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ABSTRACT OF THE DISSERTATION 

 
Relative contribution of amplitude and phase spectra to the 

perception of complex sounds 
 

By 
 

Sierra Noel Broussard 
 

Doctor of Philosophy in Psychology 
 

 University of California, Irvine, 2017 
 

Professor Kourosh Saberi, Chair 
 

 

Speech processing involves analysis of complex cues in both spectral and temporal 

domains.  This dissertation describes a set of studies that explore how speech and music, 

the two most complex and ecologically important types of sound, are affected by spectral 

degradation using a method that orthogonally and parametrically decorrelates their 

amplitude and phase spectra. The first study investigates how amplitude and phase 

information differentially contribute to speech intelligibility. Listeners performed a word-

identification task after hearing spectrally degraded sentences that were segmented into 

temporal units of varying lengths (e.g., phoneme and syllable durations) before the 

decorrelation process.  Results showed that for intermediate spectral correlation values, 

segment length is generally inconsequential to intelligibility, and that intelligibility overall 

is more adversely affected by phase-spectrum decorrelation than by amplitude-spectrum 

decorrelation.  The second study investigates how amplitude and phase information 

differentially contribute to melody discrimination and speech intelligibility to better 

characterize processing differences between music and speech. Listeners heard spectrally 
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degraded melodies and performed a same-different judgement in a psychophysical 

discrimination task. Melody recognition was relatively unaffected by partial decorrelation 

of the amplitude spectrum and more resilient to loss of phase-spectrum cues for both short 

and long-duration analysis segments. The third study examines the effects of speaking rate 

and spectral degradation on speech intelligibility. Consistent with prior findings, phase-

spectrum cues were most useful to intelligibility at longer temporal windows of analysis, 

and amplitude spectrum cues at short windows. For normal rate speech, the crossover 

point between these two cues occurred at an estimated window size of 120 ms; i.e., 

amplitude-spectrum cues were more useful to intelligibility below this value and phase-

spectrum cues were more useful above this window size.  Increasing speaking rate to twice 

normal rate, surprisingly seemed to have little to no effect on this crossover point.  

However, slowing down speaking rate shifted this crossover point to significantly longer 

temporal window sizes (~230 ms).  Implications of these findings for cues critical to 

intelligibility of speech at different speaking rates, and in particular, the importance of 

preserving narrowband temporal envelope cues are discussed.  
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INTRODUCTION 

The human vocal tract is able to produce a wide variety of speech sounds, each 

defined by a place of articulation, manner of articulation, and voicing. There are over 100 

different phonemes currently established, and 44 of these are used by English speakers 

(Crystal, 2010). Vocal tract resonances can be defined using peaks in the spectral envelope, 

or formants. Each of these possible changes to the vocal tract defines the way the speech 

signal is produced and creates a unique acoustic signal that must then be interpreted by the 

auditory system. Consequently, in order to understand speech perception, it is necessary to 

understand how these sounds are represented in both time and frequency domains, and 

what type of cues are necessary in order to preserve them for accurate identification. 

 Humans appear to have certain kinds of signal processing in the auditory cortex that 

are specialized to interpret speech signals. However, speech is not the only type of signal 

that carries meaning; music is another type of complex and ecologically important type of 

sound (Peretz and Zatorre, 2005). Similar to speech, there is significant evidence that 

music perception is a human specific ability (Bispham, 2006). Music is mainly described in 

terms of pitch and time components, rhythm and tempo. In both pitch and component 

duration, there is considerably greater variance in music than in speech. Considerably less 

research has been dedicated to music processing, but recent studies have begun to 

illustrate the similarities and difference in speech and music perceptual processing (Peretz 

and Zatorre, 2005; Nunes-Silva and Haase, 2011; Koelsch, 2011). 
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Temporal cues used for speech and music perception 

Slow rate (~4Hz) temporal features of speech are considered critical to speech 

intelligibility (Saberi and Perrott, 1999; Greenberg et al., 2003; Greenburg and Arai, 2004; 

Ghitza and Greenberg, 2009). Shannon et al. (1995) showed that temporal cues prove 

sufficient for 90% of word identification, suggesting that minimal fine structure 

information is required for speech recognition when adequate temporal cues are available. 

Since then, considerable amounts of behavioral and neurological data have supported this 

finding. 

 For example, one study synthesized “auditory chimeras” to use as stimuli (Smith, 

Delgutte, and Oxenham, 2002). These auditory chimeras were created in a similar manner 

to vocoding but they used the narrowband envelopes of one sentence to modulate the fine 

structure of a second sentence. They demonstrated that the types of cues used in speech 

recognition are highly dependent on the number of bands used in synthesis; envelope 

contributed most to recognition at larger numbers of bands while fine structure was used 

more at lower band numbers. Furthermore, envelope cues were shown to be more 

resistant to conflicting information. A later study (Zeng et al., 2004) responded to these 

findings, suggesting that the role of fine structure was over interpreted due to the auditory 

filter’s ability to recover temporal envelope from broadband fine structure, meaning 

envelope remains the essential factor in speech intelligibility regardless of the size of the 

frequency band.  

Unlike speech research, there has been a lack of research exploring the relative 

importance of cue type in the spectral and temporal domains for musical stimuli. Smith and 
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colleagues (1997) investigated the necessary temporal cues for melody discrimination by 

creating melody-melody chimera stimuli. Their results for the melody-melody chimeras 

were the opposite of their results for the speech-speech chimeras. For melody recognition, 

most listeners required 32 bands before they could reliably identify the envelope melody 

over the fine structure melody. Participants also often reported hearing both melodies, 

which was much rarer in the speech studies. Because adequate frequency information is 

unavailable until band sizes are small, and melody recognition relies so heavily on pitch 

perception, this finding is unsurprising. Similarly, the double melody perception 

experienced simply meant that both the envelope and fine structure carried enough 

frequency information to allow both perceptions. 

Cochlear implant (CI) users have helped establish the necessity of temporal 

information for sound discrimination because CIs only transmit temporal envelope 

information. For example, while temporal envelope information is adequate for speech 

perception in quiet, the same is not true for noise degraded signals (Dorman et al. 1998; 

Friesen et al., 2001). One reason is that CI users are not assisted by temporal fluctuations in 

the masker (Lorenzi et al. 2006; Gnansia et al. 2008). Intelligibility is reduced when there is 

modulated background noise and listeners are using envelope only cues, suggesting fine 

structure cues are necessary for masking release.  

CI users also suffer from a loss in music perception ability. However, several studies 

have shown that CI listeners can use temporal information, particularly at low frequencies, 

to achieve some form of music perception. Surprisingly, some are even able to determine 

whether or not a note is out of tune in familiar melodies using low frequency temporal 

information (Zeng, 2002; Shannon, 1989). However, for complex rhythm tasks, there was a 
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great deal of individual differences in perceptual ability, suggesting a relation to cognitive 

capacity (Pijl, 1997).  

Because of the unique constraints on CI users, this population has been used to 

establish the relative contribution of temporal and spectral cues in music perception. One 

study (Kong et al., 2004) tested them across both pitch and rhythm tasks and compared 

their results to those of a normal hearing population. Both groups performed equally on 

the tempo discrimination task, requiring a rate difference of 4-6 bpm to perceive a 

difference. CI users performed slightly worse on pattern identification and significantly 

worse on melody identification. 

 

Speech-rate specific neural responses 

There is evidence that the auditory system preferentially responds to stimuli with 

envelope fluctuations at these slow rates that are highly correlated with intelligibility. Luo 

and Poeppel (2007) showed that the phase pattern of the theta-band responses from the 

auditory cortex reliably discriminates the spoken sentence signals. This discrimination is 

dependent on intelligibility of the sentence, and theta phase tracking became less robust as 

intelligibility decreased. Their results imply that continuous speech is processed at a 

temporal window of ~200 ms (5 hz) that changes according to speech dynamics.  

The demonstrated window length is unsurprising, since average syllable length is 

also ~200 ms, and the syllable has been suggested as a fundamental unit for speech 

perception and production (Greenburg and Arai, 2004). Information regarding the syllable 

sequence in continuous speech is critical for language understanding, so a temporal 

window of this size allows for optimal intelligibility (Greenburg et al., 2003). Having a 
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syllable-based window size suggests that the theta phase patterns observed in for distinct 

sentence stimuli most likely differ due to variation in timing across sentences. 

Luo and Poeppel (2012) showed that the auditory system responds in the same way 

to non-speech stimuli with similar properties and that high frequency (~50 hz) oscillations 

also aid in speech processing. Their stimuli consisted of concatenated frequency-modulated 

segments with means of 25, 80, and 200 ms, aligning with low gamma, high alpha, and 

theta band frequencies respectively. In the gamma frequency range, the 25 ms stimulus 

elicited the most reliable phase pattern. Low frequencies displayed the same behavior as 

the previous studies, but the 80 ms stimulus did not drive phase tracking efficiently at any 

frequency. A lack of phase locking for the 80 ms stimulus reveals that oscillations are not 

responsive to just any time window, and suggests that the phase locking in the theta and 

gamma bands are specifically designed to code for speech sounds. The two preferred time 

windows, 200 ms and 30 ms, correspond to average lengths of syllables and phonemes 

respectively (Greenberg et al., 2003; Drullman, 1995). 

 

Spectral cues used for speech and music perception 

Evidence seems to clearly support that the auditory system relies primarily on 

temporal envelopes at least for speech recognition cues, especially when the signal is not 

compromised in any way. However, humans produce both speech and music at a wide 

variety of tempos, suggesting that something besides temporal envelope may be playing a 

significant role in the processing of some meaningful acoustic stimuli. The auditory system 

may make use of more spectral cues for stimuli outside of the standard 3-8 Hz temporal 

envelope fluctuation rate. Only considering the time domain fails to include potentially 
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important signal features in the spectral domain that contribute to speech recognition. 

More specifically, both phase and amplitude spectra should be analyzed for their relative 

importance in speech intelligibility. 

 Several studies have shown that signal identification is more dependent on long-

term phase spectrum information than amplitude information (Oppenheim and Lim, 1981; 

Traunmüller and Lacerda, 1987; Drullman, Festen, and Plomp, 1994; Liu, He, and Palm., 

1997). One such study created hybrid signal stimuli to examine the relative importance of 

amplitude versus phase spectra for perceiving intervocalic stop consonant sounds (Liu, He, 

and Palm., 1997). Amplitude spectrum information tended to be primarily more 

informative for shorter window sizes and got progressively less useful as the window size 

increased. Listeners tended to name the vowel corresponding to the amplitude information 

more frequently when the stimuli had different places of articulation or when they shared 

the same voicing property, especially for voiced phonemes, suggesting that amplitude 

spectrum cues are more responsible for perception of place, while phase spectrum cues are 

more important for transmitting voicing information.  

Overall, changing the phase spectrum of a speech sound not only changes the sound 

quality, but phase information also carries cues that are vital for perceiving certain acoustic 

features, particularly at larger time window sizes. Furthermore, these findings hold for full 

sentences as well as individual phonemes (Paliwal and Alsteris, 2005; Alsteris and Paliwal, 

2006; Kazama et al. 2010). Some have argued that the usefulness of specific spectral cues 

depend on which type best preserves the temporal envelopes (Kazama et al., 2010). 

However, speech-in-noise and music aren’t fully characterized by envelope, and speech at 

non-standard rates does not carry the same type of information at these specific low 
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fluctuation rates (Kong et al., 2004; Saberi and Perrott, 1998; Luo and Poeppel 2012; Ghitza 

and Greenberg, 2009; Elliot and Theunissen, 2009; Venezia, Hickok, and Richards, 2016). 

Therefore, understanding the type of spectral cues that are most crucial to all types of 

music recognition and speech ineligibility will enhance our understanding of how speech 

and music are processed.  

