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HECKE OPERATORS AND ANALYTIC LANGLANDS
CORRESPONDENCE FOR CURVES OVER LOCAL
FIELDS

PAVEL ETINGOF, EDWARD FRENKEL, and DAVID KAZHDAN

In memory of Isadore Singer

Abstract
We construct analogues of the Hecke operators for the moduli space of G-bundles
on a curve X over a local field F with parabolic structures at finitely many points.
We conjecture that they define commuting compact normal operators on the Hilbert
space of half-densities on this moduli space. In the case F D C, we also conjecture
that their joint spectrum is in a natural bijection with the set of LG-opers on X
with real monodromy. This may be viewed as an analytic version of the Langlands
correspondence for complex curves. Furthermore, we conjecture an explicit formula
relating the eigenvalues of the Hecke operators and the global differential operators.
Assuming the compactness conjecture, this formula follows from a certain system
of differential equations satisfied by the Hecke operators, which we prove here for
G D PGLn.
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1. Introduction
The Langlands program for a curve X over a finite field Fq studies, in the unramified
case, the joint spectrum of the commuting Hecke operators acting on the space of
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L2-functions on the groupoid of Fq-points of the stack BunG of G-bundles on X
with its natural measure. It aims to express this spectrum in terms of the Galois data
associated to X and the Langlands dual group LG.

In this article, which is a continuation of [8], we study an analogue of this problem
when Fq is replaced by a local field F . We define analogues of Hecke operators on a
dense subspace of the Hilbert space HG of half-densities on BunG and conjecture that
they extend to commuting compact normal operators on HG . Investigation of these
operators is a hybrid of functional analysis and the study of the algebraic structure of
BunG .

In the case F DC, these Hecke operators commute with the global holomorphic
differential operators on BunG introduced in [3], as well as their complex conjugates.
This enables us to describe, subject to the compactness conjecture formulated below,
the joint spectrum of these operators in terms of the LG-opers on X with real mon-
odromy, which play the role of the Galois data appearing in the case of curves over a
finite field. We consider this description as an analogue of the Langlands correspon-
dence in the case of complex curves. In the case of G D SL2, a similar conjecture
about eigenfunctions of the differential operators on BunG was proposed earlier by
Teschner [29].

1.1. Main objects
Let F be a local field, let G be a split connected reductive group over F , let B be
its Borel subgroup, let X be a smooth projective curve over F , and let S � X be a
reduced divisor defined over F . We denote by BunG.X;S/ the moduli stack of pairs
.F ; rS /, where F is a G-bundle on X and rS is a reduction to B of the restriction
F jS of F to S .1

Let Buns
G.X;S/� BunG.X;S/ be the substack of regularly stable pairs .F ; rS /,

that is, stable pairs whose group of automorphisms is equal to the center Z.G/ of G.
We will assume throughout this paper that Buns

G.X;S/ is open and dense in
BunG.X;S/, which means that we are considering one of the following cases:
(1) the genus of X is greater than 1, and S is arbitrary;
(2) X is an elliptic curve and jS j � 1;
(3) X D P1 and jS j � 3.

The stack Buns
G.X;S/ is a Z.G/-gerbe over a smooth analytic F -variety

BunıG.X;S/, which is the corresponding coarse moduli space. For our purposes,
BunıG.X;S/ is a good substitute for Buns

G.X;S/ because all objects we need (such
as line bundles or differential operators) naturally descend from Buns

G.X;S/ to
BunıG.X;S/.

1Just as in the case of curves over Fq , the theory naturally extends to incorporate reductions to other parabolic
subgroups of G. We also expect that it extends to wild ramification.
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Langlands asked in [24] whether it is possible to develop an analytic theory of
automorphic functions for complex curves. In [8] and the present work, we are devel-
oping such a theory (for curves over C and other local fields), understood as a spectral
theory of commuting Hecke operators acting on the Hilbert space HG.X;S/ of half-
densities on BunıG.X;S/ for pairs .X;S/ satisfying the above condition, as well as
global differential operators on BunG.X;S/ when F DC or R.

To define the Hilbert space HG.X;S/, we introduce the R>0-line bundle �1=2Bun

of half-densities on BunıG.X;S/.
Namely, our local field F is equipped with the norm map x 7! kxk (the Haar

measure on F multiplies by k�k under rescaling by � 2 F ). For instance, for F DR

we have kxk D jxj, for F DC we have kxk D jxj2, and for F DQp we have kxk D
p�v.x/, where v.x/ is the p-adic valuation of x (see [30]). Using the norm map,
we associate to any line bundle L on any smooth algebraic F -variety Y a complex
line bundle kLk on the analytic F -variety Y WDY.F / with the structure group R>0.
Namely, if the transition functions of L are ¹g˛ˇ º, then the transition functions of
kLk are ¹kg˛ˇkº (in particular, if F D C, then these are ¹jg˛ˇ j2º). (Note that for
Archimedean fields the line bundle kLk has a C1-structure.)

It is shown in [3, Section 4] (see also [25]) that the canonical line bundle KBun

over BunG.X;S/ has a square root K1=2Bun . The restriction of K1=2Bun to Buns
G.X;S/

descends to a line bundle on BunıG.X;S/ for which we will use the same notation

K
1=2
Bun . We then set

�
1=2
Bun WD kK

1=2
Bunk: (1.1)

Alternatively, �1=2X can be defined as the square root of the line bundle kKXk (since
the structure group of the latter is R>0, this is well defined). This shows that the line
bundle �1=2Bun does not depend on the choice of K1=2Bun .

Let VG.X;S/ be the space of smooth compactly supported sections of �1=2Bun over
BunıG.X;S/.F /. We denote by h�; �i the positive definite Hermitian form on VG.X;S/
given by

hv;wi WD

Z
Bunı

G
.X;S/.F /

v �w; v;w 2 VG.X;S/;

and define HG.X;S/ as the Hilbert space completion of VG.G;S/.

1.2. Hecke operators
From now on, for brevity, we will drop .X;S/ in our notation when no confusion
could arise (i.e., write BunG for BunG.X;S/, HG for HG.X;S/, and so on). We are
going to define analogues of the Hecke operators for curves over a local field. For
non-Archimedean local fields, these operators were suggested by Braverman and the
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third author in [5]. For G D PGL2, X D P1, Hecke operators were studied by Kont-
sevich in [23], and he also knew that such operators could be defined in general. In his
letters to us (2019), he conjectured compactness and the Hilbert–Schmidt property of
averages of the Hecke operators over sufficiently many points.

The idea that Hecke operators over C could be used to construct an analogue
of the Langlands correspondence was suggested by Langlands [24], who sought to
construct them in the case when G D GL2, X is an elliptic curve, and S D ; (how-
ever, for an elliptic curve X we can only define Hecke operators if S ¤ ;; see [14,
Section 3]).

In the case when G is a torus, the Hecke operators and their spectra on HG

were completely described in [14, Section 2]. We recall these results for G DGL1 in
Section 2.1 below.

From now on (except in Section 2 below), we will assume that G is a connected
simple algebraic group over F . All of our results and conjectures generalize in a
straightforward way to connected semisimple algebraic groups over F .

Let P_C be the set of dominant integral coweights of G. For � 2 P_C , we denote
by Z.�/ the Hecke correspondence

q WZ.�/! BunG �BunG �.XnS/

describing the �-modifications of stableG-bundles at points of XnS . More precisely,
Z.�/ classifies triples .F ;P ; x; t/, where F and P are principal G-bundles on X
with a reduction to B at S , x is a closed point in XnS , and

t W F jXnx
�
�!P jXnx

is an isomorphism satisfying the following condition. Choose a formal coordinate z at
x and a trivialization of F on the formal disk Dx WD SpecCŒŒz��; then the restriction
of t to D�x WD SpecC..z// naturally gives rise to a point in the affine Grassmannian
GrDG..z//=GŒŒz��. The condition is that this point belongs to the closure Gr� of the
GŒŒz��-orbit Gr� D GŒŒz�� � �.z/GŒŒz�� (this condition does not depend on the above
choices). Further, denote by Z.�/ the open part of Z.�/ satisfying the condition that
this point belongs to Gr� itself, and let q be the restriction of q to Z.�/.

Let

p1;2 W BunG �BunG �.XnS/! BunG ;

p3 W BunG �BunG �.XnS/!XnS

be the natural projections, let qi WD pi ı q, and let qi WD pi ı q. Thus, the fibers of
the morphism q2 � q3 are isomorphic to Gr� and the fibers of the morphism q2 � q3
are isomorphic to Gr�. Let K2 be the relative canonical line bundle of the morphism
q2 � q3.
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Let � be the integral weight of G such that h˛_i ; �i D 1 for all simple coroots ˛_i
of G. If the set ¹h�;�i; � 2 P_Cº only contains integers, then Beilinson and Drinfeld

[3, Section 4] construct a square root K1=2Bun of KBun equipped with a trivialization of
its fiber at the trivial G-bundle. If this set contains half-integers, they construct such
an object for each choice of a square root K1=2X of KX . In the latter case, we will

assume throughout that a choice of K1=2X has been made. We will denote by � the

isomorphism class of this K1=2X and by K1=2Bun the corresponding line bundle on BunG
(equipped with a trivialization of its fiber at the trivialG-bundle). The following result
is essentially due to Beilinson and Drinfeld [3]. In Section 5.4 below, we explain how
to derive it from [3, (241)] (see also [5, Theorem 2.4]).

THEOREM 1.1
There exists a canonical isomorphism

a W q�1 .K
1=2
Bun /

�
�! q�2 .K

1=2
Bun /˝K2˝ q

�
3 .K

�h�;�i
X /; (1.2)

where � is the half-sum of positive roots.

The isomorphism a gives rise to an isomorphism

a2 W q�1 .KBun/
�
�! q�2 .KBun/˝ .K2/

2˝ q�3 .K
�2h�;�i
X / (1.3)

which does not depend on the choice of K1=2X (and K1=2Bun ). Using the formula kak D
ka2k1=2, we then obtain a canonical isomorphism

kak W q�1 .�
1=2
Bun/

�
�! q�2 .�

1=2
Bun/˝�2˝ q

�
3 .�

�h�;�i
X /: (1.4)

Here �1=2X (resp., �1=2Bun) is defined as the square root of the line bundle kKXk (resp.,
kKBunk); since the structure group of the latter is R>0, these square roots are well
defined. Also, �2 WD kK2k, the C1 line bundle of densities along the fibers of q2 �
q3.

Thus, kak does not depend on the choice of K1=2X (and K1=2Bun ). This implies that
our definition of the Hecke operators given below also does not depend on this choice.
However, we need to make these choices to describe the algebra of global differential
operators on BunG (see Section 1.3) and to state the differential equations (1.13)
satisfied by the Hecke operators. Hence, for the sake of uniformity of exposition, we
have made these choices from the beginning.

Now let

UG.�/ WD
®
F 2 BunıG j q2

�
q�11 .F /

�
� BunıG

¯
: (1.5)

This is an open subset of BunıG , which is dense if the dimension of BunG is suffi-
ciently large (e.g., for G D PGL2 it is sufficient that dim BunPGL2 > 1).
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Suppose that UG.�/� BunıG is dense. Let VG.�/� VG be the subspace of half-
densities f with compact support such that supp.f / � UG.�/. For P 2 BunıG.F /,
let

ZP ;x WD .q2 � q3/
�1.P � x/; x 2 .XnS/.F /:

According to the above definition of Z.�/, the variety ZP ;x is isomorphic to the
GŒŒz��-orbit Gr� in the affine Grassmannian of G. Hence it is proper and has rational
singularities. The isomorphism (1.4) and the results of Theorem 2.5 and Section 2.6 of
[5] imply that for any f 2 VG.�/ and x 2 .XnS/.F /, the restriction of the pullback
q�1 .f / to ZP ;x is a compactly supported measure with values in the line .�1=2Bun/P ˝

.�
�h�;�i
X /x . Therefore, the integral

� bH�.x/ � f �.P / WD
Z
ZP ;x

q�1 .f / (1.6)

is absolutely convergent for all f 2 VG.�/ and P 2 BunıG.F /. In fact, it belongs to

VG ˝ .�
�h�;�i
X /x .

Since VG �HG , this integral defines a Hecke operator

bH�.x/ W VG.�/!HG ˝ .�
�h�;�i
X /x :

As x varies alongXnS , the operators bH�.x/ combine into a section of the line bundle
�
�h�;�i
X over XnS with values in operators VG.�/!HG . We denote it by bH�.

Remark 1.1
We conjecture (and can prove in a number of cases) that the integrals defining bH�.f /
are absolutely convergent for all f 2 VG .

Remark 1.2
There are two basic differences between the cases of finite and local fields. In the case
of a curve X over a finite field F , the set BunG.F / of isomorphism classes ŒP � of G-
bundles is a countable set with a natural (Tamagawa) measure such that the measure
of ŒP � is equal to 1=jAut.P /.F /j. On the other hand, for a curve X over a local field
F , neither BunG.F / nor the fibers of the Hecke correspondence carry any natural
measures. To overcome this problem, we replace the space of functions on BunG.F /
by the space of half-densities and use the isomorphism (1.4) to write down formula
(1.6) for the action of Hecke operators.

The second difference is that for a curve over a finite field F , the integrals (1.6)
are finite sums, so the corresponding Hecke operators are well defined on the space of
all functions on BunG.F /. On the other hand, for a curve X over a local field F there
is no obvious nontrivial space of half-densities stable under these Hecke operators.
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One could try to consider the space of continuous half-densities with respect to the
natural topology on BunG.F /, but this space is equal to ¹0º. The reason is that the
natural topology on BunG.F / is not Hausdorff.2

The absence of such a subspace creates serious analytic difficulties in defining
the notion of the spectrum of the Hecke operators because they are initially defined
only on a dense subspace VG.�/ of HG (under our assumption that Buns

G.X;S/ is
dense in BunG.X;S/). However, we expect (and can prove for G D PGL2, X D P1;
see [9]) that these operators extend to bounded operators on HG , which are moreover
compact and normal, as we state in the following conjecture.

CONJECTURE 1.2
Suppose that �¤ 0.
(1) For any identification .�1=2X /x Š C, the operators bH�.x/ W VG.�/! HG

extend to a family of commuting compact normal operators on HG , which
we denote by H�.x/.

