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ABSTRACT 

 

A Neuroengineering Platform for Ex Vivo Analysis of Single-Axon Dynamics of  
 

Serotonergic Neurons   
 

by 

 

Melissa T. Hingorani 

 

All neural processes in the human brain take place in a dense matrix of thin fibers (axons) 

that release serotonin, an ancient neurotransmitter that supports the plasticity of neural tissue 

and has profound implications for mental health. The self-organization of the serotonergic 

matrix is not well understood, despite recent advances in experimental and theoretical 

approaches. Previous work in our laboratory has demonstrated that individual serotonergic 

axons produce highly stochastic trajectories, fundamental to the construction of regional 

fiber densities, but further advances in predictive computer simulations require more 

accurate experimental information. However, visualizing this dynamic behavior in vivo is 

currently extremely difficult. Recent technological advances (e.g., digital holotomography, 

three-dimensional (3D)-cell culture systems, microphysiological systems) have changed the 

way complex neuronal systems can be studied and offer promising alternatives to in vivo 

approaches. This research examined single serotonergic axons in culture systems (co-

cultures and mono-cultures), by using a set of complementary high-resolution methods: 

confocal microscopy, holotomography (refractive index-based live imaging), and super-
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resolution (STED) microscopy. Several 3D-hydrogel systems were additionally tested. This 

research shows that serotonergic axon walks in neural tissue may strongly reflect the 

stochastic geometry of the tissue and it also provides new insights into the morphology and 

branching properties of serotonergic axons. The proposed experimental platform can support 

next-generation analyses of the serotonergic matrix, including seamless integration with 

computational approaches.         
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I. Chapter 1: Introduction  

All neural processes in the human brain take place in a dense matrix of thin fibers 

(axons) that release serotonin (5-hydroxytryptamine, 5-HT, 5HT), yet less than one in a 

million neurons (~26,000 in the mouse and ~400,000 in humans) in the central nervous 

system (CNS) produce 5-HT (Baker et al., 1990; Berger et al., 2009; Hornung, 2003; 

Ishimura et al., 1988). These 5-HT synthesizing fibers are classically referred to as 

“serotonergic axons,” but currently they are more accurately interpreted as axons of a 

heterogeneous group of neurons that cluster in specific brain regions and are unique in their 

expression of tryptophan hydroxylase 2 (Tph2), a rate-limiting enzyme in the 5-HT 

synthesis pathway (Okaty et al., 2019; Ren et al., 2018).  

The 5-HT system is functionally complex, and 5-HT modulates essentially all human 

behavioral processes, exerting its various actions by binding to cell surface receptors that are 

classified into seven distinct families (5-HT1 to 5-HT7) (Berger et al., 2009; Gershon & 

Tack, 2007). Given how widespread 5-HT action is within the CNS, it is unsurprising that 5-

HT neurotransmission has many functions that if disturbed can result in mental health 

issues, sometimes only later in life. The 5-HT system is widely implicated in neurodivergent 

conditions (e.g., attention deficit hyperactivity disorder (ADHD), Autism, and obsessive-

compulsive disorder (OCD)) and neuropsychiatric disorders such as major depressive 

disorder (MDD) (Azmitia et al., 2011; Numasawa et al., 2017). Naturally occurring 

compounds and selective serotonin reuptake inhibitors (SSRIs) are used to specifically 
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manipulate the serotonergic system in an effort to manage these conditions (Ghaffari Darab 

et al., 2020).    

 Neurons that express Tph2, have the ability to synthesize, release, and take up 5-HT 

(Okaty et al., 2019). The biosynthetic pathway of 5-HT involves two main metabolic steps: 

the amino acid tryptophan is first hydroxylated to 5-hydroxytryptophan (5-HTP) by Tph2, 

which is the rate-limiting step (El-Merahbi et al., 2015), and 5-HTP is then decarboxylated 

by aromatic L-amino acid decarboxylase to form 5-HT (El-Merahbi et al., 2015). 5-HT is 

packaged into vesicles by the vesicular monoamine transporter (VMAT2) and, after neurons 

fire and release 5-HT into the synaptic cleft, the serotonin reuptake transporter (SERT, 5-

HTT) transports 5-HT back into the neuronal cytoplasm (El-Merahbi et al., 2015). 5-HT can 

also be degraded by monoamine oxidase (MAO-B), converting it to 5-hydroxyindoleacetic 

acid (5-HIAA) (El-Merahbi et al., 2015; Sahu et al., 2018). Activation of this set of genes is 

required for acquisition of 5-HT transmitter identity (Sahu et al., 2018).  

 

A. Anatomy of the 5-HT system Raphe nuclei 

 Serotonergic neurons are part of the brainstem reticular formation and have the 

largest cohesive projective network throughout the CNS (Azmitia, 2001). Serotonergic 

neurons develop from rostrocaudally discrete progenitor pools that span transcriptionally 

and anatomically defined hindbrain segments called rhombomeres (r1–r11) and the 

‘isthmus’ (sometimes referred to as r0) at the mid–hindbrain junction (Okaty et al., 2019). 

These neurons from different rhombomeres distribute into different raphe nuclei. Sorting 5-

HT neurons into anatomical subdomains has provided the necessary vocabulary for 5-HT 



 

3 
 

researchers, however, the precise domain boundaries and nomenclature used to describe 

these neurons continue to be refined (Alonso et al., 2013; Baker et al., 1991; Bang et al., 

2012; Hale & Lowry, 2011; Ishimura et al., 1988; Jacobs & Azmitia, 1992; Okaty et al., 

2019; Tork, 1990). 

 Over 50 years ago, Dahlström and Fuxe (1964), defined nine distinct 5-HT neuron 

clusters or nuclei (B1–B9), starting from the caudal medulla through the pons up to the 

rostral extent of the system in the midbrain (Dahlstrom & Fuxe, 1964; Okaty et al., 2019). In 

the 1990’s, an updated schema was proposed that categorized 5-HT neuron clusters into two 

brainstem groups, and further subdivided these groups into nuclei (Jacobs & Azmitia, 1992; 

Okaty et al., 2019).  This schema has since been widely embraced: the rostral ‘superior’ 

brainstem group is divided into the dorsal raphe nucleus (DR), the caudal linear nucleus 

(CLi), the median raphe nucleus (MR), and the B9 nucleus (Jacobs & Azmitia, 1992; Okaty 

et al., 2019). The caudal ‘inferior’ brainstem group is divided into the nucleus raphe magnus 

(RMg), the nucleus raphe pallidus (RPa), the nucleus raphe obscurus (ROb), and the 

ventrolateral medulla (VLM) (Jacobs & Azmitia, 1992; Okaty et al., 2019). This schema 

also introduced the area postrema as a fifth serotonergic nucleus with the brainstem group, 

though examination of 5-HT neurons in this region has been limited (Okaty et al., 2019). 

 

Rhombomere origin relates to the mature anatomy of 5-HT neurons 

 There have been advances in understanding how rhombomere origin relates to the 

mature anatomy of 5-HT neurons (Okaty et al., 2019). The first technique involves the 

development of a genetic fate mapping method to label and manipulate 5-HT neuron cohorts 
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on the basis of their molecularly defined rhombomeric domain of origin (Okaty et al., 2019). 

This method revealed the relationships between 5-HT neuron origin (the spatial and 

molecular coordinates), descendant genetic cell lineage and mature anatomy, as well as the 

behavioral and physiological functions of these neuronal cohorts (Okaty et al., 2019). The 

second method involves observing anatomical distribution of rhombomeric gene 

transcription, visualized by mRNA in situ hybridization, over development to infer 

relationships between rhombomeres and mature 5-HT neuron anatomy (Alonso et al., 2013; 

Okaty et al., 2019). However, some rhombomeric marker genes are expressed only 

transiently, making it challenging to explicitly infer mature neuron lineage by this approach 

when there is migration and intermingling of cells from multiple lineages (Okaty et al., 

2019). 

 

Nontraditional synapses 

 Serotonergic axons typically (70-80%) do not form conventional synapses and can 

release 5-HT at virtually any segment along their trajectory, based on in vivo and in vitro 

observations of their varicosities (dilated axon segments) (Benzekhroufa et al., 2009; 

Gagnon & Parent, 2014; Oleskevich & Descarries, 1990; Quentin et al., 2018). Serotonergic 

neurons can also release 5-HT from the soma, dendrites, and growth cones, effectively 

making their entire membrane surface active (Ivgy-May et al., 1994; Quentin et al., 2018). 

This does not rule out conventional synapses (Papadopoulos et al., 1987), but the scope of 

this “wiring” transmission (Agnati & Fuxe, 2014) in 5-HT signaling is currently unknown.  
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Recently, Sheu et al. (2022) presented evidence that serotonergic axons release 5-HT onto 

axo-ciliary synapses and activate a novel signaling pathway to the nucleus that is distinct 

from signaling at the plasma membrane. Like in conventional neurotransmission, axo-ciliary 

synapses localize and concentrate 5-HT to achieve a specific function (Sheu et al., 2022).  

In vitro, hippocampal neuronal primary cilia readily form contacts with 5-HT axonal 

varicosities in primary cultures of hippocampal neurons and 5-HT neurons from the raphe 

nuclei (Sheu et al., 2022). The vesicles of the varicosities were seen within 10-20 nm of the 

axonal membrane opposing the cilium and occasionally appeared to be docking or fusing 

with the plasma membrane, suggestive of vesicular release (Sheu et al., 2022). 

 

Co-release 

 Serotonergic neurons can also co-release other neurotransmitters, such as glutamate 

and GABA (Okaty et al., 2019; Stamp & Semba, 1995). The classification of glutamatergic-

5-HT neurons was facilitated by the identification of the vesicular glutamate transporters, 

VGLUT1 and VGLUT2 gene paralogue, VGLUT3 (Gras et al., 2002; Okaty et al., 2019). 

VGLUT3 is expressed by a select group of cells in the rat brain among the DR and MR 

(roughly 80% of 5-HT neurons in the DR and MR express VGLUT3), though this 

expression is not limited to 5-HT neurons (i.e., GABAergic and cholinergic neurons also 

express VGLUT3) and not all DR VGLUT3-expressing neurons produce 5-HT (Okaty et al., 

2019). VGLUT3 and SERT are present in 5-HT axonal varicosities of the mouse forebrain, 

and the co-release of glutamate and 5-HT is suggested to play a critical role in encoding 

reward- and anxiety-related behaviors (Belmer et al., 2019).  
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B. Development  

 In mammals, 5-HT neurons mature early in development. They begin synthesizing 5-

HT around embryonic day 11-13 in the mouse and rat brains (Hawthorne et al., 2010; Lidov 

& Molliver, 1982) and around 5 weeks of gestation in the human brain (Mai JK, 2004; 

Sundstrom et al., 1993).  The development of 5-HT axons begins with the initial growth in 

well-defined fiber tracts, followed by branching (arborization) and then eventual dispersal of 

fibers in “terminal fields” (Carrera et al., 2008; Donovan et al., 2019; Jin et al., 2016; 

Kiyasova & Gaspar, 2011; Lidov & Molliver, 1982; Maddaloni et al., 2017). 5-HT axons in 

rodents have classically been thought to complete their terminal field development within 1 

month after birth (Lidov & Molliver, 1982), but recent studies demonstrate that the 

establishment of target-specific heterogeneity in 5-HT axons proceeds beyond this time 

(Maddaloni et al., 2017).  For example, while regions like the medial prefrontal cortex 

(mPFC) had fiber length maintained from post-natal day (PND) 28 to adulthood, the 

diameter of these fibers (in the mPFC) were significantly reduced in the adult compared to 

PND 28. An additional example of target specific heterogeneity of 5-HT fibers can be seen 

in the dorsal hippocampus (HP), where 5-HT fibers became thicker but decreased in total 

length per volume from PND 28 to adulthood (Maddaloni et al., 2017). 

 

Region-specific fiber behavior during development 

 Using a transgenic GFP-mouse model, Maddaloni et al. (2017) identified two distinct 

developmental patterns showing either a progressive or temporary increase in 5-HT fiber 

length from early post-natal stages up to adulthood, with region-specific timing. Regions 
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such as the caudate putamen (CPu), basolateral amygdala (BLA), dorsal lateral geniculate 

nucleus (DLG), and substantia nigra (SN), demonstrated a progressive increase in fiber 

length, where the total length of 5-HT fibers increased starting from postnatal day (PND) 7 

(BLA and SN) or PND 14 (CPu and DLG), followed by a peak at PND 28 and without 

further change into adulthood (Maddaloni et al., 2017). A temporary increase in fiber length 

was characterized by two unique temporal trends (Maddaloni et al., 2017). In the mPFC 

(layer V) and the barrel field of the primary somatosensory cortex (S1BF, layer V), 5-HT 

innervation peaked at PND 7, decreased up to PND 28 and, limited to the S1BF, increased 

again in the adult brain (Maddaloni et al., 2017). 5-HT innervation transiently increased up 

to PND 28 and then appeared pruned in the adult in both the globus pallidus (GP) and dorsal 

hippocampus (HP) (Maddaloni et al., 2017). Given that the density of serotonergic fibers 

could be directly linked to 5-HT levels and given the well-established role of 5-HT signaling 

in brain development, the presence of two distinct region-specific patterns of 5-HT fiber 

development may account for different developmental roles of 5-HT (Maddaloni et al., 

2017; Teissier et al., 2017).  

 

C. Diversity of the 5-HT system  

 5-HT-producing neurons are heterogeneous—differing in location, morphology, 

neurotoxin sensitivity, and associated clinical disorders (Jensen et al., 2008). Due to its 

biomedical significance, rigorous efforts have been made to understand the complexity of 

the 5-HT system and to identify specific markers that distinguish physiological subtypes of 

5-HT neurons (Carhart-Harris & Nutt, 2017; Jensen et al., 2008). 
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Molecular diversity  

 A single cell transcriptomic atlas of 5-HT neurons within the dorsal raphe of young 

adult mice aged 6–10 weeks was recently published (Okaty et al., 2020). This work 

identified 14 distinct neuronal subtypes within the dorsal raphe, all expressing 5-HT (Okaty 

et al., 2020). Generally, these subtypes can be split into two groups, those that co-express 

GABA and those that co-express glutamate (Okaty et al., 2020).  

 

Morphological diversity  

Soma 

 Immunohistochemical studies describe raphe neurons as circular, ovoid, polygonal, 

triangular, and fusiform (Baker et al., 1990; Michelsen et al., 2008; Michelsen et al., 2007; 

Rodríguez et al., 2012; Steinbusch et al., 1981). One feature of 5-HT-immunoreactive 

neurons compared to other neuronal types in the raphe nuclei is their larger cell bodies that 

can reach 20-50 µm in length (Rodríguez et al., 2012).  

 

Axon 

 The processes of neurons are specific and distinct for every neuron type (Azmitia, 

2001). Uniquely, 5-HT axons innervate the entire neural axis of the human brain (Azmitia, 

2001), and they are the only portion of serotonergic neurons that extend outside the raphe 

region (Adell et al., 2002; Tao-Cheng & Zhou, 1999). The morphological heterogeneity of 
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5-HT axons results in projections that vary in axon morphologies in different brain regions 

(Belmer et al., 2019; Gagnon & Parent, 2014).  

Many 5-HT axons have prominent swellings, or varicosities, that are typically 

between 0.5-3 μm in diameter and contain a high concentration of 5-HT molecules 

(Benzekhroufa et al., 2009; Jacobs & Azmitia, 1992; Janusonis, 2014). 5-HT axons in the 

adult brain have traditionally been noted to display two different morphologies: D-fibers 

(originating from the DR) appear thin with fusiform or granular shaped homogenous 

varicosities, and M-fibers (originating from the MR and less plentiful than D-fibers) show 

larger and oval-shaped varicosities along thin axons (Bang et al., 2012; Kosofsky & 

Molliver, 1987; Maddaloni et al., 2017; Mamounas & Molliver, 1988; Tork, 1990; Wilson et 

al., 1989). The “fine” axons from the DR are characterized by varicosities less than 1 μm in 

diameter (Mamounas & Molliver, 1988). The “beaded” axons from the MR are 

characterized by 2-5 μm wide spherical varicosities; the quick physical expansion from a 

thin axon to a dilated varicosity gives these axons a beaded appearance (Mamounas & 

Molliver, 1988).  

 

Subcellular varicosity dynamics 

 Cell culture studies have found that varicosities can form from growth cones through 

a combination of vesicle trafficking and local recruitment of synaptic proteins along neurites 

after their advancement (Buchanan et al., 1989; Malkinson & Spira, 2010; Rees et al., 1976), 

or by splitting of preexisting varicosities (Burry, 1986; Giachello et al., 2012; Grabham et 

al., 2005; Hatada et al., 1999; Hatada et al., 2000). Varicosities generally host a 
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heterogenous population of subcellular organelles including dense core vesicles, 

mitochondria, and endoplasmic reticulum (Giachello et al., 2012; Malkinson et al., 2006). 

The varicosities of 5-HT axons contain clusters of synaptic vesicles (Tao-Cheng & Zhou, 

1999) enforcing their involvement in the release and/or storage of 5-HT (Adell et al., 2002). 

While 5-HT varicosities may not contain specialized synaptic junctions (Chazal & Ralston, 

1987; Descarries et al., 1982), 5-HT can undergo volume or paracrine transmission in the 

DR (Adell et al., 2002; Bunin et al., 1998).  

 

Functional diversity  

 Considerable evidence suggest that functional diversity of 5-HT circuits has a 

molecular and connectivity basis, but the foundation of intrinsic developmental mechanisms 

guiding the formation of 5-HT sub-systems is uncertain (Barettino et al., 2021). Barettino et 

al. (2021) have identified that ErbB4 is expressed in a subset of adult DR Pet1+ neurons and 

coordinates a precise long-range circuit that is ultimately involved in the formation of 

emotional and social memories. Through an in vivo loss-of-function approach using ErbB4f/f; 

Pet1-Cre;Ai9f/+ transgenic mice (ErbB4 conditional knockout mice), in which exon 2 of the 

Erbb4 gene is excised in 5-HT neurons since early fate specification using the Pet1-Cre-

recombinase, this group probed the contribution of the tyrosine kinase receptor ErbB4 to 5-

HT circuit formation and function. Results indicated that ErbB4 expression occurring in a 

subset of 5-HT neurons is necessary for axonal arborization of defined long-range 

projections to the forebrain, but is dispensable both for 5-HT expression and global 

excitability in the DR and also for the innervation of other targets of the 5-HT system such 
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as the posterior periventricular nucleus of the thalamus (PVN) (Barettino et al., 2021). 

Behavioral testing was used to evaluate whether the connectivity deficits observed upon 

ErbB4-deficiency in Pet1+ 5-HT neurons impact on brain function, revealing that this 

deficiency leads to specific behavioral deficits in memory processing that involve aversive 

or social components (Barettino et al., 2021). 

 

D. 5-HT axonal projections  

 The functional, morphological, and molecular diversity of 5-HT neurons is well 

established (Calizo et al., 2011; Fernandez et al., 2016; Gaspar & Lillesaar, 2012; Kiyasova 

et al., 2011), but the heterogeneity of their axonal projections is not fully understood 

(Belmer et al., 2019; Okaty et al., 2019). Very little is known about the growth dynamics of 

single 5-HT axons. The first detailed morphological description of single serotonergic fibers 

in fixed tissue has become available only recently (Gagnon & Parent, 2014). Based on a 

relatively small fiber set (N=32 DR axons), this study has suggested that individual 5-HT 

fibers travel through multiple brain regions, infrequently branching in some of them and 

producing abundant arborizations in others (Gagnon & Parent, 2014). However, no 

information is available about the dynamics of branching in serotonergic fibers, as well as 

the true frequency of these events.  

 The branching of axons is a fundamental aspect of nervous system development and 

neuroplasticity (Spillane et al., 2013). The number of branches of each neuron typically 

influences the number of possible connections with their synaptic targets, and these 

extensions determine the ability of the CNS to carry out complex cognitive, sensory, and 
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motor tasks (Azmitia, 2001). The formation of axon branches underlies the development of 

complex patterns of neuronal connectivity and contributes to both adaptive and maladaptive 

neuroplasticity following nervous system injury in adults (Gibson & Ma, 2011; Smith & 

Onifer, 2011; Spillane et al., 2013). A branching point can be unambiguously verified only 

by examining an individual fiber at high resolution in all three-dimensions (Pratelli et al., 

2017). Even when a confocal system with high-power objectives is used, a branching point 

can be virtually impossible to differentiate from separate fibers that pass each other at sub-

micrometer distances (Janusonis et al., 2019). 

 

Forces that act on fibers and influence circuitry 

 During development and following injury of the nervous system, axons use several 

distinct pathfinding mechanisms to create ordered neural tracts, including the fasciculation, 

or bundling of individual axons along common routes, with cell-specific pathfinding 

patterns (Chédotal & Richards, 2010; Šmít et al., 2017; Voyiadjis et al., 2011). These 

pathfinding patterns are regulated by molecular cues that mediate interactions between 

axons and their environment, including other axons, cells, and the extracellular matrix 

(ECM) (Chédotal & Richards, 2010).  
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Axon guidance 

 Axon guidance involves the spatiotemporal interplay between guidance cues and 

membrane-bound cell-surface receptors located on the growth cone (Liu et al., 2018). Four 

dominant families of guidance molecules have been identified: ephrins, netrins, slits, and 

semaphorins (Bellon & Mann, 2018). These proteins direct axons to make particular wiring 

choices  by binding to one or several receptors on the growth cones: Eph receptors, dcc and 

UnC, Robos, and Neuropilins and Plexins, respectively (Bellon & Mann, 2018).  

In order to simplify the long journey across a complex environment by breaking it into 

sections, growing axons rely on specific intermediate targets, or guidepost cells, that express 

guidance factors at the right time and place along the axon path (Bellon & Mann, 2018; 

Minocha et al., 2015). Most known guidepost cells are glial cells (Bellon & Mann, 2018). 

For example, populations of embryonic astrocytes derived from ventral telencephalic 

Nkx2.1 progenitors, also known to control the specification of GABAergic interneurons, 

have been recognized as guidepost cells for axons of the anterior commissure acting via 

Slit2 secretion (Bellon & Mann, 2018; Minocha et al., 2015). 

 Formation of long-range axons occurs over multiple stages of morphological 

maturation, but the intrinsic transcriptional mechanisms that temporally control different 

stages of axon projection development are largely unknown (Donovan et al., 2019). 

However, some of the molecular mechanisms that influence 5-HT fibers during early 

development and beyond have been identified. For example, WNT signaling is required 

during the initial organization of 5-HT neurons within the raphe nuclei and the initial 

orientation of axons (Onishi et al., 2014). During the second stage of 5-HT neuron 
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development, growth associated protein 43 (GAP-43) and a microtubule-associated protein, 

stable tubule only polypeptide (STOP), can influence the growth of 5-HT axons. STOP is 

required during this time for stabilization of microtubules and axon elongation (Donovan et 

al., 2002; Fournet et al., 2010; Katori et al., 2017). GAP-43 is a protein expressed in early 

development, and has a role in axonal pathfinding, neurotransmitter release, and synaptic 

plasticity (Donovan et al., 2002). Interestingly, 5-HT axons fail to innervate the cortex and 

hippocampus in neonatal GAP-43−/− mice (Donovan et al., 2002).  

 GAP-43 is also a critical regulator of growth cone elaboration, acting through the 

regulation of the actin filament cytoskeleton, with levels of GAP-43 declining with 

developmental age (Jacobson et al., 1986; Rodemer et al., 2020). Overexpression of GAP-43 

in adult sensory neurons has also been found to promote axon regeneration in the spinal 

cord, making it a prime example of how regulators of growth cones can undergo 

developmental downregulation that correlates with decreased regenerative potential (Bomze 

et al., 2001; Rodemer et al., 2020). 

Pet-1 in the brain is a key transcriptional regulator of genes required specifically for 

the serotonergic neuron phenotype (Liu et al., 2010). Liu et al. (2010) have demonstrated 

that not only is Pet-1 required after 5-HT neuron generation, but also for multiple steps in 5-

HT neuron maturation including axonal innervation to the somatosensory cortex, firing 

properties, and 5-HT1A and 5-HT1B autoreceptor expression. In addition, LIM homeodomain 

factor 1b (Lmx1b) is a continuously expressed, terminal selector-type transcription factor in 

5-HT neurons (Donovan et al., 2019; Hobert, 2008). Lmx1b controls both the capacity for 5-

HT synthesis and reuptake (Zhao et al., 2006), and the formation of long range profusely 



 

15 
 

arborized projection pathways that enable delivery of the transmitter throughout the CNS 

(Donovan et al., 2019). Lmx1b-deficient 5-HT neurons fail to generate axonal projections to 

the forebrain and spinal cord (Donovan et al., 2019). 

