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Genetic and clinical analyses of psychosis spectrum
symptoms in a large multiethnic youth cohort
reveal significant link with ADHD
Loes M. Olde Loohuis 1, Eva Mennigen1,2, Anil P. S. Ori1, Diana Perkins3, Elise Robinson4,5,6, Jean Addington 7,
Kristin S. Cadenhead8, Barbara A. Cornblatt9, Daniel H. Mathalon10, Thomas H. McGlashan11, Larry J. Seidman12,
Matcheri S. Keshavan12, William S. Stone12, Ming T. Tsuang 8, Elaine F. Walker13, Scott W. Woods11,
Tyrone D. Cannon14, Ruben C. Gur15, Raquel E. Gur15, Carrie E. Bearden 1,16 and Roel A. Ophoff 1,17,18

Abstract
Psychotic symptoms are not only an important feature of severe neuropsychiatric disorders, but are also common in
the general population, especially in youth. The genetic etiology of psychosis symptoms in youth remains poorly
understood. To characterize genetic risk for psychosis spectrum symptoms (PS), we leverage a community-based
multiethnic sample of children and adolescents aged 8–22 years, the Philadelphia Neurodevelopmental Cohort (n=
7225, 20% PS). Using an elastic net regression model, we aim to classify PS status using polygenic scores (PGS) based
on a range of heritable psychiatric and brain-related traits in a multi-PGS model. We also perform univariate PGS
associations and evaluate age-specific effects. The multi-PGS analyses do not improve prediction of PS status over
univariate models, but reveal that the attention deficit hyperactivity disorder (ADHD) PGS is robustly and uniquely
associated with PS (OR 1.12 (1.05, 1.18) P= 0.0003). This association is driven by subjects of European ancestry (OR=
1.23 (1.14, 1.34), P= 4.15 × 10−7) but is not observed in African American subjects (P= 0.65). We find a significant
interaction of ADHD PGS with age (P= 0.01), with a stronger association in younger children. The association is
independent of phenotypic overlap between ADHD and PS, not indirectly driven by substance use or childhood
trauma, and appears to be specific to PS rather than reflecting general psychopathology in youth. In an independent
sample, we replicate an increased ADHD PGS in 328 youth at clinical high risk for psychosis, compared to 216
unaffected controls (OR 1.06, CI(1.01, 1.11), P= 0.02). Our findings suggest that PS in youth may reflect a different
genetic etiology than psychotic symptoms in adulthood, one more akin to ADHD, and shed light on how genetic risk
can be investigated across early disease trajectories.

Introduction
Psychotic symptoms, such as delusions and hallucina-

tions, are an important feature of severe psychiatric dis-
orders such as schizophrenia and bipolar disorder. They

are, however, also common in the general population, and
occur in ~5–10%1 of adults; a prevalence much higher
than that of clinical diagnoses of schizophrenia and
bipolar disorder (about 0.5–3% each2,3) In children and
adolescents, the prevalence of psychotic symptoms/psy-
chotic-like experiences is even higher, as high as 20%4.
Youth experiencing psychotic symptoms typically exhibit
a multitude of other comorbid symptoms, such as
increased mood, anxiety, and attention deficit hyper-
activity disorder (ADHD) symptoms, as well as increased
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substance use and impairments in global functioning5–7.
While subclinical psychopathology poses a risk for later
development of overt psychiatric illnesses5,8–11, only a
minority of youth reporting psychotic symptoms will
convert to full-blown psychotic disorders.
With recent progress in psychiatric genetics, psychotic

disorders are becoming well-characterized genetically12–14.
In particular, the landmark genome-wide association study
(GWAS) of schizophrenia provides aggregate risk con-
ferred by variants identified, polygenic scores (PGS), which
explain about 7–10% of variance in case-control sta-
tus12,15. In individuals with bipolar disorder, both genetic
risk for schizophrenia as well as for bipolar disorder have
been associated with psychotic symptoms16,17.
In the general population, however, the genetic etiology

of psychotic symptoms across development is still largely
unknown. The heritability of psychotic experiences has
been estimated between 30 and 50% from twin studies18,19

