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Abstract

Certainty and the Source of Misinformed Beliefs

by

Louis E. Martí

Doctor of Philosophy in Psychology

University of California, Berkeley

Assistant Professor Steven Piantadosi, Chair

Humans possess a metacognitive sense of certainty which, for better or worse,
influences behavior. This sense of certainty is often misleading and can leave us
vulnerable to believing false information. In this dissertation, I study how humans form
their sense of certainty and the types of false beliefs which we can be at times, highly
certain of. This work spans across multiple domains, including concept learning,
word-meaning, pseudoscience, and people’s metacognitive beliefs. Across seven
experiments, I present empirical evidence that learners use heuristics over idealized
model-based features when forming their sense of certainty, and that this leaves us
prone to errors which can result in the adoption of misinformed beliefs as drastic as the
belief that the Earth is flat.
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I. Introduction

How do humans believe untruths?
Intelligent organisms possess abilities which allow them to assess their own

thought processes. These abilities are collectively known as metacognition.
Metacognition allows a wide variety of abilities such as analyzing the state of someone’s
knowledge and strategizing over learning methods (Flavell, 1979). One metacognitive
signal that guides our learning  is our sense of certainty (e.g., Martí et al., 2018; Wade &
Kidd, 2019), which provides feedback used to determine the strength of our  beliefs and
help us update our knowledge states. This sense of certainty can itself be inaccurate
which, in some cases, can lead humans to be strongly certain about beliefs which are
untrue. These beliefs can range from an innocuous falsehood such as “it will be cloudy
tomorrow” to more dangerous beliefs such as “vaccines cause autism” or “positive
thinking can cure my cancer”.

In this dissertation, I investigate the human sense of certainty using behavioral
experimentation and Bayesian models in order to understand how humans believe
inaccuracies about the world. Specifically, I investigate what makes people certain,
whether those feelings of certainty can be miscalibrated even in a routine domain such
as shared word-meanings, and whether specific misinformed beliefs create a “slippery
slope” into other misinformed beliefs. I present empirical evidence that our sense of
certainty is formulated primarily using imprecise heuristics which, though often “good
enough”, can also lead humans to stubbornly held inaccurate beliefs.

How do we form our sense of certainty?
Past work examining the sense of certainty in humans have resulted in a

competing series of frameworks that have had varying degrees of success across
different domains. Signal Detection Theory (Peterson et al., 1954; Tanner & Swets,
1954) models certainty as a representation of the noise around a stimulus. If one views
a vase full of marbles, they might estimate it contains 110 marbles. If, for example, this
is done dozens of times, the resulting series of estimates will have a standard deviation
which is equal to the individual’s certainty. Following the introduction of Signal Detection
Theory, accumulator models were developed which took into account the amount of
time which was available for a given decision (De Martino, et al., 2013). By
incorporating time, these models help explain empirical evidence that the amount of
time we have to make a decision is correlated with our sense of certainty about that
decision.
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Models based on Signal Detection Theory treat our sense of certainty as being

derived solely from intrinsic features of the stimuli. If an image is blurry, people will be
uncertain about what it is; if it is clear, they will be certain. Yet there exists an entire
body of research which points to our sense of certainty as incorporating more factors
than the intrinsic features of stimuli, and possessing the capacity to incorporate
extraneous factors under certain conditions. A review of individuals as young as
middle-schoolers taking methylphenidate and amphetamine found that while they
believe taking stimulants helped them improve on certain tasks, they performed no
better than controls (Smith & Farah, 2011). In one such study, working memory was
assessed by presenting participants with a series of numbers or letters, followed by a
series of probe items where participants responded whether or not they were in the
original set. Participants given 5, 10, or 20 mg of methylphenidate performed no better
than placebo controls (Callaway, 1983). Even superficial task features such as
characteristics of a printed typeface can influence certainty about high-level decisions
such as whether an individual is guilty of a crime. Participants were presented with
either positive or negative witness testimony followed by objective case facts in either a
fluent or disfluent font. Positive or negative bias, and the certainty about that bias, was
either maintained (with fluent font) or overridden (with disfluent font) (Hernandez &
Preston, 2013). Additionally, simply presenting more information will increase certainty,
irrespective of any effects on task performance. When participants were asked to guess
the outcomes of specific football games, their accuracy did not improve when given
more information about past game outcomes, but their certainty increased (Tsai et al.,
2008).

These findings have informed alternatives to Signal Detection Theory which
examine the effects of a host of heuristics and cognitive biases on certainty. These
biases are argued to have arisen as a way for our finite mental resources to deal with
the overwhelming amount of information our cognition has to deal with. Two such
examples are the representative heuristic and the availability heuristics (Tversky &
Kahneman, 1974). The representative heuristic occurs when we compare a situation to
an existing mental prototype. If everyone I know who is a Virgo is shy, I might think a
stranger I meet who is a Virgo is also shy, even though this correlation is entirely
coincidental. Similarly, the availability heuristic refers to our tendency to overuse or
overvalue information that immediately comes to mind. My belief that there are regular
homicides in my community will strengthen if the local news frequently reports on a
single but particularly sensational murder.

The reliance on heuristics over more objective evidence has been the focus of
dual process theory which describes two distinct thought processes that humans
engage in. Type 1 processes are error-prone but also fast, automatic, and intuitive, and
are typically considered to be our default mode while going about our daily activities.
Type 2 processes on the other hand are slow, cognitively demanding, and reflective
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(Wason & Evans, 1974). Reasoning errors have been identified both due to a failure to
engage in Type 2 reasoning (Evans, 2007), and a failure of Type 2’s results to override
Type 1’s results (De Neys, 2012). There is also evidence that both forms of thinking
occur in parallel (Sloman, 1996) but Type 1 is what is predominantly acted upon
because it is substantially faster than Type 2 (Handley & Trippas, 2015). Research into
individual differences has found differing time ratios of thinking type (Stanovich & West,
2000). These differences are not only due to an individual’s ability to engage in Type 2
thinking, but also in their willingness to (Stanovich, 2004). For example, people who are
more intellectually humble, and realize they might be incorrect, engage in more Type 2
thinking (Baron, 2008). Yet despite these individual differences, Type 2 thinking can take
center stage due to simple interventions such as task instructions (Daniel & Klaczynski,
2006) and increasing response time (Evans & Curtis-Holmes, 2005). Interestingly, the
mental-health literature has consistently found a positive correlation between cognitive
biases, false beliefs, and positive mental health outcomes (Lefcourt, 1973; Taylor,
1989). This indicates that Type 1 thinking is adaptive, not only due to speed and
resource conservation, but because of mental health as well.

What leads to misinformed beliefs?
Misinformed beliefs range from “I bought milk at the grocery store yesterday.” to

“water memory will cure my cancer” or “the Earth is flat”. Fake news can lead to the
implantation of false memories from simply reading a fake news article (Murphy, et al.,
2019). Individuals also reliability rate themselves as less susceptible to cognitive biases
compared to the “average American”. This effect persisted even when they were
presented with evidence that cognitive biases are pervasive and often go undetected by
the individual (Pronin et al., 2002). People also believe that their skills can help them
succeed in tasks that are purely governed by chance, like predicting the results of
tossing a fair coin (Langer & Roth, 1975), and that an entire host of ineffective medical
treatments can cure their ailments (Matute et al., 2011). These types of beliefs have
been argued to be self-serving, and even self-protecting (Taylor & Brown, 1988). The
illusion of control, the idea that one has more control over an outcome than one actually
does (Langer, 1975), has been negatively associated with depression. Specifically,
depressed individuals tend to show little to no illusions of control, while non-depressed
individuals happily live with their illusions (Abramson et al., 1978).

Another finding likely related to the availability heuristic has been named the
illusory truth effect. This effect occurs when the mere repetition of information (false or
not) increases human certainty about the truth of that information. In one study
participants reported certainty ratings about the truthfulness of statements regarding
politics, sports, and the arts. This was done over three sessions with two week intervals
between them. Statements which were repeated between sessions were found to
increase in certainty over time (Hasher et al., 1977). The same effect occurs even if the
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presented information is explicitly labeled as an opinion (Arkes, et al., 1989). This
finding is so ubiquitous that it occurs even when controlling for cognitive ability, cognitive
closure (aversion to ambiguity), and cognitive style (De keersmaecker et al., 2019).
There is also evidence that this bias may be present at birth given that it has already
been found in five-year-olds to be just as strong as in adults. In a single session,
five-year-olds, ten-year-olds, and adults, were presented with both true and untrue
nature statements. They were then presented with new statements and some
statements which they had seen before and asked to rate their truth. Across all age
groups, statements which had been seen before, regardless of their truth, were more
likely to be rated as true (Fazio & Sherry, 2020). More recently, there has been evidence
that a small minority of individuals possess a negative truth effect where repetition
causes a decrease in belief strength. Eight separate datasets were examined  on an
individual-level (as opposed to traditional group-level analyses) and roughly 1% of
participants displayed a negative truth effect (Schnuerch et al., 2020).

Inaccurate beliefs have been found to be associated with a host of personality
traits or thinking errors. Conspiracy beliefs are modestly associated with agreeableness
and conscientiousness as personality traits (Bowes, et al., 2021), a conservative
political ideology, and paranoid ideation (van der Linden, et al., 2021). Lastly,
self-described open-minded thinkers tend to believe less pseudoscience such as
climate-change denial, extrasensory perception, and the paranormal (Pennycook, et al.,
2020). Individuals who become highly certain with very little evidence are predisposed
to pseudoscientific beliefs. Sanchez and Dunning presented participants with a game
where the goal was to guess which out of two lakes was being fished from. One lake
had predominantly gray fish while the other primarily had orange fish. A fisherman
would catch a fish, show the color, and would continue catching or stop depending on
the participant’s wishes. Some individuals only needed one or two catches before they
became certain they knew what lake it was, despite insufficient evidence (Sanchez &
Dunning, 2020). Pseudoscientific beliefs are also associated with the illusion of
causality, or the mistaken belief that a causal connection exists when it does not (Torres
et al., 2020).

Bayesian modeling
More recently, Bayesian approaches to cognition have introduced the idea that

our beliefs (including certainty) are a result of accumulated prior knowledge combined
with a likelihood calculation of hypotheses given the observed data. Probability-based
models provide a useful framework to formalize uncertainty. In a Bayesian learner
model, the probability of a given hypothesis represents the belief strength of that
hypothesis. Certainty can then be explicitly formalized as either the distance from a
probability of one, or as the entropy over the entire hypothesis space (Glymour, 2003).
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These types of frameworks have been used to model word learning in children (Xu &
Tenenbaum, 2007), along with curiosity and exploration (Gopnik & Bonawitz, 2015),
among many other domains.

The primary research paradigm I employ is the combination of behavioral
experimentation and computational modeling. This combination allows me to rigorously
test theories and predictions against empirical data. For example, in testing whether
human certainty is calibrated to reality in Chapters 2 and 5, a Bayesian ideal learner
model allows me to simulate the task and calculate multiple plausible predictors of
certainty. These different types of certainty, in conjunction with purely behaviorally
calculated certainties, can be compared to the self-reported certainties of participants in
order to discover which types of certainty best predict human behavior. The experiments
in Chapter 3 use a non-parametric Bayesian clustering model which receives behavioral
data as input, and outputs a distribution of data clusters. By applying this to individual
differences in word-meaning, the likely number of unique concepts present in our
sample can be recovered. These results are then used as input into an ecological
species estimator which allows me to estimate the total number of unique concepts on a
population level. Chapter 4 uses demographic data and a process known as iterative
proportional fitting to estimate the true prevalence of misinformed beliefs in the U.S.

The predictors of adult certainty
Past research has discovered that while certainty seems to be well calibrated in

low-level perceptual domains, it is not well calibrated in high-level domains such as
concept learning or in complex belief networks such as misinformed beliefs. For
example, subjective uncertainty regarding visual stimuli reliably predicts objective
uncertainty. Participants viewed either pairs of Gabor patches or pairs of alphabetic
symbols with visual noise and reliably chose the option with less uncertainty. (Barthelmé
& Mamassian, 2009). Similarly, objective uncertainty reliably predicts subjective
uncertainty for auditory stimuli and in numerical discrimination tasks (Sanders et al.,
2016). These findings are in contrast to high-level domains such as social interactions,
where simply hearing that opinions are shared by others raises certainty, even if those
opinions are inaccurate (Yaniv et al., 2009). Likewise, if an expert contradicts
preexisting beliefs, individuals tend to increase their certainty in that belief (Tormala et
al., 2011; Tormala & Petty, 2004).

