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Effective policies for adaptation to climate change require understanding how impacts
are related to exposures and vulnerability, the dimensions of the climate system
that will change most and where human impacts will be most draconian, and the
institutions best suited to respond. Here, we propose a simple method for more credibly
pairing empirical statistical damage estimates derived from recent weather and outcome
observations with projected future climate changes and proposed responses. We first
analyze agricultural production and loan repayment data from Brazil to understand
vulnerability to historical variation in the more predictable components of temperature
and rainfall (trend and seasonality) as well as to shocks (both local and over larger spatial
scales). This decomposed weather variation over the past two decades explains over 50%
of the yield variation in major Brazilian crops and, critically, can be constructed in the
same way for future climate projections. Combining our estimates with bias-corrected
downscaled climate simulations for Brazil, we find increased variation in yields and
revenues (including more bad years and worse outcomes) and higher agricultural loan
default at midcentury. Results in this context point to two particularly acute dimensions
of vulnerability: Intensified seasonality and local idiosyncratic shocks both contribute to
worsening outcomes, along with a reduced capacity for spatially correlated (“covariate”)
shocks to ameliorate these effects through prices. These findings suggest that resilience
strategies should focus on institutions such as water storage, financial services, and
reinsurance.

financial institutions | climate change | Brazil | adaptation | agriculture

Agriculture is a fundamental linkage between climate change and human welfare in
the anthropocene (1). Because agricultural production is susceptible to harm from
unsuitable environmental conditions (vulnerability), a key question is the extent to
which agricultural systems can adjust—either ex ante or ex post—to the effects of a
changing climate (adaptive capacity) and maintain desired function in a warming world
(resilience) (2). Understanding adaptive capacity and building resilience in agricultural
systems requires the ability to predict biophysical and management responses to weather,
as well as shifts in broader systemic factors such as food prices and the credit institutions
that support farming (3). A well-understood difficulty in measuring these relationships
is that changes in environmental factors like temperature and rainfall will have different
effects depending on whether they are anticipated (in which case proactive adaptation
may be possible), spatiotemporally correlated (in which case systemic factors like prices
and insurance would be expected to respond, potentially dampening adverse impacts), or
idiosyncratic and unanticipated (in which case national and local institutions may better
diversified in terms of risk, but larger-scale smoothing mechanisms like price changes or
declarations of emergency are unlikely).

While there are many potential ways to model the responses of coupled human–natural
systems to climate change, detailed case studies and statistical analyses using observations
of the recent past form the core of the field (4). Three principal findings have emerged
from this empirical climate change impacts literature. First, different sources of weather
variation trigger different types of adaptation (5, 6), with anticipated changes eliciting a
broader range of adaptive strategies than changes that are unanticipated and may thus
have more constrained responses (2, 7–9). Second, in many contexts including Brazil, a
key dimension of climate change is that the variance of weather outcomes is expected to
increase, in some cases more so than the levels (10, 11). Third, weather variation is likely
to have highly nonlinear effects on key human outcomes (12–14), and understanding
how agricultural systems respond to extreme events is critical (15–19).

The existing empirical literature has taken a wide range of approaches to impact
analysis at various spatial and temporal scales, but advances have largely focused on
estimation of the effect of weather variation on human outcomes as representative
of longer-run shifts in climate (20–22). A central concern in this work has been

Significance

Climate change can affect
agriculture across levels–from
plants to farms to institutions–but
these impacts are difficult to
measure and project consistently.
We propose a statistical approach
for estimating the sensitivity of
agricultural systems to different
dimensions of climate change
and modeling future shifts that
incorporate human adaptation.
Applying this in the Brazilian
context reveals that climate has a
powerful effect on yields and
agricultural revenues and drives
default for a large public sector
bank. Future projections suggest
increased yield and revenue
volatility at midcentury, along
with higher rates of
climate-driven default that create
correlated risks for financial
institutions. This approach is thus
able to capture often
hard-to-model emergent climate
risks and inform more tailored
approaches to building resilience.

This paper is part of a Special Feature on Modeling
Dynamic Systems for Sustainable Development. The
collection of all PNAS Special Features in the Sustainability
Science portal is available here: https://www.pnas.org/
sustainability-science.

This article is a PNAS Direct Submission. A.G. is a guest
editor invited by the Editorial Board.

Copyright © 2024 the Author(s). Published by PNAS.
This open access article is distributed under Creative
Commons Attribution-NonCommercial-NoDerivatives
License 4.0 (CC BY-NC-ND).

Although PNAS asks authors to adhere to United
Nations naming conventions for maps (https://www.un.
org/geospatial/mapsgeo), our policy is to publish maps
as provided by the authors.
1To whom correspondence may be addressed. Email:
jburney@ucsd.edu or ctmcintosh@ucsd.edu.
2Lopez-Videla’s contributions were made prior to joining
Amazon.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2215677121/-/DCSupplemental.

Published April 8, 2024.

