UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Focus and Learning in Program Design

Permalink
https://escholarship.org/uc/item/46p626tf
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 8(0)

Author
Rist, Robert S.

Publication Date
1986

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/46p626tr
https://escholarship.org
http://www.cdlib.org/

Focus and learning in program design

Robert S. Rist

Cognitive Science Program
Department of Psychology,
Yale University.

ABSTRACT

The construction and retrieval of plan schemas was studied using a programming task. Novice
programmers were asked to write programs and their problem solving strategies analysed from
the manner in which they expanded a program goal. Four programs were used in the study,
comprising two sets of problem isomorphs. These isomorphs required the same programming plans
for solution, but differed in their cover stories. Plan development within a problem solving episode
and across episodes was thus easily tracked.

Development of a plan to achieve a problem goal showed a focus of attention on the current goal
to the exclusion of concerns about other parts of the program. A solution was not found by a
process of reasoning and top-down design. Rather, one goal was selected for expansion and in the
process of this expansion new goals were discovered and solved to the extent required by the
current context. The program was built up from solving individual goals, not down from the
problem specification. The development of plans to achieve three of these goals, the selection,
simple (non-looping) sum and read loop goals, is discussed in some detail to show the relation
between problem solving and schema formation. Evidence of top-down design using schemas
appeared only late in the study, suggesting that its use in teaching should be delayed until the
novice can ‘speak the language' of schema retrieval.

INTRODUCTION

A generative model of program construction is presented that tracks the development of
program plans in novice programmers. The outstanding feature is a focus on the current problem
under consideration, the current goal. This forces a local view of the program, but crcates the
pieces that are required to implement the goal. It also creates many bugs (Spohrer, Soloway and
Pope, 1985) when these pieces need to be later combined. Novice behavior is best described at
this local level to capture the relative isolation of knowledge that excludes consideration of facts
outside the current context. Systematic, top-down development is not useful for initial problem
solving, since the pieces of mentioned knowledge do not yet exist. It is achieved by novice
programmers only after prolonged and laborious effort.

The focus during initial problem solving is on how to create plans to achieve the program
goals. One goal at a time is selected and a plan constructed within the context of this current
goal. A focal idea is expanded and tested to see if it satisfies the goal (Kant, 1985; Sussman,
1975). In the process of expansion, new goals are discovered and implemented to the extent
required by the current context; the program is grown from these seeds rather than designed.
Once a plan has been formed, it can be modified or moved to satisfy other constraints, such as
data flow, control flow or efficiency. Once many such plans have been constructed, the focus of
attention can shift from local details to comparing plans and plan segments. Planning, which uses
plans as stable conceptual chunks, replaces local problem solving. Schema retrieval and tailoring
replaces schema construction.

The development of three plans is described in detail to show a local focus that is gradually
expanded. The simple (non-looping) sum plan adds a set of values to find their total; its
development illustrates the selection of objects and their combination. The selection plan shows
the change from focus on a single goal at a time to a combination of related goals. This plan

371



RIST

divides the input into a set of categories so that the correct calculations can be made for each
category. The read plan shows the creation of a sequence of goals from the focal goal. The need
to read a set of data items creates the new goal of looping; the use of a WHILE statement for
looping creates the need to deal with loop termination. Effects of focus apart from any particular
plan schema were seen in general problem solving methods, where new information was
integrated (incorrectly) in terms of the focal goal.

DESCRIPTION OF THE STUDY
Design.

A protocol study was used to analyze the program construction strategies of novice
programmers. Subjects were students beginning an introductory course in Pascal at Yale
University. The study began in week three of the course and subjects were tested as soon as
possible after learning a programming construct, such as IF-THEN-ELSE or WHILE, before they
had the opportunity to use the construct in assignments. Eight novices began the study, but one
dropped out after the second week. Each remaining subject wrote four programs, two sets of
program isomorphs that required the same plans but used different cover stories.

