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TRAJECTORY PLANNING BASED ON OPTIMIZED JUMP POINT

SEARCH RESULTS USING ARTIFICIAL POTENTIAL FIELD IN 3-D

ENVIRONMENTS

Shengjie Zhang

Abstract

Many of the motion planning algorithms require decomposing free space

into convex regions in order to derive piece-wise polynomial trajectories.

Using a path found by a fast graph search technique as a piece-wise linear

skeleton to obtain convex regions is an effective method. However, this type

of method suffers from narrow polyhedrons in that waypoints are in close

proximity to obstacles, and in turn, narrow polyhedrons as constraints of a

quadratic program (QP) influence the optimal solution of trajectory generat-

ing. This thesis proposes a method of enlarging polyhedrons through utilizing

Artificial Potential Field to optimize the path found by Jump Point Search.

Owing to enlarged convex polyhedrons, simulation results show that in some

obstacle-cluttered map, trajectories generated by QP using enlarged polyhe-

drons as constraints become smoother, and the value of minimum snap cost

function is smaller compared with that without optimizing.
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1 Introduction

Unmanned aerial vehicles (UAVs) have received increasing interest. Navigation of

aMicro Aerial Vehicle (MAV) in an obstacle-cluttered environment is a challenging

problem since a MAV needs to generate a collision-free trajectory from an initial

state to a final state through unknown cluttered environments. It has been shown that

the trajectory generation problem can be formulated as a Quadratic Programming

(QP)[4] with constraints of robots’ positions. In order to avoid collision, a collection

of convex connected polyhedrons can be treated as constraints in the QP. Many

existing algorithms[5][22][19] for generating the collision-free convex region take

a long time and require a proper selection of seeds.

To solve these problems, Safe Flight Corridors(SFC)[11] developed a novel

convex decomposition method using ellipsoids computed from safe paths found

by Jump Point Search(JPS)[7]. JPS is a highly fast path finding algorithm, which

only expands on certain nodes in a grid map. With no intermediate nodes between

certain nodes expanded, it can speed up A* by an order of magnitude and with small

memory overheads in 3D grid map. However, as a result of pruning symmetrical

paths, most of the turning points in the path found by JPS are close to obstacles.

Consequently, several ellipsoids and corresponding polyhedrons constructed from

path segments are quite narrow(Figure 1), which in turn influences the optimal

solution of QP.

(a) Narrow ellipsoids (b) Narrow polygons

Figure 1: The problem of narrow ellipsoids and polyhedrons.
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In Figure 1, gray regions are obstacles; The black bold lines outside the gray

region are expanded contour of obstacles. In Figure 1(a), Waypoint B is in close

proximity to obstacles causing the narrow ellipsoid with AB as major axis. In

Figure 1(b), the narrow polygon is derived from a narrow ellipsoid.

To solve this problem, SFC[11] turns to use the original map instead of the

expanded map, then adjusts the tilt angle of the corresponding hyperplane to de-

rive a safe convex region(Figure 2(a)). In Figure 2(a), the dotted line represents

the expanded contour of obstacles. First, SFC[11] uses original boundaries of ob-

stacles to achieve polyhedrons(the outer contour of the green polygon); Second,

SFC[11] shrinks polyhedrons to ensure they are collision-free(the inner contour of

the green polygon). Note that some waypoints might be outside of polyhedrons

after shrinking, to solve this, hyperplane P1 might be needed to adjust its angle.

(a) Solution in SFC[11] (b) Solution using APF

Figure 2: Abridged general view of solutions.

In this thesis, I adopt Artificial Potential Field[10] to optimize the results of JPS

to solve this problem(Figure 2(b)). Artificial potential field(APF) is an obstacle

avoidance scheme proposed by O.Khatib and applied on manipulator control. In

Dolgov[6], they describe a practical path-planning algorithm based on A*[8] and

the basic concept of APF for an autonomous vehicle operating in an unknown

environment. In Zhou[23], a kinodynamic path searching originated from the

hybrid-state A* search is applied for real-time quadrotor autonomous navigation.
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However, although A* is completeness, it is still a challenge to apply it on 3D

environments due to its limitation on computation time. JPS solves this problem by

effective pruning. Inspired by[23][6], I apply APF to adjust waypoints position to

enlarge ellipsoid(Figure 2(b)). In Figure 2(b), the position of Point A and Point B

are adjusted using APF to enlarge polyhedrons.