This dissertation explores how speech and music, the two most complex and 

ecologically important types of sound, are affected by spectral degradation using a method 

that independently decorrelates their amplitude and phase spectra. The first chapter 

investigates how amplitude and phase information differentially contribute to speech 

intelligibility. The second chapter investigates how amplitude and phase information 

differentially contribute to melody discrimination and speech intelligibility to better 

characterize processing differences between music and speech. The third chapter examines 

the effects of speaking rate and spectral degradation on speech intelligibility. In each of 

these chapters, we discuss the implications of these findings and address the relative 

importance of preserving narrowband temporal envelope cues for each stimulus type. 

 

CHAPTER 1:  Speech intelligibility at moderate levels of spectral 

degradation 

This study was published in PLOS ONE at https://doi.org/10.1371/journal. pone.0180734. 

1.1 Introduction 

Phase spectrum analysis is often ignored in models of auditory spectral processing 

in humans despite our knowledge that humans are not phase deaf when listening to 

complex sounds. Phonemes, for example, are most often represented as a structural 
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component of the amplitude spectrum (Kazama et al., 2010; Liu, He, and Palm, 1997). 

However, a number of studies have found that phase plays a major role in speech analysis 

and recognition. Oppenheim and Lim (1981) found evidence through informal experiments 

that phase information could be useful in speech-signal reconstruction for long signal 

times, concluding that changing the phase spectrum of a speech sound can alter its 

phonetic value.  

Humans are able to identify vowels using only phase spectrum information at low 

fundamental frequencies, and speech comprehension has been shown to be more 

dependent on long-term phase spectrum than amplitude-spectrum information (Liu, He, 

and Palm, 1997; Traunmüller and Lacerda, 1987; Drullman, Festen, and Plomp, 1994). Liu 

and colleagues (1997), for example, investigated the impact of the phase spectrum on stop 

consonants and found that it is used to determine voicing properties and is critical for 

setting the structure of formant transitions. Phase information is also more important for 

consonants with strong burst releases than weak burst releases. Another study found 

similar results using full sentence stimuli (Kazama et al., 2010). Phase degradation has also 

been reported to make speech in noise recognition more difficult (Shi, Shanechi, and Arabi, 

2006), however the interpretation of this finding is confounded by the methods employed, 

as adding noise to speech whose phase spectrum has been degraded by a preset value, will 

further degrade the phase spectrum, resulting in inaccurate measures of the effects of 

phase-spectrum degradation on intelligibility. 

A critical question is the effect of the temporal window of spectral analysis on the 

relative contribution of amplitude and phase spectra to speech intelligibility. Several 

studies have shown that the type of spectral information that best maintains intelligibility 
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varies by window length (Kazama et al., 2010; Liu, He, and Palm, 1997). It has been shown 

that for phoneme length (<128 ms) time windows, amplitude information is most useful to 

intelligibility. However, at longer (>128 ms) window lengths, phase-spectrum information 

is more important. This 128 ms crossover point falls almost exactly between the average 

durations of phonemes and syllables, which have been suggested as basic segments of 

analysis in speech processing (Giraud and Poeppel, 2012). The average lengths of these 

speech units are ~30 ms and ~250 ms, respectively, and recent EEG and MEG research has 

presented evidence of a neural basis for these two window sizes in speech perception (Luo 

and Poeppel, 2012; Giraud et al., 2007; Howard and Poeppel, 2010; Peelle and Davis, 2012; 

Gilbert and Lorenzi, 2006). These studies have shown that the auditory cortex prefers 

stimuli with temporal modulations at gamma-band (~20-80 ms) and theta-band (~150-

300 ms) rates, suggesting that these may represent some form of neural parsing or 

temporal integration (Luo and Poeppel, 2012). 

Temporal envelope, fine structure, and periodicity each contribute different types of 

cues to speech intelligibility (Rosen, 1992). Phonemes are identified by a combination of 

voicing, manner, and place of articulation. Information about voicing and manner of 

articulation appear in all three of the previously mentioned signal components. Manner 

and voicing cues appear in envelope information as differences in rise times (as in ‘chip’ 

and ‘ship’), long periods of high amplitude for vowels, or as brief silent gaps to indicate a 

voiceless plosive (Raphael and Isenberg, 1980; Repp et al., 1976; Summerfield et al., 1981). 

Aperiodicity and high-frequency fine-structure cues can signal that a sound is either 

voiceless or a fricative (Soli, 1983). Place of articulation is determined by the frequency 

spectrum of initial release bursts and consecutive formants, which is information found in 
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fine structure (Hazan and Rosen, 1991; Harris, 1958). Tempo and stress help to parse 

sentences and distinguish between certain types of words (such as rebel and rebel). These 

parsing cues are only found in periodicity and temporal envelope information. While gaps 

of silence in the temporal envelope do not necessarily demarcate word boundaries, tempo 

is still a helpful envelope cue for segmenting words. Similarly, tempo can provide weak 

cues for vowel identity due to the covariance of vowel length and vowel quality (Lehiste, 

1970). Periodicity is the prime correlate of vocal pitch because it represents the rate of 

vocal fold vibration. Patterns of vocal pitch provide the primary cues used to indicate which 

words and syllables are stressed; these are extremely important cues to word identity in 

tonal languages such as Chinese. However, increases in the amplitude of temporal envelope 

also play a small role in marking stress (Fry, 1968). 

Most recent studies on speech intelligibility have focused on the temporal envelope 

modulations of speech signals. Several studies have demonstrated that, as long as the 

signal’s narrowband temporal envelopes are adequately preserved, a speech signal will be 

intelligible regardless of how the speech spectrum information is altered (Shannon et al., 

1995; Smith, Delgutte, and Oxenham, 2002; Zeng et al., 2004). It is argued that speech is 

made less intelligible by degrading information in one or both spectral domains (amplitude 

or phase), mainly because the temporal envelope is also degraded by these manipulations. 

By modelling the outputs of peripheral filters, one group of researchers determined that 

the intelligibility of spectrally degraded stimuli was highly correlated with narrowband 

envelope preservation (Kazama et al., 2010). These findings suggest that the necessary 

spectral information for intelligibility is ultimately dependent on the type of information 

that best preserves the temporal envelope.  
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Naturalistic speech environments, however, are best represented by intermediate 

spectral correlation values since amplitude and phase spectra of a signal will both be 

partially degraded in a noisy or reverberant environment.  All prior findings in this area of 

research are based on stimuli with only one type of spectral component preserved, usually 

achieved by separately decorrelating to zero either the amplitude or phase spectrum 

relative to the original waveform. Thus, the resulting stimuli maintain either the original 

amplitude or phase spectrum only, while the other spectral component is usually replaced 

with noise (Kazama et al., 2010; Liu, He, and Palm, 1997; Paliwal and Alsteris, 2005; 

Alsteris and Paliwal, 2006).  

The purpose of this study is to investigate the relative contributions of phase and 

amplitude spectra on sentence intelligibility by independently decorrelating, to various 

degrees, their amplitude and phase spectra relative to those of the original sentence across 

several time-window sizes. Investigating intelligibility using intermediate phase and 

amplitude correlation values (between 0 and 1) will allow a better understanding of their 

individual and joint influence on speech perception. Furthermore, these results will 

provide intelligibility scores for a larger variety of degraded temporal envelopes, allowing 

an in-depth analysis of the relationship between spectral and temporal representations of 

speech stimulus. 

1.2 Methods 

1.2.1 Participants 

Informed written consent was obtained from all participants. Fifteen adult listeners 

participated in the study (6 females, Mean age = 25 years, σ = 2.2). All participants had 

normal hearing and were native English speakers. None were familiar with the sentences in 
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the Hearing in Noise Test (HINT) database (Nilsson, Soli, and Sullivan, 2006). Subjects were 

recruited through IRB-approved postings on campus and through word of mouth starting 

in 2013 and continuing through 2016. Some had participated in prior experiments and had 

indicated an interest to participate in the current study.  No subjects dropped out of the 

study or were excluded from data analysis. This study was approved by the IRB of the 

University of California, Irvine (HS# 2010-7679). 

1.2.2 Stimuli 

Each stimulus was created by taking a sentence from the HINT database and adding 

noise through a decorrelation process (Fig 1.1). First, the sentence was divided into one of 

three time-window sizes: 30 ms, 250 ms, or equal to the duration of the sentence. Each 

segment was then Fourier transformed, yielding separate amplitude and phase spectra. 

These spectra were then separately decorrelated relative to the original by a specific 

amount.  The decorrelation process had several stages.  First, for amplitude-spectrum 

decorrelation, we added to each amplitude component in the frequency domain, a random 

number selected from a Rayleigh distribution.  A Rayleigh distribution was selected 

because the amplitude components of Gaussian noise in the frequency domain are Rayleigh 

distributed.  The vector containing the amplitude-spectrum values of the speech sound was 

added, on a point-by-point (bin by bin) bases, to a vector of the same size containing the 

random numbers from the noise distribution (with appropriate adjustments for negative 

frequency components):  

                        𝑎ᇱ(𝑓) = 𝑘 ∗ 𝑛(𝑓) + (1 − 𝑘) ∗ 𝑎(𝑓)       (1) 

where a(f) is the amplitude-spectrum vector as a function of frequency, n(f) is the noise 

vector, a’(f) is the new, decorrelated amplitude spectrum, and k is a scalar.  We then 
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measured the Pearson product-moment correlation value (r) between a(f) and a’(f).  When 

k=0, the correlation between the new and original amplitude spectrum of speech is 1 (full 

correlation).  When k=1, the amplitude spectrum of speech is fully replaced with that of 

Gaussian noise, and the correlation is zero.  For in-between values (moderate correlation 

values), we first generated a k-to-r transfer function that provided an initial estimate of 

how the values of k are associated with specific correlation values (between original and 

degraded amplitude spectrum of speech).  This was done by incrementally adding noise 

(i.e., increasing value of k) to the amplitude-spectrum of several speech sentence and 

measuring the resulting correlation.  The transfer function was saved and served as an 

initial starting point for determining the relation between k and r on each trial.   On any 

given trial of the experiment, a speech segment was decorrelated by adding noise to the 

amplitude spectrum as described above, and fine tuning the value of k iteratively in a loop 

till the desired correlation between a’(f) and a(f) was achieved within a tolerance limit of 

smaller than 0.01.  This was done for every segment of every speech sentence 

independently and on every presentation of a new sentence.  A similar procedure was used 

for decorrelating the phase spectrum with the following differences: 1) phase noise was 

selected from a 0-2pi uniform distribution; 2) the correlation measured was not the linear 

Pearson value, but a circular statistical correlation value that has the same properties as a 

linear Pearson, but takes into account the circular nature of phase wrapping (Fisher, 1995; 

Berens, 2009).  Each segment was then inverse Fourier transformed to the time domain, 

it’s RMS level matched to the original segment’s RMS, its start and end points smoothed 

with a ~4 ms linear rise-decay ramp (100 samples at 22.05 kHz) to reduce spectral splatter 

at transition points between segments in a sentence, and then concatenated with other 
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segments in their original order to generate the degraded sentence. The entire 

decorrelation process took less than 1 second and done between trials of a run.   

 

 

Figure 1.1  Decorrelation Method. Diagram of the method used to decorrelate speech 
stimuli. Each sentence was divided into segments of equal duration. Each segment was then 
Fourier transformed, yielding separate amplitude and phase spectra. The phase and 
amplitude spectra were then independently decorrelated relative to the original by a 
specific amount.  Segments were then inverse Fourier transformed, and concatenated in 
their original temporal order to form a degraded sentence. 
 

We paired each of the 3 amplitude-spectrum correlation values (0, 0.5, 1) with each 

phase-spectrum correlation value (0.4, 0.6. 0.8, 1), creating 12 unique (amplitude x phase) 

conditions. Based on pilot data we determined that these values would be most informative 

for investigating intelligibility as they provided a wide range of performance levels.  

