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Executive Summary

Investigating the dynamics behind the likelihood of vehicle crashes has been a
focal research point in the transportation safety field for many years. However,
the abundance of data in today’s world generates opportunities for deeper
comprehension of the various parameters affecting crash frequency. This study
incorporates data from many different sources including geocoded police-reported
crash data, curbside infrastructure data and socio-demographic data for the city
of San Francisco, CA.

Specifically, we analyzed 5 years of crashes (2013–2017) occurring at the
segment level of roads using explanatory variables pertaining to mode-specific
traffic volume estimates, curbside infrastructure (e.g., on-street parking, bicycle
lanes), block-level transportation network company pick-up/drop-off estimates,
and socio-economic data (e.g., percentage of zero vehicle households). We also
excluded segments that were less relevant to this research, such as, freeways,
parks, private and pedestrian streets.

In order to handle over-dispersion in crash data, we estimated negative bino-
mial (NB) models. In addition, to capture additional unobserved heterogeneity,
two-component finite mixture negative mixture models were formulated, one
with fixed priors (FMNB) and another with varying priors (GFMNB).

Findings revealed that the GFMNB model provides a better statistical fit
than the FMNB and NB model in terms of AIC and log likelihood, while the
NB model outperformed both mixture models in terms of BIC due to model
complexity of the latter. Among the significant variables, TNC pick-ups/drop-
offs and duration of parked vehicles were positively associated with segment-level
crashes.
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Chapter 1

Introduction

The surge in demand for shared-mobility services has made the presence of
transportation network companies (TNCs), such as Uber and Lyft, ubiquitous
across California in a short span of time. In 2016, TNCs were serving 15% of
all intra-San Francisco vehicle trips, which was equal to 12 times the number
of taxi trips [5], while in New York in 2016, TNC ridership equaled that of
yellow cab. This number went on to double annually between 2014 and 2016
[29]. Given their rapid rise, cities currently lack metrics to assess their impact
on the transportation system and appropriately regulate and plan for them
moving forward. The need for effective system-level policy guidance to address
operational and safety concerns is most noticeable at roadside curbs, which are
in constant demand from a variety of multimodal road users, TNC and non-TNC
drivers, buses, cyclists, delivery vehicles, etc. The unfettered consumption of
this shared resource leads to a tragedy of commons, and hinders a city’s ability
to develop a safe system on which no one can be severely or fatality injured on.

In order to improve the operational effectiveness of curbside usage, several
efforts are being made across Unites States. In 2011, San Francisco Municipal
Transportation Authority (SFMTA) launched SFpark, a smart parking initiative,
which uses thousands of computerized meters to reduce cruising through demand-
responsive pricing and thereby increasing parking availability and improving the
operational efficiency of SFMTA’s buses and trolleys [8].Zalewski, Buckley, and
Weinberger [35] provide a summary of various policy solutions being adopted by
cities manage curbside demand, ranging from smart pricing, curbcuts, loading
zone restrictions, bike share systems on roadbeds, parklets, etc. However, the
impact of these curbside management solutions on segment-level safety is not
well understood.

This study aims to quantify the crash risk along the city block segment level
as a function of different infrastructure and traffic-related parameters. What
distinguishes this study from previous work in the field of safety is the adjustment
to the recently established urban transportation reality dominated by TNCs.
More specifically, in order to explore the impact of TNC pick-ups/drop-offs and
detailed vehicle turnovers and parking spaces, a case study is undertaken for the
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city of San Francisco, combining crash data along street segments with curbside
infrastructure and TNC mobility data to parse out how crash occurrence varies
across block segments.

1.1 Literature Review

1.1.1 Work on Segment Level Modeling

Lord and Mannering [19] underline the methodological issues arising in crash
frequency analysis. They emphasize upon potential over-dispersion (and on occa-
sion under-dispersion) in crash data, which if present restrict the application of
Poisson models as they assume variance and mean to be equal. In contrast, Neg-
ative Binomial (or else Poisson Gamma) models can account for over-dispersion
although they can be adversely influenced by the low sample-mean and small
sample size bias.

Negative binomial models are more commonly used to estimate or predict
the number of crashes based on information such as geometric, demographic, or
infrastructural characteristics. Sawalha and Sayed [28] investigated accident pre-
diction models for estimating the safety performance of urban arterial roadways
in the Greater Vancouver Regional District, British Columbia, Canada. Using
negative binomial error structure models to account for overdispersion in their
data, they concluded the variables with significant effect on accident occurrence
were section length, traffic volume, unsignalized intersection density, driveway
density, pedestrian crosswalk density, number of traffic lanes, type of median
and type of land use. The study estimated that conversion from an undivided
arterial to one with a raised-curb median could result, on average, in a 10%
accident reduction. Das and Abdel-Aty [10] observed that higher ADT increases
crash frequency while sensitivity analysis revealed ADT as the major factor for
the variation in crash counts on urban arterials. Absence of on-street parking
can lead to injuries of lower severity as the fixed road side objects are replaced
with the much softer parked vehicles. Park et al. [26] showed that the addition
of a bike lane on urban arterials significantly improves safety, specifically for
bike crashes.

