
UCLA
UCLA Electronic Theses and Dissertations

Title
Sample-Efficient Nonconvex Optimization Algorithms in Machine Learning and
Reinforcement Learning

Permalink
https://escholarship.org/uc/item/46q6x08q

Author
Xu, Pan

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/46q6x08q
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Sample-Efficient Nonconvex Optimization Algorithms in

Machine Learning and Reinforcement Learning

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Pan Xu

2021

© Copyright by

Pan Xu

2021

ABSTRACT OF THE DISSERTATION

Sample-Efficient Nonconvex Optimization Algorithms in

Machine Learning and Reinforcement Learning

by

Pan Xu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Quanquan Gu, Chair

Machine learning and reinforcement learning have achieved tremendous success in solving

problems in various real-world applications. Many modern learning problems boil down

to a nonconvex optimization problem, where the objective function is the average or the

expectation of some loss function over a finite or infinite dataset. Solving such nonconvex

optimization problems, in general, can be NP-hard. Thus one often tackles such a problem

through incremental steps based on the nature and the goal of the problem: finding a first-

order stationary point, finding a second-order stationary point (or a local optimum), and

finding a global optimum. With the size and complexity of the machine learning datasets

rapidly increasing, it has become a fundamental challenge to design efficient and scalable

machine learning algorithms that can improve the performance in terms of accuracy and save

computational cost in terms of sample efficiency at the same time. Though many algorithms

based on stochastic gradient descent have been developed and widely studied theoretically

and empirically for nonconvex optimization, it has remained an open problem whether we

can achieve the optimal sample complexity for finding a first-order stationary point and for

finding local optima in nonconvex optimization.

In this thesis, we start with the stochastic nested variance reduced gradient (SNVRG)

algorithm, which is developed based on stochastic gradient descent methods and variance

reduction techniques. We prove that SNVRG achieves the near-optimal convergence rate

ii

among its type for finding a first-order stationary point of a nonconvex function. We fur-

ther build algorithms to efficiently find the local optimum of a nonconvex objective function

by examining the curvature information at the stationary point found by SNVRG. With

the ultimate goal of finding the global optimum in nonconvex optimization, we then pro-

vide a unified framework to analyze the global convergence of stochastic gradient Langevin

dynamics-based algorithms for a nonconvex objective function. In the second part of this

thesis, we generalize the aforementioned sample-efficient stochastic nonconvex optimization

methods to reinforcement learning problems, including policy gradient, actor-critic, and

Q-learning. For these problems, we propose novel algorithms and prove that they enjoy

state-of-the-art theoretical guarantees on the sample complexity. The works presented in

this thesis form an incomplete collection of the recent advances and developments of sample-

efficient nonconvex optimization algorithms for both machine learning and reinforcement

learning.

iii

The dissertation of Pan Xu is approved.

Animashree Anandkumar

Cho-Jui Hsieh

Alexander Sherstov

Lieven Vandenberghe

Quanquan Gu, Committee Chair

University of California, Los Angeles

2021

iv

To my family.

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Overview and Background . 1

1.2 Organization of Chapters . 4

1.3 Notations . 5

I Efficient Algorithms for General Nonconvex Optimization Prob-

lems 6

2 Local Convergence of Stochastic Algorithms for Nonconvex Optimization 7

2.1 Introduction . 7

2.1.1 Contribution . 8

2.2 Background and Related Work . 9

2.3 Preliminaries . 12

2.4 Stochastic Nested Variance-Reduced Gradient Descent 16

2.4.1 Convergence of SNVRG . 19

2.5 SNVRG for Finding Local Minima . 20

2.5.1 SNVRG + Neon2: Finding Local Minima 21

2.5.2 Convergence Analysis of SNVRG + Neon2 21

2.5.3 Finding Local Minima with the Third-Order Smoothness Condition . 24

2.6 Experiments . 25

2.6.1 SNVRG for Training CNNs for Image Classification 26

2.6.2 Experimental Results for Escaping Saddle Points 29

2.7 Proof of Main Theory . 31

vi

2.7.1 Proof of Main Theory for Finding Stationary Points 31

2.7.2 Proof of Main Theory for Finding Local Minima 34

2.7.3 Proof of Main Theory with Third-order Smoothness 37

2.8 Proof of Supporting Lemmas . 40

2.8.1 Proof of Lemma 2.7.1 . 40

2.8.2 Proof of Lemma 2.7.2 . 42

2.9 Proof of Key Lemma 2.8.1 . 44

2.10 Proof of Technical Lemmas . 45

2.10.1 Proof of Lemma 2.9.2 . 45

2.10.2 Proof of Lemma 2.9.3 . 49

2.11 Proofs of Auxiliary Lemmas . 50

2.11.1 Proof of Proposition 2.10.1 . 51

2.11.2 Proof of Lemma 2.10.2 . 51

2.11.3 Proof of Lemma 2.10.3 . 53

2.11.4 Proof of Lemma 2.10.4 . 55

3 Global Convergence of Langevin Dynamics Based Algorithms 58

3.1 Introduction . 58

3.1.1 Our Contributions . 59

3.1.2 Additional Related Work . 60

3.1.3 Preliminaries . 62

3.2 Review of Langevin Dynamics Based Algorithms 63

3.3 Main Theory . 64

3.4 Proof Sketch of the Main Results . 70

3.4.1 Roadmap of the Proof . 70

vii

3.4.2 Proof of Theorems 3.3.3, 3.3.6 and 3.3.10 74

3.5 Fokker-Planck Equation and Backward Kolmogorov Equation 75

3.6 Proof of Corollaries . 76

3.7 Proof of Technical Lemmas . 77

3.7.1 Proof of Lemma 3.4.1 . 78

3.7.2 Proof of Lemma 3.4.2 . 82

3.7.3 Proof of Lemma 3.4.4 . 86

3.7.4 Proof of Lemma 3.4.5 . 95

II Efficient Nonconvex Optimization for Reinforcement Learn-

ing 99

4 Sample-Efficient Policy Optimization Methods with Variance Reduction 100

4.1 Introduction . 100

4.1.1 Additional Related Work . 102

4.2 Backgrounds on Policy Gradient . 104

4.3 The Proposed Algorithm . 106

4.4 Main Theory . 109

4.4.1 Convergence Rate and Sample Complexity of SRVR-PG 110

4.4.2 Implication for Gaussian Policy . 111

4.5 Experiments . 113

4.6 Extension to Parameter-based Exploration 115

4.7 Proof of the Main Theory . 117

4.8 Proof of Technical Lemmas . 123

4.9 Proof of Theoretical Results for Gaussian Policy 125

viii

4.10 Additional Details on Experiments . 126

5 Finite-Time Analysis for Policy Optimization with Linear Value Function

Approximation . 130

5.1 Introduction . 130

5.2 Related Work . 132

5.3 Preliminaries . 134

5.3.1 Markov Decision Processes . 134

5.3.2 Policy Gradient Theorem . 135

5.3.3 REINFORCE with a Baseline . 136

5.3.4 The Two Time-Scale Actor-Critic Algorithm 137

5.4 Main Theory . 138

5.4.1 Assumptions and Propositions . 138

5.4.2 Convergence of the Actor . 141

5.4.3 Convergence of the Critic . 141

5.4.4 Convergence Rate and Sample Complexity 142

5.5 Proof Sketch . 144

5.5.1 Proof Sketch of Theorem 5.4.5 . 144

5.5.2 Proof Sketch of Theorem 5.4.7 . 146

5.6 Preliminary Lemmas . 150

5.6.1 Probabilistic Lemmas . 150

5.6.2 Lipschitzness of the Optimal Parameter 153

5.6.3 Asymptotic Equivalence . 154

5.7 Proof of Main Theorems and Propositions 155

5.7.1 Proof of Theorem 5.4.5 . 155

ix

5.7.2 Proof of Theorem 5.4.7: Estimating the Average Reward 160

5.7.3 Proof of Theorem 5.4.7: Approximating the TD Fixed Point 164

5.7.4 Proof of Corollary 5.4.9 . 169

5.8 Proof of Technical Lemmas . 170

5.8.1 Proof of Lemma 5.7.1 . 170

5.8.2 Proof of Lemma 5.7.2 . 170

5.8.3 Proof of Lemma 5.7.3 . 170

5.8.4 Proof of Lemma 5.7.4 . 173

5.8.5 Proof of Lemma 5.7.5 . 173

5.8.6 Proof of Lemma 5.7.6 . 175

5.8.7 Proof of Lemma 5.7.7 . 176

6 Q-Learning with Deep Neural Network Function Approximation 180

6.1 Introduction . 180

6.2 Related Work . 182

6.3 Preliminaries . 183

6.4 The Neural Q-Learning Algorithm . 184

6.4.1 Q-Learning with Linear Function Approximation 184

6.4.2 Neural Q-Learning . 185

6.5 Convergence Analysis of Neural Q-Learning 186

6.5.1 Approximate Stationary Point in the Constrained Space 187

6.5.2 The Main Theory . 188

6.6 Proof of Main Results . 190

6.7 Proof of Theorem 6.5.6 . 194

6.8 Proof of Supporting Lemmas . 196

x

6.8.1 Proof of Lemma 6.6.1 . 196

6.8.2 Proof of Lemma 6.6.2 . 199

6.8.3 Proof of Lemma 6.6.3 . 202

7 Conclusion . 205

xi

LIST OF FIGURES

2.1 Comparison of gradient complexities. 12

2.2 Illustration of reference points and gradients in SVRG and SNVRG. 19

2.3 Comparison of gradient complexities between SNVRG + Neon2finite and SVRG +

Neon2finite for finding an (ε,
√
ε)-approximate local minimum in finite-sum opti-

mization problems. 23

2.4 Comparison of gradient complexities between SNVRG + Neon2finite and FLASH

for finding an (ε,
√
ε)-approximate local minimum in finite-sum nonconvex opti-

mization problems. 26

2.5 Experiment results on different datasets with learning rate decay. (a) and (d)

depict the training loss and test error (top-1 error) v.s. data epochs for training

LeNet on MNIST dataset. (b) and (e) depict the training loss and test error

v.s. data epochs for training LeNet on CIFAR10 dataset. (c) and (f) depict the

training loss and test error v.s. data epochs for training LeNet on SVHN dataset. 28

2.6 Experimental results on different datasets without learning rate decay. (a) and

(d) depict the training loss and test error (top-1 error) v.s. data epochs for

training LeNet on MNIST dataset. (b) and (e) depict the training loss and test

error v.s. data epochs for training LeNet on CIFAR10 dataset. (c) and (f) depict

the training loss and test error v.s. data epochs for training LeNet on SVHN

dataset. 32

2.7 Experimental results on matrix sensing problems. (a) depicts matrix sensing

problem with d = 50, r = 3. (b) depicts matrix sensing problem with d =

100, r = 3. 33

3.1 Illustration of the analysis framework in our work. 71

xii

4.1 (a)-(c): Comparison of different algorithms. Experimental results are averaged

over 10 repetitions. (d)-(f): Comparison of different batch size B on the perfor-

mance of SRVR-PG. 113

4.2 Performance of SRVR-PG-PE compared with PGPE. Experiment results are av-

eraged over 10 runs. 127

xiii

LIST OF TABLES

2.1 Comparisons on gradient complexity of different algorithms. The second column

shows the gradient complexity for a nonconvex and smooth function to achieve an

ε-approximate stationary point (i.e., ‖∇F (x)‖2 ≤ ε). The last column indicates

whether the algorithm needs the Hessian Lipschitz condition in their analyses. . 13

2.2 Comparisons on gradient complexities to find an (ε, εH)-approximate second-order

stationary point in finite-sum nonconvex optimization. The last column indicates

whether the algorithm exploits the third-order smoothness of the objective function. 14

2.3 Parameter settings of all algorithms on MNIST dataset. 29

2.4 Parameter settings of all algorithms on CIFAR10 dataset. 30

2.5 Parameter settings of all algorithms on SVHN dataset. 31

3.1 Gradient complexities of GLD, SGLD and SVRG-LD to converge to the almost

minimizer. 70

4.1 Comparison on sample complexities of different algorithms to achieve a first-order

stationary point, i.e., ‖∇J(θ)‖2
2 ≤ ε. 101

4.2 Parameters used in the SRVR-PG-PE experiments. 128

4.3 Parameters used in the SRVR-PG experiments. 129

6.1 Comparison with existing finite-time analyses of Q-learning. 182

xiv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Quanquan Gu, for his constant support

and encouragement during my Ph.D. study. He guided me into academia and helped me

develop my research style. Quanquan is not only a great mentor but is also an exceptional

researcher who has been my biggest inspiration. His endless passion and profound insight

for research have led me through difficult times in research.