The first isomorph required selection and sum plans (Soloway and Ehrlich, 1984); it was
presented in weeks three and five of the course, with a read loop added for selection in week five.
The second isomorph was presented in weeks four and six. It required looping, running total,
running count and maximum plans; the selection plan was used to count the input values in a sct
of categories. The same plans (read, sum, select) were used for all programs in the study, allowing
any shift from plan construction to retrieval to be easily seen. The data base consists of 30
programs using the same plans in different contexts, about 50 hours of protocol data.

Analysis.

The basic structure of plan generation was shown by the changes a plan underwent in
development. The plans were identified using the Bug Catalogue developed at Yale (Spohrer,
Pope, Lipman, Sack, Freiman, Littman, Johnson and Soloway, 1985). The catalogue lists several
hundred bugs taken from over 200 programs, grouped according to the goals and plans in which
the bugs occurred. Within this goal/plan context, it classifies a bug in terms of what is wrong
with the plan (malformed, missing, spurious, etc.), a descriptive taxonomy. The bugs have been
described here in terms of a process model of their conceptual, developmental structure, to show
how they arise during problem solving.

The different stages through which a plan evolved was seen within a single program. They
were also seen across programs, where the plan was re-created or retrieved when needed. The
same development strategies were seen in all subjects, but the first form of the emerging plan
differed markedly across subjects. Thus all forms of the plan were not seen in all subjects. The
analysis presented is a composite of stages based on partial overlap between subjects.

PLAN DEVELOPMENT

When a new problem is first encountered, there is no existing schema to guide solution or
attention. The problem solving is guided by the problem information given (objects and values)
and the simple operators (verbal, logical or mathematical) that can be used to combine this
information. The initial focus is on identification of these objects and operators, then on their
combination and finally on factors outside the locus of attention. The solution is driven from the
most basic pieces outward. The current plan is tested to see if it achieves the goal and a solution
accreted around it, with multiple cycles of identification, expansion and testing if necessary.

The problem fragment that required these pieces is shown below, in the form of the first
372



RIST

isomorph, the first problem in the study. The second isomorph presented it as a problem of
calculating Welfare benefits for unwed mothers, where the amount of additional benefits
decreased as the number of children increased:

An electric company charges its customers by the kilowatt hour (kwh) for electricity used. The
cost per kilowatt hour decreases as a customer uses more electricity according to the following
rate schedule:

9 cents per kwh for the first 350 kwh
5 cents per kwh for the next 275 kwh
4 cents per kwh for the next 225 kwh
3 cents per kwh for all kwh over 850 kwh

The sum plan.

Two main variants of the sum plan were seen, based on development of the schema from a
focus and then on the retrieval of this schema and the expansion of its slots. The initial problem
solving effort is centered on the rate that must be calculated for this category, on the rate for
the selected range. Subsequent expansion of the schema treats the new rate as a formula to be
added to the existing framework. Six stages were seen in the development of the sum plan. The
first four of these may be termed plan construction, since they involve a large amount of problem
solving by the novice. Each stage reflects the problem solving that has occurred, from a very
simple analysis to one that integrates all of the information required for a correct solution. The
fifth may be viewed as a retrieved solution that still retains the form of its construction. The
final (expert) form is the complete schema, divorced from its ontogeny.

1. Straight rate: the surface form of the description creates the final code. The focus is
on calculating the charge for this category. At this stage, the object has been
identified (kwh), the existence of separate rates and categories noticed and the rate
has been attached to the object. The rate is then directly calculated as

costl := kwh * .09
cost2 := kwh * .05

2. New + old simple: the surface form of the sum is calculated. In this stage, the term
‘next’ has been parsed and it is realised that the different rates must be added to get
the final charge. The focus is on the rate for the category and so the new rate is
coded first, then the other pieces without further analysis as