Crash frequency modeling should also properly account for unobserved hetero-
geneity [19]. Unobserved reasons that cannot be attributed to observable features
and characteristics of the road conditions may affect crash outcomes. When
evaluating the safety of road segments, prior identification of underlying groups
of segments with similar dynamics and response can significantly improve the
analysis. The employment of models with fixed parameters for crash modeling
is an example of not accounting for unobserved heterogeneity. Constraining
the effect of an exploratory variable to be the same for all observations, the
resulting parameter estimates may be biased and the inferences drawn erroneous.
Unobserved heterogeneity can also be referred to as omitted variable bias when
the unobserved characteristics are correlated with a predictor that is included in
a model.
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One way to account for unobserved effects like spatio-temporal considerations
are random effect models [16]. Another approach to tackle the problem of
unobserved heterogeneity is modeling with random parameters which allows each
estimated parameter of the model to vary across each individual observation in
the dataset [3, 4]. Alarifi et al. [2] explored multilevel Poison-lognormal (MPLN)
joint models with spatial corridor and sub-corridor random effects terms and
MPLN joint models with random parameters, varying across corridors and sub
corridors. In terms of the roadway segments-related variables, AADT, driveway
density, one-way roads versus two-way roads and roadway classification (principal
arterial versus others) were found to be significant. Although such models can
significantly improve the statistical fit, random-parameter models are complex
and sometimes hard to estimate.

A third method often used to account for unobserved heterogeneity is finite
mixture modeling which assumes the presence of latent groups of subjects re-
sponding in similar manner to the explanatory variables within a given population
[33]. Finite mixture models are semi-parametric, and therefore do not require any
distributional assumptions for the mixing variable[11]. A generalization of the
finite mixture models with the parameterization of prior component probability
distribution was presented by Zou, Zhang, and Lord [36].

1.1.2 Accounting for Intersection Influence Areas

The influence area of an intersection has been defined in many different ways
throughout literature. Wang et al. [32] collected data for a sample of 177
four-legged signalized intersections from the state of Florida and showed that
variable safety influence areas for intersection approaches improve safety analysis
over the 250 ft boundary which is the default used in many states. In Bindra,
Ivan, and Jonsson [6], the authors consider intersection related crashes those
occurring within 250 ft of the center of the intersection on any leg. Finally,
another approach [9] examined intersection safety along state roads in Utah by
estimating intersection safety influence areas based on the stopping sight distance
for an average approach speed of 40 mph (around 500 ft). Yet,investigating
the influence area of 35 hazardous intersections results showed that a 100-ft
radius was applicable to about 25 intersections and only two of the intersections
appeared to truly have a 500-ft radius of influence area, pointing out that the
use of a large radius tended to overestimate the crash risk.
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Chapter 2

Segment Level Modeling

2.1 Modeling Methodology

2.1.1 Negative Binomial model

Given the non-negative integer nature of crashes, negative binomial (NB) models
are extensively used for crash frequency modeling. Using the negative binomial
distribution also accounts for the over-dispersion in the data generated by
unobserved heterogeneity. The negative binomial regression arises from a two-
stage model for the distribution of number of crashes, ni, which follows a Poisson
distribution with the mean λi, and,λi follows the Gamma distribution with shape
parameter φ and scale parameter, µi/φ:

ni|λi ∼Poisson (λi) , (2.1)

λi ∼Gamma (φ, µi/φ) (2.2)

p(ni) =

∫ ∞
0

p(ni|λi)f(λi)dλi (2.3)

=
Γ(φ+ ni)

Γ (φ) Γ (ni + 1)

(
φ

φ+ µi

)φ(
µi

φ+ µi

)ni

. (2.4)

Herein, Γ() is the Gamma function and f(ni) is the marginal probability of
observing ni crashes. Given a vector of explanatory variables, Xi, the mean,
E(ni), and variance, VAR(ni), for a given segment, i, can be expressed as:

ENB(ni) =µi = exp(βXi) (2.5)

VARNB(ni) =

(
1 +

µi
φ

)
µi (2.6)

In order to correct for regression-to-the-mean, an Empirical Bayes (EB)
adjustment is typically applied to observed crash frequencies. The EB method
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combines a site’s historical crash data with the expected number of crashes esti-
mated based on the site characteristics (e.g., µi = exp(βXi) The EB-adjustment
is estimated using the posterior mean, whose distribution is informed by the
Bayes’ rule:

p(λi|ni) =
p(ni, λi)

p(ni)
∝ p(ni|λi)p(λi) (2.7)

Using the posterior distribution information, the EB-adjusted crash frequency
is estimated as follows:

ENB(λi|ni) =

(
µi

µi + φ

)
ni +

(
φ

µi + φ

)
µi. (2.8)

Finally, a metric similar to EB that is also considered for prioritization is
the potential for safety improvement (PSI), which is defined as excess expected
average crash frequency with EB adjustment, and is calculated as follows:

PSINB,i = ENB(λi|ni)− µi (2.9)

2.1.2 Generalized Finite Mixture Negative Binomial model

A finite mixture negative binomial model utilizes a finite number (K) of unob-
served categories/latent classes to capture the unobserved heterogeneity in crash
data [13, 24]. The crash count at a location, ni, follows the Poisson distribution
with the mean crash rate λi, and the λ in turn follows a K-component finite
mixture of gamma distribution [37]:

ni|λi ∼ Poisson(λi), (2.10)

p(λi) =

K∑
k=1

πikpk(λik), (2.11)

where, πik = πk(γ, zi) is the prior probability of component k. For the
component weights πik, it holds that

K∑
k=1

πik =1

πik >0,∀k.

