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Abstract

CRISPR-Cas systems are found widely in prokaryotes where they provide adaptive immunity 

against virus infection and plasmid transformation. We describe a minimal functional CRISPR-

Cas system, comprising a single ~70 kilodalton protein, CasΦ, and a CRISPR array, encoded 

exclusively in the genomes of huge bacteriophages. CasΦ employs a single active site for both 
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CRISPR RNA (crRNA) processing and crRNA-guided DNA cutting to target foreign nucleic 

acids. This hypercompact system is active in vitro and in human and plant cells with expanded 

target recognition capabilities relative to other CRISPR-Cas proteins. Useful for genome editing 

and DNA detection but with a molecular weight half that of Cas9 and Cas12a genome-editing 

enzymes, CasΦ offers advantages for cellular delivery that expand the genome editing toolbox.

One Sentence Summary:

Phage-derived CasΦ uses a single active site to process guide RNA and cut DNA for genome 

editing and nucleic acid detection.

Competition between viruses and their host microbes fostered the evolution of CRISPR-Cas 

systems that employ nucleases and non-coding CRISPR RNAs (crRNAs) to target foreign 

nucleic acids by complementary base pairing (1). Processing of CRISPR array transcripts, 

consisting of repeats and spacer sequences acquired from viruses or other mobile genetic 

elements (MGEs) (2), generates mature crRNAs that guide Cas proteins (3) to detect and 

destroy previously encountered viruses. Although found almost exclusively in microbial 

genomes, the recent discovery of ubiquitous huge bacteriophages (viruses of bacteria) 

revealed the surprising prevalence of CRISPR-Cas systems encoded in their genomes (4). 

These systems notably lack CRISPR spacer acquisition machinery (Cas1, Cas2 and Cas4 

proteins) and generally harbor compact CRISPR arrays (median: 5 spacers per array), some 

of which target the genes of competing phages or phage hosts. CasΦ (Cas12j) is a family of 

Cas proteins encoded in the Biggiephage clade (4). CasΦ contains a C-terminal RuvC 

domain with remote homology to that of the TnpB nuclease superfamily from which type V 

CRISPR-Cas proteins are thought to have evolved (4, 5) (fig. S1). However, CasΦ shares 

<7% amino acid identity with other type V CRISPR-Cas proteins and is most closely related 

to a TnpB group distinct from miniature type V (Cas14) proteins (Fig. 1A).

CasΦ’s unusually small size of ~70–80 kDa, about half the size of the Cas9 and Cas12a 

(Fig. 1B), and its lack of co-occurring genes raised the question of whether CasΦ functions 

as a bona fide CRISPR-Cas system. We investigated three divergent CasΦ orthologs from 

metagenomic assemblies (fig. S2), hereafter referred to as CasΦ−1, CasΦ−2 and CasΦ−3. 

To examine CasΦ’s ability to recognize and target DNA in bacterial cells, we tested whether 

CasΦ could protect Escherichia coli from plasmid transformation. CRISPR–Cas systems 

target DNA sequences following or preceding a 2–5 base pair (bp) Protospacer Adjacent 

Motif (PAM) for self-versus-non-self discrimination (6). To determine whether CasΦ uses a 

PAM, we transformed a library of plasmids containing randomized regions adjacent to 

crRNA-complementary target sites, thereby depleting plasmids harboring functional PAMs. 

This revealed the crRNA-guided double-strand DNA (dsDNA) targeting capability of CasΦ 
and minimal T-rich PAM sequences, including 5′-TBN-3′ PAMs (where B is G, T, or C) 

depleted for CasΦ−2 (Fig. 1C).

We next used the E. coli expression system and plasmid interference assay to determine the 

components required for CRISPR-CasΦ system function. RNA-sequencing analysis revealed 

transcription of the casΦ gene and the reduced CRISPR array but no evidence of other non-

coding RNA such as a trans-activating CRISPR RNA (tracrRNA) within the locus (Fig. 1D). 
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In addition, CasΦ activity could be readily reprogrammed to target other plasmid sequences 

by altering the guide RNA (fig. S3). These findings suggest that in its native environment, 

CasΦ is a functional phage protein and bona fide CRISPR-Cas effector capable of cleaving 

crRNA-complementary DNA such as other phage (Fig. 1E). Furthermore, these results 

demonstrate that this single-RNA system is much more compact than other active CRISPR-

Cas systems (Fig. 1F).

We next investigated the DNA recognition and cleavage requirements of CasΦ in vitro. 

RNA-seq revealed that the crRNA spacer, which is complementary to DNA targets, is 14–20 

nucleotides (nt) long (Fig. 1D). Incubation of purified CasΦ (fig. S4) with crRNAs of 

different spacer sizes along with supercoiled plasmid or linear dsDNA revealed that DNA 

cleavage requires the presence of a cognate PAM and a spacer of ≥ 14 nt (Fig. 2A; fig. S5A). 

