
largest absolute correlations with the label. How-
ever, he or she verifies the correlations (with the
label) on the holdout set and uses only those
variables whose correlation agrees in sign with
the correlation on the training set and for which
both correlations are larger than some thresh-
old in absolute value. The analyst then creates a
simple linear threshold classifier on the selected
variables using only the signs of the correlations
of the selected variables. A final test evaluates
the classification accuracy of the classifier on the
holdout set. Full details of the analyst’s algorithm
can be found in section 3 of (17).
In our first experiment, each attribute is drawn

independently from thenormal distributionN(0,1),
andwe choose the class label y∈f−1; 1g uniform-
ly at random so that there is no correlation
between the data point and its label. We chose
n = 10,000 and d= 10,000 and varied the number
of selected variables k. In this scenario no clas-
sifier can achieve true accuracy better than 50%.
Nevertheless, reusing a standard holdout results
in reported accuracy of >63 ± 0.4% for k= 500 on
both the training set and the holdout set. The
average and standard deviation of results ob-
tained from 100 independent executions of the
experiment are plotted in Fig. 1A, which also
includes the accuracy of the classifier on another
fresh data set of size n drawn from the same
distribution.We then executed the same algorithm
with our reusable holdout. The algorithm Thresh-
oldout was invoked with T = 0.04 and t = 0.01,
which explains why the accuracy of the classi-
fier reported by Thresholdout is off by up to 0.04
whenever the accuracy on the holdout set is
within 0.04 of the accuracy on the training set.
Thresholdout prevents the algorithm from over-
fitting to the holdout set and gives a valid esti-
mate of classifier accuracy. In Fig. 1B, we plot the
accuracy of the classifier as reported by Thresh-
oldout. In addition, in fig. S2 we include a plot of
the actual accuracy of the produced classifier on the
holdout set.
In our second experiment, the class labels are

correlated with some of the variables. As before,
the label is randomly chosen from {–1,1} and
each of the attributes is drawn fromN(0,1), aside
from 20 attributes drawn from N(y·0.06,1), where
y is the class label. We execute the same algo-
rithm on this data with both the standard hold-
out and Thresholdout and plot the results in
Fig. 2. Our experiment shows that when using
the reusable holdout, the algorithm still finds a
good classifier while preventing overfitting.
Overfitting to the standard holdout set arises in

our experiment because the analyst reuses the
holdout after using it to measure the correlation
of single attributes. We first note that neither
cross-validation nor bootstrap resolve this issue.
If we used either of thesemethods to validate the
correlations, overfitting would still arise as a result
of using the same data for training and valida-
tion (of the final classifier). It is tempting to rec-
ommend other solutions to the specific problem
on which we based our experiment. Indeed, a
substantial number of methods in the statistics
literature deal with inference for fixed two-step

procedures in which the first step is variable se-
lection [see (5) for examples]. Our experiment
demonstrates that even in such simple and
standard settings, our method avoids false dis-
covery without the need to use a specialized
procedure and, of course, extendsmore broadly.
More importantly, the reusable holdout gives the
analyst a general and principled method to per-
form multiple validation steps where previously
the only known safe approach was to collect a
fresh holdout set each time a function depends
on the outcomes of previous validations.
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ENVIRONMENTAL SCIENCE

Profiling risk and sustainability
in coastal deltas of the world
Z. D. Tessler,1* C. J. Vörösmarty,1,2 M. Grossberg,3 I. Gladkova,3 H. Aizenman,3

J. P. M. Syvitski,4 E. Foufoula-Georgiou5

Deltas are highly sensitive to increasing risks arising from local human activities, land
subsidence, regional water management, global sea-level rise, and climate extremes.
We quantified changing flood risk due to extreme events using an integrated set of
global environmental, geophysical, and social indicators. Although risks are distributed
across all levels of economic development, wealthy countries effectively limit their
present-day threat by gross domestic product–enabled infrastructure and coastal defense
investments. In an energy-constrained future, such protections will probably prove to be
unsustainable, raising relative risks by four to eight times in the Mississippi and Rhine
deltas and by one-and-a-half to four times in the Chao Phraya and Yangtze deltas.
The current emphasis on short-term solutions for the world’s deltas will greatly constrain
options for designing sustainable solutions in the long term.

