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Abstract 

Levitating, controlling, and detecting the motion of mesoscopic objects is useful for inertial 

sensing and fundamental studies in quantum physics. We report the first experimental 

measurements of Meissner-effect levitation for a sequence of identical millimeter-scale 

neodymium magnets having varying strengths within a cm-scale superconducting 

aluminum coaxial quarter-wave stub cavity. We experimentally, theoretically, and 

analytically characterized Meissner-effect levitation within a 10 GHz superconducting 

aluminum coaxial quarter-wave stub cavity for a sequence of identically shaped millimeter-

scale neodymium magnets having varying strengths (1.22-1.47 T). Magnet levitation 

within the cavity is accompanied by both gradual and abrupt shifts in the resonance 

frequency (with a height sensitivity as large as 400 MHz/mm) as well as changes in the 

total quality factor (8%-17%) as a function of temperature during the superconducting 

transition of the aluminum cavity. The experimental observation is confirmed with a 

cylindrical and spherical magnet. The controlled heating and cooling of the cavity show 

hysteresis in the frequency shift. Furthermore, the experimental observation has shown 

excellent agreement with finite element simulations, room temperature measurements, and 

a lumped element model.  
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Chapter 1  
Introduction 

"Do not judge me by my successes, judge me by how many times I fell down and got back 

up again."-Nelson Mandela  

A magnet placed above a superconductor induces supercurrent on the surface of the 

superconductor, screening the magnetic flux from its core [1]. This supercurrent produces 

an opposing magnetic field inside the superconductor which gives rise to a force called a 

diamagnetic force. When the strength of the diamagnetic force is large enough to balance 

the force due to gravity, the magnet will levitate above the superconductor. The 

phenomenon is called magnetic levitation. 

The magnetic levitated system has been used for the development of the transportation 

system. For example, the levitated system is implemented in the high-speed train known 

as the bullet train and in the much-awaited transportation development called the 

hyperloop. The energy loss is low in such a freely floating system. There is no loss due to 

clamping and thermal contact. Moreover, the superconducting magnetic levitation further 

minimizes the losses. There are no losses, as in the optical levitation, due to photon recoil 

and heating in the superconducting magnetic levitation.  

In this thesis, we have demonstrated, for the first time, magnetic levitation within a 

superconducting microwave cavity. The cavity is made from 6061 grade aluminum which 

is a type-I superconductor. The critical temperature of aluminum is 1.2 K. A permanent 

neodymium magnet is placed within the microwave cavity. When the entire cavity goes 

into the superconducting transition, the magnet is lifted from the surface of the 

superconductor due to the Meissner effect.  Before discussing potential applications of our 

levitated system, the following paragraphs discuss why we choose the microwave cavity 

for magnetic levitation. 

I. Why Microwave Cavity? 

A coaxial quarter wave microwave cavities can localize electric or magnetic fields in a 

small area (see Figure 1.1) [2--4]. The electric field is localized on the stub and the magnetic 

field on the bottom of the cavity. Such concentration of the energy in a small volume 

increases the mode volume of the cavity.  This causes a reduction in energy dissipated due 

to the conductive and dielectric losses at surfaces and interfaces [5]. The quality factor (Q) 

of the cavity is the ratio of total energy it can store to its total losses. To have a high value 

of Q indicates a lower energy dissipation, meaning a photon recycles multiple times inside 

the cavity before dying out. Such a narrow mode of the cavity provides unique 

opportunities to couple other objects and systems [6,7]. For instance, cavities with higher 

values of Q are applied to detect rare gravitational wave events [8], dark matter detection 

[9--13], mechanical coupling, and perturbation [14]. A detailed discussion about microwave 

cavities is included in chapter 2.  
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The superconducting microwave cavities are fabricated from materials such as aluminum, 

niobium, etc. Cavities made up such materials go into the superconducting phase transition 

at the transition temperature.  For example, the cavity we are using in our experiment goes 

into superconducting state at 1.2 K. Large numbers of Cooper pairs are formed during this 

phase change. The Cooper pairs are special pairs of electrons whose interaction is mediated 

by the phonon. They exhibit attractive interaction, thereby reducing the total energy of the 

system. The reduction of energy brings more stability in the system (see Chapter 3). The 

superconducting microwave cavities have about five orders of magnitude lower losses than 

normal conducting cavities  [15]. 

 
Figure 1.1: A coaxial quarter wave microwave cavity. (a) the electric field is localized 

around the rim of the stub, (b) the magnetic field stored on the bottom of the cavity.  

 

II. Applications of Microwave Cavities 

A. Cavity Optomechanics 

One important application of such a high-Q cavity would be to couple it with another 

oscillator. The coupling here refers to the energy transfer between the two systems. This 

field of study is commonly known as cavity optomechanics. It studies the dynamics 

between two coupled harmonic oscillators: a cavity mode and a normal mechanical mode  

[16]. The field was studied early on theoretically by Braginsky in 1967  [17]. As shown in 

Figure 1.2, the circulating field inside the cavity with frequency 𝜔 and damping Κ generates 

high power. The enhancement in a photon's momentum can modify the dynamics of the 

mechanical element [18]. Depending upon the strength of the coupling, rich physics can be 

explored from semi-classical to novel physics.  

Edward Mills Purcell, in 1940s, studied the effect of coupling between the two harmonic 

oscillators. He observed that the spontaneous emission rate of the quantum system can be 

enhanced linearly by the quality factor of the cavity. The effect is known as the Purcell 

effect [19]. Motional cooldown of the classical system to its ground state energy can be 

achieved with the strong coupling between the two systems. In the quantum mechanics, 

the least energy state with energy 
1

2
ℏ𝜔 is called the ground state energy. The ground state 

cooldown leads to the study of the macroscopic quantum mechanics. In the deep-strong 

https://pipiwiki.com/wiki/Edward_Mills_Purcell
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coupling regime the exchange of energy between the light and the matter is faster compared 

to their losses.  Faster exchange of energy caused splitting in the energy level [14]. 

 

Figure 1.2: Schematic of a cavity optomechanical system. Here, a mechanical degree of 

freedom is coupled to the resonance mode of a microwave cavity. The strength of coupling 

between two systems is represented by 𝑔0. The frequency and damping of the microwave 

cavity are 𝜔 and Κ, respectively. Similarly, the mechanical system has the frequency of 

Ω𝑚 and the damping of Γ𝑚. The quality factor of the mechanical oscillator and the 

microwave cavity are denoted, respectively, by Q𝑚 and Q𝑐𝑎𝑣𝑖𝑡𝑦. 

B. Quantum Memory 

The superconducting microwave cavity is also used for the quantum memory. The cavity 

mode can be used for the control, store, and readout of the quantum states [20]. Figure 1.3 

shows an example of a microwave cavity mode coupling with a qubit mode. When there is 

no coupling between the modes, the one mode's dynamics do not affect the other mode's 

dynamics. However, when the coupling between the modes is strong, the degeneracy in the 

qubit energy level lifts up. The amount of energy splitting depends directly on the strength 

of the coupling. Such splitting allows the excitation of the qubit to live for a longer time 

[21]. Here, dissipation of the qubit is recycled trough the cavity mode. Recently, a novel 

microwave photon counting technique for the detection of low mass bosonic dark matter 

candidate was developed by using a dispersively coupled superconducting cavity-qubit 

system [22].  
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Figure 1.3: A high-Q microwave cavity is strongly coupled to a qubit. The strong coupling 

between the microwave mode and qubit mode results in energy splitting. Here, 𝛾 and 𝜅 are 

the microwave and qubit dissipations, respectively. 𝑔𝑐𝑞 represents the coupling between 

the two modes. 

C. Recent Works  

Furthermore, interesting results by coupling a mechanical system with the highly localized 

field of the cavity has been reported. An experimental demonstration of the Casimir spring 

effect within a superconducting reentrant microwave cavity system was published [23]. 

This cavity is similar to the cavity design we are using in our experiment. The difference 

being this cavity has a small gap between the stub and the open end of the cavity. Moreover, 

a strong coupling between a magnon with the highly concentrated RF magnetic field of a 

cavity has been demonstrated [24,25].  

III. Meissner Levitation 

As discussed above, there are promising developments in coupling mechanical oscillators 

to the superconducting microwave cavity mode [26]. The common feature of all of those 

perturbations and couplings is they are somehow clamped and are in thermal contact with 

the other object. This introduces additional loss in the system. Levitated systems are free 

from those losses. There are significant developments in optical levitation. One main 

challenge in this type of levitation is the loss associated with the photon recoil and heating 

[27--29].  

A promising alternative to optical levitation is to use passive levitation techniques 

involving magnets and superconductors.  In the passive levitation, a magnet is levitated 

due to the Meissner effect.  In this levitation, there are no losses due to clamping, thermal 

contact, and photon recoil. However, in this technique, it is important to distinguish 

between Type-I and Type-II superconductors. In the meantime, it is also important to 

distinguish whether the experiment is performed in a zero-field cooled, or non-zero-field 

cooled condition. When a Type-II superconductor is cooled below its critical temperature 

in the presence of a non-zero magnetic field, magnetic flux is trapped by vortices within 

the material. The trapped flux then freezes the motion of the magnet. In the non-zero-field 
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cooling condition, the Type-II superconductor is cooled in the absence of magnetic fields. 

The permanent magnet is then inserted after cooling.  

In the recent research, magnetic levitation above a type-II superconductor has been realized 

as a novel mechanical transduction for the individual spin qubit in the nitrogen-vacancy 

center  [31]. Furthermore, the Meissner has been proposed for the study of modified 

gravitational wave detection  [32].   

In comparison, when a Type-I material makes the superconducting transition, the 

superconductor exhibits a perfectly diamagnetic response as long as the magnetic field is 

less than some critical value. Supercurrents build up on the surface of the superconductor 

which fully screen the magnetic flux from its interior [30]. The Meissner-force is always 

repulsive and can be large enough to lift macroscopic objects to some equilibrium height 

where the net force of the interaction combined with that due to gravity is zero.  

IV. Meissner Levitation within the microwave cavity 

This thesis is driven by the curiosity of developing a novel perturbation of a permanent 

magnet with the superconducting microwave cavity mode. Our novel cavity-magnet 

system could be used as a versatile research platform for tests of fundamental and new 

physics. First, such an electromechanical system may be useful as a means to couple the 

low-frequency mechanical motion of the magnet with other quantum objects, such as 

magnons and transmons, which are used for quantum information processing. The 

development of sensors based on levitated magnets within high-Q cavities is an interesting 

alternative for detecting gravitational waves and dark matter. Such a system can be used to 

prepare, control, store, and measure arbitrary quantum states. Finally, it may be possible to 

achieve strong coupling to and ground-state cooling of a mechanical resonator. The main 

goal of this thesis is to levitate and characterize permanent magnets within a microwave 

cavity successfully. 
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Chapter 2  

Microwave Cavities  

“Live as if you were to die tomorrow, learn as if you were to live forever.”-Mahatma Gandi 

In our research, a permanent magnet is levitated within a microwave cavity. This chapter 

starts with a brief analysis of the electromagnetic wave propagation modes within the 

cylindrical and circular waveguide. Furthermore, the discussion about the fundamental 

mode and quality factor of a coaxial quarter-wave cylindrical cavity is also presented in 

the chapter. Studies of modes of cavities in this chapter help identify the most sensitive 

region in our magnetic levitation experiment.   

2.1 Cylindrical Cavity 

A cylindrical cavity supports a different mode of propagation of the electromagnetic wave 

(em). A simplified sketch of the cylindrical cavity is shown in Figure 2.1. Here, Maxwell’s 

equations are solved to get the transverse components of the electric and magnetic fields. 

Those components are then used to calculate the transverse electric (TE) and transverse 

magnetic (TM) mode of propagation. The derivation in this section is adapted from the 

Microwave engineering book by David Pozar  [33].  

 Let us consider time-harmonic field with an 𝑒𝑖𝜔𝑡 dependent and an electromagnetic field 

propagating along the 𝑧-direction. The general equations for an electric field and a 

magnetic field in that direction are given by the relations: 

E⃗⃗⃗(𝑥, 𝑦, 𝑧) = (𝑒(𝑥, 𝑦) + 𝑧𝑒𝑧(𝑥, 𝑦))𝑒−𝑖𝛽𝑧, (2.1) 

H⃗⃗⃗(𝑥, 𝑦, 𝑧) = (ℎ⃗⃗(𝑥, 𝑦) + 𝑧ℎ𝑧(𝑥, 𝑦))𝑒−𝑖𝛽𝑧, (2.2) 

Where, 𝑒(𝑥, 𝑦) & ℎ⃗⃗(𝑥, 𝑦) represents transverse electric and magnetic field components, 𝑒𝑧 

& ℎ𝑧 represents longitudinal electric and magnetic field components, and 𝛽 is propagation 

constant. Now, Maxwell’s equations in the source-free region (∆ ∙ E = 0) can be written 

as:  

∆ × E⃗⃗⃗ = −𝑖𝜔𝜇H⃗⃗⃗, (2.3) 

∆ × H⃗⃗⃗ = 𝑖𝜔𝜖E⃗⃗⃗, (2.4) 

Solving the above four equations will give components of the electric and magnetic field 

along 𝑥- and 𝑦- direction, which is given by the equations: 

H⃗⃗⃗𝑥 =
𝑖

𝑘𝑐
2

(𝜔𝜖
𝜕E⃗⃗⃗𝑧

𝜕𝑦
− 𝛽

𝜕H⃗⃗⃗𝑧

𝜕𝑥
), 

(2.5) 

H⃗⃗⃗𝑦 =
−𝑖

𝑘𝑐
2

(𝜔𝜖
𝜕E⃗⃗⃗𝑧

𝜕𝑥
+ 𝛽

𝜕H⃗⃗⃗𝑧

𝜕𝑦
), 

(2.6) 

E⃗⃗⃗𝑥 =
−𝑖

𝑘𝑐
2

(𝛽
𝜕E⃗⃗⃗𝑧

𝜕𝑥
+ 𝜔𝜇

𝜕H⃗⃗⃗𝑧

𝜕𝑦
), 

(2.7) 
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E⃗⃗⃗𝑦 =
𝑖

𝑘𝑐
2

(−𝛽
𝜕E⃗⃗⃗𝑧

𝜕𝑦
+ 𝜔𝜇

𝜕H⃗⃗⃗𝑧

𝜕𝑥
), 

(2.8) 

Here, 𝑘𝑐
2 = 𝑘2 − 𝛽2=cutoff wavenumber, 𝑘 = 𝜔√𝜇𝜖 =

2𝜋

𝜆
= wavenumber of the material 

filling in the resonator region.  

I. Cutoff frequency: 

The cutoff frequency is the frequency beyond which there will be no wave propagation. 

The frequency is given by the relation 𝑓𝑚𝑛𝑙 =
𝜔𝑐

2𝜋
=

𝑘𝑐𝑐

2𝜋
=

𝑘𝑐

2𝜋√𝜇𝜖
. It depends on the cut-off 

wavenumber and the nature of the filling material. 

 

II. Power flows down in the resonator: 

 

It is important to know about the energy storage capacity of the resonator. The total 

power flow inside the volume of the resonator towards z-direction is given by: 

𝑃0 =
1

2
𝑅𝑒 ∯ 𝑆. �̂�𝑑𝑠 

𝑆 =poynting vector= E⃗⃗⃗ × H⃗⃗⃗∗ 

Here, the integration is taken across the surface of the resonator. 

 

III. Power lost on the surface of the resonator: 

 

There are mainly two types of losses in the resonator: dielectric and conducting loss. The 

former loss can be address by making permittivity (𝜖) complex by including loss tangent 

(𝑡𝑎𝑛𝛿) of the material. Whereas the conducting loss can be calculated by using the 

perturbation method. The power lost per unit length of a resonator can be calculated as: 

𝑃𝑙𝑜𝑠𝑠(𝑙) =
𝑅𝑠

2
∮ |�⃗�𝑠|2𝑑𝑙 

Where, 𝑅𝑠 = √
𝜔𝜇0

2𝜎
=Surface resistivity of conducting wall 

𝜎 = Surface conductivity of conducting surface 

Equations (2.5)-(2.8) are useful in finding the different modes of propagations within the 

cylindrical cavity. In sections 2.1.1 and 2.1.2, those equations will be used to calculate the 

TE and TM propagation mode within the cylindrical cavity.  
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Figure 2.1: Sketch of a cylindrical waveguide. The waveguide has a radius of 𝑟 and a height 

of ℎ.  

2.1.1 Transverse Electrical (TE) Waves 

In the TE wave, an electrical field will be zero along with the propagation of the 

electromagnetic wave (E⃗⃗⃗𝑧 = 0). However, a magnetic field will be non-zero (H⃗⃗⃗𝑧 ≠ 0). In 

this case, equations (2.5)-(2.8) can be re-written as: 

H⃗⃗⃗𝑥 = −
𝑖𝛽

𝑘𝑐
2

𝜕H⃗⃗⃗𝑧

𝜕𝑥
, 

(2.9) 

H⃗⃗⃗𝑦 = −
𝑖𝛽

𝑘𝑐
2

𝜕H⃗⃗⃗𝑧

𝜕𝑦
, 

(2.10) 

E⃗⃗⃗𝑥 = −
𝑖𝜔𝜇

𝑘𝑐
2

𝜕H⃗⃗⃗𝑧

𝜕𝑦
, 

(2.11) 

E⃗⃗⃗𝑦 =
𝑖𝜔𝜇

𝑘𝑐
2

𝜕H⃗⃗⃗𝑧

𝜕𝑥
, 

(2.12) 

Using Helmholtz wave equation for the magnetic field in the z-direction (H⃗⃗⃗𝑧) 

[(
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2) H⃗⃗⃗𝑧 = 0] and putting the value of H⃗⃗⃗𝑧 results,    

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+ 𝑘𝑐

2) ℎ𝑧(𝑥, 𝑦) = 0, 
(2.13) 

 

By using boundary conditions, E⃗⃗⃗𝑡 = 0 and H⃗⃗⃗𝑛 = 0 and the geometry of the cylindrical 

cavity shown in Figure 2.1, equation (13) can be used to solve to get H𝑧.  Using similar 

steps, the resonant frequency of TE𝑛𝑚𝑙  mode of the coaxial cylindrical cavity is calculated 

as 𝑓𝑚𝑛𝑙 =
𝑐

2𝜋√𝜇𝑟𝜖𝑟
√(

𝑝𝑚𝑛

𝑟
)2 + (

𝑙𝜋

ℎ
)2, where r is the radius, h is the height of the cylinder and 

𝑝𝑚𝑛=nth root of Bessel function of first kind Jm(kc𝜌). The dominant TE mode for the 

cylindrical cavity is the TE111 mode. Although the TE111 mode is the lowest and dominant 

mode, the  TE011 the mode has significantly higher Q. The reason is that it confines the 

field inside the cavity volume by avoiding losses introduced by seems and boundaries  [33].  
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2.1.2 Transverse Magnetic (TM) Waves 

For the case of the TM mode, there is no propagation of the magnetic field along with the 

direction of the propagation of the em wave. That means H⃗⃗⃗𝑧 = 0 and E⃗⃗⃗𝑧 ≠ 0. Hence, 

equations (2.5)-(2.8) can be re-written as:  

H⃗⃗⃗𝑥 =
𝑖𝜔𝜖

𝑘𝑐
2

𝜕�⃗⃗�𝑧

𝜕𝑦
, 

(2.14) 

H⃗⃗⃗𝑦 = −
𝑖𝜔𝜖

𝑘𝑐
2

𝜕�⃗⃗�𝑧

𝜕𝑥
, 

(2.15) 

E⃗⃗⃗𝑥 = −
𝑖𝛽

𝑘𝑐
2

𝜕�⃗⃗�𝑧

𝜕𝑥
, 

(2.16) 

E⃗⃗⃗𝑦 = −
𝑖𝛽

𝑘𝑐
2

𝜕�⃗⃗�𝑧

𝜕𝑦
, 

(2.17) 

Using Helmholtz wave equation for the electric field in the z-direction (E⃗⃗⃗𝑧) 

[(
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2) E⃗⃗⃗𝑧 = 0] and putting the value of E⃗⃗⃗𝑧 gives,  

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+ 𝑘𝑐

2) 𝑒𝑧(𝑥, 𝑦) = 0, 
(2.18) 

The geometry of the cavity determines similar boundary conditions, and steps can be taken 

as in the case of the TE mode to get more information about the mode.  