Furthermore, for safety, we don’t want MAVs to "hug walls"; for minimum

snap, we desire to generate a trajectory that is as smooth as possible. Regarding

these, optimizing a path using APF to enlarge ellipsoids is necessary. In Method

Section, how to utilize JPS in a 3D grid map and to optimize a path are introduced

in detail. Following path planning, finding polygon and generation trajectory based

on the optimized path are described. In the Result and Discussion Section, results

are shown and compared with that in SFC[11].

2 Related Work

Quadrotor motion planning covers a wide range of research in map generation,

path planning, trajectory planning and trajectory following, etc. In terms of path

planning, methods can be divided into two main categories: Randomized and

Deterministic. With regards to randomized planners based on sampling, there are

PRM[2], RRT[17], FMT[9], BIT*[15] etc. Compared with deterministic methods,

randomized methods reduce searching time but they cannot guarantee to find a

desired path ultimately even if a solution exists. For deterministic methods, there

are Dĳkstra based on breadth-first-search and querying partial solutions sorted by

distance from a start point; A*[8] based on the best-first search since it adds a

Heuristic function; D*[20] stands for "Dynamic A* search" and it is more efficient

than A* in dynamic and complex environments with local changing; Jump Point

Search(JPS)[7] performs symmetry breaking to speed up path-finding. JPS+[3] is

a derivative of JPS, and its aim of searching efficiently is achieved by redesigning
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a whole map with a symmetry-reduced form. Despite efficiency of JPS+, it is

unsuitable for real-time motion planning of a MAV which needs to plan trajectories

within a finite footprint in a local map in that JPS+ requires processing a whole map

in advance.

A major problem with path planning so far is the trade-off between proximity

to obstacles and path length. Take JPS used in Safe Flight Corridors(SFC)[11] for

instance, a weakness of path planning is that it will choose the minimal-length path

that is collision free, however, it causes a MAV to fly at the minimal collision-free

distance to obstacles. A common way of penalizing proximity between turning

points and obstacle is to use a potential field[6].

Trajectory planning involves how to follow a path given constraints such as

position, velocity, and acceleration. According to Minimum Snap Trajectory Gen-

eration method[4], we can generate a piece-wise polynomial trajectory within

multiple convex polyhedrons and turn the trajectory problem into a Quadratic

Programming(QP)[16] problem. Therefore, finding polyhedrons and generating

trajectories play critical roles in trajectory planning.

Concerning finding polyhedrons, Iterative Regional Inflation by semi-definite

programming algorithm(IRIS)[5] allows users to select a start point in space on a

terrain map and finds a maximum-volume ellipsoid inside a polyhedron combined

by hyperplanes. Both the hyperplanes and the ellipsoid are refined over several

iterations until the ellipsoid ceased to grow. The main disadvantage of IRIS are

time-consuming due to iterations, and it makes no guarantee of finding the largest

possible ellipsoid in the environment. SFC[11] uses two waypoints as major axes

of an ellipsoid and the convex space consists of hyperplanes that can be computed

directly through ellipsoids without iteration. On account of no iteration, it is much

faster for SFC to solve the maximum ellipsoid compared with IRIS. Stereographic

Projection[19] is another method that generates obstacle-free convex regions used

for motion planning. The base stone of this algorithm is spherical projection and
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uses convex hull generation and inverse vertex enumeration as its subprocedures.

A major problem with Stereographic Projection is that the selection of initial points

influences the volume of polyhedron found in solution, although this method re-

lies on simple geometric methods. Instead of stereographic projection, Sphere

Flipping[22] uses sphere flipping to transform original points to a nonlinear space,

which flips interior points out. After flipping, they calculate the convex hull of these

wrapped points and map vertices of the hull back to the original cartesian space

inversely. In real applications, in order to enlarge the generated convex polyhedron,

Sphere Flipping[22] uses initial points given by kinodynamic A*[23] to keep initial

points as far as possible from obstacles.

For generating trajectory, n-th order polynomial and Bezier curves[1] have

been widely used for expressing the curve of trajectory. In Minimum Snap[4]

and SFC[11], the whole trajectory is composed of several polynomials and each

polynomial is inside the corresponding polyhedron, thus minimum snap trajectories

can be formed as a quadratic programming(QP) problem[16]. A major problem

with QP is that it only guarantees two endpoints of each path segment are inside a

polyhedron, accordingly some portion of a trajectory might be outside polyhedron.