(2) H�.x/
� DH�w0.�/.x/.

(3)
T
�;x KerH�.x/D ¹0º.

Remark 1.3
(i) It is easy to see that

hH�f;gi D hf;H�w0.�/gi

for all f 2 VG.�/, g 2 VG.�w0.�//. Therefore, part (2) of the conjecture
immediately follows from part (1).

(ii) If S ¤ ;, then we expect that the statement of part (3) with a fixed � can be
obtained from (1) by considering the limit of H�.x/ when x tends to a point
of S . This will be discussed in more detail in a follow-up paper.

We will refer to Conjecture 1.2 as the compactness conjecture. In [9], we prove
this conjecture in the caseG D PGL2,X D P1, jS j> 3. From now on, we will assume
the validity of the compactness conjecture.

Denote by HG the commutative algebra generated by operators H�.x/;� 2 P_C ,
x 2 .XnS/.F /, and by Spec.HG/ their joint spectrum.

COROLLARY 1.3
We have an orthogonal decomposition

2For a simply connected group G, the closures of any two points in BunG.F / have a nonempty intersection,
and therefore the only continuous functions on BunG.F / are constants.
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HG D
dM

s2Spec.HG/

HG.s/;

where HG.s/; s 2 Spec.HG/ are finite-dimensional joint eigenspaces of HG in HG .

Let HG.x/ be the subalgebra of HG generated by H�.x/;� 2 P_C for a fixed
x 2 .XnS/.F /.

PROPOSITION 1.4 ([5])
There is an algebra isomorphism HG.x/' CŒP_C �. In particular, H�.x/ �H�.x/D
H�C�.x/.

Proof
If F is a non-Archimedean field, then this is equation (3.4) of [5], which is proved in
Lemmas 3.5 and 3.9 of [5]. The same proof works for a general local field.

Remark 1.4
Note the difference with the case of a curve over Fq , where the Satake isomorphism
naturally identifies the Hecke algebra at a point x with RepLG. Thus, in this case the
product of the Hecke operators corresponding to �;� 2 P_C is in general not equal to
the Hecke operator corresponding to �C�; there are correction terms corresponding
to lower weights.

Remark 1.5
Using an analogous correspondence

Zr.�/! BunG �BunG �Symr.XnS/

for a positive integer r > 1, the above construction can be generalized to yield oper-
ators H�.D/;D 2 Symr.XnS/.F /. We expect that an analogue of the compact-
ness Conjecture 1.2 holds for them. Moreover, if D D

P
i mixi , xi 2 X.F /, then

H�.D/D
Q
i H�.xi /

mi .

1.3. The case F DC

At the moment, we have a conjectural description of the spectra Spec.HG/ only if
F D C and, in some cases, for F D R. We will now describe our conjecture for
F D C. Note that in this case we have kzk D jzj2. For simplicity, we only consider
here the case when S D ; (and hence g > 1). But all of our results and conjectures
have natural generalizations to the case of an arbitrary S . The case of G D PGL2,
X D P1, and jS j> 3 will be discussed in detail in our next paper [9].
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In a previous paper [8], we studied the action of global holomorphic and antiholo-
morphic differential operators on BunG on a dense subspace of the Hilbert space HG

in the case of a simply connected simple group G. Here we generalize the setup to
the case of an arbitrary connected simple G. Then BunG has finitely many connected
components labeled by �1.G/, which we will denote by BunˇG ; ˇ 2 �1.G/.

Definition 1.5
Let Dˇ

G be the algebra of global algebraic (hence holomorphic) differential operators

acting on the line bundle K1=2Bun over a connected component BunˇG of BunG . Beilin-
son and Drinfeld [3] have proved that these algebras are isomorphic to each other.
Therefore, we will also use the notation DG for Dˇ

G .

On the other hand, let OpLG.X/ be the space of (holomorphic) LG-opers on X
defined in [3] and [4]. As shown in [3, Section 3.4], OpLG.X/ is a union of con-
nected components, each isomorphic to the affine space OpLGad

.X/, where LGad D
LG=Z.LG/ is the group of adjoint type associated to LG (here Z.LG/ denotes the
finite center of LG). The groupH 1.X;Z.LG// naturally acts on the set of these com-
ponents by changing the underlying LG-bundle, and this action is simply transitive.
As shown in [3, Section 3.4.2], if the set ¹h�;�i; � 2 P_Cº only contains integers, then
there is a canonical choice of a component, and if the set ¹h�;�i; � 2 P_Cº contains
half-integers, then there is a canonical choice of a component Op�LG.X/ for each iso-

morphism class � of K1=2X .
For the sake of uniformity of notation, in both cases we will denote the canonical

component by Op�LG.X/, with the understanding that in the latter case � is the iso-

morphism class of K1=2X we have chosen before Theorem 1.1. The following theorem
is proved in [3, Theorem 3.3.2, Sections 2.2.5 and 2.7.4].

THEOREM 1.6
The algebra DG is commutative and Spec.DG/ is isomorphic to the affine space
Op�LG.X/.

For a given 	 2Op�LG.X/, the system of differential equations for the eigenfunc-
tions of this algebra,

P � f D 	.P /f; P 2DG ; (1.7)

where f denotes a local holomorphic section of K1=2Bun , is known as the quantum
Hitchin integrable system. Its local solutions are the same as the homomorphisms
from the twisted D-module 
� on BunG to K1=2Bun , where
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� WDD 0BunG
˝
DG

C� (1.8)

and D 0BunG
is the sheaf of (holomorphic) differential operators acting on K1=2Bun (in

(1.8) we consider the diagonal embedding DG ! D 0BunG
taking the sum over all

components BunˇG of BunG ).

Remark 1.6
If S ¤;, then the algebra of global holomorphic differential operators acting onK1=2Bun

is noncommutative, but it contains a commutative subalgebra whose spectrum is iso-
morphic to the space of LG-opers on X with regular singularity and regular unipotent
monodromy at the points of S (see [8, Section 6]). There is a similar algebra in the
case of higher level structures at S (this is analogous to the wild ramification in the
case of curves over Fq), with the corresponding LG-opers having irregular singular-
ities at the points of S . We expect that the theory has a generalization to this case as
well.

It is shown in [3] that 
� is a holonomic D-module. It also has regular singu-
larities (see Theorem 1.12(1) below). Moreover, there is an open substack Bunvs

G of
very stable bundles (i.e., G-bundles P such that the vector bundle gF ˝ KX does
not admit nonzero sections taking nilpotent values everywhere on X ) such that the
restriction of 
� to Bunvs

G is a vector bundle with a projectively flat connection. But
its rank grows exponentially with the genus of the curve X and it has highly nontriv-
ial monodromy around the divisor BunG nBunvs

G . Therefore, it does not make sense
to look for individual holomorphic solutions of the system (1.8).

However, as explained in [29] and in [8, Section 1.5], it makes sense to couple the
system (1.8) to its antiholomorphic analogue and look for single-valued solutions of
the resulting system of differential equations on the locus Bunvs

G of very stable bundles
in BunıG . These are the automorphic functions of the analytic theory. It is natural to
try to interpret them as eigenfunctions of the algebra

AG WDDG ˝
C

DG :

This is a nontrivial task because elements of AG correspond to unbounded operators
on the Hilbert space HG . Initially, they are defined on the dense subspace VG �HG .
In [8, Definition 1.7], we introduced a Schwartz space S.AG/�HG and conjectured
that the elements of AG can be extended to S.AG/ so that their closures form a family
of commuting normal operators. Moreover, we conjectured that their joint spectrum
is the set OpLG.X/R of LG-opers on X with real monodromy (see below). In the case
of G D SL2, a similar conjecture was proposed earlier in [29].
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In [8], we were able to prove these conjectures in the simplest nontrivial case.
However, in the general case it is a daunting task to prove them directly. This is
where the integral Hecke operators come in handy. Like differential operators, they
are also initially defined on a dense subspace of the Hilbert space HG . But unlike the
differential operators, we do expect Hecke operators to extend to mutually commuting
continuous operators on the entire HG , which are moreover normal, compact, and
have trivial common kernel. This is the statement of our compactness Conjecture 1.2.
It implies that HG decomposes into a (completed) direct sum of mutually orthogonal
finite-dimensional eigenspaces of the Hecke operators.

Next, we would like to say that the algebra AG preserves the subspaces HG.s/.
To do this, observe that AG acts on the space V _G of distributions on BunıG . It follows
from the definition of HG that HG is naturally realized as a subspace of V _G . Hence
we can apply elements of AG to vectors in the eigenspaces HG.s/ of the Hecke
operators, viewed as distributions.

CONJECTURE 1.7
Every eigenspace HG.s/ of the Hecke operators, viewed as a subspace of V _G , is an
eigenspace of AG .

Remark 1.7
(i) There is a weaker version of Conjecture 1.7, in which VG is replaced by the

space of smooth functions with compact support on some open dense set
U � BunıG . For practical purposes, such a weak version is almost as good
but might be easier to prove. For example, we may take U to be the above
locus Bunvs

G of very stable bundles in BunıG , on which the eigenfunctions of
the Hecke operators are smooth (in fact, this is true for any local field F ;
we will explain this in a follow-up paper). Then the conjecture is that these
eigenfunctions satisfy the differential equations of the quantum Hitchin sys-
tem combined with its complex conjugate system (which are smooth on this
locus) in the classical sense.

(ii) The algebra AG acts on both VG.�/ and VG . Using an identification (see [3])
of DG with a quotient of the center at the critical level (see [12], [13]), one
can show that the action of AG commutes with the Hecke operators bH�.x/ W
VG.�/! VG . This property, however, is not sufficient for proving Conjecture
1.7. But in the case G D PGLn we can derive it from the system of differential
equations in Theorem 1.18. We expect that a similar argument also proves
Conjecture 1.7 for a general G.
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In the rest of this subsection, we will assume the validity of Conjecture 1.7. It
implies the following statement. Let

S.AG/ WD
M

s2Spec.HG/

HG.s/�HG :

According to Conjecture 1.7, the algebra AG acts on it.

COROLLARY 1.8
The closures of the actions of the elements of AG on S.AG/ form a family of commut-
ing normal operators, and each HG.s/ is an eigenspace of these normal operators.

Remark 1.8
It is clear that the subspace S.AG/�HG is contained in the Schwartz space S.AG/

defined in [8]. We expect that S.AG/ is a completion of S.AG/ corresponding to a
specific growth condition on the coefficients.

Corollary 1.8 implies that we can define the joint spectrum of the commutative
algebra AG . It follows from the definition that Spec.AG/ is naturally realized as a
subset of Op�LG.X/�Op

�
LG.X/.

Definition 1.9
An LG-oper 	 is called an oper with real monodromy (or real oper for short) if the
monodromy representation �1.X;p0/! LG.C/ corresponding to 	 is isomorphic to
its complex conjugate.

Denote by Op�LG.X/R the subset of real LG-opers in Op�LG.X/.

Remark 1.9
It follows from the above definition that the image of the monodromy representation
corresponding to a real LG-oper is contained in a real form LGR of LG. Moreover,
this form is inner to the split real form since for every algebraic representation V of
LG, the corresponding monodromy �V is isomorphic to �V . We conjecture that in
fact the form LGR is the split real form LG.R/, in other words, that real LG-opers are
precisely the LG-opers 	 for which the image of the monodromy representation of 	
in LG.C/ is contained, up to conjugation, in LG.R/. This is known to be the case for
LG D PGL2 and SL2 (see [11], [18], [20]).

We can prove that LGR is split in the case when S ¤;. Indeed, the residue of the
oper at each parabolic point is regular nilpotent, so the monodromy is regular unipo-
tent. Thus our real form LGR contains a real regular unipotent element, hence a real
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Borel subgroup (the unique Borel subgroup containing it), and hence it is quasisplit.
But an inner quasisplit real form must be split.

For 	 2 Op�LG.X/, we denote, following Section 3.4 of [8], by 	� the LG-oper
obtained by applying to 	 the Chevalley involution on LG (it belongs to the same
component Op�LG.X/). Theorem 4.2 of [8] implies the following.

THEOREM 1.10
As a subset of Op�LG.X/�Op

�
LG.X/, the joint spectrum Spec.AG/ consists of pairs

.	;	�/ where 	 2 Op�LG.X/R. Thus, Spec.AG/ is naturally realized as a subset of
Op�LG.X/R.

CONJECTURE 1.11
(1) The set Op�LG.X/R is discrete.
(2) Spec.AG/DOp�LG.X/R.

Remark 1.10
(i) In [8], we proved Conjecture 1.11 in the case G D SL2, X D P1, jS j D 4,

directly, without relying on the compactness conjecture.
(ii) Conjecture 1.11(1) is known in the case whenG D PGL2 (see [11, Section 7]).

In [3, Section 5.1.1], Beilinson and Drinfeld attached to every 	 2 Op�LG.X/ a
D-module on BunG , which is a Hecke eigensheaf with respect to the flat LG-bundle
corresponding to 	; namely,


0� WDK
�1=2
Bun ˝
�; (1.9)

where 
� is given by (1.8) (see also [8, Section 3.2] and Remark 4.2 below). The
first part of the following statement has been proved in [1, Corollary 11.6.7]. The
second part has been proved in [10, Theorem 11.2.1.2 and Remark 11.2.1.3] (in the
case G D PGLn this also follows from the results of [17]).

THEOREM 1.12
(1) 
0� has regular singularities.
(2) 
0� is irreducible on each connected component of BunG .

Recall that BunG has connected components BunˇG labeled by ˇ 2 �1.G/. Thus,
we have a natural direct sum decomposition

HG D
M

ˇ2�1.G/

H
ˇ
G : (1.10)
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We also have

S.AG/D
M

ˇ2�1.G/

S.AG/ˇ ; S.AG/ˇ WD S.AG/\H
ˇ
G :

The action of AG on S.AG/ preserves the direct summands S.AG/ˇ . Hence we
can talk about the joint eigenvalues of AG on each of them and the corresponding
multiplicities.

The following statement is proved in Section 1.5 of [8] in the case when G is
simply connected, and the proof generalizes in a straightforward way to the case of
an arbitrary connected simple Lie group G.