2.2 Circular Waveguide  

In this section, the discussion is about a hollow circular waveguide. This type of hollow 

waveguide also supports the different modes of propagation (TE & TM) that are discussed 

in the above section. For simplicity, the cylindrical coordinates are implemented for the 

analysis of this waveguide. Here, 𝜌, ∅, 𝑧 represents, respectively, radial, azimuthal, and 

axial coordinate of the waveguide. The equations (2.5)- (2.8) can be written in the 

cylindrical coordinates as: 

H⃗⃗⃗𝜌 =
𝑖

𝑘𝑐
2

(
𝜔𝜖

𝜌

𝜕E⃗⃗⃗𝑧

𝜕∅
− 𝛽

𝜕H⃗⃗⃗𝑧

𝜕𝜌
), 

(2.19) 

H⃗⃗⃗∅ =
−𝑖

𝑘𝑐
2

(𝜔𝜖
𝜕E⃗⃗⃗𝑧

𝜕𝜌
+

𝛽

𝜌

𝜕H⃗⃗⃗𝑧

𝜕∅
), 

(2.20) 

E⃗⃗⃗𝜌 =
−𝑖

𝑘𝑐
2

(𝛽
𝜕E⃗⃗⃗𝑧

𝜕𝜌
+

𝜔𝜇

𝜌

𝜕H⃗⃗⃗𝑧

𝜕∅
), 

(2.21) 

E⃗⃗⃗∅ =
𝑖

𝑘𝑐
2

(−
𝛽

𝜌

𝜕E⃗⃗⃗𝑧

𝜕∅
+ 𝜔𝜇

𝜕H⃗⃗⃗𝑧

𝜕𝜌
), 

(2.22) 

2.2.1 TE Mode 

For the TE mode, the longitudinal component of the electric field is zero (E⃗⃗⃗𝑧 = 0). In this 

mode, H⃗⃗⃗𝑧 ≠ 0. The H⃗⃗⃗𝑧 component will be used to solve the wave equation. The transverse 
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components of the electric and the magnetic fields are given by (the detail derivation is 

skipped here, see Ref.  [33] for the detail):  

 

ℎ𝑧(𝜌, ∅) = [𝐴𝑠𝑖𝑛(𝑛∅) + 𝐵𝑐𝑜𝑠(𝑛∅))]𝐽𝑛(𝜅𝑐𝜌) 

 

(2.22) 

 

𝐸∅(𝜌, ∅, 𝑧) = [𝐴𝑠𝑖𝑛(𝑛∅) + 𝐵𝑐𝑜𝑠(𝑛∅))]𝐽𝑛
∕(𝜅𝑐𝜌) 

 

(2.23) 

Where, 𝐴 & 𝐵 are constants, 𝜅𝑐
2 = 𝜅2 − 𝛽2 is the cut off wave number, 𝑛 is an integer, 

𝐽𝑛(𝐾𝑐𝜌) is Bessel function of the first kind, 𝐽𝑛
∕(𝜅𝑐𝜌) is the derivative of 𝐽𝑛 with respect to 

its argument.  

For the TE mode E⃗⃗⃗𝑧 = 0, which means  𝐸∅(𝜌, ∅) = 0 at 𝜌 = 𝑎 (radius of the 

waveguide).This gives  𝐽𝑛
∕(𝜅𝑐𝑎) = 0. If we suppose 𝑃𝑛𝑚

∕ as roots of 𝐽𝑛
∕(𝑥) so that 

𝐽𝑛
∕(𝑃𝑛𝑚

∕ ) = 0, where 𝑃𝑛𝑚
∕ is the 𝑚th root of the 𝐽𝑛

∕, then 𝜅𝑐𝑛𝑚
=

𝑃𝑛𝑚
∕ 

𝑎
. For example, the 

value of the 𝑃𝑛𝑚
∕ for 𝑛 = 0 and 𝑚 = 1 is 3.832. Furthermore, the 𝑇𝐸𝑛𝑚 is then defined by 

the cut off wavenumber 𝜅𝑐𝑛𝑚
=

𝑃𝑛𝑚
∕ 

𝑎
, where 𝑛 represents the number of the circumferential 

(∅) variation and m represents the number of the radial (𝜌) variations. Hence, the 

propagation constant of this mode is: 

 

𝛽𝑛𝑚 = √𝜅2 − 𝜅𝑐
2 = √(

2𝜋

𝜆
)2 − (

𝑃𝑛𝑚
∕ 

𝑎
)2 

 

 

 

(2.24) 

And the cut off frequency is: 

𝑓𝑛𝑚 =
𝜅𝑐

2𝜋√𝜇𝜖
=

𝑃𝑛𝑚
∕ 

2𝜋𝑎√𝜇𝜖
 

 

 

 

(2.25) 

2.2.2 TM Mode 

In the TM mode, the z-component of the electric field is used to solve the wave equation. 

The detail calculation is skipped here. In this mode, the solution of the electric field can be 

expressed as: 

 

𝑒𝑧(𝜌, ∅) = [𝐴𝑠𝑖𝑛(𝑛∅) + 𝐵𝑐𝑜𝑠(𝑛∅))]𝐽𝑛(𝜅𝑐𝜌) 

 

(2.26) 

 

Using the boundary condition,  𝐸𝑧(𝜌, ∅) = 0 at 𝜌 = 𝑎, we get 𝐽𝑛(𝜅𝑐𝑎) = 0. This condition 

results in 𝜅𝑐 =
𝑃𝑛𝑚 

𝑎
, where 𝑃𝑛𝑚 is the 𝑚th root of the 𝐽𝑛(𝑥) such that 𝐽𝑛(𝑃𝑛𝑚) = 0.  

The propagation constant of the  𝑇𝑀𝑛𝑚is: 
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𝛽𝑛𝑚 = √𝜅2 − 𝜅𝑐
2 = √(

2𝜋

𝜆
)2 − (

𝑃𝑛𝑚

𝑎
)2 

 

(2.27) 

And the cut off frequency is: 

𝑓𝑛𝑚 =
𝜅𝑐

2𝜋√𝜇𝜖
=

 𝑃𝑛𝑚

2𝜋𝑎√𝜇𝜖
 

 

 

(2.28) 

The first  𝑇𝑀𝑛𝑚 mode to propagate in the circular waveguide is 𝑇𝑀01 with 𝑃01 = 2.405. 

Similarly, the lowest 𝑇𝐸𝑛𝑚 mode to propagate in the circular waveguide is 𝑇𝐸11 because  

𝑃11
∕(= 1.841) has least value among the roots of the Bessel function for the mode. In the 

circular wave, the 𝑇𝐸11 mode is the dominant mode than the 𝑇𝑀01 because 𝑃11
∕ < 𝑃01. 

Moreover, since 𝑚 ≥ 1, there will be no 𝑇𝑀10 mode.  

2.3 Coaxial Quarter-Wave Cavity 

The cavity configuration used in our study is a coaxial quarter-wave cylindrical cavity 

shown in Figure 2.2 (a). The cavity consists of a coaxial section and a cylindrical section. 

The outer cylinder of the cavity has a dimension of 7 mm of a radius and 55 mm of height. 

In the coaxial region, a stub of 2 mm radius, and 5 mm of a height is shorted with the one 

end of the cylinder. The other end of the stub is vacuum terminated in the cylindrical region  

[3]. The electromagnetic field is confined in the coaxial section. It decays exponentially 

along the axis of the cylindrical section as a function of the distance from the stub towards 

the open end of the cavity. The cylindrical section of the cavity is long enough to prevent 

leakage of the field.  

2.3.1 Fundamental Mode 

The exact analytical solution of this type of cavity is not known. The finite element 

calculations are done in COMSOL using Electromagnetic, frequency domain (emw) 

physics [34]. In these calculations, eigenfrequency is studied by solving wave equation, 

∆ ×
∆×𝐸

𝜇𝑟
= 𝑘0

2 (𝜖𝑟 −
𝑗𝜎

𝜔𝜖0
) 𝐸, to find resonance frequency of the cavity and their associated 

eigenmode in the resonant cavity, where 𝜇𝑟 is relative permeability, 𝜖𝑟 relative 

permittivity, 𝑘0 wave number (
2𝜋

𝜆0
), and 𝜎 is conductivity of the material [35]. 

In the fundamental mode of the cavity electric field is highly localized around the tip of the 

stub (Figure 2.2 (a) and (b)). This non-Maxwellian mode can be approximated as 𝐸𝑟 ∝

(𝐸0𝑒𝛽𝑟 + 𝐸0
∕𝑒−𝛽𝑧, 𝑟 < 𝑟𝑠𝑡𝑢𝑏, & 

𝐸0

𝑟
cos(𝑘0𝑟) ,   𝑟 ≥ 𝑟𝑠𝑡𝑢𝑏), here 𝑟 is the radial distance 

and 𝑟𝑠𝑡𝑢𝑏 is the radius of the stub  [36,37]. Similarly, the axial electric field exponentially 

decays from the stub towards the open end of the cavity as 𝐸𝑧 ∝ 𝐸0 𝑒𝑖(𝜔𝑡−𝑘𝑧)  [38]. Figure 

2.2 (c) and (d) show COMSOL simulations of the radial and the vertical distribution of the 

electrical field.  Most of the electric field of the cavity is concentrated in the region 

1.5 𝑚𝑚 < 𝑥 < 2.5 𝑚𝑚 & 0 𝑚𝑚 ≤ 𝑧 < 1 𝑚𝑚. The electric field can further be confined 

around the stub by changing its shape to the conical. Due to this unique feature, any external 



12 
 

perturbation in this region of the cavity results in a significant shift in the resonance 

frequency.  
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Figure 2.2: (a) Cavity configuration, (b) the electric field distribution within the cavity, (c) 

radial electric field is calculated at a different height from the stub, (d) axial electric field 

at different radial positions on the stub.  

2.3.2 Quality Factor 

The quality factor of a cavity can be expressed as 𝑄 = 2𝜋𝑓
𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑 (𝑈)

𝑃𝑜𝑤𝑒𝑟 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒(𝑊)
  

[39].   The higher value of Q means, the better the cavity for the energy storage. The intrinsic 

quality factor (𝑄𝑖𝑛𝑡) is quantified by the energy storage capacity of the cavity only. It does 

not include the effect of any external load on the system. For an under-coupled cavity, the 

losses in the cavity mode are mainly due to the losses in the surface screening currents, 

which expel the magnetic field from the bulk of the superconducting material. The intrinsic 

quality factor of the can be expressed as 𝑄𝑖𝑛𝑡 =
𝐺

𝑅𝑠
. Here, 𝐺 is the geometric factor, and 𝑅𝑠 

is the surface resistance of the cavity.  

The geometric factor (G-factor) only depends upon the mode of the cavity. It does not 

depend on the material of the cavity. It is calculated by finding the ratio of the magnetic 

field on the volume to the surface of the cavity and is expressed in the equation below [40]: 

𝐺 =
2𝜋𝑓𝜇0 ∫ |𝐻|2𝑑𝑉

𝑉

∫ |𝐻|2𝑑𝑆
𝑆

 

 

(2.29) 

Where 𝑓 is the frequency of the cavity, and 𝜇0 is vacuum permeability. The G-factor for 

an empty cavity is found to be 110 Ω  [41].   

In this chapter, we learned about the mode of propagation of the electromagnetic wave in 

the different microwave cavity designs. In the next chapter, the discussion will be on the 

superconductor.  
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Chapter 3  

Superconductor 

“Man is made by his belief. As he believes, so he is.”-Bhagavad Gita 

Our experiment involves using cavity machined from 6061 Aluminum, which is a Type I 

superconductor. This chapter discusses different aspects of the superconductor. It includes 

the superconductor characteristics. In the penetration depth section, the London penetration 

depth will be derived and compared with the Pippard coherence length.  Furthermore, 

Ginzburg-Landau's theory and types of superconductors will also be discussed. Finally, the 

BCS theory will be discussed in brief. Here, the ground state energy and the energy gap of 

the superconductor will be derived. The macroscopic and microscopic study of the 

superconductor makes a basis for our experiment on cavity cooling below superconducting 

transition without and with a magnet.    

3.1. Characteristics of Superconductor 

Superconductivity was discovered in 1911 by H. Kamerlingh Onnes  [42]. The main finding 

of his observation was that many metals (like mercury, lid, and tin) phase transition into 

the zero-resistivity state below the transition temperature (𝑇𝐶). This state is called the 

superconducting state. The phase transition temperature (𝑇𝐶) is unique with the material. 

Table 3.1 lists some superconductors in the ascending order of the 𝑇𝐶. Among the material 

listed in table 1, aluminum has the least 𝑇𝐶 of 1.2 K, whereas YBCO becomes a 

superconductor at 92 K. Similarly, for each superconductor there is a unique limit of the 

amount of the external magnetic field it can let in. For example, aluminum has a maximum 

of 100 gauss limit of the external field.  

Table 3.1: List of selected superconducting elements and compounds. The superconductors 

are listed in the ascending order of their transition temperature.  

Material (Type) 𝑇𝐶(K) 𝐻𝐶(T) 

Al (I) 1.2  0.01 

Sn (I) 3.7 0.03 

Hg (I) 4.1 0.04 

Pb (I) 7.2 0.08 

Nb (II) 9.3 0.82 

NbTi (II) 10 15 

YBCO (II) 92  120-150 

A superconductor can be characterized as the perfect conductor (or zero resistivity). 

However, this description will be insufficient to describe all superconductors. The second 

fundamental characteristic of superconductivity is the perfect diamagnetism discovered by 

Meissner and Ochsenfeld in 1933  [43]. In this state, the superconductor excludes the 

external magnetic field completely from its interior. This phenomenon is called the 

Meissner effect  [44]. A detailed discussion about the Meissner effect will be in the coming 
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sections. In the diamagnetic state, the magnetic susceptibility (𝜒) of the material is equal 

to -1. Hence, 𝐵 = 𝜇0𝐻(1 + 𝜒) = 𝜇0(𝐻 + 𝑀) becomes 0. In conclusion, no magnetic field 

is present within the interior of a diamagnetic material because the magnetization (M) 

opposes the magnetic field (H) by canceling it. This is the basis for magnetic levitation.   

 

 

Figure 3.1: (a) Magnetic field is present in the metal above the transition temperature (𝑇𝐶), 

(an (I)) when the perfect diamagnet is cooled below the 𝑇𝐶 the field is completely expelled 

from the superconductor. However, the perfect conductor allows flux to pass through it, 

(a(II)) comparing the behavior of the ideal conductor and diamagnet when the applied field 
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is turned off. There is no field within the perfect diamagnetic as soon as the field is off. In 

opposite, the perfect conductor retains the applied field in the opposite direction.  

 

The main difference between the perfect conductor and the perfect diamagnet is illustrated 

in Figure 3.1. The important factor for their differences is the history of cooling.  In Figure 

3.1, two different cooling scenarios are presented. First, in the case of Figure 3.1 (a) 

cooling, the external magnetic field is present before the substance transition into the 

superconducting state. This type of cooling is called field cooling (FC).  Whereas, in Figure 

3.1 (b), no external magnetic field is present when the superconductor cooled through its 

transition temperature called zero-field cooling (ZFC). In the FC case, the perfect 

conducting state generates the persistent current due to the presence of the field (see 3.1 an 

(I)). Once the persistence current is set up in the superconductor state, it is unchanged 

irrespective of the condition of the external field (see 3.1 a(II)). However, in the 

diamagnetic state, there will be complete expulsion of the magnetic field from the interior 

of the superconductor (see 3.1 an (I)), and the field from the interior of the superconductor 

is off when the external field is off (see 3.1 a(II)). As shown in Figure 3.1 (b), both 

superconductors exhibit diamagnetic properties in the ZFC case.  

3.2. Penetration depth 

From the view of the macroscope scale, a weak magnetic field does not penetrate within 

the body of the superconductor. However, at the microscopic level, there will be a thin 

penetration layer of the magnetic field near the surface of the superconductor [44]. The 

length of the external magnetic field entering into the superconductor is called penetration 

depth. The first theory that describes the Meissner-Ochsenfeld effect and penetration depth 

was introduced by the London brothers (F. & H. London) in 1935. Their phenomenological 

theory, called the London equation, calculates the magnetic property of the superconductor. 

Here, I will derive the London equation, discuss the penetration depth, and compare it with 

the Pippard coherence length [45].  

In the zero-frequency regime (𝜔 = 0), the static magnetic field (�⃗⃗�) relates with the DC 

density (𝐽) by the relation: 

∆ × 𝐽 = −
𝑛𝑠𝑒2

 𝑚𝑒
�⃗⃗� 

 

(3.1) 

Here, 

𝑛𝑠 =total superconducting electron density 

𝑒 =electronic charge 

𝑚𝑒 =bare electron mass in vacuum  
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According to Maxwell’s equation, we can also write: 

∆ × �⃗⃗� = 𝜇0𝐽 

 

(3.2) 

Using the cross product on both sides of (3.2), we get 

∆ × (∆ × �⃗⃗�) = 𝜇0∆ × 𝐽 

 
 (3.3) 

Again, using Maxwell’s equation ∆ ∙ �⃗⃗� = 0, equation (3.3) can be re-written as: 

∆2�⃗⃗� =
𝜇0𝑛𝑠𝑒2

 𝑚𝑒
�⃗⃗� 

 

(3.4) 

∆2�⃗⃗� =
1

 𝜆𝐿
�⃗⃗� 

 

(3.5) 

The solution of the equation (3.4) can be written as: 

�⃗⃗�(𝑧) = �⃗⃗�(0) exp (−
𝑧

𝜆𝐿 
) 

(3.6) 

Where �⃗⃗�(0) is the applied magnetic field and 𝜆𝐿 has the dimension of the length and is 

called the penetration depth of the superconductor given by the following relation: 

𝜆𝐿  = √
𝑚𝑒𝑐2

4𝜋𝑛𝑠𝑒2
 

(3.7) 

 

 

Figure 3.2: Illustration of penetration depth in a superconductor. The magnetic field decays 

exponentially to zero into the body of the superconductor.  
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This length gives an estimation of the penetration of the parallel external magnetic field 

into the interior of the superconductor (see Figure 3.2). For example, for aluminum, 

𝜆𝐿~500Å, meaning that the externally applied field can enter up to this length within the 

superconducting aluminum.   However, introducing a magnetic field larger than the critical 

field leads to the loss of superconductivity.  