with the proportion of genetic variance explained by
common variants (SNP-heritability) of 3–17% in adoles-
cents18,20. Adults with psychotic symptoms harbor
increased genetic liability for a broad spectrum of psy-
chiatric disorders, including schizophrenia and other
neuropsychiatric disorders21. While in adolescents some
evidence suggests increased genetic risk for schizophrenia
(and major depressive disorder) for specific features of
psychosis18, the reported effect sizes are very small, and
these effects not very robust22. In pre-adolescent youth,
the relationship between genetic risk for psychiatric traits
and psychotic symptoms has not yet been explored. The
genetic characterization of psychosis spectrum symptoms
across development may increase our understanding of
their etiological and pathological significance.
To study genetic risk for psychosis symptoms in a

population sample of youth, we leverage a large well-
characterized community-based sample of youth aged
8–22 years, the Philadelphia Neurodevelopmental Cohort
(PNC, n= 9498 in total). The PNC is a multiethnic
cohort, with the largest proportion of individuals of Eur-
opean (66%) and African American (26%) ancestry. In this
community-based sample that is not ascertained for
neuropsychiatric disorders, about 20% of the youth are
classified as having psychotic spectrum symptoms (PS). In
the PNC, having PS has been associated with structural
and functional brain alterations23–25, qualitatively similar
to those present in overt psychotic disorders, as well as
cognitive deficits26. These findings underscore both the
increased vulnerability in youth experiencing psychosis
spectrum symptoms and the importance of investigating
psychosis risk as a dynamic developmental process7.
In this well-characterized sample, we explore the

genetic architecture of PS based on common variant lia-
bility for psychiatric illness. Specifically, we aim to
understand whether PGS for psychiatric disorders can be

used to classify psychotic symptoms in youth. To do so,
we adopt a recently developed multi-PGS approach27. The
method combines multiple summary statistics from dif-
ferent GWAS into a single predictive model, thus
potentially increasing classification power. Given evidence
suggesting PS increases risk for broader psychopathol-
ogy11,21 and the wide spectrum of genetic inter-
correlations in adults with psychotic experiences21, we
include a range of heritable psychiatric and brain traits in
our analyses, an analytic approach that has not been
previously explored in this type of cohort. To shed light
on, and generate hypotheses about, the nature of psy-
chotic symptoms across development in an unbiased
manner, we also perform univariate associations for all
traits included in our multivariate model and assess
phenotypic overlap between traits.
We hypothesize that developmental changes in the

expression of psychotic symptoms will be reflected via
age-specific genetic etiology, with the genetic architecture
underlying psychosis spectrum symptoms in older youth
being more similar to psychotic disorders. We evaluate
this hypothesis by testing whether the observed correla-
tions and the interplay with phenotypic overlap changes
across the development.

Methods
Cohort description
Data were obtained from the publicly available Phila-

delphia Neurodevelopmental Cohort (PNC, 1st release,
phs000607.v1.p1, #7147) via the Database of Genotypes
and Phenotypes (dbGap) platform. The PNC is a
community-based sample consisting of 9498 genotyped
youth (ages 8–22 years) who participated in clinical and
neurocognitive assessment, with a subsample undergoing
MRI, after providing written informed consent or assent
with parental consent (youth under 18 years old). Psy-
chiatric symptomatology was assessed using the GOAS-
SESS interview28 covering broad domains of
psychopathology including mood, anxiety, phobias, psy-
chosis, and externalizing behaviour29. Psychotic symp-
toms were specifically assessed with questions from the
Kiddie Schedule for Affective Disorders and Schizo-
phrenia for School- Age Children (K-SADS)30, the
Structured Interview for Prodromal Syndromes (SIPS)31,
and the PRIME Screen Revised (P-SR).