Because we were particularly interested in looking at the effects of the phase spectrum, as 

it has not been studied as extensively as the effects of the amplitude spectrum on 

intelligibility, we selected a greater number of phase spectrum values. Our pilot study 



15 
 

showed that the lower bound of 0.4 for phase-spectrum correlation is adequate since 

participants were unable to identify any words when the phase-spectrum correlation was 

below this value. All stimuli were played through HD380 Pro Sennheiser headphones at a 

sampling rate of 22.05 kHz at an average level of approximately 70 dB SPL (A weighted) 

measured using a 6-cc coupler, 0.5-inch microphone, and a Precision Sound Analyzer 

(Brüel & Kjær, Model 2260). 

1.2.3 Procedure 

Sentences from the HINT database were randomly assigned to each condition and 

presented to participants in a random order. No sentence was presented more than once 

per participant. Each subject participated in only one of the three temporal window 

condition (30 ms, 250 ms, or full length sentence), resulting in a 3 (amplitude correlation) x 

4 (phase correlation) x 3 (time window size) mixed-measures experimental design. Five 

subjects were assigned to each of the three temporal-window conditions, and each subject 

participated in one experimental session which comprised two blocks of 60 trials that 

lasted approximately 30 minutes. This resulted in 10 sentences (~40 words) per condition. 

The experiment was conducted in a double-walled anechoic chamber (Industrial Acoustics 

Company). Participants were seated at a computer and instructed to listen to each sentence 

and type as many words as they could understand, ignoring punctuation. Because 

sentences are semantically meaningful, it is possible that context may provide some cue to 

word identification.  However, use of sentence material to study intelligibility under 

acoustically degraded conditions is standard practice as such sentences (instead of isolated 

words) are the type of stimuli most encountered in natural settings.  The HINT corpus for 

example has been used in hundreds of speech intelligibility studies.  In addition, subjects 



16 
 

were instructed to report words that they were confident about even if it did not make 

sense semantically because a participant may have misheard an earlier word in the 

sentence. 

There was no time limit for each trial, so participants’ typing speed did not affect 

their ability to perform the task. An experimental run began with 10 practice sentences 

which were repeated until the subject reported feeling comfortable with the interface and 

task.  The sentences were scored based on individual correct keywords. Potentially 

confusing verbs (“are/were”), pronouns (“he/she”), prepositions (“in”), conjunctions (“or”), 

and articles (“the”) were excluded from scoring.  Average sentence length including non-

keywords was 5.3 words, which dropped to 4.1 after exclusions. Total number of correct 

keywords was compared to total number of keywords for each condition to determine the 

percent correct for each run. This number represented the degree of intelligibility. 

1.3 Results 

Fig 1.2 shows average intelligibility scores for each window size as a function of 

amplitude- and phase-spectrum correlations. Each point is based on 10 sentences (~40 

words) per listener (~200 words per point). An intelligibility score of 1 indicates that every 

subject correctly identified all keywords in all sentences for that condition. 

A 3 (amplitude correlation) x 4 (phase correlation) x 3 (time window size) mixed-

measures ANOVA showed a significant main effect of amplitude-spectrum correlation 

(F(2,24) = 349.21, p < .01) and a significant main effect of phase-spectrum correlation 

(F(3,36) = 1231.61, p < .01). No main effect of window size was found (F(2,12) = .92, p = 

.42), but there were significant interaction effect between amplitude-spectrum correlation 

and window size (F(4,24) = 67.94, p < .01), as well as between phase-spectrum correlation 
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and window size (F(6,36) = 110.69, p < .01).  These results suggest that both the effect of 

amplitude and phase spectrum correlations on speech intelligibility varied by window size. 

Finally, there was a significant three-way interaction (F(12,72) = 9.28, p < .01), suggesting 

that the interaction between phase and amplitude correlations was different at different 

window sizes. 

1.3.1 Effects of decorrelation on non-segmented conditions 

A 3 (amplitude correlation) x 3 (phase correlation) mixed-measures ANOVA was 

used to compare the effects of decorrelations on this window size. Note that one of the 

phase conditions (0.4) was removed from analysis because as shown in Fig 1.2A, 

intelligibility scores converged to zero at this correlation value even for an amplitude-

spectrum correlation of 1.  We therefore removed this point from the ANOVA to avoid a 

misleading significant interaction effect. Both a main effect of amplitude and phase 

correlation was found (F(2,8) = 59.11, p < .05; F(2,8) = 352.69, p < .01, respectively). A 

significant interaction was not observed (F(4,16) = X=2.64, p = .07), suggesting that adding 

phase information did not improve intelligibility more for one level of amplitude 

correlation than another. 

1.3.2 Effects of decorrelation on the 250-ms (syllable length) conditions 

A second 3 x 3 mixed-measures ANOVA was calculated to determine the effects of 

decorrelations on intelligibility specifically for the 250-ms time-window conditions. Similar 

to the full-length window, there were main effects of both amplitude and phase 

correlations (F(2,8) = 751.13, p < .05; F(2,8) = 574.87, p < .01, respectively). Unlike the full-

length time-window condition, there was a significant interaction effect between amplitude 

and phase correlations (F(4,16) = 14.44, p < .01).  As seen in Fig 1.2B, when amplitude 
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information is partially corrupted (rα = 0.5), increasing phase-spectrum correlation from 

0.6 to 0.8 improves intelligibility scores considerably more than that at other amplitude-

spectrum correlations (0 and 1).  

1.3.3 Effects of decorrelation on the 30-ms (phoneme length) conditions 

Unlike in the previous two window sizes, there was no point of convergence for the 

30 ms time-window conditions. Because of this, the 0.4 phase correlation value, which was 

excluded from analysis as a floor performance level in the prior two conditions (syllable 

and full length windows), was included in the statistical analysis of the phoneme-length 

conditions. A 3 x 4 mixed measures ANOVA showed a main effect of both amplitude- and 

phase-spectrum correlations (F(2,8) = 167.26, p < .01; F(8,3) = 61.12, p < .01, respectively). 

A significant interaction effect was also observed F(6,24) = 19.54, p < .01) but the form of 

this interaction is dissimilar to that seen for the 250 ms condition (compare panels B and C 

of Fig 1.2).   

1.4 Discussion 

1.4.1 Speech intelligibility for intermediate correlation values 

At the most extreme correlation values (0 and 1) our results are consistent with 

previous studies that have investigated the effects of spectral decorrelation(Kazama et al., 

2010; Liu, He, and Palm, 1997; Paliwal and Alsteris, 2005; Alsteris and Paliwal, 2006). 

However, real speech rarely occurs under perfect conditions, and it is implausible for only 

one type of spectral component to be degraded outside of laboratory conditions. Therefore, 

partially degraded amplitude and phase conditions may more accurately represent 

naturalistic speech environments.   
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In general, collapsing across window sizes, intelligibility was more adversely 

affected by phase-spectrum decorrelation than by amplitude-spectrum decorrelation even 

though both affected intelligibility to some degree. For longer window conditions, when the 

phase-spectrum was decorreled to 0.4, speech became unintelligible (Fig 1.2 panels A and 

B). The one phase-condition under which intelligibility seemed unaffected was for rα = 1 at 

the shortest time window of 30ms (red square symbols of Fig 1.2C). Conversely, when 

phase-spectrum information is left intact (rθ = 1) amplitude-spectrum decorrelation has 

little impact on intelligibility, except for one case, the shortest time window when rα = 0 

(blue circles in the Fig 1.2C). If the phase information is left intact, decorrelating the 

amplitude spectrum to intermediate values has no effect on intelligibility. If the amplitude 

information is left intact, decorrelating the phase spectrum to intermediate values 

significantly degrades intelligibility for the longer time windows.  

 

 

Figure 1.2. Contribution of Phase and Amplitude Spectra to Intelligibility. Speech 
intelligibility as a function of phase- and amplitude-spectrum decorrelation relative to 
those of the original unaltered sentence. Each panel depicts results for one of the three 
temporal window sizes. Each point is calculated from ~40 words per subject. Error bars 
represent +/- 1 standard error of the mean. 
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Interestingly, at the short time window (30 ms), phase cues clearly have a major 

impact on performance at the intermediate amplitude-spectrum correlation (green line, Fig 

1.2C).  This novel finding is contrary to predictions of prior work that suggests little effect 

of the phase spectrum at short (phoneme length) time windows. Overall, intermediate 

correlation values show a significant monotonic effect of phase-spectrum correlation on 

intelligibility at all time windows (i.e., window size does not matter), a small monotonic 

effect of amplitude-spectrum correlation for the long time windows and a non-monotonic 

(interaction) effect of amplitude-spectrum correlation for the short time window.  

1.4.2 Equal intelligibility contours 

As noted above, in general, the effect of amplitude-spectrum decorrelation increases 

as window size decreases.  Conversely, the effects of phase-spectrum correlation increase 

as window size increases, but only for extreme correlation values (0 and 1).   At an 

intermediate amplitude-spectrum correlation (rα = 0.5), phase effects seem to be relatively 

independent of window size (green lines).   Our findings suggest, that at least in some cases, 

there is a tradeoff between the importance of the two cues as a function of temporal 

window size, though this tradeoff is not necessarily linear.  These findings further suggest 

that there are various combinations of rθ and rα that give rise to sets of equal intelligibility 

contours.  Top row of Fig 1.3 shows these contours for the three time windows.  A score of 

1.0 (dark red) represents perfect intelligibility while dark blue represents an intelligibility 

score of zero.  Note how the slopes of the equal-intelligibility contours increase with 

window size.  The bottom panels of Fig 1.3 show equal-correlation contours between the 

temporal envelopes of two types of stimuli: 1) the original unaltered sentences and, 2) the 
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same sentences whose phase and amplitude spectra were decorrelated by the values 

shown along the x-y axes.   

 

Figure 1.3. Comparison of Equal Intelligibility Contours with Envelope Correlations. Top 
row shows equal intelligibility contours as a function of phase- and amplitude-spectrum 
decorrelation. A score of 1.0 (dark red) represents perfect intelligibility while dark blue 
represents an intelligibility score of zero. (A-C) Equal-correlation contours shown for each 
of the three window sizes. (D-F) These are the correlations between the temporal 
envelopes of two types of stimuli centered at 1 kHz: the original unaltered sentences and 
the same sentences whose phase and amplitude spectra were decorrelated by the values 
shown along the x-y axes.  A score of 1.0 (dark red) represents perfect correlation between 
the altered and unaltered envelopes while 0 correlation is representes by dark blue. 

 

Note that the bottom panels do not show intelligibility scores (or any other 

behavioral measure).  Rather they show the correlation between the narrowband 

envelopes of the unaltered and decorrelated sentences, at the output of a filter centered at 
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1 kHz (simulating the output of a cochlear filter). The reason for filtering at 1 kHz is that, 

first, the auditory system processes these waveforms not as broadband sounds, but 

through cochlear filters, and second, because our analysis below (Fig 1.4) demonstrates 

that the intelligibility performance is best predicted by examining information near the 1-

kHz band. 

These envelope correlations were calculated using the average values of all 

sentences in the HINT database. The similarity between equal intelligibility contours (top 

panels) and equal envelope-correlation contours (bottom panels) suggests that one major 

cue to intelligibility may be the narrowband temporal envelopes which are degraded more 

precipitously with phase-spectrum decorrelation than with amplitude-spectrum 

decorrelation.      
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Figure 1.4. Narrow-band Envelope Correlations. Envelope correlations are calculated by 
comparing the narrow-band envelopes of normal (unaltered) stimuli and the 
corresponding decorrelated envelopes. Each frequency band determined by a 1/3 octave 
narrowband Gammatone filter. These correlations were calculated using the average 
values of all sentences in the HINT database. The correlation value between each frequency 
band envelope and intelligibility is depicted on the corresponding panel. 
 

