bic/resources/omega; Niso 

et al., 2018), and processed data are available via OSF at https://osf.io/hqaw6. The code 

used to present experimental stimuli is available via Github at https://github.com/jbonaiuto/

cued_action_selection. The analyses presented here were performed with custom scripts in 

MATLAB R2020a and RStudio Version 1.2.5001, which are available via OSF at https://

osf.io/hqaw6.

A full description of the original materials and methods can be found in the original 

description (Bonaiuto et al., 2018). Brief summaries of key features of the initial data 

collection and processing are included here, along with more detailed information about the 

methods used that differ from the original techniques. Study procedures and analyses were 

not pre-registered.
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2.2 Response conflict paradigm

Subjects were presented with RDKs that predicted upcoming movement cues and varied in 

level of coherence (high, medium, low; each 33.3% of trials). The preparatory RDKs were 

followed by an imperative cue that indicated a left or right button press using the middle 

or index finger of the right hand, and were either congruent with the preparatory cue (no 

response conflict; 70% of trials) or incongruent (response conflict; 30% of trials) (Figure 1). 

We operationally defined low RDK coherence incongruent trials as having a low strength of 

response conflict, medium RDK coherence incongruent trials as having a medium strength 

of response conflict, and high RDK coherence incongruent trials as having a high strength 

of response conflict. On each trial, subjects responded to an imperative cue using either 

the index or middle finger of their right hand. Between trials, subjects fixated on a central 

fixation cross (not depicted in Figure 1).

The sample size was determined by that of the original study. Eight subjects completed 

1-4 sessions each, for a total of 24 sessions in the dataset. Prior to data visualization and 

statistical analysis, we excluded trials with a response time (RT) of less than 100 ms, 

resulting in a total of 10,496 trials included across all subjects (512 - 2,109 trials per 

subject). Neural signals were analyzed after the imperative cue, before the average RT, to 

index response conflict. We did not analyze neural signals during the RDK period, as this 

has been previously reported (Bonaiuto et al., 2018; Little et al., 2019).

2.3 Source inversion

Sensor-level hpMEG data (recorded during the response conflict paradigm) was source 

inverted using individual subjects’ cortical surface meshes to reconstruct activity in R-IFG, 

L-IFG, and pre-SMA. We analyzed source data from L-IFG as a control region for R-IFG. 

For source inversion, cortical surface meshes were extracted using FreeSurfer (Fischel, 

2012) from multiparameter maps using the proton density (PD) and longitudinal relaxation 

time (T1) sequences from each subject’s structural MRI, as described by Bonaiuto et al. 

(2018). 3-dimensional surface plots of each subject’s cortical surface mesh were reviewed 

and subject-specific regions of interest (ROIs) were established using previously defined 

anatomical landmarks: right and left pars opercularis for R-IFG and L-IFG, respectively (see 

Levy & Wagner, 2011; Breshears et al. 2018), and right dorsomedial PFC for pre-SMA (see 

Kim et al. 2010; Neubert et al., 2010; Zhang et al., 2012). Next, we selected a central vertex 

within each region, and validated our selection using MNI coordinates from meta-analyses 

on NeuroSynth (Yarkoni et al., 2011). We created localized clusters by selecting all vertices 

within a 1 mm radial distance across the cortical surface (see Figures 2A and 3A for a 

visualization of one subject as an example). We then performed source inversion using SPM 

12 (http://www.fil.ion.ucl.ac.uk/spm/) and an Empirical Bayesian beamformer, as described 

by Little et al. (2019), and then selected source activity time series for every vertex in each 

ROI cluster for further analysis.

2.4 Time-frequency decomposition

We computed time-frequency transforms of the source-level time series using Morlet 

wavelets (3 cycles at low frequencies, linearly increasing by 0.5 at higher frequencies), 

with a range from 4-30 Hz (see Jana et al., 2020). We performed time-frequency transforms 
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for the time series for every vertex in each ROI cluster, to obtain a time x frequency x trial 

x vertex, 4-dimensional matrix of power for each ROI in each session. Then, we averaged 

across the cluster vertex dimension to create a time x frequency x trial matrix.