PROPOSITION 1.13
Suppose that 	 2 Op�LG.X/ corresponds to an element of Spec.AG/ and 
0� has
regular singularities and is irreducible. Then the multiplicity of 	 in S.AG/ˇ is equal
to 1 for all ˇ 2 �1.G/.

1.4. The case G D PGLn
According to Theorem 1.12, the spectrum of AG is simple on each S.AG/ˇ �H

ˇ
G ,

ˇ 2 �1.PGLn/D Z=nZ.
For ˇ 2 Z=nZ, let  �;ˇ be a nonzero generator of the one-dimensional

eigenspace of AG in H
ˇ
G corresponding to the eigenvalue 	. Let

E� WD span¹ �;ˇ ; ˇ 2 Z=nZº:

Now consider the Hecke operators H!1.x/; x 2 X , and the corresponding
operator-valued section H!1 of the line bundle ��.n�1/=2X . These operators act from

H
ˇ
G to H

ˇC1
G . Corollary 1.8 then implies that H!1.x/ and H!1 preserve the n-

dimensional subspace E� � HG . Moreover, we can normalize the vectors  �;ˇ in
such a way that ‰1� WD

P
ˇ2Z=nZ �;ˇ is an eigenvector of H!1 . Then the vectors

‰	� WD
X

ˇ2Z=nZ

�ˇ �;ˇ ; � 2 �n

(where �n is the group of nth roots of unity) are also eigenvectors of H!1 and hence
form an eigenbasis of E�. If ˆ� is a section of ��.n�1/=2X representing the eigenvalue

of H!1 on ‰1�, then the section of ��.n�1/=2X representing the eigenvalue of H!1 on
‰	� is �ˆ�.

Thus, to each 	 2 Spec AG corresponds a collection ¹‰	�º of eigenvalues ofH!1 ,
which is naturally a �n-torsor. We will now write a conjectural formula for these
eigenvalues.
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Recall that 	 is an SLn-oper in Op�SLn
.X/R. Let .V!1 ;r�/ be the corresponding

holomorphic flat vector bundle on X with det.V!1 ;r�/ identified with the trivial flat
line bundle. The definition of an oper provides us with an embedding of a line bundle

�!1 WK
.n�1/=2
X ,! V!1 ;

and hence an embedding

e�!1 WOX ,! V!1 ˝K
�.n�1/=2
X :

Therefore, we obtain a section

s!1 WDe�!1.1/ 2 
.X;V!1 ˝K�.n�1/=2X /:

In the same way, we obtain a section

s!n�1 2 
.X;V!n�1 ˝K
�.n�1/=2
X /D 
.X;V�!1 ˝K

�.n�1/=2
X /:

By our assumption that 	 2 Op�SLn
.X/R, the monodromy representations associated

to 	 and 	 are isomorphic. This means that .V!1 ;r�/ and .V!1 ;r�/ are isomorphic
as C1 flat vector bundles on X . Hence we have a nondegenerate pairing

h�.�; �/ W .V!1 ;r�/˝ .V!n�1 ;r�/! .C1X ; d /

of C1 flat vector bundles X . Since .V!1 ;r�/ and .V!n�1 ;r�/ are associated to flat
SLn-bundles, their determinants are identified with the trivial flat line bundle. We will
require that h�.�; �/ induce the canonical pairing on the corresponding determinant
line bundles. The set of h�.�; �/ normalized this way is a �n-torsor, which we denote
by ¹�h�.�; �/º.

CONJECTURE 1.14
We have

¹ˆ	�º D
®
�h�.s!1 ; s!n�1/

¯
as �n-torsors of global sections of the line bundle ��.n�1/=2X on X .

We will prove a slightly weaker form of this conjecture (Corollary 1.19)—with
roots of unity � replaced by nonzero complex numbers—by showing that both sides
satisfy the same system of differential equations which has a unique solution up to a
scalar.

To explain this, we need an alternative description of the component Op�SLn
.X/.

Consider nth order differential operators P WK�.n�1/=2X !K
.nC1/=2
X (here, if n

is even, we use our chosen square root K1=2X ) such that
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(1) symb.P / 2H 0.X;OX / is equal to 1;
(2) the operator P � .�1/nP � has order n� 2 (here P � WK�.n�1/=2X !K

.nC1/=2
X

is the algebraic adjoint operator; see [2, Section 2.4]).
These operators form an affine space, which we denote by D�

n .X/. Locally,

P D @nz C vn�2.z/@
n�2
z C � � � C v0.z/:

The following statement is proved in [4, Section 2.8].

LEMMA 1.15
There is a bijection Op�SLn

.X/'D
�
n .X/,

	 2Op�SLn
.X/ 7! P� 2D

�
n .X/;

such that the sections s!1 2 
.X;V!1 ˝ K
�.n�1/=2
X / and s!n�1 2 
.X;V!n�1 ˝

K
�.n�1/=2
X / satisfy

P� � s!1 D 0; P �� � s!n�1 D 0;

where P �� is the algebraic adjoint of P� (here we use the DX -module structures on
V!1 and V!n�1 corresponding to the oper connection of 	).

The flat vector bundle .V!1 ;r�/ is known to be irreducible (see [4]). Therefore,
we obtain the following.

COROLLARY 1.16
We have that h�;!1.s!1 ; s!n�1/ is a unique, up to a scalar, section ˆ of ��.n�1/=2X

which is a solution of the system of differential equations

P� �ˆD 0; P �� �ˆD 0: (1.11)

On the other hand, let Vuniv
!1

be the universal vector bundle over Op�SLn
.X/ �X

with a partial connection runiv along X , such that

.Vuniv
!1
;runiv/j��X D .V!1 ;r�/:

Let Vuniv
!1;X
WD ��.V

univ
!1
/, where � WOp�SLn

.X/�X!X is the projection and ��
is the O-module pushforward functor. The connection runiv makes Vuniv

!1;X
into a left

DX -module.
Recall (see Definition 1.5) that we have denoted by DPGLn the algebra of global

holomorphic differential operators acting on each component BunˇPGLn
of BunPGLn .

By Theorem 1.6, we have an isomorphism
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DPGLn ' Fun Op�SLn
.X/:

Hence DPGLn naturally acts on Vuniv
�;X

and this action commutes with the action of
DX . Using the above realization of PGLn-opers as nth order differential operators,
we construct the “universal PGLn-oper” as follows.

LEMMA 1.17
There is a unique nth order differential operator

� WK
�.n�1/=2
X !DPGLn ˝K

.nC1/=2
X (1.12)

satisfying the following property: for any 	 2Op�SLn
.X/D SpecDPGLn , applying the

corresponding homomorphism DPGLn!C, we obtain P�.

The following is one of the main results of this paper, which will be proved in
Section 4.

THEOREM 1.18
The Hecke operator bH!1 , viewed as an operator-valued section of ��.n�1/=2X D

K
�.n�1/=2
X ˝K

�.n�1/=2

X , satisfies the system of differential equations

� � bH!1 D 0; � � bH!1 D 0: (1.13)

COROLLARY 1.19
Each of the eigenvalues ˆ	� of the Hecke operator H!1 is equal to a scalar multiple
of h�.s!1 ; s!n�1/.

Proof of Corollary 1.19 from Theorem 1.18
Equations (1.13) imply that the eigenvalues of H!1 satisfy equations (1.11). That is
because if v is an eigenvector of APGLn with the eigenvalue of DPGLn correspond-
ing to a holomorphic SLn-oper 	, then according to Theorem 1.10, the eigenvalue
of DPGLn on v corresponds to the antiholomorphic SLn-oper 	�. Furthermore, it

is clear that the nth order operator K
�.n�1/=2

X ! K
.nC1/=2

X associated to 	� is P �� .
Corollary 1.16 then implies Corollary 1.19.

Corollary 1.19 describes the eigenvalues of the Hecke operator H!1 for
G D PGLn up to scalar multiples (it is slightly weaker than Conjecture 1.14, which
describes these eigenvalues up to multiplication by nth roots of unity). The eigen-
values of the other Hecke operators H� for G D PGLn can be found from the
eigenvalues of H!1 using Proposition 1.4.
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Moreover, Theorem 1.18 also implies Conjecture 1.7. Indeed, it can be shown
that the differential equations (1.13) imply a suitable version of commutativity of the
algebra AG with the Hecke operators. This will be discussed in more detail in [9].

In Section 4, we will derive Theorem 1.18 from the theorem of Beilinson and
Drinfeld [3] describing the action of the Hecke functor H!1 on the left D-module
DBunPGLn

˝K
�1=2
Bun on BunPGLn . We will also discuss a generalization of these results

to an arbitrary simple Lie group G.
This shows a deep connection between the geometric/categorical Langlands cor-

respondence and the analytic/function-theoretic one.

1.5. Structure of the paper
The paper is organized as follows. In Section 2, we consider the abelian case, G D
GL1, in which one can already see the main ingredients of our construction in the
non-abelian case. In Section 3, we formulate some basic results on the compatibil-
ity between the natural operations on functions (pullback, pushforward, and inte-
gral transforms) and the corresponding functors between categories of twisted D-
modules. We then use these results in the following sections to relate the Hecke oper-
ators and Hecke functors and derive differential equations on the Hecke operators. In
Section 4, we prove that the Hecke operators satisfy the system (1.13) of differential
equations corresponding to the “universal SLn-oper” (Theorem 1.18), using a Hecke
eigensheaf property established in [3]. In Section 5, we formulate the analogues of
Theorem 1.18 and Corollary 1.19 describing the eigenvalues of the Hecke operators
in the case of an arbitrary simple Lie group G. We then outline the proof of these
results generalizing the argument we used in Section 4 in the case of PGLn.

2. The abelian case
In this section, we consider the case G D GL1. Though the spectral problem here is
rather simple (standard Fourier analysis on a torus), it provides a useful illustration of
our general method. Indeed, one can already observe in it all the essential ingredients
of the picture for a general groupG. Hence it is instructive to consider it as a blueprint
for the general construction.

We first recall the results of [8] and [14] on the eigenvalues of the correspond-
ing Hecke operators and the global differential operators. We will then prove that the
Hecke operators satisfy a system of differential equations, which are analogous to
equations (1.13). This system will enable us to prove a relation between the eigen-
values of the Hecke operators and the global differential operators and lead to an
alternative, and simpler, proof of the results of [8] and [14] describing these eigen-
values. The differential equations follow from a theorem describing the image of the
sheaf D of differential operators on the Jacobian of the curve X under the action
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of the corresponding Hecke functor. Thus, these differential equations link the geo-
metric/categorical Langlands correspondence and the analytic Langlands correspon-
dence. A generalization of this equation, and this link, toG D PGLn will be presented
in Section 4.

2.1. The global picture
Let G D GL1. In this case, the role of BunıG is played by the Picard scheme Pic.X/,
which is a fine moduli space of line bundles on X . The canonical line bundle on
Pic.X/ is isomorphic to the trivial line bundle, and we will fix such an isomorphism.
Hence we have a positive Hermitian inner product on the space of smooth functions
on Pic.X/. Let L2.Pic.X// be its completion. This is our Hilbert space HGL1 . The
Hecke operators on HGL1 are easy to define as they do not involve integration. Their
spectrum was described in [14, Section 2] (not only for GL1 but also for an arbitrary
complex torus), whereas the spectrum of the algebra of global differential operators
was described in [8, Section 5]. We recall these descriptions below.

Denote by Hp the Hecke operator associated to a point p 2 X and the defining
one-dimensional representation of GL1. It acts on L2.Pic.X// as the pullback with
respect to the map sending a line bundle L 2 Pic.X/,

L 7!L.p/: (2.1)

These operators obviously commute with each other for different p 2X .
Recall that Pic.X/ is a disjoint union of connected components Picn.X/;n 2 Z,

labeled by the degrees of line bundles. The Hecke operators shift the degree by 1. Let
us fix a point p0 2X once and for all. The map (2.1) with pD p0 identifies Picn.X/
and PicnC1.X/ for all n 2 Z. This implies (see [14, Section 2.1] for more details) that
the spectral theory of the operators Hp; p 2 X , on L2.Pic.X// is equivalent to the
spectral theory of the operators

p0Hp WDHp ıH
�1
p0
; p 2X;

acting on

H0
GL1
WDL2

�
Pic0.X/

�
:

Note that p0Hp0 is the identity operator.
Next, the Hecke operators p0Hp commute with the algebra AGL1 of global dif-

ferential operators on the Jacobian Pic0.X/, which is generated by the translation
vector fields (both holomorphic and antiholomorphic). Hence they share the same
eigenfunctions, namely, the Fourier harmonics on the Jacobian viewed as a real torus.
We will now describe a relation between their eigenvalues following [14, Section 2.4]
and [8, Section 5].
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To describe the eigenfunctions and eigenvalues of the operators p0Hp (following
[14, Section 2.4]), recall that as a real torus,

Pic0.X/'H 1.X;R/�=H1.X;Z/; (2.2)

where the embedding H1.X;Z/ ,!H 1.X;R/� is defined by sending ˇ 2H1.X;Z/
to the linear functional on H 1.X;R/,

H 1.X;R/ 3 c 7!

Z
ˇ

c D

Z
ˇ

.!c C!c/; !c 2H
0.X;�1;0/: (2.3)

Given � 2H 1.X;Z/, denote by '� the harmonic representative of the image of
� in H 1.X;R/. Then

'� D !� C!� ; !� 2H
0.X;�1;0/: (2.4)

Note that these are precisely the smooth one-forms on X whose integrals over all
one-cycles in X are integers.

Now view '� as a linear functional on H 1.X;R/� and set

f� D e
2�i'� ; � 2H 1.X;Z/: (2.5)

LEMMA 2.1
For any � 2H 1.X;Z/, f� is a well-defined function on Pic0.X/ given by (2.2).

The functions f� ; � 2H 1.X;Z/ are the Fourier harmonics of the torus Pic0.X/.
They form an orthogonal basis of the Hilbert space H0

GL1
.

The following statement is proved in [14, Theorem 2.4].

PROPOSITION 2.2
The function f� ; � 2 H 1.X;Z/, is an eigenfunction of the Hecke operators p0Hp .
The eigenvalue F� .p/ of p0Hp on f� is given by the formula

F� .p/D exp
�Z p

p0

2�i.!� C!� /
�
; (2.6)

where the integral is taken over any path connecting p0 to p (the integral does not
depend on the choice of this path).