Fig 1.4 makes this point clearer by plotting intelligibility scores, collapsed across 

window sizes, as a function of temporal envelope correlations (i.e., the correlation between 

the temporal envelopes of the altered and unaltered waveforms at the output of 

narrowband filters).  Each panel shows this analysis for a different filter center frequency: 
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250, 500, 1000, 2000, 4000, and 8000 Hz.   There is a clear relationship between 

intelligibility and temporal envelope correlation, but only within the lower frequency 

bands, with virtually no correlation between temporal envelope information and 

intelligibility at 4 and 8 kHz (Fig 1.4 panels E and F).  However, we should qualify that this 

finding does not mean that speech information may not be extracted from envelopes of 

filtered waveforms at these higher frequencies, but that given the availability of temporal 

envelope information at low frequencies, subjects rely primarily on low-frequency cues.  

The finding that the highest correlation between temporal envelope cues and intelligibility 

occurs for the 1 kHz band, aligns well with the results of a study by Greenberg and 

collegues (1998). They suggest that bands in the 750–2350 Hz frequency range carry the 

most useful intelligibility information despite not containing the most spectral energy. It 

should be noted that speech is unintelligible when strictly limited to this frequency region, 

but its intelligibility greatly improves when speech in this band is presented 

simultaneously with one or more other frequency bands. Furthermore, there is 

neurological evidence that cortical entrainment to speech occurs primarily at bands in this 

frequency region (Baltzell et al., 2016).  

1.4.3 Spectral and temporal smearing 

Spectrograms can be used to visualize the effects of amplitude and phase spectrum 

decorrelation and help clarify how the decorrelation process degrades temporal and 

spectral modulations. Fig 1.5 shows one speech sentence at different levels of decorrelation 

at two window sizes. We can see that amplitude decorrelation (panels B and C) can be 

thought of as smearing the energy vertically across frequencies, while phase decorrelation 

(panels D and E) smears the energy horizontally across time.  
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Figure 1.5. Decorrelated speech spectrograms. Spectrograms for the sentence “They met 
some friends at dinner.” (A) Original sentence. (B-C) Amplitude spectrum decorrelated 
with fully correlated phase spectrum (rα = 0, rθ = 1). (D-E): Phase spectrum decorrelated 
with unaltered amplitude spectrum (rα = 1, rθ = 0.4). Left panels show spectrograms for 
250 ms (syllable length) windows of analysis, and right panels for 30 ms (phoneme length) 
windows. The average proportion correct for these parameters are listed on each of the 
panels. 
 

With this in mind, it is clear why phase decorrelation significantly affects the 

intelligibility of sentences segmented into larger (250 ms) windows but less so the shorter 

ones (30 ms). Phonemes have a roughly 30 ms duration, and therefore when the energy 
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within a 30 ms window is smeared horizontally, the overall change in the phoneme’s 

energy pattern will be small because it cannot smear as far (it is confined to a brief time 

window). However, for a 250 ms window length, often encompassing periods of silence as 

well as several phonemes, smearing along the time axis (horizontally), averages out the 

energy patterns of several phonemes across time, rendering the speech unintelligible (Fig 

1.5D).  

 Similarly, when the amplitude spectrum is decorrelated in large time windows, it 

smears energy across frequencies but allows energy fluctuations across time (such as 

vowel formants or consonant markers) to remain intact. These intact temporal cues 

preserve formant information, particularly when processed through cochlear filters, and 

provide sufficient cues to intelligibility. However, when the analysis window becomes too 

small (30 ms), formants frequency sweeps will become obscured because the sweep is 

spread across several windows, allowing sections to be averaged to different levels across 

time (Fig 1.5C).  

In summary, the current study investigated how amplitude and phase information 

differentially contribute to speech intelligibility. We found that intelligibility was more 

adversely affected by phase-spectrum decorrelation than by amplitude-spectrum 

decorrelation. If the phase information was left intact, decorrelating the amplitude 

spectrum to intermediate values had no effect on intelligibility. If the amplitude 

information was left intact, decorrelating the phase spectrum to intermediate values 

significantly degraded intelligibility. Interestingly, for intermediate amplitude-spectrum 

correlation values, segment length was generally inconsequential to intelligibility.  These 

findings provide new insights into how spectral degradation in the phase and amplitude 
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domains affects intelligibility, and demonstrate robustness of the processes that code for 

speech information in environments that acoustically degrade cues to intelligibility. 

 

 

CHAPTER 2: Relative role of amplitude- and phase-spectrum cues in 

music perception 

2.1 Introduction 

Critical differences in processing of music and speech have become increasingly 

evident through neuroimaging, behavioral, and clinical population studies (Peretz, et al., 

2015; Norman-Haignere, Kanwisher, McDermott, 2015). Electric hearing provides a clear 

example of these processing differences. Cochlear implants transmit impoverished signals 

to the auditory cortex, allowing speech to retain most of its intelligibility but rendering 

music nearly unrecognizable (Limb and Roy, 2014, Zeng; Tang, and Lu, 2014; Gfeller et al., 

2007). In order to better understand these processing differences, it is useful to investigate 

how features of their complex spectra (amplitude and phase) affect the way these two basic 

types of auditory stimuli are processed. 

Phonemes and syllables are considered to be fundamental units of speech. Recent 

EEG and MEG research has presented evidence of a neural basis for processing ~ 30 and 

~250 ms duration sounds, which are typical durations associated with phonemes and 

syllables respectively (Giraud et al., 2007; Howard and Poeppel, 2010).  These studies have 

demonstrated that the auditory cortex preferentially responds to stimuli with temporal 

modulations at gamma-band (~20-80 ms) and theta-band (~150-300 ms) rates, suggesting 

that these rates may represent some basic form of neural parsing or temporal integration 
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(Luo and Poeppel, 2012). These studies have further suggested that cortical preferences for 

these temporal segment sizes evolved either around mechanically convenient speech-

segment lengths, or because they are optimal oscillatory patterns for processing of complex 

sounds. 

Despite some similarities to the hierarchical structure of language, musical stimuli 

lack the clear and consistent time-segment lengths observed in speech stimuli. Tempo is 

usually measured as the number of beats per minute. Most commonly, quarter-notes are 

designated to define one beat—making quarter notes the most frequently used note—and 

other durations are specified with respect to the quarter note. Although the durations of 

phonemes and syllables remain relatively stable, music tempos frequently vary between 80 

and 200 bpm, yielding typical quarter-note durations between 300 and 750 ms. While 

quarter-notes may not be the most frequent notes in some pieces of music, a majority of 

note durations fall within these temporal limits. Beyond rhythm and tempo, music is also 

defined by pitch sequences. While pitch is a fundamentally subjective measure, musical 

pitch is considered to be a measureable metric. It is usually defined using the standard 

Western tuning system which divides octaves into 12 units—evenly spaced on a 

logarithmic scale—and defines this distance as a semitone, the smallest musical pitch 

interval. Speech fundamental frequencies are typically confined to below 300 Hz, but music 

can contain fundamental frequencies from approximately 16 to 5000 Hz.  Both, however, 

have harmonic structures that extend to higher regions of the spectrum. Musical notes are 

also much narrower in bandwidth than speech signals, evidenced in their more tonal 

nature. 
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There is evidence of music-specific areas of the brain that perform higher-level 

analysis unrelated to language. For example, people with amusia maintain language 

abilities but lose music perception abilities such as melody recognition and pitch 

discrimination (Fedorenko, 2012; Nunes-Silva and Haase, 2011; Peretz, Champod, and 

Hyde, 2003). However, at a basic acoustic level, speech and melodies are assumed to be 

processed similarly and it is unclear at what point speech and music processing diverge 

(Okada et al., 2010; Luo and Poeppel, 2012). If our auditory system is specifically designed 

for speech processing, as some neuroimaging studies suggest, then it is likely that music is 

processed in speech unit segments before higher-level analysis. 

Behaviorally, the effects of cortical time segmentation on melody recognition or 

speech intelligibility can be investigated through spectral decorrelation, in which the 

amplitude and phase components of a stimulus are decorrelated independently relative to 

the original waveform. To decorrelate spectral components of a signal, it may first be 

divided into segments of predefined duration (e.g., 30 or 250 ms) and each segment then 

decorrelated separately prior to concatenation back into the full stimulus in their original 

sequence. Several speech-intelligibility studies have demonstrated that the length of these 

segments changes what type of information carries the requisite intelligibility cues (Paliwal 

and Alsteris, 2005; Liu, He, and Palm, 2007; Kazama et al., 2010; Broussard, Hickok, and 

Saberi, 2017). When a sentence stimulus is processed in phoneme-length segments, 

amplitude-spectrum information alone is adequate for intelligibility. For syllable-length 

segments, phase-spectrum information is necessary for understanding speech. However, 

these findings are based only on an extreme all-or-none design in which either the phase or 

amplitude spectrum cues are fully present or absent, i.e., maximum and minimum spectral 
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correlation values (0 and 1).  It is likely that at intermediate values, which are more 

representative of naturalistic environments, the effectiveness of phase- and amplitude-

spectrum cues at different temporal segment sizes would be less extreme. 

Compared to the large number of studies that have investigated spectral effects on 

speech intelligibility, there has been little psychophysical exploration into which spectral 

and temporal cues are necessary for melody recognition. There is limited research on 

melody processing in general because pitch-based and time-based relations tend to be 

examined separately (Peretz and Zatorre, 2005). Prior studies have shown that music 

perception requires temporal fine-structure cues that give rise to pitch, and temporal 

envelope cues, affected largely by the phase spectrum, that carry information for rhythm 

identification (Kong et al., 2004). There is currently no research specifically addressing the 

joint effects of amplitude and phase spectrum cues on melody recognition. 

The current study investigates melody recognition ability by presenting listeners 

with music stimuli whose amplitude and phase spectra have been orthogonally degraded 

(decorrelated) to various degrees. These results are then compared to prior findings from 

our laboratory on the effects of phase/amplitude decorrelation on intelligibility of speech 

(Broussard, Hickok, and Saberi, 2017). Comparison of how perception of melodies and 

sentences are differentially affected by spectral decorrelation provides important insight 

into low-level processing differences between these two basic types of complex auditory 

signals. 
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2.2 Methods  

2.2.1 Participants 

Seventeen adult listeners participated in the melody recognition experiment (6 

females, M = 24.8 years of age). All participants had normal hearing and were native 

English speakers. None reported familiarity with the melodies used in this experiment. Six 

listeners were considered expert musicians (> 10 years of musical training), five identified 

as amateur musicians (between 3 and 10 years of musical training), and six reported 

having no formal music training. 

2.2.2 Stimuli 

Music stimuli were created by taking a melody selected from the Montreal Battery 

of Evaluation of Amusia (Peretz, Champod, and Hyde, 2003) and adding noise through a 

decorrelation process (Fig 1.1).  First, each stimulus (melody) was divided into one of three 

time-window sizes: 30 ms, 250 ms, or equal to the duration of the stimulus (i.e., 

unsegmented). Each segment was then Fourier transformed, yielding separate amplitude 

and phase spectra. These spectra were then separately decorrelated relative to the original 

by a specific amount. Decorrelation was achieved by proportionately adding either 

Rayleigh noise (with scale parameter 1) to the amplitude spectrum or uniform distributed 

noise (from a range of 0 to 2π) to the phase spectrum. Rayleigh noise was added because 

the amplitude spectrum of Gaussian noise is Rayleigh distributed. Uniform (0, 2π) noise 

was added to the phase spectrum using circular statistics methods to achieve a desired 

degree of phase-spectrum correlation relative to the original unaltered phase spectrum 

(Fisher, 1996; Berens, 2012). Each windowed stimulus section was then reconstructed as a 

temporal signal using inverse Fourier transform that combined the new amplitude and 
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phase spectra, and the resultant temporal waveform was normalized to its original 

segment RMS level. A linear ~2.25 ms rise-decay ramp (100 samples at 44.1 kHz)was 

imposed on each segment to reduce spectral splatter. The segments were then 

concatenated in their original order so that each modified stimulus was the same duration 

as the original  

We selected correlation values of 0, 0.5 and 1 for the amplitude spectra and 0.2, 0.4, 

0.6, and 1 for phase spectra based on preliminary pilot data, and to allow comparison with 

prior data from our speech intelligibility study (Broussard, Hickok, and Saberi, 2017). All 

stimuli were played through HD380 Pro Sennheiser headphones at a sampling rate of 44.1 

kHz at an average level of approximately 70 dB SPL (A weighted). 