In equation (3.7), we can see that the London penetration depth depends inversely on the 

super electron density (∝
1

𝑛𝑠
). The 𝑛𝑠 depends upon temperature according to 

𝑛𝑠

𝑛
 = 1 −

 (
𝑇

𝑇𝐶
)

4
. 

The penetration depth is observed to be larger than that predicted by the London equations.  

The coherence length addresses this discrepancy between the experimental observation and 

theoretical prediction by the London equation. The temperature-independent coherence 

length is called Pippard coherence length. Table 3.2 compares the London penetration 

depth and the Pippard coherence length. 

Table 3.2: comparison of penetration depth of superconducting materials  [45].  

Material 𝑇𝐶(K) London 

Penetration Depth  

𝜆𝐿 (𝑛𝑚) 

Coherence 

Length  

𝜉0 (𝑛𝑚) 

Ratio 

(𝜅 =
𝜆𝐿 

𝜉0 
) 

Al  1.18 1550 1600 0.01 

Sn  3.72 34 230 0.16 

Pb  7.20 37 83 0.43 

Nb  9.25 39 38 1.02 

The coherence length depends upon the energy gap of the superconductor.  It is expressed 

mathematically as: 

𝜉0  =
ℏ𝑣𝐹

𝜋∆
  

(3.8) 

Here, 𝑣𝐹 is fermi velocity and ∆ is the energy gap of the superconductor.  

3.3. Ginzburg-Landau theory 

The internal energy in the superconducting transition is characterized by entropy (S) and 

magnetization (M). Studying the thermodynamics of the superconducting phase transition 

gives insight into different parameters like entropy, latent heat, specific heat capacity, etc. 

A theory that studies the thermodynamics of this phase transition is the Ginzburg-Landau 

(G-L) theory, which is based on the theory of second-order phase transition. It assumed 

that the free energy of the superconductor must depend smoothly on the order parameter 

𝜓(𝑇). This parameter is defined as: 

𝜓(𝑇) = {
0; 𝑇 > 𝑇𝐶

≠ 0; 𝑇 < 𝑇𝐶
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The G-L theory for bulk materials shows the heat capacity has discontinuity at the 

transition temperature. Moreover, the G-L theory for inhomogeneous media defines 𝜓 in 

such a way that it also depends on spatial coordinate 𝜓(𝑟). This theory results in the 

Schrodinger equation with the nonlinear term. This effective nonlinear Schrodinger 

equation has application to study the response of superconductors to the external 

perturbation. The GL theory can be used to describe inhomogeneous superconductors like 

surfaces, interfaces, defects, and vortices.  For example, it explains the proximity effect. 

Suppose a high 𝑇𝐶 superconductor (sc) is sandwiched to a low 𝑇𝐶 superconductor, which 

has a thickness less than the Ginzburg coherence length. Furthermore, the Ginzburg 

coherence length also helps identify the type of superconductor. 

The London equation is valid for the slowly varying magnetic field  [46]. The Ginzburg-

Landau (G-L) theory introduced a global length called the GL coherence (𝜉(𝑇)).  

𝜉(𝑇) =
ℏ

√|2𝑚∗𝛼(𝑇)|
 

(3.9) 

Where, 𝑚∗ represents the mass of the particle and 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 the expansion coefficient. 

The ratio between the characteristic length (London (𝜆𝐿) and Pippard (𝜉0)) defined the GL 

parameter  [42]: 

𝜅 =
𝜆𝐿 

𝜉0 
 

(3.10) 

3.4. Types of superconductors 

The GL parameter (𝜅) determines the type of the superconductor. When 𝜅 <
1

√2
, the 

superconductors are called type I superconductors, and when 𝜅 >
1

√2
 such superconductors 

are categorized as type II superconductors  [47]. In a type I superconductor, when the 

applied external magnetic field is less than the critical field of the superconductor, the 

magnetic flux is completely expelled from the bulk of the superconductor called the 

Meissner effect. In a type II superconductor, there exist two regions, depending upon the 

applied external magnetic fields, 𝐻𝐶1
(lower critical field) and 𝐻𝐶2

(upper critical field). 

Below the 𝐻𝐶1
type II superconductor behaves as a type I superconductor. In between the 

𝐻𝐶1
 and 𝐻𝐶2

, the field enters into the superconductor in the form of vortices. These vortices 

are called Abrikosov vortices and are quantized as: 

∅0 =
ℎ 

 2𝑒
= 2.07 × 10−15 𝑊𝑏 

(3.11) 

Where, 𝑒 and ℎ, respectively, represent electronic charge and Planck constant.  

3.5. The BCS Theory 

The Ginzburg-Landau theory is the phenomenology theory and successfully explains many 

fundamental properties of superconductivity. However, it cannot explain the microscopic 

origin of the superconductivity. Bardeen, Cooper, and Schrieffer proposed a theory in 

1952, called the BCS theory, which explains the microscopic property of the 
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superconductor  [48]. The important prediction of the BCS was the existence of an energy 

gap (2∆) at the Fermi level in the energy spectrum of the superconductor  [45].  

The energy level of a normal metal can be illustrated in the Fermi sphere as depicted in 

Figure 3.3. The discussion here is motivated by Gennes's book (Page 7-9)  [44].  In the 

sphere, the Fermi surface is defined with the energy 휀𝐹 =
𝑃𝐹

2

2𝑚
, where 𝑃𝐹 is the Fermi 

momentum and 𝑚 is the mass of the electron. Let us consider that we want to fill the 

available states with electrons of a non-interacting free electron gas. The energy levels at 

and below the Fermi surface (𝑃 ≤ 𝑃𝐹) will be available for the electron, whereas above it 

(𝑃 > 𝑃𝐹) will be empty. Now, we want to excite an electron from a filled state of 

momentum 𝑃 to the available empty state of momentum 𝑃′. This electron-hole pair 

excitation takes energy: 

𝐸𝑃𝑃′ =
𝑃′2

− 𝑃2

2𝑚
 

(3.12) 

 

 

Figure 3.3: The Fermi sphere with the filled state at and below its surface. An electron in 

the state inside the sphere with momentum 𝑃 is being excited to the state outside of the 

sphere that has a momentum of 𝑃′.   

For the two states 𝑃 and 𝑃′, numerous low excitations are possible when they are close to 

the 𝑃𝐹. Such excitations can be experimentally observed too. However, in the case of the 

superconductor, the energy required to excite an electron from the superconducting state 

was found to be greater than the certain pairing energy 2∆: 

𝐸𝑃𝑃′ ≥2∆ (3.13) 

 This higher excitation energy for an electron in the superconductor phase than the normal 

metal phase is explained by the BCS theory. The BCS theory, as stated in the Annet book 
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entitled “Superconductivity, superfluids and condensates” (page 128)  [45], is built upon 

three important bases: 

1. There exist repulsive force between two electrons in the normal metal due to the strong 

Coulomb interaction. However, in the superconducting state, an attractive force exists 

between the bound electrons via the exchange of virtual phonon. 

2. The two electrons outside the occupied Fermi surface form a stable pair bound state due 

to the weak attractive force.  

3. A many-particle wavefunction describes, which has the form of a coherent state 

wavefunction, all electrons near to the Fermi surface that are paired up.  

The origin of attractive interaction between the two electrons in the superconducting state 

can be understood using the Feynman diagram as illustrated in Figure 3.4. A virtual phonon 

mediates the attractive interaction. The other electron absorbs the phonon released by one 

electron. Let us consider an electron in the state 𝐾1,  𝜎1 release a phonon and scattered into 

the state 𝐾1 − 𝑞,  𝜎1 as shown in Fig. 3.4. This released phonon with wave vector 𝑞 is then 

absorbed by an electron in the state 𝐾2,  𝜎2 and pick up momentum ℏ𝑞, thereby scattering 

into the 𝐾2 + 𝑞,  𝜎2 state  [49]. According to the conservation of momentum: 

𝐾1 + (𝐾1 − 𝑞) = 𝐾2 + (𝐾2 + 𝑞) (3.14) 

 

 

Figure 3.4: Illustrates the attractive interactions between two electrons in the 

superconducting phase. The origin of this interaction is due to the exchange of phonon 

between the electrons.  

 When one electron goes from the state 𝐾1 to 𝐾1 − 𝑞 state, it causes local oscillation of 

electron density of at the frequency: 

𝜔 =
휀𝐾1

− 휀𝐾1−𝑞

ℏ
 

(3.15) 

Where, 휀𝑘1
 and 휀𝑘1−𝑞 are the electron energy in the state 𝐾1 and 𝐾1 − 𝑞 respectively. The 

electrons that are close to the Fermi surface, as shown in Figure 3.5, within layer 2∆𝑘 take 

part in the phonon-mediated interaction. For the attractive energy to exist, the energies of 

the electron that differ from the Fermi energy should be less than the energy ℏ𝜔𝐷, where 
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𝜔𝐷 is Debye frequency. Let us suppose the interaction energy between by 𝑉. We can write 

the matrix element of the electron interaction energy  [50]: 

 𝑉𝑘𝑘′ = {
−𝑉,   |휀𝑘 − 휀𝐹| ≤ ℏ𝜔𝐷,   |휀𝑘′ − 휀𝐹| ≤ ℏ𝜔𝐷

0,   |휀𝑘 − 휀𝐹| > ℏ𝜔𝐷,   |휀𝑘′ − 휀𝐹| > ℏ𝜔𝐷
 

(3.16) 

 

 

Figure 3.5: According to the BCS theory, only electrons close to the Fermi surface within 

the gap of 2𝑘 interact via the exchange of phonon.  

The thickness of this layer, 2∆𝑘, is determined by the Debye energy: 

∆𝑘

𝑘𝐹
~

ℏ𝜔𝐷

휀𝐹
, 휀𝐹 =

ℏ2𝑘𝐹
2

2𝑚
 

(3.17) 

3.5.1 Ground-state of a superconductor 

In this section, the goal is to discuss the state of a superconductor when its energy is a 

minimum, that is, when 𝑇 = 0. The derivation here is adapted from the Schmidt book  [50].  

The arbitrary wavefunction for a superconducting state can be expressed as: 

𝜓 = ∑ 𝑎𝑛𝜓𝑛

𝑛

 (3.18) 

Where, 

𝜓𝑛 = 𝜓𝑛(𝑟1, 𝑟2, 𝑟3, … … … , 𝑟𝑁) =is a complete function where 𝑛 runs over a set of values 

which we assign a number to these functions, 

𝑎𝑛 =amplitude of the state 𝜓𝑛, 

|𝑎𝑛|2 =probability of finding the system in the state 𝜓𝑛. 
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Let us consider the Hamiltonian operator �̂� 

�̂� = �̂�𝐾𝑖𝑛 + �̂� 

 

(3.19) 

The average energy is then found as, 

𝐸 = ∫ 𝜓∗ �̂�𝜓𝑑𝜏 
(3.20) 

Using equation (3.19) into (3.20), we get 

𝐸 = 𝐸𝐾𝑖𝑛 + 𝑉 

 

(3.21) 

Where, 

𝑉 = ∫ 𝜓∗ �̂�𝜓𝑑𝜏 

 

(3.22) 

= ∫( ∑ 𝑎𝑛𝜓𝑛𝑛 )∗ �̂� ∑ 𝑎𝑚𝜓𝑚𝑚 𝑑𝜏  

 

 

 

= ∑  𝑎𝑛𝑛,𝑚
∗

𝑎𝑚 ∫ 𝜓𝑛
∗ �̂� 𝜓𝑚𝑑𝜏  

 

 

= ∑  𝑎𝑛

𝑛,𝑚

∗

𝑎𝑚𝑉𝑛𝑚 

 

(3.23) 

is the average potential energy and 𝑉𝑛𝑚 = ∫ 𝜓𝑛
∗ �̂� 𝜓𝑚𝑑𝜏 is matrix element transition from 

the state 𝜓𝑛
∗
 to the state 𝜓𝑚. The potential energy 𝑉 in the above equation arises from the 

interaction of electrons via the virtual phonon. There is an attractive interaction between 

the electrons in the superconducting state close to the Fermi surface, which means potential 

energy exists between the electrons at 𝑇 = 0 unlike the absence of such energy in the case 

of a normal metal. The presence of potential energy between the superconducting electrons 

leads to the reduction of the kinetic energy to fulfill the condition of total negative energy. 

It is possible to exist such interactions between two electrons with opposite momentum of 

equal magnitude and opposite spin (𝑘 ↑, −𝑘 ↓) called the Cooper pair  [51]. The sum in 

equation (3.23) is the sum of all possible transitions of such kind. 

Suppose 𝜓 represents ground state wave functions for all Cooper pairs. Then, one can 

consider the mutual scattering of two coupled electrons from (𝑘 ↑, −𝑘 ↓) to the new state 

(𝑘′ ↑, −𝑘′ ↓) as a transition from the state 𝜓𝑛 to the state 𝜓𝑚. Here, the state 𝜓𝑛 

corresponds to all states (𝑘 ↑, −𝑘 ↓) full and the state (𝑘′ ↑, −𝑘′ ↓) empty. Whereas the 

state 𝜓𝑚 corresponds to all states (𝑘 ↑, −𝑘 ↓) empty and the state (𝑘′ ↑, −𝑘′ ↓) full.  

Now, let us suppose 𝑣𝑘
2 represents a new function of 𝑘 that gives the probability that the 

pair state (𝑘 ↑, −𝑘 ↓) is occupied. The amplitude of the state 𝜓𝑛 corresponds to all states 

(𝑘 ↑, −𝑘 ↓) full and the state (𝑘′ ↑, −𝑘′ ↓) empty is given by: 
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𝑎𝑛 = √𝑣𝑘
2(1 − 𝑣𝑘′2)=𝑣𝑘𝑢𝑘′ 

 

(3.24) 

Where, |𝑢𝑘′|2 = (1 − 𝑣𝑘′
2) is the probability that the state (𝑘′ ↑, −𝑘′ ↓) is unoccupied. A 

similar analogy can be used to calculate the probability of finding occupying of the state 

𝜓𝑚: 

𝑎𝑚 = 𝑣𝑘′𝑢𝑘 

 

(3.25) 

Putting equations (3.24) and (3.25) in (3.2.13), we get 𝑉 = ∑ 𝑉𝑘𝑘′  𝑘,𝑘′ 𝑣𝑘′𝑢𝑘𝑣𝑘𝑢𝑘′. Hence, 

the total energy of the superconductor in the state 𝜓𝑛 can be written as: 

𝐸𝑠 = 2 ∑  

𝑘

휀𝑘𝑣𝑘
2  + ∑ 𝑉𝑘𝑘′  

𝑘,𝑘′

𝑣𝑘′𝑢𝑘𝑣𝑘𝑢𝑘′ 

 

(3.26) 

The first term in the equation (3.26) represents the kinetic energy, and the factor of 2 comes 

from the Cooper pair. The 휀𝑘 term is the energy of the electron in the state 𝑘 that is 

measured from the Fermi level and is given by: 

휀𝑘 =
ℏ2𝑘2

2𝑚
−

ℏ2𝑘𝐹
2

2𝑚
 

 

 

= 휀𝑘 − 휀𝐹 

 

(3.27) 

 

We can reveal some properties of the function 𝑣𝑘
2 in the minimum energy state of 𝐸𝑠: 

𝜕𝐸𝑠

𝜕𝑣𝑘
2 = 0, 

By using equation (3.24), we get,  

2휀𝑘  + 𝑉𝑘𝑘′
𝜕𝑢𝑘𝑣𝑘

𝜕𝑣𝑘
2

∑  𝑘′
′

𝑣𝑘′𝑢𝑘′ = 0, 

Using equation (3.16) in the above equation results: 

2휀𝑘 − 2𝑉
𝜕𝑢𝑘𝑣𝑘

𝜕𝑣𝑘
2

∑  

𝑘′

′

𝑣𝑘′𝑢𝑘′ = 0 
(3.28) 

Let’s evaluate 
𝜕𝑢𝑘𝑣𝑘

𝜕𝑣𝑘
2  now, 

𝜕𝑢𝑘𝑣𝑘

𝜕𝑣𝑘
2

=
𝜕𝑣𝑘√(1 − 𝑣𝑘

2)

𝜕𝑣𝑘
2

, 

= √(1 − 𝑣𝑘
2)

𝜕𝑣𝑘

𝜕𝑣𝑘
2

+ 𝑣𝑘

𝜕√(1 − 𝑣𝑘
2)

𝜕𝑣𝑘
2

, 
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= √(1 − 𝑣𝑘
2)

1

2𝑣𝑘
+ 𝑣𝑘

(−1)

2√(1 − 𝑣𝑘
2)

, 

=
1 − 𝑣𝑘

2 − 𝑣𝑘
2

2𝑣𝑘√(1 − 𝑣𝑘
2)

, 

=
1 − 2𝑣𝑘

2

2𝑣𝑘𝑢𝑘
, 

 

Now we put the value of 
𝜕𝑢𝑘𝑣𝑘

𝜕𝑣𝑘
2  in equation (3.28): 

2휀𝑘 − 𝑉
1−2𝑣𝑘

2

𝑣𝑘𝑢𝑘
∑  𝑘′

′
𝑣𝑘′𝑢𝑘′ = 0,  

𝑉
1−2𝑣𝑘

2

2𝑣𝑘𝑢𝑘
∑  𝑘′

′
𝑣𝑘′𝑢𝑘′ = 2휀𝑘, 

1 − 2𝑣𝑘
2

𝑣𝑘𝑢𝑘
=

2휀𝑘

𝑉 ∑  𝑘′
′

𝑣𝑘′𝑢𝑘′

, 

𝑣𝑘𝑢𝑘

1 − 2𝑣𝑘
2 =

𝑉 ∑  𝑘′
′

𝑣𝑘′𝑢𝑘′

2휀𝑘
, 

 

𝑣𝑘𝑢𝑘

1 − 2𝑣𝑘
2 =

∆0

2휀𝑘
 

(3.29) 

Where,  

∆0= 𝑉 ∑  

𝑘

′

𝑣𝑘𝑢𝑘 
(3.30) 

The meaning of the prime sign in the summation is that the summation is taken over the 

states 𝑘 that are close to the Fermi surface such that the 𝑉𝑘𝑘′ is non-zero (see equation 

(3.16)). The value of ∆0 is similar to that of the interaction energy 𝑉, which is non-zero in 

the interval of 2∆𝑘 (see Figure 3.5 for the illustration of such states). The energy 휀𝑘is the 

energy of the individual electrons in the absence of the energy 𝑉.  