I am grateful for my doctoral committee members, Animashree Anandkumar, Cho-Jui

Hsieh, Alexander Sherstov, and Lieven Vandenberghe, who have provided valuable feedbacks

for me towards the completion of my thesis. I also want to extend my heartfelt gratitude to

Jian Ma and Farzad Farnoud for their mentoring and support through multiple collaborations

during my Ph.D. study. I am greatly thankful to Georgios Theocharous, Zheng Wen, and

Handong Zhao for their help and support, who were my mentors when I did a wonderful

internship at Adobe Research.

I have been extremely fortunate to collaborate with many brilliant people, including

Aditya Chaudhry, Jinghui Chen, Felicia Gao, Tianyuan Jin, Tao Jin, Lu Tian, Lingxiao

Wang, Tianhao Wang, Yue Wu, Xiaokui Xiao, Yaodong Yu, Tingting Zhang, Weitong Zhang,

Dongruo Zhou, and Difan Zou. Four chapters are based on our collaborated projects: Chap-

ter 2 is based on work [ZXG18a, ZXG20] with Dongruo, Chapter 3 is based on work [XCZG18]

with Jinghui and Difan, Chapter 4 is based on work [XGG20] with Felicia, and Chapter 5 is

based on work [WZXG20] with Yue and Weitong. Special thanks to Lu, Lingxiao, Dongruo,

and Difan, who had been both fantastic collaborators and amazing roommates to me.

Lastly, I am deeply grateful to my family members, Xiaojia, Huiqiong, Shiyi, and Yang,

for their firmest and unconditional love. I could not have completed my Ph.D. and this

dissertation without their encouragement, comfort, and support. Therefore, I dedicate this

thesis to them.

xv

VITA

2011–2015 Bachelor of Science in Mathematics, University of Science and Technology

of China, Hefei, China.

2015–2018 Ph.D. candidate (transferred out) in Computer Science and Systems and

Information Engineering, University of Virginia, Virginia, USA.

2018–2021 Ph.D. candidate in Computer Science, UCLA, California, USA.

PUBLICATIONS

This list contains selected publications that are the most relevant to the theme of this thesis.

Speeding Up Latent Variable Gaussian Graphical Model Estimation via Nonconvex Opti-

mization. Pan Xu, Jian Ma, and Quanquan Gu. Advances in Neural Information Processing

Systems, 2017.

Accelerated Stochastic Mirror Descent: From Continuous-Time Dynamics to Discrete-

Time Algorithms. Pan Xu, Tianhao Wang, and Quanquan Gu. International Conference on

Artificial Intelligence and Statistics, 2018.

Continuous and Discrete-Time Accelerated Stochastic Mirror Descent for Strongly Con-

vex Functions. Pan Xu, Tianhao Wang, and Quanquan Gu. International Conference on

Machine Learning, 2018.

xvi

Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimiza-

tion. Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Advances in Neural Information

Processing Systems, 2018.

Third-Order Smoothness Helps: Faster Stochastic Optimization Algorithms for Finding

Local Minima. Yaodong Yu, Pan Xu, and Quanquan Gu. Advances in Neural Information

Processing Systems, 2018

Stochastic Variance-Reduced Hamilton Monte Carlo Methods. Difan Zou, Pan Xu, and

Quanquan Gu. International Conference on Machine Learning, 2018

An Improved Convergence Analysis of Stochastic Variance-Reduced Policy Gradient. Pan

Xu, Felicia Gao, and Quanquan Gu. Uncertainty in Artificial Intelligence, 2019.

Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic Nested Variance Reduction for

Nonconvex Optimization. Journal of Machine Learning Research, 2020.

Sample Efficient Policy Gradient Methods with Recursive Variance Reduction. Pan Xu,

Felicia Gao, and Quanquan Gu. International Conference on Learning Representations,

2020.

A Finite-Time Analysis of Q-Learning with Neural Network Function Approximation.

Pan Xu and Quanquan Gu. International Conference on Machine Learning, 2020.

A Finite-Time Analysis of Two Time-Scale Actor-Critic Methods. Yue Frank Wu,

Weitong Zhang, Pan Xu, and Quanquan Gu. Advances in Neural Information Processing

Systems, 2020

xvii

CHAPTER 1

Introduction

1.1 Overview and Background

We study the following nonconvex optimization problem: minx∈Rd F (x), where F is a non-

convex smooth function. A popular example of this problem is the finite-sum optimization,

where the loss function is a sum of n nonconvex component functions:

min
x∈Rd

F (x) =
1

n

n∑

i=1

fi(x), (1.1.1)

where each fi is defined on a different data point. The finite-sum optimization problem

(1.1.1) is often regarded as the offline learning setting in the literature [AZL18, FLLZ18].

A closely related variant of the finite-sum optimization problem in (1.1.1) is the following

general stochastic optimization problem:

min
x∈Rd

F (x) = Eξ∼D[F (x; ξ)], (1.1.2)

where ξ is a random variable drawn from some fixed but unknown distribution D and F (x; ξ)

is a nonconvex smooth function indexed by ξ. The general stochastic optimization problem

defined in (1.1.2) encloses innumerable large-scale machine learning applications which keep

generating oceans of data samples. Therefore, (1.1.2) is also referred to as the online learning

setting [AZL18].

For either (1.1.1) or (1.1.2), finding the global minimum of such nonconvex optimization

problems can be generally NP hard [HL13]. Therefore, instead of finding the global mini-

mum, various optimization methods have been developed to find an ε-approximate first-order

stationary point of (1.1.1) and (1.1.2), i.e., a point x satisfying

‖∇F (x)‖2 ≤ ε, (1.1.3)

1

where ε > 0 is a predefined precision parameter. This vast body of literature consists of gra-

dient descent (GD), stochastic gradient descent (SGD) [RM51], stochastic variance reduced

gradient (SVRG) [RHS+16, AZH16], StochAstic Recursive grAdient algoritHm (SARAH)

[NLST17b], stochastically controlled stochastic gradient (SCSG) [LJCJ17] and many others.

To avoid unsatisfactory stationary points (saddle points or local maxima), one can further

pursue an (ε, εH)-approximate second-order stationary point [NP06] of (1.1.1) and (1.1.2),

namely a point x that satisfies

‖∇F (x)‖2 ≤ ε, and λmin

(
∇2F (x)

)
≥ −εH , (1.1.4)

where ε, εH ∈ (0, 1) are predefined precision parameters and λmin(·) denotes the minimum

eigenvalue of a matrix. An (ε,
√
ε)-approximate second-order stationary point is considered

as an approximate local minimum of the optimization problem [NP06]. In many tasks such

as training a deep neural network, matrix completion and matrix sensing, one have found

that local minima have a very good generalization performance [CHM+15, DPG+14] or all

local minima are global minima [GLM16, BNS16, ZWYG18]. However, when local minima

are also unsatisfactory, one needs to develop global optimization methods. One popular

and promising type of approach is sampling from a distribution that concentrates around

the global minimum of F (x) [Dal17b, Dal17a]. In this way, we can transform the (global)

nonconvex optimization problem into a Bayesian posterior sampling problem, where we can

use plentiful methods such as Monte Carlo Markov Chain (MCMC), variational inference,

and many others to generate random samples from the desired distribution.

Nonconvex optimization algorithms are being used almost everywhere in machine learn-

ing. One of the most exciting but challenging nonconvex optimization problems lies in

reinforcement learning (RL) [SB18], which has received significant success in solving vari-

ous complex problems such as learning robotic motion skills [LWA15], autonomous driving

[SSSS16] and Go game [SSS+17], where the agent progressively interacts with the environ-

ment to learn a good policy to solve the task. In RL, the agent chooses the action based

on the current state and the historical rewards it has received so far. After performing the

chosen action, the agent’s state will change according to some transition probability model.

2

A new reward would be revealed to the agent by the environment based on the action and

the new state. Then the agent continues to choose its next action until it reaches a terminal

state. The agent aims to maximize its expected cumulative rewards. Therefore, the pivotal

problem in RL is to efficiently find a good policy which is a function that maps the state

space to the action space and thus informs the agent which action to take at each state.

Most successful RL algorithms can be categorized into two types: (1) policy gradient meth-

ods [SMSM00] that parameterize the policy by an unknown parameter θ ∈ Rd and directly

optimizes the policy by finding the optimal θ; and (2) action-value function (Q-function)

based methods such as Q-learning that assign a value to each state-action pair and infer

the optimal policy based on the action values, both of which can be formulated as a general

stochastic nonconvex optimization problem as stated in (1.1.2). In particular, policy gradi-

ent methods try to directly optimize the performance function, which is the expected return

under a specific policy, while action value-based methods often try to optimize the mean-

squared Bellman error, which is based on the optimal Bellman equation for the action-value

function.

Compared with the general nonconvex optimization problem, RL problems often bear

more unique challenges, and thus the efficient optimization algorithms developed for solving

the general problem in (1.1.2) may not be easily generalized to reinforcement learning. In

particular, we have to deal with the following challenges when we develop nonconvex opti-

mization algorithms for reinforcement learning: (1) The data distribution in reinforcement

learning is changing over time. Unlike the optimization problem in supervised learning,

where data are drawn from an unknown but fixed distribution, in reinforcement learning, we

are learning to optimize the policy while using the policy to generate data for the learning

process. Thus the data distribution changes at every step once we update the policy pa-

rameter. (2) The objective function in reinforcement learning is changing over time. This is

especially true if we use gradient-based algorithms to optimize the policy. Since, in practice,

we do not know the data distribution or the transition probability in the environment, we

can only sample a batch of data to approximate the gradient of the optimization problem.

(3) The optimization trajectories are highly dependent in reinforcement learning. Since the

3

Bellman equation involves the current state-action pair and further state-action pairs, the

gradients used in action-value function-based methods such as temporal difference learning

and Q-learning are not i.i.d. even conditioned on the current iterate. Therefore, it is an

exciting but challenging task to develop efficient reinforcement learning methods based on

tools from nonconvex optimization.

1.2 Organization of Chapters

In the first part of this thesis, we present a series of works addressing the problems of finding

the first-order stationary points, finding the local minima, and finding the global minima

in nonconvex optimization. In particular, in Chapter 2, we develop the stochastic nested

variance reduced gradient algorithm (SNVRG) and prove that SNVRG enjoys the state-of-

the-art gradient complexity for finding a stationary point in nonconvex optimization. We also

extend it to an algorithm that finds local minima only using first-order information and prove

that it enjoys a faster convergence rate to local minima when the objective function satisfies

the third-order smoothness condition. To find the global minima in nonconvex optimization,

in Chapter 3, we present a unified framework for analyzing the global convergence of Langevin

dynamics-based algorithms. We prove that stochastic gradient Langevin dynamics (SGLD),

variance reduced stochastic gradient Langevin dynamics (SVRG-LD), and other variants of

SGLD converge to an almost global minimizer of a nonconvex objective function.

In the second part of the thesis, we generalize the efficient nonconvex optimization al-

gorithms developed for general stochastic optimization problems to reinforcement learning,

where we address the challenges mentioned above with a diverse set of techniques. In Chap-

ter 4, we propose the stochastic recursive variance reduced policy gradient (SRVR-PG) algo-

rithm, which significantly improves the sample efficiency of previous policy gradient methods

by using similar variance reduction techniques in the last part for general nonconvex opti-

mization problems and using importance sampling to control the changes in data distribution

in RL. In Chapter 5, we study the finite-time analysis of the two time-scale actor-critic meth-

ods, which use linear function approximation to learn the value function of the current policy

4

that changes over time. Finally, in Chapter 6, we study the finite-time convergence of Q-

learning with neural network function approximation, where non-i.i.d. data with Markov

noises are considered in the analysis.

1.3 Notations

Throughout this thesis, unless particularly specified, we will use the following notations. We

denote [n] = {1, . . . , n} for any n ∈ N+. ‖x‖2 is the Euclidean norm of a vector x ∈ Rd. For

a matrix W ∈ Rm×n, we denote by ‖W‖2 and ‖W‖F its operator norm and Frobenius norm

respectively. We denote by vec(W) the vectorization of W, which converts W into a column

vector. For a semi-definite matrix Σ ∈ Rd×d and a vector x ∈ Rd, ‖x‖Σ =
√

x>Σx denotes

the Mahalanobis norm. We write an = O(bn) (or an = Ω(bn)) if an ≤ Cbn (or an ≥ Cbn) for

some constant C > 0. We use Õ(·) notation to hide logarithmic terms and constants, which

means an = Õ(bn) if and only if an = O(bn) up to some logarithmic term or constant. We

also denote an . bn (an & bn) if an is less than (larger than) bn up to a constant.

The Dirac delta function δ(x) satisfies δ(0) = +∞ and δ(x) = 0 if x 6= 0. Note that

δ(x) satisfies
∫ +∞
−∞ δ(x)dx = 1. For any α > 0, we define the Rényi divergence [Ro61] be-

tween distributions P and Q as Dα(P ||Q) = 1/(α− 1) log2

∫
x
P (x)(P (x)/Q(x))α−1dx, which

is non-negative for all α > 0. The exponentiated Rényi divergence is dα(P ||Q) = 2Dα(P ||Q).

dTV (P,Q) is the total variation norm between two probability measure P and Q, which is

defined as dTV (P,Q) = 1/2
∫
X |P (dx)−Q(dx)|.