 Once 5-HT axons are properly oriented, they are guided from the midbrain to the 

forebrain by interactions of Slit proteins and their Robo receptors (Couch et al., 2004; Okaty 

et al., 2019). Research by Donovan et al. (2019) demonstrated that during postnatal 

development of forebrain 5-HT axons the Lmx1b→Pet1 regulatory cascade is temporally 

required for 5-HT arborization and the upregulation of the 5-HT axon arborization gene, 

protocadherin-⍺C2, (Pcdh-⍺C2). Subsequently, Pcdh-⍺C2 can influence the distribution of 

serotonergic axons in many target brain areas (Donovan et al., 2019). Among the Pcdh-α 

genes, αC2 is dominantly expressed in the serotonergic neurons of the raphe nuclei, and the 

loss of αC2 causes unbalanced distributions (densification and sparsification) of serotonergic 

axon density in various brain regions, including the hippocampus (Donovan et al., 2019). 

While early projections produce predictable trajectories, the processes that lead to the 

emergence of regional fiber densities(i.e., density of fiber innervation in a terminal field)  

remain poorly understood. 

 

Growth cones  

 Axon extension and regeneration are considered to be processes occurring at the 

distal tip of the axon and during development, the distal tip often exhibits a clearly defined 

growth cone (Smith & Gallo, 2018). Serotonergic growth cone filopodia, which allow for 

sampling the environment and for the formation of axonal branches (Gallo & Letourneau, 
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2004), are described as fast-moving and dynamic, even when grown on inhibitory substrates 

(Hawthorne et al., 2011). Compared to other cell types (i.e., cortical neurons), 5-HT neurons 

display unique resilience and growth cone behavior depending on the extracellular substrate 

they encounter (Hawthorne et al., 2011). 5-HT neurons maintain a more robust growth cone 

when grown on the challenging substrate of high levels of aggrecan with low levels of 

laminin, whereas cortical neurons grown in the same conditions mostly lack growth cones 

and lose their dynamic ability (Hawthorne et al., 2011). Similarly, in embryonic 

development, rodent serotonergic neurons exhibit more growth potential on chondroitin 

sulfate proteoglycans (CSPG) than cortical neurons, which highly fasciculate to avoid 

contact with the substrate (Hawthorne et al., 2011). In addition, the morphology of postnatal 

5-HT growth cones resembles embryonic dorsal root ganglion (DRG) growth cones, which 

are more resistant to the negative effects of CSPG than adult DRGs (Busch et al., 2009; 

Hawthorne et al., 2011). 

 

E. Axon plasticity mediated by mitochondria 

 5-HT axons inherently show a high degree of plasticity, as extensively demonstrated 

by several studies involving fixed tissue density measures and the implication of abnormal 

densities of 5-HT fibers in numerous neuropsychiatric disorders (Awasthi et al., 2021; 

Bauman & Amaral, 2005). The widespread dispersal and early development of 5-HT axons 

facilitates 5-HT in maintaining and promoting synaptic plasticity.  

Mitochondrial dynamics play an important physiological role in the development of 

the nervous system and in synaptic plasticity beyond development where they maintain an 
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active role in plasticity within mature neurons (Flippo & Strack, 2017). In development, 

dendritogenesis, axon outgrowth, and branching are directly affected by the regulated 

transport, fusion–fission, and anchoring of mitochondria (Rangaraju et al., 2019). In mature 

neurons, mitochondria contribute to synaptic transmission and plasticity through local ATP 

supply and Ca2+ buffering (Rangaraju et al., 2019). 5-HT exerts a putative trophic-like action 

by serving as an upstream regulator of mitochondrial biogenesis in neurons (Fanibunda et 

al., 2019). Mitochondria have been found in almost all serotonin-positive axon terminals in 

the rat suprachiasmatic nucleus (SCN), and there are at least two types of mitochondria in 

serotonergic neuronal cell bodies and dendrites: one containing MAO-B on their outer 

membranes, and the other lacking this enzyme (Arai et al., 2002). In addition, 5-HT3 and 5-

HT4 receptors are located on the mitochondrial membrane of cardiomyocytes and participate 

in the regulation of mitochondrial function (Tempio et al., 2020; Wang et al., 2016).  

Furthermore, recent studies have observed that 5-HT7 receptor (a receptor highly involved in 

plasticity) is also located on the mitochondrial membrane in SH-SY5Y cells (Tempio et al., 

2020), and that pharmacological simulation of the 5-HT7 receptor rescues mitochondria 

dysfunction in female mice from two different models of Rett syndrome (Valenti et al., 

2017). The vital importance of mitochondria in the context of neurons underscores the 

importance of upstream pathways that drive mitochondrial biogenesis and function in 

neurons (Fanibunda et al., 2019; Mattson et al., 2008; Scholpa et al., 2018). 
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F. Neurotrophic factors  

 Neurotrophic factors are regarded as crucial regulatory components in neuronal 

plasticity and are believed to play an important role in depression pathology (Rafa-Zablocka 

et al., 2018). 

BDNF 

 Brain-derived neurotrophic factor (BDNF) is a dominant factor in the brain, made 

“on demand” in response to neuronal activity, with expression regulated by cyclic AMP 

response element-binding protein (CREB) (Benarroch, 2015; Popova et al., 2017; Rafa-

Zablocka et al., 2018). In depression pathology, the downregulation of BDNF is thought to 

be correlated with depression as its upregulation is frequently observed after chronic 

treatment with common antidepressants (Rafa-Zablocka et al., 2018). Using mice lacking 

CREB in their serotonergic neurons, Rafa-Zablocka et al. (2018) demonstrated that the 

upregulation of BDNF in the hippocampus or PFC after fluoxetine (FLX) administration 

might be dependent on CREB activation exclusively in serotonergic neurons.  

 5-HT and BDNF are the main players in the mechanisms of neurogenesis and 

neuroplasticity (Homberg et al., 2014). Distinctive effects of BDNF on the 5-HT system has 

been identified in vitro (i.e., cell cultures) and in vivo. In raphe cell cultures of rat embryos, 

18h exposure to BDNF was enough to almost double the number of serotonergic neurons 

and promote axonal growth (Rumajogee et al., 2002). In vivo, chronic administration of 

BDNF locally into the DR altered the electrophysiological activity of 5-HT neurons (Celada 

et al., 1996). In addition, BDNF administered into the midbrain or intraventricularly 

increased the level of 5-HT and its major metabolite 5-HIAA in the rat hippocampus, cortex, 
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striatum, nucleus accumbens, substantia nigra, and hypothalamus (Siuciak et al., 1996). The 

5-HT system is dependent on BDNF for normal development and function, but brain 5-HT 

also influences BDNF. For example, 5-HT increases gene expression and BDNF protein 

levels in cultures of embryonic cells of raphe nuclei (Galter & Unsicker, 2000). 

GDNF 

 Glial-derived neurotrophic factor (GDNF) is predominantly found in astrocytes and 

has been recognized as a necessary factor for the development, protection, and maintenance 

of dopaminergic (DA) neurons (Popova et al., 2017). GDNF is involved in many 

physiological processes, as well as in the pathogenesis of a variety of neurological and 

psychiatric disorders, many of which are associated with the serotonergic system (Popova et 

al., 2017).  Similar to BDNF, GDNF stimulates the growth of 5-HT brain neurons and 

affects the expression of key genes of the 5-HT-system of the brain (i.e., genes coding Tph2 

and 5-HT1A and 5-HT2A receptors) (Popova et al., 2017). The effect of GDNF on the 5-HT 

system has been verified in vitro.  For example, in cell culture, GDNF increases the size of 

cell bodies and the length and number of 5-HT axons (Ducray et al., 2006; Popova et al., 

2017). An additional connection between GDNF and the 5-HT system is its ability to 

respond to antidepressants such as selective serotonin reuptake inhibitors (SSRIs) (Popova et 

al., 2017). Several studies have demonstrated that GDNF expression and secretion increase 

after both chronic and single administrations of reuptake inhibitors in both cell cultures 

(Golan et al., 2011; Hisaoka et al., 2001; Mercier et al., 2004) and the serum of patients with 

depression after a course of antidepressant therapy (Popova et al., 2017; Zhang et al., 2008). 
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BDNF/GDNF temporal and regional specificity  

 Regional specificity of the BDNF and GDNF effects in the brain is linked with the 

particularities of the microenvironment of different brain structures that affect the 

functioning of 5-HT neurons (Popova et al., 2017). Such particularities include different 

densities of 5-HT receptors and interactions between various types of 5-HT receptors or with 

other types of receptors (Naumenko et al., 2014; Popova et al., 2017). In addition to regional 

specificity, 5-HT neurons show temporally distinct responses to neurotrophic factors in 

vitro. Galter and Unsicker (1999) studied the regulation of survival and serotonergic markers 

by neurotrophins and various trophically active cytokines in neurons cultured from the 

embryonic rat raphe region under extreme conditions (i.e., saturating concentrations) (Galter 

& Unsicker, 1999). Distinguishing responses to different factors were observed depending 

on embryonic age and regional origin of 5-HT neurons (Galter & Unsicker, 1999). For 

example, saturating concentrations (10 ng/mL each) of BDNF augmented numbers of Tph-

positive neurons at E16 by a factor of 7, but only 1.5- to 2-fold when cultures were 

established from day E13 or E14 (Galter & Unsicker, 1999). 5-HT neurons taken at different 

embryonic ages did not differ in their response to neurotrophin-3 (NT-3) (Galter & 

Unsicker, 1999). Collectively, these results suggest that responsiveness of serotonergic 

neurons to BDNF and NT-3 is controlled in a temporally distinct fashion (Galter & 

Unsicker, 1999). In cultures of rostral serotonergic groups (B4–B9), numbers of Tph-

positive neurons decreased in the absence of factors, whereas numbers of Tph-

immunoreactive neurons in cultures from caudal serotonergic groups (B1–B3) increased 

during a 12-day culture period (Galter & Unsicker, 1999). When considering how GDNF is 
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regionally influenced, a central factor is high heterogeneity of astrocytes, since astrocytes of 

different brain regions vary considerably in their biochemical characteristics (Popova et al., 

2017). Such differences affect their functioning, reactions, and role in different 

neuropathologies (Montgomery, 1994; Popova et al., 2017). 

S100ß 

 S100ß is a highly abundant calcium binding protein in the brain produced and 

secreted by astroglia (Hagmeyer et al., 2019). S100ß is concentrated in astrocytes and other 

glial cells but it has also been reported in specific neuronal subpopulations (Michetti et al., 

2019). S100ß plays a key role in the development and plasticity of the 5-HT system, as well 

as in the cascade of glial changes associated with neuroinflammation (Shapiro et al., 2010). 

During development, 5-HT and S100ß have a reciprocal relationship: through 5-HT1A 

receptors, 5-HT neurons release S100ß (Azmitia et al., 1990; Liu & Lauder, 1992), S100ß 

promotes the development of 5-HT axon terminals (Shapiro et al., 2010) and S100ß 

additionally increases the expression of serotonin transporter, a major regulator of 

serotonergic neurotransmission (Michetti et al., 2019; Yoon et al., 2013). While S100ß 

levels are critical in the regulation and maintenance of 5-HT axon growth, a lack of S100ß 

does not affect the development of 5-HT neurons in vivo as 5-HT projections are normal in 

S100ß -null mice (Nishiyama et al., 2002).   

 Ethanol exposure has the potential to cause severe damage to the developing 5-HT 

system (Eriksen & Druse, 2001). In primary cultures of E14 serotonergic neurons, if the 

glial feeder layer conditioned medium was treated with ethanol, a significant decrease in 5-

HT neurons is found (Eriksen & Druse, 2001). Interestingly, S100ß concentrations as low as 
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20 ng/ml could significantly increase the number 5-HT neurons in the ethanol treated 

cultures. Addition of S100ß to ethanol-free 5-HT/glia co-cultures results in an increase in 5-

HT neurons (29% with 40 ng/ml S100ß and by 38% with 160 ng/ml S100ß) (Eriksen & 

Druse, 2001). In vitro cultures of embryonic 5-HT neurons treated with S100ß (500 ng/ml) 

show morphological changes in soma shape (i.e., more rounded), an increase in the spatial 

extent and shape of neuritic arbors, and an increase in primary neurites and terminal neurites 

(Liu & Lauder, 1992).  

 

G. Extracellular 5-HT   

Extracellular concentration of 5-HT in the midbrain raphe nuclei tightly regulates 

serotonergic transmission via a feedback inhibition through 5-HT1A autoreceptors (Adell et 

al., 2002). The release of 5-HT could occur in any portion of serotonergic neurons as the 

presence of vesicles in which 5-HT can be stored and released (by exocytosis) has been 

demonstrated in cell bodies, dendrites, and axonal varicosities (Adell et al., 2002). Vesicular 

5-HT release is action potential and Ca2+-dependent but 5-HT can also be released from a 

non-vesicular, p-chloramphetamine-dependent compartment (Adell et al., 1989; Kuhn et al., 

1985) by means of a carrier-mediated mechanism (Adell et al., 2002; Levi & Raiteri, 1993).  

 Extracellular concentrations of 5-HT in the DR and MR in rats determined from 

dialysate samples and voltametric methods range between 1 and 10 nM (Adell et al., 2002). 

The rate of clearance of 5-HT from the extracellular compartment is substantially enhanced 

in the DR (Bunin et al., 1998) likely due to the high density of uptake sites (Hrdina et al., 

1990) that constitute the main mechanism of removal of 5-HT from the extracellular space 
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(Adell et al., 2002). 5-HT axons show substantial structural plasticity in response to 

genetically induced changes in 5-HT content (Nazzi et al., 2019). Specifically, clinically 

relevant variations in 5-HT content can dramatically affect the morphology of 5-HT axons 

(e.g., decrease in axon diameter) in the lacunar-molecular layer of the hippocampus (Nazzi 

et al., 2019). 

 Facilitated growth cone advance has been observed in 5-HT treated cultures, and this 

advancement is correlated with increased F-actin flow rates (Zhang et al., 2012). When 

plated on laminin substrates, Aplysia bag cell neuronal growth cones treated with 5-HT (10 

μM) show increased retrograde actin flow and axon elongation (Zhang et al., 2012). Neurite 

outgrowth in 5-HT treated cultures had a consistent ~3-fold increase in average neurite 

outgrowth rate over the course of 6 hours and a ~3.5-fold increase over the course of one 

hour (Zhang et al., 2012). 

 5-HT modulates local differences in the expression of cell adhesion molecules on the 

surface of some interacting cells (Zhu et al., 1994). For example, addition of 5-HT to 

Aplysia cultures (mechanosensory neurons isolated from pleural ganglia and co-cultured 

either with homologous sensory cells or with identified motor cell L7 from the abdominal 

ganglion) can make motor neurites more attractive for sensory growth cones, thereby 

affecting new sensory neuritic growth and synapse formation (Zhu et al., 1994). When 2.5M 

of 5-HT is added to a co-culture of Aplysia neurons, the number of sensory cell branches and 

varicosities contacting the major axons of the target motor cell L7 increase, and a 

downregulation of Aplysia cell adhesion molecules from the surface of the presynaptic 

sensory cell is observed (Zhu et al., 1994). In addition, recent research has revealed that 5-
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HT varicosities can undergo major transformations as a result of extracellular 5-HT levels, 

plastic changes (e.g., in learning-related processes), diseased conditions (e.g., in epilepsy), 

and other states (Adori et al., 2011; Daubert et al., 2010; Migliarini et al., 2013; Upreti et al., 

2019). 

 5-HT levels can be manipulated with various pharmacological agents such as FLX.  

FLX is an SSRI in that it acts through the inhibition of SERT serotonin uptake that is 

released by the dendrites and axon terminals of neurons located in brainstem raphe 

(Lazarevic et al., 2019). The binding of SSRIs on SERT leads to the accumulation of 5-HT 

in the synaptic cleft, and subsequent greater occupation of 5-HT receptors (5-HTR) and 

enhanced 5-HTR activity is linked to changes in neuroplasticity that lead to the upregulation 

of synaptic proteins and denser dendritic spines (Lazarevic et al., 2019). Additionally, FLX 

promotes structural changes in 5-HT axons. Chronic administration of FLX reduces 

hippocampal 5-HT axon diameter and density in the ventral and dorsal hippocampus of mice 

bearing the pan-serotonergic driver Pet1-Cre partnered with a Cre-responsive tdTomato 

allele (Nazzi et al., 2019). Conversely, chronic FLX treatment induces the recovery of the 5-

HT circuitry damaged by an ischemic lesion in a post-stroke depression (PSD) mouse model 

(Zahrai et al., 2020). Three weeks of FLX treatment found a reduction of SERT+ fibers 

and/or SERT+ varicosity density in the medial prefrontal cortex (mPFC), cingulate gyrus 

(CG), and prelimbic (PL) regions of stroke-induced PSD mice (Zahrai et al., 2020). The DR 

nucleus of PSD mice did not show changes in SERT+ process volume or varicosity density, 

without or with FLX treatment, but instead had the greatest density of SERT+ axons and 

varicosities intact (Zahrai et al., 2020). In the previously mentioned experiment, SERT+ 
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should label 5-HT fibers. SERT is a convenient marker for serotonergic fibers and has been 

extensively used in IHC and PET imaging. In IHC analyses of fixed tissue, 5-HT can also be 

used to visualize serotonergic fibers (Janusonis & Detering, 2019; Slaten et al., 2010). The 

two molecules (SERT and 5-HT) differ in their size, location, and stability, which may lead 

to differences in signal intensity (Linley et al., 2013), with implications for post-mortem 

studies.  

 

H. Axonal plasticity during regeneration    

The regenerative potential of the peripheral nervous system (PNS), with regeneration 

defined here as the regrowth of a severed axon, either from the severed end itself or from a 

new branch of the same axon generated proximal to the injured end that extends past the site 

of injury, is a phenomenon that has been observed for almost a century (Cooke et al., 2022; 

D. B, 1930). It has previously been believed that unlike the PNS, the CNS is an environment 

non-permissive to all axon regeneration. However, recent studies in the axon regeneration 

field have found that following injury, both PNS and CNS neurons can revert to a 

developmental phenotype in order to promote axon regeneration (Cooke et al., 2022). 

Importantly, it has been observed that serotonin and norepinephrine expressing neurons 

within the CNS are able to regenerate their axons unaided (Cooke et al., 2022). 

 There is increasing evidence for spontaneous serotonergic axon regrowth within the 

CNS following chemical or physical insults (Cooke et al., 2022). Initial fixed tissue studies 

in the mammalian forebrain have showed robust recovery of 5-HT axon density following 

chemical lesioning with amphetamines as assessed using antibody staining against 5-HT 
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(Cooke et al., 2022; Mamounas et al., 2000; Molliver et al., 1990; Ohearn et al., 1988; 

Wilson & Molliver, 1994). A subsequent investigation also used antibody staining against 5-

HT to demonstrate regrowth of 5-HT axons in otherwise non-permissive environments, 

including the subventricular zone and areas adjacent to a glial scar following a thermal 

injury—an act not replicated by callosal fibers within the same cortical region (Hawthorne et 

al., 2011). Other studies studying recovery from spinal cord injury in rodents found that 

surviving 5-HT axons exhibit significant compensatory sprouting extending beyond the site 

of injury (Camand et al., 2004; Cooke et al., 2022; Hayashi et al., 2010; Holmes et al., 2005; 

Inman & Steward, 2003).  

 However, since fixed tissue only displays a single moment in time, the recovery seen 

in these experiments may not be a result of genuine regeneration, defined as growth 

originating from damaged axons, but rather the collateral sprouting of surviving axons 

(Cooke et al., 2022). To address the concern that these axons may be emptying and 

replenishing with 5-HT following injury rather than retracting and regenerating, researchers 

have used long-term in vivo imaging (two photon microscopy) in transgenic mice expressing 

eGFP selectively in 5-HT neurons (Cooke et al., 2022; Jin et al., 2016). Jin et al. (2016) 

investigated the regrowth of 5-HT axons in physical injury models in which mice received a 

stab wound to the somatosensory cortex that transected serotonergic axons running along 

their anterior to posterior trajectory. Over the course of 12 weeks following injury, 5-HT 

axons traversed the glial scar and recovered regional axon density identical to mice that 

received a sham surgery. In addition, axon regrowth directly from the severed ends of the 

cut-axons was observed. The same transgenic mouse model was also used to examine 
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regeneration of 5-HT axons following a controlled cortical impact (CCI) to induce traumatic 

brain injury (Cooke et al., 2022; Kajstura et al., 2018). These mice received standardized 

impacts to the surface of the cortex and due to the extensive nature of the injury, axon 

regeneration was measured in the fixed tissue both anterior and posterior to the site 

(Kajstura et al., 2018). A week after injury, 5-HT axon density was decreased only posterior 

(distal) to the CCI injury (Kajstura et al., 2018). Yet, a month after injury, the density of 

serotonergic axons anterior (proximal) to the injury is largely recovered despite the large 

crater created by the impact injury, which remains devoid of axons (Kajstura et al., 2018). 

This research indicates robust axon regeneration by 5-HT neurons in the context of a more 

extensive injury is possible (Cooke et al., 2022; Kajstura et al., 2018). 

 5-HT axons are unique for several reasons, but the particulars of what makes them 

capable of regrowth following injury is unknown. The intrinsic ability of 5-HT neurons to 

support these impressively long axonal fibers may provide them with the mechanistic 

framework to rebuild and repair themselves following axonal damage (Cooke et al., 2022). 

However, even shorter projecting serotonergic axons are capable of regrowth while other 

very long axons, such as corticospinal tract (CST) axons, are unable to regrow following 

injury. An additional 5-HT neuron-specific condition that may aid in their capacity to 

regrow is that they are volume transmitting axons (Cooke et al., 2022). Since their signaling 

is not as spatially or temporally constrained as synapse-based signaling, regrowth restores 

pre-lesion function without having to reform each of the precise connections of the 

previously injured axon (Cooke et al., 2022). Lastly, it remains unclear if regeneration is 

specific to certain or all 5-HT neuron subtypes.  
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I. Current methods of studying the 5-HT system Density measures 

 Essentially all studies investigating the serotonergic matrix in mental disorders and 

other associated conditions have focused on fiber densities rather than single fibers 

(Janusonis & Detering, 2019). For example, though not supported by brain imaging, one 

study using SERT-immunohistochemistry (IHC) has found a dramatic increase in the 

density of serotonergic fibers in some cerebral cortical areas of young ASD brains, 

examined post-mortem (Azmitia et al., 2011). Individuals with MDD have reduced SERT-

binding in some regions (Cumming et al., 2016; Gryglewski et al., 2014), with post-mortem 

studies implying that this result is associated with possibly age-dependent changes in 

serotonergic fiber density (Rajkowska et al., 2017). These findings are supported by 

evidence that experimentally altered fiber densities in mice can result in depressive-like 

behaviors (Chen et al., 2017). In addition, prolonged exposure to high amplitude sound 

(acoustic trauma) alters the density of 5-HT fibers in adults, demonstrating plasticity in 

serotonergic projections to the inferior colliculus (IC) (Keesom et al., 2018; Papesh & 

Hurley, 2016). Furthermore, since social isolation influences behavior partially through the 

alteration of neuromodulatory systems, such as the 5-HT system, Keesom et al. (2018) 

demonstrated a sex-specific effect of social experience on serotonergic fiber density, with 

social isolation decreasing fiber density in the IC of females, but not males. 
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5-HT primary cell culture  

 The ability to produce in vitro 2D-cultures of neuronal cells has been fundamental in 

advancing understanding of in vivo cell behaviors such as migration, growth, and mechanics 

(Duval et al., 2017). In addition, while serotonergic axons are typically studied regarding 

their collective and regionally specific densities, 2D-cell culture permits observation of 

single axon behavioral dynamics. Furthermore, the use of primary cells rather than 

immortalized cell lines, renders this model to be physiologically relevant, as primary 

neurons have gene and protein expression profiles that more closely resemble those of 

differentiated cells in vivo (Daub et al., 2009; Motti et al., 2018; Nolan, 2007).  