D
eltas present a quintessential challenge for
humans amid global environmental change.
Home to some of the world’s largest urban
areas, deltas are also highly dynamic land-
forms shaped by fluvial and coastal flooding

(1–3). Human activities at the local and regional
scales can perturb the water and sedimentary
dynamics necessary to maintain a delta’s integrity,
increasing the rate of relative sea-level rise (RSLR,
the combination of land subsidence and offshore
sea-level rise) and increasing flood risk (4, 5).

Delta sediments naturally compact over time,
requiring new sediment fluxes from the upstream
river network and deposition on the delta surface
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to maintain land elevation (4). Upstream dams and
reservoirs trap sediment (6), and soil conservation
practices can reduce the mobilization of sediment
(7). River channelization on deltas inhibits depo-
sitional processes (8), whereas urban construction
and groundwater extraction can accelerate sedi-
ment compaction (9, 10). Land subsidence is com-

pounded by rising sea levels and the changing
intensity and distribution of extreme events re-
lated to climate change (11, 12). Policies aimed at
reducing the apparent levels of risk often employ
costly engineering solutions that may be inherently
unsustainable (13–15). A framework to enable
comparative risk assessment for deltas across

the globe that specifically accounts for the dual
natural and anthropogenic forces shaping these
systems is a necessary precursor for strategies to
improve their long-term resilience (16).
We present a systematic global-scale assess-

ment of the changing risk profiles of coastal del-
tas. Most manifestations of risk are the immediate

SCIENCE sciencemag.org 7 AUGUST 2015 • VOL 349 ISSUE 6248 639

Fig. 1. Risk trends for deltas worldwide. (A) Map showing the 48 deltas included in this study. (B) Phase diagram of contemporary risk assessment results,
showing the three component proxy indices used to estimate per-capita R'. Color density represents a delta’s overall risk trend.Quadrant III deltas have predominantly
low R', whereas quadrant II deltas have high R'. (C) Estimates of the relative rate of change in risk, or risk trend, for each delta due to increasing exposure associated
with RSLR.The Krishna and Ganges-Brahmaputra deltas, despite being only moderately susceptible to short-term hazardous events, are increasingly at risk because
of high rates of RSLR and high socioeconomic vulnerability. Ganges-Brahmaputra is abbreviated to “Ganges” in some panels for brevity.
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consequences of extreme events (3), such as fluvial
and coastal flooding, that act over short time scales.
Overall risk, however, is conditioned over longer
periods by anthropogenically modified geomorphic
processes such as changes in sediment supply, dep-
osition, and compaction—which increase land
subsidence and RSLR—and by the socioeconomic
capability to prepare for and mitigate exposure
to hazardous conditions (17). Focusing on interdelta
differences in risk, we used sufficiently mature
global data sets that depict factors with well-
documented impacts on delta conditions, together
with established methods for spatial integration
of qualitatively distinct data types (18–20). We
focused on 48 major coastal deltas across a wide
range of climate, biome, and socioeconomic con-
texts (Fig. 1A), with an estimated current combined
population of over 340 million (21) (see the sup-
plementary materials). At less direct risk are
an additional 140 million people living within
25 km of these deltas, who, together with 3.5
billion people in upstream catchment basins,
produce additional human impacts. We defined
risk (R), or expected loss, to a delta population
as a product of hazard (H), exposure (E), and
vulnerability (V): R = HEV (17, 22, 23). Hazard
is the probability of a damage-producing event,
defined as fluvial or coastal flooding. Exposure
is the expected number of people exposed to
hazardous conditions for a given event, and
vulnerability is the harm or loss caused by the
exposure (eq. S1).

Previous direct estimates of H, E, and V have
been carried out in a number of local and re-
gional studies (23–25) using high-resolution
data sets that are not currently available at the
global scale. Exposure data at the necessary scales
exist for select deltas; however, for global-scale
analysis, the rate of change in exposure, E', is
a more tractable measure for interdelta com-
parison. By reducing the relative elevation of a
delta, RSLR results in increased population ex-
posure to a given hazard and thus increased
expected loss. The rate of change in expected
loss (R') due to anthropogenic RSLR is termed
the risk trend: R' = HE'V (see the supplemen-
tary materials).
We estimated H, E', and V for each delta, using