The marginal distribution of ni follows a mixture of NB distributions with
probability density function, mean and variance defined as follows:
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p(ni|µi,ΘΘΘ) =

K∑
k=1

πik

(
Γ(φk + ni)

Γ(φk)Γ(ni + 1)

(
φk

φk + µik

)φk
(

µik
φk + µik

)ni
)

(2.12)

E(ni|Xi,ΘΘΘ) =

K∑
k=1

πikµik (2.13)

V AR(ni|Xi,ΘΘΘ) =E(ni|Xi,ΘΘΘ) + (

K∑
k=1

πikµ
2
ik(1 +

1

φk
)− E(ni|Xi,ΘΘΘ)2) (2.14)

where µik is the mean value of crash frequency of component k, modeled as
µik = exp(βkXi) and βk is a vector of the regression coefficients for component
k.

The weight πk(γ, z) indicates the a-priori probability for an observation to
come from this component and may depend on further variables. In this work,
the prior probability in modeled using multinomial/binary logit framework using
explanatory variables z and coefficients γ. ΘΘΘ =

{
(β1, ..., βK), (φ1, ..., φK), γ

}
is

the vector of all parameters.
The posterior probability of an observation, i belong to component, k is given

by:

wik = πikpk(ni)/p(ni), (2.15)

where, pk(ni) represents marginal probability of observing ni crashes conditional
on the observation belonging to component k.

The EB estimate for the GFMNB model is given by:

EGFMNB(λi|ni) =

K∑
k=1

wik

{(
µik

µik + φk

)
ni +

(
φk

µik + φk

)
µik

}
(2.16)

(2.17)

Two different functions for the derivation of the priors are implemented in
the context of this research. One for constant component weights without a
class membership model (FMNB),i.e., πik = πk and one for a finite mixture
model with a class membership model estimated using multinomial logit models
(GFMNB).

In this paper, the finite mixture model was estimated using a expectation
maximization (EM) algorithn, and implemented using the R package, flexmix
[15]. For a more detailed derivation of the EB estimates for a GFMNB approach,
the readers are encouraged to refer to Zou et al. [37].
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2.2 Data Collection and Processing

This study incorporated data from various sources aiming to achieve a deep
understanding of crash dynamics at the city block level.

2.2.1 Crash data

Geocoded crash data were provided for this study by the San Francisco Depart-
ment of Public Health for 2013–2017. Given the aim of this study is to explore
the in-block safety related dynamics, crashes related to the main intersection
area were removed from the database. In addition, a 12 meter buffer around
the main intersection area was also removed to avoid the inclusion of crashes
occurring at crosswalks. While we acknowledge that this represents a relatively
small influence area for an intersection, it allows a majority of the block to be
analyzed, especially since bus stops and parking spaces near the edge of the
block would otherwise get excluded. .

2.2.2 Traffic volumes

The motor vehicle AADT and peak hour bicycle volume estimates were obtained
from the San Francisco County Transportation Authority. The counts represent
typical weekday travel calibrated for 2015 using San Francisco’s CHained Activity
Modeling Process (SF-CHAMP) model [21].

2.2.3 Curbside infrastructure data

The parking data utilized for the analysis apart from the availability and type
of parking spots also included the parking meter transactions. This variable can
reveal crash risk and constitutes a surrogate measure for traffic demand in the
area. Moreover, the analysis incorporated geocoded transit stop and traffic signs
and signals data, as well as bicycle infrastructure and speed limit data.

2.2.4 TNC pick-up/drop-off

This study incorporated pick-ups and drop-offs data from Uber and Lyft APIs
using data collected by the San Francisco County Transportation Authority [5]
at the Transportation Analysis Zone (TAZ) level from several weeks during Fall
2016. In the absence of more fine-grained data with yearly activity of pick-ups
and drop-offs, we assume that these metrics are approximately representative for
the entire time period of the study. In particular, the core assumption is that
the relative level of TNC activity remained the same during the time period,
as a uniform growth in TNC activity across the entire city would be equivalent
to a constant factor adjustment, and would not affect the estimation process.
Furthermore, to restrict the scope of the analysis to locations with meaningful
TNC activity, the analysis was restricted to ”Transportation Analysis Zones”
(TAZs) with at least 40 daily pick-ups and drop-offs.
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2.2.5 On-street parking data

The shapefiles of all the on-street parking meters (made available through San
Francisco’s open data initiative) were utilized for this study. Furthermore,
individual parking transactions for 2018–2019 were also obtained from the open
data repository. In order to explore the influence of vehicle turnover at meter
parking space on traffic safety, it is assumed that the relative trends for the
average daily transactions at the parking meters remained the same during the
study period of 2013–2017.