costl ;= kwh *.09
cost2 := kwh * .05 + kwh * .09

3. New + old local: the correct form for the new rate is calculated. In this stage, the
subject has realised that the rate changes over boundaries and only the amonnt of
kwh over the boundary should be included in the new rate calculation. The focus is
still on the new charge and so the insight is not extended to both charges:

cost! := kwh *.09
cost? := (kwh - 350) * .05 + kwh * .09

4. New + old constructed: the correct form of the schema is constructed. In this stage,
the boundary insight is applied to all the individual rates, but the subject has
explicitly coded one of the previous stages or has to devote considerable energy and
time to constructing the solution. A particularly strong block to the discovery of the
correct solution is that the old calculation does not involve the program object, kwh.
The object has to be removed and a constant inserted in its place:

373



RIST

costl := kwh * .09
cost2 := (kwh - 350) * .05 + 350 * .09

5. New + old retrieved: the schema is retrieved, but still shows the new part focus. In
this stage, the parts appear without apparent effort and the correct solution is
mentioned as it is coded:

costl := kwh * .09
cost? := (kwh - 850) * .05 + 850 * .09

8. Old + new retrieved: the sum schema is retrieved and expanded in the ’logical’
order. This final stage shows the problem solving automated and attached to the
components within the overall schema. The schema is retrieved and control given to
the components in the order old plus new, where the old part repeats through the
number of steps required:

costl := kwh * .09
cost2 := 350 * .09 + (kwh - 350) * .05

from
schema

Figure 1: Development of the sum plan by subject

The expertise of the subjects in the study differed greatly. One subject retrieved the final
sum plan without effort to solve the problem in the first isomorph. Another started at stage one
both times. The transitions seen in the data are shown in Figure 1. Here, the development for the
first presentation of the problem is shown above or to the left of the links. The behavior of the
subject on the second isomorph is shown below or to the right of the link. Subject solutions
within a problem solving episode developed according to the taxonomy described. Solutions across
the episodes reflect the change from schema formation to schema retrieval and expansion of the
slots.

The selection plan.

The selection plan provided the context for sum calculation by selecting when each of the
new rates was applicable. The two plans may be treated in relative isolation, however, since all
six stages of the sum plan occurred in the context of a successful selection. The declarative
information used for the two plans has considerable overlap, but the use of boundaries in
selection was not extended to the sum calculation. Generally, local focus mitigates against such

374



RIST

systematic comparisons, since the relevance of a particular item of data is determined by search
from the focal goal. Schema application, with its description of required slots and slot fillers, is
not yet available for use.

The select plan shows a development from separate goals each using IF to test the defined,
exclusive ranges, to the complete ELSE-IF form where the structure of the ELSE-IF replaces the
tests used in separate IFs. The change may be viewed as the progressive replacement of explicit
boundary tests by the implicit testing of the ELSE-IF construct. Initially, each case is treated
locally, in isolation from the other ranges. Over the course of development, the concept of
exclusive, abutting boundary conditions and their use in the ELSE-IF statement emerges. This
creates a different organisation of the problem information, from one based on separate goals to
one based on filling the newly-defined slots of the ELSE-IF, embedding the boundary information
and testing within the language construct. Several subsidiary plans are involved with the select
plan and also show a developmental shift. These are the choice of what to use as a selector (one
or two ranges), the form of the test within the selector and the combiner (OR or AND) when two
tests are used. These will be discussed after the select plan.

Else-i f development

Five stages of the select plan were seen for the problem described here, that of continuous,
abutting ranges. The general form of the development may be seen as an optimization that
requires less code for each stage. More informatively, it may be seen as the use of the structure of
the ELSE statement to replace the explicit selection tests required by a local formulation, the
embedding of the explicit goals into a structure where they are achieved implicitly.

1. IF tests: the selection is done using separate IF tests for each case. The case is then
expanded within the context of the IF and treated in isolation from the other pieces.
The condition in the test, the selector, may be one or both boundary tests.