The equation (3.29) can be re-arranged as: 

𝑣𝑘
2𝑢𝑘

2

(1−2𝑣𝑘
2)2 = (

∆0

2𝜀𝑘
)2, 

 

 

𝑣𝑘
2 − 𝑣𝑘

4 = (1 − 4𝑣𝑘
2 + 4𝑣𝑘

4)
∆0

2

4𝜀𝑘
2, 

 

 

𝑣𝑘
2 (1 +

∆0
2

𝜀𝑘
2) − 𝑣𝑘

4 (1 +
∆0

2

𝜀𝑘
2) =

∆0
2

4𝜀𝑘
2, 

 

 

𝑣𝑘
4 − 𝑣𝑘

2 +
∆0

2

4𝜀𝑘
2 (

𝜀𝑘
2

∆0
2+𝜀𝑘

2) = 0, 
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𝑣𝑘
4 − 𝑣𝑘

2 +
∆0

2

4𝐸𝑘
2 = 0 

(3.31) 

Here,  

𝐸𝑘
2 = ∆0

2 + 휀𝑘
2 

 

(3.32) 

The solution of equation (3.29) can be written as: 

𝑣𝑘
2 =

1±√1−
∆0

2

𝐸𝑘
2

2
, 

 

 

𝑣𝑘
2 =

1

2
(1 −

휀𝑘

𝐸𝑘
) 

 

(3.33) 

And, 

𝑢𝑘
2 = 1 − 𝑣𝑘

2 =
1

2
(1 +

휀𝑘

𝐸𝑘
) 

 

 

(3.34) 

The negative sign in the solution of the 𝑣𝑘
2 is taken because when 𝑘 → 0, we will have 

𝑣𝑘
2 → 1 and 휀𝑘 → −휀𝐹. 

 

Figure 3.6: Probability that a Cooper pair occupies the state (𝑘 ↑, −𝑘 ↓) (𝑣𝑘
2) or does not 

occupy the state (𝑢𝑘
2). Here, we have used 휀𝐹 = 1 𝑒𝑣 and ∆0= 1𝑚𝑒𝑉 in the figure  [51].  
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The plot of probability that a Cooper pair occupies the state (𝑘 ↑, −𝑘 ↓) (𝑣𝑘
2) or does not 

occupy the state (𝑢𝑘
2) is shown in Figure 3.6. For the plotting, 휀𝐹 = 1 𝑒𝑣 and ∆0= 1𝑚𝑒𝑉 

are used. There are three regions in the figure where the slope of the (𝑣𝑘
2, 𝑢𝑘

2) plot is 

different. Those regions are: (a) 휀𝑘 ≪ 휀𝐹 (deep within the Fermi surface), (b) 휀𝑘  ≅ 휀𝐹 (in 

or around the Fermi surface), (c) 휀𝑘  ≫ 휀𝐹 (far outside the Fermi surface). In the first region 

(a), the probability of finding the electron is 100 percent. However, if one goes far from 

the Fermi surface the chances of finding the electron will be zero. In other words, the value 

of 𝑢𝑘
2 will be one. Interesting physics happens in the region close to the Fermi surface (c). 

There is a drastic change in the slope of the graph in this region. Here, the ratio 
∆0

𝜀𝐹
 is equal 

to 10-3. Meaning that only 0.1 percent of all electrons that are close to the 휀𝐹 participate in 

superconductivity  [51].  

3.5.2 Energy gap 

In this section, the expression of the temperature-independent energy gap (∆0) will be 

calculated and compared with the temperature-dependent energy gap (∆(𝑇)). By using 

values of 𝑣𝑘 and 𝑢𝑘 from equations (3.33) and (3.34) in equation (3.33), we get: 

∆0= 𝑉 ∑  

𝑘

′

√
1

2
(1 −

휀𝑘

𝐸𝑘
)√

1

2
(1 +

휀𝑘

𝐸𝑘
) 

 

=
1

2
𝑉 ∑  

𝑘

′

(1 −
휀𝑘

2

𝐸𝑘
2) 

(3.35) 

Using equation (3.33) in the above equation, we get 

1 =
1

2
𝑉 ∑  

𝑘

′ 1

√휀𝑘
2 + ∆0

2

 
(3.36) 

If the condition in equation (3.16) is implemented in the equation (3.36) and the summation 

over 𝑘 is changed to integration over 휀 as,  

∑  𝑘
′

… . = ∫ … …
ℏ𝜔𝐷

−ℏ𝜔𝐷
𝑁(휀)𝑑휀, 

Where 𝑁(휀) is the density of states at the energy 휀. Now, replacing the summation in 

equation (3.36) by the above integration near the Fermi surface, where 𝑁(휀) = 𝑁(0) and 

휀𝑘 = 휀, we get 

1 = 𝑁(0)𝑉 ∫
𝑑휀

√휀2 + ∆0
2

ℏ𝜔𝐷

0

 
 

1

𝑁(0)𝑉
= sinh−1(

ℏ𝜔𝐷

∆0
) 

 

ℏ𝜔𝐷

∆0
= sinh(

1

𝑁(0)𝑉
) 
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∆0=
ℏ𝜔𝐷

sinh(
1

𝑁(0)𝑉
)
 

(3.37) 

As discussed in the earlier paragraph, only a small fraction of electrons that are close to the 

Fermi surface take part in the superconductivity: 𝑁(0)𝑉 ≤ 0.3  [50]. This is called the weak 

coupling limit. In the weak limit, equation (3.37) can be written as  [52]: 

∆0≈ 2ℏ𝜔𝐷𝑒
−(

1
𝑁(0)𝑉

)
 

(3.38) 

The derivation of the temperature-dependent energy gap is skipped here. The temperature-

dependent energy gap here is given by  [49]. 

1

𝑁(0)𝑉
= ∫

𝑑휀

√휀2 + ∆2(𝑇)
tanh

√휀2 + ∆2(𝑇)

2𝐾𝐵𝑇𝐶

ℏ𝜔𝐷

0

 
(3.39) 

  

 

Figure 3.7: The variation of energy gap ∆(𝑇) compared with ∆(0) as a function of 

temperature. 

Solution of equation (3.39) yields, 

∆(𝑇)

∆(0)
≈ √cos (

𝜋𝑡2

2
) 

(3.40) 
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Where 𝑡 =
𝑇

𝑇𝐶
, here 𝑇𝐶 is the critical temperature of the superconductor. Figure 3.7 shows 

the variation of the energy gap as a function of temperature. The energy gap of the 

superconductor varies rapidly at the critical temperature of the superconductor (𝑇𝐶). As the 

temperature drops further down from 𝑇𝐶, the more the Cooper pair forms, and their binding 

energy increases. Hence, the higher value of thermal energy (𝐾𝐵𝑇𝐶) is required for their 

excitations  [53]. Near 𝑇 = 0, the temperature variation of ∆(𝑇) is constant and equals to 

∆(0) (𝑜𝑟 ∆0).  

The solution of (3.39) yields: 

∆0≈ 1.76𝐾𝐵𝑇𝐶 (3.41) 

Different experiments accurately verify the relation (3.41). Table 3.3 shows examples of 

variation of energy gap (2∆0) for different superconducting materials. From the 

experiments, one can establish relation 3.0𝐾𝐵𝑇𝐶 ≤ 2∆0≤ 4.5𝐾𝐵𝑇𝐶, with most clustered 

near the BCS value of 3.5𝐾𝐵𝑇𝐶  [42].  

Table 3.3: Variation of energy gap for different superconducting materials  [48].  

Material 𝑇𝐶(K) 2∆0 (𝑚𝑒𝑉) 2∆0

𝐾𝐵𝑇𝐶
 

Al 1.18 0.35 3.4 

Hg 4.2 1.7 4.6 

Pb 7.2 2.7 4.3 

Nb 9.3 3.0 3.8 

 

The next chapter will discuss what happens when a magnet is put on the surface of the 

superconducting coaxial quarter-wave microwave cavity. In this chapter, we learned about 

the macroscopic and microscopic properties of the superconductor. For example, the 

superconductor exhibits the diamagnetic property. Similarly, there will be a small 

penetration depth within the superconductor in the presence of the external magnetic field. 

The BCS theory explains the attractive interaction between electrons bound in the cooper 

pair. Moreover, the energy gap of the superconductor and its variation as a function of 

temperature is derived.  
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Chapter 4  

Cavity-Magnet System 

“To find yourself, think for yourself.”-Socrates 

4.1 Introduction 

A weak magnet above a superconductor generates a supercurrent on the surface of the 

superconductor (see Figure 4.1). This supercurrent prevents the entry of an external 

magnetic field from the interior of the superconductor. The magnetic field associated with 

this creates a force called the diamagnetic force. It is directed opposite to the applied field. 

When the opposing diamagnetic force is greater than the gravitational force, the magnet 

levitates above the superconductor.  

 

Figure 4.1: A magnet above a superconductor induced opposing current on the surface of 

the superconductor. 

Furthermore, introducing a magnet within a cavity changes its frequency and quality factor. 

In this chapter, a lumped element model is developed, and FEM simulations are done to 

characterize frequency shift patterns. A study of the total quality factor of the cavity with 

the presence of the magnet is also done. Finally, the two-loop model calculates levitation 

height and studies stable magnetic levitation.  

4.2 Neodymium Magnets 
The magnet that we have used in our experiment is the permanent neodymium magnets of 

varying strength from 1.22-1.47 T. They are graded according to their remanence (𝐵𝑟) as 
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tabulated in Table 4.1. For example, the magnet with remanence 1.32 T is called an N42 

magnet. The density of the neodymium is 7.4× 10−3  
𝑘𝑔

𝑚3⁄ . The thermal expansion (0 to 

100℃) of the neodymium magnet parallel and perpendicular to the direction of 

magnetization is, respectively, 5.2 × 10−6  1 ℃⁄  and −0.8 × 10−6  1 ℃⁄   [54]. 

Table 4.1: Neodymium magnets classified with their remanence. 

Type of Neodymium magnet Remanence (T) 

N35 1.22 

N42 1.32 

N50 1.44 

N52 1.47 

 

Figure 4.2 (a) shows a sketch of a disc magnet that has a radius of 𝑅 and thickness of 2𝑏. 

The mass of the magnet (𝑀) can be calculated using the relation: 

𝑀 = 2𝜋𝑅2𝑏𝜌 (4.1) 

Where 𝜌 is the density of the magnet. Now, the weight of the magnet can be derived from 

its mass (𝑀) as 𝑊 = 𝑀𝑔. Figure 4.2 (b) shows an example of magnetic field lines of an 

N50 permanent magnet with 𝑅 = 0.5 𝑚𝑚 and 𝑏 = 0.25 𝑚𝑚. Here (0,0) is the center of 

the magnet.  

 

 
Figure 4.2: (a) A disc magnet of a radius of 𝑅 and a height of 2𝑏, (b) magnetic field 

distribution of an N50 magnet. 

A simple approach to calculating a permanent magnet's magnetic field is to consider it as 

a solenoid (loop of currents). Then the magnetic field through the symmetric axis of the 

magnet is given by  [55]: 

𝐵𝑧 =
𝐵𝑟

2
[

𝑍 + 𝑏

√𝑅2 + (𝑍 + 𝑏)2
−

𝑍 − 𝑏

√𝑅2 + (𝑍 − 𝑏)2
] 

(4.2) 

Here, 𝐵𝑟 is a remanence of the magnet. Equation (4.2) calculates the magnetic field more 

accurately outside of the magnet than its inside.  
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Figure 4.3 shows the decay of the magnetic field for an N50 neodymium magnet of a radius 

of 0.5 mm and height of 0.5 mm from its surface. The field varies rapidly from the surface 

to the distance of 1 mm. For the magnetic field calculation, the origin of the coordinate is 

considered at the center of the magnet. The strength of the magnet reduced approximately 

half at the surface (~0.5 T) than that at the center of the magnet (1.44 T) and is negligible 

above 2.5 mm.  

 
Figure 4.3: Azimuthal magnetic field (𝐵𝑧) along the symmetric axis of a magnet of radius 

0.5 mm and height 0.5 mm. The field is calculated from the surface of the magnet.  

 

Another advantage of magnetic field calculation using equation (4.2) will be to calculate 

the magnetic field on the surface of various magnets. It is important to know the surface 

magnetic field in the levitation experiments. The strength of the magnetic field on the 

surface of the magnet affects magnetic levitation. For example, suppose the critical field 

of a superconductor is 100 gauss, and the field on the surface of the magnet is higher than 

the critical field. In that case, some part of the superconductor will be normal during the 

superconducting transition.  The effect of such a normal region on levitation will be 

discussed in the upcoming section. Table 4.2 shows a list of the surface magnetic field of 

four magnets that we used in our sequence experiment.  
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Table 4.2: Surface magnetic field for the permanent magnets of dimension 0.5 mm (radius) 
× 0.5 mm (thickness).  

Magnet Surface field (T) 

N35 0.43 

N42 0.47 

N50 0.51 

N52 0.52 

 

4.3. Frequency shift pattern 

The frequency, f, of a coaxial stub cavity, discussed in section 2, is determined by the height 

of the stub, l, where 𝑓𝛼
4

𝑙
  [2]. Any external perturbation within the coaxial region of the 

cavity changes the shape of the cavity mode and hence its frequency [35]. When a magnet 

is placed on the surface of the stub it pulls down the frequency of the cavity. The reason is 

an increase in the effective height of the stub. The amount of downshift corresponds to the 

interaction of the magnet with the electric field of the cavity mode, which is localized 

toward the edges of the stub. In this section, two different approaches will be discussed to 

characterize the frequency shift pattern of the cavity due to the presence of the magnet. 

First, the lump element model is developed for the cavity-magnet system. Then, different 

possible scenarios of magnetic levitation and associated frequency shift patterns due to 

such a phenomenon will be presented using FEM simulations.  

4.3.1 Lump Circuit Model 

An LC circuit can approximate the frequency of an empty cavity without any external 

perturbation. In the LC circuit model, the frequency of the bare cavity can be expressed in 

terms of inductance (𝐿0) and capacitance (𝐶0) as: 

𝑓0 =
1

2𝜋√𝐿0𝐶0 
 (4.3) 

Where, 

𝐿0 =
𝜇ℎ𝑠

2𝜋
ln (

𝑟𝑐

𝑟𝑠
) 

(4.4) 

Here, 𝑟𝑐 denotes the radius of the cavity, 𝑟𝑠 the radius of the stub, and ℎ𝑠 the height of the 

stub. For the cavity configuration with a long gap between the stub and open end, the exact 

expression of capacitance is not known. A similar cavity with the gap reduced in the order 

of millimeters is called the reentrant cavity. For such cavity, the value of 𝐶0 can be found 

using the relation: 

𝐶0 = 𝜖0

𝜋𝑟𝑐
2

ℎ
 

(4.5) 
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A magnet sitting on the surface of the stub changes the frequency of the bare cavity. The 

lumped circuit model can model the magnetic perturbation within the cavity[56]. In this 

model, the frequency of the cavity is given by: 

𝑓 =
1

2𝜋√𝐿0𝐶 
 (4.6) 

 

Here, C is the capacitance of the cavity. For a cavity with a long cylindrical section between 

the stub and the open end of the cavity, the electric field is concentrated on the coaxial 

region, and the exact expression for the capacitance is not known  [38]. We assume that a 

magnet placed near the top of the stub (𝑧 < 1 𝑚𝑚), where the electric field is strong, 

changes the effective capacitance of the cavity according to 𝐶 = 𝐶0 + 𝐶1, where 𝐶0 

quantifies the capacitance of the bare cavity and 𝐶1 represents the capacitive contribution 

of the magnet. The 𝐶1 can be modeled as the interaction of the magnet with the energy 

density of the cavity falling approximately by 𝑒−2𝛽𝑧 into the waveguide section of the 

cavity, where 𝛽 = √(
2𝜋

𝜆
)2 − (

2.41

𝑟𝑐
)2, 𝜆 is the resonance wavelength [3]. Now, using 

equation (4.3) in equation (4.6), we get: 

𝑓 =
1

2𝜋√(𝐿0(𝐶0 + 𝐶1)) 
  

 

 

𝑓 =
1

2𝜋√(𝐿0𝐶0(1 + 𝐶1/𝐶0)) 
 

 

𝑓 =
𝑓0

(1 + 𝐶1/𝐶0)
1
2 

 

 

(4.7) 

A Taylor expansion of equation (4.7) yields, 

 

(1 +
𝐶1

𝐶0
 )−

1
2 = (1 −

𝐶1

2𝐶0
) 

 

 

𝑓 = 𝑓0(1 −
𝐶1

2𝐶0
) 

 

 

𝑓0
2 −  𝑓2

𝑓0
2 ∝

𝐶1

2𝐶0
 

 

𝑓0
2 −  𝑓2

𝑓0
2 ∝ 𝑒−2𝛽𝑧  

(4.8) 
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4.3.2 FEM Simulations 

The frequency shift pattern of a cavity-magnet is studied by putting a magnet on the 

different locations around the stub. The cavity used in the simulations has the same 

dimensions as discussed in Chapter 2, section 2.3. The magnet is a disc magnet of a 

diameter of 1 mm and a height of 0.5 mm. Here, simulations for various possible 

phenomena during the levitation experiment such as magnetic levitation, sliding, flipping, 

and levitation with an angle of the magnet are studied.  

I. Levitation 

Figure 4.4 shows the colormap of the frequency shift as a function of the radial and vertical 

position of the magnet. The vertical distance is measured from the magnet's surface to the 

stub's surface and the radial distance from the center of mass of the magnet. For example, 

when the magnet is at (𝑥, 𝑧) = (2 mm, 0.5 mm) this means that the half part of the magnet 

is on the stub, while the other half is outside the stub at the height of 0.5 mm. Moreover, 

the frequency of the bare cavity is 11.007 GHz. The change in the frequency of the cavity 

(∆f) is calculated in comparison to the frequency of the bare cavity. The frequency 

sensitivity refers to the difference in the frequency with respect to the position of the 

magnet.  