Definition of psychosis spectrum
Criteria to establish a group of individuals that experi-

ences psychosis spectrum symptoms were defined as in
prior PNC studies7,24,32. These criteria consider lifetime
occurrence of positive psychotic symptoms such as hal-
lucinations and persecutory thinking, negative/dis-
organized symptoms such as flattened affect, as well as
age-appropriateness of these symptoms (Supplementary
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Methods). Previous publications have described the clin-
ical and functional significance of these criteria7,24,32.
Since MRI data are available for only a subset of the

PNC sample that is too small for genetic analyses, we do
not include these in our analyses. Other phenotypes, such
as PS domain scores of positive (PRIME) and negative/
disorganized (SOPS) as well as symptoms of ADHD and
additional phenotypes for follow-up analyses are descri-
bed in the Supplementary Material.

Genotyping QC and imputation
Genotyping QC, imputation and selection of individuals

of European and African ancestry are described in detail
in the Supplementary Materials. In brief, imputation fol-
lowed the standard Ricopili pipeline (see URLS) and best-
guess genotypes of well-imputed variants (INFO > 0.8)
were selected for further analysis. The imputed dataset
included 7774 subjects, 7764 with phenotyping data.
Individuals were assigned ancestry group based on estimates
from ADMIXTURE33 and related subjects (specifically
477 siblings) were removed within ancestry groups (Sup-
plementary Note and Figs. S1–S3). After these final filtering
steps, the total sample size is 7225, with a total of 1,937,561
included SNPs. We identified two subcohorts: one including
individuals of European ancestry (EA, n= 4852) and one
African American ancestry group (AA, n= 1802).

GWAS summary statistics
We selected GWAS summary statistics from LD hub34,

a centralized repository for summary statistics (accessed
June 2018). Specifically, we included 23 GWAS summary
statistics of psychiatric, brain traits and personality traits,
that were either publicly available or obtained via personal
correspondence. From these, a total of 12 had a linkage
disequilibrium (LD) score heritability z-score >5, indi-
cating good statistical power27(which is a function of
variance explained and sample size) and complete GWAS
information available. If available, we replaced summary
statistics in LD hub with more recent or powerful GWAS:
For the Psychiatric Genomics Consortium (PGC), we
replaced MDD, BIP, ADHD. Finally, we also included the
23andMe traits for Morningness and self-reported
depression. For more details on the included GWAS see
Supplementary Table 1.
After filtering, the 13 traits included in our analyses

include psychiatric disorders (PGC GWAS for: ADHD35,
Autism36, bipolar disorder13, schizophrenia12, cross-dis-
order, a joint analyses of severe mental illness37, major
depression38; other psychiatric GWAS for: self-reported
depression from 23andMe39 major depressive disorder
from CONVERGE40) brain traits (ENIGMA Caudate
volume and Putamen volume41) and behavioural traits
(Morningness 23andMe42, Neuroticism43 and subjective
well-being43(SWB)).

Polygenic scoring
Polygenic scoring was performed in a standard clump-

ing and thresholding fashion, based on a p-value threshold
of 0.05 (see Supplementary Methods for details). Specifi-
cally, for analyses only involving the EA (or AA) cohort,
we included ancestry-specific principal components (PCs)
after exclusion of related samples. The standardized
residuals were used for follow-up analyses.
In addition to the conventional approach of threshold-

ing and clumping, which can lead to loss of information,
especially in cases where the ancestry of the GWAS
sample diverges from the target sample, we also computed
polygenic scores using LDPRED for follow-up analysis44.
As recommended, we used the target sample genotype
data as the LD reference panel, performing scoring
separately in the EA and AA ancestry samples. We used
standard settings with an LD radius of 500 SNPs.

Multi-score PGS analyses
As has been successfully implemented previously27, we

used elastic net regularized regression to predict out-
comes by selecting predictors and estimating their con-
tribution to the prediction. Elastic net uses a linear
combination of two regularization techniques, L2 reg-
ularization (used in ridge regression) and L1 regulariza-
tion (used in LASSO), and has been shown to work
particularly well in case of correlated predictors, as is
expected in the context of highly correlated genetic
traits45.
Elastic net regularized regression employs two hyper-

parameters, alpha and lambda. To achieve optimized
balance between variance explained and minimum bias,
we fit models to tune over both alpha and lambda para-
meter values in repeated 10-fold cross-validation, and
used the minimal lambda for the prediction model. As a
performance measure, we use area under the ROC curve
(AUC). Models were trained on a random subset of 70%
of the data and weights of the selected variables subse-
quently used to test their cumulative discriminatory
power in predicting psychosis status in the remaining
30%. We performed model fit both in the entire sample as
well as within EA and AA separately. To obtain an esti-
mate of the robustness and range of the selected para-
meters we performed 1000 repetitions of the procedure.
In addition, we also generated models for 1000 permu-
tations of the phenotype (within the All, EA and AA
cohorts). Comparing our models to those derived from
permutation, we adopt the conservative approach to
compare the mean of the 1000 repetitions in the actual
sample to the distribution of the permutations.