empirical indices derived from global data sets.
The Hazardous Event Index (HEI) is a proxy for
hazard, based on empirical indicators of the prob-
ability and intensity of delta flood events. E' was
estimated using the Anthropogenic Condition-
ing Index (ACI), which is built from measures of
long-term anthropogenic drivers of RSLR (fig.
S1). Vulnerability, which is strongly dependent
on socioeconomic conditions in the delta (17, 22),
was estimated as a function of per-capita gross
domestic product (GDP), aggregate GDP, and gov-
ernment effectiveness. High GDP provides the fi-
nancial capacity to make vulnerability-reducing
investments from household to delta scales, when
effective governments are present to leverage
aggregate wealth to reduce vulnerability. An

index representing the absence of this capacity,
the Investment Deficit Index (IDI), was used as a
proxy for V. The risk component estimates de-
rived from the ACI, HEI, and IDI indices were
used to estimate the risk trend resulting from
RSLR (eq. S7).
We mapped the 48 deltas into a risk space de-

fined by each delta’s specific anthropogenic,
geophysical, and socioeconomic characteristics
(Fig. 1). These estimates were made in an index
space, comparing delta systems with each other
on a relative per-capita basis. In quadrant I,
which contains deltas with low ACI and high
HEI scores, the Limpopo delta stands out be-
cause of its high vulnerability associated with a
lack of infrastructure investment capacity. Most
of the high-R' deltas fell in quadrant II, including
the Krishna delta, which had the highest R'. In
quadrant IV, characterized by high ACI and low to
moderate HEI scores, the Ganges-Brahmaputra
delta had a high R' due to high vulnerability.
In contrast, quadrant III contains deltas with
low R' due to both low ACI and low HEI scores,
including the high-latitude Yukon, Lena, and
Mackenzie deltas.
The Mississippi, Rhine, and Tone deltas had ACI

and HEI scores similar to those of the Brahmani
and Godavari deltas (between 0.4 and 0.7), but
they had far lower IDI scores (<0.2). Their re-
sulting risk levels were much more stable, with
risk trends among the lowest of all the deltas in
the study. Although the results presented here
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Fig. 2. Estimated future change in exposure and vulnerability for selected
deltas. The vertical axis, showing one scenario of change in vulnerability, is
the difference between the 100-year future Investment Deficit Index, IDIF, and
the current index, IDI. The origin represents current conditions. Both axes
indicate a change over time for the two risk components: Increases in expo-
sure are taken as proportional to the current rate of change, and increases in

vulnerability are based on the difference between current and future esti-
mates. Future change in risk is either associated predominately with increases
in exposure (red) or increases in vulnerability (orange). Several delta systems
(e.g., Mississippi, Rhine, and Yangtze) are at risk both from RSLR, leading to
increased exposure to flooding, and from reduced effectiveness of risk
reduction strategies that may not be sustainable on the century scale.
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are for per-capita risk, the Ganges-Brahmaputra
system had, by far, the greatest rate of change in
risk when aggregating across delta popula-
tions. The Ganges-Brahmaputra had the second
highest R' on a per-capita basis, and at more
than 100 million people, it has more than twice
the population of the Nile, the second most
populous delta.
A low IDI, indicating a high capacity for in-

vestment in risk-reducing technologies, is the
primary reason that several wealthy, developed
deltas today have relatively low risk trends. For
instance, after catastrophic flooding of the Rhine
delta in 1953, the Dutch Delta Works were con-
structed to reduce future flood risk, using a
network of storm-surge barriers, dams, levees,
and other engineered structures. A long his-
tory of land subsidence, however, has left parts
of this delta 6 m below sea level (26). Modern-
ization and improvement costs across the Nether-
lands are projected to reach €1 billion to €2

billion per annum over the next century (27). The
long-term sustainability of this and similar risk-
reducing investments elsewhere has been called
into question because of their heavy reliance on
external financial and energy subsidies (14).
To examine the sensitivity of delta risk to

reduced infrastructure investment benefits, we
considered a future scenario in which infrastruc-
ture costs have increased. For our analysis, we
used an increase in energy prices as a likely
reason for a rise in the cost of infrastructure,
but factors such as relative increases in the costs
of labor and material or rising interest rates
would have similar impacts on infrastructure
cost. We modeled this scenario by adjusting IDI
scores:We reduced GDP indicator weights based
on 100-year projections of energy price growth in
excess of GDP (28) (see the supplementary ma-
terials), reflecting expectations of higher costs for
a given level of risk reduction. Estimates of
future vulnerability increased for all deltas under

