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The Development of Structure in Random 
Networks: an Anal sis of the Effects of 
Increasing Networ l 
of Structure* 

Density on Five Measures 

Noah E. Friedkin 

University of California, Santa Barbara* * 

The density of ingroup relations continues to be proposed as an indicator of 
structural cohesion. Network density is obviously a misleading indicator of 
structural cohesion when a group has subgroups; in such circumstances, the 
cohesion may be entirely internal to the subgroups. However, it is plausible 
that network density is a useful indicator of structural cohesion when it can 
be assumed that a group lacks subgroups. In order to analyze this possibility, 
I construct a set of random networks, increase the density of relations in 
these networks, and observe how the networks’ structure develops in terms 
of five measures. The results show that low densities in large networks may 
be associated with more structural cohesion than higher densities in smaller 
networks; it issuggested that in field studies, attempts to control for network 
size will encounter problems of nonlinearity and heteroscedasticity. I con- 
clude that network density is not a useful indicator of structure and that 
direct measurement of structure is to be preferred. 

Introduction 

This paper investigates the relationship between network density and the 
structure of networks. Network density is a measure of the incidence of 
direct relations among the possible pairs of a network; structure refers to 
how the direct relations are combined or arranged in a network. Though 
network density is among the most commonly reported properties of net- 
works, its implications for network structure have not been made explicit 
(cf. Harary et al. 1965 :75). 

The approach taken here is to construct a set of random networks that 
differ in size, to increase the density of relations in these networks, and to 
observe how the structure of each network develops. Stages of structural 
development in the random networks may be revealed with this approach. 
The consideration of networks of different sizes is included in the approach 

*This paper has benefited from the comments of James Coleman, Lawrence Hubert, Eugene 
Johnsen, Edward Laumann, and several referees of this journal. 

**Department of Education, University of California, Santa Barbara, CA 93106, U.S.A. 
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so that the possible significance of network size as a conditional factor can 
be addressed. 

The intended scope of this inquiry does not include an attempt to arrive 
at precise expected values of network structure under different conditions 
of network size and density. Instead, the analysis seeks to obtain qualitative 
statements about the development and state of structure under different 
conditions of network density and size. To illustrate the kind of description 
being sought, I shall be concerned more with whether distinct stages of 
development may be discerned than with estimating precisely the vaIues of 
network density which correspond to the emergence of each stage; I shall be 
concerned more with whether similar values of network density are associated 
with similar states of structure in networks of different size than with 
estimating precisely the expected states of structure under the different 
conditions. 

Methods and constructs 

Tlte inquiry is based on an analysis of random networks constructed with a 
Monte Carlo procedure.’ I follow Erdos and Renyi (I 960) who work with an 
evolving random network: (1) the first edge of the network is randomly 
selected from the N(N -- 1)/2 possible edges between N members; (2) the 
second edge of the network is randomly selected from [N(N ~ 1)/21 - 1 
remaining possible edges; (3) edges continue to be selected in this manner up 
to an arbitrarily set limit; (4) at various points, the process is interrupted to 
calculate statistics on the structure of the evolving network.’ 

Large numbers of Monte Carlo repetitions are necessary to achieve a highly 
precise estimate of the expected value of a structural parameter in a random 
network. Large numbers of repetitions were not practical, due to the com- 
puter expense involved in calculating the measures of structure in the net- 
works. Some error, therefore, will be present in the absolute values reported 
in this analysis which arises from the relatively small number of Monte Carlo 
repetitions upon which the results are based.3 

‘See Coleman (1964) and Rapoport (1963) who discuss the uses of mathematical models and simu- 
lation techniques; also see Mayhew and Levinger (1976), Rapoport (1979), and Rapoport and Horvath 
(1961). 

*A FORTRAN program, written by the author, is used to accomplish this task. The program ‘stops’ 
to calculate attributes of the evolving network each time the network’s density has been increased 
approximately one percent. The author would be pleased to provide further details on the nature of 
this program upon request. 

“The data in Figs. 1-5 are the mean results of five repetitions of the Monte Carlo procedure de- 
scribed in the body of the text. Exceptions are the data involving networks of twenty members which, 
owing to greater instability of the results, are based on ten repetitions. Despite the small number of 
repetitions used to produce each curve, the curves are quite smooth in appearance. This smoothness 
stems, in part, from the fact that a curve is based on the mean of several Monte Carlo repetitions and, 
also, from the fact that the structure of the network ‘evolves’, instead of being generated anew at each 
level of density; hence, discontinuities of structure are unlikely from one level of network density to 
the next. As is pointed out in the text which follows, the number of repetitions is sufticient for the 
purposes of this analysis. A qualitative comparison of the curves and a qualitative description of the 
general form of the curves are supported by the overall consistency of the findings, rather than by the 
achievement of a high level of precision in the estimation of each individual curve. 
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However, the analysis does not require a greater degree of precision given 
its limited purpose, that is, to obtain qualitative statements about network 
structure in relation to network density. The results will show that there is 
considerable internal consistency in the pattern of results across networks 
that differ in size. The observed degree of internal consistency provides 
powerful and sufficient support for the qualitative statements forwarded in 
this analysis. 