2.4.1 Event-related spectral perturbation (ERSP)—For group level visualizations, 

we computed ERSPs for trials with and without response conflict for each ROI (i.e., R-IFG, 

L-IFG, pre-SMA). We converted spectral power to decibels (dB) using a 500 ms baseline 

prior to the RDK presentation (i.e., during fixation) (see Cohen, 2014). We averaged across 

all sessions that each subject completed (total N = 24), and then computed a grand average 

across subjects (N = 8). We subtracted the group average ERSP for trials with no response 

conflict from the group average ERSP for trials with response conflict to specifically 

visualize the difference. We plotted these ERSPs with a range from 4-30 Hz on the y-axis 

and 0-500 ms relative to the imperative cue on the x-axis, with a vertical line at 300 ms 

denoting average RT (Figure 2). We followed the same procedure for R-IFG ERSPs split by 

levels of coherence (Figure 3).

2.5 Statistical analyses

To optimize analysis across all trials (n = 10,496) in this dataset, and model within-subject 

data as well as small cohort between-subject data (N = 8), we used a linear mixed modeling 

framework using R (v3.6.1, R Core Team, 2019) and the lme4 package (v1.1-21, Bates et al., 

2015). To compute effect sizes of main effects in our models, we used a formula for Cohen’s 

d for mixed effects models (Brysbaert & Stevens, 2018).

2.5.1 Data preparation for linear mixed modeling—To prepare the spectral power 

data for single-trial level statistical analyses, we computed a simple linear baseline 

subtraction using a 500 ms window prior to the RDK presentation on that trial (see 

Grandchamp & Delorme, 2011; Cohen, 2014). We a priori (i.e., prior to visualization of 

the contrast spectrograms) defined time and frequency ranges to average across to obtain 

single-trial power estimates in our pre-specified ROIs. We used 0-300 ms relative to the 

imperative cue (i.e., time between imperative cue presentation and average RT) as our 

temporal ROI. We used 4-8 Hz for theta, and subject-specific and conventional partitions 

of 12-30 Hz for beta (explained in detail in 2.5.1.1). We z-scored each of these single-trial 

power estimates within-subject and -ROI.

2.5.1.1 Partitioning the beta band: Previous studies have defined beta differently (e.g., 

Engel & Fries, 2010; Newson & Thiagarajan, 2019; Schmidt et al., 2019). Here we defined 

12-20 Hz as ‘low beta’ and 21-30 Hz as ‘high beta’. Previous work has specifically 

implicated the lower beta band in stopping-related activity (Engel & Fries, 2010; Wagner 

et al., 2018; Schmidt et al., 2019), so we sought as our primary test an evaluation of 

whether R-IFG low beta specifically was recruited during response conflict. We used an 

individualized (peak-centered) frequency band of task-relevant low beta to test our primary 

hypothesis about R-IFG low beta in response conflict.

We computed average baseline-corrected spectral power (dB) for all trials that the subject 

completed, and then averaged across our 0-300 ms time window of interest to obtain a single 
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spectral power estimate for each frequency value in the 12-20 Hz range. Then we extracted 

the value for which low beta power was greatest, and used that as the center of a narrow 

subject-specific range (peak low beta +/− 1 Hz). In addition to defining subject-specific low 

beta, we also used a broader band conventional range of low beta (12-20 Hz) and used 

the same procedure described here to define subject-specific (peak high beta +/− 1 Hz) 

and conventional (21-30 Hz) high beta for secondary comparison. Notably, we saw distinct 

baseline-corrected low beta peaks separate from the theta band in 7 out of 8 subjects for 

R-IFG (1 subject appeared to have an incomplete beta peak). The mean peak low beta value 

in R-IFG was 13.79 Hz (+/− 1.05 Hz), in L-IFG it was 13.71 Hz (+/− 0.93 Hz), and in 

pre-SMA it was 15.99 Hz (+/− 1.35 Hz).

2.5.2 Linear mixed models—All of our models were structured with session nested 

within subject-specific intercepts as random effects. We used Type III Wald Chi Square tests 

for our models. We used z-tests, Tukey corrected for multiple comparisons, for pairwise 

comparisons.