PNAS 2024 Vol. 121 No. 16 e2215677121 https://doi.org/10.1073/pnas.2215677121 1 of 10

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2215677121&domain=pdf&date_stamp=2024-04-04
https://orcid.org/0000-0003-3532-2934
https://www.pnas.org/sustainability-science
https://www.pnas.org/sustainability-science
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.un.org/geospatial/mapsgeo
https://www.un.org/geospatial/mapsgeo
mailto:jburney@ucsd.edu
mailto:ctmcintosh@ucsd.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2215677121/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2215677121/-/DCSupplemental


robust causal identification based on isolation of system response
to the unpredictable component of weather versus more pre-
dictable components like cross-sectional averages (23) and long-
run trends (8, 24). An overarching methodological thrust has
thus been toward highly localized estimates based on shocks that
are statistically well identified in terms of past exposure but may
only capture a small component of projected changes in future
climate. Deviations from historical mean conditions provide an
as-if random source of variation for statistical estimation, but
they represent only one form of anticipated climate change and
may reflect the component to which the ability to adapt may in
fact be weakest.

Here, we propose a straightforward framework for balancing
statistical identification goals with a more holistic approach
to adaptation and credible projection in a parametric but
parsimonious way that avoids the use of fixed effects or other
regression techniques that remove certain sources of variation
that are relevant when considering the future. We use agricultural
productivity, revenue, and loan data from Brazil to show how this
method facilitates interpretation of different adaptation margins
in both past and future, and then demonstrate how it can be
used for understanding the adaptive potential of specific policy
interventions in the Brazilian context.

Modeling Approach
Briefly (Materials and Methods), the heart of our technique is
a spatiotemporal decomposition of the variation in temperature
and precipitation into five distinct terms: a) the original local
average of temperature and precipitation, b) the time trend in
each location, c) the normal (monthly average) seasonal deviation
from these trends in each location, d) the spatiotemporally
correlated, or “covariate,” shocks in each time period relative to
components (a–c), and e) idiosyncratic shocks, or the remaining
local variation after accounting for trends, seasonal deviations
from trends, and covariate shocks in each time period. This
decomposition is shown in schematic form in SI Appendix,
Fig. S1. For the Brazilian context explored here, “local” is defined
as the municipality level (the smallest for which panel data
on agricultural outcomes is publicly available), and “covariate”

is defined at the national level. However, as discussed below,
these spatial scales could be adjusted for other contexts and
analyses.

Decomposition approaches are useful for partitioning a signal
into its component parts; however, in contrast with methods
like spectral density decomposition (time series) or empirical
orthogonal functions (EOF), the approach described here has
several features that make it attractive for studying impacts
and adaptation applications. First, this decomposition can be
applied in the same way to historical and forecast data (e.g., from
climate models), and so allows a close mapping of estimated
damages from the recent past to predicted changes in the
future (Fig. 1 shows this analogous structure across past and
future). Second, the decomposition maps to interpretable spatial
and temporal features and thus provides a well-defined way
of thinking about vulnerability, adaptation, and resilience of
agriculture to climate change. Specifically, the components of
this decomposition suggest distinct system response margins with
different degrees of adaptive capacity, and thus provide clarity
about matching policies to different dimensions of vulnerability
(SI Appendix, Table S1 provides some examples in the Brazilian
context).

Three components of the decomposition are highly predictable
and so present the greatest scope for proactive adaptation. The
cross-sectional averages of temperature and precipitation, which
form the time-zero mean for each location, represent baseline
weather expectations, but by definition do not move with climate
change and as so are best thought of as origin period intercepts
(and perhaps historical suitability). Time trends in temperature
and precipitation are separately estimated for each location and
represent the long average estimate of how weather is changing
over time based on local experience (8); these motivate longer-run
adaptive shifts in agricultural systems to be optimized for future
climate (1). From here, predictable seasonal variation is defined
as the monthly average deviation around the location-specific
mean and time trend. Increases in seasonality amplitude indicate
an intensification of the annual cycle around the long-run trend
and would be expected to elevate the importance of innovations
like water storage, as well as savings and credit institutions that
might help farmers withstand (and perhaps even leverage) the

Fig. 1. The spatial nature of Brazil’s historical and projected climate changes, with temperature shown in the Top row and precipitation in the Bottom row.
The Left column shows baseline average annual temperature and total annual precipitation in the recent past (1991 to 2020) and the second column shows
decadal trends for temperature and precipitation. The third column shows the difference in total seasonal magnitude (summed average absolute monthly
deviations) between the future and the recent past (2040 to 2069 to 1991 to 2020). The fourth column shows the projected change in covariate (national-scale)
temperature and precipitation shocks, and the final column shows the projected average changes in local idiosyncratic shock magnitudes between future and
recent past. A detailed example of this decomposition for a sample of Brazilian municipalities is shown in SI Appendix, Fig. S1.
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enhanced seasonal swings. These three dimensions of variation
added together represent the linear seasonally adjusted predicted
weather outcome for a location.