Understanding how certainty is often inaccurate cannot be done without first
knowing how our sense of certainty is calculated. One step towards understanding this
calculation is discovering predictors which accurately predict people’s sense of certainty.
Chapter 2 outlines a series of experiments which, for the first time, test the prediction
strength of both model-based and behavioral predictors of certainty where participants
were asked to self-report their certainty while learning a high-level Boolean concept.
Crucially the predictors were all part of one of two classes of predictors. Model-based
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predictors were derived from a Bayesian ideal learner model and were based on criteria
such as the entropy over learned concepts. Behavioral predictors on the other hand
were based on superficial task features such as the number of trials a participant
guessed correctly. We found that while both types of predictors uniquely predict
certainty, a behavioral predictor, the number of correct trials in the recent past, predicted
certainty the best. These results suggest that in high-level domains such as concept
learning, humans tend to use “good enough” heuristics over veridical task features to
inform their certainty.

Shared concepts across humans
While the certainty study provided evidence as to how humans can arrive at false

beliefs, my next goal was to examine false beliefs in a more real-world domain than
abstract Boolean concepts. To facilitate this, I asked whether real-world concepts are
shared between humans for a given word-sense, and whether people’s certainty is
correctly calibrated to the amount they are shared.

Past research into individual differences in word-meaning has found some
diversity, starting with variance in the way individuals classify cups and bowls depending
on height and width (Labov, 1973), which was later shown to extend to natural
categories in general (McCloskey & Glucksberg, 1978). Other research has cataloged
individual differences in typicality judgements using various natural and artificial
categories (Barsalou, 1987; Verheyen & Storms, 2013; Koriat & Sorka, 2015). Yet none
have quantified the number of distinct concepts in the population for a given word
sense, nor examined people’s certainty about the amount of diversity. Because of this, I
ran two experiments where participants were asked to give similarity judgements or
feature ratings about either common animals or well-known politicians. Participants
were also asked to guess the number of other individuals who would give the same
response. Using a Bayesian clustering model, and a species ecological estimator, I
estimated the existence of roughly a dozen concepts per word-sense. There was also a
significant miscalibration in people’s perception of the true amount of diversity present in
the sample. Specifically, individuals tend to display a strong egocentric bias,
overestimating the number of people who share their concept. These results suggest
that the findings described in Chapter 2 likely extend to everyday concepts given that
participants substantially overestimate how shared their concepts are.

The prevalence of misinformed beliefs
Chapters 2 and 3 provide evidence that simple Boolean concepts and even

relatively complex everyday concepts are subject to a miscalibration of certainty due to
a reliance on heuristics. Chapter 4 seeks to extend ecological validity even further by
examining misinformed complex high-level belief systems such as COVID-19
conspiracy theories. In particular, my goal was to test the hypothesis that in contrast to
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being solely in the realm of fringe conspiracy theorists, misinformed beliefs are broadly
spread throughout the population. Research on misinformed beliefs has traditionally
focused on characterizing the population of a single belief. For example, catalogs have
been made of flat Earthers (Landrum, 2021), anti-vaxxers (Martinez-Berman et al.,
2021), and climate change deniers (Uscinski et al., 2017). However, due to their
singular focus, these studies resulted in the appearance of a subpopulation of
seemingly susceptible individuals. In order to assess whether this was truly the case, I
collected participant certainty ratings about 30 different misinformed beliefs. In contrast
to there being a relatively small population of particularly gullible individuals, the data
showed that these misinformed beliefs are broadly, but thinly, spread across the entire
population with the median participant believing in 9 out of 30 misinformed beliefs.
There was also modest evidence that certain beliefs were associated with other beliefs,
which implies the existence of a slippery slope in some cases and points to a
higher-order belief structure. Together, Chapters 2, 3, and 4 provide evidence that
everyone’s sense of certainty can quite easily lead them away from truth, possibly due
to an over reliance on heuristics.
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II. Certainty Is Primarily
Determined by Past
Performance During Concept
Learning
Louis Martí, Francis Mollica, Steven Piantadosi, & Celeste Kidd

Prior research has yielded mixed findings on whether learners’ certainty reflects
veridical probabilities from observed evidence. We compared predictions from an
idealized model of learning to humans’ subjective reports of certainty during a Boolean
concept-learning task in order to examine subjective certainty over the course of
abstract, logical concept learning. Our analysis evaluated theoretically motivated
potential predictors of certainty to determine how well each predicted participants’
subjective reports of certainty. Regression analyses that controlled for individual
differences demonstrated that despite learning curves tracking the ideal learning
models, reported certainty was best explained by performance rather than measures
derived from a learning model. In particular, participants’ confidence was driven
primarily by how well they observed themselves doing, not by idealized statistical
inferences made from the data they observed.

Introduction
Daily life requires making judgments about the world based on inconclusive

evidence. These judgments are intrinsically coupled to people’s subjective certainty, a
metacognitive assessment of how accurate judgments are. While it is clear certainty
impacts behavior, we do not fully understand how subjective certainty is linked to
objective, veridical measures of certainty or probability. For example, people presented
with disconfirming evidence can become even more entrenched in their original beliefs.
Tormala, Clarkson, and Henderson (2011) and Tormala and Petty (2004) found that
when people were confronted with messages that they perceived to be strong (e.g.,
from an expert) but contradicted their existing beliefs, their belief certainty increased
instead of decreased. Similarly, the Dunning-Kruger effect—by which unskilled people
overestimate their abilities and highly competent people underestimate them—also
provides evidence of a miscalibration (Kruger & Dunning, 1999). Confidence is also
influenced by social factors. Specifically, individuals calibrate their confidence to the
opinions of others, irrespective of the accuracy of those opinions (Yaniv et al., 2009).
Tsai, Klayman, and Hastie (2008) found that presenting individuals with more
information raised their confidence irrespective of whether accuracy increased.
Miscalibration is also present during “wisdom of the crowds” tasks. When questions
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require specialized information, individuals are equally as confident regardless of
accuracy. This applies to both answers to questions and predictions about the accuracy
of others (Prelec et al., 2017). Additionally, confidence in a memory has no relationship
to whether or not the memory actually occurred (Loftus et al., 1989; McDermott &
Roediger, 1998). Finally, simply taking prescription stimulants (e.g., Adderall, Ritalin)
increases individuals’ senses of certainty (Smith & Farah, 2011).

Studies examining perceptual phenomena, however, imply a tight link between
certainty and reality. Individuals calculate their own subjective measure of visual
uncertainty, which has been found to predict objective uncertainty (Barthelmé &
Mamassian, 2009). Others have found correlates for subjective certainty such as
reaction time, stimuli difficulty, and other properties of the data (Drugowitsch et al.,
2014; Kepecs, et al., 2008; Kiani et al., 2014). More evidence demonstrating the linkage
between perceptual certainty and reality was presented when Sanders, Hangya, and
Kepecs (2016) described a computational model that predicted certainty in auditory and
numerical discrimination tasks.

Thus, while our certainty might be a useful guide with regard to perceptual
decisions, such as trying to locate a friend yelling for help in the middle of the woods, it
may be misleading in higher-level domains, such as deciding whether to see a
chiropractor versus a medical doctor. However, no experiment has evaluated
quantitatively measured changes in certainty during learning in tasks outside of
perception. In ordinary life, evidence accumulation is likely to be less like perceptual
learning and more like tasks for which learners must acquire abstract information about
more complex latent variables—like rules, theories, or structures. Here, we
examine certainty during learning using an abstract learning task with an infinite
hypothesis space of logical rules. We present three experiments that used a Boolean
concept-learning task to measure how certain learners should have been, given the
strength of the observed evidence. With a potentially overwhelming hypothesis space, is
a person’s subjective certainty driven by veridical probabilities, or by something else?

Historically, Boolean concept-learning tasks have been used to study concept
acquisition because they allowed researchers to examine the mechanisms of learning
abstract rules while focusing on a manageable, simplified space of hypotheses (Bruner
& Austin, 1986; Feldman, 2000; Goodman et al., 2008; Shepard et al., 1961).
Experiment 1 compared measures from an idealized learning model to measures
derived from participants’ behavior to determine which best matched participants’
ratings of certainty. Results suggest that the most important predictor of certainty is
people’s recent feedback/accuracy, not measures of, for example, entropy derived from
the model. Furthermore, a logistic regression with the best predictors demonstrates that
most of them provide unique contributions to certainty, implicating many factors in
subjective judgments. Experiment 2 tested these predictors when participants were not
given feedback. These results show that when feedback is removed, model predictors
perform no better than in Experiment 1. Experiment 3 examined participants’ certainty
about individual trials rather than the overall concept. Similar to Experiment 1, in
Experiment 3 people primarily relied on recently observed feedback. Our results show
that participants used their overall and recent accuracy—not measured or derived from
rule-learning models—to construct their own certainty.
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Experiment 1

Motivation

The aim of Experiment 1 was to measure subjective certainty of participants
during concept learning and attempt to predict it using plausible model-based and
behavioral predictors. In this experiment, certainty judgments were about what
underlying concept (rule) generated the data they saw, as opposed to their certainty
about the correct answer for any given trial (see Experiment 3).

Methods

We tested 552 participants recruited via Amazon Mechanical Turk in a standard
Boolean concept-learning task during which we measured their knowledge of a hidden
concept (via yes or no responses) and their certainty throughout the learning process
(see Figure 2-1 and Table 2-1). In this experiment, participants were shown positive and
negative examples of a target concept “daxxy,” where membership was determined by a
latent rule on a small set of feature dimensions (e.g., color, shape, size), following
experimental work by Shepard et al. (1961) and Feldman (2000). The latent rules
participants were required to learn varied across a variety of logical forms. After
responding to each item, participants were provided feedback and then rated their
certainty on what the word “daxxy” meant. For our analyses we considered
and compared several different models of what might drive uncertainty (see Table 2).
These predictors can be classified into two broad categories. Model-based predictors
were calculated using our ideal learning model, while behavioral predictors were
calculated using the behavioral data (see Appendix II-A for additional method details).
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Figure 2-1: In Experiment 1, participants saw 24 trials (as above), randomized between
conditions. Feedback was displayed after responding.
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Table 2-1: Concepts presented to participants. Concepts 1 and 5–9 are the Shepard,
Hovland, and Jenkins family consisting of three features and four positive examples.

Results

We first visualize plots of participants’ certainty and accuracy for each concept in
order to show (a) whether certainty and accuracy improved over the course of the
experiment, (b) whether theoretically harder concepts (according to Feldman, 2000)
were, in fact, more difficult for participants, and (c) whether participants’ certainty
correlated with their accuracy in general.

Figure 2-2 shows participants’ certainty and accuracy (y-axis) over trials of the
experiment (x-axis). The accuracy curves indicate participants learned the concepts in
some conditions but not others. This is beneficial to our analysis as it allows us to
analyze conditions and trials in which participants should have had high uncertainty.
Overall, participant certainty was inversely proportional to concept difficulty. Participant
certainty generally increased, but only reached high values in conditions in which they
also achieved high accuracy. The increasing trend of certainty in conditions for which
accuracy did not go above 50% may be reflective of overconfidence. It is also important
to note that even though participants received exhaustive evidence, there were still
multiple logical rules that were both equivalent and correct. Despite this, participants still
became certain over time.
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Table 2-2. Certainty predictors (behavioral predictors in gray).
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Figure 2-2: Mean certainty (hollow blue circles) and mean accuracy (filled red
circles) across concepts for Experiment 1. Chance is 50% across all conditions if
guesses are made randomly.

We will first consider our predictors as separate models in order to determine
which best predict certainty. Subsequently we will build a model using the best
predictors of each type in order to determine the unique contributions of each predictor.

We assessed our predictors with generalized logistic mixed-effect models fit by
maximum likelihood with random subject and condition effects.1 First, this analysis

1 We also analyzed our data on an individual level in order to ensure our findings were not due to
averaging effects (Estes & Todd Maddox, 2005). See Table 2-4 in the Appendices.
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shows model accuracy significantly predicts behavioral accuracy ( = .50, β = .748, z =𝑅2

30.423, p < .001; Figure 2-3), meaning that overall performance can be reasonably well
predicted by the learning model.

Figure 2-3: Model vs. behavioral accuracy for Experiment 1.