5

Part I

Efficient Algorithms for General

Nonconvex Optimization Problems

6

CHAPTER 2

Local Convergence of Stochastic Algorithms for

Nonconvex Optimization

2.1 Introduction

In this chapter, we focus on the finite-sum optimization problem defined in (1.1.1). Among

all first-order methods such as gradient descent (GD), stochastic gradient descent (SGD)

[RM51], stochastic variance reduced gradient (SVRG) [RHS+16, AZH16], StochAstic Re-

cursive grAdient algoritHm (SARAH) [NLST17b], and stochastically controlled stochastic

gradient (SCSG) [LJCJ17], SCSG achieves the lowest gradient complexity1 O(n ∧ ε−2 +

ε−10/3 ∧ (n2/3ε−2)) for finding the first-order stationary point (defined in (1.1.3)) in noncon-

vex optimization under the smoothness (i.e., gradient Lipschitzness) and bounded stochastic

gradient variance assumptions. The key idea behind variance reduction is that the gradient

complexity can be saved if the algorithm use history information as reference. For instance,

the representative variance reduction method SVRG is based on a semi-stochastic gradient

that is defined by two reference points. Since the the variance of this semi-stochastic gradi-

ent will diminish when the iterate gets closer to the minimizer, it therefore accelerates the

convergence of stochastic gradient method. A natural and long standing question is:

Is there still room for improvement in nonconvex finite-sum optimization without making

additional assumptions beyond smoothness and bounded stochastic gradient variance?

In this chapter, we provide an affirmative answer to the above question, by showing that

1We usually use gradient complexity, the number of stochastic gradient evaluations, to measure the
convergence speed of different first-order algorithms.

7

the dependence on n in the gradient complexity of SVRG [RHS+16, AZH16] and SCSG

[LJCJ17] can be further reduced. We propose a novel algorithm namely Stochastic Nested

Variance-Reduced Gradient descent (SNVRG). Similar to SVRG and SCSG, our proposed

algorithm works in a multi-epoch way. Nevertheless, the technique we developed is highly

nontrivial. At the core of our algorithm is the multiple reference points-based variance

reduction technique in each iteration. In detail, inspired by SVRG and SCSG, which uses

two reference points to construct a semi-stochastic gradient with diminishing variance, our

algorithm uses K+1 reference points to construct a semi-stochastic gradient, whose variance

decays faster than that of the semi-stochastic gradient used in SVRG and SCSG.

Based on the SNVRG algorithm we proposed for finding the first-order stationary point

in nonconvex optimization, we take a step further to propose faster algorithms for finding the

second-order stationary point (defined in (1.1.4)). More specifically, we present a novel algo-

rithm that can find local minima faster than existing algorithms [XRY18, AZL18, YXG18]

in a wide regime for the finite-sum optimization problem (1.1.1). The proposed algorithms

essentially use Neon2 [AZL18] to extract the negative curvature direction based on gradient

evaluation, which saves Hessian-vector computation.

2.1.1 Contribution

We summarize the major contributions of this chapter as follows:

• We propose a stochastic nested variance reduced gradient (SNVRG) algorithm for noncon-

vex optimization, which reduces the dependence of the gradient complexity on n compared

with SVRG and SCSG.

• We show that our proposed algorithm is able to find an ε-approximate stationary point

with Õ(n ∧ ε−2 + ε−3 ∧ n1/2ε−2) stochastic gradient evaluations, which outperforms all

existing first-order algorithms such as GD, SGD, SVRG and SCSG. A detailed comparison

is demonstrated in Figure 2.1.

• We further propose an algorithm, SNVRG + Neon2finite, that can find an (ε, εH) second-

8

order stationary point of the finite-sum problem (1.1.1) within Õ(n1/2ε−2+nε−3
H +n3/4ε

−7/2
H)

stochastic gradient evaluations, which is faster than the best existing algorithm SVRG +

Neon2finite [AZL18] that attains Õ(n2/3ε−2 + nε−3
H + n3/4ε

−7/2
H) gradient complexity in a

wide regime. A thorough comparison is illustrated in Figure 2.3.

• We also show that our proposed algorithms can find local minima even faster when the

objective function enjoys the third-order smoothness property. We prove that our proposed

algorithms achieve faster convergence rates to a local minimum than the FLASH algorithm

proposed in [YXG18], which also exploits the third-order smoothness of the objective

function.

2.2 Background and Related Work

In this section, we review and discuss the relevant work in the literature of nonconvex

optimization for solving the finite-sum problem (1.1.1).

Finding first-order stationary points For nonconvex optimization, it is well-known

that Gradient Descent (GD) can converge to an ε-approximate stationary point withO(n·ε−2)

[Nes13] number of stochastic gradient evaluations. GD needs to calculate the full gradient

at each iteration, which is a heavy load when n � 1. Stochastic gradient descent (SGD)

[RM51, Nes13] and its variants [GL13, GL16, GLZ16] achieve O(1/ε4) gradient complexity

under the assumption that the stochastic gradient has a bounded variance. Inspired by

the great success of various variance reduced techniques in convex finite-sum optimization

such as Stochastic Average Gradient (SAG) [RSB12], Stochastic Variance Reduced Gradi-

ent (SVRG) [JZ13, XZ14], SAGA [DBLJ14], Stochastic Dual Coordinate Ascent (SDCA)

[SSZ13], Finito [DDo14] and Batching SVRG [HAV+15], [GH15, SS16] first analyzed the

convergence of SVRG under nonconvex setting, where F is still convex but each component

function fi can be nonconvex. The analysis for the general nonconvex function F was done

by [RHS+16, AZH16], which shows that SVRG can converge to an ε-approximate stationary

point with O(n2/3 · ε−2) number of stochastic gradient evaluations. This result is strictly

9

better than that of GD. [NLST17a, NLST17b] proposed StochAstic Recursive grAdient al-

goritHm (SARAH) with recursive estimators for finding first-order stationary points with

O(n + L2/ε4) stochastic gradient evaluations. [LJCJ17] proposed a new variance reduction

algorithm, i.e., the stochastically controlled stochastic gradient (SCSG) algorithm, which

finds a first-order stationary point within O(min{ε−10/3, n2/3ε−2}) stochastic gradient eval-

uations for finite-sum optimization in (1.1.1), and outperforms SVRG when the number of

component functions n is large.

The literature of finding local minima in nonconvex optimization can be roughly di-

vided into three categories according to the oracles they use: Hessian-based, Hessian-vector

product-based and gradient-based (Hessian-free). We review each category in the sequel

accordingly.

Finding local minima using Hessian matrix The most popular algorithm using

Hessian matrix to find an (ε,
√
ε)-approximate local minimum is the cubic regularized New-

ton’s method [NP06], which attains O(ε−3/2) iteration complexity. The trust region method

is proved to achieve the same iteration complexity [CRS17]. To alleviate the computa-

tion burden of evaluating full gradients and Hessian matrices in large-scale optimization

problems, subsampled cubic regularization and trust-region methods [KL17, XRM20] were

proposed and proved to enjoy the same iteration complexity as their original versions with

full gradients and Hessian matrices. Recently, stochastic variance reduced cubic regulariza-

tion method (SVRC) [ZXG18b] was proposed, which achieves the best-known second-order

oracle complexity among existing cubic regularization methods.

Finding local minima using Hessian-vector product Another line of research uses

Hessian-vector products to find the second-order stationary points. [CDHS16, AAB+17] in-

dependently proposed two algorithms that can find an (ε,
√
ε)-approximate local minimum

within O(ε−7/4) full gradient and Hessian-product evaluations. [AAB+17] also showed that

their algorithm only needs O(nε−3/2 +n3/4ε7/4) stochastic gradient and Hessian-vector prod-

uct evaluations for finite-sum optimization problems (1.1.1). [RZS+18] proposed a generic

algorithmic framework that uses both first-order and second-order methods to find the lo-

cal minimum within O(n2/3ε−2 + nε−3/2 + n3/4ε7/4) stochastic gradient and Hessian-product

10

evaluations. [AZ18] proposed the Natasha2 algorithm which finds an (ε,
√
ε)-approximate

second-order stationary point within O(ε−7/2) stochastic gradient and Hessian-vector product

evaluations.

Finding local minima using gradient The last line of research uses purely gradient

information to find the local minima. The local minima finding algorithms proposed in this

chapter also fall into this category. [GHJY15, Lev16] studied the perturbed GD and SGD

algorithms for escaping saddle points, where isotropic noise is added into the gradient or

stochastic gradient at each iteration or whenever the gradient is sufficiently small. [JGN+17]

further proposed a perturbed accelerated gradient descent, which can finds the second-order

stationary point even faster. [XRY18] showed that perturbed gradient or stochastic gradient

descent can help find the negative curvature direction without using Hessian matrix and

proposed the NEON algorithm that extracts the negative curvature using only first-order

information. Later [AZL18] developed the Neon2 algorithm, which improves upon on Neon,

and turns Natasha2 [AZ18] into a first-order method to find the local minima. [YZG17]

proposed the gradient descent with one-step escaping algorithm (GOSE) that saves negative

curvature computation and [YXG18] proposed the FLASH algorithm that exploits the third-

order smoothness of the objective function. Very recently, [DKLH18] proved that SGD with

periodically changing step size can escape from saddle points under an additional correlated

negative curvature (CNC) assumption on the stochastic gradient.

To give a thorough comparison of our proposed SNVRG algorithm with existing algo-

rithms for nonconvex finite-sum optimization, we summarize the gradient complexity of the

most relevant algorithms in Table 2.1 for finding first-order stationary points and in Table

2.2 for finding local minimum using first-order information. We also present the gradient

complexities of first-order local minimum finding algorithms in Table 2.2. According to

Table 2.1, the proposed SNVRG algorithm achieves the lowest gradient complexity to find

an ε-approximate first-order stationary point for nonconvex smooth functions. We can also

see from Table 2.2 that our proposed algorithm SNVRG + Neon2finite outperforms all other

first-order algorithms in finding an (ε, εH)-approximate second-order stationary point for

finite-sum nonconvex optimization problems in a wide regime.

11

SNVRG
SCSG
SVRG

Gradient
Complexity

n✏�2

✏�3

✏�10/3

1
✏�2

n1/2

✏2

n2/3

✏2

n2/3

✏2

Figure 2.1: Comparison of gradient complexities.

After the first appearance of our SNVRG algorithm in a conference paper [ZXG18a], there

have emerged a considerable amount of exciting work on this topic. [FLLZ18] concurrently

proposed the Stochastic Path-Integrated Differential EstimatoR (SPIDER), which uses re-

cursive update to define the semi-stochastic gradient in the variance reduction algorithm.

They proved that SPIDER achieves O(n1/2ε−2 ∧ ε−3) gradient complexity for finding an ε-

approximate stationary point in nonconvex optimization. [WJZ+19] proposed an improved

analysis for SPIDER (also called SpiderBoost) and SPIDER with momentum. Note that

all the aforementioned algorithms enjoy a similar convergence rate to SPIDER [FLLZ18].

[FLLZ18, ZG19a] also showed that both SPIDER and SNVRG are near optimal with re-

spect to the gradient complexity. In a recent work, [FLZ19] proposed a tighter analysis of

the gradient complexity for SGD to escape saddle points.

2.3 Preliminaries

In this section, we present some definitions that will be used throughout this chapter.

Definition 2.3.1 (Smoothness). f : Rd → R is L1-smooth for some constant L1 > 0, if it

is differentiable and satisfies

‖∇f(x)−∇f(y)‖2 ≤ L1‖x− y‖2, for any x,y ∈ Rd. (2.3.1)

12

Table 2.1: Comparisons on gradient complexity of different algorithms. The second col-

umn shows the gradient complexity for a nonconvex and smooth function to achieve an

ε-approximate stationary point (i.e., ‖∇F (x)‖2 ≤ ε). The last column indicates whether the

algorithm needs the Hessian Lipschitz condition in their analyses.

Algorithm Gradient complexity Need Hessian Lipschitz?

GD O
(
n
ε2

)
7

SGD O
(

1
ε4

)
7

SVRG [RHS+16] O
(
n2/3

ε2

)
7

SCSG [LJCJ17] O
(

1
ε10/3

∧ n2/3

ε2

)
7

GNC-AGD [CDHS17] Õ
(

n
ε1.75

)
3

Natasha 2 [AZ18] Õ
(

1
ε3.25

)
3

SNVRG (Algorithm 2) Õ
(

1
ε3
∧ n1/2

ε2

)
7

Definition 2.3.1 implies that if f is L-smooth, we have for any x,h ∈ Rd

f(x + h) ≤ f(x) + 〈∇f(x),h〉+
L

2
‖h‖2

2. (2.3.2)

Definition 2.3.2 (Hessian Lipschitzness). f : Rd → R is L2-Hessian Lipschitz for some

constant L2 > 0, if it is twice-differentiable and satisfies

‖∇2f(x)−∇2f(y)‖2 ≤ L2‖x− y‖2, for any x,y ∈ Rd.