Univariate PGS analyses
To estimate the effect of each PGS individually, we fit a

series of logistic regression models for each of the
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corrected polygenic scores including Age, Age2 and Sex as
covariates. Effect sizes are reported as odds ratio (OR)
relative to one standard deviation increase in PGS. To
account for multiple testing, we applied a Bonferroni
correction, dividing the p-value by the total number of
tests (14 × 3= 42 tests yields a p-value cutoff of 0.001).
Interactions were tested by including the interaction term
in the full model.

Analyses of phenotyping data
Symptom overlap was tested using Fisher’s exact test

(pairs of binary traits), Wilcoxon Rank-sum test (binary vs
quantitative) and Spearman rank correlation (pairs of
quantitative traits).

Results
Ancestry
After quality control (see Supplementary methods), the

PNC cohort consists of a total of n= 7225 youth ages
8–22 with both phenotypic and imputed data available
with two ancestry groups: European ancestry (EA, n=
4852) and African American ancestry (AA, n= 1802).
From the total sample, 1369 youth (19%) are classified as
having psychosis spectrum symptoms (PS). Figure 1 dis-
plays the demographics of the cohorts. Common variant
heritability of the PS phenotype was estimated using
GCTA, but due to lack of power, we were unable to obtain
an accurate estimate (SNP-h2= 0.11, se= 0.21, P= 0.3,
Supplementary Methods).

Multi-PGS prediction
Our multi-PGS models classified PS marginally better

than chance, both in the whole sample and in the EA
cohort alone (average AUC All= 0.53 (sd 0.01) P= 0.009,
average AUC EA= 0.55 (sd 0.02) P < 0.001). Within the
AA cohort, however, the multivariate prediction was not
different from chance (average AUC AA= 0.51 (sd 0.02)
P= 0.35). In EA, the highest weight was consistently
assigned to the PGS of ADHD, with an average standar-
dized coefficient of 0.09 (sem 0.0007) corresponding to an
OR of 1.10 (Fig. 2), after correcting for all other selected
variables. This effect was driven by the EA cohort (OR=
1.18; Fig. 2 and Supplementary Fig. 1) but absent in AA
(OR= 1.00). As expected, permutation of case-control
status separately within the ancestry groups did not
highlight any single trait (Fig. S4).

Univariate association
In-line with the multivariate model, univariate logistic

regression yielded a modest but significant association
between PS and ADHD liability (OR 1.12 (1.05, 1.18)
P= 0.0003, Fig. 3, Table 1, Fig. S5). This effect was driven
by youth with EA ancestry (OR= 1.23 (1.14, 1.34), P=
4.15 × 10−7), and not observed in the AA cohort (OR=

0.98 (0.88,1.08) P= 0.65). Genetic liability for all other
neuropsychiatric traits, including schizophrenia, was not
associated with PS in either ancestry group. Since the AA
cohort is of a different ancestry than the majority of
GWAS cohorts, with different allele frequencies, LD
patterns, and effect sizes46,47, we also performed PGS
computation using LDPRED44, a method that explicitly
models LD. No other traits were significantly associated
using this method either. To test whether the multivariate
predictor outperformed ADHD PGS alone, we performed
the same classification procedure including only the
ADHD GWAS. That is, we estimated the regression
coefficient on a training dataset including 70% of data and
tested on the subset that was left out. Our multivariate
model did not outperform a univariate predictor. In fact,
in the case of EA, the univariate predictor even performed
slightly better (P= 0.004, Wilcoxon rank-sum test, Fig.
S6), indicating the PGS for additional traits introduce
more noise than signal to the classifier.
Since the EA cohort drives the observed genetic associa-