Seven constructs are involved in the analysis. The simplest construct is 
network size which is defined as the number of members in a network; the 
remaining six constructs are considered in detail below. 

Network density indicates how nearly a network is complete-a state in 
which each member is connected directly with every other member (Harary 
et al. 1965:7). The analysis deals with graphs (symmetric diagraphs); i.e. 
a direct connection of member i with member j implies a direct connection 
of j with i. In these circumstances, network density equals 2E/N(N - l), 
where E is the number of direct relations (edges) among N members. Thus, a 
network density of 0.5 indicates that a relation occurs in one-half of the 
possible pairs in a network. 

Network density is involved in this analysis because over at least the past 
thirty years, it has been proposed as an indicator of group cohesion. Kephart 
(1950:549) may have been the first to suggest network density as such an 
indicator. Barnes (1969:6 l--64) has treated network density as an indicator 
of the extent to which a network is ‘close-knit’; Bott (1957:250), following 
Barnes’ usage, has associated network density with the idea of “connected- 
ness”. More recently, Blau (1977: 136) has suggested that network density 
reflects the “strength of ingroup bonds or group cohesion”. It is to be 
expected that network density, currently the most commonly reported 
property of networks, will become still more prevalent now that its estima- 
tion in large groups is practical (Granovetter 1976). 

It is doubtful that a single property of structure can be found that is 
sufficient to characterize the overall extent of structural cohesion in a net- 
work (cJ: Holland and Leinhardt 1978). It is likely that a battery of struc- 
tural properties will provide a better indicator of structural cohesion in a 
network than any single property. It remains to be determined which among 
the many possibilities ought to be included in such a battery of indicators. 
The present analysis considers five measures of structure. They have been 
selected, not only because they are relatively easily calculated, but also 
because they are heavily implicated in noteworthy empirical and theoretical 
sociological studies: 

(1) among the total N(N - 1)/2 pairs, the proportion in which the mem- 
bers are mutually reachable; 

(2) the average length of the geodesics (i.e. the shortest paths); 
(3) the length of the longest geodesic (in networks in which all the mem- 

bers are mutually reachable, this property is equivalent to network diameter); 
(4) the proportion of individual members that are not involved in a triad 

(i.e. in a completely connected subgraph of three members); and 



(5) the number of such triads that individual members are involved in. on 
the average. 

Measures (l)-(3) of the extent of reachability and the length of geodesics 
in a network bear on the analysis of interpersonal flows in networks. A path 
between two network members indicates that an opportunity exists for the 
occurrence of a flow (e.g. of information or influence) from one to the other. 
The distance separating the two members is a condition of the actual likeli- 
hood of a flow---the greater the length of the shortest path between two 
members, the less likely the flow. 

With regard to measures (4) and (5) of triadic structure, Simmel (1950) 
first pointed to the possible significance of triads; Goode f 1960) has discussed 
the role of third parties to relationships in a useful and interesting way. In 
general, triadic structures, these analyses suggest, imply the presence of third 
parties to social relationships who may act to mediate interpersonal conflict 
and to forestall the breaking-off of relationships during the process of social 
control. Triadic structure is at the basis of both Bott’s (1957) distinction of 
close-knit from loose-knit networks and Laumann’s (1973) distinction of 
interlocking from radial networks. For an additional perspective on triadic 
structure, see the work of Davis (I 977) and Holland and Leinhardt (1976) 
and the literature cited therein. 

Rem1 ts 

A network’s structural cohesion generally increases with an increase in its 
network density. The relationship is markedly nonlinear in form for each of 
the five measures of network structure. Dramatic increases in structural 
cohesion occur at relatively low values of network density, ie. in the range 
0.0-0.5; in this range, all the pairs of a network rapidly become connected, 
the geodesics at first increase then rapidly decrease in length, and the involve- 
ment of individual network members in triads becomes both prevalent and 
intensive. In terms of the structural measures utilized here, it appears that 
most of the possible structural variation in the networks is exhausted at 
relatively low values of network density. Though one might expect that a 
comparable or higher level of network density would be required in a large 
network, in comparison to a smaller one, to achieve an equivalent level of 
structural cohesion, such is not the case; comparable levels of structural 
cohesion are achieved at lower levels of network density in large networks 
than in small ones. 