2.2.6 Socio-economic data

The Smart Location Database [27] summarizes more than 90 different indica-
tors associated with the built environment and location efficiency. Indicators
include density of development, diversity of land use, street network design, and
accessibility to destinations as well as various demographic and employment
statistics.

Collectively, the data sources discussed above provide a variety of traffic,
infrastructure and demographic variables to analyze segment-level crashes. Table
2.1 provide a summary of the primary variables considered in the study.

Table 2.1: Summary statistics of variables considered

Variable Min q1 x̃ x̄ q3 Max

No. of collisions (2013-2017) 0.00 0.00 0.00 0.42 0.00 17.00

Length 0.17 57.20 86.02 99.57 134.93 1242.03
AADT 0.00 240.60 1592.56 4433.23 5465.72 62287.93

Peak hour bicycle volumes 0.00 3.82 27.04 189.02 129.51 7392.41

Median presence (0/1) 0.00 0.00 0.00 0.10 0.00 1.00

No. of lanes 0.00 2.00 2.00 2.20 2.00 6.00

On-street parking spaces 0.00 0.00 0.00 3.09 0.00 110.00

Fraction of streets that are local 0.00 0.00 1.00 0.71 1.00 1.00

Presence of bicycle network 0.00 0.00 0.00 0.20 0.00 1.00

No. of bus stops 0.00 0.00 0.00 0.30 0.00 6.00

Presence of bus lines 0.00 0.00 0.00 0.35 1.00 1.00

Adjoining intersections, signal-
ized

0.00 0.00 0.00 0.37 1.00 1.00

Adjoining intersections, 4-
legged

0.00 0.00 0.00 0.38 1.00 1.00

Off-street parking presence
(0/1)

0.00 0.00 0.00 0.09 0.00 1.00

Presence of regional transit sta-
tions

0.00 0.00 0.00 0.12 0.00 1.00

Ave. daily park meter transac-
tion (in 1000 minutes), multi-
space

0.00 0.00 0.00 0.09 0.00 42.62

Ave. daily park meter transac-
tion (in 1000 minutes), single-
space

0.00 0.00 0.00 0.18 0.00 14.13

Speed limit ≥ 35mph 0.00 0.00 0.00 0.03 0.00 1.00
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One-way street (0/1) 0.00 0.00 0.00 0.18 0.00 1.00

Ave. daily TNC activity 3.68 5.51 6.07 6.03 6.59 7.79

Percentage of zero vehicle
households

0.00 0.12 0.23 0.29 0.41 0.98

There were cases of segments with missing speed limit data and some cases of
segments which were impertinent to this research (e.g., street types, like freeways,
parks, private and pedestrian streets), all of which were removed. The final
dataset included 8213 segments 2.1.

Figure 2.1: Illustration of road segments in scope along with their associated
number of collisions per segment

2.3 Model estimation results and findings

Table 2.2 provides a summary of different model selection criteria (Log-Likelihood
(LL), Akaike Informaiton Criterion (AIC) and Bayesian Information Criterion
(BIC)) for three nested negative binomial models. The first NB considered only
segment-level models, while the second NB model also incorporated adjoining
intersection information. The third NB model alternative incorporated TAZ-
level variables on TNC pick-ups/drop-offs and demographic information such
as percentage of households with no vehicles. Based on all the three likelihood-
based model selection criteria, we conclude that the third model best explains
the segment-level crashes among the NB model specifications. The Superior
performance of models including adjoining intersection variables can potentially
be attributed to the smaller influence area chosen for excluding main intersection-
related crashes. Subsequently, the improved performance from the inclusion of
macroscopic variables (which are discussed in more detail below) is consistent with
more focused research efforts that have demonstrated the value of macroscopic
explanatory variables in microscopic crash models (see [18]).
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Table 2.2: Alternative negative binomial model specifications

ID Model Type
Number of
Parameters

LL AIC BIC

1 NB with segment variables only 17 -5588.0 11212.1 11338.3
2 NB with segment and adjoining intersec-

tion variables
19 -5518.8 11077.6 11217.9

3 NB with segment, intersection, and TAZ-
level TNC and demographic variables

21 -5472.5 10988.9 11143.2

Once the final NB model was identified, two-component FMNB and GFMNB
models were estimated using the same variables as in the NB model. Since the
finite mixture model estimation using EM converges to a local minimum, we
estimated FMNB and GFMNB models for 20 iterations with random initial
states. The coefficients associated with the best NB model, along with those
for the two-component FMNB and GFMNB models are shown in Table 2.3.
The coefficients for the class membership model, estimated using a binary logit
model, are shown in 2.4. Finally, a summary of the component-level crash, built
environment and demographic characteristics are shown in Table 2.6.