tion between PS and ADHD, we next explored the nature
and robustness of the association in the EA cohort only.
Comparing the extremes of the distribution, the top

decile of PGS was associated with a nearly 2.5-fold
increased risk for being assigned to the PS group compared
to the lowest decile (OR= 2.43 (1.71, 3.51) P= 1.25e-06,
Fig. 3b). Globally, within EA the ADHD PGS explains about
1% of variation in case-control status, as measured by
reduction in Nagelkerke R2. Moreover, the association is (i)
robust across P-value thresholds (ii) not driven by subtle
population stratification within the EA cohort, (ii) extends
to the European-only version of the ADHD GWAS (see
Supplementary Results and Figs. S7, S8, for details).

Developmental effects
We hypothesized that the association between PS and

ADHD PGS would be strongest in the younger children
and weaker closer to the typical age of onset of schizo-
phrenia and other psychotic disorders. As predicted, we
observe a significant interaction of ADHD PGS with age,
with a stronger association for younger children (age 12 or
younger), weakening in late adolescence (P= 0.02 for the
interaction term in the full model, Fig. 3c). Given this
decrease of association across age, we hypothesized an
association with schizophrenia PGS in the older age
group, but this was not the case (Supplementary Results).
We observed no interaction with sex (P= 0.85): the

association between males and females are near-identical,
with the OR in males-only 1.23 (1.10,1.37) and females-
only 1.25 (1.10,1.41).

Phenotypic overlap
While evidence for shared genetic risk for (categorically

defined) SCZ and ADHD is minimal (genetic correlation
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is r= 0.11, se= 0.04, P= 0.001, LD-score regression17),
ADHD and psychosis symptoms are known to co-occur in
youth5,6. Indeed, across ancestries, we observe a strong
phenotypic overlap between PS and ADHD symptoms in
the PNC (see Supplementary Materials). In the total
sample, 5% of youth satisfy the DSM criteria for lifetime
ADHD (n= 384; n= 222 and n= 114 within EA and AA,
respectively). A large fraction of ADHD cases also endorse
psychosis spectrum symptoms, and the majority of sub-
jects in the PS group endorse ADHD symptoms (OR
2–4.7, Table 1).
We additionally explored the overlap between ADHD

and PS using a variety of phenotypic constructs, and
observed strong phenotypic overlap across domains, and
across ancestry groups (Supplementary Methods and

Results). For example, we observe strong positive corre-
lations between ADHD and PS domain scores (For all
correlations, spearman rho is 0.25 < r < 0.69 and P <
10−16). Both higher inattention and hyperactivity scores
are associated with an increased probability of being
classified as PS, while at the same time higher PRIME and
SOPS scores are associated with increased probability of
meeting ADHD criteria, across ancestry groups (Supple-
mentary Results and Figs. S9–S12). The age interaction
effect we observed at the genetic level is not consistently
observed at the phenotypic level; e.g., the effect of
answering “yes” to any of the ADHD screener questions
on the probability of being classified as PS does not
change during development (P= 0.41 in EA, Supple-
mentary results).

Fig. 1 Demographics of the PNC cohort. A Demographic overview of all subjects included in our analyses: pie charts display the proportion of
subjects with psychosis spectrum symptoms (PS), and histograms the age distributions, with darker colours indicating PS subjects. Three groups
included are all subjects (All), subjects of European and African American ancestry (EA and AA respectively). B Relative admixture ancestry
components (based on K= 3) for the PNC cohort, ordered by self-reported ancestry.
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Phenotypic overlap and genetic liability
Given the strong phenotypic overlap between PS and

ADHD symptoms, we performed a series of follow-up

analyses to determine the extent to which the observed
genetic association is driven by this overlap. We tested the
association after removing ADHD cases. We also removed

Fig. 2 Multivariate classification of PS, by ancestry. A AUCROC for each elastic net model trained on 70% and tested on the remaining 30% of
data in All (pink), EA (blue) and AA (orange). Boxplots indicate the median and the lower and upper hinges correspond to the first and third quartiles.
The grey dots and boxplots refer to fits of permuted datasets within each ancestry group. The observed predictive power is driven by the EA cohort.
B Mean regression coefficients for the PGS based on different GWAS in EA. Standard errors indicate standard errors of the mean. The ADHD PGS is
consistently included in the regression with the highest weight.