2. IF to ELSE-IF test: the subject begins by using separate tests, but at some point,
usually the second IF, links the separate tests using ELSE statements. The ELSE
functions purely as a connector between IFs and has no other functionality.

3. ELSE-IF with separate tests: an ELSE-IF structure is used from the outset, but
both boundary tests are still included as the selector. The decision to use the ELSE-
IF as the operator was local and had no impact on subsequent (local) goal expansion.

4. ELSE-IF with last test: an ELSE-IF structure is used, but the subject realises that
the structure can be used to test one of the conditions and only one boundary neced
be specified in each if statement. This insight is applied to all the tests, so the last
test also has an explicit (unnecessary) boundary.

5. ELSE-IF: the final, expert form, with one boundary tested in all cases except the
last, where it is implicitly true.

The initial goal of the subject is to select out the different ranges so that the charge can be
computed for each category. A selection operator is retrieved (IF or ELSE-IF) and each of the
categories is analyzed within the context of this operator. The definition of the catcgory is
inserted in the condition slot of the operator. This definition usually is conceived as a range with
two boundaries, which is most directly coded as a test for more than the lower bound and less
than the upper bound, creating the repeated IF structure of the first stage.

In the second stage, the IF schema has been formed and its use now becomes an issue. The
set of exclusive alternatives cues the ELSE structure, which is now seen simply as an I
connector, and the separate IF statements are linked by this (syntactic) connector. In the third
stage, the analysis is made before the code is written and the structure laid out for all the cases;
each case is then expanded separately. In the fourth stage, the subject realises that only one test
is required inside an IF, and so each IF test, including the last, is coded with a single test. In the
last stage, the realization is fully applied and the optimized ELSE-IF structure created.

375



RIST

Selector development

In solving the selection problem, the first step is to discover the different categories. The
simplest form of analysis focuses on the conditions that separate one category from another, such
as ‘under 350', ‘over 350’, ‘over 625’ and so on. These can then be directly coded using the
known comparison operators. In the second stage, the subject realizes that both conditions are
required and codes them both as the test condition.

Combiner development

When two selector tests are defined, they need to be connected with a boolean operator,
AND or OR. The correct operator is AND, yet very often subjects chose to use OR and corrected
themselves later. The OR operator is used correctly in the context of independent goals, such as
enumeration (it's one or the other). The locality heuristic assumes that everything is independent
until proven otherwise, when AND is substituted as the correct connector.

Test development

The initial concern in defining the boundaries for selection is to state which values enclose
the category. A local focus on each of the categories created a definition in terms of equality, by
specifying the lowest and highest possible values. In the electric bill, the equality focus identified
the value pairs (0, 350), (351, 625), (626, 850) and over 850. These were then coded using >=
and <= tests. The second stage saw the replacement of these ‘add-one’ values and >= tests
with tests for >. This returned the boundary values to their form in the problem description and
may indeed have created the initial insight that eventually led to the ELSE-IF optimization, that
one plan’s ceiling is another plan’s floor.

The read plan.

The focal flavor of development is particularly noticeable in this plan. The goal of reading
the data spawned the goal of looping, which was coded. The loop was then ignored, since the
goal seemed to be achieved by writing the loop code. The rest of the goals were implemented and
attention only returned to the loop code when the program was executed. The implications of
using an input-controlled loop (Soloway and Ehrlich, 1984), with an end value of 99999, were
discovered at this point. The removal of this value started a new round of problem solving. The
difference between a bug and an extension of the design is the time at which the bug is found,
not the process of discovery or solution. If the goal is currently focal, then an addition is part of
the new, improved design. If the goal is past, and in the normal case if all the goals are past and
the program considered complete, then the addition is a patch to solve a bug. The problem
solving strategy and local focus is the same in either case.