Now consider the algebra of global differential operators on Pic0.X/,

AGL1 DDGL1 ˝DGL1 ;
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where DGL1 (resp., DGL1 ) is the algebra of global holomorphic (resp., antiholomor-
phic) differential operators on Pic0.X/. Since Pic0.X/ is compact and has an abelian
group structure, we have

DGL1 D Sym
�
‚Pic0.X/

�
; DGL1 D Sym

�
‚Pic0.X/

�
;

where ‚Pic0.X/ (resp., ‚Pic0.X/) is the commutative Lie algebra of holomorphic
(resp., antiholomorphic) translation vector fields on Pic0.X/. We have

‚Pic0.X/'H 0.X;�1;0/�; ‚Pic0.X/'H 0.X;�0;1/�:

Therefore, the eigenvalues of the algebra AGL1 on any joint eigenvector are encoded
by a pair .a;b/, where a 2H 0.X;�1;0/ and b 2H 0.X;�0;1/.

We associate to a a holomorphic GL1-oper, that is, the trivial line bundle on X
with the holomorphic connection d C a. And we associate to b an antiholomorphic
GL1-oper, that is, the trivial line bundle on X with the antiholomorphic connection
d C b.

PROPOSITION 2.3 ([8, Theorem 5.4])

(1) The eigenvalues of AGL1 on f� are given by the pairs

.a;b/D .2�i!� ; 2�i!� /:

(2) The GL1-opers d C 2�i!� ; � 2H 1.X;Z/ are all holomorphic GL1-opers on
X with real monodromy (i.e., the monodromy representation takes values in
GL1.R/�GL1.C/).

(3) The spectrum of AGL1 on H0
GL1

is in bijection with the set of holomorphic
GL1-opers on X with real monodromy.

Combining Propositions 2.2 and 2.3, we obtain the following relation between
the eigenvalues of the Hecke operators and AGL1 .

THEOREM 2.4
Let F.p/ and .a;b/ be the eigenvalues of the Hecke operators p0Hp; p 2 X , and
AGL1 on a joint eigenfunction in L2.Pic0.X//, respectively. Then

F.p/D exp
�Z p

p0

.aC b/
�

(2.7)

and bD�a.
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This is equivalent to the following statement. Denote by @ and @ the holomorphic
and antiholomorphic de Rham differentials, respectively.

PROPOSITION 2.5
The function F.p/ is the single-valued solution of the differential equation

dF D .aC b/F (2.8)

or, equivalently, the system

@F D aF; @F D bF (2.9)

normalized so that F.p0/D 1.

Remark 2.1
Theorem 2.4 does not specify the possible values of the one-forms a and b that appear
in this relation (which we already know from Propositions 2.2 and 2.3). But these
values can be readily obtained from the relation (2.7).

Indeed, single-valuedness of the function F.p/ given by (2.7) implies that the
integrals of the one-form aC b over all one-cycles in X are integer multiples of 2�i .
This is equivalent to

aC bD 2�i'� ; (2.10)

where '� D !� C !� is the harmonic one-form introduced above, for some � 2
H 1.X;Z/. On the other hand, the self-adjointness on L2.Pic0.X// of the operators
of the form � � � and .� C �/=i , where � is any holomorphic translation vector field
on Pic0.X/, implies that

bD�a: (2.11)

Combining formulas (2.10) and (2.11), we obtain that

aD 2�i!� ; bD 2�i!�

for some � 2H 1.X;Z/.
Therefore, we can derive Propositions 2.2 and 2.3 from Theorem 2.4. Thus, The-

orem 2.4 (or equivalently, Proposition 2.5) is the key statement that yields explicit
formulas for the eigenvalues of both Hecke operators and the global differential oper-
ators.

In the rest of this section, we will give an alternative proof of Proposition 2.5
using the action of the Hecke functors p0Hp (categorical versions of the Hecke oper-
ators p0Hp) on the sheaf DGL1 of differential operators on Pic0.X/. This will be our
blueprint for proving analogous statements for a general group G.
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2.2. Hecke operators and Hecke functors
Consider the GL1 version of the Hecke correspondence

HeckeD
®�

L;L.p0 � p/;p
�¯
� Pic0.X/� Pic0.X/�X; (2.12)

and let q1; q2 WHecke! Pic0.X/ be the two projections and q3 WHecke! X . We
have

q2 � q3 WHecke
�
�! Pic0.X/�X

and with this isomorphism, q1 becomes the map

q1 W Pic0.X/�X ! Pic0.X/; (2.13)

L 7!L.p � p0/: (2.14)

Denote by p0 bHp the restriction of p0Hp to the dense subspace of C1-functions
on Pic0.X/. This is the operator of pulling back a C1-function under the map q1 and
restricting the result to Pic0.X/ � p. As p varies along X , these operators combine
into a single operator

p0
bH W C1�Pic0.X/

�
! C1

�
Pic0.X/�X

�
:

We are going to relate it to the Hecke functor

p0H WD q�1 WMod.DPic0.X//!Mod.DPic0.X/�X /;

the D-module pullback functor.

2.3. Another derivation of the differential equations
We will now derive the differential equations (2.9) appearing in Proposition 2.5 using
Corollary 3.3 from Section 3.1, in which we will takeZ D Pic0.X/�X;Y D Pic0.X/
and let q1 be the map Z ! Y given by (2.14). Denote the corresponding section
1Z!Y (see Section 3.1) by 1q1 . The equations (2.9) will follow from Corollary 3.3
and the fact that 1q1 satisfies the differential equation of Proposition 2.9 below.

To prove Proposition 2.9, denote by DGL1 the sheaf of holomorphic differential
operators on Pic0.X/. The algebra

DGL1 D 

�
Pic0.X/;DGL1

�
D Sym

�
‚Pic0.X/

�
acts by endomorphisms of DGL1 from the right, and this action commutes with the
left action of DGL1 . We know that

SpecDGL1 'H
0.X;�1;0/DOpGL1.X/:
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Recall that a (holomorphic) GL1-oper on X is a holomorphic connection r on the
trivial line bundle on X , so we can write

r Dra WD d C a; (2.15)

where a 2H 0.X;�1;0/.
The trivial line bundle V on OpGL1.X/�X is equipped with a partial connection

runiv along X , whose restriction to ra � X � OpGL1.X/ � X is the connection ra

on X . Thus, .V ;runiv/ is the universal GL1-oper on OpGL1.X/�X . We can write an
explicit formula for runiv.

Let W be a finite-dimensional vector space, and let AD FunW D SymW �. The
canonical element of W � ˝ W gives rise to an element of A ˝ W . Taking W D
H 0.X;�1;0/, we obtain a holomorphic one-form � with values in Fun OpGL1.X/.
Then

runiv D d C �: (2.16)

Explicitly, if ¹!i ; i D 1; : : : ; gº is a basis of H 0.X;�1;0/ and ¹bi ; i D 1; : : : ; gº
is the dual basis in H 0.X;�1;0/� '‚Pic0.X/, then

� D

gX
iD1

bi!i : (2.17)

Let VX WD ��.V/, where � is the projection OpGL1.X/�X !X . The connec-
tion runiv makes VX into a left DX -module.

Moreover, the unit 1 2 Fun OpGL1.X/ gives rise to a global section of VX , which
we denote by 1VX . In addition, VX is equipped with an action of Fun OpGL1.X/'

DGL1 which commutes with the action of DX .
This allows us to define the following D-module on Pic0.X/�X :

DGL1 �
DGL1

VX :

The algebra DGL1 acts on it by endomorphisms which commute with the action of
the sheaf DPic0.X/�X .

Define its global section s by the formula

s WD 1� 1VX :

The element (2.17) gives rise to a linear operator

� WDGL1 �
DGL1

VX !DGL1 �
DGL1

.VX ˝KX /

(namely, we interpret the bi as elements of Sym.‚Pic0.X//DDGL1 ).
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The DX -module structure on DGL1 �
DGL1

VX allows us to define the action of the

holomorphic de Rham differential @X along X on sections of DGL1 �
DGL1

VX ,

@X WDGL1 �
DGL1

VX !DGL1 �
DGL1

.VX ˝KX /:

Formula (2.16) readily implies the following.

LEMMA 2.6
The section s satisfies the equation

@Xs D � � s: (2.18)

COROLLARY 2.7
The D-module DGL1 �

DGL1

VX is isomorphic to DGL1 � OX with the action of DX on

the second factor modified so that the holomorphic de Rham differential @X acts as
follows:

@X 7! 1� @X C �; (2.19)

where � 7!
Pg
iD1 bi �!i .

Now recall the D-module q�1 .DX / on Pic0.X/ � X and its section 1q1 . The
algebra DGL1 naturally acts on q�1 .DX / by endomorphisms commuting with the D-
module structure.

THEOREM 2.8
There is an isomorphism of D-modules on Pic0.X/�X equipped with a commuting
action of DGL1 ,

q�1 .DGL1/'DGL1 �
DGL1

VX ; (2.20)

under which the section 1q1 is mapped to s.

Proof
By Corollary 2.7, we need to prove that q�1 .DGL1/'DGL1 � OX , with the modified
action of DX on the second factor.

Let A be an abelian variety. It comes equipped with the group homomorphism
m WA�A!A. We claim that m�.DA/'DA � OA, with DA corresponding to the
first factor acting on itself from the left, and DA corresponding to the second factor
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acting on OA in a modified way so that the corresponding action of the holomorphic
de Rham differential is given by the formula

@A 7! 1� @AC �A; (2.21)

where

�A D
X
i

bi �!i :

Here ¹!iº is a basis in the space T �1 A D H
0.A;KA/ and ¹biº is the dual basis in

the dual vector space T1A, which we identify with the space ‚.A/ of holomorphic
translation vector fields on A (so the bi can be viewed as global differential operators
on A).

To see this, we invoke formula (3.2) from the next section which shows that

m�.DA/DDA�A=.DA�A �‚A�A=A/; (2.22)

where ‚A�A=A is the sheaf of vertical vector fields for the morphismm WA�A!A.
It is generated by the global translation vector fields onA�A of the form ��1�1�� ,
where � 2‚.A/. The quotient (2.22) can be identified with DA � OA, but then the
action of the vector field 1� � corresponding to the element � in the second factor
DA is given by the action of � � 1 corresponding to the element � in the first factor
DA, which coincides with the above description.

Now we apply this to the case AD Pic0.X/ (so DA DDGL1 ) and observe that

q�1 .DGL1/'
�
m�.DGL1/

�
jPic0.X/�X ;

where m is the multiplication map on Pic0.X/ and X is embedded into the second
factor Pic0.X/ via the Abel–Jacobi map X! Pic0.X/ sending p 7!OX .p � p0/.

The theorem now follows from the fact that the linear map from

H 0
�
Pic0.X/;KPic0.X/

�
'H 0.X;KX /

to H 0.X;KX / corresponding to the pullback of a one-form under the Abel-Jacobi
map is the identity, so that formula (2.21) becomes (2.19).

Using Theorem 2.8 and Lemma 2.6, we obtain the sought-after differential equa-
tion on 1q1 .

PROPOSITION 2.9
We have @X1q1 D � � 1q1 .
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Corollary 3.3, which is proved in Section 3.1 below, gives us a way to produce
differential equations on the operator of pullback of functions from differential equa-
tions satisfied by the unit section of the D-module pullback of the sheaf of differen-
tial operators. More precisely, we will use Corollary 3.3 in the setting where the map
p W Z! Y is q1 W Pic0.X/ �X ! Pic0.X/, so that p�1C1 D p0

bH and 1Z!Y D 1q1 .
Combined with Proposition 2.9, Corollary 3.3 gives us the main result of this section.

THEOREM 2.10
The Hecke operator p0 bH , viewed as a smooth function on X with values in operators
on C1.Pic0.X//, satisfies the system of differential equations

@X � p0
bH D � � p0 bH; @X � p0

bH D � � p0 bH: (2.23)

This theorem implies Proposition 2.5. Thus, we have obtained an alternative
proof of Proposition 2.5 which relies on the Hecke eigensheaf property (Theorem 2.8)
of the sheaf DGL1 (in the sense of Remark 2.3 below).

In other words, the differential equation on the eigenvalues of the Hecke oper-
ators follows from the description of the action of the Hecke functor on the sheaf
DGL1 .

Remark 2.2
The equations (2.23) yield the following explicit formula for the Hecke operators in
terms of the translation vector fields:

p0Hp D exp
�Z p

p0

.� C �/
�
D exp

�Z p

p0

� gX
iD1

bi!i C

gX
iD1

bi!i

��
; (2.24)

where the bi and bi are viewed as translation vector fields on Pic0.X/ (see (2.17)),
whereas the !i and !i are one-forms on X which are integrated over a path con-
necting the points p0 and p. Integrality properties of the eigenvalues of the bi and bi
then imply that the exponential of this integral does not depend on the choice of such
path. This way we obtain another interpretation of the relation between the eigenval-
ues from Theorem 2.4. However, the path-independence of (2.24) is not obvious, and
this is why we prefer to express this relation in terms of the system (2.23).

Remark 2.3
For a 2 OpGL1.X/D SpecDGL1 , let Ia be the corresponding ideal in DGL1 . Define
the following D-module on Pic0.X/:


a WDDGL1=.DGL1 � Ia/:
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Theorem 2.8 implies that

q�1 .
a/'
a � Va;

where Va D .OX ;ra/ is the flat line bundle corresponding to a (see (2.15)). The
last isomorphism expresses the fact that 
a is the restriction to Pic0.X/ of a Hecke
eigensheaf on Pic.X/ with the eigenvalue Va. In fact, Theorem 2.8 is equivalent
to this statement for all a 2 OpGL1.X/. In this sense, DGL1 is the universal Hecke
eigensheaf parameterized by all GL1-opers on X .