In Fig. 4.4, we can divide the cavity into three regions based on the frequency sensitivity: 

(a) Near the center of the stub (𝑥 < 1 𝑚𝑚), (b) Around the stub (1 𝑚𝑚 ≤ 𝑥 ≤ 3 𝑚𝑚), 

and (c) In the gap of the cavity (𝑥 > 3 𝑚𝑚). In region (a) the change in the frequency of 

the cavity is small with the radial and vertical position of the magnet and more so in the 

region (c). The region (b) is the most sensitive region of the cavity. In this region, the small 

displacement of the magnet results in a significant change in the frequency. For example, 

when the magnet at position (𝑥 = 1.9 𝑚𝑚, 𝑧 = 0 𝑚𝑚) is moved to the positions (𝑥 =

2 𝑚𝑚, 𝑧 = 0 𝑚𝑚) and (𝑥 = 2.1 𝑚𝑚, 𝑧 = 0 𝑚𝑚) the frequency sensitivity will be around 

200 MHz/mm. The frequency sensitivity is even high due to the vertical displacement. For 

example, when the magnet at positions (𝑥 = 1.9 𝑚𝑚, 𝑧 = 0 𝑚𝑚),  (𝑥 = 2 𝑚𝑚, 𝑧 =

0 𝑚𝑚), and (𝑥 = 2.1 𝑚𝑚, 𝑧 = 0 𝑚𝑚) is moved to the positions (𝑥 = 1.9 𝑚𝑚, 𝑧 =

0.1 𝑚𝑚),  (𝑥 = 2 𝑚𝑚, 𝑧 = 0.1 𝑚𝑚), and (𝑥 = 2.1 𝑚𝑚, 𝑧 = 0.1 𝑚𝑚) the frequency of 

the cavity is shifted by the rate of 700 MHz/mm.  

The change in the frequency (∆f)  of the cavity mainly depends upon the interaction of the 

magnet with the electric field (𝐸(𝑟, 𝑧). In addition, with the amount of electric field storage 

in the space between the magnet and the stub. Remember, the electric field of the coaxial 

microwave cavity is localized around the circumference of the stub. Hence, region (c) is 

the most sensitive region in the entire cavity.  
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Figure 4.4: Colormap of the change in the resonance frequency of the cavity as a function 

of the radial and vertical position of a magnet on the stub. 

II. Levitation with an angle 

Suppose a disc magnet magnetized along its thickness is placed above a superconductor. It 

will make an angle with the superconductor during levitation to be in the minimum 

potential energy state  [57]. Figure 4.5 illustrates the tendency of a magnet to change the 

resonance frequency of the cavity lifting with an angle from the edge of the stub (𝑥 =

2 𝑚𝑚). See inset of figure for the example demonstrations of magnetic levitation for angles 

0°, 45°, 90°. On the surface of the stub, even 10° angle will induce the frequency downshift 

of 30 MHz. The decreasing trend of the frequency will continue as the angle increase from 

0° to 90°. However, the trend will reverse, and the frequency of the cavity will start to 

upshift as the angle change from 90° to 180°.  

Magnetic levitation always upshifts the frequency of the cavity, irrespective of position 

and orientation of the magnet on the stub. The orientation and position of the magnet play 

the main role in the amount of the upshift. In Fig. 4.5, the frequency sensitivity is largest 

near the stub (𝑧~0.5 𝑚𝑚). In this region, the effect of most of the angles on the frequency 

is distinguishable. As the magnet move farther from the stub (𝑧 > 1 𝑚𝑚), the effect 

becomes indistinguishable.  
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Figure 4.5: FEM simulations show magnetic levitation shifts the cavity frequency towards 

the bare cavity frequency. This plot identifies the amount and trend of the frequency shift 

for magnetic levitation for different magnet orientations.  

III. Sliding towards the edge 

Now imagine the following scenario: a magnet that is put at the center of the stub slide 

towards the edge. One question that might arise is what effect this phenomenon has on the 

cavity's frequency.  In fact, a more general question could be the frequency shift patterns 

due to the sliding of the magnet.  

A perfect diamagnet pushes a magnet towards its edge due to the edge effect  [58]. Figure 

4.6 shows FEM simulations of how the frequency shift as a function of radial position for 

magnets of several angular orientations, as obtained from the FEM simulations. The 

magnet remains in contact with the surface of the stub for these calculations. The cavity's 

resonance frequency decreases when a magnet in contact with the stub slides towards the 

edge. The amount of such a downshift depends on the orientation of the magnet. The 

sudden changes in the frequency shift as the radial position increases beyond 1.5 mm are 

due to the edge of the magnet closest to the stub surface extending past the edge of the stub.  

Two different trends of frequency shift are observed at the center and the edge of the stub 

for the angle less than or equal to 120 degrees and greater than 120 degrees. At the center 
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of the stub, the frequency downshifts when the angle increases from 0 to 120 degrees. And, 

when the angle is greater than 120 degrees, the frequency shifts upward. However, the 

opposite trend of the frequency shift is observed at the edge of the stub. The frequency of 

the cavity increases as the magnet makes an angle less than or equal to 120 degrees except 

for 90 degrees. The frequency goes down for an angle greater than 120 degrees. The largest 

frequency downshift of (∆f=) 382 MHz is observed when the magnet is close to the edge 

and oriented at 90 degrees, or standing on its edge.  

 

Figure 4.6: Change in the frequency of the cavity as a magnet slides towards the edge of 

the stub with different orientations. The sketches adjacent to the graphs indicate the 

orientation of the magnet with respect to the stub.  

Table 4.3 summarizes the change in the cavity frequency at different orientations of the 

magnets at the center and edge of the stub. The arrow in the table shows the amount and 

trend of the frequency shift at the center and edge of the stub. There is an opposite trend of 

a frequency shift on those locations of the stubs with orientation less than or equal to 120 

degrees and greater than 120 degrees.  
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Table 4.3: Summary of the frequency change as the magnet, in contact with the stub, slides 

towards the edge of the stub with different angles.  

Orientation (°) ∆f|𝑥=0 𝑚𝑚 

(MHz) 

∆f|𝑥=2 𝑚𝑚 

(MHz) 

Total f 

change 

(MHz) 

Total f change 

(%) 

0 -62 -212 -150 241 (↓) 

10 -81 -90 -9 11 (↓) 

20 -101 -65 +36 36 (↑) 

30 -101 -48 +53 53 (↑) 

45 -143 -46 +96 67 (↑) 

60 -150 -43 +107 71 (↑) 

90 -141 -382 -241 171 (↓) 

120 -140 -84 +56 40 (↑) 

135 -122 -349 -227 186 (↓) 

150 -96 -304 -208 217 (↓) 

170 -44 -138 -94 214 (↓) 

IV. Rotation 

Another phenomenon to consider during the levitation experiment is the rotation of the 

magnet. The rotation of the magnet also affects the frequency of the cavity. Figure 4.6 

illustrates the effect of magnetic rotating at 𝑥 = 1.5 𝑚𝑚 on the frequency of the cavity. In 

these simulations, the center of mass of the magnet is fixed at 𝑥 = 1.5 𝑚𝑚, and the distance 

between the magnet and the stub is adjusted so that the magnet is always in contact with 

the stub. In addition, the rotation of the magnet is done manually.  

The rotation of the magnet results in an asymmetry double-well like frequency shift profile 

(see Figure 4.7). This asymmetry arises because the part of the magnet that is in contact 

with the stub moves inwards while making the acute angle and it moves outward while 

making the obtuse angle to maintain the center of mass of the magnet at 𝑥=1.5 𝑚𝑚 (see 

inset of Fig. 4.6). The center of the well is at 90 degrees. For the acute angle highest shift 

of ~200 𝑀𝐻𝑧 is observed for angles 50, 60, and 70 degrees. In the case of obtuse angle, 

the maximum of 220 𝑀𝐻𝑧 of frequency downshift is observed at 100 degrees and is 

remains reasonably constant for angles 100-140 degrees. For the angle greater than 140, an 

increasing trend of the frequency shift is observed.  
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Figure 4.7: Effect of magnetic rotation at the edge of the stub on the frequency of the cavity. 

The average error bar of 25 MHz is implemented in the graph.  

V. Conclusion 

Figure 4.8 generalized shift pattern observed in the FEM simulations. The blue spectra 

represent the bare cavity frequency. A magnet placed on the stub pulls the frequency of the 

cavity (orange spectra) down at least by 50 MHz. A magnet, when lifted from the surface 

of the stub, always increases the cavity's frequency irrespective of its position and angle on 

the stub (represented by the purple arrow). The effect is drastic at the edge of the stub. The 

frequency upshift due to magnetic levitation is in the hundred orders larger in magnitude 

than the frequency upshift when the magnet makes a small angle with the stub (light blue 

arrow). The frequency goes down when the magnet is pushed off towards the edge of the 

stub (green arrow).  
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Figure 4.8: Generalized frequency shift pattern for key phenomenon during the levitation 

experiment.  

4.4 Quality factor  

The quality factor of an empty cavity is discussed in Chapter 2.   The surface resistance 

(𝑅𝑠) is the crucial component to determine the quality factor of the cavity. The surface 

resistance of the cavity can be divided between two parts: 𝑅𝑠 = 𝑅BCS (T) + 𝑅Residual. The 

residual resistance is independent of the temperature. It is dependent upon the input/output 

coupling, chemical impurity, surface roughness, residual dc magnetic field, etc. [15].  

According to the Mattis-Bardeen (M-B) theory, 𝑅BCS (T) depends upon the temperature 

and is approximated as: 

𝑅BCS(𝑇) ∝ 𝑒
−(

∆(0)

𝐾𝐵𝑇
)
, 

 

(4.9) 

 Where  ∆(0)  is the energy gap of the superconductor, 𝐾𝐵 is Boltzmann constant, and T 

temperature of the superconducting cavity  [59]. The value of 
∆(0)

𝐾𝐵𝑇𝑐
 due to the microwave 

photon absorption for aluminum is 6  [44]. 

Figure 4.9 shows the variation of 𝑅BCS as a function of temperature for ℏ𝜔 ≪ 𝐾𝐵𝑇𝑐And 

ℏ𝜔 ≪ ∆(0). There is a significant decrease in the surface resistance during the 

superconducting transition. As the temperature of the superconductor lowers further down, 

there will be more cooper pair formation. That will lead to a reduction of the surface 
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resistance. The BCS theory predicts small or no variation of the energy gap below the 
𝑇𝑐

2
. 

A similar change is seen in the case of the surface resistance as well.  

 

Figure 4.9: Plot of the 
𝑅BCS

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝛼𝑒

−(
∆

𝐾𝐵𝑇
)
. Here, the value of  

∆

𝐾𝐵𝑇𝑐
 is equals to 6  [44].  

The quality factor of the cavity changes with the presence of the cavity. For an under-

coupled cavity, where the contribution of the quality factor is only from the intrinsic quality 

factor (𝑄𝑖𝑛𝑡), the presence of a magnet disturbs the mode of the cavity. We have calculated 

the G-factor 153 using FEM simulation for a cavity with the magnet on the stub, which is 

49 percent greater than the G-factor of the empty cavity [41].  

Figure 4.10 shows FEM simulations of the G-factor as a function of the position of the 

magnet on the stub. The effect of the position of the magnet on and above the stub on the 

G-factor is small. Hence, the contribution of the G-factor in the intrinsic quality factor 

(𝑄𝑖𝑛𝑡) due to the magnetic movement is small. 

The effect of the magnet and couplers on the quality factor of the cavity can be studied by 

using the total quality factor. The total quality factor of the cavity is divided between the 

intrinsic (unloaded, 𝑄𝑖𝑛𝑡) quality factor and external (loaded, 𝑄𝑒𝑥𝑡) quality factor as  
1

𝑄
=

1

𝑄𝑖𝑛𝑡
+

1

𝑄𝑒𝑥𝑡
  [33]. The external quality factor includes effects of external contribution such 

as the coupling (over, under, or critical) of the cavity, and the magnetic perturbations. The 
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𝑄𝑒𝑥𝑡 can be approximated as 
1

𝑄𝑒𝑥𝑡
∝

1

𝑄𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔
+

1

𝑄𝑚𝑎𝑔𝑛𝑒𝑡
. According to the lump element 

model, when the external perturbations (such as couplers, a magnet) are introduced into the 

resonant system the additional resistance (𝑅𝑒𝑥𝑡) is added in series with the 𝑅𝑠  [33]. Hence 

the external quality factor will be 𝑄𝑒𝑥𝑡 = 2𝜋𝑓
𝐿

𝑅𝑒𝑥𝑡
. The total quality factor can be 

approximated as 𝑄 ∝
2𝜋𝑓𝐿

𝑅𝑇(=𝑅𝑠+𝑅𝑒𝑥𝑡)
. For a quarter-wave coaxial cylindrical cavity, 𝐿 is 

calculated from the expression 
𝜇0ℎ𝑐𝑎𝑣

2𝜋
ln (

𝑟𝑐𝑎𝑣

𝑟𝑠𝑡𝑢𝑏
), where  ℎ𝑐𝑎𝑣  is height of the cavity, 𝑟𝑐𝑎𝑣 

radius of the cavity, and 𝑟𝑠𝑡𝑢𝑏is radius of the stub  [60].  

 

Figure 4.10: Geometric factor of the cavity-magnet system as a function of radial and 

vertical position of the magnet on the stub.  

4.5 Levitation Height Calculation 

When a magnet is put above a type I superconductor, the magnetic flux is completely 

expelled from the interior of the superconductor due to the Meissner effect. Here the 

necessary condition is the applied field is less than the critical field of the superconductor.  

The boundary condition is that the perpendicular component of the magnetic field will be 

zero on the superconductor's surface. Based on this boundary condition, different models 

have been developed to calculate levitation force (or energy). One such model is the mirror 

method. The mirror method considers the magnet and it’s diamagnetic image as a dipole. 
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However, it does not consider the dimension of either the superconductor or the magnet. A 

model that is developed by Lugo et al. [61] considered the size of the superconductor. They 

considered the magnet a point dipole and the superconductor a continuous array of point 

dipoles. The levitation force (or energy) is then obtained by integrating the dipole-dipole 

interaction between the real and the image magnet over the volume of the superconductor  

[61,62]. The main limitation in their calculation is the exclusion of the size of the magnet.  

In our study, we have used the two-loop model to calculate the levitation height. This model 

takes into account the size of both the magnet and the superconductor. The two-loop model 

calculates levitation height more accurately than the mirror method and the method 

developed by Lugo et at.  

4.5.1 Mirror Method 

The schematic of the assumption of the mirror method is shown in Fig. 4.11. For the type 

I superconductor, this model assumes that the magnet on the superconductor has its 

diamagnetic image inside the superconductor. Both magnets (real and image) move in the 

opposite direction. The interaction between the magnets is most robust near the 

superconductor's surface and becomes weaker as it goes farther from the surface.  

 

Figure 4.11: The mirror method's schematic view of a magnet at a height h above a 

superconductor.  

The mirror method can calculate the potential energy (or levitation force) calculation. 

Consider a permanent magnet and its corresponding image as an induced dipole. The 

potential energy on the magnet due to the induced dipole depends upon the magnetic 

moment (�⃗⃗⃗�) and magnetic field (�⃗⃗�). Mathematically the potential energy can be written 

as: 

�⃗⃗⃗� =
1

2
(�⃗⃗⃗� ∙ �⃗⃗�  ) 

(4.10) 

   

We can calculate a magnetic field due to the dipole at the distance z from its center is given 

by the relation below  [63]: 
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�⃗⃗�(0,  0,  𝑧) =
𝜇0𝑚

4𝜋

2

𝑧3
�̂�  

(4.11) 

   

Substituting the above expression into Eq. (1) results in the potential energy due to the 

force exerted by the mirror image on the permanent magnet.  

𝑈(0,0, 𝑧) =  
𝜇0𝑚2

4𝜋

(1 + 𝑠𝑖𝑛2𝜃)

(2𝑧)3
 

(4.12) 

Here, (1 + 𝑠𝑖𝑛2(𝜃)) takes account of the angle of the magnet with the superconductor and 

(2z) is the distance between the real and image magnet. The potential energy due to the 

radially magnetized magnet is half that of the axially polarized magnet.  The total potential 

energy includes the gravitational (𝑀𝑔𝑧) potential energy as well. 

𝑈𝑡𝑜𝑡𝑎𝑙(0,0, 𝑧) =  
𝜇0𝑚2

4𝜋

(1 + 𝑠𝑖𝑛2𝜃)

(2𝑧)3
+ 𝑀𝑔𝑧 

(4.13) 

The above expression for the potential energy assumes the magnetic field is completely 

expelled from the superconductor, an infinite plane. The magnet levitates at the point with 

the least potential above the superconductor  [64].   

Equation 4.13 is plotted for an axially magnetized N52 permanent neodymium magnet of 

a radius and height of 0.5 mm in Figure 4.12. Here 𝜃 = 90° is used. The total potential 

energy near the superconductor is high because of the large repulsion between the magnet 

and its diamagnet image.  As the magnet moves farther away from the superconductor's 

surface, the potential energy quickly falls off. Its value becomes minimum at 3.8 mm above 

the superconductor. Hence, the magnet levitates at this minimum energy point.  

The levitation force than can be calculated as  [64]: 

𝐹𝐿𝑒𝑣(0,0, 𝑧) = −∆𝑈𝐿𝑒𝑣  

𝐹𝐿𝑒𝑣(0,0, 𝑧) =  
6𝜇0𝑚2

4𝜋

(1 + 𝑠𝑖𝑛2𝜃)

(2𝑧)4
 

(4.14) 

The vertical stiffness can be derived from equation (4.14) as: 

𝐾𝑧 =  -
𝜕𝐹𝐿𝑒𝑣(0,0, 𝑧)

𝜕𝑍
 

 

=
48𝜇0𝑚2

4𝜋

(1 + 𝑠𝑖𝑛2𝜃)

(2𝑧)5
 

(4.15) 

This will lead to the resonance frequency of: 

𝜔𝑧 = √
𝐾𝑧

𝑀
 

 

𝜔𝑧 = 𝑚√
3𝜇0(1 + 𝑠𝑖𝑛2𝜃)

8𝜋 ∗ 𝑀

1

𝑧0
5
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𝜔𝑧 = √
4𝑔

𝑧0
 

(4.16) 

For, an N52 neodymium magnet of mass (M) 2.75 milligram and magnetic moment (m) 

0.46 (mA)m2 levitating at a distance 3.8 mm above the superconductor 𝑓𝑧 will be ≈11 Hz.  

 

Figure 4.12: Total potential energy as a function of the vertical position of the magnet. The 

calculation starts from 0.5 mm vertical height. The substantial repulsion between the real 

and image magnets results in enormous energy in this distance.  

4.5.2 Finite-Size Superconductor 

The main drawback of the mirror method is that it considers the superconductor as an 

infinite size. The approach that Lugo et al.  [61] took considered the size of the 

superconductor in their calculation. The levitation force due to a superconducting 

cylindrical of radius R and thickness t, can be written as: 

𝐹𝐿𝑒𝑣 =  
𝜇0

4𝜋

3𝑚2(1 + 𝑠𝑖𝑛2𝜃)

32
[𝑓(𝑎) − 𝑓(𝑎 + 𝑡)] 

(4.17) 

Where: 

𝑓(𝑧) =  
1

𝑧4
−

5𝑅2 + 3𝑧2

3(𝑅2 + 𝑧2)3
 

(4.18) 

In Figure 4.13, levitation force is calculated as a function of the vertical position of the 

magnet of the same dimension and strength that have been used for Fig. 4.12 generation. 