 Some of the earliest in vitro cell culture work with primary 5-HT neurons 

demonstrated that primary 5-HT neurons can respond to a wide variety of target neurons 

with a wide developmental window (Azmitia & Whitaker-Azmitia, 1987). The combination 

of diverse target cells and extended time frames used in vitro could be illustrative of the 

expansive distribution of 5-HT fibers in vivo in the vertebrate brain (Azmitia, 1978; Azmitia 

& Gannon, 1986; Azmitia & Whitaker-Azmitia, 1987). Fiber outgrowth from fetal neurons 

in culture occurs within hours of plating (Azmitia & Whitaker-Azmitia, 1987; Banker & 

Cowan, 1977; Dichter, 1978; Letourneau, 1982; Pettmann et al., 1979; Yavin & Yavin, 

1974). Primary raphe cultures show 5-HT-immunoreactive neurons are capable of 

synthesizing and storing 5-HT within hours of dissociation and plating, with fine varicose 

fibers seen after 1 day in vitro (DIV1) and sprawling 5-HT fibers by DIV21 (Azmitia & 

Whitaker-Azmitia, 1987). In addition, E14 rat raphe cultures have been found to contain 

roughly 1% serotonergic neurons after 24 hours in culture, stained with Tph and 5-HT 
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antibodies (Galter & Unsicker, 1999). These same cultures showed 5-HT neurons 

consistently immunoreactive for the neurotrophin receptors trkB and trkC, though other 

trkB- and trkC-positive, non-5-HT cells were also present (Galter & Unsicker, 1999). Raphe 

cultures also contained a small number (less than 1%) of tyrosine hydroxylase (TH)-

immunoreactive (IR) catecholaminergic neurons (Galter & Unsicker, 1999).  

 

Organotypic slice culture 

 Dudok et al. (2009) studied the effect of 5-HT and 5-HT pharmacological 

compounds on the outgrowth of serotonergic projections using organotypic slice co- cultures 

of hippocampus and dorsal raphe nuclei. Within 7 days ex vivo, several 5-HT neurites were 

found to have grown into a hippocampal slice (Dudok et al., 2009). The authors then 

successfully utilized this co-culture model to examine the chronic application of 5-HT 

pharmacological compounds previously known to affect the outgrowth of 5-HT neurites 

from the DR using a 5-HT1A receptor agonist, a 5-HT2 receptor agonist, and FLX (Dudok et 

al., 2009; Kondoh et al., 2004; Zhou et al., 2006).  

 Complicated dynamics such as transient hyper-innervation, or large fluctuations in 

innervation over the course of a few days (Damato et al., 1987; Fujimiya et al., 1986) make 

modeling the complexities of the serotonin system ex vivo challenging (Dudok et al., 2009). 

For example, regional differences in vivo of 5-HT innervation in the hippocampus were not 

reproduced ex vivo (Dudok et al., 2009) and other studies have observed that fewer synapses 

form in slice culture than in vivo (Papp et al., 1995). Papp et al. (1995) demonstrated that 

raphe-hippocampal serotonergic afferents from rats are unable to form synaptic contacts 
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with their normal targets in vitro, if explanted one to three days postnatally. In addition, the 

in vivo connectivity of the 5-HT system appears to depend largely on non-synaptic release, a 

trait difficult to replicate in ex vivo systems such as organotypic slice culture (Dudok et al., 

2009). Slice culture was additionally implemented in the evaluation of FFN246 (fluorescent 

false neurotransmitter-246) to assess specific labeling of 5-HT neurons of the dorsal raphe 

nucleus (Henke et al., 2018). While it is a reduced model, slice co-culture is still sufficient to 

examine the most rudimentary principles that direct 5-HT neurite outgrowth and 

connectivity (Dudok et al., 2009; Papp et al., 1995).  

 

Disease modeling with human 5-HT neurons 

 Innovation in induced pluripotent stem cell (iPSC) and transdifferentiation 

technologies for deriving neurons from adult humans has facilitated the study of disease-

relevant cellular phenotypes in vitro (Vadodaria et al., 2018). Thus, human 5-HT neurons 

can now be generated. Vadodaria et al. (2016) successfully generated human serotonergic 

neurons in vitro using primary human dermal fibroblasts established from skin biopsies from 

healthy donors. Overexpression of NKX2.2, FEV, GATA2, S4F, and LMX1 along with the 

neuronal transcription factors ASCL1 and NGN2, induced serotonergic transdifferentiation 

with high efficiency (Vadodaria et al., 2016). Induced serotonergic neurons (iSNs) 

expressed key markers of serotonergic neurons, fired action potentials, and released 

serotonin in the culture medium, which could be moderated by treatment with SSRIs 

(Vadodaria et al., 2016).  
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 In addition to iSNs, iPSC-derived serotonergic neurons also share many defining 

properties of serotonergic neurons and offer promising methods to study human serotonergic 

neurons in vitro (Vadodaria et al., 2016). For example, iPSC-to-neuron differentiation 

captures the developmental sequence of patterning to produce serotonergic neurons with 

subtype identity, with the possibility that transdifferentiated serotonergic neurons could be 

made to adopt region-specific serotonergic identities (Vadodaria et al., 2018). However, 

iPSC-derived serotonergic neurons may not be mature enough for studying adult raphe-

related phenotypes (Vadodaria et al., 2018). Ultimately, in vitro-generated human 

serotonergic neurons signify a first step in exploring the utility of patient-derived 

serotonergic neurons for studying psychiatric disorders in the future (Cao et al., 2017; Lu et 

al., 2016; Vadodaria et al., 2018).  

 

J. Cell culture geometry   

Many cell behaviors are significantly influenced by cell culture geometry, though it 

remains unclear which culture geometry is appropriate for probing a specific cell function 

and mimicking native microenvironments (Smithmyer et al., 2019). In vitro cell culture 

systems have largely facilitated studies on the mechanisms underlying the formation, 

function and pathology of tissues and organs (Kapałczyńska et al., 2018; Yamada & 

Cukierman, 2007). The advantages of 2D-cultures are typically associated with simple and 

low-cost upkeep of the cell culture and with the performance of functional tests (see Table 1 

for overview of 2D vs 3D culture) (Kapałczyńska et al., 2018).  
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 Both 2D and 3D-cell culture systems are an indispensable tool in exposing 

fundamental biophysical and biomolecular mechanisms of cells and how these cells function 

in disease (Duval et al., 2017). However, contemporary work has demonstrated that cells 

often exhibit unnatural behavior when excised from native 3D-tissues and confined to a 2D-

monolayer (Tibbitt & Anseth, 2009). 2D-culture confines cells to a planar environment and 

restricts the more complex morphologies observed in vivo (Tibbitt & Anseth, 2009). In 2D-

cultures, neurons are constrained to extend their processes in the plane but when cultured 

within ECM-mimicking hydrogels, the same cells can extend processes isotopically in three 

dimensions and even form neurospheres (Tibbitt & Anseth, 2009).  The cellular 

microenvironment is known to contribute to the spatially and temporally complex signaling 

domain that directs cell phenotype (Tibbitt & Anseth, 2009). For example, human breast 

epithelial cells develop like tumor cells when cultured in two-dimensions but revert to 

normal growth behavior when cultured in 3D-analogs of their native microenvironment 

(Petersen et al., 1992; Tibbitt & Anseth, 2009). As a result, it has become imperative to 

identify 3D-scaffolds that can recapitulate the essential aspects of the native cellular 

microenvironment in artificial cell systems (Tibbitt & Anseth, 2009). 

 

Hydrogels 

 The term hydrogel describes 3D-network structures obtained from a class of natural 

and/or synthetic polymers that can absorb and retain considerable amounts of water due to 

their hydrophilic nature (Catoira et al., 2019). Hydrogels are swollen 3D viscoelastic 

polymeric networks which have similar physical properties to natural tissue (Catoira et al., 
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2019). The hydrogel matrix is formed by crosslinking polymers with covalent bonds or 

noncovalent interactions and their structure can then be designed to suit the final application 

(Catoira et al., 2019). Hydrogels are considered unique viscoelastic materials because they 

possess two independently tunable mechanical properties: the elastic modulus (Young’s 

modulus) and viscous modulus (Okay, 2010). Their mechanical strength depends on the 

crosslink density; however, the stronger the gel the less it can absorb water (Catoira et al., 

2019). The main limitation of hydrogel-based scaffolds is the actual interaction between 

cells and the hydrogel matrix, as viscoelastic properties largely influence cell phenotype and 

fate (Aswathy et al., 2020; Lee & Kim, 2018). At the most modest deconstruction, hydrogels 

typically promote cell function when produced from natural materials and can be permissive 

to cell function when made from synthetic materials, though both can capture numerous 

characteristics of the architecture and mechanics of the native cellular environment (Saha et 

al., 2007; Tibbitt & Anseth, 2009). Most commonly used with stem cells, 3D-hydrogels 

capture numerous characteristics of the architecture and mechanics of the native cellular 

environment (Saha et al., 2007; Talebian et al., 2019; Tibbitt & Anseth, 2009), but there is a 

pressing need for more representative depictions of different cell types and activities in 

various hydrogel systems (Gyles et al., 2017). 3D-systems more closely resemble in vivo 

environments, offering a more reliable method to examine physiologically relevant neuron 

dynamics. However, much is still unknown about the variations in specific cell type 

dynamics in 2D-culture versus 3D-culture (e.g., the feasibility of using primary serotonergic 

neurons in hydrogel systems). Thus, 3D-culture systems, especially those developed for 

primary serotonergic neurons, can be considered high-risk/high-reward systems. This project 
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provides a novel perspective of the behavioral dynamics of individual serotonergic axons in 

cell culture models of various geometries.  
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 2D 3D References 

Quality 
High reproducibility, 
performance, long-term-
culture 

Worse performance and 
reproducibility, difficult 
to interpret and carry out 

(Hickman et al., 2014) 

In vivo representation Does not mimic natural 
structure of tissue 

In vivo tissues and 
organs are in 3D form 

(Griffith & Swartz, 
2006) 

Cell characteristics 

Altered morphology and 
way of division; loss of 
diverse phenotype and 
polarity 

Preserved morphology 
and way of division, 
diverse phenotype, and 
polarity 

(Kilian et al., 2010; 
Mseka et al., 2007; 
Yamada & Cukierman, 
2007) 

Cell interactions 

Deprived of cell-cell and 
cell-extracellular 
environment interactions, 
no in vivo-like 
microenvironments and 
typically no “niches” 

Proper interactions of 
cell-cell and cell-
extracellular 
environment, 
environmental “niches” 
are created 

(Bissell et al., 2003; 
Cawkill & Eaglestone, 
2007; Engler et al., 
2006; Gilbert et al., 
2010; Lee et al., 2008) 

Access to essential 
compounds 

Unlimited access to 
oxygen, nutrients, 
metabolites and signaling 
molecules 

Variable access to 
oxygen, nutrients, 
metabolites and 
signaling molecules 
(same as in vivo) 

(Breslin & O'Driscoll, 
2013; Frieboes et al., 
2006) 

Molecular mechanisms 

Changes in gene 
expression, mRNA 
splicing, topology, and 
biochemistry of cells 

Expression of genes, 
splicing, topology, and 
biochemistry of cells 
as in vivo 

(Berthiaume et al., 1996; 
Birgersdotter et al., 
2005; Fuchs et al., 2004; 
Gomez-Lechon et al., 
1998; Li et al., 2006) 

Cost of maintaining a 
culture 

Cheap, commercially 
available tests and the 
media 

More expensive, more 
time-consuming, fewer 
commercially available 
tests 

(Aggarwal et al., 2009; 
Krishnamurthy & Nor, 
2013; Sodunke et al., 
2007; Weiswald et al., 
2015) 

 
Table 1 Comparison of 2D and 3D cell culture methods. (Adapted from (Kapałczyńska et al., 2018). 
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II. Specific Aims  

The proposed research will contribute to the identification of compatible systems to 

examine brain dysfunction at the single-neuron level and aid in the development of 

computational predictive models of serotonergic fiber dynamics and self-organization. 

Specific Aim 1: Previous work in our laboratory has shown that the self-organization of 5-

HT fibers depends in part on the spatiotemporal structure of their individual trajectories. 

Understanding this structure may allow precise mathematical modeling, but the success of 

this effort crucially depends on a reliable 2D-in vitro model to collect experimental data that 

is required to validate the general structure of a model and to constrain the values of its 

parameters. Primary cell cultures of brainstem neurons are demanding in their sensitivity to 

plating and incubation conditions and are currently used by a small number of laboratories 

(as compared to the more common cortical neuron cultures). This aim sought to develop 

and optimize a reliable 2D-in vitro experimental platform to examine the dynamics of 

single serotonergic axons. 

 

Specific Aim 2: The 2D-in vitro model developed in Specific Aim 1 was analyzed with 

several techniques, including high-resolution confocal microscopy, holotomography, and 

super resolution microscopy (STED) to examine the short-term dynamics of primary 

brainstem neurons in culture. In particular, we collected the first holotomographic 

recordings of primary brainstem neurons.  
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Specific Aim 3: Three-dimensional ex vivo systems allow unique access to the processes 

that underly the dynamics and self-organization of serotonergic fibers. We performed 

preliminary tests to explore the compatibility of various 3D-platforms for primary 

brainstem neurons by transitioning from 2D- to 3D-culture with a 2.5D-culture system and 

by examining two complementary 3D hydrogel architectures. These tunable hydrogels 

were based on xeno-free materials, alginate scaffolds (that have been shown to be 

biocompatible in other tissue systems) and novel polymer chemistries. Testing the use of 

primary brainstem neurons in these hydrogel systems provides a foundation for future 

analyses of serotonergic axons in extracellular environments with controllable physical 

characteristics that cannot be achieved in vivo and can potentially revolutionize the 

current understanding of the self-organization of the brain serotonergic matrix.  
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III. Chapter 2:  General Methods  

A. Animals   

Timed-pregnant female Sprague-Dawley rats (embryonic day 13-15 (E13-15)) and 

C57BL/6 mice (E13-15) were ordered from Charles River and were maintained singly 

housed with free access to food and water. For all cell culture work, postnatal day 0.5-2 

(P0.5-2) rat and mouse pups were used, and for imaging in fixed brain preparations, E17 

C57BL/6 mice were used. All procedures have been approved by the UCSB Institutional 

Animal Care and Use Committee. 

 

B. Immunocytochemistry  

 Cultures were fixed by aspirating the culture medium and immediately adding 

phosphate-buffered 4% paraformaldehyde (PFA) for 10 minutes. They were rinsed in 0.1 M 

phosphate-buffered saline (PBS) and either processed immediately or stored for a few days 

at 4°C. All immunocytochemical procedures were done at room temperature on a shaker. 

Cultures were rinsed in PBS, blocked for 15 minutes in 2% normal donkey serum (NDS) in 

PBS, incubated in goat anti-5-HT IgG (1:1000; ImmunoStar # 20079) and rabbit anti-MAP2 

IgG (1:1000; Abcam #32454) with 2% NDS and 0.3% Triton X-100 (TX) in PBS for 1 hour, 

rinsed 3 times in PBS (5 minutes each), incubated in Cy3-conjugated donkey anti-goat IgG 

(1:500; ImmunoResearch #705-165-147) and AlexaFluor 488-conjugated donkey anti-rabbit 

IgG (1:1000; ThermoFisher #A-21206) with 2% NDS in PBS for 30 minutes, and rinsed 3 

times (5 minutes each) with PBS. After a quick (5-10 seconds) rinse in water (to remove 
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salts), the coverslip with the cells was carefully detached from the bottom of the plate and 

mounted on a glass slide with ProLong Gold Antifade Mountant containing DAPI 

(ThermoFisher #P36941). The cells were imaged at least 24 hours after mounting to allow 

curing to the optimal refractive index.  

 

C. Epifluorescence microscopy & confocal  

 Live cells were routinely examined using an Olympus CKX-41, an inverted 

microscope with a color digital camera. Phase contrast/epifluorescence imaging of fixed 

preparations was performed on an AxioVision Z1 system in three channels (Cy3, GFP, and 

DAPI), using a 10× objective (NA 0.45) and a 40× oil objective (NA 1.30). Confocal 

imaging of fixed preparations was performed in three channels (Cy3, AlexaFluor 488, 

DAPI) on the Leica SP8 resonant scanning confocal system, primarily using a 63× oil 

objective (NA 1.40) with the xy-resolution of 59 nm/pixel and the z-resolution of 300 

nm/optical section. Typical z-stacks consisted of 30-100 optical sections. The confocal 

microscopy figures show maximum-intensity projections. 

 

D. Holotomography  

Holotomography 

 Quantifying physical properties of biological material contributes to a better 

understanding of the dynamics of living matter (Schürmann et al., 2016)). Quantitative 

phase microscopy techniques, such as digital holographic microscopy (abbreviated as DHM; 
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DHTM; HTM; or HT), enables the quantification of single‐cell Refractive Indices (RI) and 

Refractive Index Gradients (RIG), which hold important information about cell function, as 

well as subcellular structures (Schürmann et al., 2016; Yakimovich et al., 2018). HTM is a 

recent technological breakthrough in the field of experimental biology. It is non-invasive, 

non-phototoxic, and has unique multiplexing capabilities that allows for observing multiple 

biological objects and phenomena simultaneously, including complex cellular dynamics 

such as organellar rotations that involve many subcellular structures (Sandoz et al., 2019). In 

particular, HTM provides the specificity and spatiotemporal resolution necessary to 

understand the dynamics of serotonergic fibers.  

 The RI of a medium is defined as the ratio between the speed of light in vacuum and 

the speed of light in that medium (Doyeon Kim et al., 2018; Nanolive). The RI of a single 

cell is a highly valuable biophysical property which has been measured and studied since the 

1950s (Liu et al., 2016). The RI can be used to determine or correlate with other cell 

biophysical parameters such as dry mass, wet mass, protein concentration, elasticity, and 

conductivity, as well as to study certain metabolic activities including cell division and 

infection (Liu et al., 2016). Due to advanced optical imaging techniques (e.g., digital 

holotomography), 3D RI maps of single cells are now obtainable, which show the RI 

distribution in the entire cell. Although 3D RI tomography does not provide molecular 

specificity in general, some objects with distinct RI values, such as lipid droplets (Kim et al., 

2016) and artificially introduced gold nanoparticles (D. Kim et al., 2018; Sung et al., 2018), 

can be specified and quantified (Doyeon Kim et al., 2018). Table 2 shows typical refractive 

index values of various cell organelles (Liu et al., 2016).  
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Table 2 Typical refractive index values for various organelles in a cell (From Liu et al., 2015). 

 

 

 

 RIG pertains to RI and spatial information. Based on the RI change across a volume 

(i.e., how the RI varies in the proximity of a pixel), the RI gradient (RIG) can be computed 

across a whole cell (Figures 1B & C) (Yakimovich et al., 2018). RIG measured by HTM 

not only provides accurate, noninvasive readouts of cell volume, but it also serves as an 

indicator for the granularity, or internal complexity, of cell structures (Yakimovich et al., 

2018). In a study demonstrating that HTM is suitable for observing virus-infected cells, 

Yakimovich et al. (2018) confirmed that specific RIG signatures indicate virus-induced 

cytopathic effects (CPEs) (Figure 1A). Interestingly, the RIG values of vaccinia virus 



 

43 
 

(VACV-GFP) infected cells gradually increased as the infection progressed, reaching 

threefold at 8 hours post-infection compared to the RIG prior to infection (Yakimovich et 

al., 2018). The applications of using RIG extend beyond viral CPEs to areas such as bacteria 

identification and early-stage cancer diagnosis.  

 

Nanolive 3D-Cell Explorer 

 Live cultures were removed from the incubator and immediately imaged with the 

3D-Cell Explorer CX-F (firmware 1.5.70; Nanolive SA, Switzerland) equipped with a 60× 

objective and a CMOS camera with 1024×1024 pixels. The laser used for tomography was 

520 nm at an output power of 0.1 mW. The imaging conditions matched the incubation 

conditions (5% CO2 at 37°C). The z-stacks contained around 95 sections and were imaged 

around every 7 seconds. The 4D-recordings were reviewed and analyzed in STEVE 1.6 (the 

native software of the system). Time-lapse z-projections were generated in ImageJ with a 

Nanolive macro.   
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Figure 1 (A) Infected HeLa cells [VACV-GFP]. Cells are fixed 8 h postinfection (pi) with PFA, and 
recorded RI, nuclear DAPI stain, and GFP intensity was examined by correlative DHTM and 
fluorescence microscopy and compared the infected cells to noninfected cells. The top panels depict 
a VACV-GFP-infected cell in early infection stage. The middle panels depict a rounding cell, 
indicating late-stage VACV infection. The bottom panel depicts an uninfected cell. At 8 h pi, all cells 
inoculated with VACV-GFP were infected based on their GFP intensity and DAPI staining of cell 
nuclei, whereas the GFP intensity of the uninfected cells was in the range of the background. (B) 
Schematic illustrations of RI computation. A cell can be thought of as a gradient index microlens, 
changing its optical properties depending on biochemical activities. (C) RIG is derived from RI and 
represents a voxel-based measurement of the difference of the refractive index in 3D space. The RIG 
value of the voxel in the middle is represented as a middle blue box, which is calculated based on the 
difference to the light blue voxels in the 3D neighborhood. Note that the reference beam (curved 
green dashed line) does not pass through the sample. RI is based on changes between the beam 
(straight green dashed line) and the reference beam. (From Yakimovich et al., 2018.) 
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E. Immunohistochemistry and super-resolution microscopy (STED)  

 A timed-pregnant C57BL/6 dam (Charles River) was euthanized with CO2 at 

embryonic day 17 (E17). The embryos were removed from the uterus, immediately 

decapitated, and their brains were dissected and immersion-fixed in 4% PFA overnight at 

4°C. They were cryoprotected in phosphate-buffered 30% sucrose for 2 days and embedded 

in 20% gelatin (type A; FisherScientific #G8-500). The gelatin block was trimmed around 

the brain, immersed in formalin with 20% sucrose for 3 hours, rinsed in PBS, and sectioned 

on a freezing microtome at 40 µm thickness. Selected sections were rinsed in PBS, blocked 

in 2% normal goat serum (NGS) in PBS for 30 minutes, and incubated in rabbit anti-5-HT 

IgG (1:500; ImmunoStar #20080) with 2% NDS and 0.3% TX in PBS for 2 days on a shaker 

at 4°C. They were rinsed 3 times in PBS (10 minutes each), incubated in STAR-RED-

conjugated goat anti-rabbit IgG (1:200, Abberior #STRED-1002) for 90 minutes, rinsed 3 

times in PBS (10 minutes each), mounted on coverslips (to minimize the objective-section 

distance and improve imaging depth), and allowed to air-dry. The coverslips were mounted 

on glass slides with ProLong Gold Antifade Mountant (without DAPI; ThermoFisher 

#P36930). The sections were imaged at least 24 hours after mounting to allow curing to the 

optimal refractive index. They were imaged on the Abberior STED (Stimulated Emission 

Depletion) microscope using a 60× oil objective (NA 1.4), the excitation line of 640 nm, and 

the depletion line of 775 nm. The voxel dimensions were 30×30×100 nm3. Double-label 

immunohistochemistry for 5-HT and MAP2 (with AlexaFluor 594-conjugated donkey anti-

goat IgG and AlexaFluor 647-conjugated donkey anti-rabbit IgG) was also attempted but 



 

46 
 

yielded virtually no improvement over regular confocal imaging, likely due to suboptimal 

properties of the AlexaFluor dyes in the used STED configuration.  
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IV. Chapter 3: 2D-cell cultures Cortical glia-brainstem neuron coculture 

 The procedures were based on the protocol developed in Dr. David Sulzer’s 

laboratory (Columbia University) (Staal et al., 2007). In the first step, a monolayer of glial 

cells (primarily astrocytes) was produced. Rat pups (Sprague-Dawley, Charles River, 

postnatal days (PD) 1-3) were anesthetized on ice, decapitated, and their cerebral cortex was 

dissected under a stereoscope with fine surgical tools. The collected tissue (from around 2 

pups) was placed in Dulbecco’s phosphate buffered saline (DPBS; Sigma-Aldrich # D1408) 

on ice and cut into small (around 1 mm3) pieces. The pieces were immediately transferred 

into a glia-specific papain solution effused with carbogen (95% O2 and 5% CO2) to 

dissociate the cells. The papain solution was composed of papain (20 Units/mL; 

Worthington Biochemical Corporation #LS003126), 1 mM cysteine (from cysteine water, 

described below), 1× H&B concentrate (described below), and 0.001% phenol red (all 

concentrations are final). The cysteine water contained 1.25 mM L-cysteine and 1.9 mM 

CaCl2. The 5× H&B concentrate contained 116 mM NaCl, 5.4 mM KCl, 26 mM NaHCO3, 2 

mM NaH2PO2·H2O, 1 mM MgSO4, 0.5 mM EDTA, and 25 mM glucose. Following cell 

dissociation, cells were washed, gently triturated with GSM (described below), and counted. 