To assess the impact of response conflict and RDK coherence on RT, we used a linear 

mixed model with RT (log10 transformed) as the dependent variable, and response conflict, 

RDK coherence, and their interaction as fixed effects. To assess the impact of response 

conflict and RDK coherence on error, we used a generalized linear mixed model with a 

binomial distribution, response (0 = incorrect, 1 = correct) as the dependent variable, and 

response conflict, RDK coherence, and their interaction as fixed effects. To assess the impact 

of response conflict and RDK coherence on neural activity, we used linear mixed models 

with z-scored power as the dependent variable, and response conflict, RDK coherence, and 

their interaction as fixed effects. Lastly, to explore relationships between neural activity and 

behavior (i.e., RT, error), we used linear mixed models with RT (log10 transformed) as 

the dependent variable, and z-scored power, response conflict, and their interaction as fixed 

effects, and generalized linear mixed models with a binomial distribution, response (0 = 

incorrect, 1 = correct) as the dependent variable, and z-scored power, response conflict, and 

their interaction as fixed effects.

3. Results

3.1 Behavioral results

On average, subjects responded faster and more accurately on trials with no response 

conflict compared to trials with response conflict (Figure 1). Linear mixed models revealed 

a significant interaction between response conflict and coherence on log-transformed RT 

(X2(2) = 35.3, p < .0001) and on response accuracy (X2(2) = 264.19, p < .0001). Pairwise 

comparisons revealed significant differences in behavioral performance for trials with no 

response conflict compared to trials with response conflict. Subjects had significantly longer 

RTs on trials with response conflict for high (Z = −17.07, p < .0001), medium (Z = −14.18, 

p < .0001) and low (Z = −8.93, p < .0001) coherence trials, and significantly more errors on 

trials with response conflict for high (Z = 26.94, p < .0001), medium (Z = 20.64, p < .0001), 

and low (Z = 4.81, p < .0001) coherence trials.
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3.2 Neural results

3.2.1 Increased beta power during response conflict in R-IFG, not L-IFG or 
pre-SMA—To test whether there was increased low beta power in R-IFG during response 

conflict, we analyzed subject-specific and conventional low beta power during response 

conflict trials compared to no response conflict trials in R-IFG. We also secondarily 

analyzed subject-specific and conventional high beta for comparison. On average, low beta 

power in R-IFG was higher during response conflict trials compared to no response conflict 

trials (Figure 2B). Our linear mixed models revealed a significant main effect of response 

conflict on subject-specific (X2(1) = 16.17, p < .0001; d = 0.15) and conventional (X2(1) = 

4.25, p = .039; d = 0.08) low beta power in R-IFG. Our linear mixed models revealed no 

significant main effects of response conflict on conventional nor subject-specific definitions 

of high beta power in R-IFG.

We then tested the relationship between response conflict and beta power in L-IFG and pre-

SMA to test for regional specificity of any beta increases. Although visually, low beta power 

in pre-SMA also appeared to be slightly higher during response conflict trials compared 

to no response conflict trials (Figure 2D), our linear mixed models revealed no significant 

main effects of response conflict on subject-specific nor conventional definitions of low nor 

high beta power in pre-SMA. Additionally, there was no difference in L-IFG beta power on 

response conflict trials compared to no response conflict trials (Figure 2C), and our linear 

mixed models revealed no significant main effects of response conflict on subject-specific 

nor conventional definitions of low nor high beta power in L-IFG.

3.2.2 R-IFG beta power increased for stronger response conflict trials—To 

test whether the recruitment of R-IFG low beta power during response conflict depended on 

the strength of the response conflict, we looked at the interaction between response conflict 

and RDK coherence (operationalized as modulating the strength of response conflict on 

incongruent trials) on subject-specific and conventional low beta power. On average, low 

beta power in R-IFG was higher during response conflict trials compared to no response 

conflict trials for high coherence trials (Figure 3B) and for medium coherence trials (Figure 

3C), and not for low coherence trials (Figure 3D). Our linear mixed models revealed a 

significant interaction between response conflict and coherence on subject-specific low beta 

power in R-IFG (X2(2) = 6.76, p = .034), and not on conventional low beta power. Pairwise 

comparisons revealed a significant difference in subject-specific R-IFG low beta power for 

high coherence (i.e., strong) response conflict trials compared to high coherence no response 

conflict trials (Z = −4.02, p = .0001), and not for within medium nor low coherence trials.