For the size of the superconductor, the dimension of the stub, 𝑅 = 2 𝑚𝑚, and  𝑡 = 5 𝑚𝑚, 
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is used. The levitation force balances the gravitational force at 2.75 mm above the 

superconductor. This value is 28 percent smaller than the levitation height predicted by the 

mirror method.  

 

Figure 4.13: Levitation force for a finite-size superconductor. Here, 0.25 mm (half the 

thickness of the magnet) is subtracted from 3 mm to get levitation height from the surface 

of the superconductor to the surface of the magnet. The upward levitation force balances 

the downward gravitational force at 2.75 mm.  

4.5.3 Two-loop model 

In our experiment, the axis of the magnet does not necessarily coincide with the axis of the 

superconductor. Similarly, the size of the magnet is comparable to the size of the 

superconductor. Therefore, the methods discussed above result in highly inaccurate 

levitation height calculations.  

We have used a two-loop model to calculate levitation height for the magnetic levitation 

from the stub of the cavity. As shown in Figure 4.14, the magnet and its image are 

considered two current loops in this model. Their distance is taken from the center of mass 

of the magnet. Let us suppose the magnet has a radius and height of 𝑅𝑀 and ℎ, respectively. 

Similarly, the superconducting stub has a radius of 𝑅𝑆 and thickness of 𝑡. In the two-loop 
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model, the magnet is replaced by a loop of current with the same radius as a magnet. Also, 

a loop of current replaces the image magnet with a radius equal to the radius of the 

superconductor. The distance between the two loops is now 2𝑍 + ℎ instead of 2𝑍 between 

two magnets.  

 

Figure 4.14: Two-loop representation of the magnet and its image. Here, the magnet and 

its image are replaced by current-carrying loops in the opposite direction.  

Now, let’s calculate the magnetic field due to the two loops. The vector potential has only 

an azimuthal component, which is given by the equation: 

𝐴∅ =
𝜇0

4𝜋
[(𝑅𝑆 + 𝑟)2 + 𝑧2]

1
2 . [(1 −

1

2
𝑘2) . 𝐾(𝑘) − 𝐸(𝑘)] 

 

(4.19) 

Where: 

𝑘(𝑟) =
4𝑅𝑆𝑟

(𝑅𝑆 + 𝑟)2 + 𝑧2
 

 

(4.20) 

𝑟 = [(𝑅𝑀𝑐𝑜𝑠∅2 + 𝑦)2 + (𝑅𝑀𝑠𝑖𝑛∅2)2]
1
2 

 

(4.21) 

𝑅 = [𝑅𝑆
2 + 𝑟2 + 𝑧2 − 2𝑅𝑆𝑟𝑐𝑜𝑠∅1]

1
2 

 

(4.22) 

Using, relation 𝐵 = ∇ × 𝐴, we get: 

𝐵𝑧 =
𝜇0𝐼

4𝜋[(𝑅𝑆 + 𝑟)2 + 𝑧2]
1
2

[
𝑅𝑆

2 − 𝑟2 − 𝑧2

(𝑅𝑆 − 𝑟)2 + 𝑧2]
. 𝐸(𝑘) + 𝐾(𝑘)] 

 

(4.23) 

𝐵𝑟 =
𝜇0𝐼𝑧

4𝜋𝑟[(𝑅𝑆 + 𝑟)2 + 𝑧2]
1
2

[
𝑅𝑆

2 + 𝑟2 + 𝑧2

(𝑅𝑆 − 𝑟)2 + 𝑧2]
. 𝐸(𝑘) − 𝐾(𝑘)] 

 

(4.24) 

𝐵∅ = 0 

 

(4.25) 

𝑚 = 𝜋𝐼𝑅𝑆
2 (4.26) 
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From the frame of reference of the magnet, the components of the magnetic field will be: 

𝐵𝑟|𝑥/−𝑦/−𝑧/ = 𝐵𝑟|𝑥−𝑦−𝑧cos (tan−1(
𝑅𝑀𝑠𝑖𝑛∅2

𝑦 + 𝑅𝑀𝑐𝑜𝑠∅2
) − ∅2) 

 

(4.27) 

𝐵∅|𝑥/−𝑦/−𝑧/ = 𝐵∅|𝑥−𝑦−𝑧sin (tan−1(
𝑅𝑀𝑠𝑖𝑛∅2

𝑦 + 𝑅𝑀𝑐𝑜𝑠∅2
) − ∅2) 

 

(4.28) 

Now potential energy will be the dot product of the magnetic moment of the magnet () and 

response field from the image magnet: 

�⃗⃗⃗� =
1

2
(�⃗⃗⃗� ∙ 𝐵𝑍

⃗⃗ ⃗⃗ ⃗  ) 

 

 

Using equation (4.23) in the above equation results (we are only taking the magnitude of 

the potential energy here): 

𝑈 =
𝜇0𝐼𝑚

4𝜋[(𝑅𝑆 + 𝑟)2 + 𝑧2]
1
2

[
𝑅𝑆

2 − 𝑟2 − 𝑧2

(𝑅𝑆 − 𝑟)2 + 𝑧2]
. 𝐸(𝑘) + 𝐾(𝑘)] 

 

(4.29) 

 

Figure 4.15: Comparison of the potential energy calculated at the center of the 

superconductor using three models: the mirror, finite-size superconductor, and two-loop 

model.  
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The potential energy calculated from the two-loop model is compared with the potential 

energy calculated by using the mirror method and finite-size superconductor in Figure 4.15. 

There is a large discrepancy of energy between the energy calculated by the former 

approach and that calculated from the latter two methods near the surface of the 

superconductor. The main reason for such a large discrepancy is that the two-loop model 

more accurately takes account of the size of the superconductor and the magnet. The 

difference reduced significantly with the increasing vertical position (z) of the magnet. 

Furthermore, the two-loop model calculates levitation height more accurately than the 

other two models. As shown in Figure 4.15 (see three markers), it calculates the levitation 

height 2.65 mm. It is smaller than the value predicts by the mirror method (3.8 mm) and the 

finite SC method (2.75 mm). The mirror method and finite-size superconductor 

overestimate the levitation height, respectively, by 31 and 4 percent.  

 

Figure 4.16: Levitation height as a function of remanence of the magnet. Three models 

(mirror, finite SC, and two-loop) are compared at the center and edge of the 

superconductor.  

Figure 4.16 compares levitation height between the three models as a function of the 

strength of the magnet. In all three models, a common trend is levitation height increases 
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with the strength of the magnet. The stronger magnet produces the stronger image magnet. 

Hence, the larger levitation force results in a larger levitation height.   

The significant difference in levitation height calculations between the three models comes 

from the weaker magnets (𝐵𝑟 < 1 𝑇) at the center of the superconductor. The difference 

between the finite SC and two-loop model gets smaller as remanence goes higher than 1 T, 

reaching zero above 1.5 T. However, the deviation of the mirror method calculations 

always remains with the finite SC & two-loop model.  

The fundamental difference between the mirror method and finite SC with the two-loop 

model appears at the edge of the superconductor. The mirror and finite SC model considers 

only the coaxial superconductor-magnet case, where the magnet's axis coincides with the 

axis of the superconductor. However, levitation height is reduced as the magnet moves 

from the center to the edge of the superconductor. For example, according to the two-loop 

model, for the magnet with a strength of 1.5 T, the levitation height is reduced from 2.7 

mm to 2 mm as we go from the center to the edge of the superconductor. The main reason 

is the reduction of the response supercurrent at the edge of the superconductor than that at 

its center. Only the two-loop model takes account of this change.  

4.5.4 Stable Magnetic Levitation 

An example configuration of a 3D cavity that we have used in our experiment is shown in 

Figure 4.17. This cavity is made from 6061 aluminum, a type I superconductor. A magnet 

is put on the stub of the cavity. The aspect ratio of the stub and magnet is 4:1 (ratio of the 

radius of the superconductor to the radius of the magnet). The dimension of the wall and 

floor of the cavity are large compared to the dimension of the magnet. Due to its large size, 

the wall and the cavity floor can be considered a semi-infinite plane.  

We have implemented a hybrid technique for the potential energy calculation by combining 

the two-loop and the mirror method. Two- loop model is used for the interaction between 

the magnet and stub. Whereas in the case of the magnet and wall interaction, the mirror 

method is used. The potential energy for such a cavity-magnet system will be: 

𝑈𝑡𝑜𝑡𝑎𝑙 = 𝑈𝑡𝑤𝑜−𝑙𝑜𝑜𝑝 + 𝑈𝑀𝑖𝑟𝑟𝑜𝑟 + 𝑈𝐺𝑟𝑎𝑣𝑖𝑡𝑎𝑖𝑡𝑜𝑛𝑎𝑙 (4.30) 

𝑈𝑡𝑜𝑡𝑎𝑙 =
𝜇0𝐼𝑚

2𝜋[(𝑅𝑆 + 𝑟)2 + ℎ2]
1
2

[
𝑅𝑆

2 − 𝑟2 − ℎ2

(𝑅𝑆 − 𝑟)2 + ℎ2]
. 𝐸(𝑘) + 𝐾(𝑘)]

+
𝜇0𝑚2

4𝜋

(1 + 𝑠𝑖𝑛2𝜃)

16(𝑑 − 𝑥)3
+ 𝑀𝑔ℎ 

 

(4.31) 

Here, 2ℎ is the distance between the magnet and its diamagnetic image, 𝐼 is the response 

supercurrent.  
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Figure 4.17: A 3D cavity configuration. This configuration has the dimension same as the 

cavity we are using in our experiment.  

Figure 4.18 shows a contour plot of the potential energy of the 3D cavity. The origin of the 

coordinate is considered at the center of the stub. The calculation is done in the positive 

direction. The cavity is symmetric. Hence, the nature of the potential energy will be 

symmetric as well.  

In the calculation, the minimum potential energy of the cavity is found, as shown in Figure 

4.18, at (𝑥, 𝑧 = 3.5 𝑚𝑚, 2.1 𝑚𝑚). In other words, the minimum potential energy is at the 

center of the cavity gap. One advantage of knowing this local potential energy minima is 

that we see a magnet on the surface of the stub will be pushed towards this point when the 

stub and the cavity go into the Meissner transition. Therefore, it will fall on the bottom of 

the cavity. There needs to be some external resistance to keep the magnet on the stub [65]. 

One can fit a plastic sleeve on the stub for that purpose. The drop in quality factor would 

be the price to pay in exchange for that.  

There will be two ways to pursue stable magnetic levitation on a 3D cavity configuration 

stub. First, one can change the gap of the cavity. The second option will be a modification 

in the configuration and strength of the magnet. The following sub-section discusses these 

two ways of achieving stable magnetic levitation. 
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Figure 4.18: Potential energy calculated as a function of radial and vertical position of the 

magnet. The calculation is done for the positive direction from the center of the cavity.  

4.5.4.1 Cavity Configuration 

The first option to go for the stable magnetic levitation within a 3D superconducting cavity 

is to reduce the gap between the stub and the wall of the cavity. The force from the wall to 

the magnet increase with ∝
1

𝑧4 (see equation (4.14)). Figure 4.19 calculates minimum 

potential in the radial distance for the gap size from 5-2 mm using equation (4.31). When 

the gap is 3 mm, the magnet on the stub sees the least potential in the center of the stub and 

the wall. In quest of going into the least energy point, it falls on the gap of the cavity. If the 

gap is reduced to ≤ 2.5 mm, the minimum potential point lies well within the stub. At this 

gap, the magnet can stably levitate on the stub without falling into the gap.  
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Figure 4.19: Variation in the gap size of the 3D cavity configuration for the stable magnetic 

levitation.   

4.5.4.2 Configuration of the Magnet 

The magnet's strength, orientation, and size also play a role in stable magnetic levitation. 

Here, we have studied how each factor affects the levitation. The same size of the magnet, 

0.5 mm of the radius and 0.5 mm of diameter, as discussed in the above analysis is used.   

I. Strength  

The strength of the magnet refers to its remanence field. A study of the remanence field 

effect on the radial and vertical position of magnetic levitation is presented in Figure 4.20. 

The magnet is axially and radially magnetized. The remanence field is varied from 0 to 2 

T.  

For both axially and radially polarized magnets, the minimum energy lies on the gap of the 

cavity.  In such a cavity configuration, the magnet then falls on the gap and hence on the 

bottom of the cavity. Although, the magnet will be pushed towards the gap, the radially 

polarized magnets have improved location of the levitation. Such magnets moved the radial 

position from 3.5 mm to 2.5 mm. Remember that the radius of the stub is 2 mm. This point 

is only 0.5 mm outside of the stub.  

In the case of the vertical levitation distance, an increasing trend with the strength of the 

magnet is seen for both cases of magnetization. The radially polarized magnets have shown 
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it at the lower height. The reason being induction of a weaker diamagnetic image when the 

magnetic moment is parallel to the superconducting axis providing a weaker lifting force.  

 

Figure 4.20: Study of radial and vertical position of magnetic levitation for an axially and 

radially magnetized magnet with strength ranging from 0 to 2 T.  

II. Orientation 

The orientation of the magnet is changed from zero degrees to 90 degrees with respect to 

the stub by keeping the strength of the magnet constant to 1.47 T. The potential energy 

above the stub is calculated for those angles. The axially polarized magnet is used for the 

calculations. The vertical and radial position is extracted from the minimum energy state 

and plotted in Figure 4.21.  

As the angle of the magnet is changed from zero degrees to 90 degrees, the radial position 

of the magnet is shifted from 2.8 mm to 3.5 mm. This is a 25 percent push for a magnet in 

the radial n from its original position. The angles have less effect on the lifting height. 

During the flip of the magnet (zero degrees to 90 degrees), the levitation height is changed 

only by 9 percent.  
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Figure 4.21: Location of the magnet moves when the magnet changes its angle during 

magnetic levitation. The magnet is N52 and is polarized in the axial direction.  

III. Size  

The other important factor to consider for stable magnetic levitation is the size of the 

magnet. The variation in the radius or thickness of the magnet changes its volume. The 

volume itself changes with the square of the radius of the magnet and is proportional to its 

thickness. If the dimension of the magnet is changed by keeping its strength the same, there 

will be a change in two important factors that determines the levitation force. First, when 

the volume of the magnet changes, it changes the field on the surface of the magnet too. 

Second, the volume of the diamagnetic image varies proportionally to the magnet's volume.  

Figure 4.22 shows the radial position of magnetic levitation as a function of the dimension 

of the magnet. The radius of the magnet is varied from 0.5 mm to 1.5 mm. Similarly, the 

thickness is varied from 0.5 mm to 0.75 mm. The change in the radial position is seen for 

the magnet with a larger thickness. For example, suppose the size of the present magnet 

that has a radius and thickness of 0.5 mm is scaled up to a radius of 1.5 mm and a thickness 

of 0.75 mm. In that case, the radial position of magnetic levitation will shift towards the 

stub (2.5 mm) from the center of the gap (3.5 mm).  
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Figure 4.22: The present magnet's dimensions (0.5 mm of a radius and thickness) are scaled 

up to see its effect on the radial location of magnetic levitation. The strength of the magnet 

is kept constant at 1.47 T.  

4.6 Superconducting-Normal Region 

A strong magnet sitting on the surface of a superconductor creates a normal region beneath 

its surface. The normal region extends to the point where the field of the magnet is less 

than the critical field of the superconductor [66]. For example, the critical field of the 

superconducting aluminum is 100 gauss. As shown in Figure 4.23, a strong N52 magnet 

sitting on the top of the stub makes some part of the stub normal, while the rest is 

superconducting. The critical field of the superconducting aluminum increases as the 

temperature, 𝑇, falls according to 𝐵𝑐(𝑇) = 𝐵0(1 −
𝑇2

𝑇𝑐
2), here 𝐵0 = 0.01 T is the critical 

field maximum of aluminum at zero temperature and 𝑇𝑐 is the zero-field transition 

temperature. The normal region shrinks as the superconductor gets colder. The depth of the 

normal region is referred to here as a normal depth.  



58 
 

  

Figure 4.23: The onset strong magnet field creates a normal region below the stub, 

represented by the blue color. The magnet divides the stub into a superconducting and a 

normal region.  

Figure 4.24 compares the normal depth with the levitation height as a function of the 

remanence of the magnet. The normal depth is extracted using equation (4.2). For a given 

strength of the magnet, the intersection between the line 𝑦 = 0.01 T and equation (4.2) is 

considered as the normal depth. For the levitation height, the two-loop model is used. The 

magnet is axially magnetized in both calculations.   

An intersection between the depth of the normal region and the levitation height is seen for 

the magnet of strength 0.23 T. The normal depth of the magnet weaker than 0.23 T is 

greater than the levitation height. There will be no magnetic levitation in this range of the 

weaker magnets.  For the magnet stronger than 0.23 T, the levitation height is greater than 

that of the levitation height. The diamagnetic image will be created outside of the normal 

region for these types of magnets. Therefore, the real image experiences force from its 

image magnet. When the upward pushing levitation force is greater than the downward 

acting gravitation force, the magnet lifts from the surface of the superconductor.  
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Figure 4.24: The normal depth and levitation height are compared for the range of magnets 

from 0-2 T. The normal depth is considered where 𝐵 > 100 gauss for a superconducting 

aluminum at 1.2 K.  
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Chapter 5 

Results and Discussions 

“Give, even if you only have a little.”-Buddha 

Part of the work presented in this section is published in IEEE Transactions on Applied 

Superconductivity  [57] and some part of it is also submitted for publication  [5]. 

5.1 Room Temperature Measurements 

5.1.1. Introduction 

To understand the expected frequency shifts when levitation occurs, the resonance 

frequency of the cavity is measured as a function of the position of a magnet in the cavity 

at room temperature. Figure 5.1 shows a schematic of room temperature measurements. 

Measurements are taken by putting a magnet inside a capillary tube and by sealing its end 

by a tape and factoring out the effect of the capillary. The capillary tube with the magnet 

is positioned at different coordinates inside the cavity by the translational stage of the 

micrometer. The magnet was held in a dielectric capillary and its position was controlled 

using micrometer stages. 

 

Figure 5.1: Schematic of the room temperature measurements. The measurements are 

performed on and around the stub and bottom of the cavity. Two types of magnets are used 



61 
 

in the experiment: a cylindrical and disc magnet. The disc magnet is the same that is 

discussed in the previous chapter. The cylinder magnet has a radius of 0.375 mm and a 

height of 1 mm.  

5.1.2. Cylindrical Magnet 

The stub is scanned by moving the magnet inside the capillary tube in the radial direction. 