A common way to solve this problem is collision check, an additional specific

time constrain is added halfway between two ends and the position at this time

must also satisfy the constraints of polyhedrons. Following, the QP is re-solved

with additional constraints and this process is repeated if necessary until the whole

polynomial trajectory is collision-free, namely it is inside polyhedrons. Instead of

resolving QP, in Close Form[18], the polynomial is re-optimized using an added

point that splits the path segment into two. In contrast, the collision problem can

be avoided by using Bezier curves due to its properties[1] that Bezier curves never

pass through the intermediate control points and lie completely within the convex

hull defined by the control points, but the value of minimum snap of trajectories

derived from Bezier curve may not be optimal.
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3 Methods

This section mainly discusses three parts for controlling the MAV to reach the

goal: path planning, finding polyhedron and trajectory generating. The source code

for these three parts can be found in https://github.com/LenaShengzhen/

AerialRobotics.

3.1 Path Planning

3.1.1 JPS

In [7], details of JPS are provided in 2-D grid maps with uniform grids. This

section concentrates to illustrate the differences between JPS on a 2D and a 3D

map. To extend the 2D JPS proposed in [7] to 3D, the number of neighbors of

a node is increased from 8 to 26(Figure 3); Definitions and illustration in 3D of

natural neighbor[7] and forced neighbor[7] are also given below.

(a) In a 2D map, a center

grid has eight neighbors

(b) In a 3D map, a center grid

has twenty-six neighbors

Figure 3: The number of neighbors of a node is increased from 8 in 2Dmap (Figure

3(a)) to 26 neighbors (Figure 3(b)).

I use following definitions from JPS[7], which I include here for the convenience

of explanation:

Definition 1 A node = ∈ natural neighbour(x) if:
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1. Assume there is no obstacles in neighbour(x)

2. For straight move,

;4=(〈?(G), · · · , =〉 \G) > ;4=(〈?(G), G, =〉) (1)

For diagonal moves,

;4=(〈?(G), · · · , =〉 \G) ≥ ;4=(〈?(G), G, =〉) (2)

In definition 1, x is a center node, ?(G) is the predecessor and neighbor node of

G, or ?(G) called parent node of x. 〈?(G), · · · , =〉 means any path from ?(G) to =,

〈?(G), · · · , =〉 \G indicates x does not appear on the path from ?(G) to =.

Definition 2 A node = ∈ forced neighbour(x) if:

1. n is not a natural neighbour of x and obstacles exist in neighbour of x.

2.

;4=(〈?(G), G, =〉) < ;4=(〈?(G), · · · , =〉 \G) (3)

Figure 4 explains the definition of Natural Neighbor. No obstacle exists in

Figure 4 and Figure 5. In figure 4(a), x is the center node and node x is reached

from its parent node No.4. For a path from No.4 to No.3, the length of path No.4 to

No.2 to No.3(the green path) equals the path from No.4 to x to No.3(the red path),

namely, it is not necessary for the shortest path from No.4 to No.3 to pass x. Thus,

No.3 node is marked gray as a general neighbor. In Figure 4(b), the shortest path

from No.4 node to No.5 node is No.4 to x to No.5, note the shortest path from No.4

to No.5 definitely goes through x. Thus, according to Equation 1, No.5 node is

marked white as a natural neighbor of node x. In Figure 5 white nodes are natural

neighbors of center node x. Gray nodes are general neighbors of center node x.
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Similarly, in a 3D map, the No.16 node is a natural neighbor of center node x in

that from No.11 node to No.16 node, no other shortest path could be found without

passing through x. This figure only shows natural neighbors in the case of straight

movement; Natural neighbors in the case of a diagonal movement can be found in

the same way using Equation 2.

(a) Two shortest paths fromNo.4

to No.3 node.

(b) Only one shortest path from

No.4 to No.5 node

Figure 4: General Neighbor of No.3 node and Natural Neighbor of No.5 node.

(a) White node No.5 is a nat-

ural neighbor of node x in a

2D map.

(b) White node No.16 is a

natural neighbor of node x in

a 3D map.

Figure 5: Natural Neighbor in a 2D and a 3D map.