Proporfion of joined pairs 

Erdijs and Renyi (1960) find that when the number of relations in a network 
goes beyond one-half the number of members in the network the proportion 
of joined pairs abruptly increases. Ling and Killough (1976) show that Erdiis 
and Renyi’s study, as well as others that rely on asymptotic results, do not 
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provide a necessarily reliable basis of inference about what may obtain in 
small finite samples (also see Schultz and Hubert, 1973). The present results 
(with the exception of those based on networks of size 20) are surprisingly 
consistent with the findings of ErdGs and Renyi. 

Erdiis and Renyi’s threshold, after which point the proportion of joined 
pairs begins to rapidly increase, occurs at a density of 0.05 in a network of 
size 20, at a density of 0.03 in a network of size 40, and at a density of 0.02 
in a network of size 60. The results shown in Fig. 1 are not inconsistent with 
the predictions: in these small networks there is a rapid increase in the pro- 
portion of joined pairs around the predicted threshold values of network 
density. 

Note that the larger the size of a network, the lower the value of network 
density at which the proportion of joined pairs begins to increase most 
rapidly. Moreover, note that even in the smallest of the networks-the 
network with 20 members--all of the pairs are joined at a density which is 
well below 0.20. It is clear, then, that only the range of low values of net- 
work density is pertinent to an account of the structural cohesion of net- 
works in terms of the extent of reachability. 

A low network density in a large network belies the degree of connectivity 
which may exist in it. For example, the network of size 20 and densities of 
0.04 have, on average, 0.05 of their pairs joined; at the same time, the net- 
work of size 60 and densities of 0.04 have, on the average, 0.77 of their pairs 
joined. It may not be assumed that a low density in a network which is larger 
than another necessarily implies that the larger network is less structurally 
cohesive in terms of the proportion of its joined pairs. 

Length of geodesics 

Beginning at low values of network density, increase of network density is at 
first associated with an increase both in the length of a network’s longest 

Figure 1. Monte Carlo results on network density and the proportion of joined pairs in 
networks of 20,40, and 60 members. 
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geodesic and in the mean length of all the geodesics. This is seen in Figs. 2 
and 3. At low densities there is little indirect connectivity in a network; most 
of the connected pairs are joined by direct relations. As the density of the 
network increases, more pairs are joined by way of paths through inter- 
mediaries and, hence, the length of the geodesics in the network increases. 

The larger a network, the higher is the maximum expected length to which 
the geodesics will rise. After the point of maximum expected length has been 
reached, further increases of network density are associated with a decline in 
the length of the geodesics that is more rapid in the larger networks than in 
the smaller. Most of the possible reduction in geodesic length has occurred in 
the lower range of network density; beyond a density of 0.20, these data 
suggest that smaller reductions in geodesic lengths can be expected with 
further increases of network density. 

Figure 2. Monte Carlo results on network density and length of the longest geodesic 
(among the joined pairs) in networks of 20, 40, and 60 members. 
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Figure 3. Monte Carlo results on network density and the mean length of geodesics 
(among the joined pairs) in networks of 20,40, and 60 members. 
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Again, in these data it is apparent that a low network density in a large 
network does not necessarily correspond to a low degree of structural co- 
hesion, relative to a smaller network with a higher density. A low density in 
a large network belies the actual degree of structural cohesion that is present 
in it. 

Members participation in complete subgroups of size three (triads) 

Network members’ participation in triads increases with an increase of net- 
work density. Figure 4 shows that the proportion of members that are not 
involved in a triad declines with increasing network density; Fig. 5 shows 
that the number of triads, with which the average member is involved, 
increases dramatically with increasing network density. 

Figure 4. Monte Carlo results on network density and the proportion of network mem- 
bers who are not involved in a triad in networks of 20, 40, 60, and 80 members. 

04 08 I2 .I6 20 

NETWORK DENSITY 

Figure 5. Monte Carlo results on network density and the mean number of triads per 
member in networks with 20,40, 60, and 80 members. 
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With this structural property as with the others that have been examined, 
substantial gains in network cohesion occur at relatively low levels of net- 
work density. In all but the smallest networks, the proportion of network 
members not involved in a triad drops precipitously with increases in network 
density in the range 0.0 -0.50; in the same range of values, the average num- 
ber of triads individual members are involved in increases precipitously. 

Furthermore, it is seen once again that the same network density in net- 
works of different size may indicate substantially different degrees of struc- 
tural cohesion; it requires a larger value of network density to achieve the 
same level of structural cohesion in a small network than in a larger one. 
Low densities in large networks may belie the degree of structural cohesion 
in them in terms of the prevalence and intensity of members participation in 
triads. 

Conclusions 

For some time, it has been recognized that there is a serious constraint upon 
the use of network density as a measure of structural cohesion. Festinger et 
al. (1950:94) have pointed out that an aggregate measure of group cohesion 
can be misleading if it does not take into account subgroup formations: 

“As an extreme illustration, there conceivably might be two subgroups of four 
people each, each member within each subgroup choosing every other member but 
without any choices at all between the subgroups. In this case each of the sub- 
groups may have great cohesiveness but the cohesiveness of the group as a whole 
would be low.” 