We paired each of the 3 amplitude-spectrum correlation values (0, 0.5, 1) with each 

phase-spectrum correlation value (0.2, 0.4. 0.6, 1), creating 12 unique (amplitude x phase) 

conditions.  Melodies consisted of short (<5 sec) note sequences played on a piano. The 

melodies were played in legato style, meaning each note was held until the following note 

was played but never overlapped. The average note duration was ~450 ms and roughly 

half of the notes had between 200-300 ms durations. Melodies were played in sequential 

pairs. The first melody of each pair was one of nine “standard” melodies, and the second 

was either identical or had one of the following features altered: contour, interval, scale, or 

rhythm. This resulted in a total of 45 distinct musical melodies. The types of alterations are 

described below. 

A melody’s scale describes the notes that can be used in the formation of that 

melody, which is defined by its characteristic interval pattern and the starting note. A note 

outside of a melody’s scale is noticeable and jarring, even to the untrained ear.  Melody 
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contour is defined by the directional relationship of each note to the previous note. A 

contour is changed by increasing or decreasing the musical pitch of a note (i.e., its 

fundamental frequency) until its directional relationship with a temporally adjacent note is 

changed. For example, if Note 1 is a semitone higher than Note 2, and if the frequency of 

Note 1 is increased, the contour will not change because the directional relationship 

between Note 1 and Note 2 is the same. However, if Note 1 is instead lowered to a 

frequency equal to or below Note 2, then the contour is altered because the directional 

relationship has changed. An interval change is defined as changing the pitch of one note to 

another pitch within the melody’s scale without changing the melody’s contour. Scale 

changes are similar to interval changes, except that the pitch is changed to one outside of 

the melody’s scale. Finally, the rhythm of a melody can be changed by altering the rhythmic 

value of two or more notes, which maintains the underlying tempo. For example, consider a 

melody with a rhythm consisting of four notes with the same duration. If the duration of 

the third note is halved, then one of the adjacent notes will have a duration 1.5 times the 

original, so that the total time will remain the same. 

2.2.3 Procedure 

 Participants were seated at a computer station in a steel double-walled acoustically 

isolated chamber (Industrial Acoustics Company) and instructed to listen to pairs of 

melodies and perform a same-different judgement in a two-interval forced-choice (2IFC) 

task.  Participants were required to determine whether a spectrally decorrelated melody 

was the same as the preceding sample melody (not spectrally degraded). Each subject 

participated in one experimental session which comprised six runs of 80 trials. Each run 

lasted an average of 20 minutes. Participants heard each standard melody approximately 
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50 times throughout the experiment as the base sample (i.e., interval 1 in the 2IFC task). 

Half of the trials consisted of two identical melodies, but the second melody of each pair 

had some degree of spectral decorrelation depending on the selected condition (the correct 

response on these trials would be “same”).  The second melody in the other half of the trials 

was also spectrally decorrelated and had either a scale, contour, interval, or rhythm 

alternate (the correct response on these trials would be “different”).  

Two of the non-musician subjects were unable to perform the melody task with 

100% accuracy even when there was no spectral degradation.  These subjects were kept in 

the analysis to rule out musical ability and training as confounds. 

2.3 Results 

  Left panels of Fig. 2.1 show melody discrimination performance as a function 

of phase- and amplitude-spectrum decorrelation.  For comparison, results from (Broussard, 

Hickok, and Saberi, 2017) on speech intelligibility are plotted in the right panels of Fig. 2.1. 

Each row of panels shows results for a different time-segment condition (30 ms, 250 ms, 

non-segmented). To clarify, the lower bound on performance in melody discrimination is 

0.5 (proportion correct) because of the same-different 2IFC design used. The lower-bound 

on performance in the speech intelligibility task is 0 as the dependent measure was the 

number of keywords correctly identified in a spoken sentence.  We therefore emphasize 

differences in the patterns of performance, instead of absolute values measured, in 

comparing performance across music and speech tasks.  In addition, in reporting these 

results, we have not distinguished between different types of melody alterations (e.g., 

contour, scale…) as our main interest was a general comparison between music and 
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speech, and because an analysis of different types of melody change would require a 

significantly larger number of conditions beyond the scope of the current study. 

 

 

Figure 2.1. Melody discrimination (left panels) and speech intelligibility performance (right 
panels) as a function of phase- and amplitude-spectrum decorrelation at each of 3 time-
windows of analysis (rows of panels). Error bars are +/- one 1 standard error. 
 

A 3 (amplitude correlation) x 4 (phase correlation) x 3 (time window size) mixed 

measures factorial ANOVA was performed to compare melody identification across 
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conditions.  A similar analysis had been conducted on the speech intelligibility data and 

those statistics are described here for comparison. The main effect of amplitude-spectrum 

decorrelation was significant for both music and speech (F(2,28) = 59.33, p < .05, and 

F(2,24) = 349.21, p < .05, respectively).  The main effect of phase-spectrum decorrelation 

was also significant for both music and speech (F(3,42) = 36.27, p < .05, and F(3,36) = 

1231.61, p < .05). No overall main effect of window size was found in the speech task 

(F(2,12) = .92, p = .42), indicating that in general, participants found speech at all time 

windows equally intelligible when collapsing across all conditions (correlation values). 

However, for music we observed a significant effect of window size (F(2,14) = 17.82, p < 

.05). We also observed significant interaction effects between amplitude-spectrum 

correlation and window size for both music (F(4,28) = 5.24, p < .05) and speech (F(4,24) = 

67.94, p < .05). Similarly, there was an interaction effect between phase-spectrum 

correlation and window size for both music and speech (F(6,42) = 7.24, p < .05 and F(6,36) 

= 110.69, p < .05, respectively). These results show that, overall, the effects of amplitude- 

and phase-spectrum correlation varied by window size for both speech and music. 

An interaction between amplitude-spectrum correlation and phase-spectrum 

correlation was also observed for music (F(6,84) = 2.23, p = .04) and speech (F(6,72) = 

21.5, p < .05), suggesting that the effect of amplitude decorrelation changed depending on 

the phase correlation value. Finally, for both music and speech, we observed a three-way 

interaction effect between phase, amplitude, and window size (F(12,84) = 2.99, p < .05 and 

F(12,72) = 9.28, p < .05, respectively). 
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2.4 Discussion 

 Comparison across conditions reveals a number of interesting patterns. Melody 

discrimination shows a greater overall resistance to adverse effects of spectral 

decorrelation, both in phase and amplitude domains. The left panels of Fig. 2.1 show that at 

a phase-correlation value of 0.4, melodies are nearly always identified at above chance 

levels. Even at a phase-correlation value of 0.2, and window sizes of 30 and 250 ms, 

melodies remain largely discriminable, especially when some amplitude-spectrum 

information is available. Another clear example of this is observed in the data shown in the 

two bottom panels of Fig. 2.1 (30-ms conditions); note that the two green lines which 

represent an amplitude-spectrum correlation of 0.5, are very differently affected by phase 

decorrelation. For this example, as noted earlier, there is no adverse effect of phase 

correlation on melody recognition (i.e., near-perfect performance) while speech 

intelligibility is strongly impacted by phase decorrelation.  

For speech, reducing phase-spectrum correlation for the two longer-segment 

conditions degrades intelligibility more dramatically than reducing amplitude-spectrum 

correlation. The opposite is true for the 30 ms window size, where having a highly 

correlated-amplitude spectrum is more important to preserving intelligibility than having 

an intact phase spectrum. These window-size effects on performance are possibly due to 

how temporal and frequency resolution are affected by window size. Decorrelation of 

speech segments in long temporal windows will result in poor frequency resolution 

because of the spectrally dynamic nature of speech (i.e., smearing of spectral details across 

time), while small windows will preserve precise frequency resolution as phonemes, 

formants, their transitions, and other frequency cues are not averaged (or smeared) across 
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time. Therefore, amplitude-spectrum cues are more useful at short temporal windows.  

Phase-spectrum information, however, preserves temporal envelopes within frequency 

bands, which have been identified as critical to accurate speech intelligibility (Shannon et 

al., 1995). 

 

Figure 2.2. Output of a GammaTone filterbank model in response to one- second samples of 
music and speech stimuli used in the current study. 
 

To better demonstrate these differences, Fig. 2.2 shows the output of a GammaTone 

filterbank (Holdsworth et al., 1988) which simulates the response of the auditory 

periphery in response to two brief segments of melody and speech sounds used in our 

study (top and bottom panels respectively). We selected brief 1-second segments to better 

observe the differences in spectro-temporal patterns of speech and music. The model 

comprised 30 bandpass filters with center-frequencies that were logarithmically spaced 
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from 100 to 5000 Hz.  Filter bandwidths were based on human auditory filter estimates 

measured in notched noise (Glasberg and Moore, 1990).  Several distinct patterns are 

observed. Musical notes are confined to a much narrower frequency band (compared to 

speech) with redundant cues to note identity at harmonics of the musical note’s 

fundamental frequency. There is, however, far less redundancy in the spectral pattern of 

speech and a more complex pattern across frequency channels. Furthermore, the pattern of 

activity across time is more complex and detailed for speech than for music. How are these 

patterns affected by either phase or amplitude decorrelation as a function of window size?   

First, let’s consider phase-spectrum decorrelation which affects the waveform’s 

temporal envelope, smearing the pattern of activity across time within a frequency channel, 

but which does not smear spectral energy across frequency channels. If the analysis 

window is long (250 ms), smearing across time but not frequency, will not substantially 

affect note identity or tempo for music stimuli because of the note’s narrowband nature 

and because internote intervals within a frequency channel are quite long (for example, in 

Fig. 2.2, the first note does not repeat within the entire 1s duration shown). For speech, 

however, smearing of details within 250 ms windows, even within a frequency channel, 

results in significant loss of information as important transient details to speech identity 

are confined to brief periods whose temporal relationship to other proximate parts of 

speech are critical to intelligibility. This may clearly be seen in the lower panel of Fig. 2.2 

where complex temporal patterns are observed within 250 ms windows. If, however, the 

analysis window is short (30 ms), smearing across time (but not frequency) does not have 

as much impact on either speech intelligibility or melody recognition because the complex 

pattern of activity across time is better preserved. 
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Second, let’s consider amplitude-spectrum decorrelation which smears information 

across frequency channels, but largely (though not completely) leaves temporal envelope 

information intact within frequency channels. When the analysis window is long (250 ms), 

modest degradation of amplitude-spectrum cues has virtually no impact on melody 

recognition because much of the spectral energy at the fundamental frequency is 

preserved. However, if amplitude-spectrum is fully decorrelated, leaving only phase-

spectrum cues intact, then note identity is lost, but melody discrimination performance 

does not decline to chance because the phase-spectrum still provides cues to rhythm. 

Speech intelligibility is also mostly unaffected by amplitude-spectrum decorrelation at long 

windows. If, however, the analysis window is short (30 ms), loss of amplitude-spectrum 

cues critically degrades speech intelligibility (blue circles in bottom-right panel of Fig. 2.2), 

whereas loss of phase-spectrum cues has no effect on intelligibility as long as amplitude-

spectrum cues are unaltered (red squares, same panel). For melody discrimination, partial 

loss of amplitude-spectrum cues has no effect on performance, even when phase cues are 

severely degraded (green triangles, bottom-left panel of Fig. 2.2). Furthermore, if phase-

spectrum cues are unaltered, complete loss of amplitude-spectrum cues has no effect on 

melody discrimination at this short window of analysis (same panel, blue circle at a phase 

correlation of 1). This is likely because rhythm is preserved, providing sufficient cues to 

melody discrimination.   
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2.4.1 Comparison of music and speech processing for moderately degraded stimuli 

Normal sounds are rarely heard in perfectly quiet conditions. Rather, they are often 

altered spectrally and temporally by extraneous environmental sounds and competing 

speech (or other) signals that decorrelate the amplitude and phase spectra of the target 

sound. Degrading only one type of spectral component entirely (phase spectrum) while 

leaving the other intact (amplitude spectrum), as has typically been done in prior research, 

creates an unusual sound that does not exist outside of a laboratory (Liu, He, and Palm, 

2007; Kazama et al., 2010). One of our main motivations behind using a greater range of 

amplitude and phase correlations was to test stimuli that better reflect those heard in 

naturalistic environments. By considering midlevel correlation values, we can better 

understand the types of cues most important to processing sounds typically encountered 

outside the laboratory. 