3.2.3 Increased theta power during response conflict in pre-SMA, R-IFG, and 
L-IFG—To test for previously described theta power increases in mPFC during response 

conflict, we analyzed pre-SMA theta power during response conflict trials compared to 

no response conflict trials. We also analyzed theta power in R-IFG and L-IFG to test 

for regional specificity of any theta increases. Theta power after the presentation of the 

imperative cue was higher during response conflict trials compared to no response conflict 

trials in pre-SMA (Figure 2D), R-IFG (Figure 2B), and L-IFG (Figure 2C). Our linear mixed 

models revealed a trend of a main effect of response conflict on pre-SMA theta power 
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(X2(1) = 2.82, p = .093; d = 0.06), a significant main effect of response conflict on R-IFG 

theta power (X2(1) = 12.07, p = <.0001; d = 0.13), and a trend of a main effect of response 

conflict on L-IFG theta power (X2(1) = 3.16, p = .075; d = 0.07).

3.2.4 R-IFG and L-IFG theta power increased for stronger response conflict 
trials—To test whether the recruitment of theta during response conflict depended on the 

strength of the response conflict, we also looked at the interaction between response conflict 

and RDK coherence on theta power in pre-SMA, R-IFG, and L-IFG. Our linear mixed 

models revealed a significant interaction between response conflict and coherence on theta 

power in R-IFG (X2(2) = 13.13, p = .0014) and in L-IFG (X2(2) = 10.44, p = .0054), 

and not in pre-SMA. Pairwise comparisons revealed a significant difference in R-IFG theta 

power for high coherence (i.e., strong) response conflict trials compared to high coherence 

no response conflict trials (Z = −3.47, p = .0005) and within medium coherence trials (Z 
= −2.47, p = .014), and not for within low coherence trials. Pairwise comparisons revealed 

a trend of a significant difference in L-IFG theta power within high coherence trials (Z = 

−1.78, p = .076), a significant difference within medium coherence trials (Z = −3.92, p = 

.0001), and no significant difference within low coherence trials.

3.3 Neural and behavioral results

3.3.1 Increased R-IFG beta power relates to less error in responding—
Following the finding of an increase in R-IFG low beta power during response conflict 

(3.2.1 and 3.2.2), we sought to test whether this increase related to behavior. We found no 

significant relationships between R-IFG beta and RT. Using generalized linear mixed models 

with a binomial distribution and response (0 = incorrect, 1 = correct) as the dependent 

variable, we found a significant interaction between R-IFG beta and response conflict on 

response accuracy for subject-specific (X2(1) = 9.09, p = .0026) and conventional (X2(1) 

= 9.57, p = .002) low beta power in R-IFG. For trials with no response conflict, there was 

a significant relationship between increased R-IFG beta and less error in responding for 

subject-specific (Z = 2.31, p = .021) and conventional (Z = 2.69, p = .0071) definitions of 

low beta. For trials with response conflict, there were no significant relationships between 

R-IFG beta and response accuracy. However, there was a trend for a relationship between 

increased subject-specific R-IFG low beta and more error in responding for trials with 

response conflict (Z = −1.94, p = .053).

3.3.2 Increased pre-SMA theta power relates to slower responding—Although 

we did not find a significant increase in pre-SMA theta power during response conflict (p 

= .093; see 3.2.3), we had a priori predictions about the role of pre-SMA theta power in 

response conflict, so we conducted exploratory analyses to test the relationship between 

increased pre-SMA theta and behavior. Using a linear mixed model with log-transformed RT 

as the dependent variable, we found a significant interaction between pre-SMA theta power 

and response conflict on RT (X2(1) = 4.24, p = .039). For trials with no response conflict, 

there was a significant relationship between increased pre-SMA theta and longer RTs (Z 
= 3.30, p = .001). For trials with response conflict, there was no significant relationship 

between pre-SMA theta and RT. We found no significant relationships between pre-SMA 

theta power and response accuracy.
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3.3.3 Increased R-IFG and L-IFG theta power relates to more error in 
responding—Lastly, given that we saw increased R-IFG and L-IFG theta power for trials 

with stronger response conflict (3.2.4), we sought to test whether this increase related to 

behavior. We found no significant relationships between R-IFG or L-IFG theta and RT. 