Here is a categorical interpretation. Recall that a D-module version of the
Fourier–Mukai transform (see [26], [28]) establishes an equivalence between the
category of coherent D-modules on Pic0.X/ and the category of coherent sheaves
on LocGL1 , the moduli space of flat line bundles on X (it is isomorphic to an
affine bundle over Pic0.X/). The space OpGL1.X/ can be a realized as a subvari-
ety of LocGL1 (it is the fiber over the point corresponding to the trivial line bundle
in Pic0.X/). Let Coh.OpGL1.X// be the category of coherent sheaves supported
(scheme-theoretically) on OpGL1.X/� LocGL1 . The restriction of the above Fourier–
Mukai transform to Coh.OpGL1.X// gives rise to an equivalence E between this
(abelian) category and the category of D-modules K on Pic0.X/ with finite global
presentation, that is, such that there is an exact sequence

D˚mGL1
!D˚nGL1

!K! 0:

This equivalence E takes an object F of Coh.OpGL1.X// to

E.F / WDDGL1 ˝
DGL1

F; F WD 

�
OpGL1.X/;F

�
;

where we use the fact that DGL1 ' Fun OpGL1.X/ (see [16, Section 2]).
It follows from this definition that E.Oa/D
a and E.OOpGL1

.X//DDGL1 .

3. Generalities on D-modules and integral transforms
In this section, we discuss the compatibility between natural functors on the categories
of (twisted) D-modules and the corresponding operations on sections of line bundles.
Though most of the results of this section are fairly straightforward, we were unable
to find them in the literature. We expect that these results are likely to have other
applications, so it is worthwhile to record them here.

We note that closely related topics have been discussed in the works by D’Agnolo
and Schapira [6] and Goncharov [21], and in fact, we will use a result of [6] below.
Also, in writing this section we have benefited from the advice of P. Schapira.

First, we discuss the pullback functor (Section 3.1), then the pullback functor
in the setting of twisted differential operators (Section 3.2), then the pushforward
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functor (Section 3.3), and finally the integral transform functors associated to corre-
spondences (Section 3.4). We will use the results of the last subsection (specifically,
Corollary 3.12) to prove Theorem 1.18 in Section 4. Roughly speaking, the differen-
tial equations (1.13) on the Hecke operator will follow from certain properties of the
corresponding Hecke functor established in [3].

Remark 3.1
In the case of a curve over a finite field Fq , one can pass from Hecke eigensheaves
to Hecke eigenfunctions using Grothendieck’s faisceaux-fonctions correspondence.
Namely, taking the trace of the Frobenius (a topological generator of the Galois
group of Fq) on the stalks of a Hecke eigensheaf on BunG , we obtain a function on
BunG.Fq/. Crucially, this function is a Hecke eigenfunction because Grothendieck’s
correspondence is compatible with natural operations on sheaves and functions.

In the case of a curve defined over C, there is no Frobenius as the field of com-
plex numbers is algebraically closed. Instead, we construct Hecke eigenfunctions as
single-valued bilinear combinations of sections of the corresponding Hecke eigen-
sheaf 
� (see formula (1.8)) and sections of a complex conjugate sheaf, as explained
in Section 1.5 of [8] and Section 1.3 above. One could argue that this procedure is
what replaces taking the traces of the Frobenius in the case of a curve over C, but the
question remains why the resulting function is an eigenfunction of the Hecke opera-
tors. The answer is that the results of this section enable us to derive the Hecke eigen-
function property (and to compute the corresponding eigenvalues) from the Hecke
eigensheaf property of
�, using the cyclicity of the Hecke eigensheaf
� (viewed as
a twisted D-module on BunG ) and the cyclicity of the corresponding “Hecke eigen-
values” (viewed as twisted D-modules on the curve X ). Thus, the results established
in this section may be viewed as an analogue in the complex case of the compatibility
of Grothendieck’s correspondence with natural operations on sheaves and functions.

3.1. Pullback
For a smooth complex manifold Y , denote by OY and DY the sheaves of holomorphic
functions and differential operators on Y , respectively (in the analytic topology). Let
Mod.DY / be the category of left DY -modules.

Remark 3.2
In what follows, we can take as DY the sheaf of algebraic differential operators on Y
and the category of modules over it. Then we have analogous statements as well.

Given sheaves of algebras A and B on Y , an .A;B/-bimodule is, by definition,
a sheaf of modules over A˝Bopp on Y .
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We need to recall some facts about the pullback functor for D-modules. Let p W
Z ! Y be a submersion of smooth complex manifolds. Denote by p�1 the sheaf-
theoretic pullback functor.

The O-module pullback functor p� is defined as follows. If F is an OY -module,
then the OZ-module p�.F / is

p�.F / WDOZ ˝
p�1.OY /

p�1.F /:

If F is a left DY -module, then p�.F / has a natural structure of a left DZ-
module. To explain this, let ‚Z=Y be the relative tangent sheaf of the morphism p W

Z! Y (its sections are vertical vector fields on Z with respect to p). This is a sheaf
of Lie algebras. It acts by commutator on DZ , and this action preserves the left ideal
.DZ �‚Z=Y /�DZ . Moreover, we have

�
DZ=.DZ �‚Z=Y /

�‚Z=Y ' p�1.DY / (3.1)

and hence

DZ!Y WDDZ=.DZ �‚Z=Y / (3.2)

is naturally a .DZ ; p
�1.DY //-bimodule.

Remark 3.3
Since p is a submersion,

DZ!Y ' p
�.DY /DOZ ˝

p�1.OY /

p�1.DY / (3.3)

as an .OZ ; p�1.DY //-bimodule, and this is how DZ!Y is usually defined. Defin-
ing it by formula (3.2) for such p has the advantage that it makes the DZ-module
structure on it manifest.

The isomorphism (3.3) implies that the O-module pullback p�.F / of a left DY -
module F can be written as

p�.F /'DZ!Y ˝
p�1.DY /

p�1.F /;

and hence the OZ-module structure on p�.F / naturally extends to a DZ-module
structure. Thus, we obtain the pullback functor for D-modules, which we denote in
the same way as the O-module pullback:

p� WMod.DY /!Mod.DZ/:
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On the other hand, let C1Y and C1Z be the sheaves of C-valued C1-functions on
the smooth real manifolds underlying Y and Z, respectively (in the analytic topol-
ogy). Consider the internal Hom sheaf

Hom
�
p�1.C1Y /;C

1
Z

�
on Z in the category of sheaves of vector spaces. By definition, for an open subset
U �Z,

Hom
�
p�1.C1Y /;C

1
Z

�
.U / WDHom

�
p�1.C1Y /jU ;C

1
Z jU

�
(3.4)

(as is well known, the presheaf defined by this formula is a sheaf). In particular, we
have a special global section p�1C1 of Hom.p�1.C1Y /;C

1
Z / over Z, which corre-

sponds to the pullback of smooth functions from Y to Z. More precisely, for any
open U � Z, the restriction of p�1C1 to U maps f 2 .p�1.C1Y //.U /D C

1.p.U //

to its pullback to U via p (note that p.U / is open because p is a submersion).

LEMMA 3.1
The sheaf Hom.p�1.C1Y /;C

1
Z / has a natural .DZ ; p

�1.DY //-bimodule struc-
ture, which is defined as follows: for every open U � Z, given P 2 DZ.U /,
Q 2 .p�1.DY //.U / D DY .p.U //, and � 2 Hom.p�1.C1Y /;C

1
Z /.U /, which is

a compatible system ¹�U 0 2Hom.C1.p.U 0//;C1.U 0//º for open subsets U 0 � U ,

� 7! P ı � ıQ;

where P ı � ıQ stands for the compatible system ¹P jU 0 ı �U 0 ıQjp.U 0/ jU 0 �U º.

On the other hand, we have the .DZ ; p
�1.DY //-bimodule DZ!Y given by (3.2).

The unit 1Y 2DY gives rise to a global section 1Z!Y of DZ!Y .

PROPOSITION 3.2
There is a unique injective homomorphism of .DZ ; p

�1.DY //-bimodules

DZ!Y !Hom
�
p�1.C1Y /;C

1
Z

�
sending 1Z!Y to p�1C1 .

Proof
Let

AZ;Y WDDZ � p�1C1 :
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For every open U �Z, we have

� � p�1C1.f /D 0; 8� 2‚Z=Y .U /;8f 2 C
1
�
p.U /

�
:

It follows that AZ;Y is naturally isomorphic to the right-hand side of (3.2) and hence
to DZ!Y as a left DZ-module. The isomorphism (3.1) defines the structure of a
.DZ ; p

�1.DY //-bimodule on both AZ;Y and DZ!Y . It is clear that the former is
compatible with the .DZ ; p

�1.DY //-bimodule structure on Hom.p�1.C1Y /;C
1
Z /.

Remark 3.4
Concretely, we can choose a sufficiently fine open covering of Z so that each neigh-
borhood is isomorphic to the product of two balls Bm 2 Cm and Bn 2 Cn and the
restriction of the map p to it is isomorphic to the projection Bm � Bn ! Bm.
Let ¹y1; : : : ; ymº and ¹x1; : : : ; xnº be coordinates on Bm and Bn. It is clear
that the spaces of sections of both AZ;Y and DZ!Y are both isomorphic to
Hol.y1; : : : ; ym; x1; : : : ; xn/˝ CŒ@y1 ; : : : ; @ym �, where Hol.y1; : : : ; ym; x1; : : : ; xn/

denotes the space of holomorphic functions on Bm �Bn.

COROLLARY 3.3
Suppose that P � 1Z!Y D 0 for some P 2 
.Z;DZ/. Then

P � p�1C1 D 0; P � p�1C1 D 0: (3.5)

3.2. Pullback in the twisted setting
The results of Section 3.1 can be generalized to twisted differential operators. Namely,
let L be a holomorphic line bundle on Y . Recall that in Section 1.1, using the norm
map a 7! kak D jaj2 from C� to R>0, we associated to L a C1 complex line bundle

kLk D jLj2

with the structure group R>0 on Y , viewed as a complex analytic variety. Clearly,

jLj2 ' .L˝L/ ˝
OY˝OY

C1Y : (3.6)

In other words, if the transition functions of L are ¹g˛ˇ º, then the transition functions
of jLj2 are ¹jg˛ˇ j2º.

Consider the sheaf of (twisted) differential operators acting on L (see [2]),

DY;L WDL ˝
OY

DY ˝
OY

L�1:

Likewise, we have the sheaf DZ;p�L of differential operators acting on the line bundle
p�.L/ on Z.
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The role of DZ!Y is now played by

DZ!Y;L WD p
�.L/ ˝

OZ

p�.DY ˝
OY

L�1/

' p�.L/ ˝
OZ

DZ!Y ˝
p�1.OY /

p�1.L/; (3.7)

which is naturally a .DZ;p�.L/; p
�1.DY;L//-bimodule. The unit 1Y 2DY gives rise

to a global section 1Z!Y;L of DZ!Y;L.
On the other hand, let C1

Y;jLj2
and C1

Z;jp�.L/j2
be the sheaves of C1-sections of

the line bundles jLj2 on Y and jp�.L/j2 on Z, respectively. Then DY;L naturally
acts on C1

Y;jLj2
and DZ;p�.L/ naturally acts on C1

Z;jp�.L/j2
.

Consider the internal Hom sheaf Hom.p�1.C1
Y;jLj2

/;C1
Z;jp�.L/j2

/ on Z and its

global section p�1
L

corresponding to the natural pullback map

p�1L W C
1
�
Y; jLj2

�
! C1

�
Z;
ˇ̌
p�.L/

ˇ̌2�
: (3.8)

The sheaf Hom.p�1.C1
Y;jLj2

/;C1
Z;jp�.L/j2

/ has the structure of a .DZ;p�.L/;

p�1.DY;L//-bimodule defined in the same way as in Lemma 3.1.

PROPOSITION 3.4
There is a unique injective homomorphism of .DZ;p�.L/; p

�1.DY;L//-bimodules

DZ!Y;L!Hom
�
p�1.C1

Y;jLj2
/;C1

Z;jp�.L/j2

�
sending 1Z!Y;L to p�1

L
.

Proof
According to the definition (3.7), we have

DZ!Y;L ' p
�.L/ ˝

OZ

DZ!Y ˝
p�1.OY /

p�1.L/: (3.9)

Moreover, isomorphisms (3.2) and (3.1) imply similar isomorphisms in the twisted
case (note that ‚Z=Y naturally embeds into DZ;p�.L/):

DZ!Y;L 'DZ;p�.L/=.DZ;p�.L/ �‚Z=Y /; (3.10)

p�1.DY;L/'
�
DZ;p�.L/=.DZ;p�.L/ �‚Z=Y /

�‚Z=Y : (3.11)

Now we argue in the same way as in the proof of Proposition 3.2. Let

AZ;Y;L WDDZ;p�.L/ � p
�1
C1 :
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For every open U �Z, we have

� � p�1L .f /D 0; 8� 2‚Z=Y .U /;8f 2 C
1
�
p.U /;L

�
:

By restricting to sufficiently small open subsets, we obtain from Proposition 3.2
that AZ;Y;L is naturally isomorphic to the right-hand side of (3.10) and hence
to DZ!Y;L as a left DZ;p�.L/-module. Using the isomorphism (3.11), we obtain a
.DZ;p�.L/; p

�1.DY;L//-bimodule structure on both AZ;Y;L and DZ!Y;L and there-
fore an isomorphism between AZ;Y;L and DZ!Y;L as .DZ;p�.L/; p

�1.DY;L//-
bimodules, sending 1Z!Y;L to p�1

L
. By construction, the former is precisely the

.DZ;p�.L/; p
�1.DY;L//-submodule of Hom.p�1.C1

Y;jLj2
/;C1

Z;jp�.L/j2
/ generated

by p�1
L

.