The above two smoothness conditions are widely used in nonconvex optimization prob-

lems [NP06]. We will call them first-order smoothness and second-order smoothness re-

spectively in this chapter. As shown in [CDHS17, YXG18], when the objective function

has additionally third-order smoothness, one can design algorithms that find local minima

even faster. Following [YXG18], we denote the three-way tensor ∇3f(x) ∈ Rd×d×d as the

third-order derivative of f .

Definition 2.3.3 (Third-order Derivative). The third-order derivative of function f : Rd →

13

Table 2.2: Comparisons on gradient complexities to find an (ε, εH)-approximate second-order

stationary point in finite-sum nonconvex optimization. The last column indicates whether

the algorithm exploits the third-order smoothness of the objective function.

Algorithm Gradient complexity Need 3rd-order smooth?

PGD [JGN+17] Õ
(
n
ε2

)
(for εH ≥ ε1/2) 7

SVRG + Neon2finite

Õ
(
n2/3

ε2
+ n

ε3H
+ n3/4

ε
7/2
H

)
7

[AZL18]

FLASH [YXG18] Õ
(
n2/3

ε2
+ n

ε2H
+ n3/4

ε
5/2
H

)
3

SNVRG + Neon2finite

Õ
(
n1/2

ε2
+ n

ε3H
+ n3/4

ε
7/2
H

)
7

(Algorithm 3)

SNVRG + Neon2finite

Õ
(
n1/2

ε2
+ n

ε2H
+ n3/4

ε
5/2
H

)
3

(Algorithm 3)

R is defined as a three-way tensor ∇3f(x) ∈ Rd×d×d, where

[∇3f(x)]ijk =
∂

∂xi∂xj∂xk
f(x), i, j, k = 1, . . . , d and x ∈ Rd.

Now we are ready to present the formal definition of third-order smoothness, which

has been explored in [AG16, CDHS17, YXG18]. It is also called third-order derivative

Lipschitzness in [CDHS17].

Definition 2.3.4 (Third-order Smoothness). f : Rd → R is L3-third-order smooth for some

constant L3 > 0, if it is thrice-differentiable and satisfies

‖∇3f(x)−∇3f(y)‖F ≤ L3‖x− y‖2, for any x,y ∈ Rd.

The following definition characterizes the distance between the initial point of an algo-

rithm and the minimizer of function f .

Definition 2.3.5 (Optimal Gap). The optimal gap of f at point x0 is denoted by ∆f and

14

f(x0)− min
x∈Rd

f(x) ≤ ∆f .

W.L.O.G., we assume ∆f < +∞.

Definition 2.3.6. f : Rd → R is λ-strongly convex for some constant λ > 0, if it satisfies

f(x + h) ≥ f(x) + 〈∇f(x),h〉+
λ

2
‖h‖2

2, for any x,y ∈ Rd. (2.3.3)

While the above definitions are based on a general function f , the following two definitions

rely on the finite-sum structure of F defined in (1.1.1).

Definition 2.3.7. A function F with finite-sum structure in (1.1.1) is said to have stochastic

gradients with bounded variance σ2, if for any x ∈ Rd, we have

Ei‖∇fi(x)−∇F (x)‖2
2 ≤ σ2, (2.3.4)

where i a random index uniformly chosen from [n] and Ei denotes the expectation over such

i.

σ2 is called the upper bound on the variance of stochastic gradients [LJCJ17].

Definition 2.3.8. A function F with finite-sum structure in (1.1.1) is said to have averaged

L-Lipschitz gradient, if for any x,y ∈ Rd, we have

Ei‖∇fi(x)−∇fi(y)‖2
2 ≤ L2‖x− y‖2

2, (2.3.5)

where i is a random index uniformly chosen from [n] and Ei denotes the expectation over the

choice.

It should be noted that the smoothness condition of each fi in Definition 2.3.1 will directly

imply the averaged L-Lipschitz gradient for F .

Inspired by the SCSG algorithm [LJCJ17], we will use the property of geometric distri-

bution in our algorithm design. The definition of geometric random variable is as follows.

Definition 2.3.9 (Geometric Distribution). A random variable X follows a geometric dis-

tribution with parameter p, denoted as Geom(p), if it holds that

P(X = k) = p(1− p)k, ∀k = 0, 1,

15

Definition 2.3.10 (Sub-Gaussian Stochastic Gradient). We say a function F has σ2-sub-

Gaussian stochastic gradient ∇F (x; ξ) for any x ∈ Rd and random variable ξ ∼ D, if it

satisfies

E
[

exp

(‖∇F (x; ξ)−∇f(x)‖2
2

σ2

)]
≤ exp(1).

Note that Definition 2.3.10 implies E[‖∇F (x; ξ)−∇f(x)‖2
2] ≤ 2σ2 [Ver10]. In the finite-

sum optimization setting (1.1.1), we call ∇fi(x) a stochastic gradient of function F for a

randomly chosen index i ∈ [n], and we say F has σ2-sub-Gaussian stochastic gradient if

E[‖∇fi(x)−∇F (x)‖2
2] ≤ 2σ2.

2.4 Stochastic Nested Variance-Reduced Gradient Descent

In this section, we present our nested stochastic variance reduction algorithm, namely,

SNVRG for finding first-order stationary points in nonconvex optimization.

One-epoch-SNVRG: We first present the key component of our main algorithm, One-

epoch-SNVRG, which is displayed in Algorithm 1. The most innovative part of Algorithm

1 attributes to the K + 1 reference points and K + 1 reference gradients. Note that when

K = 1, Algorithm 1 reduces to one epoch of SVRG algorithm [JZ13, RHS+16, AZH16].

To better understand our One-epoch-SNVRG algorithm, it would be helpful to revisit the

original SVRG which is a special case of our algorithm. For the finite-sum optimization

problem in (1.1.1), the original SVRG takes the following updating formula

xt+1 = xt − ηvt = xt − η
(
∇F (x̃) +∇fit(xt)−∇fit(x̃)

)
,

where η > 0 is the step size, it is a random index uniformly chosen from [n] and x̃ is a

snapshot for xt after every T1 iterations. There are two reference points in the update

formula at xt: x
(0)
t = x̃ and x

(1)
t = xt. Note that x̃ is updated every T1 iterations, namely,

x̃ is set to be xt only when (t mod T1) = 0. Moreover, in the semi-stochastic gradient vt,

there are also two reference gradients and we denote them by g
(0)
t = ∇F (x̃) and g

(1)
t =

∇fit(xt)−∇fit(x̃) = ∇fit(x(1)
t)−∇fit(x(0)

t).

Back to our One-epoch-SNVRG, we can define similar reference points and reference

16

Algorithm 1 One-epoch-SNVRG(x0, F,K,M, {Tl}, {Bl}, B0)

1: Input: initial point x
(l)
−1 ← x0, l ∈ [K]; function F ; loop number K; step size parameter

M ; loop parameters {Tl}; batch parameters {Bl}, base batch size B0.

2: Option I T =
∏K

l=1 Tl

3: Option II T ∼ Geom(1/(1 +
∏K

l=1 Tl))

4: for t = 0, . . . , T − 1 do

5: r = min{j : 0 = (t mod
∏K

l=j+1 Tl), 0 ≤ j ≤ K}
6: {x(l)

t } ← Update reference points({x(l)
t−1},xt, r), 0 ≤ l ≤ K.

7: {g(l)
t } ← Update reference gradients({g(l)

t−1}, {x(l)
t }, r), 0 ≤ l ≤ K.

8: vt ←
∑K

l=0 g
(l)
t

9: xt+1 ← xt − 1/(10M) · vt
10: end for

11: xout ← uniformly random choice from {xt}, where 0 ≤ t <
∏K

l=1 Tl

12: Output: [xout,xT]

13: Function: Update reference points({x(l)
old},x, r)

14: x
(l)
new ← x

(l)
old, 0 ≤ l ≤ r − 1; x

(l)
new ← x, r ≤ l ≤ K

15: return {x(l)
new}

16: Function: Update reference gradients({g(l)
old}, {x

(l)
new}, r)

17: if r > 0 then

18: g
(l)
new ← g

(l)
old, 0 ≤ l < r; g

(l)
new ← 0, r + 1 ≤ l ≤ K

19: Uniformly generate index set I ⊂ [n] without replacement, |I| = Br

20: g
(r)
new ← 1/Br

∑
i∈I
[
∇fi(x(r)

new)−∇fi(x(r−1)
new)

]

21: else

22: Uniformly generate index set I ⊂ [n] without replacement, |I| = B0

23: g
(0)
new ← 1/B0

∑
i∈I ∇fi(x

(0)
new); g

(l)
new ← 0, 1 ≤ l ≤ K

24: end if

25: return {g(l)
new}.

17

gradients as that in the special case of SVRG. Specifically, for t = 0, . . . ,
∏K

l=1 Tl − 1, each

point xt has K + 1 reference points {x(l)
t }, l = 0, . . . , K, which is set to be x

(l)
t = xtl with

index tl defined as

tl =

⌊
t∏K

k=l+1 Tk

⌋
·

K∏

k=l+1

Tk. (2.4.1)

Specially, note that we have x
(0)
t = x0 and x

(K)
t = xt for all t = 0, . . . ,

∏K
l=1 Tl− 1. Similarly,

xt also has K + 1 reference gradients {g(l)
t }, which can be defined based on the reference

points {x(l)
t }:

g
(0)
t =

1

B

∑

i∈I

∇fi(x0), g
(l)
t =

1

Bl

∑

i∈Il

[
∇fi(x(l)

t)−∇fi(x(l−1)
t)

]
, l = 1, . . . , K, (2.4.2)

where I, Il are random index sets with |I| = B, |Il| = Bl and are uniformly generated from

[n] without replacement. Based on the reference points and reference gradients, we then

update xt+1 = xt − 1/(10M) · vt, where vt =
∑K

l=0 g
(l)
t and M is the step size parameter.

The illustration of reference points and gradients of SNVRG is displayed in Figure 2.2(b).

We remark that it would be a huge waste for us to re-evaluate g
(l)
t at each iteration.

Fortunately, due to the fact that each reference point is only updated after a long period,

we can maintain g
(l)
t = g

(l)
t−1 and only need to update g

(l)
t when x

(l)
t has been updated as is

suggested by Line 20 in Algorithm 1.

SNVRG: Using One-epoch-SNVRG (Algorithm 1) as a building block, we now present our

main algorithm: Algorithm 2, for finding an ε-approximate stationary point in nonconvex

finite-sum optimization. At each iteration of Algorithm 2, it executes One-epoch-SNVRG

(Algorithm 1) which takes zs−1 as its input and outputs [ys, zs]. We choose yout as the

output of Algorithm 2 uniformly from {ys}, for s = 1, . . . , S.

Space complexity: We briefly compare the space complexity between our algorithms and

other variance reduction based algorithms. SVRG and SCSG needs O(d) space complexity

to store one reference gradient, SAGA [DBLJ14] needs to store reference gradients for each

component functions, and its space complexity is O(nd) without using any trick. For our

algorithm SNVRG, we need to store K reference gradients, thus its space complexity is

18

For t1 = 1, . . . , T1

x
(1)
tReference point

x
(0)
tReference point
g

(0)
tReference gradient

g
(1)
t

Reference gradient

update
xt+1 = xt � ⌘(g

(0)
t + g

(1)
t)

(a) SVRG

For t1 = 1, . . . , T1

For tK = 1, . . . , TK

For tK�1 = 1, . . . , TK�1

x
(1)
tReference point

x
(K�1)
tReference point

x
(K)
tReference point

x
(0)
tReference point

g
(K�1)
tReference gradient

g
(K)
t

Reference gradient

g
(0)
tReference gradient

g
(1)
t

Reference gradient

xt+1 = xt � ⌘

KX

i=0

g
(i)
t

update

……

......

(b) SNVRG

Figure 2.2: Illustration of reference points and gradients in SVRG and SNVRG.

O(Kd). In our theory, we will show that K = O(log log n). Therefore, the space complexity

of our algorithm is actually Õ(d), which is almost comparable to that of SVRG and SCSG.

Algorithm 2 SNVRG(z0, F,K,M, {Tl}, {Bl}, B0, S)

1: Input: initial point z0; function F ; loop numbers K,S; step size parameter M ; loop

parameters {Tl}; batch parameters {Bl}; base batch size B0.

2: for s = 1, . . . , S do

3: [ys, zs] = One-epoch-SNVRG(zs−1, F,K,M, {Tl}, {Bl}, B0) . Algorithm 1 with

Option I

4: end for

5: Output: Uniformly choose yout from {ys}, 1 ≤ s ≤ S.