Using generalized linear mixed models with a binomial distribution and response (0 = 

incorrect, 1 = correct) as the dependent variable, we found a significant interaction between 

R-IFG theta and response conflict on response accuracy (X2(1) = 6.23, p = .012). For trials 

with response conflict, there was a significant relationship between increased R-IFG theta 

and more error in responding (Z = −4.51, p < .0001), and no significant relationship for 

trials with no response conflict. We also found a significant main effect of L-IFG theta on 

response accuracy (X2(1) = 4.77, p = .029, d = 0.06), where increased L-IFG theta related 

to more error in responding for trials with response conflict (Z = −2.18, p = .03) and trials 

without response conflict (Z = −2.34, p = .019).

4. Discussion

We found support for our theoretically driven, a priori hypothesis about the recruitment 

of R-IFG beta during response conflict. We hypothesized that response switching is a 

generalized form of stopping and therefore would recruit the previously defined R-IFG beta-

triggered inhibitory control network during response conflict. A small number of studies 

have directly implicated R-IFG activity using response conflict paradigms (Forstmann et 

al., 2008a; 2008b; Neubert et al., 2010). However, these studies have not used high spatial 

and temporal resolution neuroimaging as afforded by head-cast hpMEG. Increased R-IFG 

beta activity is usually simply interpreted as a marker of successful response inhibition 

in the stop-signal task (Swann et al., 2009; Wagner et al., 2018; Schaum et al., 2021). It 

has been proposed that beta-band communication from R-IFG to STN to M1 stops motor 

output (see Aron et al., 2016; Hannah et al., 2021), which is supported by increased STN 

beta power during successful stopping (Ray et al., 2012; Bastin et al., 2014). One notable 

computational framework (Wiecki & Frank, 2013) posits that mechanisms of response 

inhibition are important to overcome response conflict, such that one needs to inhibit an 

incorrect prepotent response tendency in order to execute the correct response in a conflict 

scenario. This idea has been supported by various empirical studies (Forstmann et al., 2008a; 

2008b; Neubert et al., 2010; Brittain et al., 2012; Wessel et al., 2019), but until now, there 

has been no direct empirical evidence to support R-IFG beta (i.e., a marker of response 

inhibition in the action-stopping literature) during response conflict and action switching.

Importantly, we found here that low beta power in R-IFG was significantly increased 

on trials with response conflict compared to trials without response conflict. Previous 

electrophysiological work has shown that the right prefrontal beta marker of successful 

response inhibition during stopping occurs in the lower part of the beta band (Engel & Fries, 

2010; Wagner et al., 2018; Schmidt et al., 2019), and our results regarding the significance 

of low beta, not high beta, are consistent with this. Notably, we did not see any significant 

increases in beta power in L-IFG. This is a strong control region for R-IFG because it is 

an anatomically matched prefrontal region, but one that is not hypothesized to be a node 

in the putative inhibitory control network. Another compelling component of this result 

is that this R-IFG low beta increase during response conflict was specific to trials with 

Daniel et al. Page 9

Cortex. Author manuscript; available in PMC 2023 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stronger response conflict. R-IFG beta power significantly increased for high coherence 

response conflict trials, increased for medium coherence response conflict trials but was not 

significant, and did not increase for low coherence response conflict trials. We predicted that 

punctate response inhibition (plausibly via R-IFG beta power) might be necessary when the 

incorrect response tendency is most prepotent (i.e., during strong conflict trials), and our 

results support this idea. Supporting this further, we found a significant relationship between 

R-IFG low beta power and less error in responding. This analysis looks at endogenous 

trial-by-trial fluctuations in beta within response conflict or no response conflict trials. 

This relationship was only significant on trials with no response conflict. Taken together, 

these results support a potential inhibitory control role for R-IFG beta in overcoming 

response conflict, though the trial-by-trial relationship between R-IFG beta and behavioral 

performance should continue to be investigated in future studies.