3.3. Pushforward
Suppose that p W Z! Y is a submersion with compact fibers, and denote by KZ=Y
the corresponding relative canonical bundle. Then

�Z=Y WD jKZ=Y j
2

is the C1 line bundle of relative densities. Let KY and KZ be the canonical line
bundles on Y and Z, respectively, and let �Y WD jKY j2 and �Z WD jKZ j2 be the
C1 line bundles of densities on Y and Z, respectively. We have

�Z=Y '�Z ˝
OZ

p�.��1Y /:

Denote by p� the sheaf-theoretic pushforward functor. Let again L be a line
bundle on Y . Consider the internal Hom sheaf (where ˝ stands for ˝

C1
Y

or ˝
C1
Z

)

Hom
�
p�.C

1
Z;jp�.L/j2˝
Z

/;C1
Y;jLj2˝
Y

�
'Hom

�
p�.C

1
Z;jp�.L/j2˝
Z=Y j

/;C1
Y;jLj2

�
on Y and its global section pL

Š
corresponding to the integration map

pL
Š W C

1
�
Z;
ˇ̌
p�.L/

ˇ̌2
˝�Z=Y

�
! C1

�
Y; jLj2

�
: (3.12)

Set

M WD p�.L/ ˝
OZ

KZ=Y

so that

jMj2 D
ˇ̌
p�.L/

ˇ̌2
˝
C1
Z

�Z=Y :
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LEMMA 3.5
The sheaf Hom.p�.C

1
Z;jMj2

/;C1
Y;jLj2

/ has a natural .DY;L; p�.DZ;M//-bimo-
dule structure, which is defined as follows: for every open U � Y , given R 2

.p�.DZ;M//.U / D DZ;M.p
�1.U //, S 2 DY;L.U /, and � 2 Hom.p�.C

1
Z;jMj2

/;

C1
Y;jLj2

/.U /, which is a compatible system ¹�U 0 2 Hom.C1.p�1.U 0/; jMj2/;

C1.U 0; jLj2//º for open subsets U 0 �U ,

� 7! S ı � ıR;

where S ı� ıR stands for the compatible system ¹S jU 0 ı�U 0 ıRjp�1.U 0/ j U
0 � U º.

On the other hand, denote by pD� the (derived) D-module pushforward functor

pD� WD
b.DZ/!Db.DY /:

If F is a DZ-module, then it follows from the definition (see [22, Section 4.6]) that

pD� .F /DR
�p�.DY Z

L
˝
DZ

F /; (3.13)

where

DY Z WDKZ ˝
OZ

DZ!Y ˝
p�1.OY /

p�1.K�1Y /

is a sheaf on Z with a natural structure of a .p�1.DY /;DZ/-bimodule.
The right action of DY on KY gives rise to a canonical isomorphism

D
opp
Y 'KY ˝

OY

DY ˝
OY

K�1Y ;

which yields an identification (see [22, Remark 4.18])

DY Z ' p
�1.DY / ˝

p�1.OY /

KZ=Y : (3.14)

Let us apply pD;0� WD H 0pD� to the left DZ-module DZ ˝
OZ

M�1. Since it is

free,
L
˝ in formula (3.13) is the ordinary ˝. Note also that it carries a commuting

right DZ;M-module structure and hence is a .DZ ;DZ;M/-bimodule. This implies
that the sheaf pD;0� .DZ ˝

OZ

M�1/ is a .DY ; p�.DZ;M//-bimodule.

Setting

DY Z;M WDDY Z ˝
OZ

M�1 ' p�1.DY / ˝
p�1.OY /

p�.L�1/;
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we obtain an isomorphism

pD;0� .DZ ˝
OZ

M�1/' p�.DY Z;M/:

Define the following .DY;L; p�.DZ;M//-bimodule on Y :

eDY Z;M WDL ˝
OY

pD;0� .DZ ˝
OZ

M�1/'L ˝
OY

p�.DY Z;M/:

It follows from the definition of the functor pD;0� that the unit 1Z 2DZ gives rise to
a global section 1Y Z;L of eDY Z;M .

PROPOSITION 3.6
There is a unique injective homomorphism of .DY;L; p�.DZ;M//-bimodules

eDY Z;M!Hom
�
p�.C

1
Z;jMj2

/;C1
Y;jLj2

�
sending 1Y Z;L to pL

Š .

Proof
Let us prove the statement in the case LDOY , so that MDKZ=Y .

Recall the relative tangent sheaf ‚Z=Y . The sheaf p�.‚Z=Y / naturally acts
on p�.KZ=Y / and on p�.C1Z;
Z=Y / by Lie derivatives. Hence ‚Z=Y embeds into
p�.DZ;KZ=Y / as a subsheaf of Lie algebras, and so it acts on p�.DZ;KZ=Y / by
commutators. For every open U � Y , we have

pL
Š .� � f /D 0; 8� 2 p�.‚Z=Y /.U /;8f 2 C

1
�
p�1.U /;�Z=Y

�
:

It follows that

p�.DZ;KZ=Y /
opp � pL

Š ' p�.DZ;KZ=Y /=
�
p�.‚Z=Y / � p�.DZ;KZ=Y /

�
:

Formula (3.14) implies that

p�.DZ;KZ=Y /=
�
p�.‚Z=Y / � p�.DZ;KZ=Y /

�
' eDY Z;KY=Z :

This completes the proof of the proposition for LD OY , so that M DKY=Z . For a
general line bundle L, the statement of the proposition is derived in a similar way (cf.
Propositions 3.2 and 3.4).

3.4. Integral transforms
Consider a correspondence
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Z
p1

.
p2

&

Y1 Y2

(3.15)

Assume that p1 and p2 are submersions with compact fibers. Let L1 and L2 be line
bundles on Y1 and Y2, respectively, such that

p�1 .L1/' p
�
2 .L2/ ˝

OZ

KZ=Y2 : (3.16)

In what follows, we will fix such an isomorphism.
Consider the Hom sheaf on Y2,

Hom
�
p2�p

�1
1 .C1Y1;L1/;C

1
Y2;L2

�
: (3.17)

Combining Lemmas 3.1 and 3.5, we obtain that it is a .DY2;L2 ; p2�p
�1
1 .DY1;L1//-

bimodule.
Recall that we have a section

pL2
2Š
2Hom

�
p2�.C

1
Z;jp�

2
.L2/j2˝
Z=Y2

/;C1
Y2;jL2j2

�
DHom

�
p2�.C

1
Z;jp�

1
.L1/j2

/;C1
Y2;jL2j2

�
(here we apply the isomorphism (3.16)). We also have a section

p�11;L1 2Hom
�
p�11 .C1

Y1;jL1j2
/;C1

Z;jp�
1
.L1/j2

�
which gives rise to a section

p2�.p�11;L1/ 2Hom
�
p2�p

�1
1 .C1

Y1;jL1j2
/;p2�.C

1
Z;jp�

1
.L1/j2

/
�
:

Denote by HL1;L2
Z;Y1;Y2

, or HZ for short, the composition

HZ WD pL2
2Š
ı p2�.p�11;L1/;

which is a section of the sheaf (3.17). This is the integral transform associated to the
correspondence Z and the line bundles L1 and L2.

On the other hand, recall the .DZ;p�.L1/; p
�1
1 .DY1;L1//-bimodule DZ!Y1;L1

and the .DY;L2 ; p2�.DZ;M2
//-bimodule eDY Z;M2

, where

M2 D p
�
2 .L2/ ˝

OZ

KZ=Y2 :
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Formula (3.16) implies that

DZ;p�.L1/ 'DZ;M2
:

Therefore, we can form the tensor product

D
L1;L2
Y2 Z!Y1

WD eDY Z;M2
˝

p2�.DZ;M2
/
p2�.DZ!Y1;L1/; (3.18)

which is naturally a .DY2;L2 ; p2�p
�1
1 .DY1;L1//-bimodule. The canonical sections ofeDY Z;M2

and DZ!Y1;L1 introduced above give us a global section of D
L1;L2
Y2 Z!Y1

,
which we denote by 1Y2 Z!Y1 .

Propositions 3.4 and 3.6 imply the following.

PROPOSITION 3.7
There is a unique homomorphism of .DY2;L2 ; p2�p

�1
1 .DY1;L1//-bimodules

D
L1;L2
Y2 Z!Y1

!Hom
�
p2�p

�1
1 .C1

Y1;jL1j2
/;C1

Y2;jL2j2

�
sending 1Y2 Z!Y1 to HZ .

This proposition has the following obvious corollary.

COROLLARY 3.8
Suppose that P � 1Y2 Z!Y1 D 0 for some P 2 
.Y2;DY2;L2/. Then

P �HZ D 0; P �HZ D 0:

In other words, holomorphic differential equations satisfied by the section
1Y2 Z!Y1 give rise to differential equations on the integral transform HZ obtained
from the correspondence Z.

Now we want to connect this to the D-module integral transform functor associ-
ated to the correspondence Z. Namely, we have the functor

H�Z WD
b.DY1/!Db.DY2/; (3.19)

G 7! pD2�
�
p�1 .G /

�
: (3.20)

Let

HZ WDL2 ˝
OY2

H0
Z.DY1 ˝

OY1

L�1/: (3.21)

This is a .DY2;L2 ; p2�p
�1
1 .DY1;L1//-bimodule. The unit 1Y1 gives rise to a global

section of HZ , which we denote by  Z .
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Recall formula (3.13) for the functor pD2�. The next result follows from [6, Propo-
sition 2.12].

PROPOSITION 3.9 ([6])

Suppose that the map Z! Y1�Y2 is a closed embedding. Then DY2 Z

L
˝
DZ

DZ!Y1

is concentrated in cohomological degree 0.

This proposition has the following corollary.

COROLLARY 3.10
If Z ! Y1 � Y2 is a closed embedding, then there is an isomorphism of .DY2;L2 ;

p2�p
�1
1 .DY1;L1//-bimodules

D
L1;L2
Y2 Z!Y1

'HZ (3.22)

under which 1Y2 Z!Y1 is mapped to  Z .

Combining Corollaries 3.8 and 3.10, we obtain the following.

COROLLARY 3.11
Suppose that Z ! Y1 � Y2 is a closed embedding. If P �  Z D 0 for some P 2

.Y2;DY2;L2/, then

P �HZ D 0; P �HZ D 0:

In our proof of Theorem 1.18 in the next section, we will need the following
variant of Corollary 3.11. Let L02 be another line bundle on Y2, and let

D
L0
2

Y2;L2
WDL02 ˝

OY2

L�12 ˝
OY2

DY2;L2 ;

the sheaf of differential operators acting from L2 to L02 on Y2.

COROLLARY 3.12
Suppose that Z ! Y1 � Y2 is a closed embedding. If P �  Z D 0 for some P 2


.Y2;D
L0
2

Y2;L2
/, then

P �HZ D 0; P �HZ D 0:

4. The case of PGLn
In this section, we consider the case of G D PGLn (so that LG D SLn) and the Hecke
correspondenceZ.!1/ associated to �D !1, the first fundamental coweight of PGLn.
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There are two advantages in this case that we will exploit: (1)Z.!1/DZ.!1/, that is,
the fibers of q2�q3 are isomorphic to a closedGŒŒz��-orbit Gr!1 , which is smooth and
compact (in fact, Gr!1 ' Pn�1); and (2) the special section (corresponding to the oper
Borel reduction) of the universal oper bundle V!1 satisfies an nth order differential
equation (see Lemma 1.15). Hence we will be able to apply Corollary 3.12 in the case
of the Hecke correspondence Z.!1/ to derive the differential equations (1.13) on the
Hecke operator bH!1 and thus prove Theorem 1.18.

Note that we also have the multiplicity-one property (see Proposition 1.13 and
Theorem 1.12). We will use the notation of Section 1.2.

4.1. Hecke functor
We follow the definition of the Hecke functor H�!1 given in [3] (where it is denoted by
T �!1 ), taking into account the fact that in this case the fibers of the morphism q2 � q3
are isomorphic to Gr!1 ' Pn�1 and hence are smooth. The following definition is
taken from [3, Section 5.2.4].

Definition 4.1 ([3])
The Hecke functor

H�!1 WD
b.DBunPGLn

/!Db.DBunPGLn �X /

is defined as follows. For a left D-module M on BunPGLn ,

H�!1.M/ WD .q2 � q3/
D
�

�
q�1 .M/

�
; (4.1)

where .q2 � q3/D� denotes the derived direct image functor for D-modules.

Denote by Hi
!1

the corresponding i th cohomology functor. We now recall a the-
orem of Beilinson and Drinfeld [3] describing the action of Hi

!1
on a specific D-

module on BunPGLn .
If n is even, then to define this D-module, we need to pick a square root K1=2X

of the canonical line bundle on X (as in Section 1.4). To it, one associates a specific
square root

LDK
1=2
Bun (4.2)

of the canonical line bundle on BunPGLn following [3, Section 4] (see also [25]). If n
is odd, then the construction of L does not require any choices.

Let DBunPGLn
be the sheaf of differential operators on BunPGLn . Then

DBunPGLn
˝L�1
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is a left D-module on BunPGLn equipped with the commuting right action of the
algebra

DPGLn DD
ˇ
PGLn
D 
.BunˇPGLn

;L˝DBunPGLn
˝L�1/:

Recall from Definition 1.5 that the right-hand side does not depend on ˇ. Moreover,
we have

DPGLn ' Fun Op�SLn
.X/

according to the result of [3] which is quoted in Theorem 1.6 above. Here � denotes
the isomorphism class of K1=2X , as in Theorem 1.6.

4.2. Hecke eigensheaf property
Recall the left D-module Vuniv

!1;X
on X obtained from the universal oper bundle. It

is equipped with a commuting action of the above algebra DPGLn . Furthermore, by
definition of SLn-opers, we have an embedding

�univ
!1
WK

.n�1/=2
X ,! Vuniv

!1;X

and hence a section

suniv
!1
2 
.X;K

�.n�1/=2
X ˝Vuniv

!1;X
/:

Recall the nth order differential operator (1.12). Lemmas 1.15 and 1.17 imply the
following differential equation on suniv

!1
(this is an analogue of equation (2.18) in the

case of GL1):

� � suniv
!1
D 0: (4.3)

We will now use this equation to derive the system (1.13).
Consider the isomorphism (1.2):

a W q�1 .L
1=2/

�
�! q�2 .L/˝K2˝ q

�
3 .K

�.n�1/=2
X /: (4.4)

It gives rise to a section  Z.!1/ of .L �K
�.n�1/=2
X /˝H0

!1
.DBunPGLn

˝L�1/.
The first part of the following theorem is Theorem 5.2.9 of [3]. The second part

follows from Theorems 5.4.11 and 5.4.12 and Proposition 8.1.5 of [3].

THEOREM 4.2 ([3])
We have Hi

!1
.DBunPGLn

˝L�1/D 0 for i ¤ 0, and

H0
!1
.DBunPGLn

˝L�1/' .DBunPGLn
˝L�1/ �

DPGLn

Vuniv
!1;X
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as left DBunPGLn
� DX -modules equipped with a commuting action of DPGLn .