Fig. 3 Univariate regression of ADHD PGS with PS in EA. A Standardized ADHD PGS are higher in EA youth with PS versus non-PS youth. Each SD
increase in PGS is associated with an OR= 1.23 CI= (1.14, 1.34), P= 4.15e-07. B Proportion of cases with PS per PGS decile. C Relative association in
different age-bins (8–12, 12–16, and 16–22). The association between ADHD PGS and PS is strongest in youngest children 12 and younger. Adding
the interaction term of age:PGS to the full model is significant (P= 0.01).
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the subset of youth that endorsed any ADHD symptoms
from the screener. The latter analysis leaves only 2497 EA
subjects and reduces the percentage of PS cases from 15 to
7%, with a total n= 169 PS subjects. In both cases, despite
the smaller sample sizes and the relative depletion of the
number of cases, the effect of ADHD PGS on PS risk
remains stable (Table 2, Supplementary results, Table S2).
Thus, the association between increased ADHD liability

and PS in youth does not appear to be driven by symptom
overlap. Moreover, ADHD genetic risk is not only asso-
ciated with PS as a categorical variable, but also similarly
with the psychosis severity scales, measured quantitatively
(beta= 0.47, P= 0.0002 for PRIME and beta= 0.21, P=
1.68 × 10−8 for SOPS), and significantly increased in the
subset of PS subjects that endorse hallucinations (n= 258;
OR= 1.15 (1.02,1.30), P= 0.02). As expected, the ADHD
PGS is associated with ADHD status (OR 1.18, CI(1.04,
1.36), P= 0.01). Conversely, and contrary to existing
evidence48, the schizophrenia PGS is not associated with
ADHD status (P= 0.51).
We investigate the relationship of ADHD and psychosis

phenotypes to substance use and childhood trauma. In the
PNC EA cohort, substance use information was available
for 43% of the sample. In this sample, PS overlapped the
use of alcohol, tobacco and marijuana only nominally (P >
0001), and not cocaine or over the counter substance use
(P > 0.05). Including these as covariates in the model did
not alter the estimated effect sizes (See Table S2). ADHD
PGS has been associated with environmental adversity,
including childhood maltreatment49, which indirectly
could contribute to the observed association with PS.
While we replicate this association between childhood
trauma and AHDH PGS in the EA cohort (OR:1.13 CI
(1.05,1.21) P= 0.001), when we exclude subjects endor-
sing traumatic events the association remains stable
(Table S2).
Finally, we evaluate whether ADHD PGS may be more

broadly associated with other domains of psychopathology,

including specific symptoms related to depression, mania
and anxiety. From these three domains, only depression
and mania symptoms are nominally associated with ADHD
PGS (depression OR:1.10 CI(1.02,1.18) P= 0.01, mania
OR:1.10 CI(1.01,1.18) P= 0.02). However, these pheno-
types both overlap strongly with PS (Table S3), and the
association does not survive the exclusion of PS subjects
(P > 0.4). The opposite, however, does hold: the association
between ADHD PGS and PS remains consistent even after
excluding subjects who endorsing either of these three
phenotypes (Table S2).
Thus, the association between PS and ADHD PGS is not

driven by symptom overlap, or indirectly driven by sub-
stance use or childhood trauma. Moreover, it appears to
be specific to PS, and not a measure of general
psychopathology.