this scenario (Fig. 2) but were greatest for sys-
tems with high GDP. The Mississippi, Rhine,
Han, Chao Phraya, and Yangtze deltas had the
greatest increases in vulnerability under this sce-
nario, although others were also strongly affected,
including the Parana, Rhone, and Pearl deltas.
Deltas in low-GDP regions, such as the Irrawaddy,
Tana, and Fly, were the least sensitive to these
potential future changes. These and other less
economically developed deltas were instead more
sensitive to future risk increases stemming from
increased exposure to hazardous events.
A given increase in vulnerability will not af-

fect risk trends in all deltas equally; rather, its
effect will be related to each delta’s ACI and HEI
scores. We started with each system’s uncompen-
sated R' based on anthropogenic and geophysical
considerations alone (Fig. 3A). When consider-
ing contemporary vulnerability estimates (Fig.
3B), the wealthy but otherwise at-risk deltas such
as the Rhine, Mississippi, and Han benefited

SCIENCE sciencemag.org 7 AUGUST 2015 • VOL 349 ISSUE 6248 641

Fig. 3. Current and future investment impacts on risk-trend rankings. (A) Contemporary risk trend when considering only the anthropogenic and
geophysical setting of each delta. (B) When also considering relative vulnerability, which is low for deltas that can make risk-reducing investments, the
overall contemporary risk trend changes, in many cases dramatically. The Mississippi and Rhine deltas show substantially reduced risk. (C) Current risk-
reduction strategies become more expensive and less sustainable in a more energy-constrained future scenario (14). In the long term, deltas that today
are protected by substantial compensating infrastructure are likely to see their risk profiles approach those in (A).
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substantially from their capacity to sustain engi-
neering and infrastructure investments. Low-GDP
deltas that are not able to make risk-reduction
investments moved to higher risk rankings.
The largest increases in R' ranks occurred for
the Limpopo and Irrawaddy deltas. Improved
economic development and associated vulner-
ability reductions would result in the largest
decreases in risk in these deltas, akin to a transition
from Fig. 3B to Fig. 3A. In the future vulnera-
bility scenario (Fig. 3C), where investment ca-
pacity less effectively reduces risk trends, R' ranks
for high-GDP deltas reverted back toward ex-
pectations based on geophysical hazards and
anthropogenic change alone. Although contem-
porary estimates of risk trends were highest
in South Asia (Fig. 4A), future increases in R',
relative to current estimates, were greatest in
the Rhine, Mississippi, Han, Tone, Chao Phraya,
and Yangtze deltas (Fig. 4B). These systems
are highly stressed by anthropogenic activ-

ities and regularly contend with hazardous events,
so future increases in vulnerability will have a
disproportionately large risk impact relative to
other deltas. Management strategies that ad-
dress the drivers of RSLR, particularly sediment
supply and deposition, will be a core deter-
minant of long-term sustainability over the next
century.
Future changes in the intensity and distrib-

ution of hazardous events, which are highly un-
certain at the local scale, are also an important
driver of future risk trends. Broad evidence sug-
gests that climate change is affecting tropical
cyclone intensity and river flooding (11, 29),
global sea-level rise is accelerating (12, 30), and
local sea-level rise may be substantially different
than the global mean in some coastal areas be-
cause of regional patterns of ocean heat uptake
and glacial isostatic adjustment (30). Land sub-
sidence, taken as constant over time in our study,
is also likely to change as future global population

growth occurs predominantly in urban areas (31),
driving further anthropogenic change in already
stressed deltas. Growth in population, urban-
ization, and economic development is leading to
increased interest in expanding hydropower in-
frastructure, which is already proliferating across
many river systems (32, 33). Expanding hydro-
power infrastructure will reduce sediment trans-
port and the discharge capacity of river systems
that are essential for nourishing deltas (6). Delta
shorelines, for instance, are highly sensitive to
the balance between sediment supply and abso-
lute wave energy (4).
Future environmental, geophysical, and socie-

tal changes will reposition, in many cases consid-
erably, most of the world’s deltas into a future
space of elevated risk. Although potential geophys-
ical changes require additional research at the
regional and local scales, our study demonstrates
that economic ability and decisions to deploy
engineering solutions will be key factors in
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Fig. 4. Contemporary risk trend and future risk-trend growth. (A) High contemporary values of R' are distributed globally among the highly populated
deltas of Southeast Asia and deltas in developing parts of Africa and the Middle East. (B) Estimated 50-year growth in the future risk trend, R'F, relative to the
current R'. The highest relative increases in R'F are in the Rhine, Mississippi, Han, Tone, and Chao Phraya deltas, all systems where current risk is reduced
through investments enabled by high GDP and energy costs that are affordable relative to the future scenario.
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determining how sustainable deltas become
in the long term. Investments that manage
the drivers of RSLR, rather than its symptoms,
will be necessary to sustain deltas. Although the
time horizons are long, acting now is essential,
given that rehabilitation will be difficult (if not
impossible) to achieve once ground is lost to
rising seas.
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HUMORAL IMMUNITY