Note that gaps are added between each floor grids in Figure 5(b), in order to
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number each grid to explain conveniently. There should be no gaps between floors

of grids in Figure 5(b) and Figure 6(b), in other words, assume Figure 5(b) and

Figure 6(b) is as same as Figure 3(b).

(a) Purple node No.3 is a forced

neighbor of node x in a 2D map.

(b) Purple nodeNo.17 is a forced

neighbor of node x in a 3D map.

Figure 6: Forced neighbor in a 2D and a 3D map.

In Figure 6, black nodes indicates obstacles. The white No.5 node in a 2D map

and the white No.16 node in a 3D map are still natural neighbors of the center node

x. Gray nodes are general neighbors of center node x. For figure 6(a), in a 2D map,

the No.4 node is the parent node of the node x, and the node x is reached from its

parent node. The No.2 node becomes an obstacle. The shortest path from the No.4

node to the No.5 node is still No.4 to x to No.5, note that there is no change of

this shortest path, although No.2 node becomes an obstacle. However, for the path

from the No.4 node to the No.3 node, the shortest path of No.4 to No.2 to No.3 no

longer exists due to the No.2 node becoming an obstacle. Thus, the path from No.4

to x to No.3 becomes the only shortest path from No.4 to No.3, which is definitely

pass through the node x. In this situation, according to Definition 2, the No.3 node

transforms from a general neighbor to a forced neighbor of node x, compared with
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that in Figure 5(a). Similarly, in a 3D map, No.14 node is an obstacle. The No.16

node is still a natural neighbor of the center node x, while the No.17 node becomes

a forced neighbor. When x is expanded, all nodes marked grey can be pruned.

(a) Diagonal direction search in a 2D map.

(b) Diagonal direction search in a 3D map.

Figure 7: Diagonal direction search in a 2D and a 3D map.

In addition to the number of neighbors changing from a 2D map to a 3D map,

more searching directions also should be considered for diagonal searching strategy

in a 3D map.

In Figure 7, a node x is reached from its parent node p(x) and the direction from

p(x) to x is diagonal. In Figure 7(a), digits represent the index of the direction.
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Digits 3, 6, 7 also mean the number of grids where they are located in. Here we

start at the node x and need to find a jump point[7] successor of x considering

this diagonal searching direction. Firstly, we travel vertically(direction 1) and

horizontally(direction 2) to find whether there is a node which has a forced neighbor

along with these two directions; if the result is no, we move to the next diagonal

node along direction 3 and begin to travel along direction 4 and direction 5 to find a

jump point successor of x. Iterating these steps until the target is found or reaching

the map boundaries. For example, if a node along direction 8 has a forced neighbor,

namely this node is a jump point, thus this node is a jump point successor of the

No.6 node, and this in turn identifies the No.6 node as a jump point successor of

the node x.

In Figure 7(b), to make the picture clear, the intersection of the gray lines

represents a grid. In order to find the successor of node x, the direction of p(x)

to x must be expanded to six directions: three directions(Green arrows marked

1,2,3) are parallel to the coordinate axis, the other three directions(Purple arrows

marked 4,5,6) are exactly the diagonal directions on the coordinate plane. Note

that when searching along these three diagonal directions, the principle is the same

as diagonal searching in 2D map: searching vertically and horizontally(dashed

arrow directions) firstly, and then search diagonally. For example, searching along

direction 4 must be expanded to directions indicated by the light purple dotted

arrows.

3.1.2 Simplify Path

Searching directions is limited in neighbor grids(only 26 directions, Figure 3(b)) in

a 3D grid map, however in practice, quadrotors can fly in any direction. Therefore,

it is essential to delete redundant waypoints. How to prune redundant waypoints is

described in Algorithm 1. In Algorithm 1, the index of waypoints is from 1 to n;

The start point index is 1; The index of the endpoint is n. SimplePath is a variable
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which records indexes of waypoints after pruning.

Algorithm 1 Simplify path
Require: path:waypoints
1: s = 1
2: simplePath.add(s)
3: for i from 2 to n - 1 do
4: if line connected Point s and Point i does not collide with obstacles AND

line connecte Point s and Point i+1 collide with obstacles then
5: simplePath.push(i)
6: s = i
7: end if
8: end for
9: simplePath.add(n)
10: return simplePath

(a) A path without simplify-

ing.

(b) The path with simplifying.