Covariate and idiosyncratic shocks make up the residual
component of weather variation. After removing local-level
intercepts, linear time trends, and average seasonality as described
above, we calculate the covariate shock as the average remaining
variation across the whole country for each time period. The
spatial scale at which covariate shocks are calculated is an
important design choice; because their contemporaneous nature
would be expected to induce large-scale responses in prices and
policies, we also examine the implication of defining covariate
shocks instead at the regional or state level. From a policy
perspective, the nature of local climatic variation, the spatial
scale, and scope of institutions like water-sharing agreements or
economic markets that distribute shocks across space, and the
scope of operations of the institutions best placed to respond to
covariate shocks would determine the appropriate covariate scale
definition. Finally, the idiosyncratic shock is the remaining local
variation not explained by any of the other terms.

Paired with estimates of historical sensitivity, shocks provide an
important window into higher moments of climate vulnerability
in the future. As with trends and seasonality, covariate and
idiosyncratic shocks also suggest distinct adaptation margins and
potential policy responses. While the welfare benefits of large
safety-net programs will rise with the magnitude of correlated
shocks, these shocks become more difficult to smooth domesti-
cally and motivate access to global capital pools and reinsurance
markets. Integration with global markets can be both a source of
insulation from covariate shocks (if they arise domestically) and
a source of exposure to them (if the global market is the source
of the shock). Increased exposure to idiosyncratic shocks stresses
the importance of transport infrastructure (25), local risk pooling
mechanisms (26), the deepening of financial services, and the
use of indemnity insurance given that weather index insurance
may generally be better at picking up correlated rather than
idiosyncratic shocks (27). While the shocks in this decomposition
are estimated as residuals, the covariate shock in particular may be
partially predictable (such as during regional-scale disturbances
like ENSO or a shift in India’s monsoon timing), meaning that
climate forecasting is one form of institutional adaptation to these
shocks.

To demonstrate this decomposition approach, we first use
retrospective analysis to measure productivity and economic
vulnerability to the decomposed dimensions of weather variation.
We aggregate weather data at the annual level – summed (P) or
averaged (T) over the growing season – to examine yields and
revenues of the country’s main crops, using municipality-level
data from 1990 to 2014. At the monthly level, we also examine
the repayment performance of agricultural loans made by Brazil’s
main public development bank within the state of Bahia, between
2012 and 2017. We then use the estimated coefficients from the
retrospective analysis to project future impacts, linking them to
bias-corrected down-scaled climate model projections for Brazil
that we have decomposed in the same way as the historical
data. Vulnerability to climate change can then be isolated to
the dimensions that are both found to drive damages and to be
changing in the future. This provides focus to a conversation
about the specific investments that can promote resilience in a
given context. We discuss the implications for Brazil, including
for a major investment in the semiarid region of the country
(construction of water cisterns).

Results

Changes in Brazil’s Climate. Fig. 1 provides preliminary moti-
vation for the proposed climate decomposition. It shows the
spatial variation in Brazil’s mean climate and decadal trends from
the recent past (1991 to 2020), as well as projected changes in
total seasonal amplitude (sum of average monthly deviations),
changes in recent and projected covariate shock distribution,
and projected changes in idiosyncratic shock sign and magnitude
across the country. These last three columns are presented as
changes between midcentury (2040 to 2069) and the recent
past (1991 to 2020), and suggest that in expectation, the overall
structure of climate change in Brazil will involve all components
of the decomposition.

A representative example of this decomposition is shown for
four municipalities in SI Appendix, Fig. S1 and Table S2 show the
results of the monthly decomposition of historical temperature
and rainfall for the full country for the years 1990 to 2017,
using the whole country to define the “covariate” shock. The
SD within municipalities is displayed as well, since this is the
term that is important to an individual considering weather
changes in a given location. The penultimate column indicates
the level at which each of the decomposed terms varies. The
dominant source of total variation in temperature is seasonal
variation within a single location, while for rainfall it is cross-
sectional differences in means that have the greatest SD. Given
the erratic nature of local rainfall, we unsurprisingly find a large
residual variation in the idiosyncratic rainfall shock, while for
temperature the idiosyncratic and covariate shocks have similar
spread.