The change in cavity resonance as a function of the magnet's lateral position is illustrated 

in Figure 5.2. Each curve represents a different vertical position, and the horizontal axis is 

the radial distance from the cylinder's axis. The origin of the coordinate is the center of the 

stub. The cavity resonance is more sensitive to the magnet's position when it is located 

above the stub (|x|<2.5 mm) than above the gap (|x|>2.5 mm) with the region of highest 

sensitivity near the stub's edge (|x|~1.5 mm). We attribute the asymmetry in the frequency 

shift with x to machining imperfections.  

 

Figure 5.2: A cylindrical magnet with a height of 1 mm and a radius of 0.375 mm is placed 

at different positions above the stub to measure sensitivity of the cavity. The magnet was 

held in a dielectric capillary, and its position was controlled using micrometer stages. 

Figure 5.3 shows the resonance frequency shift as a function of the height of the magnet 

measured with the end of the stub being 0 mm. In particular, we expect the magnitude of 
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the frequency downshift to be between -100 MHz and -200 MHz when the magnet is in 

contact with the surface of the stub. The resonance frequency comes within 5 MHz of that 

of the bare cavity once the magnet height is greater than 3 mm. We observe stronger 

coupling when the magnet is located near the edge of the stub because the electric field is 

concentrated around the perimeter  [57].   

 
 

Figure 5.3: The magnet is positioned at different vertical coordinates on the cavity's stub 

by the translational stage of the micrometer. 

 

Now, the vertical translation of the magnet is done outside of the stub in Figure 5.4. It is 

moved from 4 mm above the stub to the bottom of the cavity. The magnet on and above 

the stub has shown a similar frequency shift trend that is seen in the above figure. The trend 

of frequency shift reversed as the magnet got past the stub towards the bottom of the cavity. 

The magnet plays the opposite role sitting on the stub and bottom of the cavity. The magnet 

on the stub increases the effective height of the stub. The frequency of the cavity, hence, 

downshifts. However, on the bottom of the cavity it tends to raise the floor of the cavity. 

Thereby reducing effective height of the stub. This, in contrast, results in the upshift of the 

frequency.  
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Figure 5.4: The magnet is vertically translated at different locations outside of the stub. 

The starting position of magnetic translation is 4 mm above the stub, and it ends up on the 

bottom of the cavity (-5 mm).  

 

Figure 5.5 illustrates the change in the resonance frequency of the cavity in the region 

between the stub and wall of the cavity. The magnet is laterally moved from the wall 

towards the stub. According to the trend of the frequency shift, the region can be divided 

into three parts: (a) 0 ≤ 𝑧 <2.5 mm, (b) 𝑧 ≅2.5 mm, (c) 𝑧 >2.5 mm.  

The first region (a) is the region that lies close to the bottom of the cavity. In this region, 

the magnet interacts mainly with the rf magnetic field of the cavity. Such interactions result 

in a frequency upshift from the empty cavity frequency (∆f=0). A maximum of 25 MHz 

frequency upshift is observed when the magnet is on the bottom and close to the stub of 

the cavity. The region (b) is halfway between the stub and bottom of the cavity. The 

sensitivity is least in this region among all three regions. The availability of the rf fields is 

low. In this part of the cavity, one can even hide the magnet without seeing significant 

changes in the frequency of the cavity. The push of the magnet from the wall towards the 

stub, in the region (c), turns around the change frequency shift that is seen at the bottom of 

the cavity. The magnet in this region interacts with the cavity's electric field.  
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Figure 5.5: The region between the stub and wall of the cavity is probed by the magnet. 

Here, ∆f=0 is the frequency of the bare cavity.  

 

5.1.3 Disc Magnet 

The frequency shift pattern seen in the above room temperature experiments is confirmed 

by replacing the cylindrical magnet with the disc magnet. A similar experimental procedure 

is followed in these measurements [67].  

The experimental results as the magnet are radially and vertically translated on the stub is 

compared with the FEM simulations in Figure 5.6. When the magnet is still in contact with 

the stub (𝑧 = 0), lateral movement of the magnet towards the edge of the stub produces a 

frequency downshift of -50 MHz/mm. According to our calculations, the most prominent 

height sensitivity is expected for a magnet positioned at the edge of the stub (1.75 mm) 

where the sensitivity is -400 MHz/mm for levitation heights of 0-0.1 mm. Once the 

levitation height exceeds z=0.7 mm, the levitation sensitivity no longer depends strongly 

on the lateral position  [5]. 
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Figure 5.6: The room temperature measurements are done by placing the magnet at 

different positions on the surface of the stub. The experimental results are compared with 

the FEM simulations. The frequency change (∆f) is the difference in frequency between 

that of the bare cavity and the cavity with the magnet.  

5.2 Low-Temperature Measurements 

5.2.1. Cylindrical Magnet  

Major part of the work presented in this section is published in IEEE Transactions on 

Applied Superconductivity  [57]. 

We study field-cooled magnetic levitation of a millimeter-scale neodymium magnet within 

a cm-scale aluminum coaxial-stub SRF cavity. The SRF cavity has a resonance of 10.4 

GHz and a loaded Q of 1400 and is fabricated from 6061 (97.9% pure) aluminum. The 

cylindrical (0.75-mm diameter by 1-mm high) neodymium magnet has a maximum 

magnetic field of 1.44 T (N50), which is  ~140-times greater than the critical field of the 
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aluminum. Below the critical temperature for superconductivity, the magnet levitates 2.5 

mm above the surface of the material and its behavior is monitored by measuring changes 

in the SRF resonant frequency. Room temperature measurements and simulations of 

magnet position’s effect on the cavity mode support our conclusions. This novel magnet-

cavity system provides a means to couple the low-frequency mechanical motion of the 

magnet with other objects whose quantum states can be probed and manipulated, such as 

magnons and transmons  [68]. Consequently, the system is a promising candidate for 

studying the quantum mechanics of macroscopic oscillators  [31].   

The experimental schematic is shown in the Figure 5.7 (b). The cavity and magnet are 

placed on the base plate of the dilution refrigerator where the temperature can be reduced 

to ~50 mK, which is below the zero-field critical temperature of aluminum (TC~1.2 K), 

while the vacuum pressure is held to ~10-7 mbar. A pin antenna is coupled to the quarter-

wave SRF mode at the stub height inside the cavity, where the electric field is strongly 

localized. Measurements are performed using a vector network analyzer whose probe 

signal passes through a circulator, is reflected by the cavity, and the reflection is separated 

by the circulator. For these measurements the cavity is over-coupled which reduces the 

loaded Q, but allows us to measure the resonance frequency from room temperature down 

to 50 mK. The cavity is held in place with N-type cryo grease to ensure thermal 

conductivity with the cryostat.  We conducted a sequence of three experiments. First, the 

cavity (including a plastic sleeve around the stub whose purpose is to keep the magnet from 

falling off the top of the stub) is cooled without any magnet present. Here we see the 

dependence of the cavity resonance frequency as a function of temperature. Second, the 

magnet is placed within the cavity on the top of the stub where the plastic sleeve keeps the 

magnet from falling off of the top of the stub. Third, the same magnet is placed at the 

bottom of the same cavity. In all of these experiments all other experimental conditions 

remain the same.  

The dimension and shape of the cavity are shown in the Figure 5.7 (a). This cavity is made 

up by 6061 aluminum. It is a coaxial cylindrical cavity with one end open. The outer 

cylinder has radius and height, respectively, 7 mm and 55 mm. The inner cylinder has 

radius of 2 mm and height of 5 mm giving a quarter-wave resonance of 10 GHz. In our 

design, the thickness of the metal on the bottom part of the cavity is 6.5 mm. The cylindrical 

neodymium magnet (shown in the Figure 5.7 (c)) is 1 mm high and has a radius of 0.375 

mm. The N50 magnet has a remanence of 1.44 T (provided by manufacturer) and a mass 

of 4 mg. Assuming homogeneous magnetization, the magnetic dipole moment is 5×10-4 

A.m2.  

When the cavity is cooled to below its superconducting transition, we expect the magnet 

to levitate above the surface due to the Meissner effect in Type I superconductors. Figure 

5.7 (d) illustrates the expected changes to the resonance frequency of the cavity during 

levitation experiments. The frequency, f, of a coaxial stub cavity is determined by the 

height of the stub, l, where 𝑓𝛼
1

4𝑙
 . Any perturbation within the coaxial region of the cavity 

changes the shape of the cavity mode and hence its frequency [35]. When a magnet is 
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placed on the surface of the stub, it increases the effective height of the stub and hence 

decreases frequency of the cavity. The amount of this downshift corresponds to the 

interaction of the magnet with the electric field of the cavity mode, which is concentrated 

toward the edges of the stub. Conversely, when the magnet is placed on the bottom of the 

cavity it raises the floor of the cavity. This reduces the effective length of the stub which 

causes the resonance frequency to increase. As the magnet levitates above either surface of 

the cavity, the frequency of the cavity shifts towards the frequency of the bare cavity (cavity 

without any magnet).        

 

 

Figure 5.7: (a) This is a schematic of the cavity used in our work. It has a coaxial part, 

which contains a stub, and a cylindrical part has one open end and is closed at the other. 

(b) Schematic of the experimental set up. A magnet is placed on the top part of the stub of 

the coaxial microwave cavity. The cavity is probed by the signal sent from the network 
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analyzer. (c) The shape and size of the N50 magnet used in our work. It has a maximum 

field strength of 1. 44 T and surface field of 0.67 T. (d) Expected frequency shift with the 

position of the magnet. When there is no magnet in the cavity (a bare cavity), the resonance 

frequency is fixed and given by the blue curve. If the magnet rests on the bottom of the 

cavity, the cavity resonance frequency is higher than that of the bare cavity as shown by 

the green curve. As the magnet levitates above the bottom of the cavity, we expect the 

resonance frequency to shift lower as a function of levitation height (as indicated by the 

left-pointing purple arrow at the tip of the green curve). If the magnet rests on the top of 

the stub, its resonance frequency is significantly lower than that of the bare cavity as shown 

by the orange curve. As the magnet levitates above the stub, we expect the resonance 

frequency to shift higher as a function of levitation height (as indicated by the right-

pointing red arrow at the tip of the orange curve). The sensitivity of the resonance 

frequency as a function of position depends on the radial position of the magnet. In both 

cases, as the magnet levitates the resonance frequency shifts towards that of the bare cavity. 

Figure 5.8 shows the resonance frequency shift as a function of the gap between the magnet 

and the tip of the stub. The solid curves are simulations and the symbols are room 

temperature eexperimental data. In particular, we expect the magnitude of the frequency 

downshift to be between -100 MHz and -200 MHz when the magnet is in contact with the 

surface of the stub. The resonance frequency comes within 5 MHz of that of the bare cavity 

once the magnet height is greater than 3 mm. We observe stronger coupling when the 

magnet is located near the edge of the stub because the electric field is concentrated around 

the edge. Finite element calculations (COMSOL Multiphysics) reveal the same trends. In 

these calculations, the size of the magnet and the cavity are the same as the experimental 

work. These room temperature measurements and simulations allow us to predict the 

behavior of the system during levitation experiments. 

The frequency of the bare cavity without the magnet is 10.041 GHz at 5K, shifting upward 

by 5 kHz as the temperature decreases from 5 K to 55 mK (See Figure 5.9)). With the bare 

cavity frequency as a reference, when the magnet is placed on the stub, the frequency shifts 

down by 130 MHz to 9.910 GHz. The amount of frequency shift varies with the exact 

position of the magnet on the tip of the stub with the maximum shift occurring when the 

magnet is placed near the edge of the stub. For the case of a magnet on the stub, we 

observed 120 MHz of frequency change as the temperature drops from 5 K to 65 mK, as 

shown by the solid lines in Figure 5.9 (b). The sudden frequency shift at 650 mK is 

consistent with levitation due to expulsion of the magnetic field from the material below 

the magnet. As the temperature drops below 100 mK the frequency shift approaches -12 

MHz. Our measurements are consistent over several heating and cooling cycles. We also 

report measurements for the case where the magnet is placed in the bottom of the cavity. 

The variations in the cavity resonance frequency are smaller, but still measurable. At 5 K 

the difference between frequency of bare cavity and cavity with magnet on the bottom is 

+11 MHz. As temperature is reduced to 57 mK the frequency difference drops to +5 MHz.  
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Figure 5.8: The room temperature data obtained from procedure describe in above section 

5.1.1. is compared with the FEM simulations. The error bar is same for all experimental 

data. 

The neodymium permanent magnet has a maximum magnetic field (remanence) of 1.44 T 

and a surface field of 0.67 T. When the magnet rests directly on the surface of the 

aluminum, the magnetic field strength at the interface is larger than the critical field of the 

aluminum 100 gauss at 1.2 K. This creates a normal conducting region having a depth of 

1-2 mm directly below the magnet. As the temperature drops, the critical field increases 

and the normal region becomes thinner. Below 650 mK there is sufficient lift due to the 

Meissner effect to offset the gravitational force and levitate the magnet. Once the magnet 

begins to lift at 650 mK, the normal region shrinks which increases the Meissner force, 

making magnet jump up to its equilibrium position of 2.5 mm. At this point the magnetic 

flux is completely expelled from the volume of the superconductor. For the case of the 

magnet levitated 2.5 mm above the stub, the sensitivity of the resonance frequency to 

height fluctuations is 10 MHz/mm. For levitation above the bottom of the cavity we expect 

the sensitivity to be less than above the stub by a factor of 50. 
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Figure 5.9: (a): Cavity resonance frequency shift as a function of temperature. ∆𝑓 = 0, 

represents frequency of the bare cavity. (b): A composite of reflection spectrum 

measurements for the three cavity configurations and for a range of temperatures. When a 

magnet is located on the top of the stub and cooled to 70mK, we observe a downward shift 

in frequency (solid lines) which is reduced from -130 MHz at 1 K down to -12 MHz at 70 
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mK. When the magnet is located on the bottom of the cavity, the frequency is up shifted 

and drops from 11 MHz at 1 K to 5 MHz at 50 mK (dashed lines).  

5.2.2 Disc magnet 

Most of this work is submitted for publication  [5]. 

Figure 5.10 illustrates measurements scheme of our cavity-magnet system, which sits in 

the mixing chamber of a dilution refrigerator at T=30 mK. The refrigerator is pre-cool from 

room temperature to 5 K and then further cool down from 5 K to 50 mK by using the pulse 

tube refrigeration technique. In the latter stage of the cooling, the vacuum pressure of the 

fridge is 10-7 mbar maintained by the turbo molecular cryo pumping. The spectroscopic 

measurements are taken by sending a signal from a vector network analyzer HP8720 

through SMA cables inside the fridge and into the cavity via an over coupled straight pin 

couplers. The transmitted signal (S21 (𝜔)) is amplified by a HEMT amplifier (at 4 K) and 

post amplifiers (at room temperature). Temperature of the system is monitored with the 

thermometer placed in the mixing chamber of the fridge. N-type cryogenic grease is used 

to maintain thermal contact between the cavity and the base plate of the dilution 

refrigerator.  

 

Figure 5.10: (a) Schematic of experimental set up (not in scale). The cavity-magnet 

configuration is attached to the base plate of a dilution refrigerator. (b) Front view of the 

coaxial cavity with a magnet on the top part of the stub. The electric field is highly 

concentrated at the rim of the stub (green arrow) and decays towards the conducting wall 

of the cavity. FZ: Meissner force, FG: gravitational force. 
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In the present work we report on new experiments where we varied the magnetic field 

strength of the levitated magnet. We find that analyzing the cavity’s loaded quality factor, 

Q, along with the resonance frequency provides insight into the movement of the magnet 

prior to its lifting. When the magnet rests in the most sensitive region of the cavity, near 

the edge of the stub where the RF electric field is highly concentrated, small fluctuations 

in the magnet’s position are evident in the RF spectrum. As expected, we observed abrupt 

shifts in the peak position of the RF spectra during the transition to levitation, and the 

magnet’s steady state levitation height is proportional to the square root of the field 

strength. During the transition a sharp rise in the quality factor as high as 17 % is observed 

[69]. We compare our measured frequency shifts with finite element simulations, room 

temperature measurements and a lumped element model. By doing so we confirm that 

variations in the resonance frequency prior to levitation can be explained by movement of 

the magnet along the surface of the stub. The increase in Q with falling temperature agrees 

with theory and with experimental results reported by other group [69,70]. The analysis 

approach described here enables characterization of magnetic levitation within a 

microwave cavity when there is no visual access within the sample chamber. It provides 

an alternative to camera tracing systems, coils or SQUIDs for the observation of levitation, 

opening up the system’s application to precision measurements. 

We use identically-shaped neodymium disc magnets with a diameter of 1 mm, a height of 

0.5 mm, and with a mass of 2.75 mg. The magnets are classified as N35, N42, N50, and 

N52 with remanences of 1.22 T, 1.32 T, 1.44 T, and 1.47 T respectively (remanence, 

provided by the manufacturer). We assume the remanence of the magnets remains constant 

at low temperature [38]. The corresponding magnetic moments are 0.38-0.46 (mA)m2, 

respectively.  The magnetic field on the surface of the N35, N42, N50, and N52 magnets 

are, respectively, 0.43 T, 0.47 T, 0.51 T, and 0.52 T. No external magnetic field is applied 

inside the cavity other than the field from the magnet.  

A transmission |𝑆21| recorded during a typical experiment using the N52 magnet is shown 

in Figure 5.11 where the temperature drops from 1.25 K down to 50 mK. Three key 

phenomena are highlighted by shaded regions in Figure 5.11. First, the transmission |𝑆21| 
gets narrower and the peak power increases. In this region, most of the cavity, except for 

that region right below the magnet, undergoes the superconducting transition as the 

temperature of the cavity is below the zero-magnetic-field critical transition temperature. 

The top of the stub is still normal due to the magnet’s strong magnetic field. As the 

temperature of the cavity drops further, the normal region under the magnet shrinks and 

becomes a superconductor. During this stage, the magnet is not yet levitated, but likely 

moving, wobbling or making a small angle with respect to the superconductor. When the 

magnet moves but is not levitated, ~20 MHz frequency upshifts are typically observed. 

Finally, when the entire stub is in the Meissner state the magnet lifts from the surface of 

the superconductor resulting in a large frequency upshift of ~60 MHz. 

When the bare cavity (with the plastic sleeve surrounding the stub) is cooled through the 

superconducting transition of aluminum at 1.2 K we observe a negligible frequency shift 
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of a few kHz due to a change in the penetration depth. Larger shifts (~20 MHz) due to 

thermal contraction as the system cools from room temperature are reproducible across all 

measurements. The bare cavity’s resonance at ~5 K is used as the reference frequency for 

levitation experiments (∆f=0). The absolute resonance frequency of the bare cavity at 50 

mK is 10.04 GHz.   

 

Figure 5.11: An example of how transmission |S21| change as the temperature of the cavity 

with the magnet goes from 1.25 k- 50 mK. The transmission |S21| presented here are for 

the N52 magnet. 