Table 2.3: Statistical models

Variables NB FMNB GFMNB
Comp. 1 Comp. 2 Comp. 1 Comp. 2

Intercept −7.94∗∗∗ −8.68∗∗∗ −7.83∗∗∗ −9.09∗∗∗ −4.38∗∗∗

(0.31) (0.65) (0.71) (0.59) (0.87)

Log (Segment length) 0.87∗∗∗ 0.90∗∗∗ 0.88∗∗∗ 0.91∗∗∗ 0.79∗∗∗

(0.04) (0.09) (0.09) (0.07) (0.09)

Log (AADT) 0.07∗∗∗ 0.09∗∗∗ 0.06. 0.07∗∗∗ −0.01
(0.01) (0.02) (0.03) (0.01) (0.04)

Log (Peak-hour bicycle vol-
ume)

0.09∗∗∗ −0.04∗ 0.37∗∗∗ −0.00 0.08.

(0.01) (0.02) (0.04) (0.01) (0.04)

Presence of median −0.26∗∗∗ −0.37∗ −0.31. −0.41∗ −0.28∗

(0.07) (0.18) (0.17) (0.18) (0.11)

Number of lanes 0.16∗∗∗ 0.14∗∗ 0.17∗∗ 0.33∗∗∗ −0.01
(0.03) (0.05) (0.06) (0.05) (0.05)

Local street (YES/NO) −0.38∗∗∗ −0.39∗∗ −0.32∗ −0.31∗∗ −0.30∗∗

(0.06) (0.12) (0.13) (0.10) (0.10)

Within bicycle network 0.24∗∗∗ 0.06 0.14 0.09 0.01
(0.05) (0.11) (0.11) (0.11) (0.09)

Number of bus stops 0.09∗∗ 0.00 0.15∗ −0.02 0.17∗∗∗

13



Variables NB FMNB GFMNB
Comp. 1 Comp. 2 Comp. 1 Comp. 2

(0.03) (0.06) (0.06) (0.05) (0.05)

Presence of bus lines 0.17∗∗ 0.28∗ 0.07 0.40∗∗∗ −0.02
(0.05) (0.12) (0.13) (0.11) (0.10)

Presence of regional transit
station

0.37∗∗∗ 0.45∗∗∗ 0.24∗ 0.45∗∗∗ 0.27∗∗

(0.05) (0.10) (0.12) (0.10) (0.09)

Number of on-street park-
ing meters

0.03∗∗∗ 0.02∗ 0.08∗∗∗ 0.03∗∗∗ 0.02∗∗

(0.00) (0.01) (0.01) (0.01) (0.01)

Presence of off-street park-
ing

0.18∗∗∗ 0.22∗ 0.12 0.33∗∗∗ 0.06
(0.06) (0.10) (0.13) (0.09) (0.09)

Mean duration of parking
meter transactions (multi-
space)

−0.08∗∗∗ −0.05 −0.28∗∗∗ −0.31∗∗ −0.06∗

(0.02) (0.03) (0.05) (0.11) (0.03)

Mean duration of parking
meter transactions (single-
space)

−0.23∗∗∗ −0.02 −1.34∗∗∗ −0.26∗ −0.24∗

(0.05) (0.05) (0.27) (0.11) (0.11)

Speed limit (≥ 35 mph) 0.42∗∗∗ 1.08∗∗∗ −0.36 0.95∗∗∗ −0.10
(0.10) (0.21) (0.29) (0.19) (0.16)

One-way street −0.20∗∗∗ −0.30∗ −0.03 −0.05 −0.25∗

(0.06) (0.12) (0.16) (0.11) (0.10)

Adjoining intersections,
signalized

0.50∗∗∗ 0.60∗∗∗ 0.34∗ 0.51∗∗∗ 0.23∗

(0.06) (0.15) (0.14) (0.09) (0.10)

Adjoining intersections, 4-
legged

−0.10∗ 0.21∗ −0.39∗∗∗ 0.11 −0.31∗∗∗

(0.04) (0.10) (0.11) (0.08) (0.08)

Log (Daily average TNC
pick-ups/drop-offs)

0.21∗∗∗ 0.29∗∗∗ 0.10 0.27∗∗∗ 0.03
(0.03) (0.08) (0.08) (0.06) (0.08)

Percentage of zero vehicle
households

0.67∗∗∗ 1.23∗∗∗ −0.16 0.61∗∗ 0.82∗∗∗

(0.11) (0.24) (0.33) (0.21) (0.21)

φ 2.46 9.40 4.72 10.88 3.62

Class Membership − 52.0% 48.0% 52.0% 48.0%

AIC 10988.92 10898.42 10876.93

BIC 11143.22 11214.03 11234.62

Log Likelihood −5472.46 -5404.21 -5387.47
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05,.p < 0.1
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Table 2.4: Class membership model for GFMNB component 2

Variables GFMNB Comp. 2
(Intercept) −15.13∗∗∗

(4.10)
Log (Segment length) 0.84∗

(0.39)
Log (AADT) 0.45∗∗

(0.14)
Log (Peak-hour bicycle volume) 1.19∗∗∗

(0.21)
Presence of bus lines −0.20

(0.44)
Log (Daily average TNCpick-ups/drop-offs) 0.27

(0.35)
Percentage of zero vehi-cle households −1.11

(1.00)
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

2.4 Interpretation of coefficients

2.4.1 Segment-level variables

Within each of the NB models, segment length has been modeled as a variable
instead of as an offset term. Considering that the coefficient of logarithm of
segment length is significantly different from 1 (given the associated standard
error) indicates that the assumption of a constant length offset may not have
been appropriate.