Figure 2-4 then shows mean certainty responses for each trial and condition
(y-axis) over several different key predictors of certainty (x-axis). A perfect model here
would have data points lying along the line y = x with a high and very little residual𝑅2

variance. Local Accuracy 5 Back, the accuracy averaged over the past 5 items, has a



16

high , meaning that individuals with low local accuracy were uncertain and individuals𝑅2

with high local accuracy were highly certain. Likewise, Domain Entropy also has a high
and is very ordered compared to the other model predictors (see Figure 2-7 in the𝑅2

Appendices for additional predictor visualizations).
Table 2-5 in the Appendices shows the full model results, giving the performance

of each model in predicting certainty ratings.2 These have been sorted by Akaike
information criterion (AIC), which quantifies the fit of each model penalizing its number
of free parameters (closer to −∞ is better). The AIC score is derived from a generalized
logistic mixed effect model fit by maximum likelihood with random subject and condition
effects. This table also provides an measure, calculated using the Pearson correlation𝑅2

between the means of each response and predictor for each trial and condition (this
ignores variance from participants). As this table makes clear, the behavioral predictors
tend to outperform the model predictors, at times by a substantial amount. The best
predictor, Local Accuracy 5 Back accounts for 58% of the variance. Additionally, Local
Accuracy models outperform most of the other alternatives, a pattern that is robust to
the way in which local accuracy is quantified (e.g., the number back that were counted
or whether the current trial is included). The quantitatively best Local Accuracy model
tracks accuracy over the past five trials. One possible explanation for this is that
participants were simply basing their certainty on recent performance. The high
performance of both Local Accuracy and Total Correct implies that people’s certainty is
largely influenced by their own perception of how well they were doing on the task.

2 See Table 2-6 in the Appendices for simplified grammar predictors.
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Figure 2-4: Key model fits for Experiments 1-3, showing mean participant
responses for each concept and trial (gray) and binned model means in each of five
quantiles (blue) for certainty rating (y-axis) as a function of model (x-axis). Diagonal
lines with low variance correspond to models which accurately capture human behavior.
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Table 2-3: Regression for best predictors (standardized) in Experiment 1
(behavioral predictors in gray).

Strikingly, the lackluster performance of the majority of ideal learner models
suggests that subjective certainty is not calibrated to the ideal learner. This is consistent
with the theory that learners were likely not maintaining more than one
hypothesis—perhaps they stored a sample from the posterior, but did not have access
to the full posterior distribution. Strikingly, the idealized model of entropy over
hypotheses–what might have corresponded to our best a priori guess for what certainty
should reflect—performs especially poorly, worse than many behavioral and other
model-based predictors. Such a failure of metacognition is consistent with the poor
performance of Current Accuracy, a measure of whether or not the participant got the
current trial correct. Subjective certainty does not accurately predict accuracy on the
current trial, or vice versa.

Our first analysis treated each predictor separately and found the best, but what
if multiple predictors were jointly allowed to predict certainty? To answer this, we created
a model using the top three behavioral predictors and the top three model predictors in
order to determine the unique contributions of each (see Table 2-3).34 As the table
makes clear, all behavioral predictors, along with Domain Entropy, make significant,
unique contributions to certainty. Conversely, Entropy and Log Maximum Likelihood
were not significant when controlling for the other predictors, demonstrating they
provide no unique contributions to certainty. In alignment with the results of our AIC
analysis, the (normalized) beta weights, which quantify the strength of each predictors’
influence, reveal that the behavioral predictors have the largest influence.

Discussion

Our results showed that an ideal learning model predicts learners’ accuracy in
our task. These results hold regardless of whether certainty is measured on a binary, or
a continuous scale (see Experiment 4 in Appendix II-D). A plausible hypothesis would
then be that the predictors derived from our ideal learning model would also be related

4 It was not possible to use random slopes (Barr, Levy, Scheepers, & Tily, 2013) in this regression due to
a lack of convergence.

3 This regression was moderately sensitive to which predictors were included, likely due to some degree
of multicollinearity.
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to learners’ certainty, perhaps to a large degree. Instead, we found that Local Accuracy
and Total Correct are most predictive of people’s certainty, outperforming our other
predictors by predicting as much as 58% of the possible variance. In fact,
overwhelmingly, the behavioral predictors performed better than the model predictors.
Domain Entropy performs well and even has the highest value, however it is𝑅2

important to emphasize that the values did not take into account the subject and𝑅2

condition used in the mixed effect model. When these effects are controlled, we find that
Domain Entropy has less of an influence than behavioral predictors, although its
contribution to certainty is still nonzero. Performance of the predictors in a model that
controls these effects should be a more reliable guide to each predictor’s effect. Overall,
the results suggested that participants primarily used the feedback on each trial in order
to guide their senses of uncertainty about the concept.

Experiment 2

Motivation

Experiment 1 leaves open the possibility that both Local Accuracy and
model-based predictors influence behavior, but that feedback overshadowed other
predictors, perhaps because feedback was a quick and reliable cue. Experiment 2
tested this by removing feedback and thus removing it as a cue. We accomplished this
by providing participants with only a single trial.

The critical question is whether the model-based predictors will become more
predictive of responses compared to Experiment 1. If so, the cues to certainty may be
strategically chosen based on what is informative, with participants able to use
model-based measures when information about performance is absent. Alternatively, if
the model-based predictors do not improve relative to Experiment 1, that would suggest
that factors like Local Accuracy may be the driving force in metacognitive certainty and
absent these predictors, people do not fall back on other systems.

Methods

Like Experiment 1, Experiment 2 presented participants with the task of
discovering a hidden Boolean rule (see Figure 2-5 and Figure 2-6). We tested 577
participants via Amazon Mechanical Turk on a single-trial version of the same task used
in Experiment 1, using the same set of concepts. The experimental trial tested
participants on a single concept and displayed all eight images seen in a block of
Experiment 1 simultaneously, each labeled with a yes or no to indicate whether it was
part of the concept (see Figure 2-5). The participant answered whether they were
certain what the concept was. They then saw the same set of eight images (randomized
by condition) and were asked to label each as being a part of the concept (see Figure
2-6). (See Appendix II-B for further details.)
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Figure 2-5: In Experiment 2, participants saw a single trial (as above), randomized
between conditions.

Figure 2-6: In Experiment 2, after responding regarding their certainty, participants
labeled each stimulus to assess their accuracy.
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Results

Unlike Experiment 1, accuracy was high across most conditions, with average
accuracy ranging from 62% to 95% across conditions (see Figure 2-8 in the Appendices
for details). This was likely due to participants viewing the data simultaneously and
testing them immediately afterward. Such a format would make it much easier to
determine the concept and lead to reduced memory demands compared to Experiment
1. Despite this, subjective certainty was similar to Experiment 1 in that it related
inversely to concept difficulty. Thus, since information regarding the underlying concept
was still encoded and used in calculating their certainty, task differences did not seem to
influence their certainty.

For Experiment 2, we assessed our predictors with generalized logistic
mixed-effect models fit by maximum likelihood with random condition effects. Unlike
Experiment 1, the model fit for accuracy in Experiment 2 is not significant ( = .02, β =𝑅2

−.049, z = −1.114, p = .265; see Figure 2-9 in the Appendices. This is likely due to data
sparsity, although it is possible that participants did not learn these concepts as well due
to the presentation format. In evaluating predictors of certainty Figure 2-10 and Table
2-9 in the Appendices make clear that the results are similar to Experiment 1, with the
best-performing predictors being behavioral measures. In this case, the only behavioral
predictor, Total Correct is also the best predictor of certainty. Likewise, while Domain
Entropy is the best performing model predictor, it is not as good as Total Correct. This is
strong evidence that removing feedback had little to no effect on participants’ propensity
to avoid model-based predictors when constructing their own subjective certainty.

Discussion

Our results demonstrate that feedback is not overriding model-based predictors
when participants evaluate subjective certainty. When feedback is removed, participants
still primarily used a behavioral predictor of overall accuracy in evaluating their own
certainty. This could plausibly be because behavioral predictors provide a low-cost and
rapid way of calculating certainty while model-based predictors are nonobvious and
require more complex calculations.

Experiment 3

Motivation

Both Experiment 1 and Experiment 2 asked about participants’ certainty about a
target concept that was underlying all of the observed data (“Are you certain you know
what Daxxy means?”). However, word meanings are highly context dependent. A
participant may be highly certain they know the meaning of “daxxy” within the confines
of the experiment, but highly uncertain in general. Additionally, other work on
metacognition has examined participants’ certainty about their current response, where
model-based effects can sometimes be seen. Experiment 3 examined trial-based
certainty measures using the same setup of logical rules used in Experiments
1 and 2. If we find behavioral predictors no longer predict certainty but model-based
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predictors do, this would provide strong evidence that trial-certainty and
concept-certainty are informed by two distinct processes.

Methods

Experiment 3 was a variant of Experiment 1 in which instead of asking “Are you
certain that you know what Daxxy means?” we asked “Are you certain you’re right?”
after each response. We tested 536 participants on Amazon Mechanical Turk, using
otherwise identical methods to Experiment 1 (see Appendix II-C for further details).

Results

Unsurprisingly, participant accuracies were similar to Experiment 1, replicating
the general observed trends (see Figure 2-11 in the Appendices for details). Importantly
however, certainty in Experiment 3 seems to much more closely track accuracy on each
trial, meaning that it is likely veridically reflecting participants’ knowledge of each item
response (as opposed to the meaning of “daxxy”). We assessed our predictors with
generalized logistic mixed-effect models fit by maximum likelihood with random subject
and condition effects. Like Experiment 1, the model fit between behavioral and model
accuracy in Experiment 3 is reliable ( = .50, β = .808, z = 31.529, p < .001; see Figure𝑅2

2-12 in the Appendices).
Behavioral predictors once again overwhelmingly outperform the model-based

predictors. Similar to Experiment 1, Local Accuracy 5 Back Current is the best predictor
at 70% of variance explained, and the best model-based predictor is again Domain
Entropy, which accounts for 61% of the variance (for details, see Figure 2-13 and Table
2-11 in the Appendices).

Discussion

Experiment 3 provides strong evidence that participants primarily relied on local
accuracy for their trial-based certainty just as they did for concept-based certainty. This
reflects the fact that trial-based certainty, while more independent than concept-based
certainty per trial, was still influenced by performance and feedback on previous trials.
Like Experiment 1, participants did not seem to be using most model-based predictors
in their certainty calculations, despite behaving in line with model predictions with regard
to accuracy. These results are seemingly in conflict with the Sanders et al. (2016)
model, which they demonstrated to be a good predictor of participant certainty. One
possibility is that these differences were the result of cross-trial learning in our task
required. Neither Sanders et al. (2016) tasks required such cross-trial learning.

General Discussion
In conjunction with past research, our results paint a picture of how subjective

certainty is derived for high-level logical domains like Boolean concept learning. It
appears that certainty estimation primarily makes use of behavioral and overt task
features, but that some model predictors are also relevant. In contrast, perceptual
certainty and certainty involving one’s memory of a fact (such as asking which country
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has a higher population; Sanders et al., 2016) seem to default to using predictors
derived from ideal learning models.

In Experiments 1 and 3, Local Accuracy and Total Correct were very successful
predictors of certainty. This means that participants seemed to primarily be basing their
certainty on their past performance—inferring certainty from their own behavior and
feedback. One view is that certainty’s function is as a guide to inform our beliefs and
decisions. If certainty was fulfilling this function, one might expect Current Accuracy to
be an excellent predictor. Instead, we find it is an extremely poor predictor, implying that
people’s sense of certainty in these tasks is not likely to be a useful or important cause
of behavior and is not calibrated well to their future performance. This is also in line with
past research showing that some people’s certainty is not based solely on their
perceived probability of being correct, but also on the inverse variance of the data
(Navajas et al., 2017). This general pattern is not unlike findings from metacognitive
studies showing that often people do not understand—or perhaps even remember—the
causes of their own behavior (Johansson et al., 2005; Nisbett & Wilson, 1977). People
do not directly observe their own cognitive processes and are often blind to their internal
dynamics. This appears to be true in the case of subjective certainty reports when
feedback is present and learning is taking place. In these cases, people do not appear
to reflect an awareness of how much certainty they should have.

Past studies in memory have found that initial eyewitness confidence reliably
predicted eyewitness accuracy, however, confidence judgments after memory
“contamination” has occurred were no longer reliable (Wixted et al., 2015). Given our
results, a possible explanation for this is that the feedback in our experiments played
the same role as the memory contamination in the eyewitness studies. In other words,
recent feedback heavily influences certainty, and if that feedback is unreliable, it could
lead to false memories.

It should be noted that one possible reason the behavioral predictors outperform
the model predictors is that the behavioral predictors will vary with participants’ mental
states and thus with the natural idiosyncrasies within, although this effect may be
mitigated by our use of mixed-effect models. For example, individual differences in
attention that influence performance at the subject level could be captured by the
behavioral predictors, but not the model-based predictors, which are functions only of
the observed data. Though difficult to quantitatively evaluate, this difference may in part
explain why the behavioral predictors are dominant in capturing performance, and this
possible mechanism is consistent with the idea that certainty is primarily derived from
observing our own behavior and secondarily by the properties of the data.