SI Appendix, Table S1 provides a conceptual mapping of
the decomposed weather dimensions to existing potential policy
responses that best match each. In columns 2 to 4, we provide
a subjective assessment of credibility in each of three empirical
steps: estimation in historical weather data, statistical analysis
of agricultural or lending responses to weather variation in the
historical data, and decomposition of the future weather forecasts.
In terms of the dimensions relevant to climate change, the trend
term is least credibly estimated in historical data (especially in
short time series) while the shock terms are most credible. In
the forecasts, the trend may be the most credible dimension
of prediction while the idiosyncratic variance in particular may
depend in part on model assumptions and the desired scale of
analysis (i.e., the choices made for statistical downscaling). This
suggests that it is the seasonal and covariate terms that have
the highest combined credibility across past and future. The
final column discusses the very heterogeneous policy responses
that would be suggested by the intersection of vulnerability and
change in each of these dimensions. The two most predictable
components of climate change (trends and seasonality) are
susceptible to distinct forms of adaptation; the former requiring
a secular shift in agricultural technology with the latter also being
addressable by technologies like water storage and financial ser-
vices. Specific policies introduced in Brazil to address heightened
seasonal variation include sustainable water management (28)
and agroforestry (29). Increases in idiosyncratic shock variance
can be dealt with a smaller spatial scales via storage, transport
infrastructure, and diversification, while increases in covariate
shocks will undermine these local solutions, requiring larger-
scale institutional solutions and at the limit require reaching
into global risk pools via sovereign borrowing and international
reinsurance.
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Association between Climate Components and Agricultural
Production and Revenue. Because agricultural outcomes are
typically measured and reported at the annual level (30), we
aggregate our weather decomposition data over crop-specific
growing seasons (31) and link them to annual agricultural pro-
ductivity (production per hectare) and revenue data (in constant
Brazilian Reals) for 5,430 Brazilian municipalities. The three
terms measured in deviations will tend to have their variation
removed by the taking of annual averages; for perennial crops
and total annual revenues, we therefore take the absolute value of
the seasonal, covariate, and idiosyncratic deviations and average
these at the municipal-year level. We then use ordinary least
squares regression to estimate the best-fit parameters defining the
surface that relates the weather decomposition to each outcome
(Materials and Methods).

The results of this analysis for maize, soybean, and sorghum
yields and revenues are shown in Fig. 2, SI Appendix, Figs. S2
and S3, and Tables S3–S8. Maize, soybean, and sorghum are

three field crops grown at similar times within their regions of
production in Brazil (SI Appendix, Fig. S2) but are subject to
very different marketing dynamics. Soybeans are predominantly
exported and Brazil is a global production leader; maize is
consumed both at home and exported; sorghum is largely used
domestically for animal feed. For each crop, we fit models
with and without quadratic seasonal and shock terms and also
estimate responses where the covariate shock is constructed
nationally (for the whole country), by region, and by state
(i.e., over successively smaller areas of reference). Finally, we
compare our decomposition results to a more standard fixed-
effects model that includes quadratic terms in both temperature
and precipitation (SI Appendix, Tables S3–S8). As described
above, such models are the standard in the literature and are
equivalent to analysis conducted in anomaly space, where the
statistical parameters estimated relate deviations from local aver-
age weather parameters to deviations from local average outcomes
(12, 20, 32).

Fig. 2. The marginal impacts of different components of weather on municipality (A) maize and (B) soybean yields and revenues in Brazil. Black lines show
the predicted central tendency with shading indicating the CI. Red and blue curves show the yield response of each crop to temperature and precipitation,
respectively; orange and green curves show the revenue responses of each crop to temperature and precipitation, respectively. Curves correspond to the
coefficients shown in column 2 of each SI Appendix, Tables S5–S8.
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We first note that the R2 for our maize yield models ranges
from 0.63 to 0.65; the standard fixed effects model has a higher
overall R2 (0.81), but the within R2 is only 0.03, meaning that
the location- and year-specific intercepts are explaining almost all
of the variation in such models, and none of that signal is used
to identify climate impacts on outcomes. For revenues our fit is
weaker; this is expected given the contributions of other factors
to revenues, but we can nevertheless explain a substantial share of
the variation in these variables (R2 = 0.22) with our decomposed
weather terms (compared to a total & within R2 of 0.83 and 0.02,
respectively, for the fixed effects models). The fits for sorghum
and soybeans are weaker than for maize, and especially for soybean
revenues, where we would expect nonclimatic factors to play a
much larger role than for the other crops. However, the climate
decomposition still explains a much larger portion of the variance
in yields and revenues than the within-location variation of the
climate variables in the standard fixed effects models.

The cross-sectional intercepts terms provide marginal effects
consistent with the idea of Brazil as an environment in which
cooler and wetter locations are more productive, but the
coefficients for the temperature trend terms have the opposite
sign. This evidence of adaptation over time could arise from
the historical expansion of cropland into new biomes, as well as
colder southern regions of Brazil being able to exploit prolonged
summers to plant a second off-season crop (“milho safrinha”).
The seasonal (accumulated) terms both show optimal values with
strong downturns above and below. We would expect to see
the “normal is best” relationship for the shock terms, meaning
that both yield and revenue are highest when the shocks are
small. Indeed, this is the case for the idiosyncratic temperature
shock, which is associated with negative yields one either side of
zero. The precipitation shocks are centered slightly above zero,
conveying that some extra moisture is beneficial on average, but
again large departures from optimal are detrimental. For both
maize and sorghum, the shock impacts are stronger fractionally
in yields than in revenues, indicating that nonclimate forces may
dampen the effects. With soybeans, these dynamics are different.
The contributions of the shock terms to marginal changes in
yields and revenues are much larger. And while the precipitation
shock terms are still inverse-U shaped in yields, they have the
opposite association with revenues. This may be due to the fact
that shocks are interacting with global markets: Brazil represents
roughly half of global exports and so even on the international
market the price mechanism insulates revenue from shocks to
output. Looking across pairs of columns, we compare more
localized measures of covariate shocks. Decreasing the size of
the unit at which correlated shocks are measured mechanically
absorbs more of what was previously idiosyncratic (because
idiosyncratic variation is residual, and the covariate means at a
localized level capture more spatial variation by definition). Most
of our results are quite stable across ways of calculating covariate
shocks, although there are cases of sign reversals and the curvature
of the idiosyncratic shock in particular appears sensitive to the
way that the covariate shock is calculated (SI Appendix, Fig. S4).
For soybeans, the dynamics change, and whereas a national-
level covariate precipitation shock triggers price compensation, a
state-level covariate precipitation shock does not; nevertheless, a
local (idiosyncratic) precipitation shock still results in some price
compensation at the state level.