As expected, log(AADT) was significant and positively associated with
crashes in the NB model. In comparison, component 2 of GFMNB model was
not found AADT to be statistically significant. A potential reason for the lack
of signficance of AADT for component 2 could be that, since the component
membership model indicates a significant, positive coefficient for AADT, the
posterior probabilities are more likely to yield a larger weight for higher traffic
volumes and a lower weight for the smaller values of AADT (see figure 2.2(a)). As
a result, the component-specific conditional NB model estimation may not find
the log-transformation of traffic volumes as a significant variable. In comparison,
in the absence of varying prior weights for FMNB model, the weights associated
with component 2 are closer to 0.5 for a large subset of the population (figure
2.2(b)).

A similar effect is also observed in the case of bicycle volumes, wherein the
coefficients for component 2 bicycle volumes are deemed to be significant only at
the 90% confidence interval, even though the component 2 observes higher peak
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((a)) GFMNB Component 2 posterior probability vs Log(AADT)

((b)) FMNB Component 2 posterior probability vs Log(AADT)

Figure 2.2: Comparison of AADT distribution as a function of component 2’s
posterior probability

hour bicycle traffic on average than in component 1 (see Table 2.6). However, in
the case of NB model, the bicycle volumes yields a significant, positive coefficient.

The presence of median is negatively associated with crashes in the NB
model as well as 3 out of 4 component models. This finding is consistent with
prior studies which have analyzed the improvements in safety associated with
constructing medians along undivided arterial segments [28, 20].

Number of lanes are positively associated with number of crashes. An increase
in the number of lanes can imply increase in sideswipe collisions.

Since a significant proportion of the segments being analyzed correspond to
local streets that cater to residential population and attract less traffic, it is
expected to observe this variable to negatively associated with number of crashes
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across all models.
In the case of the presence of bicycle infrastructure, the NB model yields a

positive coefficient, which can imply the presence of heavier bicycle traffic but
also greater conflicts/interactions with parked and overtaking vehicles, depending
on the type of bicycle facilities installed. It is also possible that within the NB
model, the presence of bicycle facilities might be an endogenous variable. In
comparison, given the type of the segmentation of the population, the impact of
the presence of bicycle infrastructure on the total number number of crashes is
not observed to be statistically significant.

The presence of bus lines and stops are indicative of greater mixed traffic
conditions which may result in increased complexity of driving/biking, thus
contributing towards more collisions [20]. The differences across the components
may again be due to the differences in the types of segments within each
component. For instance, component 2 of GFMNB indicates a high proportion
of segments with bus lines. As a result, presence of bus stops may indicate more
stop-and-go conditions and interactions of buses with turning vehicles/cyclists.
In comparison, component 1 may be associated with segments where bus volumes
may not be consistently high. As a result, the presence of bus lines along a
segment may contribute towards the increase in complexity of driving/riding
conditions.

Regional transit stations such as Bay Area Rapid Transit (BART) stations,
represent centers of high activity which attracts pedestrian traffic [30], taxi
pick-ups/drop-offs [34], etc. As a result, their presence is expected to induce
increased amounts of chaos within the traffic stream, which may result in the
positive association with increased number of crashes.

The models include two types of parking variables. The first set of variables
capture the numbers of metered on-street parking and off-street parking spaces
along the segment. Parking spot exhibits a positive associated with the number
of crashes. Other research has also found on-street parking to be significant
when analyzing segment-level crashes and have argued the presence of on-street
parking to induce mid-block crossing for pedestrians [23], dooring-related crashes
for cyclists[22], and limiting lines of sight near intersections and along horizontal
curves[7]. Off-street parking interacts with traffic streams differently, as the
behaviour of vehicles emerging from and to such spots is likely to be similar to
presence of driveways.

In addition to static variables such as the number of parking spaces, our
models also found the dynamic parking variables such as the mean duration
of the parked vehicles to be significant and negatively associated with number
of crashes. A smaller mean duration implies that the parking space is also
associated with a higher number of transactions. As a result, one expects parked
vehicles to be moving in and out of the traffic stream, which can lead to an
increase in traffic conflicts with other motor vehicles and bicyclists. The difference
between single-space and multi-space parking spots is to differentiate between
the quantity of transactions as multi-space parking spots handle transactions for
more than one parking spot at a time.

The presence of higher speed limits are associated with an increased number
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of crashes. Within the component specific NB models, component 1 models
for FMNB and GFMNB observe a similar trend, whereas component 2 models
do not show an significant impact of speed limits of 35 mph or greater. The
differential impact of higher speed limits can be attributed to the nature of
segments associated with each component. Table 2.5 indicates the average
number of collisions along the segments with speed limits greater than or equal
to 35 mph. The findings indicate that even though the mean number of collisions
in FMNB component 1 are fewer than in component 2, the segments with higher
speed limits that belong to component 2 have more collisions than those that
belong to component 1. In comparison, while the average number of collisions
for the higher speed segments in GFMNB components are similar, segments in
component 2 of GFMNB observe twice as many crashes as those in component
1. As a result, the presence of higher speed limits among higher crash segments
in general does not lead to an increased impact. Table 2.5 also shows that the
AADT for the high speed segments across the various components are similar.