Analysis of the cleavage products showed that CasΦ generated staggered 5′-overhangs of 8–

12 nt (Fig. 2B, C; fig. S5B, C), similar to the staggered DNA cuts observed for other type V 

CRISPR-Cas enzymes including Cas12a and CasX (7, 8). We also observed that CasΦ−2 

and CasΦ−3 were more active in vitro than CasΦ−1, and the non-target strand (NTS) was 

cleaved faster than the target-strand (TS) within the RuvC active site (Fig. 2D; figs. S6A, S7; 

Supplementary Text). Furthermore, CasΦ was found to cleave ssDNA but not ssRNA in cis 
and in trans (fig. S6B, S8), suggesting that CasΦ may also target ssDNA MGEs or ssDNA 

intermediates. The trans-cleavage activity of CasΦ, observed only upon DNA recognition in 
cis (fig. S8), coupled with a minimal PAM requirement (Fig. 1C), may be useful for broader 

nucleic acid detection as previously demonstrated for type V and type VI Cas proteins (9–

11).

CRISPR-CasΦ systems must produce mature crRNA to guide foreign DNA cleavage. Other 

type V CRISPR-Cas proteins process pre-crRNAs using an internal active site distinct from 

the RuvC domain (12) or by recruiting Ribonuclease III to cleave a pre-crRNA:tracrRNA 

duplex (13–16). The absence of a detectable tracrRNA for CasΦ hinted that CasΦ may 

catalyze crRNA maturation on its own. To test this possibility, we incubated purified CasΦ 
with substrates designed to mimic the pre-crRNA structure (Fig. 3A). Reaction products 

corresponding to a 26–29 nt-long repeat and 20 nt spacer sequence of the crRNA were 

observed only in the presence of wild type CasΦ, corroborated by RNA-seq analysis of 

native loci (Figs. 1D; 3A, C; fig. S9). In control experiments, we found that pre-crRNA 

processing is strictly magnesium-dependent (Fig. 3B; fig. S9), which is different from other 

CRISPR-Cas RNA processing reactions and suggested a distinct cleavage mechanism. 

Notably, the RuvC domain requires magnesium to cleave DNA (17), and some RuvC 

domains have been reported to have endoribonucleolytic activity (15). Based on these 

observations, we tested CasΦ containing a RuvC-inactivating mutation and found it to be 

incapable of processing pre-crRNAs (Fig. 3B; fig. S9A, B). Both wild-type and catalytically 

inactivated CasΦ proteins bind crRNA, and their reconstituted complexes with pre-crRNA 

have similar elution profiles from a size exclusion column, suggesting no pre-crRNA 

binding or protein stability defect resulting from the RuvC mutation (fig. S10).

We hypothesized that if the RuvC domain is responsible for pre-crRNA processing, the 

products should contain 5′-phosphate and 2′- and 3′-hydroxyl moieties as observed in 

RNAs generated by the RuvC-related RNase HI enzymes (17). In contrast, other type V 
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CRISPR-Cas enzymes process pre-crRNA by metal-independent acid-base catalysis in an 

active site distinct from the RuvC, generating 2′−3′-cyclic phosphate crRNA termini, as 

observed for Cas12a (18). Phosphatase treatment of CasΦ-generated crRNA followed by 

denaturing acrylamide gel analysis showed no change in the crRNA migration, distinct from 

the change in mobility detected for crRNA generated by Cas12a (Fig. 3C; fig. S9C). This 

result implies that no 2′−3′-cyclic phosphate was formed during the reaction catalyzed by 

CasΦ, in contrast to the acid-base catalyzed processing reaction by Cas12a (Fig. 3C, D). 

Together, these data demonstrate that CasΦ uses a single RuvC active site for both pre-

crRNA processing and DNA cleavage.

The versatility and programmability of CRISPR-Cas systems for genome editing in virtually 

any organism have sparked a revolution in biotechnology and fundamental research (19). To 

investigate whether CasΦ can be harnessed for human genome editing, we performed a gene 

disruption assay (8) using CasΦ co-expressed with a crRNA in HEK293 cells (Fig. 4A). We 

found that CasΦ−2 and CasΦ−3, can induce targeted disruption of a genomically integrated 

EGFP gene (Fig. 4A; fig. S11). In one case, CasΦ−2 with an individual guide RNA was able 

to edit up to 33% of cells (Fig. 4A), comparable to levels initially reported for CRISPR–

Cas9, CRISPR–Cas12a, and CRISPR–CasX (7, 8, 20). We next tested if CasΦ−2 can be 

delivered as RNPs into plant protoplasts to edit the endogenous Arabidopsis thaliana PDS3 
gene (Fig. 4B; fig. S12). Next generation sequencing revealed that CasΦ−2 introduces 

primarily 8–10 bp deletions (Fig. 4B), consistent with the cleavage pattern observed in vitro 
(Fig. 2C). The small size of CasΦ in combination with its minimal PAM requirement will be 

particularly advantageous for both vector-based delivery into cells and a wider range of 

targetable genomic sequences, providing a powerful addition to the CRISPR-Cas toolbox.