2.4.1 Convergence of SNVRG

The following theorem shows the gradient complexity for Algorithm 2 to find an ε-approximate

stationary point with a constant base batch size B0.

19

Theorem 2.4.1. Suppose that F has averaged L-Lipschitz gradient and stochastic gradients

with bounded variance σ2. In Algorithm 2, let B0 = n ∧ (2Cσ2/ε2) and suppose B0 > 4,

S = 1 ∨ (2CL∆F/(B
1/2
0 ε2)) and C = 6000. The rest parameters (K,M, {Bl}, {Tl}) are

chosen as follows:

K = blog logB0c,

M = 6L1,

T1 =
⌊
B2−K

0

⌋
, Tl =

⌊
B2l−K−2

0

⌋
, for 2 ≤ l ≤ K,

Bl = 6K−l+1

(K∏

s=l

Ts

)2

, for 1 ≤ l ≤ K.

(2.4.3)

Then the output yout of Algorithm 2 satisfies E[‖∇F (yout)‖2
2] ≤ ε2 with less than

O

(
log3

(
σ2

ε2
∧ n
)[

σ2

ε2
∧ n+

L∆F

ε2

[
σ2

ε2
∧ n
]1/2])

(2.4.4)

stochastic gradient computations, where ∆F = F (z0)− F ∗.

Remark 2.4.2. If we treat σ2, L and ∆F as constants, and assume ε� 1, then (2.4.4) can

be simplified to Õ(ε−3 ∧ n1/2ε−2). This gradient complexity is strictly better than O(ε−10/3 ∧
n2/3ε−2), which is achieved by SCSG [LJCJ17]. Specifically, when n . 1/ε2, our proposed

SNVRG is faster than SCSG by a factor of n1/6; when n & 1/ε2, SNVRG is faster than

SCSG by a factor of ε−1/3. Moreover, SNVRG also outperforms Natasha 2 [AZ18] which

attains Õ(ε−3.25) gradient complexity and needs the additional Hessian Lipschitz condition.

2.5 SNVRG for Finding Local Minima

In this section, we present our algorithm that is built upon One-epoch-SNVRG (Algorithm 1)

and Neon2 [AZL18] to find a local minimum in nonconvex optimization faster than existing

methods. It is worth noting that to find local minima, we employ a different choice of

the number of iteration T which is chosen to be a random variable following a geometric

distribution (Algorithm 1 with Option II) rather than fixed. We will show in the next section

that these differences are essential in the theoretical analysis of finding local minima.

20

2.5.1 SNVRG + Neon2: Finding Local Minima

In particular, to solve the finite-sum optimization problem (1.1.1), we propose the SNVRG+

Neon2finite algorithm to find the local minimum, which is displayed in Algorithm 3. At each

iteration of 3, it first determines whether the current point is a first-order stationary point

(Line 4) or not. If not, it will run Algorithm 1 (One-epoch-SNVRG) in order to find a first-

order stationary point. Once obtaining a first-order stationary point, it will call Neon2finite

to find the negative curvature direction to escape any potential non-degenerate saddle point.

According to [XRY18, AZL18], Neon-type algorithms can output such a direction with prob-

ability 1−δ for some failure probability δ ∈ (0, 1). If Neon2finite does not find such a direction,

it will output v̂ =⊥ and Algorithm 3 terminates and outputs zu−1 (Line 9) since it has already

reached a second-order stationary point according to (1.1.4). If Neon2finite finds a negative

curvature direction v̂ 6=⊥, Algorithm 3 will perform one step of negative curvature descent in

the direction of v̂ or −v̂ (Line 12) to escape the non-degenerate saddle point. The direction

can also be chosen in the same way as in [CDHS17] via comparing the function values at the

two resulting points. Here to reduce the computational complexity, we follow [XRY18] and

generate a Rademacher random variable to decide the direction, which leads to the same

result in expectation. Note that Algorithm 3 is only based on the gradient information of

the objective function and therefore belongs to first-order optimization algorithms.

2.5.2 Convergence Analysis of SNVRG + Neon2

In this section, we provide the main theoretical results for finding local minima using SNVRG.

The following theorem provides the gradient complexity of Algorithm 3 in finding an ap-

proximate local minimum.

Theorem 2.5.1. Suppose that F = 1/n
∑n

i=1 fi, where each fi is L1-smooth and L2-Hessian

Lipschitz continuous. Let 0 < ε, εH < 1, δ = ε3H/(144L2
2∆F) and U = 24L2

2∆F ε
−3
H +

1800L1∆F ε
−2n−1/2. Set B0 = n,M = 6L1 and all the rest parameters of One-epoch-SNVRG

as in (2.4.3) of Theorem 2.4.1. Choose step size η = εH/L2. Then with probability at least

21

Algorithm 3 SNVRG + Neon2finite(z0, F,K,M, {Tl}, {Bl}, B0, U, ε, εH , δ, η, L1, L2)

1: Input: initial point z0; function F ; loop number K; step size parameter M ; loop pa-

rameters {Tl}; batch parameters {Bl}; base batch size B0; gradient accuracy ε; Hessian

accuracy εH ; failure probability δ; negative curvature descent step size η; gradient Lips-

chitz parameter L1; Hessian Lipschitz parameter L2.

2: for u = 1, . . . , U do

3: gu−1 = ∇F (zu−1)

4: if ‖gu−1‖2 ≥ ε then

5: zu = One-epoch-SNVRG(zu−1,F,K,M, {Tl}, {Bl}, B0) . Algorithm 1 with Option

II

6: else

7: v = Neon2finite(F, zu−1, L1, L2, δ, εH)

8: if v =⊥ then

9: return zu−1

10: else

11: Generate a Rademacher random variable ζ

12: zu ← zu−1 + ζηv̂

13: end if

14: end if

15: end for

16: return

22

1/4, SNVRG + Neon2finite will find an (ε, εH)-second-order stationary point within

Õ

(
∆FnL

2
2

ε3H
+

∆Fn
3/4L

1/2
1 L2

2

ε
7/2
H

+
∆Fn

1/2L1

ε2

)
(2.5.1)

stochastic gradient evaluations.

Remark 2.5.2. Note that the gradient complexity in Theorem 2.5.1 holds with constant

probability 1/4. In practice, we can repeatedly run Algorithm 3 for log(1/p) times to achieve

a result that holds with probability at least 1−p for any p ∈ (0, 1). Similar boosting techniques

have also been used in [YZG17, AZL18, YXG18].

1

✏

1

✏3/2
n

Gradient
Complexity

1

n1/2

✏2

n2/3

✏2
n

✏3/2

n

✏3/2

SNVRG+ + Neon2finite

SVRG + Neon2finite

Figure 2.3: Comparison of gradient complexities between SNVRG + Neon2finite and

SVRG + Neon2finite for finding an (ε,
√
ε)-approximate local minimum in finite-sum opti-

mization problems.

Remark 2.5.3. For finite-sum nonconvex optimization, Theorem 2.5.1 suggests that the

gradient complexity of Algorithm 3 (SNVRG + Neon2finite) is Õ(n1/2ε−2 + nε−3
H + n3/4ε

−7/2
H).

In contrast, the gradient complexity of other state-of-the-art local minimum finding algorithms

(SVRG + Neon2finite) [AZL18] is Õ(n2/3ε−2 + nε−3
H + n3/4ε

−7/2
H). Our algorithm is strictly

better than that of [AZL18] in terms of the first term in the big O notation.

If we choose εH =
√
ε, the gradient complexity of our algorithm to find an (ε,

√
ε)-

approximate local minimum turns out to be O(n1/2ε−2 + nε−3/2 + n3/4ε−7/4) and that of

SVRG + Neon2finite is O(n2/3ε−2 + nε−3/2 + n3/4ε−7/4). We compare these two algorithms in

Figure 2.3 when εH =
√
ε and make the following comments:

23

• When n & ε−3/2, the gradient complexities of both algorithms are in the same order of

Õ(nε−3/2).

• When ε−1 . n . ε−3/2, SNVRG + Neon2finite enjoys Õ(nε−3/2) gradient complexity,

which is strictly better than that of SVRG + Neon2finite, i.e., Õ(n2/3ε−2).

• Lastly, when n . ε−1, SNVRG + Neon2finite achieves Õ(n1/2ε−2) gradient complexity,

which is again better than the gradient complexity of SVRG + Neon2finite, Õ(n2/3ε−2),

by a factor of Õ(n1/6).

In short, our algorithms beats SVRG + Neon2finite when n . ε−3/2.

2.5.3 Finding Local Minima with the Third-Order Smoothness Condition

As we mentioned before, it has been shown that the third-order smoothness of the objec-

tive function F can help accelerate the convergence of nonconvex optimization [CDHS17,

YXG18]. For the intuition of the acceleration by third-order smoothness, we refer readers

to the detailed exhibition and discussion in [YXG18]. In this section, we will show that our

local minimum finding algorithm (Algorithm 3) can find local minima faster provided this

additional condition.

Theorem 2.5.4. Suppose that F = 1/n
∑n

i=1 fi, where each fi is L1-smooth, L2-Hessian

Lipschitz continuous and F is L3-third-order smooth. Let 0 < ε, εH < 1, δ = ε2H/(72L3∆F)

and U = 12L3∆F ε
−2
H + 1800CL1∆F ε

−2n−1/2. Set B0 = n,M = 6L1 and all the rest pa-

rameters of One-epoch-SNVRG as in (2.4.3). Choose the step size as η =
√

3εH/L3. Then

with probability at least 1/4, SNVRG+Neon2finite will find an (ε, εH)-second-order stationary

point within

Õ

(
∆FnL3

ε2H
+

∆Fn
3/4L

1/2
1 L3

ε
5/2
H

+
∆Fn

1/2L1

ε2

)
(2.5.2)

stochastic gradient evaluations.

Similar to previous discussions, we can repeatedly run Algorithm 3 for log(1/p) times to

boost its confidence to 1− p for any p ∈ (0, 1).

24

Remark 2.5.5. Compared with step size η = εH/L2 used in the negative curvature descent

step (Line 12) of Algorithm 3 in Theorem 2.5.1 without third-order smoothness, the step

size in Theorem 2.5.4 is chosen to be η =
√
εH/L3 where L3 is the third-order smoothness

parameter. Note that when εH � 1, the step size we choose under third-order smoothness

assumption is much bigger than that under only second-order smoothness assumption. As

is pointed out by [YXG18], the key advantage of third-order smoothness condition is that

it enables us to choose a larger step size and therefore achieve much more function value

decrease in the negative curvature descent step (Line 12 of Algorithm 3).

Remark 2.5.6. Theorem 2.5.4 suggests that the gradient complexity of SNVRG+Neon2finite

under third-order smoothness is Õ(n1/2ε−2 +nε−2
H +n3/4ε

−5/2
H). In stark contrast, the gradient

complexity of the state-of-the-art finite-sum local minimum finding algorithm with third-order

smoothness assumption (FLASH) [YXG18] is Õ(n2/3ε−2 + nε−2
H + n3/4ε

−5/2
H). Clearly, our

algorithm is strictly better than the FLASH algorithm [YXG18] in the first term of the

gradient complexity.

Specifically, if we choose εH =
√
ε, SNVRG + Neon2finite is faster for finding an (ε,

√
ε)-

approximate local minimum than FLASH by a factor of O(1/ε1/6) when n . ε−2. SNVRG +

Neon2finite is also strictly faster than FLASH when ε−2 . n . ε−3 and will match FLASH

when n & ε−3. We show this comparison in Figure 2.4, which clearly demonstrates that the

gradient complexity of SNVRG + Neon2finite is much smaller than that of FLASH in a very

wide regime.

2.6 Experiments

In this section, we conduct experiments to validate the superiority of the proposed algo-

rithms. In the first part of this section, we compare our algorithm SNVRG with existing

baseline algorithms on training a convolutional neural network for image classification. In

the second part of this section, we consider a symmetric matrix sensing problem, where

many saddle points exist and thus the proposed SNVRG+Neon2 is compared with vanilla

SNVRG, SGD+NEON and SCSG+Neon2.

25

n

Gradient
Complexity

1

FLASH
n1/2

✏2

n2/3

✏2 n

✏

n

✏

1

✏2
1

✏3

SNVRG+ + Neon2finite

Figure 2.4: Comparison of gradient complexities between SNVRG + Neon2finite and FLASH

for finding an (ε,
√
ε)-approximate local minimum in finite-sum nonconvex optimization prob-

lems.