Additionally, in line with previous literature we secondarily predicted that pre-SMA theta 

power would increase during response conflict. We hypothesized that pre-SMA is a central 

region for overcoming response conflict, supported by findings in humans and non-human 

primates (Garavan et al., 2003; Nachev et al., 2005; Isoda & Hikosaka, 2007; Neubert 

et al., 2010). Electrophysiology studies have shown increased mPFC theta in response 

conflict paradigms (Zavala et al. 2018; Wessel et al., 2019), which plausibly originates from 

pre-SMA. However, in our current study, we found that after the imperative cue and prior 

to the average RT, there was only a trend of an increase in pre-SMA theta power during 

trials with response conflict, but this did not reach significance. In an exploratory analysis, 

we found a significant relationship between pre-SMA theta power and slower RTs, which 

aligns with a framework implicating pre-SMA theta in pausing motor output (see Wiecki 

& Frank; Aron et al., 2016). However, this relationship was only significant for trials with 

no response conflict, which may reflect possible differences between pre-SMA coding of 

classic sensorimotor conflict versus response conflict or potentially ceiling effects on high 

conflict trials. Additionally, in the current study we found that theta power in R-IFG and 

L-IFG significantly increased for stronger (i.e., medium or high coherence) conflict trials. 

This indicates a lack of regional specificity for theta activity which we did not initially 

predict. This could reflect the high SNR in our data, and could suggest a broader recruitment 

of cortical theta during response conflict than has previously been reported. In exploring the 

potential role of this recruitment of IFG theta in response conflict, we found that increased 

theta power in R-IFG and L-IFG significantly related to more error in responding on trials 

with response conflict. Overall, it is interesting to note that the theta effect appeared less 

localized to medial PFC than suggested by previous literature and in comparison to the beta 

effect. Future work could investigate this explicitly, as well as interactions between the theta 

and beta signals and their behavioral outcomes (notably their dissociable relationships with 

RT versus accuracy shown here) under different types of conflict.

Some limitations of our study merit explicit discussion. We analyzed hpMEG data collected 

from a small cohort of 8 subjects. Although this is a relatively low number of human 

subjects, the hpMEG data was recorded across multiple sessions per subject affording 

high numbers of trials per subject (total trials n = 10,496) and had high SNR. Subject-

specific head-cast hpMEG allows for low within-subject movement, which supports data 

analysis that models both within- and between-subject variance (rather than averaging 
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within-subject), and allows for inferences regarding within-subject trial-by-trial neural 

correlates. This approach was also supported by strong a priori hypotheses that were directly 

tested here. A possible limitation of the paradigm is that subjects always responded to the 

imperative cue with their right hand. Therefore, it is possible (albeit unlikely) that this 

resulted in a lateralization of the low beta increase during response conflict. However, if 

lateralization of motor responses caused lateralization in neural responses, we would expect 

these to be contralateral (i.e., L-IFG for right hand); the opposite is found here. Additionally, 

the main finding in which we report a difference across trial types (i.e., response conflict 

versus no response conflict, mediated by coherence), cannot be explained by hand laterality. 

Consequently, we propose that the lateralization of our R-IFG findings is unlikely to be 

strongly attributable to response execution being restricted to the right hand.

In exploring relationships between trial-by-trial fluctuations in neural activity and behavioral 

performance on the response conflict task, we found a significant relationship between 

R-IFG low beta power and less error in responding. However, this relationship was only 

significant for trials without response conflict, and not significant for trials with response 

conflict. Notably, the generalized linear mixed model that we used for this analysis did 

not include coherence as a fixed effect. This is because models with coherence as a fixed 

effect interaction term included did not converge, plausibly because there were so few 

errors made in the paradigm. We saw in our main neural analysis a significant interaction 

between response conflict and coherence on neural activity, so it is possible that not 

being able to include this in our behavioral analysis restricted our ability to detect the 

complete relationship between R-IFG beta and performance for trials with response conflict. 

Additionally, a ceiling effect for R-IFG beta activity on trials with response conflict may 

have impacted our analysis. Future work with other response conflict paradigms, including 

those that induce higher error rates, can further probe the relationship between R-IFG beta 

and behavior.