Association between Climate Components and Loan Perfor-
mance. The broad set of financial institutions that support
investments in the face of uncertainty are an important holder

of agricultural risks, and recent evidence has emerged as to
the magnitude of the exposure that banks have to weather
risk (27, 33). To probe this relationship in the Brazilian
context, we pair our same decomposed weather shocks with
data on the universe of agricultural loans made in the state of
Bahia by our partner financial institution (a large public-sector
lender) between 2012 to 2017. Bahia represents the diversity of
biomes and agricultural systems in the country, with modern
systems producing grains in the Midwest and fruits in the
São Francisco River Valley, along with lower-technology family
farming production in the semiarid region. Summary statistics for
the universe of loans are provided in SI Appendix, Table S9, along
with some basic information about borrower demographics and
their own resilience investments. SI Appendix, Figs. S5 and S6
show the distributions of loan performance and climate shocks
across time and space, respectively. We do not recalculate the
weather decomposition for this restricted data, so for each month
and municipality, the trends and shocks are those derived from
the national analysis over the time period used above.

Because loan performance (i.e., being in delinquency or
default) is assessed monthly, we pair loan data with monthly
climate decomposition data. Results from this analysis are shown
in SI Appendix, Figs. S7 and S8 and Table S10. We find significant
associations between higher baseline temperatures and both
delinquency and default, and a consistent nonlinear association
between increased seasonality and increased probability of delin-
quency or default. The response to idiosyncratic temperature
shocks is more muted, but idiosyncratic precipitation shocks—
which we expect to drive yields but not to affect prices through
market mechanisms—generate both delinquency and default.
Interestingly, the dynamics of the covariate shocks are the oppo-
site: Covariate shocks are associated with reduced delinquency
and default rates, indicating that these shocks may have been
more predictable, or that price effects might have mitigated some
climate risk (the effect sizes are smaller than for seasonal dynamics
or idiosyncratic shocks). These nuanced results illustrate the
value of decomposing weather variation into its component
parts, given that (e.g.) increases in precipitation variance across
locations have an opposite effect on the credit system as
an increase in the variance of highly localized precipitation
shocks.

SI Appendix, Fig. S9 shows the distribution and spatial
correlations of climate variables and loan performance across
the study region. Although average climate shocks are more
strongly spatially correlated than loan delinquency and default
over the study period, we nevertheless find that the two are
statistically related (SI Appendix, Table S11). That is, when
temperature idiosyncratic shocks are more highly correlated,
we see a stronger spatial correlation in loan delinquency and
default. While intuitive, this nevertheless points to a potential
for emergent risks to financial institutions like bank branches
that must hedge against correlated risk.

Future Risks. To understand potential future agricultural sector
impacts, we pair our impact estimates from the models presented
above with bias-corrected spatially downscaled climate model
output for Brazil. A subset of these results are shown in Fig. 3,
with the breakdown of contribution by each component of the
weather decomposition shown in SI Appendix, Fig. S10. The
mean shifts in pooled maize yields and revenues are small (Left
column), but the pooled results belie important shifts within
the country. Importantly, over a 25 y projection, future climate
produces one much lower-yielding year (and one lower-revenue
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Fig. 3. Past and future projected agricultural sector impacts. The Left column shows the pooled distributions of past (black solid line, 1990 to 2014) and future
(blue dashed line, 2045 to 2069) municipality-level maize yields, maize revenues, total agricultural revenues, and rates of new loan defaults. The Center column
shows the municipality-level variation within each year, where years are ranked from lowest to highest by median. Gray/black boxes and outliers show past
performance, and blue/red outliers show future. The Right column shows the distribution of within-municipality variation (SDs) across the 25 past and future
projected years. SI Appendix, Figure S11 shows the total past and future projected loan delinquency and default rates.