2.6.1 SNVRG for Training CNNs for Image Classification

We compare the performance of the following algorithms: SGD; SGD with momentum

[Qia99] (denoted by SGD-momentum); ADAM [KB14]; SCSG [LJCJ17]. It is worth noting

that SCSG is a special case of SNVRG when the number of nested loops K = 1. Due to the

memory cost, we did not compare Gradient Descent (GD) or SVRG which need to calculate

the full gradient. Although our theoretical analysis holds for general K nested loops, it suf-

fices to choose K = 2 in SNVRG to illustrate the effectiveness of the nested structure for the

simplification of implementation. In this case, we have 3 reference points and gradients. All

experiments are conducted on Amazon AWS p2.xlarge servers which comes with Intel Xeon

E5 CPU and NVIDIA Tesla K80 GPU (12G GPU RAM). All algorithm are implemented in

Pytorch platform version 0.4.0 within Python 3.6.4.

Datasets We use three image datasets: (1) The MNIST dataset [SS02] consists of handwrit-

ten digits and has 50, 000 training examples and 10, 000 test examples. The digits have been

size-normalized to fit the network, and each image is 28 pixels by 28 pixels. (2) CIFAR10

dataset [Kri09] consists of images in 10 classes and has 50, 000 training examples and 10, 000

test examples. The digits have been size-normalized to fit the network, and each image is

32 pixels by 32 pixels. (3) SVHN dataset [NWC+11] consists of images of digits and has

26

531, 131 training examples and 26, 032 test examples. The digits have been size-normalized

to fit the network, and each image is 32 pixels by 32 pixels.

CNN Architecture We use the standard LeNet [LBBH98], which has two convolutional

layers with 6 and 16 filters of size 5 respectively, followed by three fully-connected layers

with output size 120, 84 and 10. We apply max pooling after each convolutional layer.

Implementation Details & Parameter Tuning We did not use the random data aug-

mentation which is set as default by Pytorch, because it will apply random transformation

(e.g., clip and rotation) at the beginning of each epoch on the original image dataset, which

will ruin the finite-sum structure of the loss function. We set our grid search rules for all

three datasets as follows. For SGD, we search the batch size from {256, 512, 1024, 2048} and

the initial step sizes from {1, 0.1, 0.01}. For SGD-momentum, we set the momentum pa-

rameter as 0.9. We search its batch size from {256, 512, 1024, 2048} and the initial learning

rate from {1, 0.1, 0.01}. For ADAM, we search the batch size from {256, 512, 1024, 2048}
and the initial learning rate from {0.01, 0.001, 0.0001}. For SCSG and SNVRG, we choose

loop parameters {Tl} which satisfy Bl ·
∏l

j=1 Tj = B automatically. In addition, for SCSG,

we set the batch sizes (B,B1) = (B,B/b), where b is the batch size ratio parameter. We

search B from {256, 512, 1024, 2048} and we search b from {2, 4, 8}. We search its initial

learning rate from {1, 0.1, 0.01}. For our proposed SNVRG algorithm, we set the batch

sizes (B,B1, B2) = (B,B/b,B/b2), where b is the batch size ratio parameter. We search

B from {256, 512, 1024, 2048} and b from {2, 4, 8}. We search its initial learning rate from

{1, 0.1, 0.01}.

2.6.1.1 Experimental Results with Learning Rate Decaying

In this section, we first present the experimental results with learning rate decay. In particu-

lar, following the convention of deep learning practice, we apply learning rate decay schedule

to each algorithm with the learning rate decayed by 0.1 every 20 epochs.

We plotted the training loss and test error for different algorithms on each dataset in

Figure 2.5. The results on MNIST are presented in Figures 2.5(a) and 2.5(d); the results on

27

0 10 20 30 40 50 60

epochs
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Tr

ai
ni

ng
 L

os
s

SGD
SGD-momentum
ADAM
SCSG
SNVRG

(a) training loss (MNIST)

0 10 20 30 40 50 60

epochs

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

 L
os

s

SGD
SGD-momentum
ADAM
SCSG
SNVRG

(b) training loss (CIFAR10)

0 10 20 30 40 50 60

epochs
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Tr
ai

ni
ng

 L
os

s

SGD
SGD-momentum
ADAM
SCSG
SNVRG

(c) training loss (SVHN)

0 10 20 30 40 50 60

epochs
0.00

0.01

0.02

0.03

0.04

0.05

Te
st

 E
rro

r

SGD
SGD-momentum
ADAM
SCSG
SNVRG

(d) test error (MNIST)

0 10 20 30 40 50 60

epochs
0.30

0.35

0.40

0.45

0.50

0.55

0.60

Te
st

 E
rro

r

SGD
SGD-momentum
ADAM
SCSG
SNVRG

(e) test error (CIFAR10)

0 10 20 30 40 50 60

epochs

0.06

0.08

0.10

0.12

0.14

Te
st

 E
rro

r

SGD
SGD-momentum
ADAM
SCSG
SNVRG

(f) test error (SVHN)

Figure 2.5: Experiment results on different datasets with learning rate decay. (a) and (d)

depict the training loss and test error (top-1 error) v.s. data epochs for training LeNet on

MNIST dataset. (b) and (e) depict the training loss and test error v.s. data epochs for

training LeNet on CIFAR10 dataset. (c) and (f) depict the training loss and test error v.s.

data epochs for training LeNet on SVHN dataset.

CIFAR10 are in Figures 2.5(b) and 2.5(e); and the results on SVHN dataset are shown in

Figures 2.5(c) and 2.5(f). It can be seen that with learning rate decay schedule, our algorithm

SNVRG outperforms all baseline algorithms, which confirms that the use of nested reference

points and gradients can accelerate the nonconvex finite-sum optimization.

We would like to emphasize that, while this experiment is on training convolutional neural

networks, the major goal of this experiment is to illustrate the advantage of our algorithm

and corroborate our theory, rather than claiming a state-of-the-art algorithm for training

deep neural networks.

28

2.6.1.2 Experimental Results without Learning Rate Decay

We also conducted experiments comparing different algorithms without the learning rate

decay schedule. The parameters are tuned by the same grid search described in Section 2.6.

In particular, we summarize the parameters of different algorithms used in our experiments

with and without learning rate decay for MNIST in Table 2.3, CIFAR10 in Table 2.4, and

SVHN in Table 2.5. We plotted the training loss and test error for each dataset without

learning rate decay in Figure 2.6. The results on MNIST are presented in Figures 2.6(a) and

2.6(d); the results on CIFAR10 are in Figures 2.6(b) and 2.6(e); and the results on SVHN

dataset are shown in Figures 2.6(c) and 2.6(f). It can be seen that without learning decay,

our algorithm SNVRG still outperforms all the baseline algorithms except for the training

loss on SVHN dataset. However, SNVRG still performs the best in terms of test error on

SVHN dataset. These results again suggest that SNVRG can beat the state-of-the-art in

practice, which backups our theory.

Table 2.3: Parameter settings of all algorithms on MNIST dataset.

Algorithm

With Learning Rate Decay Without Learning Rate Decay

Initial learning Batch size Batch size learning Batch size Batch size

rate η B ratio b rate η B ratio b

SGD 0.1 1024 N/A 0.01 1024 N/A

SGD-momentum 0.01 1024 N/A 0.1 1024 N/A

ADAM 0.001 1024 N/A 0.001 1024 N/A

SCSG 0.01 512 8 0.01 512 8

SNVRG 0.01 512 8 0.01 512 8

2.6.2 Experimental Results for Escaping Saddle Points

In this section, we conduct experiments to validate the superiority of our proposed algorithms

for escaping from saddle points. We consider the matrix sensing problem, which is defined

29

Table 2.4: Parameter settings of all algorithms on CIFAR10 dataset.

Algorithm

With Learning Rate Decay Without Learning Rate Decay

Initial learning Batch size Batch size learning Batch size Batch size

rate η B ratio b rate η B ratio b

SGD 0.1 1024 N/A 0.01 512 N/A

SGD-momentum 0.01 1024 N/A 0.01 2048 N/A

ADAM 0.001 1024 N/A 0.001 2048 N/A

SCSG 0.01 512 8 0.01 512 8

SNVRG 0.01 1024 8 0.01 512 4

as follows:

min
U∈Rd×r

f(U) =
1

2n

n∑

i=1

(〈Ai,UU>〉 − bi)2, (2.6.1)

where {Ai}ni=1 are sensing matrices, bi = 〈Ai,M
∗〉 is the i-th observation, and M∗ =

U∗(U∗)> is the underlying unknown low-rank matrix. Following the same setting in [YXG18],

we consider two matrix sensing problems: (1) d = 50, r = 3 and (2) d = 100, r = 3. We

generate n = 20d sensing matrices {Ai}ni=1, where each entry of Ai follows the standard

normal distribution. We generate U∗ randomly where each row of U∗ follows the standard

normal distribution. We generate u0 from standard normal distribution and set the initial

point as U0 = [u0,0, . . . ,0].

We compare our algorithm SNVRG+Neon with following baselines for nonconvex op-

timization problems: SNVRG, noisy stochastic gradient descent (NSGD) [GHJY15], and

Stochastically Controlled Stochastic Gradient with Neon (SCSG-Neon) [XRY18, AZL18].

For the simplicity, we choose the gradient batch size to be 100 for all algorithms. For SCSG-

Neon, we set the outer batch size to be n. For SNVRG and SNVRG+Neon, we choose K = 2

and set (B,B1) = (n, n/5). We apply Oja’s algorithm [Oja82] to calculate the negative cur-

vature with a Hessian mini-batch size of 100. We perform a grid search over step sizes for

all algorithms. We report the objective function value versus CPU running time.

30

Table 2.5: Parameter settings of all algorithms on SVHN dataset.

Algorithm

With Learning Rate Decay Without Learning Rate Decay

Initial learning Batch size Batch size learning Batch size Batch size

rate η B ratio b rate η B ratio b

SGD 0.1 2048 N/A 0.01 1024 N/A

SGD-momentum 0.01 2048 N/A 0.01 2048 N/A

ADAM 0.001 1024 N/A 0.001 512 N/A

SCSG 0.01 512 4 0.1 1024 4

SNVRG 0.01 512 8 0.01 512 4

The experimental results are shown in Figures 2.7(a) and 2.7(b). From the figures we can

see that without adding additional noise or using negative curvature information, SNVRG

tends to get stuck in saddle points. In sharp contrast, NSGD, SCSG-Neon and SNVRG-Neon

are able to escape from saddle points. We also notice that SNVRG-Neon outperforms all

other baseline algorithms in both problem settings.

2.7 Proof of Main Theory

In this section, we provide the proofs of our theoretical analysis in omitted in previous

sections.

2.7.1 Proof of Main Theory for Finding Stationary Points

We start with the following supporting lemma that characterizes the function value decrease

of One-epoch-SNVRG (Algorithm 1).

Lemma 2.7.1. Suppose that F has averaged L-Lipschitz gradient. Suppose that B0 ≥ 4

and the rest parameters (K,M, {Bl}, {Tl}) of Algorithm 1 are chosen the same as in (2.4.3).

31

0 10 20 30 40 50 60

epochs
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Tr

ai
ni

ng
 L

os
s

SGD
SGD-momentum
ADAM
SCSG
SNVRG

(a) training loss (MNIST)

0 10 20 30 40 50 60

epochs

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

 L
os

s

SGD
SGD-momentum
ADAM
SCSG
SNVRG

(b) training loss (CIFAR10)

0 10 20 30 40 50 60

epochs
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Tr
ai

ni
ng

 L
os

s

SGD
SGD-momentum
ADAM
SCSG
SNVRG

(c) training loss (SVHN)

0 10 20 30 40 50 60

epochs
0.00

0.01

0.02

0.03

0.04

0.05

Te
st

 E
rro

r

SGD
SGD-momentum
ADAM
SCSG
SNVRG

(d) test error (MNIST)

0 10 20 30 40 50 60

epochs
0.30

0.35

0.40

0.45

0.50

0.55

0.60

Te
st

 E
rro

r

SGD
SGD-momentum
ADAM
SCSG
SNVRG

(e) test error (CIFAR10)

0 10 20 30 40 50 60

epochs

0.06

0.08

0.10

0.12

0.14

Te
st

 E
rro

r

SGD
SGD-momentum
ADAM
SCSG
SNVRG

(f) test error (SVHN)

Figure 2.6: Experimental results on different datasets without learning rate decay. (a) and

(d) depict the training loss and test error (top-1 error) v.s. data epochs for training LeNet

on MNIST dataset. (b) and (e) depict the training loss and test error v.s. data epochs for

training LeNet on CIFAR10 dataset. (c) and (f) depict the training loss and test error v.s.

data epochs for training LeNet on SVHN dataset.

Then Algorithm 1 with Option I satisfies

E‖∇F (xout)‖2
2 ≤ C

(
L

B
1/2
0

· E
[
F (x0)− F (xT)

]
+
σ2

B0

· 1(B0 < n)

)
(2.7.1)

within 1 ∨ (10B0 log3B0) stochastic gradient computations, where T =
∏K

l=1 Tl, C = 6000 is

a constant and 1(·) is the indicator function.

Now we prove our main theorem which spells out the gradient complexity of SNVRG.