Cells were diluted to a density of 1,000,000-1,500,000 cells/mL and plated at around 80,000 

cells per culture dish. The 35 mm-culture dishes with a bottom glass coverslip (No. 1.5) 

were pre-coated with poly-D-lysine (Mattek #P35GC-1.5-14-C) and further coated with 

laminin (at 10 µg/mL: Sigma-Aldrich #CC095). The glia-specific medium (GSM) was 
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composed of Minimum Essential Medium Eagle (MEM) (180 mL; Sigma-Aldrich #M2279), 

fetal bovine serum (not heat-inactivated, 20 mL; ThermoFisher # 26140087), glucose (1.5 

mL of a 45% solution; Sigma-Aldrich # G8769), insulin (40 µL of 25 mg/mL [0.02 M HCl]; 

Sigma-Aldrich #I5500), glutamine (0.5 mL of a 200 mM solution; Sigma-Aldrich #G2150), 

and penicillin-streptomycin (0.24 mL of a solution containing 10,000 Units/mL penicillin 

and 10 mg/mL streptomycin; Sigma-Aldrich #P0781). When the glia (feeder) layer became 

70% confluent (3-5 days after plating), 5-fluoro-2’-deoxyuridine (FDU) was added to inhibit 

non-neuronal cell proliferation. The FDU stock solution was prepared by adding 15 mL of a 

uridine solution (16.5 mg/mL; Sigma-Aldrich #U3003) to 100 mg of FDU (FDU; Sigma-

Aldrich # F0503). Before use, it was diluted by adding 0.2 mL of the stock to 1.8 mL MEM, 

and 20 µL of the diluted solution was added to each dish with 2 mL of the glia-specific 

medium.        

 In the second step (around 7-14 days after the initial plating), midbrain neurons were 

added to the culture. Mouse pups (C57BL/6, Charles River, PD 1-2) were anesthetized on 

ice, decapitated, and their midbrain at the level of the rostral raphe nuclei was dissected 

under a stereoscope with fine surgical tools. The collected tissue (from 5-7 pups) was placed 

in PBS on ice and cut into small (around 1 mm3) pieces. The pieces were immediately 

transferred into a neuron-specific papain solution effused with carbogen to dissociate the 

cells. The papain solution was composed of papain (20 Units/mL), 1 mM L-cysteine (from 

cysteine water), 1× H&B concentrate, 3.75 mN HCl, 0.5 mM kynurenic acid (from a 0.5 M 

solution [in 1 N NaOH]; Sigma-Aldrich #K3375), and phenol red (0.001%) (all 

concentrations are final). Following cell dissociation, cells were washed, triturated with 
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cNSM (described below), and counted. Cells were diluted to a density of 1,000,000 cells/mL 

and plated at around 60,000-80,000 cells per dish. Cells were plated in slide rings (Thomas 

Scientific # 6705R12) on glia monolayers to ensure neurons adhere to the coverslips and do 

not get washed away. The midbrain neuron-specific medium (cNSM) was composed of 

MEM (94 mL), Dulbecco’s Modified Eagle’s Medium (low glucose) (80 mL; Sigma-

Aldrich #D5546), heat-inactivated fetal bovine serum (2 mL; ThermoFisher #A3840301), 

glucose (1.5 mL of a 45% solution), glutamine (0.5 mL of a 200 mM solution), bovine 

serum albumin (fraction V) (0.5 g; Sigma-Aldrich # A4503), Ham’s F-12 nutrient mixture 

(20 mL; Sigma-Aldrich # N4888), catalase in an aqueous solution (0.1 mL; Sigma-Aldrich # 

C3155), kynurenic acid (200 µL of a 0.5 M solution), HCl (50 µL of a 5 N solution), and the 

di Porzio concentrate (2 mL). The di Porzio concentrate (di Porzio et al., 1980; Casper et al., 

1991) was composed of 6.25 µg/mL progesterone (Sigma-Aldrich #P0130), 4 µg/mL 

corticosterone (Sigma-Aldrich #C2505), 2.5 mg/mL insulin, 0.52 µg/mL Na2SeO3 (Sigma-

Aldrich #214485), 2 µg/mL 3,3’,5-triiodo-L-thyronine sodium salt (Sigma-Aldrich #T2752), 

0.5 mg/mL superoxide dismutase (Sigma-Aldrich #S7571), 0.24 mg/mL putrescine 

dihydrochloride (Sigma-Aldrich #P7505), and 10 mg/mL apo-transferrin (Sigma Aldrich 

#T1428) in Hanks’ Balanced Salt Solution (HBSS) (ThermoFisher #14170120). The neuron-

specific medium was additionally pre-conditioned for 24 hours in either confluent glia 

cultures (in the original culture dishes) or T225 flasks containing glial cell monolayers 

(Table 3).  Two hours after plating, the slide rings were removed, and glial-derived 

neurotrophic factor (GDNF) was added at the final concentration of 10 ng/mL (Sigma-

Aldrich #GF322) to protect cultures from cell death and support neurite outgrowth. One day 
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after cell plating, FDU was added to inhibit non-neuronal cell proliferation at the final 

concentration of 6.7 µg/mL. The cultures were imaged immediately or maintained healthy 

for up to 4-6 weeks.  

All cell culture solutions were sterile filtered (with the pore size of 0.22 µm) before 

use. The cultures were incubated in a Thermo Scientific Forma Series II water-jacketed 

incubator at 5% CO2 and 37°C. Further details about the preparation of the used reagents are 

available in Staal et al. (2007). 

 

 

 

Table 3 All primary culture media formulations used.  
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B. Co-culture vs mono-culture  

 Co-culture models as opposed to mono-cultures are typically considered 

advantageous due to the adhesion-related and nutritional benefits. However, the optimal 

development of biomimetic in vitro and ex vivo models is dependent on cell type and/or 

brain regions being modeled. For example, the viability and axon growth of mouse motor 

neurons (MNs) is notably enhanced when co-cultured with Schwann cells (SCs) compared 

to MN mono-cultures consisting of a thin layer of Matrigel (Hyung et al., 2015). 

Interestingly, in the MN mono-cultures, 96% of neurons failed to survive whereas the MN-

SC co-cultures resulted in essentially no cell death for up to DIV21 (Hyung et al., 2015). In 

addition, in vitro gut models can be enhanced by incorporating co-culturing methods such as 

including an epithelial monolayer in combination with tissue derived primary cells, resulting 

in the promotion of in vivo resembling mucus and villus-like structures (Zhang et al., 2021). 

In addition, Kidambi et al. (2008) assessed neuronal responses to levels of saturated free 

fatty acids (FFAs), specifically the accumulation of reactive oxygen species (ROS), in 

mono-cultures versus co-cultures. In co-culture, since both the astrocytes and the neuronal 

cells were on the same surface, in direct contact, and in the same culture media, elevation in 

the ROS levels was observed earlier (i.e., faster elevation of ROS levels) than in the 

monoculture system. In addition, they found that using patterned co-culture systems as 

opposed to random co-culture systems resulted in neuronal responses to FFAs that was more 

representative of what would be expected in vivo, and therefore, a better in vitro model of 

neuronal metabolism (Kidambi et al., 2008). 
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 The role of astrocytes for maintaining neuronal homeostasis both in vivo and in vitro 

is well established (Pozzi et al., 2017). Subsequently, co-cultures involving neurons and 

astrocytes has become conventional as cell-cell communication between primary neurons 

and astrocytes is crucial for the development, repair, and metabolism of neuronal systems 

(Feng & Walsh, 2001; Kidambi et al., 2008). These co-culture systems allow for the 

neuronal responses that may be mediated by the astrocytes in vivo (Kidambi et al., 2008). 

Co-cultures of neurons and astrocytes have been employed to study the pathogenesis of 

neurodegenerative disease and neuronal metabolism, though most of these models use trans-

well, conditioned media, or random co-cultures (Chen et al., 2001; Desagher et al., 1996; 

Kidambi et al., 2008; Park et al., 2001). However, a number of neuronal-astrocyte co-culture 

models involve cell lines rather than primary neurons due to the difficulties involved in 

attaching primary cells onto synthetic surfaces (Kidambi et al., 2008).  

 

Transitioning from co-culture to mono-culture  

 Previous research has found that astrocytes can significantly influence the behavior 

of CNS neurons in vitro and these glial-neuronal interactions are moderated by glial cell 

surface properties which make for optimal adherent substrates for axonal growth (Noble et 

al., 1984). Since these adherence interactions may account for many observations of 

neuronal behavior, the use of an astrocytic monolayer in 2D-cultures is biologically relevant 

(Noble et al., 1984). Despite the physiological relevance and nutritional benefits of 

providing an astrocytic feeder layer in culture, live imaging is a crucial component of the 

current research. Our live recordings using the holotomography microscope resulted in 
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motile glia, moving at a pace which resulted in torn axons. Therefore, to examine the 

properties of single axons with live imaging, mono-cultures were also used.  

 

C. Development of brainstem monolayers 

 These cultures consisted only of a neuronal layer, with no glial layer. The midbrain 

tissue was dissected from mouse pups as described above. After dissociation, cells were 

washed, gently triturated with cNSM, and counted. We found that in this step cNSM could 

be replaced with mNSM (described below) with 1% heat-inactivated fetal bovine serum. 

Cells were diluted to a density of 1,000,000-1,500,000 cells/mL and plated at around 

50,000-100,000 cells per culture dish. Lighter trituration resulted in denser but healthy 

cultures. The neuron-specific medium (mNSM) consisted of 95% Gibco Neurobasal Plus 

Medium (ThermoFisher #A3582901), 2% Gibco B-27 Plus Supplement (ThermoFisher 

#17504044), 2% GlutaMAX (ThermoFisher # 35050061), and 0.5% penicillin-streptomycin 

(all concentrations are final). The addition of GDNF and FDU, as well as the other 

procedures, were the same as in the co-cultures. The cultures were imaged immediately or 

maintained healthy for up to 4-6 weeks.  

 

D. Cell culture protocol modifications  

 The propagation and culturing of animal cells for diverse cell-based assays are 

fundamental to biomedical and pre-clinical research (Baust et al., 2017). Unfortunately, a 

lack of adherence to best tissue culture practices has been costly due to flawed data and 
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irreproducible results (Baust et al., 2017; Freedman, Cockburn, et al., 2015; Freedman, 

Gibson, et al., 2015; Reid, 2011). Efforts to reduce environmental or methodological 

variabilities are often lacking, and whether these variabilities could have any effects on the 

experiments is commonly discounted or ignored ("Refresh cell culture," 2021). The 

environmental conditions used in mammalian cell culture are routinely underreported in 

biomedical studies ("Refresh cell culture," 2021). Particularly, regardless of the cells used 

(i.e., human or non-human cell lines, primary cells, or stem cells), the pH of the media and 

the level of atmospheric oxygen in the culture chamber are rarely specified in the literature 

("Refresh cell culture," 2021). Moreover, only about 40% of biomedical studies report the 

level of carbon dioxide and the temperature in the culture chamber, yet it has long been 

known that the levels of oxygen and carbon dioxide in the environment of cells alter their 

physiology.  Indeed, and as an aside, the 2019 Nobel Prize in Physiology or Medicine 

recognized work that unveiled how cells sense and adapt to the availability of oxygen ("An 

award to oxygen sensing," 2019; "Refresh cell culture," 2021). Given the significance of the 

cell culture environment, all factors used in the protocol are next discussed.  

 

 

Media 

 Different culturing considerations – such as media composition or cell density – lead 

to altered experimental results (Pozzi et al., 2017). The cell culture medium is a complex 

mixture of nutrients and growth factors that along with the physical environment can either 

support or inhibit cell viability (Baust et al., 2017). Nutritional requirements differ with 
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different cell types and functions, as do optimal pH and osmolality (Baust et al., 2017). As 

cell growth proceeds from initial seeding to confluence, different cells will utilize amino 

acids and other components at different rates (Baust et al., 2017). Optimal cell culture media 

allows for the necessary regulation of ammonia, free radicals, heavy metal toxicity, pH 

shifts, fluctuations in osmolality, nutrient depletion, and chemical and biological 

contaminants (Baust et al., 2017). 

 

Animal serum 

 Medias supplemented with serums, most often from fetal bovine (FBS) origin, are 

commonly used for neuronal cultures (Pozzi et al., 2017). Unfortunately, not only are animal 

serums prone to batch to batch variability, but the chemical composition of animal serums 

such as FBS are not fully defined and include factors not present in the brain (Arigony et al., 

2013; Pozzi et al., 2017; Zheng et al., 2006). Due to these limitations of animal serums, the 

use of chemically defined, serum-free medium is often recommended for studies that require 

absolute control of the environment (Kivell et al., 2000; Pozzi et al., 2017). Most often used, 

and now utilized in our own mono-culture protocol, is B-27™ Plus Neuronal Culture 

System (Gibco™ A3653401) (Neurobasal™ Plus Medium (Gibco™ A3582901) with B-

27™ Supplement (Gibco™ 17504044)) (including the modification of adding 

glycoproteins) which was designed to support long-term neuronal survival in E18 and P0 

neuronal cultures consisting of less than 10% glial cells (Pozzi et al., 2017). While we utilize 

only 1% animal serum during the trituration stage, even protocols stating to use serum free 

media still utilize serums, but during the coating stage. For example, following poly-D-
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lysine incubation at room temperature for 5 min, coverslips get pre-treated with 10% FCS 

for a minimum of 2 hours to assist cell attachment (Kivell et al., 2000).  

 

Media for primary neuron cultures 

 Research that utilizes primary neurons most commonly use hippocampal or cortical 

neurons with protocols that have already been well developed. For example, various 

methods for obtaining successful cultures of primary hippocampal neurons exist, with all of 

them involving astrocytes: directly plating dissociated neurons on a glial feeder layer (as 

used in our initial approach) (Ivenshitz & Segal, 2010), neurons plated on a coverslip that is 

suspended above a glial feeder layer (Kaech & Banker, 2006), and culturing neurons in 

astrocyte conditioned medium (ACM). Pozzi et al. (2017) examined the use of primary 

hippocampal neurons in the previously noted media conditions. ACM-based cultures gave 

the best results for all tested criteria (i.e., growth cone size and shape, neuronal outgrowth 

and branching, network activity and synchronization, maturation, and long-term survival) 

(Pozzi et al., 2017). Interestingly, Neurobasal/B27 cultures were comparable to ACM for 

young cultures at 1 day(s) in vitro (DIV1), but not for culturing times longer than DIV7 

(Pozzi et al., 2017).  

Media for primary brainstem neurons  

 Only a handful of publications involving primary brainstem neurons exist. Masuko et 

al. (1986) utilized primary brainstem neurons from postnatal mice and rats investigating 

noradrenergic neurons from the locus coeruleus where they observed processes with 

varicosities and flattened growth cones after DIV7. They found these neurons survived best 
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when cultured on a feeder layer of brainstem-derived glia, and these cells precisely 

resembled cells of the locus coeruleus in vivo (Masuko et al., 1986). However, Masuko et al. 

(1986) did not utilize specific neuronal markers so unequivocal identification of neuronal 

cells is not possible (Kivell et al., 2000). The culture medium utilized included MEM 

containing L-glutamine, glucose, NaHCO3, L-ascorbic acid, penicillin, streptomycin, 10% 

FBS, and 10% heat-inactivated horse serum (Masuko et al., 1986); this composition means 

20% of the culture medium was not chemically defined. Ternaux and Portalier (1993) 

prepared a media formulation most similar to the media incorporated in our initial co-culture 

protocol (Staal et al., 2007). Ternaux and Portalier (1993) worked with primary brainstem 

cultures using media containing DMEM/F-12 supplemented with human transferrin, insulin, 

putrescine, sodium selenite, progesterone, estradiol, D-glucose, L-glutamate, penicillin, 

streptomycin or gentallin, as well as 3% fetal calf serum (FCS), though some cultures were 

made without FCS.  

 In cultures of primary brainstem neurons from postnatal rats, Kivell et al. (2000) 

used Neurobasal™-A medium containing 2% B27 supplement, 0.25 mM L-glutamine, 0.25 

mM GlutaMAX, penicillin G, and streptomycin sulphate. However, neurons in these 

cultures were reported to be stable for only DIV9 (Kivell et al., 2000). 

Monolayer development 

 The initial modifications of our co-culture protocol stemmed from experiencing live-

imaging challenges in co-culture conditions as well as a need for simplification. Before 

mono-cultures were established, the initial step in simplifying the co-culture protocol 
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involved testing if a condensed media formulation could supplement the GSM used in the 

co-culture protocol (Figures 2C, D).  

 At this time, GSM was still used as the trituration media, but the feeding media 

consisted of mNSM. When plating, media used during trituration comprises 5% of the final 

media volume in each dish. Glia monolayers with mNSM at DIV7  (Figure 2D) appeared 

healthy with active growth cones and though not confirmed with immunocytochemistry 

visually appeared to have a higher population of neurons at DIV7 than glia cultured with 

GSM (Figure 2C). The cortical growth cone in Figures 2E and F resembles the 5-HT 

growth cone seen in Figure 11C. We also tested plating neurons on a floating glass 

coverslip suspended over a glial feeder layer (Figures 2A, B). Following success using the 

condensed media formulation, mNSM, in place of GSM, the next stage in simplification 

used the same glia dishes for co-culture and replaced cNSM with mNSM. cNSM was still 

used as brainstem neuron trituration media, which makes up 5% of total volume in final cell 

culture dish (Figures 2G, H).  

 As demonstrated in the development of our culture system, the requirements to 

have healthy cultures of cortical neurons are less strenuous compared to obtaining healthy 

neuronal cultures that include serotonergic neurons. For example, even when culturing glia 

for the utilized co-culture methods (Staal et al., 2007), cortical neurons were robust despite 

the glia-specific media and papain solutions used (Figures 3A, B).  

 We assessed substrate preferences using glia monolayers with either laminin 

substrate (Sigma, CC095-1MG-M) or poly-D-lysine-laminin substrate (Sigma, 127-2.5) on 

dishes (MatTek, P35GC-1.5-10-C) already precoated by the manufacturer with poly-D-
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lysine. (Figures 3C, D). Results showed minimal variation, though a higher number of 

neuron-appearing cells were visible in the poly-D-lysine-laminin substrate.  

 When establishing neuron monolayers, cNSM was initially used during trituration 

but cNSM was replaced with mNSM (Pen/Strep concentration can vary from 0.1% – 0.5%) 

for feeding. When comparing nonconditioned cNSM (i.e., not glia conditioned) versus 

mNSM, both result in visually healthy cultures (Figures 3E, F). Most recently, the neuronal 

mono-culture protocol was further simplified by replacing cNSM during the trituration stage 

with mNSM and 1% FBS (Figures 3G, H).  
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Figure 2 (A, B) Floating coverslip method. (A) DIV5 Neurons on coverslip above DIV14 glia 
monolayer Scale bar = 50 µm. (B) DIV14 glia monolayer. Scale bar = 100 µm. (C) DIV7 glia 
monolayer with original GSM. (D) DIV7 glia monolayer with mNSM. Scale bar = 50 µm. (E, F) DIV9 
glia monolayer with mNSM. Red asterisk shows growth cone. Scale bar = 50 µm. Original Co-culture 
and simplified media co-culture of DIV15 cortical glia and DIV4 brainstem neurons. (G) “Classic co-
culture”. Glia were cultured with glia specific media GSM. At DIV11, primary brainstem neurons 
were cultured on top of the glia layer in cNSM media that was preconditioned (added to glia cultures 
at least 24 hours before neurons are added). (H) In this co-culture method, glia were cultured with glia 
specific media GSM. At DIV11, primary brainstem neurons were cultured on top of the glia layer in 
mNSM that was preconditioned (added to glia cultures at least 24 hours before neurons are added). 
Scale bar = 50 µm. 
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Figure 3 (A, B) Two examples of cortical glia monolayers (DIV3) with high population of neuron-
appearing cells. Scale bar = 100 µm. (B) DIV2 glia monolayer with laminin substrate (Sigma, 
CC095-1MG-M). (C) DIV2 glia monolayer on poly-D-lysine-laminin substrate (Sigma, 127-2.5). All 
cell culture dishes (MatTek, P35GC-1.5-10-C) are precoated by manufacturer with poly-D-lysine. 
Scale bar = 50 µm. (E) DIV3 brainstem neurons cultured with cNSM. (F) DIV4 brainstem neurons 
cultured with simplified NB media. Scale bar = 50 µm. (G, H) Neuronal monolayers with simplified 
protocol: replacing cNSM trituration media with simplified mNSM + 1%FBS media. (G) DIV2 
brainstem neurons. (H) DIV6 brainstem neurons. Scale bar = 50 µm.  
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We also examined our methods for glia population control. FDU (used in our current 

system) and ara-C are both mitotic inhibitors that prevent the proliferation of non-neuronal 

cells. When raphe monolayers have been previously attempted, ara-C added at the time of 

initial plating resulted in poor survival in raphe monolayers, but not in raphe/hippocampal or 

raphe/spinal cord co-cultures (Azmitia & Whitaker-Azmitia, 1987). Previous raphe primary 

culture work shows that when grown alone, raphe cells do not survive well after DIV6 

(Azmitia & Whitaker-Azmitia, 1987). When FDU was not added to confluent glia 

monolayers, a visible increase in neuron-appearing cells was observed (Figures 4A, B).  

CultureOne™supplement (ThermoFisher A3320201) is a serum-free supplement 

designed to improve the differentiation of neural stem cells (NSCs) to neurons. When added 

at DIV0 (the time of initial cell plating), it can fully suppress both astrocytes and 

oligodendrocytes with no harmful effects on neurons. We tested the use of 

CultureOne™supplement per the manufacturer’s directions during initial tests to develop 

primary brainstem cultures sans feeder layer. Rather than use FDU to inhibit proliferation of 

non-neuronal cells, we used CultureOne™supplement. Results did not yield successful 

cultures (they were sparse with many cells not differentiated). Due to the urgency to get 

satisfactory cultures, CultureOne™supplement tests did not continue further.  

 We additionally tested plating techniques. During cell plating, glass microscope 

rings (Thomas Scientific, 6705R12) are used to plate dissociated neurons above the glia 

monolayers/wells to prevent cells from floating away and to encourage neuron adhesion in 

the well. When developing the neuronal mono-culture protocol, two technical methods were 

tested. The first, “no ring”, resembled the method used for plating glia, where dissociated 
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cortical cells were added to a well, left in an incubator for 2 hours, rinsed 2x with MEM, and 

cold fed appropriate media. To minimize disturbance as neurons are more susceptible to 

environmental turbulence than glia, dissociated brainstem neurons were plated, incubated 

for 2 hours, and then warm mNSM was slow dripped into the dish (Figure 4C). In the 

“ring” condition, dissociated neurons were added in an identical manner to neuron addition 

in the co-culture protocol, sans glia feeder layer (Figure 4D). Instead, a microscope ring was 

inserted above a well in a media-filled dish, and dissociated neurons were added in a circular 

motion, the dish then was incubated for 2 hours, and the glass ring was removed with 

forceps.  

 Both methods yielded successful results with more noticeable spherical clusters of 

cells in the no-ring condition. This could be due to cells needing additional support to adhere 

to the substrate, thus relying on neighboring cells to act as an additional anchor.  