Figure 8: Simplifying a path

An example of simplifying a path is shown in Figure 8. In Figure 8, green

cubes denote obstacles; Red lines indicate paths; red dots are waypoints. After

simplifying, the number of waypoints in Figure 8(b) is less than that in Figure 8(a).
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3.1.3 Path Optimization

As mentioned before, the minimal collision-free distance to obstacles might cause

a narrow polyhedron, further affecting the generation of trajectories. In this thesis,

Artificial Potential Field[10] is adopted to solve this problem, whose basic idea is to

construct a function whose value is inversely proportional to the distance between

robots and obstacles. The repulsive potential function[10] are as follows:

*A4?, 9 =


1
2[ 9 (

1
3 9 (G) −

1
&∗
9
)2 3 9 (G) ≤ &∗9

0 3 9 (G) > &∗9
(4)

Here [ 9 is a constant scaling parameter of obstacle j; x is the current position of

robot; 3 9 (G) is the distance between obstacle j and the robot;&∗9 is the limit distance

of the potential field influence.

A downside of APF is that the attractive and repulsive forces might conspire to

produce local minimum at locations other than a single global and desired location.

Owing to this reason, I choose to utilize APF to optimize the results of JPS, instead

of considering APF as another goal function during path planning using JPS.

In Figure 9, cyan regions are obstacles, and assume repulsion of grids inside

cyan regions is infinite. Note that the closer the pixel to the obstacle, the darker

the color, the greater the repulsion, conversely, the pixels farther away from the

obstacle, the lighter the color, the smaller the repulsive force. Contour lines of the

same color represent the same value of repulsive force. In Figure 9(a), red lines

denote path % = 〈%1 → %2 → %3 → %4〉, %1 is the start point, %4 is the target

point, %2 and %3 are waypoints. Here we start from %2, seaching neighbors of %2

and choose a neighbor point whose repulsion is less than %2. Assume we reach

point C, check whether Line %1� is collision-free, the maximum repulsion in Line

%1� is less than that in Line %1%2 and the maximum repulsion in Line �%3 is less

than that in Line %2%3. If these three requirements are met, continue this process
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and start search from C’s neighbor; if not, stop iteration.

(a) Finding a better waypoint to replace %2. (b) Replace %2 with B.

Figure 9: Optimizing path using Artificial Potential Field.

Algorithm 2 Upate a waypoint
Require: %8 : current point, %8−1 : previous point, %8+1 : next point
1: pointlist = [%8]
2: while %8 is not a obstacle AND %8’s repulsion > the smallest repulsion among
%8’s neighbors do

3: pointlist.add(the neighbor with the smallest repulsion)
4: %8 = the neighbor with the smallest repulsion
5: end while
6: minRepulsion1 = MAX;
7: minRepulsion2 = MAX;
8: updatePoint = %8
9: for each point %G in pointlist do
10: if the maximum repulsion along with line %8−1%8 ≤ minRepulsion1 AND the

maximum repulsion along with line %8%8+1 ≤ minRepulsion2 then
11: minRepulsion1 = the maximum repulsion along with line %8−1%8
12: minRepulsion2 = the maximum repulsion along with line %8%8+1
13: updatePoint = %G
14: end if
15: end for
16: return updatePoint

For example, if the maximum repulsion along Line %1� is greater than that in Line

%1� and Line %1� is collision-free, iteration need to stop at position B and update

14



%2 to B(Figure 9(b)). Following, repeat this process to update next waypoint %3.

Algorithm 2 describes how to update each waypoint in a path.

3.2 Finding Polyhedron

I adopt a similar method of constructing Safe Flight Corridors(SFC)[11] to find

Polyhedron. In [11], constructing SFC is divided into two main steps: (1) Find El-

lipsoids, (2)Find hyperplanes that constructs polyhedron. Since in [11], the author

uses 2D illustration to explain the concept and process in detail, to avoid repetition,

I focus on describing the solution process with 3D illustration mainly from the per-

spective of formulas. The path P(Figure 10) is denoted as % = 〈?0 → ?1 → ...?=〉.

The 8Cℎ line segement is represented as !8 = 〈%8 → %8+1〉. The purpose is to generate

a convex polyhedron around each line segment in Path P.