Our analyses also help inform us about which factors do not drive certainty
during learning, and several are surprising. One reasonable theory posits that
participants could base their certainty off of their confidence in the Maximum a
Posteriori (MAP) hypothesis under consideration. Since the MAP predictors do not
perform well, it is unlikely that learners’ certainty relies on internal estimates of the
probabilities of the most likely hypothesis.

Conclusion
Our findings suggest that although several types of predictors make unique

contributions to certainty, the primary predictors of certainty are from observations of
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people’s own behavior and performance, not from measures derived from an idealized
learning model. Although learning patterns follow an idealized mathematical model,
subjective certainty is only secondarily influenced by that model regardless of whether
or not participants were able to observe how well they were doing. This is likely due to
the underlying process of hypothesis formation and revision, as well as the way in which
probabilities are handled beyond that which an ideal learner provides. These results
also provide counterintuitive insight into why humans become certain. Certainty about a
latent, abstract concept does not seem to be determined by the same mechanisms that
drive learning. Instead, a large component of certainty could reflect factors that are
largely removed from the veridical probabilities that any given hypothesis is correct.
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III. Latent Diversity in Human
Concepts
Louis Martí, Shengyi Wu, Steven Piantadosi, & Celeste Kidd

Many social and legal conflicts come down to differences in semantics. Yet, semantic
variation between individuals and people’s awareness of this variation have been
relatively neglected by experimental psychology. Here, across two experiments, we
quantify the amount of agreement and disagreement between ordinary semantic
concepts in the population, as well as people’s meta-cognitive awareness of these
differences. We collect similarity ratings and feature judgements, and analyze them
using a non-parametric clustering scheme with an ecological statistical estimator to infer
the number of different meanings for the same word that is present in the population.
We find that typically at least ten to twenty variants of meanings exist for even common
nouns, but that people are unaware of this variation. Instead, people exhibit a strong
bias to erroneously believe that other people share their particular semantics, pointing
to one factor that likely interferes with political and social discourse.

Statement of Relevance
Cognitive science has long debated the degree to which common word meanings

differ across individuals. Combining empirical data with state of the art modeling
techniques, we statistically quantify the number of distinct concepts for 20 words across
the population. We find strong evidence that the probability a single concept exists for
each word is very small, and the most likely scenario is that roughly ten to twenty
concepts exist, even for everyday nouns. These results suggest that fundamental
conceptual differences at the lexical level extend to political and social discourse and
underlie many semantic disagreements.

Introduction
Children learn word meanings through experience, and experiences differ

between people. This suggests that even when two individuals use the same word, they
may not agree precisely on its meaning. Indeed disagreements about meaning can be
found in debates about the meaning of terms like “species” (Zachos, 2016), “genes”
(Stotz et al., 2004), or “life” (Trifonov, 2011) in biology; “curiosity” (Grossnickle, 2016),
“knowledge” (Lehrer, 2018), or “intelligence” (Sternberg, 2005) in psychology; and
“measurement” in physics (Wigner, 1995). Ernest Mach and Albert Einstein even
disagreed about what constitutes a “fact” (de Waal & ten Hagen, 2020); in contemporary
society, social issues hinge on the precise meaning of terms like “equity” (Benjamin,
2019), “pornography” (Jacobellis v. Ohio, 1964), “peace” (Leshem & Halperin, 2020), or
the “right to bear arms” (Winkler, 2011). Such debates often end up in the legal system.
For example, in 1893, the U.S. Supreme court decided in Nix v. Hedden that, for tax
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purposes, a tomato counted as a vegetable, not a fruit, stating that the law followed the
“ordinary meaning” (see Goldfarb, 2021) of words rather than their botanical meaning.

Despite the frequency with which word meanings are debated, there have been
few efforts to understand and quantify such variation in mental representations using
tools of cognitive psychology. In the 1970s, Labov (1973) examined individual
differences in people’s classifications in a simple two-dimensional space of stimuli, cups
and bowls that varied in height and width. This work found people often disagreed in
atypical cases, a finding that holds in other domains (McCloskey & Glucksberg, 1978).
Psychometrics developed multidimensional scaling methods (Torgerson, 1952;
Shepard, 1962; Shepard, 1980) which account for individual differences, starting in the
1960s (Tucker & Messick, 1963; McGee, 1968; Carroll & Chang, 1970; Bush, 1973;
Takane et al., 1977; Bocci & Vichi, 2011), with recent implementations (Okada & Lee,
2016) providing the advantages of generative Bayesian statistical inference (Gelman
2013; Kruschke, 2010). However, these tools have not been used to study population
variation itself. Variation has been documented with amount of training or
specialization—for instance, philosophers view “knowledge” differently than other
academics and non-academics (Starmans & Friedman, 2020), and specialists often
develop a specialized lexicon (Clark, 1998). Relatedly, recent results show that adults
(Shtulman et al., 2020) and children (Sumner et al., 2019) will sometimes use words
without real understanding.

While prior work has cataloged individual differences in typicality judgements
using various natural and artificial categories (Barsalou, 1987; Verheyen & Storms,
2013; Koriat & Sorka, 2015; Hampton & Passanisi, 2016), no one has sought to robustly
quantify how many varieties of ordinary concepts exist in the population. A primary
challenge is that there are no complete accounts of human conceptual representation
(see, e.g. Laurence & Margolis, 1999) and therefore people’s representations must be
measured indirectly. The approach of probing conceptual representations via linguistic
labels has a long and fruitful history (Rosch & Lloyd, 1978, Lupyan & Thompson-Schill,
2012). In line with this tradition, we ran two experiments, collecting people’s judgements
of similarity between concepts and judgements of conceptual features respectively. The
similarity experiment asked people to judge whether, for example, a penguin is more
similar to a chicken or a whale. Similarities have been seen as foundational to some
aspects of meaning, both in classic work (Shepard, 1962; Shepard, 1980; Shepard
1962; Barsalou 1989) and in more recent semantic representational theories (Landauer
& Dumais, 1997; Mikolov et al., 2013). The feature experiment first freely elicited
features, and then asked a group of participants to rate those on each concept. For
example, participants judged whether a penguin was “majestic”. We gathered ratings in
two domains: common animals and politicians. These domains allow us to characterize
diversity for high-frequency nouns, which may be most likely to be shared. We contrast
this with politicians, which might vary among individuals with distinct political beliefs, as
do concepts and language concerning morality (Graham et al., 2009; Frimer, 2020). We
note that similarity judgements and features have well-known limitations, including for
example that similarities are sensitive to the respects with which similarity is computed
(Tversky & Gati, 1978; Medin et al., 1993; Gentner & Markman 1997; Markman &
Gentner, 1993). However, because we are interested in quantifying diversity, it is not
important to the experiment that such features and similarities do not completely
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characterize people’s conceptual knowledge. Differences in features and similarities still
indicate that there are some underlying conceptual differences.

Importantly, we asked participants to make the same similarity ratings and
feature judgements multiple times, allowing us to determine how reliable and stable the
ratings were. This was important for our primary analysis because it allowed us to
include in the modeling the possibility that people actually had consistent concepts, but
they were just noisily measured, which could make it look as though people had
different conceptual representations when in fact they did not. Our main results showing
multiple concepts in the population therefore reflect statistical evidence of multiple
concepts above and beyond response inconsistencies. Our primary analysis uses a
non-parametric Bayesian clustering model in order to infer how many types of each
concept (clusters) were likely to be present in our sample—for example, based on
similarity judgements, how many different concepts of “finch” did people exhibit? This
clustering method does not presuppose a fixed number of clusters, but infers a
distribution of how many clusters are likely present based on the data. The distribution
on the number of concepts combines two competing pressures: on the one hand, we
should be biased to prefer a small number of clusters since this is a simpler theory. In
the absence of data, the number of clusters should not be “multiplied without necessity",
in the words of Ockham’s Razor. Simultaneously, we should prefer a clustering which
does a good job of explaining the data. Here, that means that the inferred clustering
should predict responses, meaning that two individuals in the same cluster should give
similar responses (see Figure 3-1). We use a non-parametric scheme (Gershman &
Blei, 2012; Anderson, 1991; Pitman, 1995) which translates both of these pressures into
probability theory, and then balances—optimally, in a precise sense–between the two. In
particular, this clustering approach (see Methods) infers a probabilistic assignment of
participants to latent “concept” clusters such that there are as few clusters as possible,
while still being able to adequately explain their response patterns. This inference
critically depends on the reliability of subject responses and only using this model are
we able to infer the number of clusters that likely generated the data.
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Figure 3-1: Hypothetical clustering of response vectors, here visualized in 2D.
The simplest solution is to put all points into the same cluster (A), but then responses
(locations) are not well-explained by clusters. If each point is in a separate cluster (B)
then each point is perfectly predicted by the cluster, but the solution is complex. A
compromise like (D) finds a small number of clusters that adequately explain the data.
The correct clustering (D) will be preferred over alternatives even with the same number
of total clusters which fit the data less well (C).

However, we are also interested in the number of clusters present in the
population beyond our experimental sample. To quantify this, we used an estimator from
ecology (Chao & Chiu, 2016). This model is more commonly used in species estimation
in population ecology, where one might sample animals, observe how many of each
species were collected, and estimate the total number of species present in the world
(i.e. outside of the sample) from the distribution in the sample; closely related
techniques can be found in (Good, 1953; Gale & Sampson, 1995). Here, we use the
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most likely clustering of individuals to estimate the total number of concepts present in
the world, outside of our sample.

Finally, we quantified people’s metacognitive awareness of differences by asking
participants to report what proportion of other people they expected to agree with them
about their similarity judgements, and compared these reports to the observed
agreement levels.

These methods allow us to test a variety of novel hypotheses about variation in
human conceptual systems. First, by examining the estimated number of clusters (both
in the sample and the general population), we evaluate how many measurably distinct
representations can be found in the population. We note that this estimate is necessarily
conservative since it is derived by similarities to a relatively small number of other
nouns; larger and more detailed experiments might reveal more conceptual variation.
Despite this conservativity, our results indicate that there is substantial variation present,
even for these common nouns. Because this inference relies on a probabilistic model
which incorporates multiple-measurement reliability, these clusters cannot be due to
measurement noise. Our results also indicate common nouns and politicians have
roughly the same number of different concepts in the population: both reflect substantial
diversity. Finally, the meta-cognitive results show that people are generally unaware of
these differences: most people expect that most others will answer the same way that
they do. This lack of awareness suggests that such latent variation in what words are
thought to mean may underlie disagreement on broader social and political issues.

Results

Experiment 1

We recruited 1,799 participants on Amazon Mechanical Turk. Half were asked to
make similarity judgements about animals (finch, robin, chicken, eagle, ostrich, penguin,
salmon, seal, dolphin, whale) and the other half to make judgements about U.S.
politicians (Abraham Lincoln, Barack Obama, Bernie Sanders, Donald Trump, Elizabeth
Warren, George W. Bush, Hillary Clinton, Joe Biden, Richard Nixon, Ronald Reagan).
Each participant was randomly assigned to a single target from one domain (e.g.
“finch”), presented with 36 unique pairs of other objects in the domain (drawing from the
10 objects in each domain), and asked which was more similar to the target. Thus,
participants responded to queries such as “Which is more similar to a finch, a whale or a
penguin?” Each trial was shown twice (for a total of 72 trials) in order to measure
response reliability (calculated as the percentage of trial-pairs with identical responses)
and detect trial-by-trial idiosyncratic features of stimuli. To quantify metacognitive
awareness of diversity, participants were also simultaneously asked on every trial to
guess how many people out of 100 would agree with their response.

We coded each participant’s responses to a single word as a binary vector,
corresponding to the forced-choice similarity rating between every other pair of items. In
modeling, we assumed that individual vectors were sampled from a collection of latent
clusters that specified an average response vector. We used a nonparametric Bayesian
technique, a Chinese Restaurant Process (Gershman & Blei, 2012; Anderson, 1991;
Pitman, 1995), to model a posterior distribution on the number of clusters for each word
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independently, marginalizing out the average response vectors for each cluster and
assuming a reliability given by the overall average reliability. We note that this clustering
model works in the space of response vectors, not in the lower-dimensional
psychological space itself; thus, our approach does not explicitly model correlations that
may exist between items, but also does not require us to make assumptions about the
dimensionality or metric properties of the latent space. This technique permits us to find
a distribution over the number of clusters present in the population, taking into account
both the reliability of individual responses and uncertainty about the latent response
vector characterizing each cluster (e.g. what each participant’s “finch” cluster
corresponds to in terms of similarities). The model builds in a prior preference for fewer
clusters—a version of Ockham’s Razor—but we also present results with no such prior.
The maximum a posteriori clusterings found in sampling were additionally put through a
species-count estimator which estimates the true number of clusters present in the
global population, beyond our finite sample size (Chao & Chiu, 2016). This estimator
uses sampled individuals which are observed to fall into a distribution of species and
estimates the total number of species (here, clusters) in the population at large.