 

Figure 2.3. Effects of moderate levels of spectral decorrelation on melody discrimination 
and speech intelligibility. Data are shown only for an amplitude-spectrum correlation of 
0.5. The parameter is window size. Error bars are +/- one standard error. 

 

 Figure 2.3 shows the effects of moderate levels of spectral decorrelation on melody 

discrimination and speech intelligibility over different window sizes. A significant effect of 
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window size on melody recognition is observed, whereas very little variation in speech 

intelligibly across window sizes is evident. This suggests that for sounds whose spectra are 

partially corrupted, as one may expect to encounter in natural environments, the size of the 

temporal integration window does not greatly affect speech processing, whereas melody 

recognition is significantly affect by window size, and that this disparity intensifies as 

phase correlation is reduced. 

2.4.2 Narrow-band envelope preservation 

Spectral decorrelation affects both the fine structure and temporal envelope of a 

waveform. Speech intelligibility has been shown to be affected largely by the degree of 

narrowband envelope preservation (Kazama et al., 2010; Broussard et al., 2017; Shannon 

et al., 1995; Alsteris and Paliwal, 2006; Drullman, Festen, and Plomp, 1994). Music 

discrimination, on the other hand, is unlikely to be strongly correlated with temporal 

envelope preservation, as evidenced by the difficulties cochlear implant users experience 

when listening to music (Kong et al., 2004; Smith, Delgutte, and Oxenham, 2002; Jung et al. 

2012). 

We analyzed narrowband envelope preservation for both melody and speech 

stimuli to determine the degree to which narrowband envelope cues relate to performance. 

We calculated the narrowband temporal envelopes of every stimulus used in the current 

study at each of 12 decorrelation values (3 amplitude by 4 phase values). Each stimulus 

was first filtered through 1/3 octave wide filters at six center frequencies (0.25, 0.5, 1, 2, 4, 

and 8 kHz). The temporal envelope at each band was then extracted using the Hilbert 

transform, and compared to its corresponding unaltered narrowband envelope. 

Specifically, we measured the Pearson’s r correlation between the altered and unaltered 
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narrowband envelopes, resulting in one correlation value per each stimulus at each of the 

12 decorrelation conditions. We then calculated the average correlation for each of the six 

bands across all stimuli for each decorrelation condition. This resulted in 216 correlation 

values for both the melodies and speech sentences (6 bands x 36 decorrelation conditions). 

 

Figure 2.4. Relation between performance and the degree to which narrowband temporal 
envelopes are preserved within each of 6 different frequency bands (6 panels). The 
abscissa represents the Pearson’s correlation (r) between temporal envelopes of original 
and altered (spectrally decorrelated) stimuli (see text for details). The abscissa values 
should not be confused with the r values shown within panels which represent the strength 
of the relationship between the variables on the x and y axes.  
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Figure 2.4 shows results of this analysis. As expected, there is a strong correlation 

between narrowband envelope preservation and speech intelligibility, especially at the 0.5, 

1, and 2-kHz bands, with the strength of the correlation decreasing as the center frequency 

increases.  For melody discrimination, there is also a significant contribution of 

narrowband temporal envelop information to performance, but a major difference is that 

performance for melody discrimination reaches peak levels (perfect performance) at much 

lower Pearson r values, i.e., the blue symbols are generally shifted toward the left of the red 

symbols.  This may suggest that other cues, such as fine-structure pitch cues contribute 

more heavily to melody discrimination than speech intelligibility. 

2.4.3 Conclusions 

 Music and speech are the two most important types of complex sounds with distinct 

spectro-temporal dynamics processed both by separate and overlapping cortical networks 

(Stewart et al., 2001; Koelsch et al., 2002). We found significant differences between how 

phase- and amplitude-spectrum cues contribute to processing of music and speech. Melody 

discrimination is generally more resilient than speech to degradation of both types of 

spectra, likely due to the narrow bandwidths of notes and long internote intervals within 

frequency channels. The effects of spectral degradation, however, is dependent on the 

temporal window-size of analysis. Prior neuroimaging studies have shown two distinct 

types of time windows (~30 and ~250 ms) critical to cortical processing of auditory signals 

(Giraud et al., 2007; Howard and Poeppel, 2010). For long time windows, degradation of 

phase-spectrum cues has little effect on melody recognition but a significant adverse 

impact on speech intelligibility. For short windows, phase degradation has no impact on 
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melody discrimination or speech intelligibility as long as the amplitude spectrum remains 

intact. However, partial degradation of the amplitude-spectrum results in very different 

patterns of performance for speech and music stimuli at short windows; speech 

intelligibility is significantly affected by phase-spectrum degradation (i.e., an interaction 

effect between phase and amplitude spectrum cues), whereas melody discrimination is 

unaffected by phase degradation (no interaction). In spite of these very different patterns 

of psychophysical performance for speech and music, it would be of interest to examine in 

future studies the effects of spectral decorrelation on combined speech-melody stimuli, as 

in singing, where their joint spectral features may mitigate effects of spectral degradation. 

 

CHAPTER 3: Effects of spectral decorrelation at a variety of speech rates 

3.1 Introduction 

People have the ability to produce speech over a wide range of rates. Speaking rates 

have been shown to vary between languages, between speakers, within speakers, and even 

within a sentence (Pellegrino, Coupé, & Marsico, 2011; Quené, 2008; Quené, 2013; Miller, 

Grosjean, and Lomanto, 1984; Adank and Janse 2009; Bosker 2016). In an average 

conversation, speaking rate may vary between 140-180 wpm, and those changes may not 

be linear across speech components. For example, in natural speech, an increase in speech 

rate is more likely to affect vowels than consonants (Adank and Janse 2009; Lehiste, 1970; 

Max and Caruso, 1997). All of these rate fluctuations create challenges for the listener, 

which become more difficult when the listener is older, has a hearing impairment, or is a 

non-native speaker of the language (Banai and Lavner 2012; Zhao, 1997; Schneider and 

Pichora-Fuller, 2001).  
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Listeners must—and do—have the ability to adapt quickly to unusual speech rates 

to a large degree. We are able to adjust to small rate changes on the fly, as well as able to 

adapt to large changes (such as doubling the speaking rate) after only 10 to 20 sentences 

(Peele and Wingfield, 2005; Adank and Janse, 2009; Dupoux and Green, 1997). It seems 

counter-intuitive then, that precise temporal information is crucial for optimal speech 

intelligibility (Shannon et al. 1995; Saberi and Perrott, 1999). There is considerable 

evidence that the neural tracking of slow (~ 4-8 Hz) temporal envelopes is essential for 

speech processing and speech intelligibility (Luo and Poeppel, 2012; Howard and Poeppel, 

2010) even though the exact function of this neural tracking is unclear (Peele and Davis, 

2012). Therefore, adapting to different speech rates requires considerable flexibility in the 

speech tracking mechanism.  

Phonemes are defined by a combination of voicing, manner, and place of 

articulation. Temporal envelopes carry many of the cues for voice onset time and manner 

of articulation, which means that these features will be the most affected by changes in 

speaking rate (Rosen, 1992). Both manner and voicing cues appear in envelope information 

as differences in rise times (as in ‘chip’ and ‘ship’), long periods of high amplitude for 

vowels, or as brief silent gaps to indicate a voiceless plosive (Raphael and Isenberg, 1980; 

Repp et al., 1976; Summerfield et al., 1981). Tempo, which is also primarily transmitted 

through temporal envelope information, helps to parse sentences. It is also helpful for 

segmenting word boundaries, even though analysis of a speech signals shows that gaps of 

silence in the temporal envelope do not always demarcate word boundaries. Similarly, 

tempo can only provide weak cues to vowel identity due to the covariance of vowel length 

and vowel identity (Lehiste, 1970). 
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Most recent studies on speech intelligibility have focused on temporal envelope 

modulations of speech signals (Shannon et al., 1995; Saberi and Perrott, 1999; Greenberg et 

al., 2003; Greenburg and Arai, 2004; Ghitza and Greenberg, 2009). However, other studies 

have focused on how degrading amplitude- and phase-spectrum information affects 

intelligibility (Broussard, Hickok, and Saberi, 2017, Oppenheim and Lim, 1981; 

Traunmüller and Lacerda, 1987; Drullman, Festen, and Plomp, 1994; Liu, He, and Palm., 

1997; Kazama et al., 2010; Paliwal and Alsteris, 2005; Alsteris and Paliwal, 2006). For 

example, humans are able to identify vowels using only phase spectrum information at low 

fundamental frequencies, and speech comprehension has been shown to be more 

dependent on long-term phase spectrum than amplitude-spectrum information (Kazama et 

al., 2010; Paliwal and Alsteris, 2005; Alsteris and Paliwal, 2006; Broussard, Hickok, and 

Saberi, 2017). Liu and colleagues (1997) investigated the impact of the phase spectrum on 

stop consonants and found that phase cues are required to determine the shape of formant 

transitions and to help determine voicing properties. Phase degradation has also been 

reported to make speech in noise recognition more difficult (Shi, Shanechi, and Arabi, 

2006), though the interpretation of this finding is confounded by the methods employed 

since changing SNR (adding noise to speech) will itself degrade the phase spectrum beyond 

the intentional direct phase degradation, resulting in inaccurate measures of the effects of 

phase-spectrum degradation on intelligibility. 

Several studies have demonstrated that a speech signal will be intelligible 

regardless of how its spectrum is altered as long as the signal’s narrowband temporal 

envelopes are adequately preserved (Shannon et al., 1995; Saberi and Perrott, 1999; 

Greenberg et al., 2003; Greenburg and Arai, 2004; Ghitza and Greenberg, 2009; Kazama et 
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al., 2010). These studies suggest that speech is made less intelligible by degrading 

information in one or both spectral domains (amplitude or phase) primarily because the 

temporal envelope is consequently degraded by these spectral manipulations. Kazama and 

collegues (2010) modeled the outputs of peripheral filters in response to speech and 

determined that the intelligibility of spectrally degraded stimuli was highly correlated with 

narrowband envelope preservation. These findings suggest that the necessary spectral 

information for intelligibility is ultimately dependent on the type of information that best 

preserves the temporal envelope. 

Because of the interdependency of spectral and temporal information, it is 

necessary to consider the effects of the temporal window of analysis on the relative 

contribution of amplitude and phase spectra to speech intelligibility. Several studies have 

shown that the type of spectral information that best maintains intelligibility varies by 

window length (Liu, He, and Palm., 1997; Kazama et al., 2010; Paliwal and Alsteris, 2005; 

Alsteris and Paliwal, 2006).  It has been shown that for time windows shorter than 128 ms, 

amplitude-spectrum information is most useful to intelligibility. However, for window 

lengths longer than 128 ms, phase-spectrum information is more critical. This 128 ms 

crossover point falls almost exactly between the average durations of phonemes and 

syllables, which have been suggested as basic segments of analysis in speech processing 

(Greenberg et al., 2003; Harris, 1958). The average lengths of these speech units are ~30 

ms and ~250 ms, respectively, and recent EEG and MEG research has presented evidence 

of a neural basis for these two window sizes in speech perception (Luo and Poeppel, 2012; 

Giraud et al., 2007; Howard and Poeppel, 2010; Peelle and Davis, 2012; Gilbert and Lorenzi, 

2006). These studies have shown that the auditory cortex prefers stimuli with temporal 
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modulations at gamma-band and theta-band rates. Gamma-band frequencies are typically 

around 40 Hz (~25 ms periods) and theta-band frequencies are typically around 4 Hz 

(~250 ms periods),  which suggests that these may represent some form of neural parsing 

or temporal integration (Howard and Poeppel, 2010;Luo and Poeppel, 2012). 