 

Surface 

 An alternative method of obtaining surfaces with relatively low stiffness to resemble 

in vivo conditions involves utilizing the geometrical properties of pillars of or other 

topographical structures made of stiff materials that ultimately affect the effective shear 

modulus (Sharaf et al., 2022). In addition, the response of cells to smooth surfaces is 

different than when they are on diverse textures (Liberio et al., 2014; Saltzman, 

2000). Rough surfaces are advantageous for cell attachment (Deligianni et al., 2001). This 

advantage is utilized in the development of osteoimplants (Deligianni et al., 2001; Liberio et 

al., 2014; Palin et al., 2005; Strauss et al., 2013).  
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 A frequent observation found in our primary brainstem cultures was that neurons 

tended to adhere near the vertical edge of the wells. This could be due to the meeting of two 

surfaces (the vertical edge between the plastic dish and the glass coverslip), enhancing 

adhesion. To present a mechanically rough surface, we cultured neurons on laminin-coated 

dishes that were scratched with fine point forceps prior to cell plating. 

 

 

 

Figure 4 (A) DIV5 Glia monolayer with FDU addition at 70% confluency (~DIV3). (B) DIV5 Glia 
monolayer without FDU addition. (C) DIV1 brainstem neurons plated sans microscope ring (Thomas 
Scientific, 6705R12). (D) DIV1 brainstem neurons plated with ring. Scale bar = 50 µm.  
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E. Validating the system  

Morphology 

 5-HT cell bodies found in our simplified monolayer method display the large cell 

body and cell-shape variety (i.e., fusiform, triangular, etc.) previously described in the 

literature (Baker et al., 1990; Michelsen et al., 2008; Michelsen et al., 2007; Rodríguez et al., 

2012; Steinbusch et al., 1981) (Figures 5A-C). Recent studies have demonstrated that at 

birth, 5-HT fibers present thick and dot-shaped enlargements with few and often barely 

detectable connections (Damato et al., 1987; Maddaloni et al., 2017). Successively, thin 

connecting segments were detectable and fibers gradually became smoother and more 

uniform along their length up to PND 28, and additional intrinsic rearrangements resulted in 

the acquisition of the morphology observed in the adult (Maddaloni et al., 2017). Similarly, 

our brainstem monolayers display 5-HT axonal morphologies with both thin segmented 

fibers and smooth and uniform fibers visible (Figure 5D, E).  

 In addition, our primary brainstem cultures show varicosities, as are expected in 5-

HT axons (Figures 5F, G). Further validation of the physiological relevance of our primary 

brainstem culture system is demonstrated by the extensive branching of 5-HT axons (Figure 

5H). 5-HT neurons have been reported to produce a considerable number of axonal 

branches, which are widely distributed in the DR (recurrent axons), periaqueductal gray and 

reticular formation (Adell et al., 2002; Li et al., 2001). The plasticity (e.g., their ability to 

grow and regress) of these neurites is believed to be the biological basis for cognitive 

functions such as learning and memory (Azmitia, 2001). 
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 The first cultured serotonergic neurons were midbrain raphe explants from newborn 

rats, where they survived until DIV16 (Halgren & Varon, 1972). Since this initial study, 

dissociated raphe cells have been reported to survive in culture until DIV21 and by DIV3-5, 

display many fiber bundles (Azmitia & Whitaker-Azmitia, 1987).  Similarly, we have 

dissociated raphe cells viable in culture to DIV31 and beyond (Figures 24I, J) Prior 

literature has showed that varicosities can be seen as early as DIV1 and become numerous 

after DIV5 (Azmitia & Whitaker-Azmitia, 1987). 5-HT-immunoreactive cells show fine 

wispy processes covering the soma and dendrites at DIV1, with extensive dendritic 

branching evident by DIV3-5 (Azmitia & Whitaker-Azmitia, 1987). 5-HT growth cones are 

immunoreactive in culture as early as 18h after plating, with growth cones appearing 

bulbous with numerous filopodia (Azmitia & Whitaker-Azmitia, 1987). Single 5-HT cells 

were reported to have more than one growth cone, with these processes extending over 

collagen and poly-D-lysine substrates and encircling non-stained cells in their path (Azmitia 

& Whitaker-Azmitia, 1987). Such observations of multiple growth cones are consistent with 

our own observations (Figure 5I). 
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Figure 5 Serotonergic cell bodies found in our in vitro model at DIV4 display expected large size 
and various morphologies. (A), (B) display fusiform cell bodies. (C) represents a polygonal cell 
body. (5-HT red; MAP2 green; DAPI blue) DAPI. Scale bar for (A-C) = 20 µm. (D, E) 5-HT (red) 
fibers presenting both dot-shaped enlargements (yellow asterisk) and smooth and more uniform 
fibers (pink asterisk) in our DIV3 brainstem neuronal cultures. (MAP2 green; DAPI blue). Scale bar 
= 100 µm. (F, G) 5-HT (red) varicosities (denoted with white asterisks) in DIV5 cultures of primary 
brainstem neurons. (MAP2 green; DAPI blue). Scale bar = 50µm. (H) A 5-HT (red) fiber has several 
branching points (white asterisks) in DIV5 cultures of primary brainstem neurons. (MAP2-green; 
DAPI-blue). Scale bar = 100 µm. (I) Multiple 5-HT + (red) growth cones in DIV5 cultures of 
primary brainstem neurons. (MAP2-green; DAPI-blue). Scale bar = 20 µm. 
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F. Identifying 5-HT neurons in vitro   

Cell-specific markers in culture  

 There is extensive variation in morphogenesis of identified transmitter systems in 

culture. For example, aggregate cultures of dopaminergic neurons after DIV4 (Levitt et al., 

1976) and explant cultures of locus coeruleus neurons after DIV8-14 contain glyoxylic acid-

induced fluorescent cells with fine fibers (Dreyfus et al., 1979; Schlumpf et al., 1977) 

whereas dissociated mesencephalic cultures do not have fluorescent cell bodies or axonal 

varicosities for up to 3 weeks in culture (Azmitia & Whitaker-Azmitia, 1987; Prochiantz et 

al., 1979). Consistent with variations in in vivo temporal patterns in the developing rodent 

brain (Lidov & Molliver, 1982; Olson & Seiger, 1972), serotonergic neurons cultured in 

vitro have been reported to mature at a more advanced rate than catecholinergic neurons 

(Azmitia & Whitaker-Azmitia, 1987). We observed 5-HT immunoreactivity by DIV2. 

Several methods can be used to identify living serotonergic neurons in culture 

(Jacobs & Azmitia, 1992). Serotonergic neurons and their processes have distinct 

morphological features such as varicosities (dilated axon portions) of a certain shape and 

size, as well as fine, “wispy” processes that may emerge from the cell body and neurites 

(Azmitia & Whitaker-Azmitia, 1987; Benzekhroufa et al., 2009). Serotonergic dendrites 

have been observed to be spiny compared to non-5-HT neurons of the DR in vitro (Li et al., 

2001). Without other cell-specific identifiers, morphology is not a reliable parameter.  

 Mouse transgenic models are also available in which fluorophores are expressed 

under a serotonin-specific promoter. Our laboratory has used an inducible Cre/loxP estrogen 

receptor (ER) transgenic mouse line in which Cre-recombinase is expressed under the 
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promoter of the Tph2 gene. This line (JAX: Tg (Tph2-icre/ERT2)6Gloss/J) can be crossed 

with a Cre-reporter line (e.g., JAX: B6.129(Cg)-Gt (ROSA)26Sortm4(ACTB-tdTomato, -EGFP)Luo/J) 

to produce offspring in which serotonergic neurons carry a fluorescent tag. Work with this 

line was halted due to colony complications but preliminary viability testing with 4-

hydroxytamoxifen (4-OHT) indicated that it did not affect cell viability.  

 Our laboratory is currently testing Tph2-ChR2-YFP BAC transgenic mice (JAX: B6; 

SJL-Tg (Tph2-COP4*H134R/EYFP)5Gfng/J (Stock# 014555). This line consistently 

expresses EYFP under the promoter of the Tph2 gene and allows for easy identification of 

5-HT neurons.  

 A highly efficient approach has recently been introduced which is based on 

fluorescent false neurotransmitters (FFNs) (Henke et al., 2018). Serotonin transporter 

(SERT)-specific, non-cytotoxic FFNs (e.g., FFN246) can be taken up by serotonergic 

neurons as “false serotonin” and reveal the identity of these cells (Henke et al., 2018). We 

obtained FFNs from the Sames lab (Columbia University) and performed initial tests to 

determine if FFN246 can identify serotonergic neurons in brainstem monolayer cultures 

using holotomography (Figure 6). 
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Figure 6 FFN246 can be taken up by SERT and the vesicular monoamine transporter (VMAT), 
allowing visualizing of live serotonergic cells (From Henke et al., 2018). 
 
 

 

FFN methods 

 Brainstem monolayers were prepared in an identical manner as previously described 

for the 2D mono-culture system (Chapter 3, section C). The initial test with FFN246 

involved adding 20 µM, 40 µM, or 80 µM of FFN246 to DIV5 primary midbrain cultures 

and examining for signaling with the Olympus CKX-41, inverted microscope. FFN246 was 

added to the cell culture dishes at the recommended concentration (20 µM) and left in the 

incubator (5% CO2 at 37°C) for 30 minutes prior to HTM recording. The detection of 

FFN246 with HTM was evaluated following immunocytochemistry for 5-HT and MAP2 

which revealed extensive axonal networks.  

 

FFN findings 

 Due to the specific excitation emission wavelength required for FFN246 

visualization (excitation/emission (nm): 392/427), we used confocal microscopy to image a 
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dish with and FFN concentration of 40 µM. Transporting the cell culture dishes from their 

place of incubation to the confocal microscope in a different building introduced sudden 

stress and mechanical disruption to the living cells due to the distance between these two 

locations. All concentrations used in the initial FFN were then tested in the cell culture 

incubation room with the Olympus CKX-41 inverted microscope, using a suboptimal filter, 

which indicated slight fluorescence. FFN246 also was tested in HTM, where slight axonal 

fluorescence was observed. (Figures 7A-D). In addition, an axon with an active growth 

cone was visible (Figures 7E, F). 

 To validate these observations of FFN246 with HTM, we performed 

immunocytochemistry following the HTM recording where the FFN246+ dish revealed 

extensive axonal networks (Figure 9A). Ultimately, only cultures of exceptionally high 

density (lightly triturated and minimally dissociated) revealed slight FFN positivity.  

 In summary, we performed the first test of FFN246 (Henke et al., 2018) 

compatibility with primary brainstem neurons and holotomography. In initial tests by the 

developing research groups (Sames Lab & Sulzer Lab), FFN246 has successfully labeled 5-

HT neurons in DR mouse brain slices but was not previously found to significantly label 

axonal projections (Henke et al., 2018). Our results indicate that FFN246 can be somewhat 

effective in the identification of 5-HT axons, but further work is required to achieve optimal 

imaging conditions. In the future, FFN246 can help to identify 5-HT neurons and axons in 

wild-type mouse preparations as well in cultures obtained from other species (including 

iPSC-derived human 5-HT neurons). Further tests with FFN246 could include longer pre-
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imaging incubation periods, as well as re-examination of higher concentrations (i.e., 40 µM 

and 80 µM). 

 

 

Figure 7 FFN246 positive cell bodies (A, B) and axons (C, D) imaged with the Nanolive 3D Cell 
Explorer. (C) Yellow asterisk marks possible 5-HT axonal varicosity before axon fork. (E, F) Still 
shots of primary brainstem neurons using the Nanolive 3D Cell Explorer. (E) Standard HTM image 
view of an axon and growth cone (denoted by red asterisk) moving along the edge of other cells. (F) 
Fluorescent view of FFN246 (excitation and emission spectra 392/427 nm) positive axon with 
growth cone, imaged using Nanolive’s DAPI channel. Scale bar = 20 µm.  
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V. Chapter 4: Properties of single 5-HT axons    

 

 All methods were identical to those described in Chapter 2 and Chapter 3.  

 

A. Co-culture axon dynamics  

 The original co-culture model yielded healthy brainstem cultures with 5-HT neurons 

(Figures 8A-B) of various morphologies such as triangular (Figure 8A) and fusiform 

(Figure 8B). 5-HT axons tended to adhere to astrocytes (Figures 8C-F). Live imaging of an 

axon with widths of ~1 µm on top of another cell is challenging and makes discerning 

segments of separate but overlapping axons unmanageable in unlabeled cells. In addition, 

live imaging revealed that when an axon attached to an astrocyte, considerable glia 

movement added strong tension forces to delicate axons that had part of its axon adhered to 

the motile glia, and another portion of its axon adhered to a different substrate (i.e., 

occasionally another astrocyte). Relatedly, immunocytochemistry often revealed that 

isolated and broken 5-HT+ axon fragments could be found scattered around a cell culture 

dish, often times a notable distance from a 5-HT+ cell body. Also, immunocytochemistry 

often revealed that 5-HT+ axons that were no longer adhered to astrocyte surfaces and were 

often broken and fragmented, a notable distance from 5-HT+ neuron bodies.    
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Figure 8 Original co-culture method using cortical glial cells from P-0.5-P3 Sprague Dawley rats and 
brainstem tissue from P0.5-P2 C57BL/6 mice. (A, B) Serotonergic somata and dendrites (MAP2 green; 
DAPI blue) and serotonergic axons (5HT, red). (C-F) Serotonergic fibers (red) produce stochastic-like 
trajectories on the surface of astrocytes. These paths are characterized by a high degree of tortuosity 
(twists and turns; green arrows). In contrast, fibers move with extreme precision near the edges of 
astrocytes, adhering to their membranes (yellow arrows). Scale bar = 50µm. 
 

 

B. Monolayer  

 Midbrain serotonergic neurons grown in primary cultures were strongly 

immunoreactive for 5-HT and had normal morphology (Figure 9). Their somata were round 

(typically, around 20 µm in diameter) or fusiform (extending up to 50 µm in length) and 

immunoreactive for MAP2. They typically had long, 5-HT-immunoreactive axons 

distinguished from other neurites (e.g., dendrites) by the characteristic varicosity-like 

profiles and the absence of MAP2-immunoreactivity. Serotonergic neurons appeared normal 

at various plating densities. Many axons were observed extending from a cluster of raphe 
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neurons that had not been fully dissociated (Figure 9A), as well as from sparsely distributed 

single neurons (Figures 9B-C).  

 

C. 5HT adhesion/close contact with MAP2+ neurites  

 High-resolution confocal imaging revealed that many serotonergic axons were in 

contact with MAP2-positive neurites (e.g., putative dendrites) of non-serotonergic neurons 

(Figure 10). Some serotonergic axons appeared to wind around these neurites (Figure 10A) 

and some simply advanced along them in the same imaging plane (Figure 10B). These 

neurite contacts appeared to be functionally important for axon extension, as was evidenced 

by instances in which one axon branch remained on the neurite but the other lost its contact 

(Figure 10C). In some cases, the detached branch increased its caliber dramatically (at least 

two-fold), likely due to its multiple active (growth cone-like) zones in the terminal segment. 

The appearance of these branches in fixed preparations suggested that they were attempting 

to find the next attachment point (Figure 10C). Serotonergic axons were also found sliding 

along other serotonergic axons, with no apparent repulsion, but these instances were 

considerably less frequent (Figure 10E).  
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Figure 9 Primary midbrain cultures (all monolayers at DIV5), visualized with immunocytochemistry 
for 5-HT (red) and MAP2 (green) and imaged with epifluorescence microscopy. Cell nuclei are 
stained blue (DAPI). (A) A tissue piece from the midbrain raphe region, the cells of which have not 
been fully dissociated. Long serotonergic axons with varicosities emerge from the tissue, suggesting 
that the culture protocol can also be used in organotypic preparations. (B and C) Typical dissociated 
serotonergic neurons, with morphological features (round or fusiform somata) and neurites virtually 
indistinguishable from those in intact neural tissue. Scale bar =100 µm. (From Hingorani et al., 
2022). 
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Figure 10 Primary midbrain cultures, visualized with immunocytochemistry for 5-HT (red) and 
MAP2 (green) and imaged with high-resolution confocal microscopy. Cell nuclei are stained blue 
(DAPI). (A) A serotonergic axon (5-HT+/MAP2-, asterisk) that advances along a dendrite of a non-
serotonergic neuron (5-HT-/MAP2+). (B) Another serotonergic axon (5-HT+/MAP2-, asterisk) that 
advances along a 5-HT-/MAP2+ neurite. (C) A serotonergic axon (5-HT+/MAP-, asterisk) that 
advances to the end of a 5-HT/MAP2+ neurite and produces a branch that has lost contact with the 
neurite (double asterisk). Note the much larger caliber of the branch, as well as multiple growth 
cone-like zones, perhaps in search of the next attachment point. (D) A typical contact between a 
serotonergic axon (5-HT+/MAP2-) and a 5-HT-/MAP2+ neurite (an enlarged part of B). (E) 
Contacts between two serotonergic axons (5-HT+/MAP2-) are less frequent but also occur, with no 
apparent repulsion between the axons. A, B, D, and E: monolayers at DIV4; C: neuron-glia co-
culture at DIV3. Scale bar (shared by all panels) = 10 µm in A, B and C; 5 µm in D and E. (From 
Hingorani et al., 2022). 
 
 
 
 
 

 To investigate the nature of contacts between serotonergic axons and MAP-positive 

neurites, we examined axons that were advancing along a neurite but were not in close 

apposition to it (Figure 11A). It revealed discrete adhesion structures, composed of a 

strongly 5-HT-postive “foot” (directly in contact with the neurite) and an extremely thin 
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(nanoscale) membrane tether anchoring it to the main axon (Figures 11B-C). These 

structures were located close to the growth cone but outside its active zone. Putative 

adhesion sites were also detected on neurites where the axon was no longer present. In some 

instances, these sites were strongly elongated (Figure 11D), suggesting that the contacting 

axon membrane was flattened, perhaps to reflect the width of the neurite.  

The presence of 5-HT-positive adhesion sites raises the question of whether they can be 

mistaken for varicosities in brain tissue. Image analysis suggests subtle transitions between 

actual axon varicosities (connected with continuous cell membrane) and residual adhesion 

sites (with no membrane continuity), which may be difficult to tell apart in fixed tissue 

visualized with immunohistochemistry (Figure 12). This situation is further complicated by 

the observation that serotonergic axons themselves can have segments with no detectable 5-

HT-immunoreactivity, interspersed among segments with strong 5-HT-immunoreactivity 

(Figure 12A). This phenomenon may be due to sharply delineated accumulation of 5-HT in 

specific segments (with no change in the fiber caliber) or to an extremely small caliber of 

the interconnecting segments (which physically cannot contain many 5-HT molecules).  
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Figure 11 A primary midbrain culture (neuron-glia co-culture at DIV3, visualized with 
immunocytochemistry for 5-HT (red) and MAP2 (green) and imaged with high-resolution confocal 
microscopy. Cell nuclei are stained blue (DAPI). (A) A serotonergic axon (5-HT+/MAP2) that 
advances along a 5-HT-/MAP2+ neurite and reveals its adhesion sites (one site is marked with an 
asterisk). (B) An enlarged view of the growth cone region in A. (C) A further enlarged view of the 
adhesion site marked with an asterisk in A. (D) Relatively regularly spaced putative adhesion sites (5-
HT+/MAP2-) on a 5-HT-/MAP2+ neurite (an enlarged part of A, arrow). Scale bar (shared by all 
panels) = 10 µm in A; 5 µm in B and D; 2 µm in C. (From Hingorani et al., 2022). 
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Figure 12 Primary midbrain cultures (all monolayers at DIV4), visualized with immunocytochemistry 
for 5-HT (red) and MAP2 (green) and imaged with high-resolution confocal microscopy. (A) The 
growth-cone region of a serotonergic axon (5-HT+/MAP2-) that shows wide gaps in 5-HT-
immunoreactivity (arrows). These gaps may be due to nanoscale-caliber bridges between intensely 
labeled segments or actual interruptions in fiber continuity. The presence of normal-caliber segments 
virtually devoid of 5-HT also cannot be ruled out. (B) A serotonergic axon or a series of its adhesion 
sites (5-HT+/MAP2-) that transitions from a thin, nearly continuous trace to a much thicker trace with 
large gaps (arrows) between circular 5-HT+ regions. (C) A serotonergic axon or a series of its adhesion 
sites (5-HT+/MAP2-) that shows circular 5-HT+ regions (around 1 µm in diameter) spaced at around 
4 µm (arrows). Scale bar (shared by all panels) = 5 µm. (From Hingorani et al., 2022). 
 
 
 
 
 
 To distinguish between these possibilities, we immunostained cultures for 5-HT and 

axon markers (Tau-1 or neurofilaments) (Figure 13). No detectable immunoreactivity for 

the two axon markers was found in neurites with strongly alternating 5-HT-positive and 5-
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HT-negative segments, thus not allowing direct comparison of the signals. However, similar 

patterns of Tau-1-immunoreactivity were present in other (non-serotonergic) neurites 

(Figure 13A), suggesting that the absence of 5-HT-immunoreactivity in some fiber 

segments was likely caused by an actual variability of the axon diameter. It is further 

supported by the observation that 5-HT tends to accumulate in well-defined puncta (with the 

apparent diameter of around 300 nm in confocal imaging) and that segments with no puncta 

remain identifiable in neurites with a constant caliber (Figure 13A). In contrast, a gradual 

transition to extremely thin segments (that can no longer accommodate a single 5-HT-

positive punctum) was observed in some growing serotonergic axons (Figure 13B). This 

inference is consistent with studies in which serotonergic axons have been visualized with 

green fluorescent protein (GFP or EGFP), as opposed to 5-HT (Benzekhroufa et al., 2009; 

Maddaloni et al., 2017).  

 It is possible that some distal axon segments can become detached from the main 

axon, due to the highly dynamic active zones extending beyond the growth cone (e.g., 

Figure 10C). Since these zones can be accompanied by rapid fluctuations of the axon 

diameter, distal segments may become disconnected in stochastic events. Such terminal 

“shedding” would not be detrimental to neural tissue because serotonergic axons exhibit 

robust growth and naturally regenerate, even in the adult mammalian brain (Jin et al., 2016).  
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Figure 13 Primary midbrain cultures (both monolayers at DIV13, visualized with 
immunocytochemistry for 5-HT (red) and either Tau-1 or neurofilaments (green) and imaged with 
high-resolution confocal microscopy. (A) There is no overlap between the 5-HT and Tau-1 signals, 
but both serotonergic (5-HT+/Tau-1-) and non-serotonergic (5-HT-/Tau-1+) axons have segments 
with alternating signal intensities. It suggests that in serotonergic axons this property cannot be 
explained solely by 5-HT accumulation. In serotonergic neurons, the 5-HT signal tends to accumulate 
in puncta, but segments with no puncta are still detectable in neurites with a constant caliber (insets, 
with the corresponding regions marked with the rectangles in the merged image). (B) Generally, there 
is no overlap between the 5-HT and neurofilament signals (NF), but some strongly NF-positive and 
weakly 5-HT-positive axons with continuous 5-HT-immunoreactivity are present (asterisks). In some 
serotonergic axons with growth cones, gradually narrowing axon segments are clearly visible (inset, 
with the corresponding region marked with the rectangle in the merged image). Scale bars = 20 µm. 
(From Hingorani et al., 2022). 
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D. Axon walks  

 To understand the dynamics of these processes, midbrain cultures were examined 

with time-lapse 3D-holotomography (label-free, refractive index-based imaging). Highly 

dynamic, discrete contact events between growth-cone protrusions and neurites were 

recorded (Figure 14). Some of these contacts may eventually become adhesion sites (Figure 

15). As the axon continues to advance along the surface, its spatial position retains a 

considerable degree of flexibility. The axon can stay closely adhered to the surface (e.g., 

Figure 10B) but it can also be displaced away from the surface, while still anchored to it by 

thin membrane tethers (e.g., Figure 11B). Live imaging suggests that these tethers can 

extend by around 10 µm (the diameter of a small neuron) in around 10 minutes, with the 

attachment points firmly fixed (Figure 15). Such physical flexibility is important to 

accommodate unavoidable lateral shifts of the axon, as its leading end clambers from neurite 

to neurite (Figure 16). Perhaps in response to tension forces, axon segments can become flat 

and assume a corkscrew-like configuration, even far away from the growth cone and 

naturally flat lamellipodia (Figure 15 inset).  
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Figure 14 The dynamics of two growth cones (GC; labeled 1 and 2) in a primary midbrain culture 
(monolayer at DIV5), visualized with time-lapse holotomography. (A) GC 1 attempts to move along 
a neurite by producing protrusions that come in contact with the neurite at well-defined points (arrow, 
enlarged in B). The distance between adjacent points is similar to that between the discrete 5-HT+ 
regions in Figure 4. GC 2 detects a substrate (around t = 511 sec) and rapidly advances along its edge. 
To emphasize key transitions, time points are not evenly spaced. This imaging supports the 
interpretation of the dynamics that may underly the confocal microscopy data, but the recorded axons 
are not labeled and may not be serotonergic. Scale bar = 10 µm.  (From Hingorani et al., 2022). 
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Figure 15 The dynamics of a growth-cone region in a primary midbrain culture (monolayer at DIV1), 
visualized with time-lapse holotomography. As the growth cone finds its next attachment target and 
pulls the axon to the left, its adhesion sites are revealed (one such site is marked with an asterisk). The 
spacing between the adhesion sites is around 2-6 µm, and the nanoscale tethers connecting them to the 
main axon can be stretched to as long as 10 µm (to accommodate axon shifts). This spatial 
configuration closely resembles that shown in Figure 11. The arrow points to an axon segment that 
appears flat and twisted in a corkscrew-like fashion. To emphasize key transitions, time points are not 
evenly spaced. This imaging supports the interpretation of the dynamics that may underly the confocal 
microscopy data, but the recorded axons are not labeled and may not be serotonergic. Scale bar = 5 
µm. (From Hingorani et al., 2022).  
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Figure 16 (A) The dynamics of a growth-cone region in a primary midbrain culture (monolayer at 
DIV5), visualized with time-lapse holotomography. A transition from one neurite branch to another is 
shown (some key adhesion points are marked with asterisks). The arrows with the dashed line indicate 
the spatial shift of the top branch, as the growing axon generates sufficient force to line it up with its 
current growth axis. To emphasize key transitions, time points are not evenly spaced. This imaging 
supports the interpretation of the dynamics that may underly the confocal microscopy data, but the 
recorded axons are not labeled and may not be serotonergic. Scale bar = 10 µm. (B) A similar transition 
(asterisk) in a primary midbrain culture (monolayer at DIV2), visualized with immunocytochemistry 
for 5-HT (red) and MAP2 (green) and imaged with high-resolution confocal microscopy. Cell nuclei 
are stained blue (DAPI). Scale bar = 20 µm. (From Hingorani et al., 2022). 
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E. Axon-axon interactions (lack of same-axon repulsion in brainstem cultures)  

In the developing nervous system, there are a number of mechanisms, including 

differential adhesion, chemotropism, and repulsion, that allow growth cones to find, 

recognize, and synapse with their correct compeer (Goodman & Shatz, 1993). Axon-axon 

interactions are critical for pre-target axon sorting that facilitates topographic map formation 

(Bellon & Mann, 2018). Guidance cues can facilitate axon-axon interactions. For example, 

the repulsive molecule Draxin facilitates the bundling of commissural axons by forming a 

tripartite complex with Netrin-1 and DCC to create a bridge between axons and promote 

fasciculation (Bellon & Mann, 2018; Liu et al., 2018). While the current work does not 

examine the influence of guidance cues in vitro, the axon-axon interactions and growth 

cone-axon biophysical properties can be examined.  