Moreover, the section  Z.!1/ of

.L �K
�.n�1/=2
X /˝H0

!1
.DBunPGLn

˝L�1/

' .L˝DBunPGLn
˝L�1/ �

DPGLn

.K
�.n�1/=2
X ˝Vuniv

!1;X
/

coincides with 1� suniv
!1

.

Theorem 4.2 and (4.3) immediately imply the following.

COROLLARY 4.3
The section  Z.!1/ satisfies

� � Z.!1/ D 0: (4.5)

Now we derive Theorem 1.18 from Corollary 4.3 using Corollary 3.12 in the case
of the Hecke correspondence Z.!1/.

4.3. Proof of Theorem 1.18
We are going to derive Theorem 1.18 from Corollary 3.12 with Z, Y1, Y2, L1,
L2, and L02 defined below. Initially, we would like to take Y1 D BunıPGLn , Y2 D
BunıPGLn �X , and Z DZ.!1/ (see Section 1.2). However, in order for the morphism
Z! Y1 � Y2 to be a closed embedding and the morphism Z! Y2 to be proper, we
need to restrict Z.!1/ to open dense subsets on both sides, as we now explain.

Recall from formula (1.5) that we have an open dense subvariety of BunıPGLn ,

UPGLn.!1/D
®
F 2 BunıPGLn j q2

�
q�11 .F /

�
� BunıPGLn

¯
; (4.6)

which is dense by our assumption. It follows from [27, Lemma 5.9]3 that there exist
open dense subsets

Y1 � UPGLn.!1/; Y2 � BunıPGLn �X

such that the restriction Z of Z.!1/ to Y1 � Y2 is a closed embedding and the cor-
responding map q2 � q3 W Z ! Y2 is proper. Denote by p1 and p2 the maps q1
and q2 � q3 restricted to Y1 � Y2, respectively. Finally, set L1 D K

1=2
Bun and L2 D

K
1=2
Bun � K

�.n�1/=2
X . Thus, we have jL1j

2 D �
1=2
Bun and jL2j

2 D �
1=2
Bun � �

�.n�1/=2
X .

3We thank Tony Pantev for this reference and a helpful discussion. Note that the correspondence considered in
[27] differs from the Hecke correspondenceZ.!1/ in that one of the two bundles is dualized; but since the dual
of a stable bundle is stable, we can use Lemma 5.9 of [27] in our setting.



ANALYTIC LANGLANDS CORRESPONDENCE FOR CURVES OVER LOCAL FIELDS 2057

Then we have the isomorphism (3.16) which follows from the isomorphism (4.4) (see
also formula (4.2)).

Now we are in the setting of Corollary 3.12, with L02 WDK
1=2
Bun �K

.nC1/=2
X . Let

HZ be the corresponding integral transform operator. We then obtain from Corol-
lary 3.12 and equation (4.5) that HZ satisfies the system of differential equations

� �HZ D 0; � �HZ D 0: (4.7)

Next, we relate HZ to our Hecke operator bH!1 . Recall from Section 1.2 that
the operator bH!1 is defined as the integral transform via the correspondence Z.!1/
from the space VPGLn.!1/ of smooth compactly supported sections of jL1j

2 D�
1=2
Bun

on UPGLn.!1/ to the space VPGLn ˝ 
.X;�
�.n�1/=2
X / of smooth sections of jL02j

2 D

�
1=2
Bun ��.nC1/=2X on BunıPGLn �X (in fact, the image consists of compactly supported

sections). Let eH!1 be the restriction of bH!1 to the space of smooth sections of jL1j
2

that are compactly supported on Y1 � UPGLn.!1/, followed by the restriction to Y2 of
the resulting section of jL02j

2 on BunıG �X . Thus, eH!1 acts from the space of smooth
compactly supported sections of jL1j

2 on Y1 to the space of smooth sections of jL02j
2

on Y2.
It follows from the above definition that eH!1 is the restriction of HZ to smooth

compactly supported sections of jL1j
2 on Y1. Therefore, eH!1 also satisfies the system

(4.7). Since Y1 is dense in UPGLn.!1/ and Y2 is dense in BunıPGLn �X , this implies

that bH!1 also satisfies this system of equations. Thus, we obtain the system (1.13).
This completes the proof of Theorem 1.18.

Remark 4.1
It is possible to write an explicit formula for the differential operator � similar to
formula (2.17) in the case of GL1. For example, let G D PGL2, so LG D SL2. Then
the space Op�SL2

.X/ is an affine space over the vector spaceH 0.X;K2X /. Let us pick a
point 	0 2Op�SL2

.X/ and use it to identify Op�SL2
.X/ with H 0.X;K2X /. Let ¹'i ; i D

1; : : : ; 3g � 3º be a basis of H 0.X;K2X /, and let ¹Fi ; i D 1; : : : ; 3g � 3º be the set of
generators of the polynomial algebra Fun Op�SL2

.X/ dual to this basis, that is,

Fi .	0C 'j /D ıij :

Let ¹Di ; i D 1; : : : ; 3g � 3º be the global holomorphic differential operators on
BunPGL2 corresponding to the Fi under the isomorphism Fun Op�SL2

.X/'DPGL2 .
By Lemma 1.15, we have an isomorphism Op�SL2

.X/'D
�
2 .X/, where D�

2 .X/

is the space of projective connections on X (corresponding to our choice of K1=2X ). It
sends

	 2Op�SL2
.X/ 7! P� 2D

�
2 .X/:
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Then we can write

� D P�0 C

3g�3X
iD1

Di ˝ 'i W K
�1=2
X !DPGL2 ˝K

3=2
X (4.8)

(it is clear that this operator does not depend on the choice of 	0).
Note that locally on X , after choosing a local coordinate z, we can write the

second-order differential operator P�0 2D
�
2 .X/ in the form

P�0 D @
2
z C v0.z/:

This gives a more concrete realization of the equations (1.13).

Remark 4.2
For 	 2 Op�PGLn

.X/ D SpecDPGLn , let C� be the corresponding one-dimensional
DPGLn -module. In [3, Section 5.1.1], Beilinson and Drinfeld defined the following
left D-module on BunPGLn :


0� WD .DBunPGLn
˝L�1/ ˝

DPGLn

C�

(this is the D-module from Theorem 1.12). They derived from Theorem 4.2 that
Hi
!1
.
0�/D 0 for i ¤ 0 and (see [3, Theorem 5.2.6])

H0
!1
.
0�/'


0
� � .V!1 ;r�/:

This means that 
0� is a Hecke eigensheaf with respect to the flat SLn-bundle corre-
sponding to 	 (see [3]). In this sense, DPGLn ˝L�1 is a universal Hecke eigensheaf
parameterized by the component Op�SLn

.X/ of the space of SLn-opers on X .
Recall the equivalence of categories in the abelian case obtained by restriction of

the D-module version of the Fourier–Mukai transform discussed in Remark 2.3. It
has a non-abelian analogue (see, e.g., [16]). In the case of G D PGLn, on one side we
have the category of coherent sheaves on Op�PGLn

.X/. On the other side, we have the
category of D-modules K on BunPGLn with finite global presentation of the form

.DBun PGLn ˝L�1/˚m! .DBunPGLn
˝L�1/˚r !K! 0:

The equivalence E takes an object F of the former category to

E.F / WD .DBunPGLn
˝L�1/ ˝

DPGLn

F; F WD 

�
Op�PGLn

.X/;F
�
:

In particular, E.OOp�PGLn
.X//DDBunPGLn

˝L�1 and E.O�/D
0�.
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5. General case
In this section, we formulate the analogues of Theorem 1.18 and Corollary 1.19
describing the eigenvalues of the Hecke operators in the case of an arbitrary simple
Lie group G and outline their proof following the argument of the previous section.

The case ofG D PGLn and �D !1, which we considered in the previous section,
differs from the case of a general group G and dominant integral coweight � 2 P_C in
two ways. First, in the case of G D PGLn and �D !1, we have Z.�/D Z.�/, that
is, the fibers .q2 � q3/

�1.P ; x/ of the Hecke correspondence Z.!1/ are isomorphic
to the PGLnŒŒz��-orbit Gr!1 in the affine Grassmannian of PGLn which is smooth and
compact. But for general G and � 2 P_C , these fibers are isomorphic to the closure
of the GŒŒz��-orbit Gr� and are singular. Second, in the case of G D PGLn and �D
!1, the canonical section of the universal oper bundle satisfies a scalar differential
equation of Lemma 1.15, but for general G and � this is not the case. Hence for
general G and � our construction needs some modifications, which we discuss in this
section.

Namely, we formulate an analogue (Conjecture 5.1) of Corollary 1.19 describ-
ing the eigenvalues of Hecke operators in terms of real LG-opers; an analogue
(Lemma 5.4) of the system (4.3) of differential equations satisfied by the section
suniv
�

of the universal oper bundle (twisted by a power of KX ); and an analogue
(Conjecture 5.5) of Theorem 1.18 describing differential equations satisfied by the
Hecke operators. Conjecture 5.1 follows from Conjecture 5.5 in the same way as in
the case of PGLn.

Thus, the only statement that remains to be proved is Conjecture 5.5. It can be
derived from the Hecke eigensheaf property (established in [3] and recalled in Sec-
tion 5.3) by an argument analogous to the one we used in the proof of Theorem 1.18
in Section 4.3 in the case of PGLn. However, because the morphism q2 � q3 is not
smooth in the general case (in the sense of algebraic geometry), deriving Conjec-
ture 5.5 from this result requires additional care. We leave the details to a follow-up
paper.

5.1. Eigenvalues of the Hecke operators
Recall from the discussion before Theorem 1.6 that the space OpLG.X/ of LG-opers
onX has a canonical component Op�LG.X/ isomorphic to the affine space Op�LGad

.X/.

If the set ¹h�;�i; � 2 P_Cº contains half-integers, then to specify Op�LG.X/ we need

to choose a square root K1=2X of the canonical line bundle on X ; then � denotes the

isomorphism class of this K1=2X which we also use to construct a square root L D

K
1=2
Bun of the canonical line bundle on BunG (see the discussion before Theorem 1.1).

Otherwise, the component Op�LG.X/ is well defined without any choices.
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For � 2 P_C , let V� be the corresponding irreducible finite-dimensional repre-
sentation of LG. Given 	 2 Op�LG.X/, we obtain a flat holomorphic vector bundle
.V�;r�;�/ on X . Moreover, the oper Borel reduction gives rise to an embedding

�� WK
h�;�i
X ,! V�

and hence

e�� WOX ,!K
�h�;�i
X ˝V�:

Let

s� WDe��.1/ 2 
.X;K�h�;�iX ˝V�/:

Now suppose that 	 2 Op�LG.X/R. Then we have an isomorphism of C1 flat
bundles

.V�;r�;�/' .V�;r�;�/

and hence a pairing

h�;�.�; �/ W .V�;r�;�/˝ .V�w0.�/;r�;�w0.�//! .C1X ; d /

as V �
�
' V�w0.�/. Since h�w0.�/; �i D h�;�i, we have

s�w0.�/ 2 
.X;K
�h�;�i

X ˝V
�

�/:

Recall that BunG has connected components BunˇG ; ˇ 2 �1.G/, and we have a
direct sum decomposition

HG D
M

ˇ2�1.G/

H
ˇ
G : (5.1)

According to Conjecture 1.11, for each 	 2Op�LG.X/R we have a nonzero eigenspace

of AG in H
ˇ
G for all ˇ 2 �1.G/ (which is one-dimensional by Proposition 1.13 and

Theorem 1.12). We expect that the Hecke operator H� preserves the direct sum of
these subspaces (see Section 1.4 in the case of PGLn). Moreover, one can find out
precisely howH� permutes different H

ˇ
G by analyzing the action of the centerZ.LG/

on V� (which is naturally identified with the group of characters of �1.G/). As in the
case of PGLn, this implies that the eigenvalues ¹ˆ�.	/º of H� corresponding to 	
form a torsor over the group �˛.G;�/ of roots of unity of some order ˛.G;�/; for
example, ˛.PGLn;!1/ D n (this is so even for G D SO4n=¹˙I º, when �1.G/ '
Z2 �Z2). This is why we describe these eigenvalues up to a scalar.

The following conjecture is an analogue of Corollary 1.19 for a general group G.
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CONJECTURE 5.1
For 	 2Op�LG.X/R, the section ˆ�.	/ 2 
.X;�

�h�;�i
X / is equal to

ˆ�.	/D h�;�.s�; s�w0.�//

up to a scalar.

Remark 5.1
As in the case ofG D PGLn (see Section 1.4), we expect that both the pairing h�;�.�; �/
and the eigenvalues ˆ�.	/ of the Hecke operator H� can be normalized up to a root
of unity of order ˛.G;�/. Conjecture 5.1 can then be refined to a statement that two
torsors over the corresponding group �˛.G;�/ of roots of unity are equal to each other,
similarly to Conjecture 1.14 for G D PGLn.

5.2. Analogue of the system of differential equations
To prove Conjecture 5.1, we need an analogue of the system of differential equations
which appear in Corollary 1.16 and Theorem 1.18 in the case of PGLn and �D !1.
In that case, we used the possibility to interpret opers in terms of scalar differential
operators of order n (see Lemma 1.15). An analogous interpretation is also possible
if G is of type B` or C` and � D !1, but is not known (and most likely does not
exist) in general (see [4], [7]). Instead, we replace the equations from Corollary 1.16
and Theorem 1.18 with a statement (Lemma 5.2) about the (twisted) D-module on
X obtained by applying all possible (twisted) differential operators to the canonical
section.

Namely, let

DX;�h�;�i WDK
�h�;�i
X ˝

OX

DX ˝
OX

K
h�;�i
X

be the sheaf of differential operators acting on the line bundle K�h�;�iX on X . Set

VK
� WDK

�h�;�i
X ˝

OX

V�:

The oper connection r�;� defines a DX -module structure on V�, and therefore a
DX;�h�;�i-module structure on VK

�
. We will denote this DX;�h�;�i-module by VK

�;�
.

Recall that we have a canonical section s� 2 
.X;VK
�
/.