The overall subject reliability is around 90% (see Figure 3-6 in Materials and
Methods), indicating subjects are both not responding with random guesses, nor are
they responding with ad hoc responses that vary from trial to trial. Subject responses
likely reflect stable aspects of how they conceptualize these concepts throughout the
context of the experiment.

Figure 3-2 shows a visualization of participants’ similarity judgements using
distributed stochastic neighbor embedding (t-SNE) (Maaten & Hinton, 2008). This
technique places individual participants’ response vectors in a 2D plane such that
nearby participants give similar response vectors. The closer two points are together,
the more closely their concepts align; however, these scales are relative and cannot
easily be compared across plots. Points in this plot have been colored according to the
maximum a posteriori assignment of participants to clusters according to the clustering
model, which was run independently from t-SNE. This figure illustrates that two
independent methods provide convergent characterizations of how people are
distributed in the space since each color (generated according to the clustering model)
tends to be in a single spatial position (generated by t-SNE). Note that the color
assignments do not perfectly match spatial arrangements, likely due to t-SNE
dimensionality reduction and different trade-offs being applied to edge-case participants
by our algorithm and t-SNE.
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Figure 3-2: Distances between participants’ conceptual representations of each
target concept using distributed stochastic neighbor embedding. In this visualization, the
distances between two points approximate the distance between their full rating vectors.
Each plot is on the same scale. Additionally, each data-point is colored with the cluster
they were assigned to in our clustering analysis, showing that the t-SNE clustering finds
similar groupings.

To understand the number of concepts in the population, we first look at the
posterior distribution over the number of clusters inferred. Figure 3-3 shows the
estimated number of conceptual kinds (y-axis) for each semantic domain (subplot), as a
function of the number of participants included (x-axis). This figure shows that as our
sample size increases from 10 to 100 individuals per concept, the number of estimated
concepts reaches 7 to 12 for politicians and 4 to 10 for animals. The maximum a



32
posteriori clustering (in purple) and the ecological estimator (in blue) are in the range of
10-20 latent concepts in the population, and are higher for politicians than for animals.
We find similar ranges even if we use a prior which is uniform on the clusterings
(orange).

Figure 3-3: Estimated number of concepts (y-axis) depending on the number of
people sampled (x-axis). Boxes show the median 50% quantiles of the number of
unique concepts. Purple data points are the number of clusters for the maximum a
posteriori clustering. Orange data points are the number of clusters for the MAP
clustering with a uniform prior. Blue data points are a lower bound on the number of
concepts estimated by the ecological estimator using the MAP clustering.
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We note that the number of inferred concepts is not necessarily monotonically

increasing in the number subjects, since additional subjects may shape the geometry of
the space (e.g. providing evidence that two separate clusters are actually one wider
cluster). In addition, most of the latent diversity can be found in small numbers of
subjects–even distinct clusters can be found when examining 50 individuals. The point
at which each subplot levels off is due to a combination of the reliability of individual
responses, the number of items we sampled (sampling less results in fewer concepts),
and the true number of concepts in the population. However, limited reliability and a
finite number of items mean that our analysis is likely to under-estimate the number of
clusters.

Figure 3-4 shows the probability that the population contains only one concept for
each word, according to the clustering model (Recall that due to the limitations of the
similarity measure, this is an overestimate). Political words are far less likely to have a
single meaning than animal words, matching the patterns in the number of clusters in
Figure 3-3. Generally, this provides strong statistical support to the idea that there are
multiple meanings in the population for these terms, despite the fact that these multiple
concepts all have the same word. However, if the distribution of participants to
meanings tends to be heavily skewed (e.g. most participants have the same meaning),
then this diversity might be relatively inconsequential. Figure 3-4 shows the probability
that two randomly chosen individuals will have the same concept in this analysis, which
is a relatively robust statistic since it depends largely on the frequency of the most
common concepts for each word rather than the tails of the distribution. This agreement
probability averages to around 25-50% for animals and 10-30% for politicians. This
indicates that most individuals one encounters will tend to have a measurably different
conceptual representation. Again, this is likely to overestimate the true rate of
agreement since we only tested a small number of questions.
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Figure 3-4: Left: Probabilities that only a single conceptual representation for
each word exists, with log-axis, showing essentially zero probability for any word.
Middle: Probability that two random individuals will share the same table (i.e. concept),
showing generally low rates of agreement. Right: Predicted answers (y-axis) vs. actual
answers (x-axis), showing people tend to overestimate others’ rate of agreement
compared to the truth (line y = x).

Most importantly, our results show that people are generally not aware of these
differences. Figure 3-4 shows the agreement rate on responses (x-axis) compared to
people’s predicted estimates of agreement (y-axis). If people understood the
population’s variation in responses, the trials shown in this plot would all fall along the y
= x line. Instead, this figure shows that for most of the range of actual agreement (e.g. ~
0% - 80%) people tend to consistently believe that about 2/3 of participants will agree
with them, no matter what true proportion actually do. This is true even for the lowest
agreement responses: most participants believe their response is in the majority even
when essentially 0% of other participants agree with them. This is unlikely to be due to a
failure to engage this aspect of the task because participants do reliably increase their
estimates on the highest agreement items (e.g. ~ 80% - 100%), which results in a
reliable rank-order correlation overall (Spearman’s ρ = 0.45, p < 0.001). The increase,
though, is not well-calibrated to the population variation. Moreover, these patterns likely
reflect meta-cognitive limitations (Gopnik et al., 1997; Wimmer & Perner, 1983;
Goldman et al., 2006) rather than differences in effort or motivation because these trials
were interspersed with the main task, which had very high within-subject reliability.
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Experiment 2

Experiment 2 consisted of two parts: feature elicitation and feature rating. In
feature elicitation, we recruited 16 registered users on Prolific. Half of the participants
were asked to list 10 single-word adjective features for each of the 10 animals in
Experiment 1. The other half were asked to list 10 single-word adjective features for
each of the 10 U.S. politicians in Experiment 1. We kept all features that were
mentioned more than once after removing non-adjectives, inappropriate words, and
typos, as well as combining synonyms.

Then, 1,000 registered users on Prolific were asked to rate either 105 animal
features or 105 politician features from the feature elicitation experiments. Each
participant was randomly assigned to rate features of two animals (e.g. “dolphin” and
“whale”) or two U.S. politicians (e.g. “George W. Bush” and “Hillary Clinton”).
Participants were asked questions such as “Is a finch smart?” and responded by
clicking either the “Yes” or “No” button on the screen. Each question was asked twice to
measure response reliability. Thus, each participant saw 420 question trials.

Participant reliability was high with an average reliability of 86% during feature
rating, indicating participants were not responding with random guesses. Similar to
Experiment 1, subject responses likely reflect stable aspects of subjects’ conceptual
representations.

Clustering participants based on their feature ratings serves as a conceptual
replication of Experiment 1. The number of concepts found is 6 to 11 for politicians 5 to
8 for animals, compared to 7 to 12 for politicians and 4 to 10 for animals in Experiment 1
(see Figure 3-10 in the Appendices). Likewise, the ecological estimator results in 8 to 30
latent concepts in the population, compared to 10 to 20 in Experiment 1. Such similar
findings, despite a very different paradigm, provides convergent support for conceptual
diversity.

Figure 3-5 shows mean agreement for a sample of features and concepts. Many
features show near universal agreement among participants. A similar number of
features show large disagreement among participants. Most participants agree that
seals are not feathered but are slippery while disagreeing as to whether they are
graceful. Likewise, most participants agree that Trump is not humble and is rich, but
there is high disagreement as to whether he is interesting. These sorts of
disagreements reflect the different conceptual representations possessed by our
participants.
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Figure 3-5: A sampling of feature responses for 3 animals and 3 politicians
(y-axis). The x-axis plots the mean percentage of “yes" responses for a given feature.
Features on the left are generally agreed to not apply and features on the right are
usually agreed to be applicable. Features in the center however, show high
disagreement among participants and are the primary features responsible for differing
conceptual representations among participants.

Discussion
We report statistical evidence of more than one variant of concepts in the

population. In fact, we find that most people the average language user meets will not
share their same concept. These results are unexpected in part because the measures
we used are coarse. If one could gather an arbitrary amount of data, one might expect
to find small differences between people: one interlocutor might have specific memories
that make their representation idiosyncratic, perhaps different from anyone else.
However, our experimental approach was based on judging similarities and
features—not an exhaustive inventory of each person’s memories or associations—and
we were nonetheless able to statistically justify measurably distinct representations,
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even for common nouns. If differences can be detected with these methods, it indicates
that there is substantial variation in the population for lexical meanings. This variation
exists despite the fact that people use the same word for each concept, and people are
relatively unaware that others will tend to give differing similarity judgements.

However, our results do not support the notion that every single use of a concept
is distinct or entirely idiosyncratic (Casasanto & Lupyan, 2015): subjects did group into
clusters and did provide highly reliable responses across trials. We emphasize, though,
that studies with more items, or items that focus more on corner cases, might find
greater diversity than reported here. Moreover, the subject pool in our experiment was
relatively homogeneous, and future studies of cultural differences may point to more
diversity in word usage based on diversity of experience (Clark, 1998). Indeed, while
our method allows us to quantify conceptual diversity, it does not pinpoint what specific
representational differences drive this diversity. These differences may indeed go deep
with respect to theories and interrelations between the concepts studied and others
(Murphy & Medin, 1985; Medin & Rips, 2005; Gelman & Legare, 2011).

In general, theories of word learning and conceptual development will need to
work out how human language users acquire distinct representations for shared words.
In turn, theories of communication and language use (e.g. Wilson & Sperber, 2002;
Grice, 1989) will need to address both differences in word referents, and lack of
awareness of those differences. People’s general obliviousness to variation has
important implications for productive discourse structure, and has been studied by
psychologists in more general forms such as the false consensus effect (Marks & Miller,
1987) and egocentric bias (Ross & Sicoly, 1979). Fundamental misunderstandings may
originate with individuals using the same word for distinct conceptual representations or
under different contexts. Indeed, such differences in word meanings might underlie
many classic philosophical questions (Piantadosi, 2015). Generally, our results may
help to explain why “talking past each other” appears to be common in social and
political debates: the common ground of even the most basic word meanings is only
imperfectly shared.

Materials and Methods
Experiment 1 was run using a custom built web interface on Amazon Mechanical

Turk on 8/20/19 through 8/22/19 (animals) and 9/11/19 through 9/12/19 (politicians).
Participants were instructed to “decide which [animal/politician] is more similar to [target
concept]” and “asked to guess how many people out of 10 would agree with you.” All
participants were required to be from the U.S. and have a minimum 95% approval rating
from previous tasks. Experiment 2 was run on 04/23/21 through 05/09/21 (animals) and
05/13/21 through 05/17/21 (politicians) using Prolific and Qualtrics. Participants were all
above 18 years old, fluent English speakers, and physically present in the United States
based on pre-screening questions. Responses were recorded on a secure server and
no participants were excluded from data analysis. All participants were paid at a rate of
$10 an hour. This study was approved by the Committee for Protection of Human
Subjects at University of California, Berkeley (CPHS # 2018-12-11675). Informed
consent was obtained from all subjects. All methods were performed in accordance with
relevant guidelines and regulations.
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Clustering Methods

Responses were clustered using a non-parametric, Bayesian clustering model, a
“Chinese restaurant process” (51), with a custom implementation in Python. If
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Here, characterizes the noise level assumed by the likelihood. We set the singleα
likelihood parameter = 0.16 such that two samples from a Bernoulli with parameter p ~α
Beta( ) agreed with each other with probability 0.88, which is the proportion of timeα,  α
subjects’ second and first responses agreed (analysis of the dependence of the results
to the assumed is in the Appendices).α

Inference was run using a Gibbs sampler, using both the prior (1) above and a
uniform prior. All runs used the same likelihood (2). The Gibbs sampler followed
standard inference techniques by selecting each individual and resampling a cluster
assignment for them based on the posterior probability of each possible cluster
assignment (including assigning to a new cluster). The sampler was initialized with a
configuration where each individual started in the same cluster. These sampling
methods require iterations of burnin before they converge to a stable set posterior
distribution. We assessed convergence using multiple runs and ensured that chains
arrived at the same solution. Figure 3-7 in the Appendices shows the convergence of
three chains for each concept over 300k iterations. Our final run used a 100k iterations
of burn-in and an additional 200k iterations of sampling.