 

Axon zippering  

Newly growing axons may fasciculate, or bundle together or with previously grown 

axons, which helps them to move along a common path (Šmít et al., 2017). Individual axons 

can later defasciculate or detach from the bundle to reach their specific target. It is generally 

thought that the growth cone controls axon bundling by latching on to the shaft of a 

neighboring axon and then moving along it (Šmít et al., 2017). However, this viewpoint 

does not consider possible dynamic adjustments in the adhesion of the shafts behind the 

growth cone (Šmít et al., 2017). 

Very recently, in an ex vivo model using olfactory epithelium explants, Šmít et al. 

(2017) observed that axons dynamically interact with each other along their shafts, leading 
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to zippering and unzippering behavior that regulates their fasciculation (Šmít et al., 2017). 

Growing axons formed progressively larger bundles without direct involvement from the 

growth cones (Šmít et al., 2017). Instead, the shafts of the axons stuck together in a way that 

resembles fastening a zipper (Šmít et al., 2017). Šmít et al. (2017) then manipulated the 

‘axon zippers’ and observed that zippering arises from a competition between two forces: 

the contact force that causes two axons to adhere to each other (which favors zippering) and 

the mechanical tension that arises from internal or external pulls on the axon (which favors 

unzippering). HTM recordings of our primary brainstem cultures display axon-axon 

interactions that resemble axon zippering (Figures 17A-D). We do not imply that 

serotonergic fibers participate in the formation of major axon tracts in the developing brain, 

but we also note that serotonergic axon involvement in dynamic 

fasciculation/defasciculation (i.e., “hitchhiking”) is unknown.   
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Figure 17 Axon zippering occurring between DIV3-5 (A-D) primary brainstem cultures (monolayers) 
visualized with time-lapse holotomography, red asterisks denote some regions displaying axon 
zippering (A-D).  Scale bar = 10 µm. (E) High-magnification images of individual axon zippers and 
their evolution in time. Scale bar = 5 µm. (From Šmít et al., 2017.) 
 

 

 

 

F. STED  

The environment in the culture dish does not accurately reflect the brain environment. 

The differences include tissue dimensionality (2D vs. 3D), cell packing, viscoelasticity, and 
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many other factors. To verify some of our findings, super-resolution (STED) microscopy was 

used to examine single serotonergic axons in the mouse brain at embryonic day 17 (Figure 

18). This developmental age is convenient because at this time the serotonergic neurons have 

somata with a mature size and morphology, but their axons only begin to spread in the 

telencephalon (Lidov and Molliver, 1982; Janušonis et al., 2004). Due to this sparse 

distribution, single axons and their growth cones can be easily captured in natural brain tissue. 

In the embryonic telencephalon, growth cone protrusions that closely resemble those in 

culture (e.g., Figure 11) were detected. In particular, some of them appeared to have a “foot” 

and a tether (Figure 18 inset). In addition, unambiguously flattened membrane segments were 

detected (with the ratio of approximately 5:1), with an apparent cork-screw rotation (Figure 

19). This suggests that serotonergic axons can be ribbon-like (or human hand-like, to better 

approximate the ratio) as they travel through neural tissue. Since these profiles were also 

observed in culture (Figures 11D, 11B, 15), they may not be induced by dense tissue packing. 
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Figure 18 A super-resolution microscopy (STED) z-series of a single serotonergic (5-HT+) axon in 
the sectioned cortical plate of a mouse embryo at E17. Note the growth cone protrusions similar to 
those in culture (e.g., Figures 11B and 20D; asterisks, inset) and a potentially flat membrane region 
(arrow, further analyzed in Figure 15). The sequential optical sections are evenly separated by 100 
µm. Scale bar = 20 µm.  (From Hingorani et al., 2022).  
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Figure 19 A super-resolution microscopy (STED) images of a single serotonergic (5-HT+) axon in 
the sectioned cortical plate of a mouse embryo at E17. The axon is shown in all three dimensions, with 
a fixed yz-plane (at a constant x; the vertical yellow line) and a series of xz-planes (with six different 
y values; the horizontal yellow line). At the shown levels, the axon is flat (ribbon-like) and appears to 
rotate. This hypothetical cork-screw configuration is shown in the diagram on the right. Scale bar = 5 
µm.  (From Hingorani et al., 2022).  
 

 

G. Discussion  

 Realistic modeling of serotonergic axons requires experimental information about 

their branching patterns. At a minimum, it should include the frequency of branching, the 

typical branching angles, and the trajectory information retained by each of the two branches. 

This information should ideally be described probabilistically (e.g., the “wait time” between 

two branching events might be captured by the exponential distribution with a given intensity 

λ, the branching angles can be described by a directional probability distribution, and the 

“memory” of the branches can be reflected in the underlying increment covariance structure). 

Serotonergic axon ramification is often referred to in descriptive density studies, but this 

process is essentially inferred, with no reliable information at the level of single axons. In 

brain tissue, these axons can be extremely dense, to the extent that even high-resolution 3D-

imaging can be insufficient to distinguish true branching points from axons that cross at sub-
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micrometer distances (Janušonis et al., 2019). Serotonergic neurons in culture tended to 

produce branching events that could be detected unambiguously (Figure 20). Locally, they 

appeared to be rather stereotypic. The two branches of an axon split at wide angles (typically, 

90°-180°), which achieved their immediate separation (Figure 20). In sparse cultures, both 

branches can reorient themselves parallel to the original trajectory and thus cannot be treated 

as independent of their parent trajectory or of each other. Over longer distances, they are likely 

to completely decorrelate, as they advance through the stochastically distributed attachment 

surfaces.  

 This research is the first high-resolution analysis of single serotonergic axons in vitro. 

A key advantage of cell cultures is that long axons can be imaged uninterrupted from the soma 

to the terminal point, including branching points along the trajectory. In contrast, brain tissue 

is extremely densely packed, with extracellular distances often well below 100 nm (Hrabetova 

et al., 2018). This compressed environment may conceal the inherent properties of axons (e.g., 

their caliber dynamics), as well as their contacts with other cells. Also, only relatively short 

axon segments can be visualized uninterrupted in sectioned brain tissue because their random 

walk-like trajectories stay within the section volume only for distances comparable to the 

width of the section (typically, 40-50 µm) (Janušonis et al., 2019). In brain tissue, reliable 

identification of branching events in serotonergic axons is currently possible only in relatively 

sparse regions and with sub-micrometer 3D-imaging, since serotonergic axons routinely cross 

at distances near the limit of optical resolution (Janušonis et al., 2019). Therefore, the true 

extent of branching or ramification in serotonergic axons remains unknown, even though these 

processes are often used to explain regional density differences.  
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  We show that serotonergic axons can be ribbon-like (with the width-thickness ratio 

of around 5:1) and can also rotate along their axis, perhaps producing periodic point-like 

constrictions (Figures 18, 19). This morphology is likely induced by tension forces due to 

axon extension, but it also increases the surface-to-volume ratio and may facilitate 5-HT 

release. It is less likely to be related to tissue packing because it was also observed in sparse 

cultures (Figure 15). Interestingly, these profiles were noted in early studies (see Figure 5 

in the original paper of Aitken and Tork, 1988), where they were interpreted as “sinuous 

fibers” with “translucent varicosities” (because of their higher light intensity, likely due to 

the shorter light path in the flat region). It highlights the limited understanding of what 

serotonergic “varicosities” are, despite their importance in neuroanatomical and functional 

studies (e.g., they have been used to classify serotonergic axons into the D- and M-classes 

(Kosofsky and Molliver, 1987), a system still referred to in some current analyses). Since 

early descriptions, based on 2D-microscopy, they have been assumed to be dilated segments 

of axons, but very few studies have performed their high-resolution analyses in the 3D 

space.  
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Figure 20 A primary midbrain culture (monolayer at DIV4), visualized with immunocytochemistry 
for 5-HT (red) and MAP2 (green) and imaged with high-resolution confocal microscopy. Cell nuclei 
are stained blue (DAPI). (A and B) Four branching regions (white 1-4) and two growth cones (yellow 
1-2) and are shown. Note that the two branches in (B) differ in their morphologies. (C) An enlarged 
view of the branching points. The branching regions have a triangular shape, and the branches diverge 
at large angles (around 90°-180°). (D) An enlarged view of the growth cones. Note the similarity of 
the second growth cone to that in a sectioned mouse brain (Figure 19). Scale bars = 10 µm in A and 
B, 5 µm in C and D. (From Hingorani et al., 2022).  
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 The emerging picture of varicosity-like segments (VLSs) is considerably more 

complex. First, some VLSs may indeed be dilated, ovoid-shaped segments (Maddaloni et al., 

2017). This is supported by our findings that demonstrate that the caliber of the same axon 

can vary considerably over short distances (e.g., Figure 10C). Second, a sequence of VLSs 

may not indicate significant changes in axon morphology but may reflect a ribbon-like 

segment that periodically exposes its flat surface versus its edge, effectively creating a 

“blinking” effect in 2D-imaging. Third, some VLSs may not be continuous axons but rather 

5-HT-positive “footprints,” former adhesion sites left by axons. Our study clearly 

demonstrates this possibility in vitro, but additional studies are needed in brain tissue to 

prove the absence of membrane bridges between adjacent VLSs (e.g., using other markers 

and/or super-resolution microscopy). As more experimental information becomes available, 

VLSs may provide important insights into axonal dynamics in fixed brain tissue. These 

observations are generally consistent with recent findings in other systems, where VLSs and 

other morphological features have been shown to reflect the current, local state of an axon 

rather than its identity (Liu and Nakamura, 2006; Andersson et al., 2020; Sun et al., 2022).  

Our analysis sheds new light on the dispersal of serotonergic axons. It has recently been 

shown that this process is aided by Pcdh-αC2 that is expressed in serotonergic neurons and 

can mediate axonal self-avoidance, preventing axon “clumping” (Katori et al., 2009; Chen et 

al., 2017; Katori et al., 2017). However, our previous modeling has shown that “clumping” 

is unlikely if axons perform random walks with no interaction (based on the von Mises-

Fisher stepwise walk with a high concentration parameter (κ) or fractional Brownian motion 

with a high Hurst index (H)) (Janušonis and Detering, 2019; Janušonis et al., 2020). In this 
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context, branching points can be disruptive because they can create sister trajectories that 

travel in close proximity, at least initially. In vitro results demonstrate that the sister 

branches of serotonergic axons tend to separate at very large angles, which efficiently 

prevents clustering. In the brain, each of the branches is likely to immediately encounter 

different adhesion surfaces, supporting rapid decorrelation. 

 An important finding in this study is that serotonergic axons can travel adhered to 

available cellular surfaces, such as dendritic branches of other neurons. Some of the key 

axonal structures supporting this adhesion might have been observed in early studies but 

could not be accurately interpreted because of technical limitations (Azmitia and Whitaker-

Azmitia, 1987; Aitken and Tork, 1988). In the densely packed neural tissue, dendrites and 

other cellular surfaces are readily available. This suggests that the strong stochasticity of 

serotonergic axon trajectories may not be a property of serotonergic fibers themselves but 

may instead reflect the stochastic geometry of the surrounding neural tissue (Figure 21).  

Given a specified stochastic process, computer simulations can predict the resultant axon 

densities, with no additional biological information (Janušonis and Detering, 2019; 

Janušonis et al., 2020). This leads to an intriguing conclusion that local serotonergic 

densities can directly reflect the local microarchitecture of a brain region. An abnormal local 

cytoarchitecture alone may generate an altered serotonergic density, with no other causal 

factors. It might be exemplified by the increased densities of serotonergic axons in some 

cortical regions of individuals with ASD (Azmitia et al., 2011), perhaps in association with 

the reported denser cell packing in cortical minicolumns (Casanova et al., 2006). 
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Figure 21 (A) A diagram showing the hypothetical choices available to an advancing serotonergic 
axon (red) that can choose any of the available neurites (green), provided they fall within its sector of 
possibilities. The cone is modeled with the von Mises distribution (here, the mean direction µ is aligned 
with the current direction of the fiber and the concentration parameter κ = 10. (B) A simulated walk 
of a fiber (blue) that can only advance only along available neurites (green). In the simulation, 200 
randomly oriented lines were used, and the fiber advanced through 350 intersections. At each 
intersection, it could move in the current direction (a 0°-turn), turn “left” or “right” (at the available 
angles), or turn backward (a 180°-turn). The probabilities of the four events were calculated using the 
von-Mises distribution with µ = (0, 0) and κ = 5, and one event was drawn. The simulation was 
performed in Wolfram Mathematica 13.0. (C) A comparable configuration of 5-HT+ axons in a glia-
neuron co-culture at DIV15, visualized with epifluorescence microscopy. The inset shows potential 
contact points. Scale bar = 20 µm. (D) Serotonergic axons (5-HT+/MAP2-, red) traveling along bridges 
of MAP2+ (green) neurites, visualized with epifluorescence microscopy. Scale bar = 50 µm. (From 
Hingorani et al., 2022). 
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VI. Chapter 5: Hydrogels  

A. Hydrogel overview Hydrogels, crosslinked networks with tissue-like water content 

and easily tunable biochemical and mechanical properties, demonstrate a distinct 

efficacy as matrices for 3D cell culture (Duval et al., 2017). Here we will focus on 

transitioning from 2D to 3D systems (2.5D), natural hydrogels, and touch on 

synthetic hydrogels as these systems are the most relevant to the development of our 

platform.  

 

2.5D: Transitioning from 2D to 3D 

 The ECM of the CNS is comprised of a complex 3D network of numerous 

macromolecules that are enmeshed together, with features as minute as 9 nm (Kim et al., 

2018; Sharaf et al., 2022). In addition to being a structural scaffold for cells, the ECM is an 

instructive entity, responsible for regulating cellular behavior and affecting their 

proliferation, shape, function, migration, survival, and development (Adams & Watt, 1993; 

Bershadsky et al., 2003; Ingber, 1990; Jokhadar et al., 2007; Liberio et al., 2014). The ECM 

is comprised of polysaccharides and proteins (i.e., laminin, fibronectin, elastin, collagen) 

and their relative amount in tissue is temporally and regionally specific (Griffiths et al., 

2020; Liberio et al., 2014). These proteins, many of which have essential adherence 

functions, are then embedded in a polysaccharide gel (Liberio et al., 2014).  

 Many cells are anchorage dependent and require ECM-attachment in order to 

proliferate and survive (Liberio et al., 2014). Integrins are transmembrane proteins in the 

form of αß heterodimers central to ECM protein-cell attachment (Liberio et al., 2014). This 
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interaction produces a cascade of intracellular signals that can also control differential gene 

expression (Damsky & Ilic, 2002; Liberio et al., 2014; Longhurst & Jennings, 1998). The 

signaling response is associated with the cell response to the micro-environment (Liberio et 

al., 2014). Consequently, the ECM is in a state of constant flux to support the cell 

requirements of developmental plasticity (Liberio et al., 2014; Miranti & Brugge, 2002). 

The cell response to the ECM components is flexible and contingent upon which integrin 

subunits are expressed by cells (Liberio et al., 2014).  

 A natural intermediate step between 2D and 3D models is a 2.5D model, often using 

a substance such as Matrigel, to replicate the ECM.  Matrigel is a solubilized basement 

membrane preparation extracted from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma, 

a tumor rich in ECM proteins such as laminin, collagen IV, heparan sulfate proteoglycans, 

entactin/nidogen, and a number of growth factors (Corning Matrigel Matrix). Cells seeded 

on Matrigel benefit not only from biochemical cues presented by the gel, but also from the 

mechanical arrangement of its molecules (Kaiser et al., 2020). Matrigel’s in vivo‐like 

structural organization is found to boost survival of the seeded cells, their morphological 

profiles, differentiation, and overall typical functions (Kaiser et al., 2020).  

 The success of Matrigel coating has been widely demonstrated. The major 

components of Matrigel (laminin and collagen Type IV) have been shown to promote 

neurite extension (Koh et al., 2008; Novikova et al., 2006; Tonge et al., 1997; Wu et al., 

2018). In DRGs explanted on Polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE ) fiber 

scaffolds, Matrigel coating resulted in neurite extension 3-fold higher than DRGs on 

uncoated scaffolds (Wu et al., 2018). In addition, the longest neurite extension for DRGs on 
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Matrigel-coated scaffolds with SCs was roughly 5-fold higher than DRGs on uncoated 

scaffolds (Wu et al., 2018). Furthermore, the overall survival rate of human neural 

progenitor cells (HNPCs) on Matrigel-coated surfaces has been shown to be better than that 

on surfaces that were not coated with Matrigel (Kaiser et al., 2020).  

 

Natural hydrogels 

 Natural hydrogels include collagen, silk fibroin, hyaluronic acid, chitosan, alginate 

and hydrogels derived from decellularized tissues (Catoira et al., 2019). The unique 

properties of natural hydrogels include: biocompatibility, biodegradability, low cytotoxicity, 

the possibility to tailor the hydrogel into an injectable gel and their similarity to 

physiological environment (Catoira et al., 2019). However, natural hydrogels typically do 

not have strong mechanical properties and are not easily controllable due to their batch-to-

batch variation (Catoira et al., 2019). To enhance the mechanical strength and swelling 

responses of such hydrogels, multicomponent networks as interpenetrating polymer 

networks (IPNs) have been designed (Dragan, 2014). We tested the use of a hydrogel that 

combines the advantages of native ECM proteins and nonnative biopolymers in an IPN 

system consisting of rBM (reconstituted basement membrane) matrix and alginate (Figure 

11). rBM (Matrigel) contains key proteins normally found in the basement membrane, 

including laminin-111 and collagen IV and forms a matrix at physiological temperatures due 

to bonding interactions between constituent proteins (Wisdom & Chaudhuri, 2017; Wisdom 

et al., 2018). Alginate, a polysaccharide derived from seaweed, is a non-repeating copolymer 

of β-D-mannuronic acid and α-L-guluronic acid and does not present cell adhesion ligands. 
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Therefore, it can be used as an inert, tunable, mechanical reinforcer of the rBM matrix 

(Wisdom & Chaudhuri, 2017). Alginate is ionically crosslinked, allowing cells to physically 

remodel the IPN network as they extend their processes or migrate.  

 

Synthetic hydrogels 

 While natural hydrogels are those gels whose polymers have natural origins such as 

gelatin and collagen, synthetic hydrogels are synthesized using synthetic polymers such as 

polyamides and polyethene glycol (Gyles et al., 2017). Synthetic polymers are usually 

hydrophobic and are typically chemically and mechanically stronger in nature when 

compared with natural polymers (Gyles et al., 2017). The improved mechanical strength of 

synthetic hydrogels provides excellent durability of the biomaterial by reducing the rate of 

its degradation (Garnica-Palafox & Sanchez-Arevalo, 2016; Gyles et al., 2017). Hydrogels 

synthesized for biomedical use tend to incorporate synthetic polymers such as 

polyacrylamide and its derivatives (e.g., poly vinyl alcohol (PVA), polyethylene glycol 

(PEG)) (Gyles et al., 2017; Syed et al., 2011).  

 Polymers with long, densely grafted sidechains, commonly known as bottlebrush 

polymers, have attracted significant interest in a variety of fields due to their incredible 

softness and their lower propensity to entangle making them ideal biological tissue mimics 

(Sarapas et al., 2020). Bottlebrush polymers are one-to-two orders of magnitude softer than 

traditional polymeric materials due to molecular architecture effects (Daniel et al., 2016) 

(Figure 22). The large size of the sidechains (in comparison to the overall molecular 

dimensions) of each bottlebrush network strand suppresses backbone entanglements and 
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results in moduli that can approach several kPa, roughly 3 orders of magnitude lower than a 

typical entangled polymer network built from linear chains (≈1 MPa) (Mukherjee et al., 

2020).  

 

 

 

 

Figure 22 Schematic of the generation of dynamic bottlebrush polymer networks. (From Self et al., 

2020.)  

 

 

 

VitroGel® 

 VitroGel hydrogels are xeno-free (synthetic), commercially available, biocompatible 

hydrogel systems which contain proprietary formulations of various bio-functional ligands 

with tunable mechanical strengths to fulfill the needs of different culture conditions. The 

first commercially available hydrogel tested was VitroGel 3D-RGD, a xeno-free tunable 

hydrogel system modified with arginylglycylaspartic acid (RGD) cell adhesive peptide to 

promote the cell attachment and cell-matrix interactions. VitroGel 3D-RGD hydrogel 
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formation was produced by mixing the VitroGel 3D-RGD solution first with VitroGel 

Dilution Solution, and then adding the cell culture media (with or without cell suspension) to 

become a hydrogel matrix structure. The mechanical properties of the hydrogel are tunable 

as specialized soluble factors can be easily added, and the amount of culture media mixed 

with the diluted VitroGel 3D-RGD solution can be adjusted to regulate ion concentration 

within the hydrogel.  

 We also tested VitroGel Matrix, a xeno-free, functional hydrogel ready to use by 

mixing with cell solution. VitroGel Hydrogel Matrix closely mimics the natural ECM, is 

compatible with fresh bioprinting, is room temperature stable, has a neutral pH, is 

transparent, permeable, and compatible with different imaging systems (TheWell 

Bioscience, Inc.).  VitroGel Hydrogel Matrix has most commonly been used with 

immortalized cell lines, particularly in cancer research. 