Two patterns in the read plan development are especially interesting. The first is that
novices would often come to the end of the WHILE loop and reconstruct the goal of terminating
the loop at that point. The local focus means that attention is directed toward achieving the
current goal and when it is achieved, or in this case when a sequence of goals was achieved, the
context is reconstructed from the external memory provided by the program code. The
reconstructed goal is then implemented in isolation from the program and indeed the problem,
since substitute solutions such as keeping a count were generated as solutions. These contradicted
the problem specification, which stated that ‘end of input is signalled by a value of 99999’.

The second pattern emerged in debugging the WHILE loop. Two types of solutions were
seen, arising from different conceptualizations of the bug. The first conceptualization was that
the value in the calculation was wrong and the value had to be fixed, leading to a backout
strategy. The second conceptualization was that the bug was caused by the read. This produced

376



RIST

two types of fixes. The first was to protect the calculation from the read value by adding code,
such as a guard. The second was to protect the calculation from the last read by moving the
read to the bottom of the loop and using the WHILE test as an implicit guard. These plans
show increasing distance from the bug symptom to the final solution.

The stages in development seen to achieve the read goal were

1. single read: this is the simple prompt (WRITELN/READ) plan.

2. read then loop: the subject coded the input prompt and read and then mentioned
the loop goal, inserting code before the read statement.

3. loop then read: the loop statement cFreceded the read. The need for a loop was
noticed when reading the program and the read schema was coded.

4, di fferent plan: local plans were spawned to solve the reconstructed termination goal.
Two inappropriate plans were seen in the data. The first used an input value as a
counter to control the loop. The second asked the operator to input a character
variable, 'Y’ or ‘N’, to control the loop. This plan had Eeen taught in the course and
was retrieved when a loop terminator was required.

5. the backout plan: subtract 99999 from the sum and 1 from the counters. The bug is
that the variables contain the wrong value, so the simplest solution is to fix the
values. The backout could be done directly where needed, after the loop and before
the output, or be slightly improved and done when initializing the variables.

B. selective backout: if the value is 99999, make it zero. The bug is that the wrong
value has been added in, so the solution is to make the value innocuous and convert
it to zero. This fix saves the sum, but all the counters still need to be backed out.

7. guard: only add if the value is not 99999. The bug conceptualization is that the
wrong value has been added and the patch is to prevent the end value from being
included in the calculations. This saves all the running totals, but creates two tests
for the end value, once in the WHILE and once in the guarding IF.

8. read at end: read the data at the end of the loop. The conceptualization of the bug
is that one too many data have been read in, so the read at the end stops the extra
read by using the control machinery to guard the calculations. It is an uncommon
solution, because it requires a system viewpoint and then a selective backout.

9. double read: read before the loop and at the bottom of the loop. It is an extremely
difficult solution because it requires a system view of the loop and two separate
reads to achieve the single goal. The use of two pieces of code violates the implicit
locality heunstic, that a goal is achieved by one piece of code. Subjects added code
with abandon, but seldom changed existing code to achieve a new goal. This plan
was commonly used for validation, to loop until a good value was read, but the
different probﬁ:m solving context seems to have prevented transfer.

The solutions tried by each subject are shown in Figure 2; links are labelled with the
number of the subject who showed that particular transition. The plan was necessary in three of
the problems; the first problem did not involve looping. The data from these three problems may
be read from top to bottom of the subject numbers. The place marker -’ is used to indicate that
no subject made a transition on a particular problem. Some subjects ran out of time on initial
attempts and did not encounter the 99999 problem, so some early paths are not complete. Thus
on the first occasion, subjects 3 through 7 coded locally from the read to the loop goal. Subjects
3 and 4 then used a guard, subject 5 ran out of time, subject 6 used a retrieved, inappropriate
solution and subject 7 used backout then guard. It is interesting to note that none of the plan
patches were schematised, being abandoned or redeveloped from the focus each time.

Program development.

The effect of focus has been demonstrated within individual plan segments. Two more
general examples of local development will be presented here, showing the use of a locul

377



RIST

from two
schema e

Figure 2: Development of the read plan by subject

expansion strategy divorced from any simple, identifiable schema. The first reflects the
development of knowledge about the structure of plans in a program. The second reflects the
integration of information by a focal goal as a general problem solving heuristic.