Table 2.5: Differences in segments with speed limits ≥ 35 mph across components

Variables FMNB GFMNB
Comp. 1 Comp. 2 Comp. 1 Comp. 2

Collisions along segments
with speed limits ≥ 35
mph (mean)

1.4 0.6 1.0 1.0

AADT along segments
with speed limits ≥ 35
mph (mean)

17399.0 17926.0 18701.0 16432.0

Mean number of collisions
along all segments with
posterior probability ¿0.5

0.3 0.7 0.3 0.6

Presence of one-way street segments were negatively associated with crashes.
This finding is also consistent with some studies evaluating all collisions in
the traffic safety literature. For instance, Eisele et al. [12] found conversion of
frontage road segments from two-way to one-way streets in Texas to reduce
rear-end and angle collisions. Greibe [14] analyzed collisions urban roads from
Danish municipalities and observed one-way streets to have smaller crash rates
than two-way streets, although the sample size of one-way streets in the dataset
was around only 2%. For specific crash types, such as bicycle and pedestrian
crashes, some crash prediction models have observed one-way streets to be
associated with an increase in collisions possibly due to the absence of median
refuge islands for crossing pedestrians[31] and an increase in parking spaces along
one-way streets [22], which have been controlled for in our study.
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2.4.2 Intersection-related variables

The presence of signalized intersections along either end of the segments is found
to be associated with an increase in the number of crashes. In comparison,
the presence of 4-legged intersections is negatively associated with a decrease
in collisions. Given that we excluded only crashes associated with the main
intersection region and smaller influence around it, the presence of the signalized
intersection may contribute towards an increase in rear-end collisions near
the edges of the segment [17]. In comparison, while crashes at three-legged
intersections are associated with fewer collisions than four-legged intersections
because of the presence of fewer conflict points [1], it is possible that the presence
of fewer conflict points may lead to increased entry/exit speeds for the adjoining
segments, which may adversely affect safety.

2.4.3 Macroscopic variables

The presence of high TNC-related pick-ups/drop-offs in the vicinity of a segment
is positively associated with crashes. This finding may be attributed to the
associated increase in driving complexity (lane changes, stopping/slow-down)
for pick-ups and drop-offs. Alternatively, pick-up and drop-offs also contribute
to an increased in traffic in the region which may not be captured within the
AADT variable.

The presence of more zero vehicle households may imply the reliance of
alternate forms of transportation such as transit, ride-sharing, cycling. As a
result, an increased heterogeneity in the traffic mix may explain the positive
association with number of crashes.

2.5 Model selection criteria

While the GFMNB model has the best log-likelihood and AIC, it underperforms
on BIC which imposes a higher penalty on increased number of parameters. Since
the finite mixture modeling approach used in the paper assumed an identical
NB model specification within each model, the use of overlapping explanatory
variables in the prior class membership model led to some explanatory variables
such as AADT, peak hour bicycle volumes not being significant in either one
or both model components. Thus, re-estimating the finite mixture models with
asymmetric explanatory variables may lead to an improvement in BIC and AIC
of the finite mixture models.

2.6 Differences in component characteristics

Based on the differences in the dominant characteristics of each component
within FMNB and GFMNB (Table 2.6), we can summarize the model component
2 of FMNB and GFMNB to model relatively high crash presence sites. Sites
with higher posterior component 2 probability (> 0.5) are also associated with
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Table 2.6: Summary statistics of component characteristics

Variables FMNB GFMNB
Comp. 1 Comp. 2 Comp. 1 Comp. 2

Total collisions (mean) 0.3 0.7 0.2 0.6

Total collisions (variance) 0.6 1.8 0.6 1.4

Bicycle collisions (mean) 0.06 0.23 0.03 0.19

% freeways 1.3% 1.2% 0.7% 0.2%

% major streets 8.3% 13.4% 7.1% 12.8%

% secondary streets 16.1% 22.0% 10.9% 25.9%

% local streets 74.4% 63.4% 81.3% 59.3%

Peak hour bicycle volumes 167.8 246.8 65.5 340.3

% cycle network 0.2 0.2 0.1 0.3

Number of bus stops (mean) 0.28 0.35 0.17 0.46

Presence of bus line 33.0% 40.0% 13.0% 61.0%

% speed limit (≥ 35 mph) 1.9% 4.4% 2.6% 2.6%

% one-way 16.3% 22.0% 11.7% 25.3%

TNC pick-ups/drop-offs
(mean)

513.7 647.7 450.0 671.8

AADT (mean) 4205.4 5053.2 3695.0 5337.7

Population (mean) 1451.7 1512.2 1431.5 1512.6

Employment density (mean) 2777.8 3701.8 1781.4 4551.0

% of zero vehicle households 27.2% 33.9% 20.8% 39.0%

Mean duration of parking
meter transactions (multi-
space)

65.6 141.1 43.8 137.5

Mean duration of parking
meter transactions (single-
space)

143.3 286.5 100.0 282.0

Mean segment length 92.5 118.9 112.7 83.5
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higher AADT, bicycle volumes, parking activity and TNC pick-ups and drop-offs.
These differences are amplified in the case of the GFMNB model since the class
membership model skews the posterior probability distributions even further.