LEMMA 5.2
If the monodromy representation of the flat vector bundle .V�;r�;�/ is irreducible,
then

DX;�h�;�i � s� D VK
�;�: (5.2)
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Proof
Note that DX;�h�;�i �s� is a nonzero DX;�h�;�i-submodule of VK

�;�
. If the monodromy

representation of the flat vector bundle .V�;r�;�/ is irreducible, then .V�;r�;�/ is an
irreducible DX -module, so VK

�;�
is an irreducible DX;�h�;�i-module. Hence (5.2)

follows.

Let I�;� be the left annihilating ideal of s� in the sheaf DX;�h�;�i. Thus, we have
an exact sequence of left DX;�h�;�i-modules

0! I�;�!DX;�h�;�i! VK
�;�! 0:

Lemma 5.2 has the following immediate corollary.

COROLLARY 5.3
Suppose that the monodromy representation of the flat vector bundle .V�;r�;�/,
where 	 2 OpLG.X/R, is irreducible. Then h�;�.s�; s�w0.�// is a unique, up to

a scalar, nonzero section ‰�.	/ of ��h�;�iX annihilated by the ideals I�;� and
I�w0.�/;�.

Remark 5.2
For G D PGLn, the ideal I�;� is globally generated by a differential operator of
order n. Therefore, in this case, a section annihilated by this ideal is the same as a
section satisfying the nth order differential equation (1.11). For a general simple Lie
group G, the ideal I�;� does not have such a generator. But as the above corollary
shows, this is not necessary. What matters is the cyclicity of the D-module VK

�;�
(see

(5.2)).
We note that it is the cyclicity of two types of twisted D-modules: VK

�;�
on X

and 
� on BunG (see (1.8)), that enables us to link the geometric Langlands corre-
spondence and the analytic one (see Remark 3.1).

Remark 5.3
Note that a nonzero section ‰�.	/ from Corollary 5.3 satisfies

.DX;�h�;�i˝DX;�h�;�i/ �‰�.	/' VK
�;�˝V

K

�;�w0.�/
:

Corollary 5.3 is an analogue of Corollary 1.16. We are going to formulate a con-
jectural analogue of Theorem 1.18 (Conjecture 5.5) in a similar way.

Let Vuniv
�

be the universal vector bundle over Op�LG.X/ �X with a partial con-
nection runiv along X , such that

.Vuniv
� ;runiv/j��X D .V�;r�;�/; 	 2Op�LG.X/:
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Let � WOp�LG.X/�X!X be the projection and set

Vuniv
X;� WD ��.V

univ
� /; V

K;univ
X;�

WDK
�h�;�i
X ˝Vuniv

X;�:

Then V
K;univ
X;�

is naturally a DX;�h�;�i-module on X , equipped with a commuting
action of Fun Op�LG.X/'DG .

Moreover, the oper Borel reduction gives rise to an embedding

�univ
� WK

�h�;�i
X ,! Vuniv

�;X

and hence a canonical section

suniv
� 2 
.X;V

K;univ
X;�

/:

Consider the cyclic .DG˝DX;�h�;�i/-module .DG˝DX;�h�;�i/ � s
univ
�

generated by
suniv
�

. The next lemma follows from the irreducibility of the universal LG-oper bundle.
It is an analogue of Lemma 1.17 for a general group G.

LEMMA 5.4
There is an isomorphism

.DG ˝DX;�h�;�i/ � s
univ
� ' V

K;univ
X;�

(5.3)

of .DG ˝DX;�h�;�i/-modules.

Now recall that the Hecke operator bH� is a section of ��h�;�iX with values in
operators VG.�/! VG . Hence we can apply to it the sheaf DX;�h�;�i as well as the
algebra DG , through its action on VG . The two actions commute, and they generate
a DX;�h�;�i-module inside the sheaf of C1-sections of ��h�;�iX on X with values in
operators VG.�/! VG . Let us denote this DX;�h�;�i-module by hH�i.

Similarly, we can apply to H� the sheaf DX;�h�;�i and the algebra DG . Denote
the resulting DX;�h�;�i-module by hH�i. The following is an analogue of Theo-
rem 1.18 for a general group G.

CONJECTURE 5.5
There are isomorphisms

hH�i ' V
K;univ
X;�

; hH�i ' V
K;univ
X;� (5.4)

of .DG ˝DX;�h�;�i/-modules (resp., .DG ˝DX;�h�;�i/-modules).

In the case G D PGLn, �D !1, this conjecture is equivalent to the statement of
Theorem 1.18.
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Suppose that the monodromy representation of the flat vector bundle .V�;r�;�/,
where 	 2 OpLG.X/R, is irreducible. Then Conjecture 5.1 follows from Conjec-
ture 5.5 and Corollary 5.3 in the same way as Corollary 1.19 follows from Theo-
rem 1.18 and Corollary 1.16 in the case G D PGLn, �D !1.

5.3. Hecke eigensheaf property
It remains to prove Conjecture 5.5. As in the case of PGLn, we wish to derive Con-
jecture 5.5 using the formalism of Section 3.4 from the Hecke eigensheaf property
established by Beilinson and Drinfeld [3].

We start by recalling the definition of the Hecke functor in the general case from
[3].

We will use the notation of Section 1.2. Consider the Hecke correspondence
Z.�/. The fibers of the morphism q2 � q3 are isomorphic to the closure Gr� of the
GŒŒz��-orbit Gr� in the affine Grassmannian of G. We have denoted by Z.�/ the open
dense part of Z.�/ such that the fibers of q2 � q3 restricted to Z.�/ are isomorphic
to Gr�, and we have denoted by qi the restriction of the morphism qi to Z.�/.

The following definition is taken from [3, Section 5.2.4].

Definition 5.6 ([3])
Let M be a left D-module on BunG . Denote by q?1 .M/ the intermediate extension to
Z.�/ of q�1 .M/. (Locally, we can choose an isomorphism Z.�/' BunG �Gr� �X
so that q1 is the projection on the first factor; then q?1 .M/ can be identified with the
exterior tensor product of q�1 .M/, the irreducible D-module on Gr�, and OX .) The
Hecke functor is defined by the following formula:

H��.M/ WD .q2 � q3/
D
�

�
q?1 .M/

�
: (5.5)

Now consider the leftD-module DBunG ˝L�1, where LDK
1=2
Bun . It is equipped

with the commuting right action (see [3, Section 5.1.1]) of

DG D 
.BunˇG ;L˝DBunG ˝L�1/' Fun Op�LG.X/:

The isomorphism (1.2) gives rise to a section  Z.�/ of

.L �K
�h�;�i
X /˝H0

�.DBunG ˝L�1/:

The following theorem is due to [3] (see the references before Theorem 4.2
above).

THEOREM 5.7 ([3])
We have Hi

�
.DBunG ˝L�1/D 0 for i ¤ 0, and
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H0
�.DBunG ˝L�1/' .DBunG ˝L�1/ �

DG
Vuniv
�;X

as left .DBunG � DX /-modules equipped with a commuting action of DG .
Moreover, the section  Z.�/ of

.L �K
�h�;�i
X /˝H�.DBunG ˝L�1/' .L˝DBunG ˝L�1/ �

DG
.K
�h�;�i
X ˝Vuniv

�;X /

coincides with 1� suniv
�

.

Theorem 5.7 and Lemma 5.4 imply the following.

COROLLARY 5.8
There is an isomorphism

.DG ˝DX;�h�;�i/ � Z.�/ ' V
K;univ
X;�

(5.6)

of .DG ˝DX;�h�;�i/-modules.

Conjecture 5.5 (and hence Conjecture 5.1) can be derived from Corollary 5.8
by adapting the results of Section 3.4 to the present situation (similarly to what we
did in the proof of Theorem 1.18 in Section 4.3 in the case of PGLn). This requires
additional care since the morphism q2 � q3 is not smooth in general (in the sense of
algebraic geometry). We leave the details to a follow-up paper.

5.4. Proof of Theorem 1.1
In this subsection, we derive Theorem 1.1 from a local statement about line bundles
on the affine Grassmannian given in formula (241) of [3] (it is reproduced in formula
(5.9) below). All ingredients are contained in [3]. We include the argument here for
completeness.

For a point x of our curve X , let Fx be the formal completion of the field of
rational functions on X at x, and let Ox be its ring of integers. We will also use the
notation O DCŒŒz��, F DC..z//. Let AutO be the group of automorphisms of O . It
naturally acts on the formal loop group G.F / preserving the subgroup G.O/. Hence
we obtain an action of AutO on the affine Grassmannian GrDG.F /=G.O/, which
preserves the G.O/-orbits Gr�; � 2 P_C .

Consider first the case when the set ¹h�;�i; � 2 P_Cº only contains integers. LetcM be the ind-scheme defined in [3, Section 2.8.3], which parameterizes quadruples
.x; tx ;F ; �x/, where x is a point of our curve X , tx is a formal coordinate at x (so
that we can identify Ox with CŒŒtx��), F is aG-bundle onX , and �x is a trivialization
of F on the disk Dx D Spec Ox . The projection
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cM ! BunG �X; (5.7)

.x; tx ;F ; �x/ 7! .F ; x/

is a torsor for the group AutO �G.O/, which naturally acts on tx and �x . We use it
to construct a functor F sending an (ind-)scheme Y with an action of AutO �G.O/

to an (ind-)scheme over BunG �X ,

F.Y /D Y WDcM �
AutO�G.O/

Y:

This is a generalization of the Gelfand–Kazhdan functor in [19] from (ind-)schemes
equipped with an action of the group AutO to (ind-)schemes over X . Applying it to
Gr�, we obtain the scheme

F.Gr�/D G r� WDcM �
AutO�G.O/

Gr�

over BunG �X . Denote by r the projection G r�! BunG �X .

PROPOSITION 5.9 ([3, Section 5.2.2(ii)])
There is a natural isomorphism Z.�/ ' G r� under which the projection q2 � q3 W
Z.�/! BunG �X is identified with r .

Next, in [3, Section 4.6], a local Pfaffian line bundle was defined on Gr. We will
denote it by LGr. According to the construction, LGr is .AutO �G.O//-equivariant,
and hence so is its restriction LGr� to theG.O/-orbit Gr�. Applying the above functor
F to it, we obtain a line bundle on G r�, which we will denote by LG r� .

In [3], the line bundle LGr� was described explicitly. To explain this result, we
need to define a certain one-dimensional representation of AutO �G.O/. Namely,
let us assign to every element � of AutO the image of z 2CŒŒz��DO under �. This
assignment sets up a bijection between AutO and the space of formal power series

�.z/D
X
n�0

�nz
nC1 2C

�
Œz�
�
; (5.8)

where �0 is invertible. In particular, we obtain a canonical homomorphism � W

AutO!Gm, �.z/ 7! �0.

Definition 5.10
For n 2 Z, let o.n/ be the one-dimensional representation of AutO on which it acts
via the composition of � and the character of Gm raising �0 to the power n. We
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extend it to a one-dimensional representation (denoted in the same way) of AutO �

G.O/.

THEOREM 5.11 ([3, (241)])
There is a canonical isomorphism of .AutO � G.O//-equivariant line bundles on
Gr�,

LGr� 'KGr� ˝ o�; (5.9)

where KGr� is the canonical line bundle on Gr� and o� WD o.�h�;�i/.

We now derive Theorem 1.1 from this result. First, we need the following state-
ment which is proved, for example, in [15, Section 6.4].

LEMMA 5.12
Under the functor F introduced above, the representation o.n/ of AutO�G.O/ goes

to the line bundle r�X .K
n
X /, where rX is the projection G r�

r
! BunG �X!X .

The functor F also sends KGr� to the relative canonical line bundle of the mor-
phism r W G r�! BunG �X , which by Proposition 5.9 is the line bundle K2 intro-
duced in Section 1.2. We also have rX D q3 under the isomorphism of Proposi-
tion 5.9. Therefore, Theorem 5.11 and Lemma 5.12 imply that there is a canonical
isomorphism

LGr� 'K2˝ q
�
3 .K

�h�;�i
X /: (5.10)

On the other hand, under our current assumption that the set ¹h�;�i; � 2 P_Cº
only contains integers, Beilinson–Drinfeld construction in [3, Section 4.4.1], produces
a square root of the canonical line bundle on BunG (normalized by a trivialization
of its fiber at the trivial G-bundle). We will denote it by K1=2Bun . The results of [3,
Sections 4.4.14, 4.6] imply that under the isomorphism of Proposition 5.9, we have a
canonical identification

LGr� ' q
�
1 .K

1=2
Bun /˝ q

�
2 .K

1=2
Bun /

�1: (5.11)

Combining the isomorphisms (5.10) and (5.11), we obtain the isomorphism (1.2).
This completes the proof of Theorem 1.1 under this assumption.

Now suppose that the set ¹h�;�i; � 2 P_Cº contains half-integers. Then we mod-
ify the above argument as follows. Define a double cover Aut2O of the group AutO
as the subgroup of the group AutO �Gm consisting of pairs .�;w/, where � is given
by (5.8) and w2 D �0. Define the homomorphism �2 WAutO!Gm by the formula
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�2.�;w/Dw: (5.12)

Next, we fix a square root K1=2X of the canonical line bundle KX on X . As
explained in [3, Section 4.3.16], we can then extend the above functor F to a func-
tor F2 from (ind-)schemes Y with an action of Aut2O � G.O/ to (ind-)schemes
over BunG �X , which has the following defining property. Let o.m/;m 2 1

2
Z, be the

one-dimensional representation of Aut2O �G.O/ on which G.O/ acts trivially and
Aut2O acts as the composition of �2 given by (5.12) and the one-dimensional repre-
sentation of Gm given by w 7!w2m. Then F2 sends o.m/ to the line bundle r�X .K

m
X /

for all m 2 1
2
Z (here KmX stands for .K1=2X /2m, where K1=2X is the chosen square root

of KX ).
As shown in [3], a local Pfaffian line bundle LGr on Gr can still be defined in

this case, but it is now .Aut2O � G.O//-equivariant. Moreover, the isomorphism
(5.9) then holds as an isomorphism of .Aut2O � G.O//-equivariant line bundles
on Gr� and we also have the isomorphism (5.11), where K1=2Bun denotes the square

root of the canonical line bundle on BunG associated to the above choice of K1=2X

(see the discussion before Theorem 1.1). Therefore, the same argument proves the
isomorphism (1.2) in general. This completes the proof of Theorem 1.1.
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