Proof of Theorem 2.4.1. By (2.7.1) we have

E‖∇F (ys)‖2
2 ≤ C

(
L

B
1/2
0

· E
[
F (zs−1)− F (zs)

]
+
σ2

B0

· 1(B0 < n)

)
, (2.7.2)

32

0.0 0.5 1.0 1.5 2.0 2.5

time in seconds

10 4

10 3

10 2

10 1

100
Fu

nc
tio

n
Va

lu
e

Ga
p

SNVRG
NSGD
SCSG+Neon
SNVRG+Neon

(a) d = 50, r = 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

time in seconds

10 4

10 3

10 2

10 1

100

Fu
nc

tio
n

Va
lu

e
Ga

p

SNVRG
NSGD
SCSG+Neon
SNVRG+Neon

(b) d = 100, r = 3

Figure 2.7: Experimental results on matrix sensing problems. (a) depicts matrix sensing

problem with d = 50, r = 3. (b) depicts matrix sensing problem with d = 100, r = 3.

where C = 6000. Taking summation for (2.7.2) over s from 1 to S, we have

S∑

s=1

E‖∇F (ys)‖2
2 ≤ C

(
L

B
1/2
0

· E
[
F (z0)− F (zS)

]
+
σ2

B0

· 1(B0 < n) · S
)
. (2.7.3)

Dividing both sides of (2.7.3) by S, we immediately obtain

E‖∇F (yout)‖2
2 ≤ C

(
LE
[
F (z0)− F ∗

]

SB
1/2
0

+
σ2

B0

· 1(B0 < n)

)
(2.7.4)

= C

(
L∆F

SB
1/2
0

+
σ2

B0

· 1(B0 < n)

)
, (2.7.5)

where (2.7.4) holds because F (zS) ≥ F ∗ and by the definition ∆F = F (z0) − F ∗. By the

choice of parameters in Theorem 2.4.1, we haveB0 = n∧(2Cσ2/ε2), S = 1∨(2CL∆F/(B
1/2
0 ε2)),

which implies

1(B0 < n) · σ2/B0 ≤ ε2/(2C), and L∆F/(SB
1/2
0) ≤ ε2/(2C). (2.7.6)

Submitting (2.7.6) into (2.7.5), we have E‖∇F (yout)‖2
2 ≤ 2Cε2/(2C) = ε2. By Lemma

2.7.1, we have that each One-epoch-SNVRG takes less than 7B0 log3B0 stochastic gradient

computations. Since we have total S epochs, so the total gradient complexity of Algorithm

2 is less than

S · 7B0 log3B0 ≤ 7B0 log3B0 +
L∆F

ε2
· 7B1/2

0 log3B0

33

= O

(
log3

(
σ2

ε2
∧ n
)[

σ2

ε2
∧ n+

L∆F

ε2

[
σ2

ε2
∧ n
]1/2])

,

which leads to the conclusion.

2.7.2 Proof of Main Theory for Finding Local Minima

In this section, we prove the gradient complexity of SNVRG + Neon2finite. It is worth noting

that in order to find local minima we apply One-epoch-SNVRG with Option II which samples

the total number of epochs T from a geometric distribution. Similar to the analysis for finding

first-order stationary points, we also have the following supporting lemma about the function

value decrease of Algorithm 1.

Lemma 2.7.2. Suppose that each fi is L1-smooth and F has σ2-sub-Gaussian stochastic

gradient. In Algorithm 1, suppose that B0 ≥ 4 and the rest parameters (K,M, {Bl}, {Tl}) of

Algorithm 1 are chosen the same as in (2.4.3). Then Algorithm 1 with Option II satisfies

E‖∇F (xT)‖2
2 ≤ C

(
M

B
1/2
0

· E[F (x0)− F (xT)] +
2σ2

B0

· 1{B0 < n}
)
, (2.7.7)

where C = 1000. In addition, the total number of stochastic gradient computations T by

Algorithm 1 satisfies ET ≤ 10B0 log3B0.

Remark 2.7.3. Note that Lemma 2.7.1 is regarding xout, which is a uniformly chosen

iterate from x1, . . . ,xT . In contrast, Lemma 2.7.2 is regarding the last iterate of xT in

Algorithm 1. This difference leads to the nonergodic-type and ergodic-type guarantees of

One-epoch-SNVRG which plays different roles in the analysis of stationary point finding

algorithms and local minimum finding algorithms.

Remark 2.7.4. For simplicity, we use ∇fi(x) to denote the stochastic gradient at point x

in our One-epoch-SNVRG algorithm (Lines 20 and 23 in Algorithm 1) and the analysis of

Lemma 2.7.2. However, we emphasize that One-epoch-SNVRG also works in the general

stochastic optimization setting if we replace ∇fi(x) with ∇F (x; ξi) for any index i. And the

theoretical result in Lemma 2.7.2 still holds.

34

When F (x) has the finite-sum structure in (1.1.1), we choose B0 = n,M = 6L1 in

One-epoch-SNVRG. Lemma 2.7.2 straightforwardly implies the following corollary.

Corollary 2.7.5. Suppose that each fi is L1-smooth. We choose B0 = n, and let other

parameters be chose as in Lemma 2.7.2. Then the output of Algorithm 1 with Option II

satisfies

E‖∇F (xT)‖2
2 ≤

CL1

n1/2
· E
[
F (x0)− F (xT)

]
,

where C = 6000. Let T be the total amount of stochastic gradient computations of Algorithm

1, then we have ET ≤ 10n log3 n.

The following lemma shows that based on Neon2finite the negative curvature descent step

of Algorithm 3 (Line 12) enjoys sufficient function value decrease. The proof can be found

in Theorem 5 and Claim C.2 in [AZL18].

Lemma 2.7.6 ([AZL18]). Suppose F = 1/n
∑n

i=1 fi, each fi is L1-smooth and L2-Hessian

Lipschitz continuous. Let εH ∈ (0, 1) and set η = εH/L2. Assume λmin(∇2F (zu−1)) < −εH
and that at the u-th iteration Algorithm 3 executes the Neon2finite algorithm (Line 7). Then

with probability 1− δ it holds that

Eζ
[
F (zu)− F (zu−1)

]
≤ −ε3H/(12L2

2).

In addition, Neon2finite takes O
(
(n + n3/4

√
L1/εH) log2(d/δ)

)
stochastic gradient computa-

tions.

Proof of Theorem 2.5.1. Let I = {1, . . . , U} be the index set of all iterations. We denote I1

and I2 as the index sets such that zu is obtained from Neon2finite for all u ∈ I1 and zu′ is

the output by SNVRG for all u′ ∈ I2. Obviously we have U = |I1|+ |I2|. We will calculate

|I1|, |I2| separately. For |I1|, by Lemma 2.7.6, with probability 1− δ, we have

E
[
F (zu)− F (zu−1)

]
≤ −ε3H/(12L2

2), for u ∈ I1. (2.7.8)

Summing up (2.7.8) over u ∈ I1, then with probability 1− δ · |I1| we have

|I1| · ε3H/(12L2
2) ≤

∑

u∈I1

E
[
F (zu−1)− F (zu)

]
≤
∑

u∈I

E
[
F (zu−1)− F (zu)

]
≤ ∆F , (2.7.9)

35

where the second inequality holds because by Corollary 2.7.5 it holds that

0 ≤ E‖∇F (zu)‖2
2 ≤

CL1

n1/2
E
[
F (zu−1)− F (zu)

]
, for all u ∈ I2. (2.7.10)

By (2.7.9), we have

|I1| ≤ 12L2
2∆F/ε

3
H .

To calculate |I2|, we further decompose I2 into two disjoint sets such that I2 = I1
2 ∪ I2

2 ,

where I1
2 = {u ∈ I2 : ‖gu‖2 > ε}, I2

2 = {u ∈ I2 : ‖gu‖2 ≤ ε}. It is worth noting that

if u ∈ I2
2 such that ‖gu‖2 ≤ ε, then Algorithm 3 will execute Neon2finite and a negative

curvature descent step, which means u + 1 ∈ I1 by definition. Thus, it always holds that

|I2
2 | ≤ |I1|. For |I1

2 |, note that x0 = zu−1 and xT = zu in Corollary 2.7.5, which directly

implies

∑

u∈I12

E‖∇F (zu)‖2
2 ≤

∑

u∈I12

CL1

n1/2
E
[
F (zu−1)− F (zu)

]

≤
∑

u∈I

CL1

n1/2
E
[
F (zu−1)− F (zu)

]

≤ CL1

n1/2
·∆F , (2.7.11)

where the second inequality holds because E[F (zu−1)−F (zu)] ≥ 0 for u ∈ I1 ∪I2 by (2.7.8)

and (2.7.10). Applying Markov’s inequality, with probability at least 2/3, we have

∑

u∈I12

‖∇F (zu)‖2
2 ≤

3CL1∆F

n1/2
.

Since for any u ∈ I1
2 , we have ‖∇F (zu)‖2 = ‖gu‖2 > ε, with probability at least 2/3 it holds

that

|I1
2 | ≤

3CL1∆F

ε2n1/2
.

Thus, the total number of iterations is U = |I1| + |I2| ≤ 2|I1| + |I1
2 | ≤ 24L2

2∆F ε
−3
H +

3CL1∆F ε
−2n−1/2.

We now calculate the gradient complexity of Algorithm 3. By Corollary 2.7.5 one single

call of One-epoch-SNVRG needs at most 20n log3 n stochastic gradient computations and by

36

Lemma 2.7.6 one single call of Neon2finite needs O
(
(n + n3/4

√
L1/εH) log2(d/δ)

)
stochastic

gradient computations. In addition, we need to compute gu at each iteration of Algorithm 3

(Line 3), which takes O(n) stochastic gradient computations. Thus, the expectation of the

total amount of stochastic gradient computations, denoted by ETtotal, can be upper bounded

by

|I1| ·O
(
(n+ n3/4

√
L1/εH) log2(d/δ)

)
+ |I2| ·O(n log3 n) + |I| ·O(n)

= |I1| · Õ
(
n+ n3/4

√
L1/εH

)
+ (|I1

2 |+ |I2
2 |) · Õ(n)

= |I1| · Õ
(
n+ n3/4

√
L1/εH

)
+ (|I1

2 |+ |I1|) · Õ(n). (2.7.12)

We further plug the upper bound for |I1| and |I1
2 | into (2.7.12) and obtain

ETtotal = O(L2
2∆F ε

−3
H) · Õ

(
n+ n3/4

√
L1/εH

)
+O(L1∆F ε

−2n−1/2)Õ(n)

= Õ
(
∆FnL

2
2ε
−3
H + ∆Fn

3/4L
1/2
1 L2

2ε
−7/2
H + ∆Fn

1/2L1ε
−2
)
.

Finally, applying Markov inequality, with probability 2/3, it holds that

Ttotal = Õ
(
∆FnL

2
2ε
−3
H + ∆Fn

3/4L
1/2
1 L2

2ε
−7/2
H + ∆Fn

1/2L1ε
−2
)
.

Since |I1|δ = |I1|/(144 · L2
2∆F ε

−3
H) ≤ 1/12, then by the union bound, with probability

1− 1/3− 1/3−|I1|δ ≥ 1/4, SNVRG + Neon2finite will find an (ε, εH)-second order stationary

point within

Õ
(
∆FnL

2
2ε
−3
H + ∆Fn

3/4L
1/2
1 L2

2ε
−7/2
H + ∆Fn

1/2L1ε
−2
)

stochastic gradient computations.

2.7.3 Proof of Main Theory with Third-order Smoothness

In this section, we prove the theoretical results of our proposed algorithms under third-order

smoothness condition. The following lemma shows that the negative curvature descent step

(Line 12) of Algorithm 3 achieves more function value decrease under third-order smoothness

assumption. The proof can be found in Lemma 4.3 of [YXG18].

37

Lemma 2.7.7 ([YXG18]). Suppose that F = 1/n
∑n

i=1 fi, each fi is L1-smooth, L2-Hessian

Lipschitz continuous and F is L3-third-order smooth. Let εH ∈ (0, 1) and η =
√

3εH/L3.

Suppose that λmin(∇2F (zu−1)) < −εH and that at the u-th iteration Algorithm 3 executes the

Neon2finite algorithm (Line 7). Then with probability 1− δ it holds that

Eζ
[
F (zu)− F (zu−1)

]
≤ −ε2H/(6L3).

In addition, Neon2finite takes O
(
(n + n3/4

√
L1/εH) log2(d/δ)

)
stochastic gradient computa-

tions.