Ecological Estimator

Finally, we use an ecological estimator from (Chao & Chiu, 2016), extending a
previous estimator (Colwell & Coddington, 1994), in order to approximate the total
number of concepts in the population. This estimator uses the total number of observed
clusters (concepts) and the total number of sampled individuals in order to estimate how
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many concepts were likely unobserved. Like, for instance, Good-Turing estimation
(Good, 1953), this estimation depends on the number of clusters containing a single
person, but also includes additional terms. Let fi denote the number of clusters
containing i individuals in the maximum a posteriori Bayesian clustering. The estimator
is based on , given by,𝑆
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IV. “Fringe” beliefs aren’t fringe
Louis Martí, Adam Conover, & Celeste Kidd

COVID-19 and the 2021 U.S. Capitol attacks have highlighted the potential dangers
of pseudoscientific and conspiratorial belief adoption. Approaches to combating
misinformed beliefs have tried to “pre-bunk" or “inoculate" people against
misinformation adoption and have yielded only modest results. These approaches
presume that some citizens may be more gullible than others and thus susceptible to
multiple misinformed beliefs. We provide evidence of an alternative account: it’s simply
too hard for all people to be accurate in all domains of belief, but most individuals are
accurate most of the time. We collected data on a constellation of human beliefs across
domains from more than 1,700 people on Amazon Mechanical Turk. We find
misinformed beliefs to be broadly, but thinly, spread among the population. Further,
although some beliefs are associated with others, we do not find evidence that
individuals who adopt a single misinformed belief are more likely to engage in
pseudoscientific or conspiratorial thinking across the board, in opposition to “slippery
slope” notions of misinformation adoption.

Statement of Relevance
Psychological science has debated whether misinformed beliefs are localized

within a relatively small subgroup of individuals, or whether these beliefs are dispersed
across the population. Using a large sample size and demographic correction
techniques, we demonstrate that misinformed beliefs are widely but weakly held, and
that only some beliefs are slippery slopes into others.

Introduction
Recent events surrounding QAnon and COVID-19 conspiracies have highlighted

the potential dangers of misinformation (Romer & Jamieson, 2020; Woko et al., 2020;
Amarasingam & Argentino, 2020). In response, efforts to “pre-bunk” the conspiracies or
“inoculate” the population against the spread of misinformation have arisen (Maertens et
al., 2020; Pennycook & Rand, 2020; Roozenbeek & van der Linden, 2019), with thus far
only modest results (Banas & Rains, 2010). The potential robustness of this approach
depends upon an untested assumption of human psychology: that some individuals are
more gullible than others, and that they can be made less gullible through training.

Previous studies of conspiratorial and pseudoscientific belief focus on
populations who hold misinformed beliefs in a single domain, for example flat earthers
(Landrum, 2021), anti-vaxxers (Martinez-Berman et al., 2020), climate change deniers
(Uscinski et al., 2017), or incels (Young, 2019). However, examining beliefs in a single
domain would necessarily make any variation appear as though some individuals are
inherently more gullible than others. In fact, it is quite possible that everyone is trying
their best to form beliefs that align with objective evidence in the world, and generally
doing a decent but imperfect job across multiple knowledge domains.
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We compare two hypotheses: one is that some individuals are fundamentally

gullible and therefore are susceptible to multiple misinformed beliefs. The other is that it
is simply hard to be accurate in all domains of belief. In that case, we would expect
misinformed beliefs to be broadly, but thinly, spread among the population.

To understand how beliefs arise and spread, you must look at constellations of
beliefs. Here, we do just that. We collect a large set of judgements on a host of different
types of beliefs—including conspiracies, pseudoscience, and other non-evidence-based
beliefs.5 We use this data to understand the prevalence overall of many misinformed
beliefs, as well as whether belief in one tends to predict belief in others, as is widely
espoused in “slippery slope” arguments (Wood et al., 2012).

Our results demonstrate that rather than some portion of the population being
gullible, most people hold one or more non-evidence-based beliefs. Our results suggest
most of these beliefs do not predispose individuals to becoming more likely to adopt
many other non-evidenced beliefs. The fact that misinformed beliefs are ubiquitous and
generally not “gateway drugs” to other networks of misinformed beliefs has widespread
implications for how we should structure efforts to combat misinformation in the world.

Figure 4-1: Participants saw 60 randomized trials as above.

5 The misinformed beliefs we evaluated here included “conspiracies" and “pseudoscience", as well as
other non-evidence-based beliefs, most but not all of which are commonly labeled “fringe beliefs". We
recognize that these terms are not interchangeable, but investigate all to broadly understand how
misinformed beliefs relate to one another in the population.
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Results

Fringe beliefs are not fringe

We calculated a belief score for each participant representing the number of
non-evidence-based statements that they believe are more likely than not.6 While any
given misinformed belief may be uncommon, when examined in aggregate, the vast
majority of people believe in at least several misinformed statements (see Figure 4-2).
In our sample, 98% of participants believe at least one statement7, and 52% believe at
least nine. It is important to note that this measure is conservative, as we only tested a
small minority of all non-evidence-based beliefs. Interestingly, unsubstantiated
COVID-19 beliefs are substantially less common than all other misinformed beliefs,
possibly because they have had less time to spread throughout the population, or
perhaps due to public health messaging (see Figure 4-5). The median General
Pseudoscience score is 6 (out of a possible 18) while the median COVID
Pseudoscience score is 3 (out of a possible 12).

7 We excluded 319 participants. Remaining participant reliability was 88.7%. See Exclusion Criteria in
Materials and Methods.

6 This score was reverse coded for the 14 statements that were factual.
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Figure 4-2: A histogram showing the number of people who believe x number of
misinformed statements are more likely than not, after sampling bias correction. The
maximum possible score is 30, one point for each statement. The median participant
believes 9 out of 30 non-evidence-based statements. Despite being a conservative
measure (we only tested a small minority of non-evidenced beliefs), we find that
misinformed beliefs are widespread. Black dots represent the expected distribution of
beliefs if all beliefs were independent of each other in a Poisson-binomial distribution.
This analysis provides some evidence for both a traditional slippery slope, and a
reverse slippery slope where individuals are less likely to believe other beliefs, as can
be seen by green bars found above black dots.
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Fringe beliefs are often weakly held

While these beliefs are widespread, they are not strongly held. Figure 4-6 shows
the weighted aggregate of all responses across all sentences. Among all misinformed
statements that participants believe are more likely than not, there still exists a high
degree of uncertainty. Very few non-evidence-based statements are rated as 100% true,
but the same level of uncertainty is not present when participants rule out a misinformed
belief (an overwhelming number of responses rate them as 0% likely).

Only some beliefs are possible gateways

As Figure 4-7 shows, only some beliefs provide evidence for the slippery slope
argument. Each boxplot partitions participants depending on whether or not they believe
a particular misinformed statement. If a slippery slope existed, participants who believed
any given misinformed statement would have a significantly higher conspiracy score
than the participants who did not believe it. In other words, the boxes (which represent
95% confidence intervals) within a statement would not overlap and the conspiracy box
would be higher. Instead, we find that this is only the case for 13 out of the 30
statements. As supported by a linear regression, if you believe that aliens are currently
visiting the Earth, you are no more likely to believe other misinformed beliefs (β =
-0.0588, SE = 0.0048, t = -12.14, p < 0.001). On the other hand, if you believe autism is
caused by environmental toxins, you are more likely to believe other misinformed
beliefs, as a linear regression confirms (β = 0.1377, SE = 0.0036, t = 38.70, p < 0.001).
It is important to note that this is still not a confirmation of a slippery slope in these
cases, as causality would need to be determined. Comparing COVID-19 scores in the
same manner results in 7 out of 12 significant differences, indicating that perhaps the
slope is a bit slipperier when dealing with misinformed beliefs which are closely related.

Figure 4-3 shows belief scores for participants based on randomly assigning
each statement into one of two arbitrary groups. If beliefs were held completely
independently the within subject correlation of both scores would be zero. Instead, we
see a moderate correlation implying that while these beliefs are not deterministically
held, they hold some influence over each other.
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Figure 4-3: Belief scores for split statements. Statements were randomly split into two
categories and participants were assigned belief scores for each category. If beliefs are
held independently of each other we would expect no correlations between each score
within participants. Instead, we find a moderate correlation with an of .66.𝑅2

In aggregate, participants are very good at predicting beliefs

As Figure 4-4 shows, the predictions participants made about the prevalence of
these beliefs were very accurate. With each data point representing a different
statement, all of them are either just above or just below the line of perfect prediction y =
x. A generalized logistic regression confirms this (β = 1.6201, SE = 0.0344, z = 47.12, p
< 0.001).
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Figure 4-4: Mean predictions and the actual percentage of participants who believe
each statement is more likely than not. Perfect predictions would lie along the y = x line;
participants are very good at predicting the beliefs of others in aggregate.
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Figure 4-5: Proportions of people who believe each statement is more likely than not.
Orange bars represent individuals who endorsed a misinformed statement while gray
bars represent a rejection. Bars show data after sampling bias correction while the black
dots show data before the correction. Misinformed beliefs are common and in certain
cases, represent the majority view.
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Figure 4-6: Weighted likelihood responses across all sentences binned by whether the
sentences are non-evidence-based. The unweighted data is in the form of a line. The
most common response by far is a total rejection of misinformed statements. When a
misinformed statement is judged as possible, there is a large amount of variance in
responses, indicating high uncertainty which implies these beliefs could be
self-correcting over time. Very few responses indicate a non-evidence-based statement
is 100% certain, signaling intellectual humility. Note that weighing the raw data raises
prevalences relatively uniformly.
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Figure 4-7: Conspiracy scores (total number of misinformed statements believed)
binned by whether participants believe a particular statement. Boxplots are weighted
data, black dots are the unweighted medians. Orange boxes represent individuals who
believe a nonevidence-based statement while gray boxes represent non-believers.
Boxes show the median 50% quantiles of conspiracy scores. Non-overlapping boxes
within a statement indicate 95% confidence that the true medians differ. Most box pairs
overlap indicating an overall lack of support for the slippery slope theory.

Discussion

Summary

Although any given misinformed belief may be uncommon, in aggregate these
beliefs are extremely common. The median number of non-evidence-based beliefs held
by individuals is 9, and 98% of people believe at least one. These beliefs are almost
always accompanied by a degree of uncertainty however.

We find only modest evidence to support the slippery slope theory. Most
endorsed beliefs do not show a significantly higher conspiracy score. Only when looking
at closely related beliefs such as beliefs related to COVID-19, does belief in one
statement tend to predict belief in the others, signaling that individuals do not view all
theories equally. Uncovering more predictors of beliefs, such as demographics and
higher-order beliefs, should be the focus of future research.

Implications

We have demonstrated that misinformed beliefs are widespread throughout the
population, but often weakly held. This pattern is consistent with the idea that people
are trying their best to understand what is true in the world but are making errors. Since
uncertainty is associated with higher degrees of interest and curiosity, we would expect
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these particular misinformed beliefs to be more likely to update and self-correct as
further evidence is sampled and integrated. Thus, these kinds of misinformed
beliefs—those which are held with higher degrees of uncertainty—are less problematic
in context because we would not expect them to be stubbornly held.

Further evidence in support of this idea is our finding that misinformed COVID-19
beliefs were less common than misinformed beliefs at large. If this measurable
difference can be directly linked to the efficacy of public policy education efforts, it will
provide clear evidence that effective interventions to combat misinformation should
provide people with clear, specific evidence. We suspect that, given the patterns we
observed here, these approaches may be more effective than generally trying to train
people against dubious belief adoption at large.

Social prevalence encourages misinformed beliefs

The “illusory truth effect" says that people will tend to believe something more
strongly the more they encounter it (Hasher et al., 1977). The effect starts with as little
as two exposures, has been found in children as young as 5 (Fazio & Sherry, 2020),
and is just as strong regardless of an individual’s cognitive ability, need for cognitive
closure, or cognitive style (De Keersmaecker et al., 2020). Compounding this effect is
evidence that individuals overestimate the amount of information they use to form a
belief (Klein & O’Brien, 2018). These facts—in tandem with their relationship to
relatively sudden recent changes in how people gather their information from the
world—may help explain the prevalence we observe here.

We note that the most commonly endorsed misinformed beliefs in our study are,
by definition, not fringe beliefs. Certain statements, such as the belief that handwriting
analysis can reveal an individual’s personality, are endorsed not only by certain
authorities and popular culture, but by the majority of people in the world (70% in our
sample). Since we know that social prevalence is one important cue people use in order
to infer what is true (Orticio et al., 2021), the more people already believe this kind of
non-evidence-based belief, the more we’d expect will believe it in the future. This isn’t
irrational given the limitations of human access to truth. Since no one has direct access
to truth, the best a person can do is engage in inference from sparse, often indirect
sources of evidence, like the opinions of others.