Figure 10: path segments denotation

3.2.1 Finding Ellipsoid

The purpose of this step is to find an ellipsoid that includes the path segment L and

contain no obstacle points. Details can be found in [11], for this step, here I only

give 3D illustrations. We start from a sphere centered at the middle point of L and

assume the length of ellipsoids’ x-axis are fixed(Figure 11), reducing the length of

the other two axes until the spheroid contains no obstacles(Figure 12). In Figure

12, hollow blue dots denote obstacle points.
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(a) Initial sphere from one side view. (b) Initial sphere from a top view.

Figure 11: Observing initial sphere on each path from different angles.

(a) Initial sphere from one side view. (b) Initial sphere from a top view.

Figure 12: Observing ellipsoid contain no obstacles from different angles.

3.2.2 Finding Hyperplane

Denote the ellipsoid found in the previous step as Y, which touches an obstacle

point at %∗(e.g. in Figure12, the red dot indicates %∗). The process of finding

mathematical expression of Y is as follows:

The standard equation of ellipsoid in matrix representation is:

G)Λ−1G = 1 (5)
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in Equation 5, Λ =



A2
1

A2
2

. . .

A2
=


and G =



G1

G2
...

G=


, here G8 indicates the 8Cℎ axis, A8

is half the length of the principal axes. Now, rotate this ellipsoid and let the principal

semi-axes of the ellipsoid aligned with path !8, assume the rotation matrix is �, we

have:

(�)G))Λ−1(�)G) = G) (�Λ−1�) )G = 1 (6)

Then move the center of this ellipsoid from the origin to the center of path !8

denoted by G2 , we have:

5 (G) = (G − G2)) (�Λ−1�) ) (G − G2) = 1 (7)

Equation 7 is the expression of Y, also, a normal vector of a point on the surface of

this ellipsoid is:

5 5 =
〈
m 5

mG
,
m 5

mH
,
m 5

mI

〉
(8)

Assume %∗ = (G0, H0, I0), thus the equation of the tangent hyperplane �0(e.g.

Figure 13) through %∗ is as follows:

5 5 · (G − G0, H − H0, I − I0) = 0 (9)

Remove all the obstacles points that lie outside this tangent hyperplane �0

(Equation 9). From the remaining obstacle points, find another point %∗1 which

is nearest to the center of Y. %∗1 and the normal vector(Equation 8) create a new

hyperplane �1. This process is continued to obtain a sequence of hyperplane,

�0, �1, · · · , �< until these hyperplanes construct a convex polyhedron C without

any obstacle points inside for !8. Applying this method on individual line segment

!8 of the path P to construct a collection of convex overlapping polyhedra that
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models free space.

(a) (b)

Figure 13: Observing hyperplane from different angles.

3.3 Generating Trajectory

In this section, QP[4] of generating Minimal Snap trajectories is introduced. Given

a trajectory G(C), G(C) denotes the position of a robot at time t, snap is the fourth

derivative of G(C) with respect to time, with the first, second, and third derivatives

being velocity, acceleration, and jerk, respectively. In this thesis, Minimal Snap is

chosen as the cost function of the trajectory.

3.3.1 Cost Function

A single trajectory segment between twowaypoints can be represented as an n-order

polynomial:

G(C) = 10 + 11C + 12C
2 + · · · 1=C= (10)

Write Equation (10) as vector multiplication form, we have:

G(C) = [1, C, C2, · · · C=] · 2 (11)
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In expression (11), 2 = [10, 11, · · · , 1=]) , c is a vector of unknown parameters to

be solved; t stands for time. For a trajectory with k + 1 waypoints(including the

start point and the end point), namely k trajectory segments, can be composed as

piece-wise polynomials[14]:

G(C) =



[
1, C, C2, ..., C=

]
· 21 C0 ≤ C < C1[

1, C, C2, ..., C=
]
· 22 C1 ≤ C < C2
...[

1, C, C2, ..., C=
]
· 2: C:−1 ≤ C < C:

(12)

Here, 28 = [280 , 281 , ..., 28=]) is the vector of coefficients of polynomial for 8Cℎ

trajectory segment.

The cost function penalizing the squares of the derivatives of G(C) can be written

as Equation13, thereby, it is a Quadratic Programming(QP) problem.

G∗(C) = 0A6<8=
G(C)

∫ )

0
(G (4))23C = <8=

:∑
8=1

∫ C8

C8−1

(G (4))23C = <8=
:∑
8=1

2)8 &828 (13)

Here, &8 =
∫ C8

C8−1
[0, 0, 0, 0, 24, · · · , =!