producing year), as well as at least one additional year with a much
larger lower tail across municipalities (center column). Across
yields and revenues, the variance of outcomes is significantly
larger in the future than the past, and this is the case both
within years and within municipalities (center and right columns,
respectively). For defaults, a mean shift is clear, with more defaults
predicted in the future, and uniformly higher predicted rates
year on year, and a higher future variance. In other words,

productivity and revenue become more unpredictable but loan
default worsens. Taken as a whole country, the drivers of these
shifts are not uniform (SI Appendix, Fig. S10), in part because
predicted changes in climate components are nonuniform Fig. 1.
Although mean shifts in any one component of the climate for
the whole country may be small, the shifts in each contribute to
worsened loan performance in the future (SI Appendix, Fig. S10,
Bottom Right).
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Using the Decomposition to Quantify Adaptive Capacity. There
are two ways in which this approach can refine assessment
of adaptive capacity in a quantitative manner (see ref. 2 for
a discussion of the dimensions of adaptive capacity). First, if
there is variation in access to technologies intended to address
vulnerability, the terms in the decomposition can be interacted
with this variation to assess whether outcomes are less sensitive
to different dimensions of weather risk in the presence of the
technology. In the Brazilian context, one obvious public policy
thrust aimed at insulating producers against rainfall risk is water
storage. From the bank screening data, we have information
on the presence of farm-level water storage infrastructure, and
in particular cisterns. This form of adaptation is of interest in
Brazil and similar agro-ecosystems given large-scale government
efforts to foster construction of water storage, such as the “One
Million Cisterns Program”—a key public policy to promote
access to water for human consumption and food production in
the poorest and driest areas of the country. In 2017, the Brazilian
Agricultural Census found more than one million cisterns in
Brazil, 90% in the semiarid region and 81% in family farms.
While the placement of such infrastructure is not exogenous
or randomly assigned, we might expect that the selection bias
from endogenous placement will lead them to be sited where
rainfall risk is worst, while the treatment effect should be in the
opposite direction (although it is also possible that farmer wealth
mutually drives cistern access and lower vulnerability, which
would generate correlation in the direction of our hypothesis).

To investigate whether these investments have decreased
vulnerability, we estimate versions of our default model that
interact binary variables for cistern access with the tempera-
ture and precipitation terms developed above. This enables a
comparison of how households with and without water storage

differentially withstand exposure to the components of weather in
trying to avoid default. Our expectation is that small-scale water
infrastructure will dampen the effect of seasonal variation and
also play a role in mitigating the extent to which precipitation
shocks drive loan repayment. The results of this analysis are
shown in Fig. 4 and SI Appendix, Figure S12 and Table
S12. Indeed, the vulnerability of repayment to seasonal and
idiosyncratic precipitation variation is particularly dampened
by the presence of cisterns. While a large empirical literature
uses related techniques to study reductions in vulnerability, how
to parameterize weather shocks is an open question with many
researcher degrees of freedom, and our decomposition provides
a principled and policy-relevant way to achieve this.

Second, we can consider impacts on resilience by starting from
the forecasted changes that the decomposition of future weather
suggests are in store. As demonstrated in Fig. 1, Brazil is projected
to be warmer and to see substantial increases in seasonality, as
well as greater covariate and idiosyncratic temperature shocks.
Technologies that generate good economic outcomes under
these future conditions can be said to promote resilience. We
can therefore tie the heterogeneous vulnerabilities revealed in
Fig. 4 to the forecast changes shown in Fig. 1 to say that,
because cisterns appear particularly well suited to enhance the
capacity to manage increasing temperatures and seasonality,
they will promote resilience. The fact that they indicate a
potential worsening of outcomes under the increasingly covariate
temperature shocks suggests that additional institutions may be
necessary to enhance resilience in this dimension. (Ultimately, a
cistern can only store water that arrives, so in extreme regional-
scale hot and dry conditions, this adaptation would be less
effective in reducing risk. Similarly, cisterns would not do much
to facilitate adaptation to extreme regional-scale flooding events).

0.000

0.004

0.008

22 23 24 25 26 27
Baseline Temperature

Pr
ob

. N
ew

 D
ef

au
lt

0.000

0.004

0.008

0.0000 0.0010 0.0020
Temperature Trend

Pr
ob

. N
ew

 D
ef

au
lt

0.000

0.004

0.008

−3 −2 −1 0 1 2
Seasonal Temperature

Pr
ob

. N
ew

 D
ef

au
lt

0.000

0.004

0.008

−0.5 0.0 0.5 1.0
Cov. Temperature Shock

Pr
ob

. N
ew

 D
ef

au
lt

0.000

0.004

0.008

−1 0 1
Temperature Shock

Pr
ob

. N
ew

 D
ef

au
lt

0.000

0.004

0.008

40 80 120 160
Baseline Precipitation

Pr
ob

. N
ew

 D
ef

au
lt

0.000

0.004

0.008

−0.08−0.04 0.00 0.04
Precipitation Trend

Pr
ob

. N
ew

 D
ef

au
lt

0.000

0.004

0.008

−100 0 100 200
Seasonal Precipitation

Pr
ob

. N
ew

 D
ef

au
lt

0.000

0.004

0.008

−50 −25 0 25
Cov. Precipitation Shock

Pr
ob

. N
ew

 D
ef

au
lt

0.000

0.004

0.008

−100 0 100200300
Precipitation Shock

Pr
ob

. N
ew

 D
ef

au
lt

Fig. 4. The marginal impacts of different components of weather on new loan default, where all weather components are allowed to vary based on whether
or not a farmer has access to a water cistern. SI Appendix, Figure S12 shows the analogous results for overall default; coefficients can be found in SI Appendix,
Table S12.
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Discussion
Here, we show that the ability to pair historical and future data
in a straightforward manner moves forward our understanding
of the human impacts of climate change and indicates increasing
weather-driven problems in Brazil’s agricultural system. We find
that climate change in Brazil is expected to have negative impacts
that ripple across the agricultural sector—from yields to revenues
to loan repayment performance of agricultural borrowers. We
achieve this using an approach of estimating the statistical
relationships between agricultural outcomes and a decomposition
of weather variables into components that can each change
independently and correspond to different potential adaptation
margins. We find very strong relationships between this weather
decomposition and agricultural outcomes and also find weather
to be a significant determinant of repayment (although the R2