Misinformed beliefs in informational ecosystems

The changing way in which people sample evidence from the world in order to
infer truth is important to consider in light of our results. People increasingly rely on
online sources for information, and almost all recommend content based on algorithms
that maximize engagement (clicks, likes, comments, or hang time on the visual image).
Maximizing engagement likely results in promoting material that is less likely to be true.
For example, recent work suggests interestingness-if-true is a strong predictor of news
sharing, not the user’s assessment of its likelihood of actually being true (Altay et al,.
2021). This is important because we know that estimates of social prevalence increase
the likelihood of the adoption of misinformation as belief (Orticio et al., 2021).
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The engagement-based reward systems used by platforms like YouTube, TikTok,

and Twitter to incentivize content creation also likely add bias to the information pool.
Creators are rewarded with views, likes, or money proportional to how many sets of
eyes their content attracts and the duration they keep them glued—not the veracity of
what they post. These pressures likely incentivize the creation of sensationalized,
conspiratorial, and fringe content due to its novelty and subsequent interest.

If our information ecosystem is polluted, it is particularly problematic in light of
human fallibility. People have built-in mechanisms designed to help them sparsely
sample information in the world to draw quick inferences and act (Kidd & Hayden, 2015;
Wade & Kidd, 2019). People seek out information to reduce their uncertainty, but move
from uncertain to relatively sure on the basis of heuristics like feedback (Martí et al.,
2018). Once certain, people tend to stick stubbornly with their established beliefs, and it
is difficult to prompt them to revise. These cognitive mechanisms are useful in
preventing people from wasting time from material that is already understood.

However, this aspect of human psychology may be problematic in environments
with misleading feedback signals and which offer several points of related feedback
quickly, as is true when people seek answers online.

Materials and Methods
We recruited 2,036 participants using a custom built web interface on Amazon

Mechanical Turk on November 24, 2020. We required participants to be from the U.S.
and have at least a 95% approval rating from previous tasks. Responses were recorded
on a secure server. After consenting to the experiment, participants were asked to type
out a series of sentences, pledging to answer questions honestly. This was followed by
a nine question demographics questionnaire (age, sex, race, ethnicity, state of
residence, education, income, religion, and politics). Next, participants entered two
practice trials where they rated the likelihood of statements (“Plants need water to
grow." and “Birds lay eggs.") using a slider bar, and also guessed how many other
people would find them to be probably or definitely true. Then, participants saw 60 more
trials of the same format (see Figure 4-1). In order to test for differences between a
broad-range of misinformed beliefs and those within a more narrow scope, each of
these trials displayed one of 18 general statements (half non-evidence-based, half
factual) or 12 COVID-19-relevant statements (seven non evidence-based, five factual).
Each statement was presented twice for a total of 60 trials as a way of assessing
reliability. After every 15 trials, a free-response catch question was asked (“What is your
favorite drink?", “What is your favorite movie?", “What is your favorite snack?", “What is
your favorite aquatic animal?") to be used to filter careless or automated responses
from polluting our participant pool.

Analysis

We used our data to estimate overall belief prevalence in the U.S. by correcting
the sampling bias in our Amazon Mechanical Turk data. The Amazon Mechanical Turk’s
participant pool tends to be more white, male, young, and poor than the general U.S.
population (Moss et al., 2020).
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To correct for this sampling bias, we employed an “iterative proportional fitting",

or “raking" technique (Deming & Stephan, 1940). Raking applies a weight to each
participant to offset sampling bias. For example, if the true proportion of males in the
population is 50% but your sample is only 25% male, raking will apply a weight of 3 to
each male and 1 to each female. If this process is performed for more than one
variable, adjusting a participant’s weight to match the true proportions for one variable
may ruin the weight value for another variable. To correct for this, the algorithm is run for
many iterations and only stops when all weighted proportions are within a set threshold
(𝜖) of their true proportions. Our algorithm ran for 100 iterations with 𝜖 = .000005.

The true proportions for age, sex, race, ethnicity, state of residence, education,
and income were calculated using the 2014–2018 American Community Survey Public
Use Microdata Sample (PUMS) from the United States Census Bureau, after excluding
all individuals under 18. The true proportions for religious and political affiliations were
taken from the Pew Research Center 2014 Religious Landscape Study. We followed
raking best practices (Battaglia et al., 2009) including combining certain demographic
categories with extremely few entries in our data. The combined categories are
“American Native or Other" for race, “Non-Mexican Hispanic/Latino" for ethnicity,
“Master’s/Doctorate/Professional degree" and “No High School Diploma or GED" for
education, “Mainline Protestant", “Other Non-Christian", “Other Christian", and “Nothing
in particular (religion not important)" for religion, and “Moderate" for politics.

Exclusion criteria

We applied a conservative exclusion criteria to our data which maintained 1,717
participants and excluded those who demonstrated inattention or who failed to
demonstrate their humanity. We excluded 195 participants for not following the
pledge-typing instructions at the onset of the experiment and 124 participants for not
providing at least 3 out of 4 valid catch question responses.

For the remaining 1,717 participants, we examined their reliability by first labeling
a repeated sentence as a bad trial if the participant gave likelihood scores that were
greater than or equal to 20 points apart (out of 100). Using this criteria, the mean
reliability for our participants is 88.7%, meaning 88.7% of all trial pairs were rated as
less than 20 points apart. Note that even with a 20-point criteria (which is very
conservative) our observed reliability remains very high. We do not exclude any
participants with low reliability since it is possible that different likelihood scores on the
same items is a reflection about their uncertainty, not about a lack of attention.8
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V. Discussion

The consequences of misinformed beliefs
The objective of my line of research is to understand both the reasons we

become certain and the subsequent beliefs that we hold as a consequence. Beliefs form
the basis of our decisions and actions, and thus misinformed beliefs can have serious
consequences when they lead to unjustified actions.

On December 4, 2016, a 28-year-old man from North Carolina arrived at a pizza
restaurant in Washington D.C. and fired three gunshots which struck the restaurant’s
walls, a desk, and a door. He was certain that the restaurant was holding child sex
slaves in their basement and wanted to confirm for himself they were there. He believed
he was going to be a hero who was about to rescue children from captivity. There were
no such children, however, and he was soon arrested by police. The shooter had
previously seen online materials promoting a conspiracy theory which claimed the
Democratic party was linked to a pedophilia ring that involved Satanic ritual abuse and
held meetings at the pizza restaurant. Viewing content from internet message boards
and social media left the gunman with a sense of certainty that was sufficiently high
enough that he loaded a rifle and drove 360 miles to the pizza restaurant.

Humans’ metacognitive abilities to reflect on the accuracy of beliefs is central to
efficiently building accurate models of the world. When certainty is appropriately high, it
can give us assurances we are pursuing a correct course of action. When it is
appropriately low, it can signal we need to change course. Yet, this dissertation contains
empirical data detailing cases where certainty is miscalibrated to reality. If certainty is
inappropriately low, we may miss out on learning valuable new information. If certainty
is inappropriately high, we run the risk of acting on potentially dangerous
misinformation.

Feedback primarily determines certainty
Chapter 2 presented experiments in which 38 behavioral and model-based

predictors were tested in order to uncover which predicted certainty the best. Across
four experiments in a high-level concept learning task, participants consistently used
behavioral predictors over model predictors, indicating certainty was being derived from
a fast, but error-prone, heuristic over a more costly but accurate model-based
calculation. More specifically, the best predictor was the participant’s accuracy in the
last several trials. While this might be a decent guidepost as to whether or not you
should be certain in the aggregate, given that chance in the task was 50%, a participant
who possessed an incorrect concept, but happened to answer correctly over several
trials, would be highly certain about a falsehood. Similarly, if they possessed the correct
concept, but made errors and answered incorrectly, their certainty would be much lower
than it should be. Importantly, these results show that although humans are primarily
using heuristics, model-based predictors are making unique contributions to certainty.
Thus, individuals are using many different lines of evidence when forming certainty, not
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simply one. Overall these findings point to a complex, but flawed, process of certainty
formation which is likely a major source of inaccurate beliefs.

While certainty in low-level perceptual domains has been found to be well
calibrated to reality (Barthelmé & Mamassian, 2009; Sanders et al., 2016), the findings
detailed in Chapter 2 point to a miscalibration in high-level domains. Given this domain
sensitivity, it is likely that Chapter 2’s specific pattern of results only applies to high-level
domains. Future work should examine these predictors in a variety of low-level and
high-level domains in order to better understand how certainty is formed across different
domains. Modifying low-level and high-level tasks might also result in shifts to
behavioral/model predictor preferences. In other words, it may be possible to rely
primarily on heuristics in a low-level task or on model-based predictors in a high-level
task by modifying task features. These findings could result in interventions in order to
make our sense of certainty more reliable. It is also unknown whether these findings are
developmentally stable, or whether children will form their certainty through different
means. A developmentally interesting finding would be if children were found to use
model-based predictors over behavioral predictors. This would suggest that more
objective predictors are innate while heuristics are learned strategies.

Humans underestimate conceptual diversity
Shared lexical concepts are a fundamental necessity for communication between

people. These concepts facilitate the establishment of common ground and provide
shortcuts when exchanging information. The common assumption is that except in
cases of novel concepts, humans possess shared concepts. Two experiments detailed
in Chapter 3 provide estimates that around a dozen distinct concepts exist in the
population for common animals and famous politicians. Convergent estimates were
obtained via two different paradigms, a similarity task, and a feature classification task.
When asked to guess the number of people that agreed with their judgements,
individuals tended to display a strong egocentric bias, vastly overestimating the number
of people that agreed with them. Together, these findings suggest that concepts across
the population are diverse, and that people are largely unaware of this diversity. This
has implications for the way we communicate, teach, and learn. If individuals possess
sufficiently different concepts, but believe they share common-ground,
miscommunication may occur. This may not be a large issue when discussing what to
eat for lunch, but may have larger implications when legislating laws which affect
millions of individuals.

Future work should examine the reasons and ways in which concepts differ.
Chapter 3’s experiments only tested English speakers, and therefore, the amount of
conceptual diversity is still unknown in other languages. The reasons for variations
within a language should also be tested, with particular attention paid to regional, ethnic,
socio-economic, and educational differences. Lastly, although there is evidence that
these differences propagate upward to the level of societal disagreements (e.g. equity,
abortion, justice), future studies should examine precisely how conceptual differences
result in miscommunication and disagreement.



56
Misinformed beliefs are widely held

Past research into misinformed beliefs have focused on individual differences
that correlate with conspiratorial thinking. When seeking out new information, dogmatic
individuals tend to search less than non-dogmatic individuals (Schultz et al., 2020).
Agreeableness and conscientiousness both appear to be modestly negatively correlated
with belief in conspiracies, while distress, immodesty, impulsivity, and negative affect
are all positively correlated (Bowes et al., 2021). Conservatives tend to not only believe
in specific conspiracies more often than liberals, but also tend to endorse conspiratorial
worldviews more often (van der Linden et al., 2021). Lower cognitive ability has also
been found to be positively linked with false memories about a fake news event (Murphy
et al., 2019).

These studies have mostly focused on a relatively narrow set of conspiratorial
beliefs. In contrast, the evidence presented in Chapter 4 not only assessed 30 vastly
different misinformed beliefs, but also assessed people’s strength of certainty in those
beliefs. The finding that the median individual believes 9 out of 30 misinformed beliefs
demonstrates that there is not a subpopulation of particularly gullible conspiracy
enthusiasts, but rather that the unusual subpopulation are the evidence-based skeptics
who believe 0 out of 30 and number 47 individuals out of our sample of 1,717. Although
these beliefs are pervasive, they are also often weakly held, with only a small
percentage being rated as 100% likely, and most rated at 50% likely or less. Thus,
although these beliefs are widely held, individuals overwhelmingly possess some
degree of uncertainty about them. These findings have implications for science
education and public policy. It may not be possible to “eradicate” a particular
misinformed belief by developing a vaccine, but lowering certainty may be the next best
thing.

Future research should focus on the complexity of the beliefs cataloged in
Chapter 4. Examining higher-order beliefs could better uncover relationships between
misinformed beliefs and lead to a better understanding of how these beliefs form. An
individual who holds the general belief that governments hide the truth from the public
might be more likely to believe certain beliefs such as 9/11 was an inside job and that
Epstein was murdered. Similarly, investigating demographic predictors for classes of
misinformed beliefs could help public policy efforts to minimize the spread of harmful
beliefs by providing evidence on what demographics to focus on. Lastly, additional work
examining the relationship between the certainty of a belief and efforts to “debunk” a
misinformed belief would help understand why certain individuals seem particularly
resistant to belief revision.