 Clearly, fluctuations in speech rate—whether between or within speakers—will 

alter the amount of information processed within a particular temporal window. For 

example, if speech rate is doubled (making it half the original length), then a 100 ms 

temporal window will provide double the information that it would for a normal rate 

sentence. The opposite will be true of a sentence that has been expanded in time. Note that 

in the first example, we would expect the amplitude spectrum of a normal-rate sentence to 

carry most of the intelligibility cues because the window size is less than the 128 ms 

crossover point discussed above. However, that same 100 ms window should be primarily 

affected by phase-spectrum cues for the double-rate sentence. Assuming that the spectral 

information is identical between the two sentence rates (normal and fast), the spectral 

analysis of double-rate speech for a 100 ms window will effectively be the same as a 

spectral analysis of normal-rate speech for a 200 ms window.  There are, however, a few 

important caveats.  First, increasing the rate of occurrence of speech cues also doubles the 

average envelope modulation rate, which at some point will fall outside the range identified 

as optimum for intelligibility (3 to 8 Hz).  Conversely, showing down the speech rate may 

bring the average envelope modulation rate to below the lower cutoff (3 Hz) and hence 

degrade intelligibility to below what one may expect from simple linear analysis (Saberi 

and Perrott, 1999; Peele and Davis, 2012, Luo and Poeppel, 2012).  Furthermore, cognitive 

factors should also be considered in processing intelligibility of speech that has been 



50 
 

increased significantly above normal rates, since a potential cognitive bottleneck in 

information processing could further limit recognition and identification of rapidly 

presented words.   

For the purposes of the current study, we predict that speech rate would be a 

determining factor of the type of spectral information (amplitude or phase) that carries the 

most intelligibility cues at a given temporal window size.  Time compressing (and 

expanding) speech provides a useful method for studying the effects of speech rate while 

controlling for the non-linear compressions that occur naturally when people increase 

their speaking rate, such as the previous example of shortening consonants more than 

vowels. The purpose of this study is to investigate the relative contributions of phase and 

amplitude spectra on sentence intelligibility at three speech rates by independently 

decorrelating, to various degrees, amplitude and phase spectra relative to those of the 

original sentence across several time-window sizes. This study will further provide 

intelligibility scores for a large variety of degraded temporal envelopes, allowing an in-

depth analysis of the relationship between spectral and temporal representations of speech 

stimuli at a wide range of rates. 

3.2 Methods 

3.2.1 Participants 

 Five adult listeners participated in each condition of the experiment (3 females, M = 

25.6 years of age). All participants had normal hearing and were native English speakers. 

None of the participants were familiar with the spoken sentences in the HINT (Hearing in 

Noise Test) database. 
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3.2.2 Stimuli 

We modified speaking rate by artificially lengthening or shortening the original 

HINT sentences using the overlap-add algorithm implemented in PRAAT (Moulines and 

Charpentier, 1990; Boersma and Weenink, 2015). This algorithm alters duration uniformly 

across time within complex stimuli and mimics changes in speaking rate without affecting 

the pitch contour or the speaker’s fundamental frequency. We used a lengthening factor of 

2 for the slow-rate speech, which doubled length of the original speech sentence, and used 

a factor of 0.5 for the fast-rate speech, which compressed the speech to half its original 

length. 

 

 

Figure 3.1.  Schematic diagram of the method used to generate rate-altered and spectrally 
decorrelated speech. 
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 Each sentence was then segmented into one of five time-window sizes: 32 ms, 0.62 

ms, 128 ms, 192 ms, and 256 ms. These durations were chosen to replicate the window 

sizes used in a previous experiment by Kazama et al. (2010). Each segment was then 

Fourier transformed, yielding separate amplitude and phase spectra. These spectra were 

then separately decorrelated relative to the original by a specific amount. Decorrelation 

was achieved by proportionately adding either Rayleigh noise to the amplitude spectrum 

or uniform distributed noise (from a range of 0 to 2π) to the phase spectrum. Rayleigh 

noise was added because the amplitude spectrum of Gaussian noise is Rayleigh distributed. 

Uniform (0, 2π) noise was added to the phase spectrum using circular statistics methods to 

achieve a desired degree of phase-spectrum correlation relative to the original unaltered 

phase spectrum (Berens, 2009; Fisher, 1995). Each windowed stimulus section was then 

reconstructed as a temporal signal using inverse Fourier transform that combined the new 

amplitude and phase spectra, and the resultant temporal waveform was normalized to its 

original segment RMS level. A linear 4.5 ms rise-decay ramp (100 samples at 22.05 kHz) 

was imposed on each segment to reduce spectral splatter. The segments were then 

concatenated in their original order so that each modified stimulus was the same duration 

as the original (Fig 3.1).  See (Broussard, Hickok, and Saberi, 2017) for additional technical 

details.  Note that this exact same procedure was applied to all stimuli, including the faster 

and slower-rate sentences. 

 We selected two sets of amplitude- and phase- spectrum correlations. In one 

condition, the amplitude spectra were completely preserved (rα= 1) while the phase 

spectra were completely decorrelated (rθ = 0). The other set of values were the opposite (rα 
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= 0, rθ = 1). All stimuli were played through HD380 Pro Sennheiser headphones at a 

sampling rate of 22.05 kHz at an average level of approximately 70 dB SPL (A weighted). 

3.2.3 Procedure 

HINT sentences were randomly assigned to each condition. No sentence was 

presented more than once per participant. Each subject participated in all three speed 

conditions, resulting in a 2 (spectrum type) x 3 (speed) x 5 (window size) design 

comprising three blocks of 80 trials that lasted approximately 30 minutes with each block 

consisting of a single speech speed. This resulted in 8 sentences per condition for each 

subject (240 trials divided by 30 conditions). 

 The experiment was conducted in a double-walled anechoic chamber (Industrial 

Acoustics Company). Participants were seated at a computer and instructed to listen to 

each sentence and type as many words as they could understand, ignoring punctuation. 

Because sentences are semantically meaningful, it is possible that context may provide 

some cue to word identification. However, use of sentence material to study intelligibility 

under acoustically degraded conditions is standard practice as such sentences (instead of 

isolated words) are the type of stimuli most encountered in natural settings. For example, 

the HINT corpus has been used in hundreds of speech intelligibility studies. In addition, 

subjects were instructed to report words that they were confident of even if it did not make 

sense semantically because a participant may have misheard an earlier word in the 

sentence. 

3.3 Results 

Fig 3.2 shows average intelligibility scores for each speaking rate (panels) as a 

function of temporal window size (abscissa), and amplitude- and phase-spectrum 
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correlations (parameter). Each point is based on 8 sentences (~32 words) per listener 

(~160 words per point). An intelligibility score of 1 indicates that every subject correctly 

identified all keywords in all sentences for that condition. 

 

 

Figure 3.2.  Proportion intelligibility scores as a function of speech rate, spectral cue (phase 
or amplitude), and temporal window size of analysis.  Each panel shows results from one 
speech rate.  Parameter is spectral-cue condition (Blue: rα = 0, rθ = 1; Red: rα = 1, rθ = 0).  
Data are averaged across five listeners.  Error bars are +/- 1 standard error.   
 

 A 2 (spectra type) x 3 (speed) x 5 (window size) repeated-measures ANOVA showed 

a significant main effect of spectrum type (F(1,4) = 21.06, p < .01), speaking rate (F(2,8) = 
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83.68, p < .01), and window size (F(4,16) = 52.00, p < .01). Furthermore, there were 

significant interaction effects between spectrum type and speaking rate (F(2,8) = 131.39, p 

< .01), spectrum type and window size (F(4,16) = 132.35, p < .01), as well as speaking rate 

and window size (F(8,32) = 4.59, p < .01).  Finally, there was a significant three-way 

interaction (F(8,12) = 16.19, p < .01), suggesting that the intelligibility is affected by 

interaction between spectrum type, window size, and speaking rate.   

3.3.1 Effects of speed on the amplitude-phase crossover point 

In order to determine the window size at which amplitude-spectrum cues become 

less useful than phase-spectrum cues for each speech rate condition, we further examined 

the relationship between window size and rate from a different viewpoint. We graphically 

estimated the crossover point for each subject and speaking rate, i.e., the point at which the 

two curves cross each other in each panel of Fig. 3.2.  These 3 crossover points are shown 

in Fig. 3.3, with the error bars represented plus and minus 1 standard error across five 

subjects.   A one-way repeated-measures ANOVA showed a main effect of speech rate 

(F(2,8) = 120.2, p < .01), which may primarily be attributed to the shift in crossover point 

in the slow rate condition relative to the other two rates.  Post-hoc t-test showed no 

significant different between the crossover points for the normal and fast rate conditions, 

though the average fast-rate crossover point is marginally shifted toward smaller temporal 

window conditions. 
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Figure 3.3.  Crossover points from Fig. 2.  Each point represents the estimated temporal 
window size at which the two curves in each panel of Fig. 2 cross each other.  This is the 
point at which one type of spectral information becomes more significant than the other in 
contributing to intelligibility.  Each crossover point was estimated separately for each of 
the five listeners.  Error bars are +/-1 standard error across listeners.    
 

3.3.2 Narrow-band envelope correlations 

 We calculated the average narrow-band temporal envelopes of our stimuli to model 

the stimulus post-peripheral processing. For every sentence in each condition, we used a 

Gammatone filterbank to filter the stimuli into six 1/3 octave bands at each of the following 

center frequencies: 0.25, 0.5, 1, 2, 4, and 8 kHz.  We then extracted the temporal envelope 

of each band using the Hilbert Transfrom, followed by lowpass filtering each envelope at 10 

Hz consistent with psychophysical studies that have shown that the most critical cues to 

speech intelligibility are carried by temporal envelope rates below this cutoff point.  

 Because intelligibility of normal-rate speech is highly correlated with preservation 

of temporal envelopes, we compared each degraded sentence envelope with the original 

sentence envelopes to get a Pearson’s r correlation value at each frequency band and for 
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every sentence in all of the degraded conditions. We then averaged the r values for each 

condition, resulting in six correlation values (from 6 frequency bands) for each of the 30 

conditions (2 spectrum types x 5 temporal windows x 3 speaking rates).  This gave us a 

quantifiable “degree of envelope preservation” for each decorrelation condition at each of 

the six bands. Finally, we compared the amount of narrowband envelope preservation for 

each condition with the average proportion correct intelligibility for that condition using a 

Pearson’s r to calculate the overall correlation between these two factors (Fig 3.4).  Note 

that this latter measure of Pearson’s r should not be confused with the correlation value (r) 

noted earlier in comparing temporal envelopes of degraded and original sentences.  For the 

normal-rate condition, the r values are 0.82, 0.87, 0.94, 0.93, 0.69, and 0.71 in ascending 

center frequency order. The values for the slow and fast conditions are 0.65, 0.58, 0.82, 

0.95, 0.96, 0.96, and 0.76, 0.75, 0.93, 0.94, 0.82, 0.82, respectively.  (These values are shown 

graphically in Figure 3.5.) Note that the high correlation values are shifted to higher center 

frequencies for the slow speaking rate compared to normal and fast rates.   
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Figure 3.4.  Relationship between the amount of narrowband envelope preservation 
(abscissa) and intelligibility (ordinate).  Each panels shows this analysis at a different 
narrow frequency band. Different symbols (colors) represent different speech rates.  Note 
that within each panel, there are 10 symbols per color.  These correspond to the 5 time 
windows by 2 spectral conditions (see methods).  At each of 6 frequency bands, the 
temporal envelope of a degraded speech sentence was extracted and its correlation with 
the envelope of the same unaltered sentence at that same frequency band measured 
(abscissa value).   This correlation value, averaged across all sentences of that condition, 
was then plotted against the average intelligibility score from 5 subjects. 
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3.4 Discussion 

3.4.1 Effects of window size on spectral cues used for intelligibility  

Our results for the normal-rate speech closely matched those of Kazama et al. 