A plan may be viewed as consisting of several segments, each of which fulfills a required
role. These roles are general plan pre- and post- requisite descriptions, such as input, process and
output (IPO) or initialise, calculate and use. The theoretical value of such a description is
demonstrated in Rich’s (1981) plan calculus; evidence for their use by novices and experts is
presented in Rist (1988). The development of a modular program structure may be viewed as the
hierarchical organisation of plans and plan segments that implement the ‘correct’ ordering at the
appropriate level. A simple loop program, for example, shows a goal centered structure (IPO) at
the most abstract level. Plan segments are then organised by each of these roles (III, PPP, 000),
spreading elements of a plan across the program in a role centered structure.

In understanding the problem, novices identified the goals and then the input objects for
these goals. The goals and their associated inputs create the set of transforms (IPO) that is used
to build the program. In the electricity program there were two goals, to find the cost (C) from
the number of kilowatt hours used and the billing area (A) from the customer number. These
goals are independent and their role organisations thus show the reasoning process unconstrained
by issues of data flow. The correct, systematic placement of roles and objects must be learned
through experience. The types of role patterns for the two isomorphs are shown in Table 1.

The initial problem solving organisation comes from the role structure. As was seen for the
loop, the first heuristic is to read in the data, then process it. The input role is especially useful in
problem solving in programming, since the input defines the objects required, is simple, always
independent and presents few problems. At each role tramsition (I -> P, P -> O}, an object
must be selected for the new role. The simplest selection is to use the goal that was last used,
producing the object order ACCAAC shown on the first line. The first stage of learning and
planning is to link the process and output roles for the same object, creating an implicit goal link

378



RIST

Table 1: Development of role organisation

occurrence pattern
subjects numbers

elec welfare elec welfare independent loop

3 4 1 1 11, PP, 00,

6 1 Ialc i Ucﬂa el IcIG P‘EF‘Cl OGUG
2,4,5,7,8 3 5 1 L. IPO. PO

a ¢ c¢ aa
1 1,5,6.7.8 1 i1po IR0,

(CACA). This link is made explicit in the the next stage, where process and output are organised
underneath the objects (CCAA). The goal organisation is then extended to all the roles and the
goals are treated independently, producing the order CCCAAA used in the second isomorph. A
similar development was seen for the validate (V) role. It was initially considered at the end of
the program for all input objects (role centered, IPPOOVV) and coded in the program at
various positions. It was then considered at the end of each independent goal (IPOV, IPOV) and
finally the role was embedded in the normal plan structure (IVPO, IVPO).

The first role reorganisation (line 2) creates the concept of systematic nesting, here nesting
under roles. Complete role nesting is derived from this pattern by extending it to the input role,
with the transition ACCACA -> CACACA. This organisation is correct for plans inside loops,
where the main processing is delimited by the loop boundaries. The expert selects which pattern
is needed from the type of plan; the novice begins by using local expansion and develops these
patterns and selection rules through debugging.

The incorrect placement of plan roles inside the loop is shown in Table 2. Programs two
and four used several plans, such as maz and average that are not discussed in this paper; the
table indicates the total number of incorrect placements for all four plans. Only those roles that
provided a choice for placement are included in the table, such as final calculations for average
and percentage and program output; these could be placed inside or after the loop. Their location
is a sensitive indicator that demonstrates the lack of developed discourse rules.