Implications
My work investigated people’s sense of certainty in multiple high-level domains to

uncover how certainty is derived and how it can lead to misinformed beliefs. This was
done via behavioral experimentation and computational modeling for abstract concept
learning, word meanings, and high-level theories about the world. This thesis presented
evidence that adults tend to use simplified heuristics over more accurate calculations
when calculating their certainty, which likely leads to unjustifiably high confidence in
particular situations in which feedback is concentrated.
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Misinformed beliefs can lead to hurtful and often dangerous behaviors. These

beliefs are likely formed from exposure to information ecosystems which result in an
unearned sense of certainty. Forms of concentrated, repeated feedback such as media
outlets which broadcast that the Democratic party is holding paedophilic satanic rituals
in the basement of a pizza restaurant will inevitably lead listeners to high amounts of
certainty about the veracity of the claims. Because it is more difficult to shift beliefs once
they are firmly held, it becomes far more important that we prevent misinformed beliefs
from taking hold in the first place. With the proliferation of internet access and the ability
to “do your own research”, access to unreliable information sources with ulterior motives
is more impactful than ever. Epistemically naive individuals can be led to science-based
knowledge or they can be led to Pizzagate.
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Appendix II-A: Experiment 1 Methods

552 participants were recruited on Amazon Mechanical Turk. Participants clicked
to consent to the study before viewing the task instructions. The instructions explained
that the participant’s task was to discern the meaning of a word that represented a
specific concept. Participants practiced on eight practice trials to ensure that they
understood the task before proceeding to the actual study. For the experimental trials
(see Figure 2-1), participants saw one of ten conditions, each composed of 24 trials.
During each trial, participants guessed whether the object fit the undisclosed concept by
responding “yes” or “no”. Participants also reported whether or not they were certain
about the meaning of the novel word9. At the end of each trial, participants received
correct/incorrect feedback about their guess.

Each condition represented one unique concept of varying complexity (see Table
2-1), such that each participant made judgments for only one concept. Following the
Shepard et al. (1961) experiment, stimuli spanned three binary dimensions: shape
(square or triangle), color (red or green), and size (large or small). Regardless of
condition, participants saw the same set of eight images (which exhaustively spanned
the space) in blocks of three. The ordering of the images was randomized
between-conditions.

Concepts 1, and 5-9 (Table 2-1) are identical to concepts used in both the
Shepard et al. (1961) and Feldman (2000) experiments. These concepts spanned the
concept family consisting of three features and four positive examples. Additional
conditions were added to test for potential differences between operators.

In order to address whether learners felt as certain as is justified by the data, we
used an ideal learning model to determine how confident a learner should have been.
Goodman et al. (2008) used a similar model to formalize concept learning in a
probabilistic setting, in which notions of certainty and uncertainty (e.g. Shannon, 1948)
were well defined. Our implementation was developed using Python and the Language
Of Thought library, LOTlib (Piantadosi, 2014). The model defines a probabilistic
context-free grammar (PCFG) with a set of primitives: red, green, triangle, square,
large, small, and logical operations (shown in Table 2-7).10 The PCFG serves as a prior
over hypotheses and specifies an infinite hypothesis space. This prior is uniform over
each basic rule in the grammar. Due to the multiplication of compositional rules, a
simplicity prior arises as more complex rules have lower probability.

While PCFG models might limit the inferences and generalizations we are able to
make regarding human cognition, they are also the current state of the art when it
comes to predicting accuracy in terms of concept learning. Since the prediction of
human accuracy by the model is an essential prerequisite to evaluating the performance
of the models in predicting human certainty, PCFG models are the best candidates. In
other words, although other models may be better at predicting certainty, they will likely
be worse at predicting accuracy and thus, extremely limited in their inferences about
human cognition.

10 In order to test additional model-based predictors we also ran our model using a simplified grammar.
See Table 2-8.

9 We also ran a version of Experiment 1 which measured certainty on a continuous scale. These results
followed the same pattern. See Appendix D.
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To establish a tractable hypothesis space, the model drew 1,000,000 samples

from the posterior distribution of hypotheses (i.e., hypotheses scored by simplicity and
fit to the data) using tree-regeneration Metropolis-Hastings (Goodman et al., 2008) and
stored the best 1,000 hypotheses for each trial. The model incorporated parameters for
the noise in the data (alpha) and a power law memory decay on the likelihood of
previous data11 (beta), best fit (on participant accuracy using a grid search) as 0.64 and
0 respectively.

Additionally, logarithmic transformations are common in psychophysics (Stevens,
1957) and therefore, many of our predictors were considered in their standard form, as
well as under a logarithmic transformation, yielding a total of 38 models. Some
predictors used a log(1 + x) transformation to avoid problems with zeroes.

11 Weighting the log likelihood of an example n back by (n + 1) − β.
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Appendix II-B: Experiment 2 Methods

577 participants on Amazon Mechanical Turk went through two practice trials
before the experimental trial. The experimental trial tested participants on a single
concept and displayed all eight images seen in a block of Experiment 1. Each image
was labeled with a “yes” or “no” to indicate whether it was part of the concept (see
Figure 2-5). The participant answered whether they were certain what the concept was.
They then saw the same set of eight images (randomized by condition) and were asked
to label each as being a part of the concept (see Figure 2-6). Like Experiment 1, our
model incorporated noise (alpha) and memory decay (beta) parameters, best fit as 0.65
and 0.06 respectively.
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Appendix II-C: Experiment 3 Methods

536 participants on Amazon Mechanical Turk practiced on eight practice trials to
ensure that they understood the task before proceeding to the actual study. For the
experimental trials, participants saw one of ten conditions, each composed of 24 trials.
Each condition tested for a different concept with varying complexity (see Table 2-1).

Like Experiment 1 and 2, our model incorporated parameters for the noise in the
data (alpha) and a power law memory decay on the likelihood of previous data (beta),
best fit as 0.66 and 0 respectively.
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Appendix II-D: Experiment 4

Motivation

Experiments 1-3 used a binary certainty judgement. In order to test whether our
model predictors were failing due to finer certainty gradations being collapsed in our
data, we ran a fourth experiment which used a continuous certainty scale.

Methods

Experiment 4 was a variant of Experiment 1 in which instead of asking “Are you
certain that you know what Daxxy means?” we asked “How certain are you that you
know what Daxxy means?”. Participants selected their certainty on a one to five scale
with one labeled as “Not at all certain” and 5 labeled as “Very certain”. 535 participants
on Amazon Mechanical Turk practiced on eight practice trials to ensure that they
understood the task before proceeding to the actual study. For the experimental trials,
participants saw one of ten conditions, each composed of 24 trials. Each condition
tested for a different concept with varying complexity (see Table 2-1).

Our model incorporated parameters for the noise in the data (alpha) and a power
law memory decay on the likelihood of previous data (beta), best fit as 0.66 and 0
respectively.

Results

Figure 2-14 shows participants’ certainty and accuracy across trials in each
condition for Experiment 4. Unsurprisingly, participant accuracies were similar to
Experiment 1 and 3. We also examined the relationship between the continuous
certainty scores in Experiment 4 and the binary certainty scores in Experiment 1 (see
Figure 2-15) and found that the continuous certainty scores strongly predict the binary
scores ( = .93, β = 4.575, z = 6.556, p < .001).𝑅2

For Experiment 4, we assessed our predictors with linear mixed effect models fit
by maximum likelihood with random subject and condition effects. The model fit for
accuracy in Experiment 4 is significant, ( = .13, β = .170, t = 36.18, p < .001; Figure𝑅2

2-16).
Figure 2-17 shows certainty (y-axis) over many key predictors of certainty

(x-axis). Again, a perfect model would have data points lying along the line y = x with
very little residual variance. Once again, Local Accuracy predictors trend in this direction
and have low residual variance. Model-based predictors look similar to Experiment 1,
with many having large amounts of residual variance.

Table 2-13 shows the full model results for Experiment 4, sorted by AIC and
giving the performance of each model in predicting certainty ratings.12 Behavioral
predictors once again overwhelmingly outperform the model-based predictors. Similar to
Experiment 1, Local Accuracy 5 Back Current is the best predictor at 77% of variance

12 See Table 2-14 for simplified grammar predictors
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explained, and the best model-based predictor is Domain Entropy which accounts for
69% of the variance.

Discussion

Experiment 4 provides evidence that using either a binary or continuous scale of
certainty does not impact the performance of the predictors. Using a continuous scale,
behavioral predictors still outperformed model-based predictors.
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Table 2-4: Predictors of certainty rankings for DNF grammar in Experiment 1 when
analyzing data by participant vs. as a group. (behavioral predictors in gray).
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Table 2-5. Predictors of certainty for Experiment 1 (behavioral predictors in gray).
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Table 2-6: Predictors of certainty for Experiment 1 using simplified grammar (behavioral
predictors in gray).
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Table 2-7. Disjunctive normal form grammar used to generate logical rules in the
idealized learning model. The variable x is the current object.



83

Table 2-8: Simplified grammar
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Table 2-9. Predictors of certainty for Experiment 2 (behavioral predictors in gray).
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Figure 2-7: Key model fits for Experiment 1.
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Table 2-10: Predictors of certainty for Experiment 2 using simplified grammar
(behavioral predictors in gray).
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Figure 2-8. Mean certainty (hollow circles) and mean accuracy (filled circles) across
concepts for Experiment 2. Chance is 50% across all conditions if guesses are made
randomly.
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Figure 2-9: Model vs. behavioral accuracy for Experiment 2.
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Figure 2-10. Key model fits for Experiment 2.
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Table 2-11. Predictors of certainty for Experiment 3 (behavioral predictors in gray)
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Table 2-12: Predictors of certainty for Experiment 3 using simplified grammar
(behavioral predictors in gray)
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Figure 2-11: Mean certainty (hollow circles) and mean accuracy (filled circles) across
concepts for Experiment 3. Chance is 50% across all conditions if guesses are made
randomly.



93

Figure 2-12. Model vs. behavioral accuracy for Experiment 3.



94

Figure 2-13: Key model fits for Experiment 3.
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Table 2-13. Predictors of certainty for Experiment 4 (behavioral predictors in gray).
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Table 2-14: Predictors of certainty for Experiment 4 using simplified grammar
(behavioral predictors in gray).
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Figure 2-14. Mean certainty (hollow circles) and mean accuracy (filled circles) across
concepts for Experiment 4. Chance is 50% across all conditions if guesses are made
randomly.
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Figure 2-15: Continuous certainty (Experiment 4) and binary certainty (Experiment 1)
grouped by trial.
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Figure 2-16. Model vs. behavioral accuracy for Experiment 4.
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Figure 2-17: Key model fits for Experiment 4.
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Appendix III-A: Robustness to 𝛂

In order to assess the robustness of our general results to the value of , we alsoα
ran our model using alpha values of half ( = .08, reliability = 93%) and double ( = .32,α α
reliability = 80%) the value used in the main results. As Figure 3-8 and Figure 3-9 show,
results are not substantially different, providing evidence that our main results are not
sensitive to participant reliability. Specifically, our 87% observed reliability yielded 4 - 10
concepts for animals and 7 - 12 for political figures. Increasing reliability to 93% resulted
in 5 - 9 for animals and 7 - 11 for politicians. Decreasing reliability to 80% resulted in
3 - 12 for animals and 7 - 12 for politicians.
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Figure 3-6: Participant reliability scores for each concept in Experiment 1. Boxes
show the median 50% reliability quantiles. Median reliabilities for concepts range from
88.8% to 94.4%.
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Figure 3-7: Convergence of the clustering model was assessed with multiple
runs. Chains converge between 10,000 and 50,000 iterations.
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Figure 3-8: Estimated number of concepts (y-axis) depending on the number of
people sampled (x-axis) for = .08, reliability = 93%. Purple data points are the numberα
of clusters for the maximum a posteriori clustering. Orange data points are the number
of clusters for the MAP clustering with a uniform prior. Blue data points are a lower
bound on the number of concepts estimated by the ecological estimator using the MAP
clustering.
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Figure 3-9: Estimated number of concepts (y-axis) depending on the number of
people sampled (x-axis) for = .32, reliability = 80%. Purple data points are the numberα
of clusters for the maximum a posteriori clustering. Orange data points are the number
of clusters for the MAP clustering with a uniform prior. Blue data points are a lower
bound on the number of concepts estimated by the ecological estimator using the MAP
clustering.
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Figure 3-10: Experiment 2 - Estimated number of concepts (y-axis) depending
on the number of people sampled (x-axis). Purple data points are the number of clusters
for the maximum a posteriori clustering. Blue data points are a lower bound on the
number of concepts estimated by the ecological estimator using the MAP clustering.