T cell help controls the speed of the
cell cycle in germinal center B cells
Alexander D. Gitlin,1 Christian T. Mayer,1 Thiago Y. Oliveira,1 Ziv Shulman,1

Mathew J. K. Jones,2 Amnon Koren,4 Michel C. Nussenzweig1,3*

The germinal center (GC) is a microanatomical compartment wherein high-affinity
antibody-producing B cells are selectively expanded. B cells proliferate and mutate their
antibody genes in the dark zone (DZ) of the GC and are then selected by T cells in the
light zone (LZ) on the basis of affinity. Here, we show that T cell help regulates the speed
of cell cycle phase transitions and DNA replication of GC B cells. Genome sequencing and
single-molecule analyses revealed that T cell help shortens S phase by regulating
replication fork progression, while preserving the relative order of replication origin
activation. Thus, high-affinity GC B cells are selected by a mechanism that involves
prolonged dwell time in the DZ where selected cells undergo accelerated cell cycles.

A
ntibodies elicited during T cell–dependent
immune responses undergo substantial in-
creases in affinity over time (1). This phenom-
enon, known as affinity maturation, takes
place in the germinal center (GC), where

antigen-specific B cells diversify their antibodies
by somatic hypermutation (2) and undergo selec-
tive clonal expansion (3–7). Together, these events
are essential to the development of effective
antibody responses.
GC B cells bearing antibody variants with

higher affinity are selectively expanded during
iterative rounds of migration between the dark
zone (DZ), where they proliferate and hyper-
mutate, and the light zone (LZ), where they cap-
ture antigen displayed on the surface of follicular
dendritic cells (8–11). By binding and internaliz-
ing more antigen in the LZ, high-affinity clones
present more peptide–major histocompatibility
complex II (MHCII) and thereby elicit greater help
from CD4+ T follicular helper cells (11, 12). The
magnitude of T cell help determines how long
B cells reside in the DZ, which provides selected
cells more time to proliferate and expand in be-
tween rounds of competition in the LZ (13).
Whether this mechanism alone explains how high-
affinity B cells are selected remains unknown.

To explore additional mechanisms that could
contribute to selection, we used an adoptive
transfer model in which antigen presentation by
a subset of GC B cells can be acutely and se-
lectively increased (11, 14, 15). B cells carrying a
knock-in antigen receptor specific for the hapten
4-hydroxy-3-nitrophenylacetyl (NP) (B1-8hi) were
transferred into ovalbumin (OVA)–primed wild-
typemice thatwere boostedwithNP-OVA.Whereas
the majority of transferred B1-8hi B cells were
DEC205−/− (~85%), a subset (~15%) of the B1-8hi

B cells were DEC205+/+ (10, 16). DEC205 is an
endocytic receptor expressed by GC B cells that
delivers antigen to MHCII processing compart-
ments (14). Targeting DEC205 with an antibody
that is fused at its C terminus toOVA (aDEC–OVA),
but not the irrelevant control antigenPlasmodium
falciparum circumsporozoite protein (aDEC-CS)
(17), increases the amount of cognate peptide–
MHCIIdisplayed on the surface ofB1-8hiDEC205+/+

GC B cells, which leads to their selective expan-
sion (11–13).
To determine whether B cells receiving high

levels of T cell help show a specific change in
gene expression, we compared DZ cells in the G1

phase of the cell cycle from aDEC-OVA– and con-
trol aDEC-CS–treated GCs, using a fluorescent
ubiquitination-based cell cycle indicator (Fuccitg)
(fig. S1) (18, 19). RNA sequencing revealed that
T cell–mediated selection produced a statistically
significant increase in gene expression programs
associated with the cell cycle, metabolism (includ-
ing the metabolism of nucleotides), and genes
downstream of c-Myc and the E2F transcription
factors (Fig. 1, A and B, and fig. S2). Finding an
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