(2010). Consistent with their findings, we observed that listeners use amplitude-spectrum 

cues for intelligibility when the window size is small, and then transition to phase-

spectrum cues for window sizes longer than 120 ms. At short (near phoneme size) time 

windows, amplitude cues provide enough information for listeners to reach perfect 

performance. While performance in the phase-only condition never reaches 100% 

accuracy at any time window size (Fig. 3.2), the results from both Kazama et al. (2010) and 

our previous work (Broussard et al., 2017) suggest that phase-spectrum cues alone would 

have been adequate for perfect intelligibility at window sizes longer than the maximum 

duration tested here.  Based on our previous findings (Broussard et al., 2017), we expected 

phase-spectrum information to be more useful than amplitude-spectrum information over 

a larger number of window sizes for all speech speeds.  However, this was not evident in 

our current findings since performance never asymptoted to near-perfect levels, possibly 

because we did not measure intelligibility for window sizes exceeding 256 ms.   

 The interactions we found further support these findings. If we collapse across 

window sizes for each speed condition, performance at longer window sizes for fast-rate 

speech is considerably worse than it is for either slow- or normal-rate speech.  Collapsing 

across spectrum type for each window size, we can see that phase is considerably less 

useful overall for both of the non-standard rate conditions. The three plots in Fig. 3.2 show 

how the three-way interaction confirms that the effect of window size on the type of 

spectral cues that carry the most useful information depends on speech rate. 
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3.4.2 Phase usefulness for non-standard speech speeds 

As noted earlier, we found a main effect of spectrum type for normal speech rate, 

which may largely be attributed to differences in performance in the phase-only condition 

at long window sizes. At both faster and slower speech rates, we see a similar pattern to the 

one seen for the normal rate: amplitude cues are more helpful at shorter window sizes and 

phase cues become more helpful as window size increases (Fig. 3.2). In both of these cases, 

however, phase cues never become fully adequate for perfect word identification even at 

the longest window sizes used. In the slow-rate case, this is not surprising because we 

expected to see amplitude cues remaining useful over more window sizes.  Most likely, 

phase-spectrum information will become more useful at longer window sizes in the slow 

condition if we had used a larger range of window sizes. 

Interestingly, we also see a decline in usefulness of phase information in the fast-

rate speech condition (compared to normal rate), despite expecting phase cues to become 

more useful at shorter window sizes.  In fact, we see that not only does amplitude remain 

more useful until ~120 ms time windows, listeners were unable to use phase-spectrum-

only information even at window sizes where phase information alone had been adequate 

for normal-rate speech intelligibility. This suggests that amplitude spectrum cues are more 

robust than phase cues across different speech rates, which is supported by the fact that 

phase spectrum information is inherently more severely affected by temporal changes. 

3.4.3 Failure to shift phase-amplitude crossover point in fast speech 

 If the importance of amplitude and phase cues for intelligibility is primarily 

dependent on which cue type best preserves the narrowband temporal envelopes, as 

Kazama et al. (2010) have suggested, then we would expect intelligibility to continue to 
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track with envelope preservation even for speech with unusual rates. As noted earlier, 

when normal-rate speech is decorrelated in 100-ms window segments, this should be 

equivalent to decorrelating half-rate speech in 200-ms windows or decorrelating double-

rate speech in 50-ms windows. In other words, the amount of narrowband envelope 

preservation for a normal-rate sentence decorrelated in 100-ms window segments should 

be roughly equal to the amount of envelope preservation for a half-rate sentence 

decorrelated in 200-ms windows and a fast-rate sentence decorrelated in 50-ms windows. 

Thus, we predicted that the transition point (see Fig. 3.2) where phase-spectrum 

information becomes more useful than amplitude spectrum in normal-rate speech (~120 

ms) would double for slower speech rate (240 ms) and halve for the faster speech rates (60 

ms).   

 Surprisingly, our results were inconsistent with this prediction. Figure 3.3 shows 

that while we did find a significant difference between the normal- and slow-rate speech, 

we failed to find a difference between the fast- and normal-rate conditions. Furthermore, 

although the crossover point for the slow condition shifts significantly relative to that for 

the normal condition, it does not shift far enough to result in a perfectly doubled window 

size. While this initially suggested to us that intelligibility was not tracking with envelope 

preservation as well as in the non-standard speech rates, after a closer analysis of the 

stimuli’s narrowband envelopes, we determined that this was not true. There were still 

high levels of correlation between envelope preservation and intelligibility (Fig. 4).  

3.4.4 Differences in narrow-band envelope preservation 

The results from our previous study (Broussard et al. 2017) suggest that the 

strongest predictor of the most useful type of spectral information (amplitude or phase) for 
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intelligibility is the amount of temporal envelope information it carries. If the narrowband 

temporal envelopes are intact, specifically bands in the 700 to 2000 Hz region, then the 

stimulus will be highly intelligible. This is consistent with several prior behavioral findings 

(Greenburg et al., 1998; Kazama et al., 2010) even though speech energy peaks at lower 

frequencies. Furthermore, there is evidence that neural entrainment is greater in these 

middle-frequency bands when a listener is attending to a sentence (Baltzell et al. 2015). 

Increased neural entrainment is usually correlated with better intelligibility (Luo and 

Poeppel, 2007; Ahissar et al., 2001) and it has been shown that degraded temporal 

envelopes result in decreased neural entrainment, specifically as seen in auditory evoked 

potentials (Nourski et al., 2009). Therefore, it is reasonable for us to assume that if 

narrowband envelopes in our stimuli are preserved, this likely indicates a greater amount 

of neural entrainment to that particular band.  

 Figures 3.4 and 3.5 depicts the relationship between the amount of narrowband 

envelope preservation for each of the 30 conditions and that condition’s average 

intelligibility score at each of six frequency bands. Interestingly, while this relationship for 

the normal-speed speech stimuli is consistent with our previous findings: relatively high 

correlations across all frequency bands, with the greatest correlations occurring between 

500 to 2000 Hz, both the slow- and fast-rate speech conditions behave differently. The fast 

condition peaks between 1000 and 2000 Hz, similar to the normal condition, but the higher 

bands appear to carry more useful information in the fast condition. In the slow condition, 

the change is more obvious: the peak in the correlations occurs at the highest frequency 

bands (>2000). These results suggest that listeners may be relying on information in (and 



63 
 

likely entraining to) these higher frequency bands more when the speech rate is unusually 

fast or slow.  

 

Figure 3.5. Correlations between intelligibility and narrowband envelope for each speech 
speed. The Pearson’s r values for each of the six panels of Figure 4 are depicted here on the 
z-axis for each speech rate.  
 

These findings suggest that participants relied on different cues for speech with 

unusual rates. Additionally, because older listeners often have poor high-frequency 

hearing, the necessity of envelope preservation in high-frequency bands may partly explain 

why older adults have more difficulty understanding unusual speech rates than younger 

adults. 

CONCLUSION 

By independently decorrelating the amplitude and phase spectra of multiple types 

of stimuli, these three experiments evaluated the relative importance of different types of 
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spectral cues to the processing of speech and music. Chapter One investigated how 

amplitude and phase information differentially contribute to speech intelligibility. 

Listeners performed a word-identification task after hearing spectrally degraded 

sentences.  Each stimulus was degraded by first dividing it into segments, then the 

amplitude and phase components of each segment were decorrelated independently to 

various degrees relative to those of the original segment.  Segments were then 

concatenated into their original sequence to present to the listener. We used three segment 

lengths: 30 ms (phoneme length), 250 ms (syllable length), and full sentence (non-

segmented). We found that for intermediate spectral correlation values, segment length is 

generally inconsequential to intelligibility. Overall, intelligibility was more adversely 

affected by phase-spectrum decorrelation than by amplitude-spectrum decorrelation.  If 

the phase information was left intact, decorrelating the amplitude spectrum to 

intermediate values had no effect on intelligibility. If the amplitude information was left 

intact, decorrelating the phase spectrum to intermediate values significantly degraded 

intelligibility, with a few exceptions.  These results delineate the range of amplitude- and 

phase-spectrum correlations necessary for speech processing and its dependency on the 

temporal window of analysis (phoneme or syllable length).  Results further pointed to the 

robustness of speech information in environments that acoustically degrade cues to 

intelligibility (e.g., reverberant or noisy environments). 

In Chapter Two, we investigated how amplitude and phase information 

differentially contribute to music recognition and speech intelligibility. Listeners heard 

degraded melodies and performed a same-different judgement in a melody-discrimination 

task. Each waveform was first temporally segmented (30 ms, 250 ms, or unsegmented) and 
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the amplitude and phase spectra of each segment independently decorrelated to different 

degrees relative to their original unaltered spectra to generate decorrelated melodies.  We 

compared findings from this study to the results in Chapter One which investigated the 

effects of spectral decorrelation on speech intelligibility and found that, compared to 

speech, melody recognition is more resilient to loss of phase-spectrum cues due to 

relatively long internote intervals within frequency channels. This robustness was 

observed both for short and long segment durations. Melody recognition was also 

relatively unaffected by partial decorrelation of the amplitude spectrum. Conversely, we 

found a greater decline in speech intelligibility from loss of phase-spectrum cues as speech 

recognition is heavily reliant on temporal envelope structure. For short-duration segments, 

partial decorrelation of the amplitude spectrum had a major impact on speech intelligibility 

but no effect on melody recognition. Further analysis showed that melody discrimination is 

primarily affected by degradation of the waveform fine structure, whereas speech 

intelligibility can be largely explained by preservation of temporal envelopes within 

frequency channels. 

The third chapter examined the effects of speaking rate and spectral degradation on 

speech intelligibility. Five normal-hearing subjects listened to spoken sentences that were 

either sped up to twice that of normal rate or slowed down to half normal rate. Sentences 

were first segmented into analysis windows ranging from 32 to 256 ms. Each segment was 

then spectrally degraded by either replacing its amplitude spectrum with that of Gaussian 

noise, leaving its phase spectrum intact, or vice versa. Consistent with prior findings, 

phase-spectrum cues were most useful to intelligibility at longer temporal windows of 

analysis, and amplitude spectrum cues at short windows.  For standard rate speech, the 
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crossover point between these two cues occurred at an estimated window size of 120 ms. 

Increasing speaking rate to twice normal rate, surprisingly seemed to have little to no effect 

on this crossover point.  However, slowing down speaking rate shifted this crossover point 

to significantly longer temporal window sizes (~230 ms), slightly smaller than twice the 

crossover point for normal speaking rates. Analysis of narrowband envelopes show that for 

non-standard speech rates, higher frequency bands are more useful for intelligibility than 

they are for standard speech rates. 

 Collectively, the set of three studies described in this dissertation demonstrate a 

different approach to investigating how complex auditory stimuli may be processed. While 

temporal envelope is useful for predicting intelligibility in standard speech stimuli, it is not 

sufficient in accurately determining intelligibility when considering non-standard speech 

rates and other complex, meaningful stimuli such as musical phrases. The current studies 

contributed to our understanding of speech intelligibility and music recognition at different 

spectral decorrelation values under a variety experimental conditions. Additionally, 

because this method allows for precisely defined stimulus degradation levels in the 

spectral domain, it provided a technique for generating a range of stimuli with degraded 

temporal envelopes such that one could more accurately quantify the contribution of 

different frequency bands to discriminability of any type of complex auditory stimulus. 
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