here is substantially lower than for agricultural outcomes). And
importantly, we are able to identify that different components
of weather appear to contribute to modeled future outcomes.
Local idiosyncratic precipitation shocks are detrimental to all
outcomes, but the nature of the shock and the degree to which
it is spatially correlated matters. Importantly, the increasing
correlation structure of such shocks (for example at the national
level as shown in Fig. 1) raises the fear that existing endogenous
price effects (i.e., higher prices if production drops) may only go
so far, and we would expect more detrimental financial impacts
that trickle up to portfolio- and institution-level risk in the
financial sector as the climate warms.

We find some preliminary evidence that investments in
resilience infrastructure like cisterns (even though their adoption
is endogenous in this analysis) do weaken the link between
seasonal weather fluctuations and agricultural loan repayment,
and are overall associated with better performance. So intentional
design around resilience not only has the capacity to help
individual producers but also to build resilience into the financial
sector. Efforts to provide physical and financial infrastructure
to enhance resilience will be all the more important as climate
extremes become more spatiotemporally correlated across large
producing regions like Brazil. Promising efforts in the Brazilian
context include The Agricultural Climate Risk Zoning program
(ZARC), a risk management tool that provides planting guidance
and soil-specific extension for more than 40 crops, and the
national agricultural insurance program PROAGRO (which
requires farmers to comply with ZARC recommendations).

This research does point to a role for more nuanced and
integrated climate information for stakeholders, practitioners,
and policymakers. While provision of weather data to producers
has had mixed results (e.g., refs. 34–37), this is in part due to
a mismatch between need and the utility of the information
provided. Moreover, efforts to harmonize information across a
range of actors have been limited. Because the decomposition
used here can be constructed in the same way in the historical
and future climate data, this approach poses in parallel the
two key questions: “to what has the system been vulnerable”
and “what is changing” and can tie those different margins
closely to their respective adaptation policies. In particular,
coordinated monitoring of evolving shocks—to know whether
they are covariate or idiosyncratic—is an obvious point where
harmonized information to farmers, local institutions, and
institutions covering larger spatial scales (including banks and
potential social safety net programs) would be especially powerful.
We note however that one red flag raised by this analysis is
that financial institutions like banks could use this type of
information to more effectively screen out the types of borrowers

who would most benefit from access to credit or other financial
services.

Our approach attempts to strike an important methodological
balance. There has long existed a tension between empirical
estimation of climate impacts in the recent past and credible
projection of impact estimates into the future. The focus on
statistical inference and causal identification in the empirical
impacts literature has led to methods that identify very local causal
impacts. However, these methods often rely on use of fixed effects
and other control structures that remove sources of variation that
may be meaningful in the future as the structure of climate evolves
and changes. In addition, forward projection of these types of
results requires strong assumptions about adaptation (typically
that there is none), and also that the structure of climate stays
the same such that the variation used in statistical identification
has the same distribution as the overall structure of the climate
shift in the future (32). This is likely not to be the case given
the simple fact that all locations are warming, but hydrological
shifts are occurring in both directions in different locations (38).
The method we propose here trades off some causal identification
for flexibility in projection. Use of standard fixed effects models
would liken all future changes to idiosyncratic shocks. Our results
here suggest that such an approach misses important structural
features in future climate that would correspond to very different
strategic or policy responses.

We note that our approach is but one realization of an attempt
to link empirical statistical impact estimates and future climate
projections in a more credible manner. Efforts to assess the
different forms this approach might take (including through ML
and AI-based approaches) would be especially fruitful. The pro-
posed framework may be most useful in that it offers a concrete
method for linking empirical approaches with deep, local, and
often mixed-methods research on the different dimensions of
vulnerability and adaptation, because local strategies and policies
can be empirically tied to specific components of climate and
tested for their impact (actual or projected) over larger spatial
and temporal scales. Scholars of vulnerability, adaptation, and
resilience in Brazil and more broadly have long called for a more
integrated understanding of these issues that effectively connects
knowledge and stakeholders across scales (34, 39, 40), and ensures
that adaptations have a systems perspective and do in fact build
resilience (41–43).

We conclude by noting that even a country as large as Brazil
offers somewhat limited degrees of freedom and relatively small
overlap between agricultural and financial institution data. This is
in part due to legal frameworks and norms in the financial sector
that do not require institutions to preserve records beyond a
certain length of time. Our analysis shows how a concerted effort
to link longer records of climate, agricultural production and
revenue data, and agricultural loan data in key producing regions
would assist in understanding, characterizing, and predicting
climate impacts across the agricultural sector. Importantly, it
would allow for exploration of different margins and spatial scales
of correlation of shocks, as well as benchmarking adaptation
efforts aimed at different margins and scales. Such an effort
could form a core component of sustained assessment (44) and
help more closely align stakeholder and practitioner needs with
academic research.