Replication in an independent cohort
We sought to replicate our finding of increased polygenic

liability for ADHD in youth with psychotic spectrum
symptoms in the North American Prodrome Longitudinal
Study, Phase 2 (NAPLS2) cohort50,51. NAPLS2 is an eight-
site longitudinal study of predictors and mechanisms of
conversion to psychosis, and includes help-seeking ado-
lescents and young adults at clinical high risk (CHR) for
psychosis (ages 12–35, with a median age of 18; n= 328) as
well as unaffected control subjects (n= 216)52.
As in our discovery sample, we observe increased

ADHD risk in CHR youth compared to controls (OR=
1.06 (1.01, 1.11) P= 0.02; in EA, OR= 1.09 (1.01, 1.18)
P= 0.03; n= 124 and n= 70, respectively). These effect
sizes are similar to the ones observed in the >16 age group
in the PNC EA cohort (Fig. 2). However, there is no dif-
ference in ADHD PGS between CHR subjects who sub-
sequently convert to psychosis versus those who do not
(n= 80 converters, n= 248 non-converters; P= 0.62).

Table 1 Univariate association of ADHD PGS with PS
across ancestry groups.

Group N %PS OR 2.5% 97.5% P

All 7008 19% 1.12 1.05 1.18 0.0003

EA 4790 15% 1.23 1.14 1.34 4.15 × 10−7

AA 1746 29% 0.98 0.88 1.06 0.65

EA_noADHD 4349 13% 1.26 1.16 1.38 2.63 × 10−7

EA_noSymptoms 2497 7% 1.23 1.05 1.44 0.01

EA_noADHD and EA_noSymptoms denote the EA group after removing ADHD
cases and subjects that endorse any of the symptoms in the ADHD screener,
respectively. The 95% confidence interval of the association is represented by
the 2.5% and 97.5% columns. N denotes the number of subjects included in
each model, i.e., with complete information for all variables.

Table 2 Clinical overlap between PS and ADHD across
ancestry groups.

PS_ALL PS_EA PS_AA

1 0 1 0 1 0

ADHD

1 151 233 83 139 50 64

0 1115 5220 584 3765 426 1080

Overlap statistic OR 3.0 (2.4–3.7),
P < 2.2 × 10−16

OR 3.8 (2.8–5.1)
P < 2.2 × 10−16

OR 1.9 (1.3–2.9)
P= 0.0008

ADHD_Symptoms

1 1073 2515 536 1694 427 621

0 284 3120 169 2328 91 573

Overlap statistic OR 4.7 (4.1–5.4),
P < 2.2 × 10−16

OR 4.6 (3.6–5.3),
P < 2.2 × 10−16

OR 4.3 (3.3–5.6),
P < 2.2 × 10−16

Confusion matrices for overlap between PS and subjects meeting DSM criteria
for ADHD (ADHD) and subjects that endorse any of the symptoms in the ADHD
screener (ADHD_Symptoms), respectively. Only subjects with complete informa-
tion for all variables were included in each overlap analysis.
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Discussion
Leveraging a large community-based sample, we sought

to characterize genetic risk profiles for psychotic spec-
trum symptoms across childhood and adolescence. We
applied multi-PGS prediction models as well univariate
statistical tests, based on GWAS of multiple brain and
behavioural traits. Notably, we observed a modest but
robust association between broadly defined psychosis
symptomatology and genetic liability for ADHD, but not
for schizophrenia or any other psychiatric traits. This
effect was only observed in participants of European
ancestry, for whom those within the highest decile of
ADHD genetic risk have an almost 2.5-fold increased
likelihood of being in the PS group, compared to those
with lowest ADHD polygenic scores. This association is
strongest in children 12 years or younger, and diminishes
closer to typical age of onset of schizophrenia. In addition
to being associated with the dichotomous PS phenotype,
the ADHD PGS is associated with the quantitative
symptom scales as well, generally improving power53. To
our knowledge, this is the first investigation of ADHD
polygenic scores for association with symptoms of psy-
chosis in youth. We therefore replicated our finding in an
independent cohort of subjects at clinical high risk for
psychosis.
Contrary to recent genetic evidence based on psychotic

experiences in adulthood21, psychosis spectrum symp-
toms in youth did not yield a general association with
multiple psychiatric illnesses, but with ADHD specifically.
While an association between schizophrenia genetic risk
and psychosis symptoms has been reported in adults18,21