(=−4!) C
=−4]) [0, 0, 0, 0, 24, · · · , =!

(=−4!) C
=−4]3C.

According to the Euler-Lagrange Equation, a necessary condition for the optimal

solution of Equation 13 is:

G (8) = 0 (14)

Detailed derivation about Equation 14 was provided in Flash and Hogan[21]. Thus,

the minimum-snap trajectory is a 7Cℎ order polynomial, namely = = 7 in Equation

10.

3.3.2 Constraints

For the start point and the end point in the trajectory, both of them have specific

positions, velocity and acceleration constraints. For example, at the start point,
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assume the position is ?0, velocity is E0 and acceleration is 00, we have:

Position constraint: 1, C0, C
2
0, ..., C

=
0 , 0...0︸︷︷︸
(:−1) (=+1)

 � = ?0 (15)

Velocity constraint:

0, 1, 2C0, ..., =C
=−1
0 , 0...0︸︷︷︸

(:−1) (=+1)

 � = E0 (16)

Acceleration constraint:

0, 0, 2, ..., =(= − 1)C=−2
0 , 0...0︸︷︷︸

(:−1) (=+1)

 � = 00 (17)

Here� = [21, 22, · · · , 2: ]) . Constraints are also imposed on the joint points of each

trajectory segment. These constraints assign the same values of position, velocity,

acceleration, jerk and snap, etc., namely, zero to sixth derivative of G(C), to the joint

point between two segments. Take the 8Cℎ segment and the (8 + 1)Cℎ segment for

instance, assume G8 (C) is the 8Cℎ segments and G8+1(C) denotes (8 + 1)Cℎ segment,

constraints are as follows:

d:

dC:
G8 (C) =

d:

dC:
G8+1(C), : = 0 · · · 6 (18)

e.g. at the joint point(the position of time C8), if : = 0, the position constraint is as

follow:

 0, ..., 0︸ ︷︷ ︸
(8−1) (=+1)

, 1, C8, C28 , ..., C
=
8︸         ︷︷         ︸

8CℎB46<4=C

,−1,−C8,−C28 , ...,−C=8︸                  ︷︷                  ︸
(8+1)CℎB46<4=C

, 0...0︸︷︷︸
(:−8−1) (=+1)

 � = 0 (19)

20



Hence, for the start point and the end point in the trajectory, there are eight con-

straints, if constraints are imposed on position, velocity, acceleration and jerk; For

: − 1 middle waypoints, according to Equation 18, there are 7(: − 1) constraints.

Totally, the number of constraints is 7(: − 1) + 8.

Besides these constraints, polyhedrons composed of hyperplanes found in Sec-

tion 3.2.2 are also constraints of the cost function(Equation 13). For the 8Cℎ polyhe-

dron composed of m hyperplanes, the constraint is as follows:

�)8

©«
G8 (C)

H8 (C)

I8 (C)

ª®®®®®¬
< 18 (20)

Here �)
8
=

(
5 51, 5 52, · · · , 5 5<

))
, 5 5 9 is the normal vector of 9 Cℎ hyperplane.

G8 (C), H8 (C), I8 (C) denote positions of x, y, z coordinates of the robot at time t; 18

stands for the matrix of multiplication of �)
8
and m points that create hyperplanes

with the normal vector of an ellipsoid.

Now, cost function(Equation 13) formulate as a QP with constraints of Equation

18 and Equation 20.

4 Result and Discussion

I implemented the proposed algorithm in MATLAB[13] using QUADPROG[12] to

solve QP. The method of time allocation in simulation is trapezoid velocity proflile:

given acceleration and maximum speed, the quadrotor accelerates from 0 to the

maximum speed with a constant acceleration 0, and then decelerates to 0 with the

acceleration of −0. In this section, trajectories derived from optimized paths and

non-optimized paths will be compared on different maps.
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4.1 Comparison

Note that in order to avoid obstacles, the outer contour of obstacles is expanded.

The expansion distance is exactly the diameter of a quadrotor, thereby, a quadrotor

can be treated as a point in algorithms. In Figure14, blue cubes indicate obstacles;

The red path is found by JPS; The green path is the optimized path using APF. In

Figure15, it is obvious that the ellipsoid derived from the optimized path is larger

than that from the original path. In Figure16, blue cubes indicate obstacles; The

red path is found by JPS; The red dotted line indicates the trajectory derived from

the red path with QP. In Figure17, the green path is an optimized path from the red

path using APF; The green dotted line represents the trajectory derived from the

green optimized path with QP. Data comparison between these two trajectories is

shown in Table 1, in the situation that both speed and acceleration are zero at both

the start point and the end point, and the flight time is equal, the value of snap of

the trajectory derived from the optimized path is smaller than that derived from the

non-optimized path.