Materials and Methods
ClimateData. Weusehistoricalmonthlygriddedtemperatureandprecipitation
data from the University of Delaware (45) as the main input to historical impact
estimation. For future projections, we an ensemble member from the Hadley
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Earth System model (HadGEM-ES) (46) contributions to the CMIP5 (47, 48),
using RCP8.5, that was bias corrected and spatially downscaled (49–51). We
note that the model has a high equilibrium climate sensitivity, but is one of
the ESMs that performs best for Brazil, and outperforms the CMIP5 ensemble
mean for precipitation metrics (52–54); it is also one of the ESMs selected for
coordinated regional downscaling experiments (55, 56). We show results for only
one ensemble member for clarity, but note that model-based uncertainty could
easily be assessed by applying decomposition methods to multiple ensemble
members or multiple models.

Agricultural Data. Agricultural data are from the Brazilian Institute of
Geography and Statistics (IBGE; Instituto Brasileiro de Geografia e Estatística)
Municipal Agricultural Production data (30). Growing seasons were derived
from Sacks et al. (31), and climate exposures were aggregated over crop-specific
production seasons between 1990 and 2017.

Financial Data. Data on the universe of agricultural loans from 2012 to 2017 in
the State of Bahia were provided by our partner financial institution. We compiled
loan-level information into monthly status (binary indicators of whether a loan
was in delinquency or default at the end of that month) and merged these data
with municipal weather decomposition data at the monthly level to analyze how
the different components of our spatiotemporal weather decomposition were
related to agricultural loan performance.

Decomposing Weather Variation. We begin with monthly historical weather
data on average temperature and precipitation for spatial unit i (municipalities)
in month m and year t. The steps in the decomposition of the historical data are
as follows:

1. Estimate the linear time trend in temperature for unit i, calculate T̂trendit ≡
Et(Tit).

2. Calculate the base value of expected temperature for each unit as T̂i0 ≡
E(Ti0).

3. Calculate seasonality for every location as the average deviation in a month
from the linear time trend above: T̄im ≡ Em(Tim − T̂trendit ). These three
components represent a simple forecast of the first moment of temperature
for each unit (mean, linear time trend, and seasonality). The remaining terms
are residuals around this predictable component.

4. The “covariate” shock is then the residual that is common to all units:
T̂shockt ≡ Et(Timt − (T̂i0 + T̂trendit + T̄im)).

5. Finally, the “idiosyncratic” shock is the component of the residual that is not
correlated: T̂shockimt ≡ Timt − (T̂i0 + T̂trendit + T̄im + T̂shockt ).

To understand nonlinearity in the response function, it would be ideal to
allow for flexibility in each of the four terms that capture change in the climate.
Imposing a linear functional form on the way that the decomposed variables drive
outcomes implicitly imposes that the variance of weather has no independent
effect on outcomes, independent of a shift in the mean. A large literature shows
this to be an unreasonable assumption for agricultural outcomes in particular

(12, 16–18, 24), and so we estimate quadratic functions of these sources of
variation in order to be able to fit and then predict the impact of future changes
inthevarianceof thedecomposedweathervariables. Ineachdimension,variance
has a distinct interpretation (increases in the variance of predictable seasonal
rainfall may be easier to adapt to than unpredictable changes in the variance
of covariate shocks, for example). Given the identification and power problems
present in the estimation of the time trend terms, we do not attempt to measure
nonlinear time trends. We do however use quadratics in the seasonal variation,
the correlated shock, and the idiosyncratic shocks (for which we have strong panel
identification and many degrees of freedom) to study the effects of changes in
the variance of weather outcomes.

Empirical Strategy. The estimation on the historical data (described here for
agricultural loan data) is conducted by regressing monthly outcome Yimt on
the five decomposed weather terms above and three quadratic terms for both
temperature T and precipitation P:

Yimt = �0 + �1 T̂i0 + �2 T̂trendit + �3 T̄im + �4 T̄
2
im

+ �5 T̂shockt + �6 T̂
2
shockt

+ �7 T̂shockimt + �8 T̂
2
shockimt

+ �1P̂i0 + �2P̂trendit + �3P̄im + �4P̄
2
im + �5P̂shockt

+ �6P̂
2
shockt

+ �7P̂shockimt + �8P̂
2
shockimt

+ �imt.

Because the distributions of yields and revenues across Brazil are not normally
distributed, we estimate these models with logged outcomes.

Future Projections. We decomposed bias corrected and downscaled climate
data for Brazil (2040 to 2069) in the same manner as in the historical period. We
then paired the parameters estimated from our regression models with forecast
information about each of the decomposition components.

Data, Materials, and Software Availability. Data and analysis code can be
found at https://github.com/jaburney/AgResilienceBrazil (57).
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