Lastly, we estimated the effect size of the main effects in our mixed models using a formula 

for Cohen’s d (Brysbaert & Stevens, 2018). Notably, few papers report effect sizes in source-

localized time-frequency M/EEG analyses on within-subject cognitive electrophysiology 

using trial-by-trial analyses (e.g., Larson & Carbine, 2017; Tinga et al., 2019). A recent 

systematic review of source M/EEG data reported ~55% Hedges’ g values (interpreted 

similarly to Cohen’s d) less than 0.3 (i.e., small by convention), with ~76% less than 0.5 

(i.e., small-medium by convention) (Dharan et al., 2021). This suggests that our effect 

size estimates may be comparable to other studies using time-frequency transforms of 

source-level electrophysiology, but awaits further reporting of future effect size estimates in 

comparable studies for complete contextualization.

4.1 Conclusions

In conclusion, we analyzed hpMEG data with high spatial and temporal resolution recorded 

during a response conflict paradigm, and found support for a theoretically driven hypothesis 

about the recruitment of R-IFG beta during response conflict. In a novel result, we 

showed that R-IFG low beta power was significantly increased for response conflict 

trials, specifically strong response conflict trials which plausibly require mechanisms of 
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punctate response inhibition for correct responding. We found a significant trial-by-trial 

relationship between R-IFG beta power and less error in responding, although this was only 

significant for trials with no response conflict. Future work using methods such as TMS or 

neurofeedback can further establish the causal role of R-IFG beta power in response conflict 

resolution. Overall, our results support R-IFG beta as a neural mechanism of overcoming 

response conflict, in addition to action-stopping. This broadens the role for R-IFG beta 

as a domain general inhibitory control signal, which may have clinical implications for 

populations with inhibitory control deficits.
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Figure 1. Response conflict paradigm and behavioral performance.
A. On each trial, subjects were shown a random dot kinematogram (RDK) that varied in 

level of coherence (high, medium, or low), followed by a fixation cross for a delay period. 

On a majority of trials (70%), the RDK accurately predicted the direction of the imperative 

cue, resulting in no response conflict (top panel). On a minority of trials (30%), the RDK 

inaccurately predicted the direction of the imperative cue, resulting in response conflict 

(bottom panel). Left and right button press responses were made with the index and middle 

fingers, respectively, of the right hand. B-C. Subjects responded significantly faster (B) and 

more accurately (C) on trials with no response conflict compared to trials with response 

conflict. Error bars represent standard error of the mean, at the session level (N = 24). *** p 
< .0001.
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Figure 2. ERSPs for R-IFG, L-IFG, and pre-SMA.
Group-average event-related spectral perturbations (ERSPs) for response conflict trials, 

no response conflict trials, and their difference. Dashed vertical line at 300 ms denotes 

average RT. Statistics were performed at the single-trial level; these group-level plots are 

solely for visualization. A. Example source localization for R-IFG (top), L-IFG (middle), 

and pre-SMA (bottom) from one subject. B. R-IFG shows increased theta and low beta 

power prior to the average RT for response conflict trials compared to no response conflict 

trials. Single-trial analyses revealed significant main effects of response conflict on theta, 

conventional low beta, and subject-specific low beta power. C. L-IFG shows increased theta 

power (not beta power) prior to the average RT for response conflict trials compared to no 

response conflict trials. D. Pre-SMA shows increased theta and low beta power prior to the 

average RT for response conflict trials compared to no response conflict trials.
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Figure 3. ERSPs for R-IFG, split by coherence level.
Group-average event-related spectral perturbations (ERSPs) for response conflict trials, no 

response conflict trials, and their difference, by coherence level. Dashed vertical line at 

300 ms denotes average RT. Statistics were performed at the single-trial level; these group-

level plots are solely for visualization. A. Example source localization for R-IFG from 

one subject. B-D. R-IFG shows increased low beta and theta power prior to the average 

RT for response conflict trials compared to no response conflict trials for high coherence 

(B) and medium coherence (C) trials, and not for low coherence (D) trials. Single-trial 

analyses revealed a significant interaction between response conflict and coherence on 

subject-specific low beta power. Pairwise comparisons revealed a significant difference in 

subject-specific low beta power for response conflict trials compared to no response conflict 

trials for high coherence trials only, not for medium nor low coherence trials.
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