Figure 5.12 shows the change in resonance frequency (∆f) and Q as a function of 

temperature between 1.25 K and 50 mK for the four magnets. The magnets are placed on 

top of the stub but the exact position on the stub is undetermined. Since the stub has minor 

imperfections, it is not perfectly symmetric and the frequency downshift due to the 

presence of the magnet varies depending upon the exact position of the magnet. For 

example, at 1.25 K, the frequency shift due to the N35 (1.22 T) and N42 (1.32 T) magnets 

is ~120 MHz, but the frequency shift for the N50 (1.44 T) and N52 (1.47 T) magnets is just 

~90 MHz.  

The changes in the loaded Q of the cavity as a function of temperature provide additional 

insight into the key phenomena occurring during the experiments. Figure 5.12 (lower 

panel) shows Q versus temperature for the corresponding measurements shown in the top 

panel. To obtain Q, the spectra are smoothed, the resonance frequency is located and the 
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full-width at half-maximum (FWHM) is measured at -3 dB from the peak. The quality 

factor is given by 𝑄 =
𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝐹𝑊𝐻𝑀
  [71].  

 

Figure 5.12: (upper panel) change in frequency as a function of temperature for N35, N42, 

N50, and N52 magnets. Note that stronger magnets exhibit a higher levitation temperature. 

The lower panel is the total quality factor of the four magnets. A sharp rise in the quality 

factor due to the Meissner effect is represented by the curly bracket.  

 

In Figure 5.12 (lower panel), we observe that Q starts to increase when the temperature 

falls below 1.1 K. The zero-magnetic-field transition temperature for pure aluminum is 1.2 

K. The transition temperature is lightly less than 1.2 K because of the magnet’s presence 

in the cavity and use of the 6061 (97.9% pure) aluminum. The critical field of the 

superconducting aluminum increases as the temperature, 𝑇, falls according to 𝐵𝑐(𝑇) =

𝐵0(1 −
𝑇2

𝑇𝑐
2), here 𝐵0 = 0.01 T is the critical field maximum of aluminum at zero 

temperature and 𝑇𝑐 is the zero-field transition temperature. As the temperature of the cavity 

falls below 1 K most of the cavity goes superconducting and the Q of the cavity rises 

quadratically. For the cavity-magnet system, thereafter the Q deviates from the quadratic 

dependency when the magnet’s position shifts or when the magnet tilts at some an angle 

with respect to the stub. Sharp increases in the quality factor are seen when the region of 
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the cavity nearest to the magnet goes into the Meissner state and the magnet levitates. The 

change in Q factor during Meissner transition is approximately 8 % for the N52 and N42 

magnets and 12 % and 17 %, respectively, for the N50 and N35 magnets. No such changes 

are seen in the case of the empty cavity cooling.  

Our observations are consistent with other reported Q vs. temperature studies of SRF 

cavities. An analysis of the change in Q as a function of temperature for a 3D-printed 

reentrant cavity is given in [69]. Like our measurements, the quadratic change in Q was 

observed during the superconducting transition. Similar behavior was observed in the 

cooling of a 3D superconducting aluminum microwave cavity [72]. The type II 

superconductor behaves as a type I below their first critical field (HC1). In [70] a 

ferrimagnetic probe was used to experimentally evaluate the screening of magnetic fields 

from the walls of a superconducting Nb cavity as it changed to perfect diamagnetism. A 

sharp rise of approximately 20% is observed during the Meissner transition as the magnetic 

field decreases. 

A summary of the change in the frequency and Q of the cavity due to all possible 

phenomenon during the magnetic levitation is given in table 5.1. When most of the cavity 

goes superconducting, there is negligible change in the frequency of the cavity. However, 

there is a quadratic rise in Q with decreasing temperature. The frequency and Q both 

increase when the magnet makes an angle with the stub. When the magnet moves towards 

the edge of the stub, on the other hand, the frequency and Q both decreases. Finally, during 

the magnetic levitation, the frequency and Q rise abruptly. 

Table 5.1: Summary of changes in the resonance frequency and Q during levitation. 

Phenomena Frequency Quality factor 

Most of the cavity 

superconducting 
Negligible change (≈

𝐾𝐻𝑧) 

Quadratic rise (≈ 33%-

46%) 

Magnet makes an angle with 

the stub 
Increases (≈ 20 MHz) Increases (≈ 10%) 

Magnet pushed towards the 

edge of the stub 
Decreases (≈ 10 MHz) Decreases (≈ 4%-6%) 

Magnet levitates Large upshift (≈  50 −
100 MHz) 

Sharp rise (≈ 8%-17%) 

 

The above observations are confirmed in Figure 5.13 by the multiple coolings of each 

cavity-magnet system. They were performed by warming the dilution refrigerator from 

base temperature (around 50 mK) to about 10 K (significantly higher than Tc for 

aluminum), then back down to base temperature to allow us to view the frequency shift 

that occurs when levitation begins multiple times per experiment. In each cooling cycle, 

data is recorded as the temperature falls.  
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Figure 5.13: Change in frequency as a function of temperature for N35, N42, N50, and N52 

magnets. The black ovals group together traces from the same magnet throughout multiple 

heating and cooling cycles. 

In addition, one set of multiple heating and cooling cycles of data for the N42 (1.32 T 

remanence) magnet is plotted in Figure 5.14. This data is taken during the rapid heating of 

the system. There is a sharp rise in the fridge's temperature from 50 mK to 500 mK. After 

that temperature of the fridge stays at 720 mK before bouncing off to 2 K. The fridge 

warmed up slowly after 2 K.  

The frequency shift pattern was consistent for four cooldowns and warm-up of the fridge. 

The observed phenomenon during the cooldowns can also be verified during the warm-

ups. For example, the magnet making an angle with the stub during the cooldowns can be 

seen during the warm-ups in form of a large dip in the frequency. We also monitor the 

frequency of the cavity for several days at base temperature and observe that the levitation 

was stable over this period.  
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Figure 5.14: Multiple cooling and heating cycles of the fridge for the N42 magnet.  

In one of our experiments, we have done control heating and cooling of the fridge. Instead 

of letting the fridge control the temperature, we have manually set the temperature of the 

fridge. The first step of the procedure is to the temperature is set in the loops chamber set 

point on the dilution refrigerator. This, in turn on the chamber heater of the fridge. The 

fridge adjusted the power of the chamber heater to maintain the set temperature.  

The results of the controlled heating and cooling of the N35 magnet are shown in Figure 

5.15. The black trace shows automated cooling of the cavity. When the fridge cooled down 

the base temperature, it was heated up in a controlled manner up to 900 mK (red trace) and 

cooled down again to 400 mK (blue trace). We have chosen these upper and lower limits 

of temperature because interesting physics happens in this temperature region.  

Hysteresis is observed during the manual heating and cooling of the fridge. The main 

contributor to such observation is the use of the strong magnet. As discussed in chapter 4.6 

Superconducting-Normal Region, a strong magnet on the superconductor creates two 

regions: a normal and superconducting region. The effect of the normal region is dominant 

during cool down when the magnet sits on the stub. The superconductor needs to go colder 

than usual to get rid of this area. However, the heating up breaks the cooper pairs.  
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Figure 5.15: Observation of hysteresis in control cooling and heating of the fridge.  

To calculate levitation height from experimental results, the frequency shift that is observed 

in the experimental results (Figure 5.12) is compared with the FEM calculations. One such 

calculation is shown in Figure 5.16 for the N52 magnet.  The minimum frequency shift of 

10 MHz is observed in the experiment. The frequency is compared with the simulation 

result (the solid red line). When compared with the simulation, this value corresponds to a 

levitation height of 1.8 mm (red dotted line). The same procedure is followed for all four 

magnets that were used in the experiment. 
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Figure 5.16: The frequency shift observed in the steady state magnetic levitation is 

compared with the simulation result to calculate the levitation height. 

Table 5.2: List of levitation height for the four magnets used in the experiment obtained 

using above method.  

Magnet Type Levitation height (mm) 

N35 1.30 

N42 1.46 

N50  1.65 

N52 1.70 

Figure 5.17 compares levitation height derived from the experimental result and FEM 

simulations, with the models we have developed by extending the two-loop model [73], 

and the image method. We also plot a fit of the data to a square-root dependence, which 

was predicted in equation (4.8). The fit and data support our models used to describe the 

levitation of the magnet within the cavity and give us confidence in our estimation of the 

levitation height.   

We see that magnets producing a larger magnetic field attains a larger levitation height 

compared with magnets producing a smaller magnetic field. Our model predicts the 

levitation height more accurately than the widely used image method. For the N52 magnet 

multi-loop model overestimates levitation height only by 49%, in contrast to 140% 

overestimation by the image method. The uncertainty in our measurement of levitation 

height also decreases as the levitation force increases [74].   
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Figure 5.17: Change in the levitation height as a function of remanent field strength of the 

permanent magnet. The levitation height between the image method, our model, circuit 

model, and experimental result as a function of remanence. 

Figure 5.18 compares the quality factor of an over-coupled cavity with a plastic sleeve 

around the stub (red dots), the same cavity with an N50 magnet (black dots) on the stub 

with the under-coupled ideal bare cavity (black line) as a function of temperature. The 

quality factor of the under-coupled ideal bare cavity is given by M-B theory as  ∝ 𝑒
(

∆

𝐾𝐵𝑇𝐶
 

𝑇

𝑇𝐶
)
 

(𝑄 ∝
1

𝑅𝑠
). The energy gap (

2∆

𝐾𝐵𝑇𝐶
) of the superconducting aluminum is 4.4 [44].   

In Figure 5.18, we observe a significant deviation of the quality factor in the experimental 

measurements from that predicted by M-B theory. One of the main reasons for such an 

extensive degradation in the quality factor is the extension of pin couplers into the cavity. 

Consequently, for the cavity with the magnet, the motion and levitation of the magnet are 

modulated in the total quality. The study of the total quality factor is, hence, strengthening 

the characterization of magnetic levitation, which is one of the primary purposes of this 

thesis.   
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Figure 5.18: Comparison plot of Q between an ideal bare cavity, over-coupled cavity, and 

cavity with a N50 magnet.   

As a final observation, by tuning a signal generator slightly off of the peak of the resonance, 

to the rising edge, we observe fluctuations in the transmitted signal power. These arise from 

the motion of the levitated magnet and are in the frequency range of 10-100 Hz, but the 

ringdown of this signal indicates that the magnet’s steady-state motion while levitated is 

dominated by the presence of friction between the magnet and the sleeve. Modifications to 

the cavity are needed for stable levitation with high sensitivity to magnet motion without 

the sleeve in place. 

In conclusion, we have characterized the levitation of a magnet within a superconducting 

microwave cavity for a range of magnet strengths. By analyzing the cavity’s loaded quality 

factor along with the resonance frequency we gain a better understanding of the likely 

movement of the magnet throughout the experiment. As expected, we observed abrupt 

shifts in both the position and width of the resonance peak during the transition to 

levitation, and the magnet’s steady state levitation height is proportional to the square root 

of the field strength. These results provide a baseline of understanding the levitation of 

magnets within SRF cavities and are instrumental for understanding ongoing experiments 

where quantum states are probed and manipulated within such cavities. 
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5.2.3 Spherical Magnet 

The experiment with a symmetric shape magnet helps us to understand some phenomena 

seen in experiments with the disc shape magnets (see Figure 5.12). For example, there will 

be no angle for such a symmetric shape magnet during the levitation. One observation then 

there will be to watch is whether or not 10-20MHz frequency upshift is seen as seen in 

Figure 5.12). Curiosity will also be what happens to the intermediate state of the frequency 

shift. Are they related to the magnetic phenomenon or the property of the superconductor 

that has been used in the experiment?  

We have done an experiment with a spherical magnet in the same experimental setup 

described in Figure 5.10. The magnet of radius 0.5 mm instead of the disc magnet is placed 

on the stub (see Figure 5.19 (a)). It has a remanence and mass of 1.47 T (N52) and 3.87 

milligram. The mass of the spherical magnet we are using in this experiment is 1.4 times 

greater than the mass of the disc magnet that is used in the experiment discussed above. 

Figure 5.19 (b) shows the response of the cavity with the spherical magnet at 50 K. The 

resonance frequency of the cavity is 9.902 GHz. It has a quality factor of 1612.  

 

Figure 5.19: (a) Screenshot of a spherical magnet within the cavity ready for the cooldown, 

(b) microwave spectra of the cavity-magnet system taken at 50 K.  

The experimental result of frequency shift as a function of temperature is shown in Figure 

5.20. To take the data in a controlled manner. The fridge is let to reach its base temperature 

first. Then it is heated up approximately by 20-30 mK temperature steps to 950 mK. The 

same procedure is followed during the cool down. In the experiment, the spectra are taken 

during the heating and cooling of the fridge. The maximum frequency is extracted from 

the spectra and is subtracted to the empty cavity resonance frequency.  

During the heating up of the cavity, the transition of the superconductor is seen around 790 

mK. The phenomenon is identified by the large frequency downshift of 60 MHz. The 

continuous downshift of frequency is seen above and below the transition temperature. 

Furthermore, there was a frequency downshift followed by the large upshift (≈760 mK) 
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during the cool down. The best explanation for such a frequency change is the magnet 

pushed towards the edge and then levitated.  

The intermediate state in the frequency shift is observed around the transition during the 

warmup and cool down of the cavity. That strengthens the concept of continuous expulsion 

of magnetic flux during levitation. Furthermore, as seen in Figure 5.15 for the disc magnet, 

hysteresis is also observed in this magnet type.    

 

Figure 5.20: The change in resonance frequency of the cavity with an N52 spherical 

magnet as a function of temperature.  

The potential energy landscape is calculated for the spherical magnet within the region 

above the stub of the cavity in Figure 5.21 using the method described in chapter 4.5.4. 

Here we assume magnetic moment (𝑚) is parallel with the stub. As expected for the large 

gap cavity, the minimum energy lies at x=2.73 mm and z=1.6 mm away and above from 

the stub. The minimum energy on the gap explains the push of the magnet during the low 

temperature. Consequently, the observation frequency downshifts in above Figure 5.20 

(see the red trace). 
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Figure 5.21: Potential energy landscape of the cavity with the spherical magnet, where 𝑚 ⊥

𝑧. The location of minimum potential on the stub is (x, z= 2.7 mm, 2.1 mm). 

With reference to Figure 5.21, the spherical magnet on the stub is pushed only in the two 

directions when the stub goes into the superconducting state. It will be either moved 

radially or vertically. Those phenomena will have a drastic opposite frequency shift pattern. 

The push of the magnet towards the edge will significantly reduce the frequency of the 

cavity, whereas the vertical displacement shifts up in a large amount.  

Figure 5.22 presents the frequency shift for the magnet moving around the stub. The region 

is the possible place for the magnet to be during the levitation. Since there is no visual 

access inside the cavity for the low-temperature measurements, comparing the steady-state 

frequency shift observed in the experiment with the frequency calculated using FEM 

simulations will give a rough estimation of the levitation location. As shown in Figure 5.20, 

the steady-state frequency shift is -21.6. When this value is compared with all the results 

of Figure 5.22, we got x, z= 1.2 mm, 1 mm as the levitation location.   
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Figure 5.22: Analysis of the frequency change obtained using COMSOL simulations when 

the magnet is manually placed at different radial and vertical locations on the stub.   

5.3 Summary 

We have experimentally, theoretically, and analytically characterized the levitation of 

cylindrical, disc, and spherical permanent magnets within a type-1 SRF cavity. We obtain 

levitation heights of 0.8-1.8 mm for commercially-available neodymium magnets. These 

levitation heights are in a range where the SRF cavity’s resonance frequency varies with 

magnet position. Levitation temperatures for aluminum cavities range from 100-700 mK, 

which is obtainable in dilution refrigerator systems. Magnetic levitation is confirmed by 

the largest shift in the resonance frequency and the sharp rise in the quality factor of the 

cavity. The experimental results were consistent for multiple heating and cooling cycles of 

the fridge. Such electro-mechanically coupled systems, if stabilized, can be used to 

introduce the low-frequency mechanical motion of the magnet with other objects whose 

quantum states can be probed and manipulated in SRF cavities, such as magnons and 

transmons [75]. In addition, the levitated high Q mechanical oscillator enables application 

in ultra-sensing  [28,76--79] and gravitational wave detection [80]. 
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Chapter 6 

“Be stronger than your excuses.”-Bryant McGill 

Outlook 

Levitated systems are desirable due to reduced clamping losses and reduced thermal 

contact. The high Q 3D microwave cavities provide a platform for the coupling of the 

levitated system. Success coupling opens the path for various fields of research from cavity 

optomechanical, precision metrology, and even test fundamental physics. Furthermore, 

similar cavities incorporating Josephson junction qubits are used for quantum information 

processing, and our work provides the opportunity to include a levitating magnet as a 

mechanical element within such a system  [3], [75]. 

Our work successfully characterization of magnetic levitation within a microwave cavity. 

There will be an exciting future project with this system. A few of them will be discussed 

in this chapter.   

6.1. Thermally Controlled Magnetic Levitation 

One interesting future work would be to study thermally controlled magnetic levitation. 

The idea here is to ramp up and down the input power, thereby heating and cooling the 

magnet. One could make a parametric oscillator and sensor by controlling the space 

between the magnet and superconductor.  

Our investigation, shown in Figure 6.1, has shown promising evidence of controlling the 

distance between the magnet and the superconductor by varying the input power. The 

power is varied from -5 dBm to 5 dBm at different temperatures during the controlled 

warm-up of the cavity that is levitated N35 magnet. The red circle on the plot has shown 

variation in power at that particular temperature. No or small effect is seen during such 

variation above 700 mK. However, there were 60 MHz of frequency switch 727 mK and 

750 mk on such variation. At this temperature, we observed the frequency bounce back as 

the power was ramped down to its original value (see the onset plots).  
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Figure 6.1: Study of control magnetic levitation with the input power. The study is 

performed at different temperatures during a controlled cavity warm-up with an N35 

magnet.  

6.2. Study of cavity optomechanics  

Due to the high mechanical and cavity Q, the cavity optmechanics will be the next 

promising route of our system. The main limited our system for such study is the limited 

mechanical and cavity Q. The cavity Q is limited using plastic sleeve to hold the magnet 

on the stub. Another degradation factor of the Q was extension of the couplers with the 

body of the cavity to track the spectra on the vector network analysis (VNA). Moreover, 

the limited resolution of our prevents us to see effect of magnet’s motion on the cavity 

mode.  

Upon improving above limitation one can couple and observe cavity opt mechanics in our 

set up. Figure 6.2 shows screenshot of such coupling. Such a novel macroscopic 

mechanical system will be capable of sensing and transducing forces, thus allowing for the 

coupling of disparate classical and quantum systems. 
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Figure 6.2: A scheme of coupling the mechanical mode with the mode of the cavity.  
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