Table 2: Local plan expansion

Program Subject number
1 3 4 5 6 ¥ 8
IPO IPO IPO IPO IPO IPO IPO
2 14 22
3 1 1 1 1
4 24 34

The Welfare problem (problem 3) demonstrates local problem solving in the interpretation
and organisation of problem data. It was the isomorph of the electric bill problem, requiring
subjects to calculate the benefits an unwed mother would receive in a year, given the number of
children in the family. At this point, three weeks into the study, it was expected that the
selection and sum plans would have been schematised and could be retrieved and used. This was
supported; subjects, applied the plans and inserted values in the plan schema slots without
apparent effort. The interesting point was that over half (four out of seven) of the subjects
retrieved the plan, expanded it and coded benefits for each of the categories including the
category of no children. A value of children less than zero was an error, a value of one or greater
received benefits according to the rate schedule given and a value of zero received zero bhenefits.
From a global perspective it is difficult to see how an unwed mother could have zero children.

379



RIST

IMPLICATIONS

The shift from a local and concrete to a system-oriented and abstract view in design marks
and defines expertise in a domain. That shift has been explained here as arising from the
problems encountered by a novice, the problem solving techniques used to overcome them and
the use of the products, plan schemas, in solving further problems. The change from goal
expansion to modular planning has been traced to the interaction between plan flow and control
and data flow via the creation and automation of plans and plan segments.

It is interesting to compare the results of this study to the theoretical models of skill
acquisition discussed by Sussman (1975), Brown and VanLehn (1980) and Hayes-Roth (1983). The
general method of Sussman, that of attempting a solution and creating new goals and patches as
required, was the design strategy used by novice subjects. The solution of impasses has been
explained by a method of adopting a focal object, operator or schema and developing a solution
around it. The problem solving heuristics used by Hayes-Roth can now be placed in a
developmental sequence, from the method of noticing a bug and applying a local patch to
examining the underlying causality of the bug and fixing the cause instead of the symptom.

The detailed analysis of the information involved in coding a computer program offers the
hope of a realistic simulation of human problem solving behavior. The use of schema as
knowledge organisers echoes Schank’s (1982) MOP organisation and extends it by demonstrating
the ontogeny of such theoretical constructs in an experimental task. The use of these MOPs in
understanding involves many of the same issues as the use of plan schema in program design.
Study of their development provides a strong answer to the question of what is inside a schema.

I wish to express my appreciation to Jim Spohrer and Dana Kay for their trenchant criticisms of
early versions of the paper. The study was funded by grant number 66430 from IBM.

REFERENCES

Brown, J. S. & VanLehn, K. (1980). Repair theory: A generative theory of bugs in procedural
skills. Cognitive Science, 4, 379-4206.

Hayes-Roth, F. (1983). Using proofs and refutations to learn from experience. In R. S. Michalski,
J. C. Carbonell and T. M. Mitchell (Eds.), Machine learning: An artificial intelligence
approach. Palo Alto, CA: Tioga.

Kant, E.(1985). Understanding and automating algorithm design. IEEE Transactions on
So ftware Engineering, SE-11, 1361-1374.

Rich, C. 1(19?18 b[nspcctmn methods in programming. (Tech. Rep. AI-TR-604). Boston: MIT,
Al La

Rist, R.S. (1986). Plans in pro ammmg Definition, demonstration and development. In
E. Soloway and S. S. Iyengar (Eds.), Empirical studies of programmers. New York: Ablex.

Schank, R. C. (1982). Dynamic memory. Cambridge, MA: Cambridge University Press.

Soloway, E. & Ehrlich, K. (1984). Empirical studies of programming knowledze. IELL
Transactions on Software Engineering, SE-10, 595-609.

Spohrer, J. C., Pope, E., Lipman, M., Sack, W., Freiman, S., Littman, D., Johnson, L. &
Soloway, E. 1985) Bug cataloguc I, 1, Iv. (Tech. Rep 386). New Haven: Yale
University, Department of Computer Science.

Spohrer, J. C., Soloway, E. and Pope, E. (1985). A goal/plan analysis of buggy Pascal programs.
Humaean- Computer Interaction, 1, 163-207.

Sussman, G. J. (1975). A computer model of skill acquisition. New York: American [lsevier.

380



	cogsci_1986_371-380