and older adolescents aged 15–1918, the lack of such an
association in our study is consistent with literature in
young adolescents (in a population sample of >5k geno-
typed youth aged 12–18, no such association was
observed22). Rather than testing a specific hypothesis, we
test and correct for multiple genetic risk scores in a single
cohort. This is an unbiased way of establishing the genetic
architecture of a trait and reduces the risk of identifying
false positive associations through performing single tests.
The association between PS and ADHD PGS, while

modest, holds even when excluding all subjects that
endorse any ADHD symptoms. Moreover, while we
observed some association between ADHD PGS and the
experience of trauma, replicating earlier evidence49, the
association with PS is not substantially mediated by
trauma, or substance use.
One important question is whether the association

between ADHD PGS and PS is specific to psychosis, or
reflect more general liability for psychopathology. For
example, a weak association between ADHD PGS and
early onset depression has been reported prevoiusly54.
Despite observing strong phenotypic overlap between PS
and symptoms of depression, mania and anxiety domains,

we did not observe a robust association for these phe-
notypes with ADHD PGS in the PNC cohort.
In our study, the multivariate approach did not improve

classification accuracy above a single trait association of
ADHD. However, future efforts to improve risk scoring
methodology and especially more powerful GWAS of
related traits are likely to improve prediction as well.
As the discovery GWAS of ADHD included 55,374

children and adults (20,183 ADHD cases and 35,191
control subjects), ADHD genetic risk across all develop-
mental ranges is captured in the downstream polygenic
scores. An important avenue for future work will be to
investigate if the association with general psychotic
symptomatology is driven more by genetic liability pre-
sent in children versus adults diagnosed with ADHD.
Despite similar phenotypic correlations across ancestry

groups, the absence of any genetic association in youth of
African ancestry highlights the need for increasing ethnic
diversity in GWA studies. Because allele frequencies,
linkage disequilibrium patterns, and effect sizes of com-
mon polymorphisms vary with ancestry, current common
variant genetic findings do not translate well across
populations46,47,55. Our study offers further evidence that
polygenic scores, at this point, have limited predictive
power in non-European ethnic groups. As PGS scores are
approaching clinical utility56, the crucial equity issue that
arises as a result from this discrepancy should not be taken
lightly. Novel tools to generate risk scores across ancestries,
such as by scoring only segments of the genome matching
the GWAS population in admixed populations, may
improve applicability of the risk scores across ancestries.
Most importantly, however, larger samples from different
ancestries are needed to begin to close this gap.
Based on a follow-up study of PNC youth, about half of

youth experiencing psychotic symptoms, symptoms per-
sist or get worse over a 2-year follow-up, while even those
whose psychotic symptoms remit exhibited comparatively
higher symptom levels and lower functioning than typi-
cally developing youths7. An important follow-up ques-
tion is whether youth with psychotic symptoms that
ultimately develop a psychotic disorder have different
genetic characteristics than those who do not. Consistent
with our present findings in the PNC, we recently found
that subjects meeting psychosis risk syndrome criteria
that do not develop psychosis in a 2-year follow-up in the
NAPLS cohort do not have increased genetic risk for
schizophrenia compared to controls. However, polygenic
liability for schizophrenia is a predictor for conversion to
overt psychosis6. We now show, in the same NAPLS
cohort, that ADHD PGS is also increased in CHR youth,
but was not associated with conversion. While there are
important clinical differences between PNC PS and
NAPLS CHR cohorts (importantly, the latter consists of
help-seeking youth, whereas PNC is a community

Olde Loohuis et al. Translational Psychiatry           (2021) 11:80 Page 8 of 10



sample), the consistency of our findings and similar effect
sizes across cohorts confirms the robustness of the ADHD
PGS association with psychosis symptoms.
Our findings shed light on the genetic architecture of

psychosis symptoms in a population-based youth cohort
and suggest that broad psychosis spectrum symptoms in
youth may reflect a different genetic etiology than psy-
chotic symptoms in adulthood, or those that convert to
psychosis. Rather, the genetic etiology of psychosis
symptoms in youth seems more akin to ADHD. Findings
indicate that genetic risk can be investigated across early
symptom trajectories, and in non-help-seeking popula-
tions, to improve our understanding of disease risk factors
and psychiatric comorbidities.
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