 

B. Hydrogel methods 2.5D Methods 

 Cell preparation was identical to monolayer method described previously (Chapter 3, 

Section C) apart from substrate coating and timing of media addition. 2.5D culturing was 

initially tested using Matrigel (Corning® Matrigel® Matrix). However, due to high batch-

to-batch variability, ECM Gel from EHS murine sarcoma (Sigma E1270) was used as a 

Matrigel substitute. This ECM was prepared to a protein concentration of 8-12 mg/mL (in 

DMEM), containing laminin as a major component, collagen type IV, heparin sulfate 

proteoglycan, 50 mg/L gentamicin S=sulfate, entactin, and other minor components. 
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In the first method (method 1) ECM was incorporated by adding a thin layer to a well, 

allowing it to get to room temperature for ~20 minutes before adding cells, and then 

following a 2hr incubation period (5% CO2 at 37°C), media was gently dripped into the dish 

until just covering the layer of ECM gel (Figures 24B-I). In the second method (method 2) 

the ECM gel was diluted with 1:2 with mNSM (Figure 24A). The latter method resulted in a 

less viscous substrate. Media was changed only, when necessary (where color change 

indicated pH unbalance), to avoid disturbing cells. Immunocytochemistry methods were 

identical to those described previously for 2D-conditions (Chapter 2, Section B), except for 

the thicker layer of substrate coating remaining on the glass coverslip.  

 

Interpenetrating network hydrogels (IPN) 

 Serotonergic neurons were prepared using the same methods previously described 

and encapsulated in alginate-Matrigel IPNs using an established method (Wisdom & 

Chaudhuri, 2017) (Figure 23). Alginate was reconstituted in the neuronal culture-specific 

medium at 5 mg/mL (final concentration) and mixed with Matrigel (at the final 

concentration of 4.4 mg/mL) on ice. The serotonergic neurons were mixed with the alginate-

Matrigel solution, deposited into a syringe, and mixed with a slurry of calcium sulfate 

through a syringe-coupler to initiate crosslinking. The solution was then deposited into 

standard culture dishes or chambered cover glasses and incubated for 30 minutes until 

gelation. The neuronal culture medium was added to the wells, and the neurons were 

maintained using the same methods described previously in the monolayer method.  
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Figure 23 Overview of IPN method. (From Wisdom and Chaudhuri, 2017.) 

 

 

 

Immunostaining the IPN hydrogel 

 The media was removed from hydrogels and the samples were warmed in DMEM + 

4% PFA for 45 minutes at 37°C. PFA is aspirated out and samples are washed 2x in warmed 

calcium-PBS (15-30 min each wash). The samples were left overnight in a 30% sucrose in 

calcium-PBS solution to remove water and prevent ice crystal formation. In a traditional 

OCT freezing protocol, at this stage there would be a penetration step (50% OCT mixed 

solution for 4-6 hours). The hydrogels were embedded in freezing medium in cryomolds and 

allowed to freeze. The gel could be stored at -20°C at this stage.  
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Bottlebrush polymers 

 The cell culture protocol for initial bottlebrush polymer tests was identical to the 

monolayer method previously described (Chapter 3, Section C). Two media conditions were 

prepared for preliminary testing of the bottlebrush polymers in culture. Trituration media 

was cNSM and the feeding media consisted of mNSM (with 0.1% P/S). Bottlebrush polymer 

testing conditions comprised of feeding media with 5% bottlebrush polymer and feeding 

media with 25% bottlebrush polymer. The immunocytochemistry methods were identical to 

those in Chapter 2, Section B.  

 

VitroGel® 3D-RGD  

 Following the manufacturer’s instructions, varying ratios (1:1, 1:2, 1:3) of VitroGel 

3D-RGD + VitroGel Dilution Solution were tested with feeding media of cNSM and mNSM 

to examine possible optimal hydrogel dilutions for 3D cell culture of primary brainstem 

neurons (TheWell Bioscience Inc., North Brunswick, NJ, USA). According to the 

manufacturer, the G’ (the shear modulus) is about 4000 Pa at 1:0 dilution, 1200-2000 Pa at 

1:1 dilution, 600-1000 Pa at 1:2 dilution, 200–500 Pa at 1:3 dilution, and < 500 Pa at 

dilution higher than 1:3 (TheWell Bioscience, Inc.). The final ratio of diluted VitroGel 

solution to cell medium with cells was 4:1. 0.1% P/S was used in simplified media due to 

contamination issues in prior cell platings due to shared facility challenges. VitroGel 3D-

RGD + VitroGel Dilution Solution were combined, cells were added (100µl to all ratios), 

and the mixture was added to a 12-well plate. After a gelation period (10-15 min at room 

temperature) cNSM or the simplified mNSM media was added above well. The addition of 
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GDNF was identical to the 2D protocol. Roughly 60% of media was changed for the 

hydrogels every two days. The cNSM condition did not yield successful results. 

 

VitroGel® Matrix 

 VitroGel Matrix solution was warmed to 37 °C (though manufacturer protocol says 

RT is also fine). Cells were triturated per the 2D protocol with simplified mNSM. VitroGel 

and cell suspension was kept at a 2:1 v/v mixing ratio and added to 12 well plates and/or 

standard cell culture dishes. After a 10–15-minute gelation period at room temperature (RT), 

mNSM media was added. GDNF addition was identical to 2D protocol. Partial media 

changes occurred every 2 days or as needed. 

 

Immunostaining VitroGel® Matrix 

 Media was removed from the top of hydrogels and washed with PBS for 1 min, 3 

times. Hydrogels were then fixed by adding PFA for 30 minutes. Hydrogels were washed 3x 

again with 0.1 M PBS and either processed immediately or stored for a few days at 4°C. 

Cultures were rinsed in PBS, and then incubated in 0.1% TX for a total of 5 minutes before 

being rinsed 3x with PBS (5 min each). They were then blocked for 30-60 minutes in 3% 

normal donkey serum (NDS) in PBS. They were incubated in goat anti-5-HT IgG (1:1000; 

ImmunoStar # 20079) and rabbit anti-MAP2 IgG (1:1000; Abcam #32454) with in the 3% 

NDS and PBS blocking solution overnight at 4°C on a shaker. They were rinsed 3 times in 

PBS (10 minutes each), incubated in Cy3-conjugated donkey anti-goat IgG (1:500; 

ImmunoResearch #705-165-147) and AlexaFluor 488-conjugated donkey anti-rabbit IgG 



 

109 
 

(1:1000; ThermoFisher #A-21206) with 3% NDS in PBS for 3 hours, and rinsed 3 times (10 

minutes each) with PBS. For DAPI staining, NucBlue™ Fixed Cell ReadyProbes™ Reagent 

(Thermofisher #R37606) was added as described by the manufacturer (2 drops per 2ml 

solution). The cells were imaged at least 24 hours after DAPI addition. 

 

Complications 

Several yeast outbreaks in the shared cell culture facilities hindered our progress for 

several months. Working in shared facilities makes pinpointing and eradicating sources of 

contamination very difficult. In addition to extra sterilization steps, we attempted to combat 

the yeast problem by buying new reagents and when that did not eliminate the problem, we 

began incorporating fungicides (Figure 28).  

The standard techniques for imaging and analyzing cell function and protein 

distribution are more involved in the 3D environment (Tibbitt & Anseth, 2009). When 

working in a 3D network, cells have limited accessibility for immunostaining or DNA/RNA 

extraction and secreted proteins can be difficult to extract from the gels (Tibbitt & Anseth, 

2009). Cell imaging is often difficult as light scattering, refraction, and attenuation occur in 

a 3D composite, cell-laden gel. Imaging the various hydrogels was limited by the maximal 

depth of epiflorescent, confocal, and holotomographic microscopes (< 1 mm). We examined 

the compatibility of immunostained VitroGel hydrogels. One major challenge encountered 

when immunostaining the VitroGel hydrogels was the degradation of the gel in the dish, 

which led to a motile gel with uneven depth.  
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C. Main findings in hydrogel tests  

2.5D  

The Matrigel replacement ECM gel resulted in visibly healthy cultures (i.e., no signs 

of apoptosis/necrosis) (Figure 24). To our knowledge, this is the first demonstration of 

primary brainstem neurons cultured in this gel. Immunocytochemistry revealed the presence 

of 5HT positive axons, but the thicker substrate coating rendered them to be less visually 

identifiable compared to 2D-immunocytochemistry (Figures 24G, J). Importantly, in the 

2.5D geometry (Figures 24G, H) we had comparable viability to our 2D (Figures 24I, J) 

model, with healthy cultures at DIV31. 

 

IPNs 

 The first test of the IPN hydrogels involved plating onto Ibidi 4 well u-slides (Cat. # 

80427). Cells were plated first on laminin coated glass bottom wells at ~80,000 cells/100 

µL. IPN hydrogel was added on top following the protocol described by Wisdom and 

Chaudhuri (2017). Two trituration and feeding media conditions were initially tested: 

NBplus medium, 2% B27, 1% Culture-one supplement and pre-conditioned cNSM. The 

second IPN hydrogel test involved using a 12 well plate (Thermo Scientific™, 12-556-005).  

The plating and trituration medium were composed of: NBplus medium, 2% B27, 1% 

Culture One supplement, 1% l-glutamine (200mM), 1% P/S, and 5% HI-FBS. The feeding 

media that was added on top of the hydrogels consisted of Neurobasal Plus Medium, 2% 

B27, 1% l-glutamine (200mM), and 0.5% P/S. We tested three conditions: 3D-IPN 

Hydrogel (Matrigel (Corning Life Sciences, 354230) (Figures 25A, B) and alginate (FMC 
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Biopolymer, Protanal® LF 20/40) with cells mixed in Matrigel, control 3D hydrogel 

(Matrigel only) with cells mixed in (Figures 25C, D), and 2.5D hydrogel (Matrigel layer 

with cells added on top) (Figures 25E, F). Hydrogels were sectioned and immunostained, 

but they did not remain in the gelatin and appeared “lacey” (Figure 25G). The IPN hydrogel 

immunostaining was unsuccessful. This first test was performed right before the campus 

closed because of the COVID-19 pandemic.  

 

Bottlebrush polymers 

 Preliminary tests of Bottlebrush polymers with 5% (Figures 26A-F) and 25% 

(Figures 26G-L) concentrations of the polymer mixed with cell culture media resulted in 

sparse, minimally viable cultures. However, this may have been due to the lack of sterility of 

the polymers. The viscosity made the polymer challenging to work with. Subsequently, 

creating a final solution (polymer + media) that had a homogenous viscosity was difficult, 

even with heating to 37°C. The 25% bottlebrush polymer 2D-culture system was tested with 

the Nanolive 3D Cell Explorer (Figure 26N, O) which showed the heterogeneity of the 

solution.  Immunocytochemistry results demonstrated viability of many cells in the 25% 

concentration group, though MAP2 staining resulted in significant background staining, 

with dominating glia or fibroblast morphologies (Figure 26M).    
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Figure 24 2.5D-Cell Culture (A) DIV7 primary brainstem neurons in a 2.5D system: ECM gel (Sigma, 
E1270-5ML) mixed with NB media before neurons are added (method 2). (B-F) 2.5D cell culture with 
primary brainstem neurons plated directly on top of ECM gel (method 1) (B) DIV1 (C) DIV2 (D) 
DIV3 (E) DIV4 (F) DIV31. Scale bar = 50 µm. (G, H) 2.5D cultures of primary brainstem neurons at 
DIV31. Scale bar = 50 µm (G), 100 µm (H). (I, J) 2.D primary brainstem cultures at DIV31. 5-HT 
red, MAP2 green, DAPI blue. Scale bar = 50 µm. (Note: (I, J) were part of an experimental group 
(“scratch”) to assess how slight variations in substrate topography may influence culture dynamics).  
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Figure 25 IPN hydrogel (A) and (B): 3D-IPN Hydrogel: Matrigel (Corning Life Sciences, 354230) 
and alginate (FMC Biopolymer, Protanal® LF 20/40) with cells mixed in Matrigel. (A- DIV1; B- 
DIV4). (C) and (D): 3D hydrogel control (Matrigel only) and cells mixed in Matrigel. (C- DIV2; D- 
DIV4). (E) and (F): 2.5D control (Matrigel layer with cells added on top. (E- DIV2; F- DIV4). (G) 
Epifluorescent image of primary brainstem neurons in IPN hydrogel. DAPI (blue); 5-HT (red). (Scale 
bar = (A) 100 µm, (B, D, E, F) 50 µm, and (C) 200 µm. 
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Figure 26 Bottlebrush polymers at 5% (BB 5%) and 25% (BB 25%). (A-F) 2D-cell cultures of primary 
brainstem neurons with media consisting of 5% bottlebrush polymer from the Bates Lab.  (A) DIV1 
(B) DIV1.5 (C) DIV3 (D) DIV5 (E) DIV7 (F) DIV8. Scale bar = 50µm. (G-O) 2D-cell cultures of 
primary brainstem neurons with media consisting of 25% bottlebrush polymer from the Bates Lab 
(UCSB Materials).  (G) DIV1 (H) DIV1.5 (I) DIV3 (J) DIV5 (K) DIV7 (L) DIV8. Scale bar = 50µm. 
(M) Epifluorescent image of immunostained 25% bottlebrush polymer in 2D-in vitro system with 
primary brainstem neurons. 5-HT red, MAP2 green, DAPI blue. Scale bar = 100µm. (N, O) 2D-cell 
cultures of primary brainstem neurons with media consisting of 25% bottlebrush polymer, imaged with 
the Nanolive 3D-Cell Explorer Fluo. Scale bar = 20 µm. 
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VitroGel® 3D-RGD 

 Three ratios (1:1, 1:2, 1:3, with stiffnesses of 1200-2000 Pa, 600-1000 Pa, 200–500 

Pa, respectively (TheWell Bioscience, Inc.) were tested using cNSM as the feeding medium. 

Despite cells being triturated in cNSM, when this medium was added on top of the 

hydrogels, there was minimal to no viability in all ratio conditions (Figures 27A-C). When 

cells were triturated with cNSM but mNSM was used as the feeding media, VitroGel-3D 

RGD hydrogels yielded significantly different results. At both 1:1 and 1:2 ratios, primary 

brainstem neurons differentiated and grew extensive processes (Figures 27G-I). Similarly, 

VitroGel-3D RGD hydrogels with a 1:3 ratio grew neurons with extensive processes 

(Figures 27D-F). However, viable cells were difficult to image after DIV 3.  

 

VitroGel® Matrix 

 VitroGel Matrix hydrogel successfully worked as a scaffold conducive to growth for 

primary brainstem neurons (Figures 28A-J). Like VitroGel-3D RGD, health of cells 

deteriorated after DIV 3. Initial attempts at immunostaining the hydrogels were unsuccessful 

(Figures 28K-N).  
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Figure 27 VitroGel-3D RGD (A-C) cNSM feeding media did not result in successful hydrogels 
across all ratio conditions. (A) DIV1 image of VitroGel RGD (1:2) hydrogel. (B) DIV2 image of 
VitroGel RGD (1:1) hydrogel. (C) DIV3 VitroGel RGD (1:3) hydrogel. Scale bar = 50 µm. (D-F) 
mNSM media was used as the feeding media for VitroGel RGD with a dilution solution ratio of 1:3. 
Cells quickly developed processes. (D) DIV1 image of VitroGel RGD (1:3) hydrogel. (E) DIV2 
image of VitroGel RGD (1:3) hydrogel. (F) DIV3 image of VitroGel RGD (1:3) hydrogel. Scale bar 
= (D) 20 µm, (E, F) 50µm. (G-I) mNSM media was used as the feeding media at various ratios and 
cells quickly developed processes. (G) DIV1 image of VitroGel RGD (1:1) hydrogel. (H) DIV2 
image of VitroGel RGD (1:1) hydrogel. (I) DIV1 image of VitroGel RGD (1:2) hydrogel. Scale bar 
= (G, I) 20 µm, (H) 50 µm. 
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Figure 28 DIV1-DIV3 VitroGel Matrix hydrogels. mNSM media was used for both trituration and 
feeding media. (A) DIV1 VitroGel Matrix hydrogel with 0.001% primocin (Invivogen ant-pm-05) 
added for yeast. (B) DIV1 VitroGel Matrix hydrogel with 0.001%. (C) DIV2 VitroGel Matrix hydrogel 
with 0.001% primocin added as a yeast preventative. NB media was used for both trituration and 
feeding media. (D) DIV2 VitroGel Matrix hydrogel with 0.001% fungicin (Invivogen ant-fn-1) added 
as a yeast preventative. (E, G, H, I) DIV3 VitroGel Matrix hydrogel with 0.001% primocin added as 
a yeast preventative. (F) DIV3 VitroGel Matrix hydrogel with 0.001% fungicin added as a yeast 
preventative. (J) DIV3 2D mono-culture control group. Scale bar = 50 µm. (K-N) Epifluorescent 
images of VitroGel Matrix hydrogel. (K) MAP2; 5x magnification (L) Cy3; 5x magnification (M) 
DAPI; 5x magnification. (N) Confocal image of hydrogel (VitroGel Matrix).  
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D. Discussion of hydrogel tests   

The “2.5D” ECM coating method often differs from methods used with VitroGel or 

other hydrogels in that the hydrogel solutions are premixed with the cell solution prior to 

plating and subsequent gelation, while with the ECM coating cells can be added on top or 

injected within. However, ECM gels can readily be mixed with cells prior to plating, thus 

rendering them a “3D” model. Therefore, future work can involve mixing the cell solution 

with the ECM gel prior to plating, like how hydrogel constructs (i.e., VitroGel) are prepared. 

Instead of simply providing a thicker substrate to resemble the ECM more closely, 2.5D 

models can also be constructed from micro-pillar and nano-pillar arrays (Sharaf et al., 2022). 

Such fabrications can result in a more biomimetic effective shear modulus and a greater 

resemblance to adhesion discrete sites in 3D environments (Sharaf et al., 2022). 

Furthermore, future 2.5D work could implement nanofabricated scaffolds to adjust 

environmental stiffness to ideally provide a more biomimetic in vitro environment for 

modeling primary serotonergic neurons.  

In addition to the 2.5D-culture system, we began preliminary testing of three distinct 

dynamic hydrogel systems with primary serotonergic neurons. We performed preliminary 

tests of serotonergic neurons in alginate-based IPNs. Alginate-based IPNs are biocompatible 

and have been used with great success for 3D cell culture and in tissue engineering (Wisdom 

& Chaudhuri, 2017). Alginate can be used as a tunable, mechanical framework in cell 

culture systems because it lacks adhesion ligands and is resistant to degradation by 

mammalian enzymes (Wisdom & Chaudhuri, 2017). Just as in our 2.5D-cultures, Matrigel is 

a component in the alginate based IPNs. As an IPN, Matrigel and alginate produce 
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hydrogels with variable stress relaxation rates, stiffness, and protein concentration (Wisdom 

& Chaudhuri, 2017). Varying the crosslinking density and the alginate chain length permits 

adjustment of the stiffness and stress relaxation rate across a range that is typical for soft 

tissue (elastic modulus: 100–20,000 Pa; t1/2: 100–10,000 s) (Chaudhuri et al., 2016). Dr. 

Stower’s laboratory (UCSB Mechanical Engineering & Biological Engineering) has 

employed alginate-based hydrogels in 3D-cell cultures using a variety of cell types, 

including neural progenitor cells (Lee et al., 2019; Madl et al., 2017; Stowers et al., 2019). 

While we were unable to examine initial compatibility, these gels may be amenable to real-

time cell tracking with confocal microscopy.  

 An additional variation of 2.5D culture involves cells being sandwiched between 

stiff tissue culture plastic and soft alginate hydrogel (Pebworth et al., 2014). In this setting, 

cells have been observed migrating from the underlying stiff substrate into the alginate 

matrix, effectively demonstrating the utility of the 2.5D culture platform to advance our 

understanding of the effects of stiffness gradients on adhesion-independent cell migration 

(Pebworth et al., 2014). The sandwich method can easily be tested by plating cells 

underneath a layer of ECM gel (Matrigel) and monitoring if primary brainstem neurons are 

migrating in an adhesion-independent manner similar to human HEK 293 and U87 

glioblastoma cells (Pebworth et al., 2014). Furthermore, alginate is already a component of 

the 3D-IPN hydrogel that was tested with primary brainstem neurons. Since we have 

demonstrated the success of primary brainstem neurons with Matrigel (the other component 

of the IPN hydrogel), a possible intermediate step (2.5D) in forming a functional IPN 

hydrogel or a technique utilized with the IPN hydrogel could involve the sandwich method 
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performed again using the alginate-Matrigel hydrogel. While we did an initial test with the 

sandwich method and the IPN hydrogel, the results were inconclusive.  

 

Bottlebrush polymers 

 We evaluated the general viability of primary serotonergic neurons in a second 

hydrogel platform that provides complementary functionality to the aforementioned 

alginate-based materials using new polymer building blocks that undergo a self-assembly 

mechanism of gelation (Self et al., 2020). The molecular design of these hydrogels supports 

a branched “bottlebrush” architecture that contains a long backbone and polymeric 

sidechains protruding from each repeat unit (Reynolds et al., 2020; Self et al., 2020). 

Bottlebrush polymers may be excellent 3D scaffolds for serotonergic neurons and axon 

growth because their softness closely approximates the mechanical properties of brain tissue 

than do traditional linear polymers (Self et al., 2020). The synthesis of novel bottlebrush 

copolymers (including statistical copolymers) has been pioneered using ring-opening 

metathesis polymerization for non-biological applications (Mukherjee et al., 2020; Reynolds 

et al., 2020; Self et al., 2020). Bottlebrush polymer hydrogels consist of (1) an adhesion 

ligand (e.g., an RGD-peptide) to promote cell attachment and growth, (2) poly (ethylene 

oxide) (PEO) for water solubility, and (3) poly(dimethylsiloxane) (PDMS) that forms 

micelles via the hydrophobic effect (which underlies self-assembly-induced gelation). 

Importantly, both PEO and PDMS are biocompatible and have been used extensively in cell 

culture applications (Lecault et al., 2011; Leivo et al., 2017; Naahidi et al., 2017). The 
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synthesized material for this hydrogel system is inherently tunable since the length of the 

backbone and the relative ratio of each sidechain can be controlled through synthesis.  

 Self-assembly is omnipresent in nature at both macro- and microscales; it describes 

the spontaneous association and organization of numerous individual units into rational and 

well-defined structures without external participation (Kopeček & Yang, 2012). Apart from 

environmental conditions (e.g., pH, temperature, ionic strength), surface characteristics 

influence intermolecular interactions and thus plays an important role in self-assembly 

(Kopeček & Yang, 2012). The assembly of copolymer micelles is a form of higher-level 

self-assembly occurring at the nanoscale level where the building blocks are preassembled 

micelles (Lu et al., 2020). Supported by preliminary data from Dr. Bates’s laboratory 

(UCSB Materials), the bottlebrush copolymers may form micelles in culture media that 

undergo a liquid-solid phase transition via jamming, which can be exploited to encapsulate 

serotonergic neurons and their growing axons in three dimensions. Bottlebrush copolymers 

have a distinct yield stress that corresponds to a structural transition between an ordered 

solid arrangement and a disordered liquid state of micelles, induced by an applied force (Lu 

et al., 2020). Optimal compositions that balance solid-like properties and relaxation 

timescales will be used to incorporate serotonergic neurons by syringe-mixing. Neurons may 

be able to locally yield and remodel the bottlebrush scaffold as they grow, even if the 

macroscopic material retains its shape. Further examination of the use of primary 

serotonergic neurons is necessary including the assessment of 5-HT cell viability, general 

growth, and long-term survival in this novel bottlebrush hydrogel system. If this synthetic 

hydrogel system is found to be compatible with primary serotonergic neurons, future uses 
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may involve unprecedented control over the 3D spatial and temporal growth dynamics of 

serotonergic fibers via 3D-bioprinting (Xie et al., 2020).  

 

VitroGel 

 A study comparing VitroGel 3D-RGD with a competing commercially available 

ECM-hydrogel system found VitroGel 3D-RGD to be superior for promoting long-term 

neuronal maturation and survival reporting no significant loss of cell viability (Tomov, 

2019). In addition, VitroGel 3D-RGD can be adjusted by seeding with soluble factors in a 

controlled, reproduceable, and defined manner to resemble the desired environment (Tomov, 

2019). This offers the option to eventually enhance the VitroGel 3D-RGD system with 

soluble factors associated with serotonergic neuron development in the raphe nuclei. 