Figure 2.3: GFMNB Component 2 posterior probability

A key point of differentiation for the FMNB and GFMNB components are the
distribution of segment lengths. GFMNB component 2 favours shorter blocks due
to the inclusion of segment length as variable in the class membership model. As
a result, there are significant spatial differences in the sites with higher posterior
probabilities for component 2. Figures 2.4 and 2.3 show spatial distribution of
the class membership probability. We can see that GFMNB component 2 sites
are predominantly located in downtown San Francisco where employment density
is the highest, as also revealed in Table 2.6. In comparison, the high probability
locations for FMNB component 2 appear to be more spatially dispersed.

2.7 Impact on Network Screening

Figure 2.5 shows the correlation between the EB estimates of the NB, FMNB and
GFMNB models. The EB estimates show high degree of correlation, implying
that the different models may produce high overlaps when prioritizing sites
for investigation when using EB as the ranking criteria. The high correlation
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Figure 2.4: FMNB Component 2 posterior probability
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can also be attributed to using 5 years of crash data, which reduces the issues
associated with regression-to-the-mean.

Figure 2.5: Correlation between the EB estimates across models

Figure 2.6 shows the correlation between the PSI estimates of the different
models. In comparison to the EB estimates, the PSI estimates demonstrate
much lower correlations, especially between GFMNB and other models. In the
absence of a ground truth, it is beyond the scope of this paper to ascertain
the causes of the underlying differences. However, a simulation study with
known ground truths may be useful in providing insights about the implication
of GFMNB/FMNB/NB models on network screening, similar to the study
conducted by Park, Lord, and Hart [25].

2.8 Sub-segment modeling

2.8.1 Definition of sub-segments

The definition of the spatial unit of observation in our approach is based on
intersection influence areas as well as vehicle stopping times. Either due to red
phasing of a traffic signal or traffic congestion at the intersection ahead, drivers
are forced to decelerate from the desired speed, sometimes come to a stop position
and accelerate afterwards. The location at which the deceleration of vehicle
starts till the location of the vehicle at the acceleration ends are considered as
stretch of intersection influence zone. According to these landmarks, segments
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Figure 2.6: Correlation between the PSI estimates across models

are split to in and out parts, as a function of the segment’s length and the posted
speed limit.

2.8.2 Discussion and Future Work

FMNB and GFMNB models provide a distribution-free method to incorporate
unobserved heterogeneity in crash prediction models, by assuming that the
underlying crash generation mechanism comprises of different sub-populations.
To this end, the differences observed in the component-specific models illustrates
the possibility that finite mixture models may capture different safety regimes
which can collectively explain the overall crash data. Given the mixed evidence
from the model selection criteria, further refinements to the proposed FMNB
and GFMNB models are desirable so as to improve the performance of the finite
mixture model relative to the NB model. To further extend the finite mixture
modeling approach, the use of random parameter models and spatial correlation
structures should be explored in future research.

With regards to the variables explored, this study demonstrates the the
improved model fit from incorporating dynamic parking data and TNC pick-
up/drop-off information in segment-level traffic safety assessment. The results
also reveal that when designing for curb usage in urban areas, safety considera-
tions must be considered in addition to competing mobility needs of different
road users. Since the results of the estimated models do not imply any causality
in the variable considered, future studies must be consider more detailed safety
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assessments of curbside infrastructure such as temporary pick-up/drop-off load-
ing zones, no-parking zones when compared to segments with on-street parking.
Similarly, as cities explore flexible pricing mechanisms to maximize parking
available or reduce cruising [8], the impact of the frequent vehicle turnovers
on safety needs to be investigated further. The study also does not provide
any definitive assessment of the impact of TNC pick-ups/drop-offs on safety.
Depending on the substitution patterns of modes used, an increase in TNC
activity can lead to an increase in traffic volumes, which in turn can increase
the expected number of crashes. However, the dynamics of passenger loading
and pick-up may be different from those of curbside parking, and needs to be
explored further.

Lastly, in order to consider the diverse set of variables considered in this
study, some assumptions were made which may not be realistic. The temporal
aggregation of the crash data was driven by the absence of annual estimates of
traffic counts, infrastructure installation, and TNC data. The temporal variation
of TNC activity would require more detailed data collection efforts and likely
some collaboration with TNC companies. Similarly, in order to analyze the
influence of the vehicle turnover at metered parking spots, parking transaction
data prior to 2018 was not available. Moving forward, it would be beneficial to
collect this data for a larger time period so as to analyze the influence of parking
occupancy and turnover at a finer, more consistent temporal resolution.
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