Three other well-characterized Cas enzymes Cas9, Cas12a, and CasX, use one (Cas12a and 

CasX) or two active sites (Cas9) for DNA cutting and rely on a separate active site (Cas12a) 

or additional factors (CasX and Cas9) for crRNA processing (Fig. 4C). The finding that a 

single RuvC active site in CasΦ is capable of crRNA processing and DNA cutting suggests 

that size limitations of phage genomes, possibly in combination with large population sizes 

and higher mutation rates in phages compared to prokaryotes (21–23), led to a consolidation 

of chemistries within one catalytic center. Such compact proteins may be particularly 

amenable to engineering and laboratory evolution to create new functionalities for genome 

manipulation, and highlight huge phages as an exciting forefront for discovery and 

biotechnological applications for human health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
CasΦ is a bona fide CRISPR-Cas system from huge phages. (A) Maximum Likelihood 

phylogenetic tree of type V effector proteins and respective predicted ancestral TnpB 

nucleases. Bootstrap and approximate likelihood-ratio test values ≥ 90 are denoted on the 

branches with black circles. (B) Illustrations of genomic CRISPR-Cas loci of CasΦ, Cas14, 

and systems previously employed in genome editing applications. (C) Graphical 

representation of the PAM depletion assay and the resulting PAMs for three CasΦ orthologs. 

(D) RNA-sequencing results (left) mapped onto the native genomic loci of CasΦ orthologs 

Pausch et al. Page 7

Science. Author manuscript; available in PMC 2021 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and their upstream and downstream non-coding regions as cloned with reduced CRISPR-

arrays into expression plasmids. Enlarged view of RNA mapped onto the first repeat-spacer 

pair (right). (E) Schematic of the hypothesized function of Biggiephage-encoded CasΦ in an 

instance of superinfection of its host. CasΦ may be used by the huge phage to eliminate 

competing mobile genetic elements. (F) Predicted molecular weights of the 

ribonucleoprotein (RNP) complexes of small CRISPR-Cas effectors and those functional in 

editing of mammalian cells.
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Fig. 2. 
CasΦ cleaves DNA. (A) Supercoiled plasmid cleavage assay testing CasΦ RNPs 

reconstituted with crRNAs of different spacer lengths. (B) Cleavage assay targeting dsDNA 

oligo-duplices for mapping of the cleavage structure. (C) Scheme illustrating the cleavage 

pattern. (D) NTS and TS DNA cleavage efficiency (n = 3 each, mean ± s.d.). Data is shown 

in fig. S7B.
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Fig. 3. 
CasΦ processes pre-crRNA within the RuvC active site. (A) pre-crRNA substrates and 

processing sites (red triangles) as derived from the OH-ladder in panel C. (B) Pre-crRNA 

processing assay for CasΦ−1 and CasΦ−2 in dependence of Mg2+ and RuvC active site 

residue variation (D371A and D394A) (n = 3 each, mean ± s.d.; t = 60 min). Data is shown 

in fig. S9B. (C) Left and middle: Alkaline hydrolysis ladder (OH) of the pre-crRNA 

substrate. Right: PNK-phosphatase treatment of the CasΦ and Acidaminococcus sp. Cas12a 

cleavage products. (D) Graphical representation of the mature crRNA termini chemistry of 

CasΦ and Cas12a and PNK-phosphorylase treatment outcomes.
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Fig. 4. 
CasΦ is functional for genome editing. (A) Experimental workflow of the GFP disruption 

assay (left) and GFP disruption using CasΦ−2 and CasΦ−3 and a non-targeting (NT) guide 

as a negative control (n = 3 each, mean ± s.d.). (B) Experimental workflow of CasΦ−2 RNP-

mediated genome-editing in A. thaliana mesophyll protoplasts (left) and amplicon 

sequencing data (right) showing the most frequent deletions for gRNA33 in the targeted 

region (blue) within the AtPDS3 gene. (C) Scheme illustrating the differences in RNA 

processing and DNA cutting for Cas9, Cas12a, CasX, and CasΦ.

Pausch et al. Page 11

Science. Author manuscript; available in PMC 2021 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	One Sentence Summary:
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.