It is plausible, however, that within groups where it is known or can be 
assumed that subgroups are absent, network density may be a useful measure 
of structural cohesion. In such circumstances, it is plausible that relatively 
high values of network density are associated with relatively high levels of 
structural cohesion and that low values of network density are associated 
with low levels of structural cohesion. Perhaps it is because of the extreme 
plausibility of these associations that we have been beguiled for so long into 
an uncritical acceptance of them. 

Holding network size constant, increases in network density generally do 
correspond with increases in networks’ structural cohesion, as indicated by 
five measures of structure. Dramatic increases in structural cohesion occur 
within the lower (o-0.50) range of values of network density. These data 
suggest that, in field studies, observed variations of network density in the 
range 0.5-1.0 may not be as important in the account of phenomena as is 
variation in the lower range. But this conclusion is based on a set of struc- 
tural measures that may be quite distinctive in their lack of ability to dis- 
criminate structural variation under conditions of high network density. 
Other measures of structure may be more useful in describing the develop- 
ment of structure with increase of network density in its upper range. With 
further work along these lines it may be possible eventually to describe the 
structural development of a network in terms of a battery of properties. 
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some of which are salient in a network’s initial stages of structural develop- 
ment and others which are salient in its later stages. 

Network density ought not to be used as an indicator of structural co- 
hesion when networks of different sizes are being compared. Similar values 
of network density in networks of different size correspond to substantially 
different levels of structural cohesion. It requires a larger value of network 
density to achieve the same degree of structural cohesion in a small than in a 
large network; accordingly, a low network density in a large network can 
belie the actual degree of its structural cohesion. 

One is tempted to conclude that network density may be a useful general in- 
dicator of structural cohesion if only network size is controlled. However, I 
believe that there are serious problems involved in an attempt to control net- 
work size towards this end. Some evidence presented below suggests that the 
relationship between network size and density is nonlinear and heteroscedastic. 

Figure 6 shows how the maximum possible network density declines in 
networks of different size: each curve involves an assumption about the maxi- 
mum number of direct relations that individual network members can main- 
tain. ‘l’he curves suggest how network size in genera1 may be associated with 
network density.4 

Figure 6. Declining maximum possible density in networks of different sizes. The 
curves assume, respectively, that each network member can maintain up to 
5, 10, 20, and 30 direct relations with other members. 

I 
20 40 60 80 100 120 140 
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4Mitchell (1969:1920) writes that “in general it appears that there is probably a limit to the number 
of people with whom an individual might be in direct and regular contact” and it is his impression 
“that this limit in an urban environment may be about thirty persons”. Network density on these 
curves equals M/(N - l), where M is a prescribed maximum number of direct contacts each person 
may be involved with among N persons (Le. 5, 10, 20, or 30 contacts in the present illustration): 
E (the number of edges) = M X N/2; therefore 2E/N(N - 1) = M X N/N(N - 1) = M/(N - 1). The 
results of Fig. 6 are not based on the Monte Carlo procedures described earlier in the paper (no con- 
straint on the maximum number of contacts per population member is involved in the Monte Carlo 
production of random graphs). Figure 6 is an analytical exercise meant to illustrate that variation in 
the number of contacts persons are able to maintain is associated with a progressively smaller degree of 
variation in network density in progressively larger populations and, therefore, that high network 
density in large populations may be expected to be rare. 
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Network density rapidly declines in a nonlinear manner with an increase 
of network size. Variation in the number of relations that network members 
can feasibly maintain is associated with a progressively smaller degree of 
variation in network density in progressively larger networks. In other words, 
we should in general be surprised to find a high value of network density in 
fairly large networks. 

Figure 7 displays the same rapid decline of network density with increas- 
ing network size (here defined as the number of possible pairs in it). The 
data are from Breiger’s (1976) four- and eight-block matrices of mutual 
contact among a sample of scientists. When the number of possible contacts 
in a block is relatively small, the network density of the block manifests its 
full range of variation, from 0.0 to 1.0; but as the size of the network in- 
creases, network density is more strictly confined to low values. It is worth 
noting that there is nothing intrinsic to the CONCOR algorithm that might 
account for these results on the relationship between block size and density. 

Field researchers who wish to employ network density as a general indi- 
cator of structural cohesion may face a serious problem of control because 
of possible nonlinearity and heteroscedasticity in the relationship between 
network density and size. This problem, in combination with the previously 
mentioned difficulty of interpreting the structural significance of network 
density when subgroups are present, lead me to conclude that network 
density is not a generally useful indicator of network structure. Direct 
measurement of structure is to be preferred on the basis of the variety of 
measures that are currently available. 

Figure 7. i%e relationship of network size and density in a sample of scientists. 
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