To our knowledge, there are no known publications using VitroGel Matrix with primary 

neurons. VitroGel Matrix has recently been used in the bioprinting of a human skin 

substitute with a dermal layer containing xeno-free cultured human endothelial cells, 

fibroblasts (FBs), pericytes (PCs), in a bioink containing the VitroGel solution, human 

collagen type I and fibronectin layered in a biocompatible polyglycolic acid mesh and 

subsequently seeded with xeno-free human keratinocytes to form an epidermal layer 

(Baltazar et al., 2022). In addition, VitroGel Matrix has been used with Dictyostelium 

discoideum cells as a model for amoeboid movement in different 2D- and 3D-environments, 

with live-cell microscopy (Ishikawa-Ankerhold et al., 2022). VitroGel Matrix was 

successfully used in live-cell recordings using a confocal microscope and an inverted Leica 

DMi8 LED fluorescence microscope (Ishikawa-Ankerhold et al., 2022). Our early 
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examinations of primary brainstem neurons in various hydrogel models can support in the 

optimization of ex vivo models of the serotonergic matrix. 

 While advances in polymer chemistry are driving the evolution of sophisticated 

synthetic–biologic gels, 3D culture of mammalian cells in such microenvironments is not 

without challenges. For example, Matrigel is broadly used in 3D cell cultures but can show 

considerable batch-to-batch variability that can affect and its biochemical and mechanical 

properties. If necessary, cell adhesion peptides can be conjugated directly to the alginate 

chains (Stowers et al., 2019). In addition, calcium-crosslinking is used in the alginate-

Matrigel hydrogels, but calcium signaling is also important in cell physiology. Calcium-

crosslinked hydrogels have been successfully used in a variety of cell types, with minimal or 

undetectable interference with their functions (Chou & Nicoll, 2009; Im et al., 2017; 

Samorezov et al., 2015; Shoichet et al., 1996). In similar alginate-Matrigel IPNs, the 

addition of excess calcium in the millimolar range has not impacted cell signaling 

(Chaudhuri et al., 2014); this concentration is consistent with that of typical cell culture 

basal media. Furthermore, the bottlebrush copolymers have not yet been thoroughly tested in 

cell culture systems; regardless, the potential risks are outweighed by the unprecedented 

potential of these hydrogels to provide a means for ex vivo analysis of serotonergic fibers.  
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VII. Chapter 6: General Discussion  

Given the fundamental importance of single fiber trajectories to the self-organization 

of the serotonergic matrix, further progress in modeling this system crucially depends on the 

experimental capability to track individual serotonergic axon dynamics in time and space. 

Accordingly, there is a high demand for in vitro and ex vivo models of the CNS that may 

allow to achieve this goal.  

 

Mechanical properties of neurons  

 Variations in cell morphology and behavior in vitro vs in vivo emphasize the 

significance of developing biomimetic in vitro models to study cells in a physiologically 

relevant context, especially regarding the CNS (Sharaf et al., 2022). Primary brainstem 

neurons, particularly primary 5-HT neurons, are infrequently studied with few 

methodological consistencies in existing literature. Further modifications of this in vitro 

model must expand to include deeper considerations of the mechanical properties of these 

neurons. For example, investigating factors such as the axonal plasticity of 5-HT fibers and 

the effects of the growth substrate, or adhesion forces and traction stresses generated during 

axonal extensions, is necessary to further validate the platform.   

 Neurons and other constituents of nervous tissue (e.g., glial cells, ECM proteins) are 

heterogeneous, viscoelastic materials. Their mechanical response depends on the timescale, 

magnitude, and loading rates of the externally applied forces (Lu et al., 2006; O'Toole et al., 

2008; Spedden et al., 2012). The outgrowth of neurites from the cell body of a neuron is an 

intricate process involving interactions with a nonuniform dynamic extracellular 
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environment (Lowery & Van Vactor, 2009; Wen & Zheng, 2006). Mechanical interactions 

and physical stimuli play a significant role in processes such as the rearrangements of the 

cytoskeleton and the generation of traction forces as a result of neurite growth, the adhesion 

of neurites to ECM proteins, the change in direction and velocity of the growth cone in 

response to guidance cues, or the axonal navigation through tissues of varying stiffness 

(Francisco et al., 2007; Franze et al., 2009; Lamoureux et al., 2002; O'Toole et al., 2008; 

Spedden et al., 2012). Brain tissue is among the softest tissues in the body with a Young’s 

modulus ranging from 0.1 to 1 kPa (Lu et al., 2006; Taliban et al., 2019), whereas the 

Young’s moduli of traditional Petri dishes made of polystyrene or glass are approximately 3 

GPa or 70 GPa, respectively (Espinosa-Hoyos et al., 2018; Fekete et al., 2018; Sharaf et al., 

2022). Future research should include measurements of stiffness of the presented platform in 

2D, 2.5D, and 3D environments to elucidate how environmental geometry is affecting the 

trajectories and dynamics of primary 5-HT axons. Ultimately, optimal hydrogels will have 

viscoelastic properties comparable to that of actual neural tissue. 

 

Parameter: substrate coating 

 It has been previously shown that different substrate conditions, such as surface 

charge, topography, hydrophobicity or hydrophilicity, surface chemistry, and surface energy 

may impact cell behavior (Harnett et al., 2007; Liberio et al., 2014). The features of the 

substrate can also influence the polymerization/conformation of the ECM protein that could 

present different binding sites to interact with integrins (Liberio et al., 2014). Consequently, 

the modified cell-substrate interaction can affect the initiation of intracellular signals 
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(Hocking et al., 1994; Liberio et al., 2014; Morla et al., 1994; Sottile et al., 1998). For 

example, prior research shows that poly-D-lysine substrates inhibit glial proliferation in 

chick embryo telencephalon cultures, whereas collagen substrate cultures have resulted in an 

overgrown glial cell population by DIV12-13 (Azmitia & Whitaker-Azmitia, 1987; 

Pettmann et al., 1979).  Experiments with poly-D-lysine coated culture chambers with 

hippocampal and raphe co-cultures have shown that hippocampal cells strongly stimulate 

serotonergic uptake maturation (Azmitia & Whitaker-Azmitia, 1987). Rat hippocampal 

cells, plated on poly-D-lysine coverslips, show a marked suppression of non-neuronal cells 

(Banker & Cowan, 1977).  

Substrate preference varies by research group, with literature rarely addressing how 

the choice has been made. However, this seemingly minute detail of cell culture can induce 

drastic changes in cell dynamics. This is particularly important when considering 5-HT axon 

dynamics, as primary cultures of midbrain neurons have been shown to have upregulated 

expression of genes associated with extracellular matrix and adhesion (Greco et al., 2009). 

Kivell et al. (2000) have reported the most successful and consistent cell attachment and 

neurite outgrowth of primary brainstem neurons by using poly-D-lysine compared to poly-L-

lysine and polyethyleneimine (PEI). Ternaux and Portalier (1993) obtained poor results 

using poly-ornithine in primary brainstem cultures but found that substrates coated with 

laminin resulted in better growth of neurons compared to glial cells and a more rapid growth 

of neurites compared to dissociated cells plated on poly-L-lysine. In addition, the length of 

neurites was reported to be doubled when primary brainstem neurons were cultured on 

laminin (Ternaux & Portalier, 1993). Investigating axonal growth rate of 5-HT neurons in 
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2D-systems using different substrates would provide invaluable information about the 

influence of the physical environment on the mechanical properties of serotonergic axons. 

Physiologically relevant in vitro models would ideally not have more variation in neurite 

length and rate of growth than in vivo and those that do, should have defined metrics to 

account for these variations.  

 

Axon extension 

 Axon extension is a fundamental process, but its interpretation in cell cultures 

requires caution. For example, in 2D-cell cultures axon growth is thought to strongly depend 

on adhesion, but adhesion may not be necessary for growth in 3D environments (Santos et 

al., 2020). Neurons grown with astrocytes in 3D-Matrigel scaffolds have been shown to 

have a 40-fold lower firing threshold compared to neurons grown in 2D cultures, due to 

differences in the expression of the voltage-gated sodium channel (Karahuseyinoglu et al., 

2021). However, artificially grown axons may not automatically prefer 3D environments 

over 2D-environments and may incorporate other cues in their decisions (Li and Folch, 

2005). The formation and dynamics of axon varicosities also remains poorly understood. 

Early studies in other systems have suggested that varicosities can form directly from 

“stopped” growth cones (Hatada et al., 1999), and that their distribution can be described by 

random point-processes such as the Poison process (Hellwig et al., 1994). More recent 

studies have shown that varicosities strongly respond to their mechanical and biological 

environment (Shepherd et al., 2002; Ma et al., 2022) and are generally plastic, including 

pathological states (Gu, 2021). In the mouse brain, serotonergic axons appear to undergo a 
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developmental transition from “dot-like” enlargements, with virtually undetectable 

connections, to a smooth morphology by the end of the first developmental month 

(Maddaloni et al., 2017). In our cultures derived from early postnatal brains, axons with a 

continuous smooth morphology typically showed no 5-HT-immunoreactivity or it barely 

exceeded the background level (e.g., Figure 13B). However, some serotonergic axons 

produced branches that reflected both morphologies, perhaps because of slightly different 

microenvironments they encountered in the same area (Figure 20B). Generally, neuronal 

cell cultures excel at revealing the entire “behavioral” repertoire of a particular class of 

neurons and their processes, especially if the neurons are tested in diverse artificial 

environments – but they do not imply that all of these “behaviors” are realized in the highly 

specialized environment of natural neural tissue. 

Cells can sense the mechanical strength of their surrounding environment (Sharaf et al., 

2022) which subsequently influences the discrepancies of morphology, behavior, and 

genotype observed in vitro vs in vivo. For example, cancer research has indicated that across 

various cell culture geometries, only 3D-cell culture with the same cell density as natural 

tissue shows a drug response analogous to that of a solid tumor (Hsieh et al., 2015; 

Kapałczyńska et al., 2018). Furthermore, 2D-cultures force cells to rely primarily on focal 

adhesions for forward traction. Migration in the absence of focal adhesions has recently 

been observed in 3D-cultures of primary neurons, where cells migrated via cytoskeletal 

rearrangements in an amoeba-like manner (Pebworth et al., 2014; Renkawitz et al., 2009; 

Santos et al., 2020). This amoeboid-like migration begins with the formation of sizeable 

blebs, or rounded membrane protrusions, which squeeze and flow through fibers and pores; 
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thus, allowing for cell migration via purely mechanical means (Guck et al., 2010; Pebworth 

et al., 2014). Developing a scaffold capable of allowing cells to receive stimuli from the 

local environment as it would happen in vivo is particularly important when studying the 

serotonergic matrix, a system crucial to neuroplasticity, that also exhibits inherent 

characteristics of axonal plasticity. 

 

3D 

 Any specific changes in 5-HT fiber dynamics that may exist between 2D- vs 3D- 

systems is relatively unexplored. Only recently have 5-HT axons been explored in the 

context of hydrogel systems. Traumatic spinal cord injuries (SCI) frequently result in tissue 

defects, such as the formation of cystic spaces, which severely inhibits axonal regeneration 

due to a lack of the proteinaceous ECM (Park et al., 2022; Shechter & Schwartz, 2013; 

Spector & Lim, 2016). Outside of the CNS, wound healing is characterized by the 

neovascularization and the deposition of fibrotic matrix, which if unchecked, becomes scar 

tissue consisting of excessive fibrosis, ultimately hindering proper repair or regeneration 

(Eming et al., 2014; Park et al., 2022). Hong et al. (2017) developed a natural ECM 

biopolymer (chondroitin sulphate and gelatin)-based hydrogel containing polypyrrole, that 

showed mechanical (~928 Pa) and conductive properties (4.49 mS/cm) like natural spinal 

cord tissues. Furthermore, the hydrogels displayed shear-thinning and self-healing abilities, 

which allows it to be effectively injected into the injury site and to fill the lesion cavity to 

accelerate the tissue repair of traumatic SCI (Hong et al., 2017). 
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 The hydrogel efficiently replaced cystic cavities with fibrotic matrix, which 

promoted functional recovery and attenuated degenerative pathology (Hong et al., 2017; 

Park et al., 2022). However, recent studies suggest that excessive fibrosis following SCI 

profoundly inhibits axonal regeneration (Park et al., 2022; Sofroniew, 2021; Zhu et al., 

2015). To examine if the excessive accumulation of the fibrotic matrix in the developed 

hydrogel could hinder axonal growth from the brain into the hydrogel-created matrix, Park 

et al. (2022) augmented the hydrogel by modifying the fibrotic microenvironment with a 

chondroitin sulfate proteoglycan (CSPG)-degrading enzyme (CSPGs are produced by 

astrocytes and macrophages, and contribute to fibrotic scar formation). Indeed, such 

modifications rendered the hydrogel-created ECM inhospitable to regenerating 5-HT axons 

in contusion injury model rats injected with the hydrogel. Regenerating 5-HT axons rarely 

entered the central region within the fibrotic ECM and became confined to a region near the 

matrix border and spared spinal cord (Park et al., 2022).  

 Park et al. (2022) further modified the hydrogel by alleviating the fibrotic 

microenvironment with arylsulfatase B (ARSB). ARSB-modifications resulted in a hydrogel 

environment favorable to regenerating axons as 5-HT axons were able to grow deeper to the 

central areas of the matrix. In addition, animals injected with the ARSB-modified hydrogel 

demonstrated improved 5-HT axonal innervation in the ventral motor regions as well as the 

intermediate gray matter in the lumbar spinal cord, with this increase in innervation being 

correlated with locomotor recovery (Park et al., 2022). 

 In our preliminary IPN hydrogel test, it is possible that we did not see any axons due 

to the fibrotic appearance of the gel, rendering it inhospitable to growing axons. During the 
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formation of most IPN systems, a phase separation occurs, due to the chemically different 

structure of the components forming the IPNs (Zoratto & Matricardi, 2018). Unfortunately, 

this leads to the development of a heterogeneous structure, which was visible in our initial 

imaging test. However, the process of separation proceeds very slowly due to the high 

viscosity of the system and to entanglements between chains (Zoratto & Matricardi, 2018). 

Future work with the IPN system should incorporate the most powerful method in the 

investigation of viscoelastic properties of polymeric systems: dynamic mechanical 

spectroscopy (DMS), which enables the estimation of the elastic moduli, mechanical losses, 

glass transition temperature, and relaxation characteristics of IPN and semi-IPNs (Zoratto & 

Matricardi, 2018). Similarly, initial immunostaining of our VitroGel hydrogels emphasized 

the fibrotic nature of this system. Nevertheless, VitroGels® are becoming the preferred 

material for 3D-systems, compared to Matrigel, which not only has an animal origin but also 

significant batch-to-batch variability (Cherne et al., 2021; Hakuno et al., 2022). Future 

research should continue to explore the VitroGel hydrogel mixes, included the most recent, 

VitroGel® ORGANOID 1–4 (#VHM04-K, TheWell Bioscience, NJ), which has been found 

to support cultures of gastric organoids within an MPS (Cherne et al., 2021). 

 

Future directions 

 Future applications of this platform are contingent upon identifying 5-HT neurons in 

living cell cultures. Once a reliable method of 5-HT neuron identification is available, the 

platform can be further expanded to include microphysiological systems (MPSs), and further 

validated by testing 5-HT axon behavior in response to various extracellular factors with 
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well-established effects on 5-HT axons (i.e., 5-HT, FLX, etc.). These devices have expanded 

experimental capabilities for studying axonal guidance through precise control of 

microenvironments and provide novel opportunities to create in vitro physiological and 

pathophysiologically relevant models (Holloway et al., 2021; Martins et al., 2017).  

We have done preliminary testing to isolate serotonergic neurons from primary 

brainstem cultures in the XonaChips® (Xona Microfluidics) device. These devices typically 

consist of 4 wells, with 2 of the wells connected by a channel on each side of the device 

(Darbinyan et al., 2013). Channels are then connected by microgrooves, which are sized so 

that cell bodies cannot pass through, allowing only the passage of extending neurites 

(Darbinyan et al., 2013) (Figure 29).   

 A reliable method for 5-HT neuron identification in vitro will additionally assist in 

examining substrate influence on 5-HT axon dynamics and extend the applications of HTM. 

Live tracking in in vitro systems with controlled fiber densities can provide key insights into 

the formerly described dynamical characteristics of serotonergic axons, including their 

dependence on the physical properties of the environment. With HTM, we can also quantify 

subcellular dynamics in growth cones and along serotonergic axons. To date, there have 

been few prior observations of primary neurons using holotomography and no published 

data are available in serotonergic neurons. Only recently has HTM been successfully used to 

examine the timeline of fine-scale morphological changes in undifferentiated primary 

cortical neurons after exposure to neurite stimulation media (Nanolive, 2020). In a sample 

study of primary cortical neurons conducted by a company specializing in HTM imaging 

(Nanolive), researchers were able to quantify the dynamic behavior of individual growth 
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cones using digital staining that tracked the dry mass of neurites (Nanolive, 2020). 

Importantly, details such as fine protrusions, spines, and varicosities were captured with 

high accuracy, and changes in neurite volume and shape were detected with high precision 

(Nanolive, 2020). Thus, HTM provides a means to examine the biophysical components of 

how axonal growth cones detect and interpret extracellular signals in their environment. 
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Figure 29 Overview of microfluidic devices used to isolate axons. (A) Microfluidic devices for axon 
isolation such as the Standard Neuron Device (XONA MICROFLUIDICS INC SND900) shown here 
are typically composed of two wells and an interconnected channel, separated by a set of microgrooves. 
From (Fisher Scientific). (B) Representative model of a microfluidic chamber. From (Martins et al., 
2017). (C) Neuron filaments can grow outwards in response to axon guidance cues. Depending on the 
device used, hydrostatic pressure formed by volume differential between chambers induces fluidic 
isolation of the solution on the low volume side of the device. This can allow for development and 
maintenance of a fluidic gradient of chemoattractants, toxins or other molecules of interest, facilitating 
controlled exposure and differentiation of axons. (From MilliporeSigma). (D, E) Our first test of the 
XONA device ‘XC450’. (E) The image shows the channels where axons get restricted to. In this 
particular example, remnants of debris are visible as image was taken immediately after cells were 
added to appropriate well. Scale bar is (D) 100 µm and (E) 50 µm. 
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Modeling the serotonergic system 

 The self-organization of serotonergic fibers depends in part on the spatiotemporal 

structure of their individual trajectories. The proposed platform can be used to obtain 

experimental data necessary to validate the mathematical models of these processes. 

Stochastic phenomena characterize many processes involved in neuronal growth, including 

neuron-neuron signaling, fluctuating weak environmental biochemical cues, biochemical 

reactions taking place in the growth cones, formation of lamellipodia and filopodia, and 

polymerization rates of microtubules and actin filaments (Yurchenko et al., 2019). 

Stochastic properties can be used to model both single neuron behavior involving the 

biophysical and biochemical mechanisms underlying synaptic neurotransmission and 

neuronal excitability (Saarinen et al., 2006), as well as axon interactions within growing 

neuronal populations (i.e., the serotonergic matrix) (Razetti et al., 2018). Our laboratory has 

recently introduced a novel mathematical framework to capture some of the essential 

properties of serotonergic axons (Janusonis et al., 2020; Janusonis et al., 2019; Vojta et al., 

2020). Consistent with this framework, findings from the presented research of individual 

serotonergic fibers can be interpreted as paths of spatial stochastic processes. 

A random walk based on the von Mises-Fisher distribution 

 The first model assumes that fibers perform a step-wise (discrete) random walk 

(Janusonis & Detering, 2019), where the direction of each step is described by a well-

defined probability distribution. A fiber can be modeled as a random walk and represented 

as a sequence of points. Given the direction of the fiber, its extension is modeled by 

obtaining the next direction from the von Mises-Fisher probability distribution (on the unit 
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sphere) and calculating the next coordinates. The probability density is parametrized with 

the “concentration parameter” (Janusonis & Detering, 2019; Jupp & Mardia, 2009). Small 

values of this parameter reflect higher tortuosity, whereas large values reflect more rigid 

behavior. Computer simulations show that changes in the concentration parameter can 

ultimately result in significant differences in fiber density, demonstrating how the local 

behavior of an individual fiber can influence the overall fiber density in a particular brain 

region (Janusonis & Detering, 2019; Janusonis et al., 2019).   

Fractional Brownian motion  

The second model can also produce trajectories that closely resemble those of actual 

serotonergic fibers, but it assumes that fibers are sample paths of fractional Brownian 

motion (FBM) (Janusonis et al., 2020). This model is particularly suitable for analyses in 

which high-resolution temporal information is available, such as in the proposed project. It 

is likely to more accurately reflect the time-continuous but “jittery” dynamics of membrane 

extension during axon growth (Janušonis et al., 2020).  

Theoretically, FBM is an extension of the normal Brownian motion (BM). The 

strength of the correlation between non-overlapping increments is determined by the Hurst 

index (H), which defines two different FBM regimes: subdiffusion (0 < H < 1/2, in which 

two neighboring increments are negatively correlated, producing “back-and-forth,” “anti-

persistent” trajectories) and superdiffusion (If 1⁄2 < H < 1, in which two neighboring 

increments are positively correlated, which produces “persistent” trajectories that maintain 

their current direction) (Janušonis et al., 2020; Vojta et al., 2020). Serotonergic fibers are 
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considerably less “jittery” than BM and tend to maintain their current direction, so they can 

be modeled with superdiffusive FBM.  

 This model shows individual serotonergic fibers as paths of a stochastic process that 

reflects their physical properties and shows that regional arborization or other local control 

is not necessary to arrive at a good approximation of the observed fiber densities (Janusonis 

et al., 2020). Instead, these densities may strongly depend on the geometry of the brain. 

FBM has four fitting properties that make it a natural choice in this context (Janusonis et al., 

2020). First, it is a continuous process, which is consistent with the time-continuity of axon 

growth. Second, it has stationary increments, meaning that its statistical properties do not 

change as the process evolves (this assumption is reasonable from the biological 

perspective). Third, it is a self-similar process, which ensures that the estimation of H does 

not depend on the discretization grid of experimental observations. Since time-dependent 

information is difficult to obtain in growing fibers (e.g., with time-lapse imaging in live 

animals; Jin et al., 2016), this property ensures robustness. Fourth, its increments are 

normally distributed. If randomness in the fiber trajectory arises from collision-like events in 

its microenvironment and each of these events has a small effect on the trajectory, the total 

effect of these collisions inevitably leads to a normal distribution (by the Central Limit 

Theorem) (Janusonis et al., 2020). Notably, FBM is the only stochastic process with all of 

these properties (assuming mean-zero increments) (Janusonis et al., 2020).  

It is possible that varicosity behavior may impact the estimates of the Hurst index (H), as the 

emergence of varicosities may be associated with time periods in which the next 



 

138 
 

displacement of the advancing fiber happens to be small, due to the “jittery” and stochastic 

nature of the FBM process (Janusonis et al., 2020). 
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VIII. Chapter 7: Conclusion  

The ability to produce in vitro 2D-cultures of neuronal cells has been fundamental in 

advancing understanding of in vivo cell behaviors, such as migration, growth, and mechanics 

(Duval et al., 2017). While serotonergic axons are typically studied regarding their collective 

and regionally specific densities, 2D-cell culture permits observation of single axon 

dynamics. However, visualizing this dynamic behavior in vivo is currently extremely 

difficult. Recent technological innovations (e.g., digital holotomography, 3D-cell culture 

systems, STED- super resolution microscopy) have changed the way complex neuronal 

systems can be studied and offer promising alternatives to in vivo approaches. We developed 

an in vitro model to study the dynamics of primary serotonergic axons and collected the first 

holotomographic images and recordings of primary brainstem neurons in culture at high 

spatial and temporal resolution. We additionally performed the first compatibility tests of 

FFNs (Henke et al., 2018) in dissociated cultures of primary brainstem neurons and began 

compatibility testing in both natural and synthetic hydrogel systems. The presented research 

introduced the development of an ex vivo platform to experimentally investigate 

serotonergic neurons and their axons with unprecedented spatiotemporal precision. These 

experimental data will provide crucial information for the current computational models that 

have the potential to predict regional fiber densities in the healthy and diseased brain. The 

rapid expansion of the currently available toolbox, including approaches developed in our 

research program (holotomography of primary brainstem cultures, advanced stochastic 

modeling, supercomputing simulations), promises to produce a radically new view of the 

serotonergic system, both at the structural and functional levels. 
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