(a)

(b)

Figure 14: Observing paths from different angles.
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(a) Ellipsoids derived from the non-optimized path.

(b) Ellipsoids derived from the optimized path.

Figure 15: Initial ellipsoids derived from the path.

(a) Observing the trajectory from a side view.

(b) Observing the trajectory from a top view.

Figure 16: Generating Trajectory using SFC.
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(a) Observing the trajectory from a side view.

(b) Observing the trajectory from a top view.

Figure 17: Trajectory derived from the optimized path using APF.

Method Average Speed Time Snap
JPS 1.10423 12.9343 342.26
JPS+APF 1.4 12.9343 99

Table 1: Data comparison between trajectories derived from different paths.

(a) (b)

Figure 18: Observing Non-optimized and optimized path in anther map from a

different angle.
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In Figure 18 and Figure19, paths and trajectories are compared in another map.

In Figure 18, the red path is found by JPS; The green path is an optimized path based

on the red path. Apparently, the red path passes through the gap between obstacles,

and the optimized path bypasses the obstacles. Correspondingly, the trajectory

generated from the red path also passes through the gap between the obstacles, and

the trajectory generated from the green path bypasses the obstacles as well. Data

comparison between these two trajectories is shown in Table 2. Since the red path

has more turns than that of the green one, the value of snap of the red trajectory is

much greater than that of the green one.

Method Average Speed Time Snap
JPS 0.8 4.3681 6760.654
JPS+APF 1.0767 4.3681 361.1853

Table 2: Data comparison between trajectories derived from different paths.

(a) Trajectory derived from non-optimized

path.

(b) Trajectory derived from optimized path

using APF.

Figure 19: Trajectory derived from different paths in another map.

4.2 Discussion

According to the requirement of different tasks, we can choose different trajectories.

Take the map in Figure19 for instance, if the task is to observe the detailed terrain
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in the gap between obstacles, the red trajectory is a better choice than the green one.

If the requirement is consuming as little energy as possible to reach a destination,

the green trajectory is a better one compared with the red one.

(a) Observing paths from a side view.

(b) Observing paths from a top view.

Figure 20: Complex path for QP solving.

The application scenario of this thesis is navigation of the MAV in an unknown

environment with local sensing in real time, thus, in order to follow a new trajectory

once a robot finishes executing the current trajectory, the time for generating a

trajectory must be guaranteed to be less than executing time of the current epoch.

Therefore, the planning distance, which is also restricted by sensing range, is

limited during each planning epoch. In this scenario, the distance range of the local

map obtained from local sensing is restricted and the number of waypoints on the

planned path is limited as well, from which QP could quickly generate a trajectory.

However, if the robot has prior knowledge about the environment, namely, the

planning distance becomes longer and more waypoints on the path, it is possible

the time of solving QP is too long for a real-time control problem, or even it cannot

obtain an optimal solution(e.g. Figure 20). In Figure 20, blue cuboids are obstacles;

The red path is found by JPS; The green path is the optimized path using APF on
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the results of JPS. In this situation, due to too many constraints, it is hard for QP to

obtain an optimal solution.

5 Conclusion and Future Work

JPS is a fast grid map search technique due to effective pruning and it is suitable for

real-time 3Dmap path planning. It is a challenge to do trajectory planning based on

the result of JPS because of close proximity between waypoints and obstacles. This

thesis presents a new method for optimizing the results of JPS utilizing artificial

potential field. Results show that optimizing paths could enlarge convex regions,

which makes the trajectory generated by QP smoother and with less value of snap.

There could be a lot of possible future work on this thesis. Time Allocation

significantly affects the resulting trajectories. In addition to path segment length,

considering the size of an angle between two path segments as a factor, which might

improve the optimal solution of trajectory. Moreover, in terms of other finding

polyhedron algorithm, e.g., Stereographic Projection[19] and Sphere Flipping[22],

some methods are dependent on seed selection. Adopting Artificial Potential Field

also provides a guideline to solve the problem of seed selection.
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