Proof of Theorem 2.5.4. Denote I = {1, . . . , U} as the index of iteration. Let I = {1, . . . , U}
be the index set of iteration. We use I1 and I2 to represent the index set of iterates where the

zu is obtained from Neon2finite and One-epoch-SNVRG. Since U = |I1| + |I2|, we calculate

|I1|, |I2| separately. For |I1|, by Lemma 2.7.7, with probability at least 1− δ, we have

E
[
F (zu)− F (zu−1)

]
≤ −ε2H/(6L3), for u ∈ I1. (2.7.13)

Summing up (2.7.13) over u ∈ I1 and applying union bound, then with probability at least

1− δ · |I1| we have

|I1| · ε2H/(6L3) ≤
∑

u∈I1

E
[
F (zu−1)− F (zu)

]
≤
∑

u∈I

E
[
F (zu−1)− F (zu)

]
≤ ∆F , (2.7.14)

where the second inequality holds due to the fact that by Corollary 2.7.5 we have

0 ≤ E‖∇F (zu)‖2
2 ≤

CL1

n1/2
E
[
F (zu−1)− F (zu)

]
, for u ∈ I2. (2.7.15)

(2.7.14) directly implies

|I1| ≤ 6L3∆F/ε
2
H .

For |I2|, we decompose I2 = I1
2 ∪ I2

2 , where I1
2 = {u ∈ I2 : ‖gu‖2 > ε} and I2

2 = {u ∈ I2 :

‖gu‖2 ≤ ε}. If u ∈ I2
2 , then at the (u+ 1)-th iteration, Algorithm 3 will execute Neon2finite.

Thus, we have |I2
2 | ≤ |I1|. For |I1

2 |, note that x0 = zu−1 and xT = zu in Corollary 2.7.5 and

summing up over u ∈ I1
2 yields

∑

u∈I12

E‖∇F (zu)‖2
2 ≤

∑

u∈I12

CL1

n1/2
E
[
F (zu−1)− F (zu)

]

38

≤
∑

u∈I

CL1

n1/2
E
[
F (zu−1)− F (zu)

]

≤ CL1

n1/2
·∆F , (2.7.16)

where the second inequality follows from (2.7.14) and (2.7.15). Applying Markov’s inequality,

with probability at least 2/3, we have

∑

u∈I12

‖∇F (zu)‖2
2 ≤

3CL1∆F

n1/2
.

by definition for any u ∈ I1
2 , we have ‖∇F (zu)‖2 = ‖gu‖2 > ε. Then we have with probability

at least 2/3 that

|I1
2 | ≤

3CL1∆F

ε2n1/2
.

Total number of iteration is U = |I1|+ |I2| ≤ 2|I1|+ |I1
2 | ≤ 12L3∆F ε

−2
H + 3CL1∆F ε

−2n−1/2.

We now calculate the gradient complexity of Algorithm 3. By Lemma 2.7.7 one single

call of Neon2finite needs O
(
(n + n3/4

√
L1/εH) log2(d/δ)

)
stochastic gradient computations

and by Corollary 2.7.5 one single call of One-epoch-SNVRG needs 20n log3 n stochastic

gradient computations. Moreover, we need to compute gu at each iteration, which takes O(n)

stochastic gradient computations. Thus, the expectation of the total amount of stochastic

gradient computations ETtotal can be bounded by

|I1| ·O
(
(n+ n3/4

√
L1/εH) log2(d/δ)

)
+ |I2| ·O(n log3 n) + |I| ·O(n)

= |I1| · Õ
(
n+ n3/4

√
L1/εH

)
+ (|I1

2 |+ |I2
2 |) · Õ(n)

= |I1| · Õ
(
n+ n3/4

√
L1/εH

)
+ (|I1

2 |+ |I1|) · Õ(n). (2.7.17)

We further plug the upper bound of |I1| and |I1
2 | into (2.7.17) and obtain

ETtotal = O(L3∆F ε
−2
H) · Õ

(
n+ n3/4

√
L1/εH

)
+O(L1∆F ε

−2n−1/2)Õ(n)

= Õ
(
∆FnL3ε

−2
H + ∆Fn

3/4L
1/2
1 L3ε

−5/2
H + ∆Fn

1/2L1ε
−2
)
.

Using Markov inequality, with probability at least 2/3, we have

Ttotal = Õ
(
∆FnL3ε

−2
H + ∆Fn

3/4L
1/2
1 L3ε

−5/2
H + ∆Fn

1/2L1ε
−2
)
.

39

Note that |I1|δ = |I1|/(72 · L3∆F ε
−2
H) ≤ 1/12. By union bound, with probability at least

1− 1/3− 1/3−|I1|δ ≥ 1/4, SNVRG + Neon2finite will find an (ε, εH)-second order stationary

point within

Õ
(
∆FnL3ε

−2
H + ∆Fn

3/4L
1/2
1 L3ε

−5/2
H + ∆Fn

1/2L1ε
−2
)

stochastic gradient computations.

2.8 Proof of Supporting Lemmas

2.8.1 Proof of Lemma 2.7.1

We first prove our key lemma on One-epoch-SNVRG. In order to prove Lemma 2.7.1, we

need the following supporting lemma, which shows that with any chosen epoch length T ,

the summation of expectation of the square of gradient norm
∑T−1

j=0 E‖∇F (xj)‖2
2 can be

bounded.

Lemma 2.8.1. Suppose we arbitrarily fix the amount of epochs T > 1 in Algorithm 1. In

other words, we do not bother with Options I or II for the present. If the step size and

batch size parameters in Algorithm 1 satisfy M ≥ 6L and Bl ≥ 6K−l+1(
∏K

s=l Ts)
2 for any

1 ≤ l ≤ K, then the iterates of Algorithm 1 satisfies

T−1∑

j=0

E‖∇F (xj)‖2
2 ≤ C

(
ME

[
F (x0)− F (xT)

]
+

2σ2T

B0

· 1{B0 < n}
)
, (2.8.1)

where C = 100.

Proof of Lemma 2.7.1. We can check that 2 ≤ B2−K
0 < 4, and we can check that the choice

of M, {Tl}, {Bl} in Lemma 2.7.1 satisfies the assumption of Lemma 2.8.1. Moreover, we have

T =
K∏

l=1

Tl

> (B2−K

0 − 1)
K∏

l=2

(B2l−K−2

0 − 1)

40

>
1

2
B2−K

0 ·
K∏

l=2

B2l−K−2

0 ·
(

1−
(K∑

l=2

1

B2l−K−2

0

))

≥ 1

2
B

1/2
0

(
1−

(K∑

l=2

1

22l−2

))

>
1

10
B

1/2
0 , (2.8.2)

where the first inequality holds due to the fact bxc > x − 1 for any x > 1, the second

inequality holds since 2 ≤ B2−K
0 < 4 and the fact

∏K
l=2(xl − 1) >

∏K
l=2 xl(1−

∑K
l=2 x

−1
l) for

any sequence {xl}Kl=2 satisfying ∀2 ≤ l ≤ K, xl ≥ 2, the third inequality holds since 22K ≤ B0,

the last inequality holds due to the fact that
∑K

l=2 2−2l−2
< 4/5. We now submit (2.8.2) into

(2.8.1), which immediately implies (2.7.1). Next we compute how many stochastic gradient

computations we need in total after we run One-epoch-SNVRG once. According to the

update of reference gradients in Algorithm 1, we only update g
(0)
t once at the beginning

of Algorithm 1 (Line 23 is only reached when r = 0), which needs B0 stochastic gradient

computations. For g
(l)
t , we only need to update it when 0 = (t mod

∏K
j=l+1 Tj), and thus

we need to sample g
(l)
t for T/

∏K
j=l+1 Tj =

∏l
j=1 Tj times. We need 2Bl stochastic gradient

computations for each sampling procedure (Line 20 in Algorithm 1). We use T to represent

the total number of stochastic gradient computations, then based on above arguments we

have

T = B0 + 2
K∑

l=1

Bl ·
l∏

j=1

Tj. (2.8.3)

Now we calculate T under the parameter choice of Lemma 2.7.1. Note that we can easily

verify the following inequalities:

l∏

j=1

Tj ≤ B2−K

0

l∏

j=2

B2j−K−2

0 = B
2l

2K+1

0 ,

(K∏

j=l

Tj

)2

≤
(K∏

j=l

B2j−K−2

0

)2

= B1−2K+1−l

0 , ∀2 ≤ l ≤ K,

(K∏

j=1

Tj

)2

≤
(
B2−K

0 ·
K∏

j=2

B2j−K−2

0

)2

= B0,

41

which implies that

B1 ·
1∏

j=1

Tj = 6K
(K∏

j=1

Tj

)2

T1 ≤ 6KB0 · 4,

Bl ·
l∏

j=1

Tj = 6K−l+1

(K∏

j=l

Tj

)2 l∏

j=1

Tj ≤ 6K−l+1B0. (2.8.4)

Submit (2.8.4) into (2.8.3) yields the following results:

T = B0 + 2

(
4× 6KB0 +

K∑

l=2

6K−l+1B0

)

< B0 + 9× 6KB0

≤ B0 + 9× 6log logB0B0

< B0 + 9B0 log3B0.

Therefore, the total gradient complexity T is bounded as follows.

T = B0 + 2
K∑

l=1

Bl ·
l∏

j=1

Tj ≤ B0 + 9B0 log3B0 ≤ 10B0 log3B0. (2.8.5)

2.8.2 Proof of Lemma 2.7.2

Now we prove Lemma 2.7.2 about the function value decrease of Algorithm 1 with Option

II. Note that Lemma 2.8.1 shows that with any chosen epoch length T , the summation of

expectation of the square of gradient norm
∑T−1

j=0 E‖∇F (xj)‖2
2 can be bounded. In order

to prove the upper bound on E‖∇F (xT)‖2
2, we need the following technical lemma about

geometric distribution.

Lemma 2.8.2. Suppose that G ∼ Geom(p), where P(G = k) = p(1 − p)k, k ≥ 0. Let

a(j), b(j) be two series and b(0) ≥ 0. If for any k ≥ 1, it holds that
∑k−1

j=0 a(j) ≤ b(k), then

we have

1− p
p

EGa(G) ≤ EGb(G).

42

Proof of Lemma 2.7.2. We can easily check that the choice of M, {Tl}, {Bl} in Lemma 2.7.2

satisfies the assumption of Lemma 2.8.1. By Algorithm 1, we have T ∼ Geom(p) where

p = 1/(1 +
∏K

j=1 Tj). Let

a(j) = E‖∇F (xj)‖2
2, b(j) = C

(
ME

[
F (x0)− F (xj)

]
+
σ2j

B0

· 1{B0 < n}
)
.

Then by Lemma 2.8.1, for any T ≥ 1, we have
∑T−1

j=0 a(j) ≤ b(T) and b(0) = 0. Thus, by

Lemma 2.8.2, we have

1− p
p

ETE‖∇F (xT)‖2
2 ≤ C

(
METE

[
F (x0)− F (xT)

]
+

2σ2ETT
B0

· 1{B0 < n}
)
.

Since ETT = (1− p)/p =
∏K

j=1 Tj > B
1/2
0 /10 due to (2.8.2) , we have

E‖∇F (xT)‖2
2 ≤ C

(
M∏K
j=1 Tj

E
[
F (x0)− F (xT)

]
+

2σ2

B0

· 1{B0 < n}
)

≤ 10C

(
M

B
1/2
0

E
[
F (x0)− F (xT)

]
+

2σ2

B0

· 1{B0 < n}
)
,

which immediately implies (2.7.7).

Finally we consider how many stochastic gradient computations for us to run One-epoch-

SNVRG once. According to the update of reference gradients in Algorithm 1, for g
(l)
t , we need

to update it when 0 = (t mod
∏K

j=l+1 Tj), and thus we need to sample g
(l)
t for T/

∏K
j=l+1 Tj

times. We need B0 stochastic gradient computations to update g
(0)
t and 2Bl stochastic

gradient computations for g
(l)
t (Lines 20 and 23 in Algorithm 1 respectively). If we use

T to represent the total number of stochastic gradient computations, then based on above

arguments, we have

ET ≤ B0 ·
ET∏K
j=1 Tj

+ 2
K∑

l=1

Bl ·
ET∏K
j=l+1 Tj

= B0 + 2
K∑

l=1

Bl

l∏

j=1

Tj

≤ 10B0 log3B0,

where the last inequality holds due to (2.8.5).

43

2.9 Proof of Key Lemma 2.8.1

In this section, we focus on proving Lemma 2.8.1, which holds for any fixed T and plays a piv-

otal role in the analyses of Algorithm 1 with both Option I and Option II. LetM, {Ti}, {Bi}, B0

be the parameters as defined in Algorithm 1. We define filtration Ft = σ(x0, . . . ,xt). Let

{x(l)
t }, {g(l)

t } be the reference points and reference gradients in Algorithm 1. We define v
(l)
t

as

v
(l)
t :=

l∑

j=0

g
(j)
t , for 0 ≤ l ≤ K. (2.9.1)

We first present the following definition and two technical lemmas for the purpose of our

analysis.

Definition 2.9.1. We define constant series {c(s)
j } as the following. For each s, we define

c
(s)
Ts

as

c
(s)
Ts

=
M

6K−s+1
∏K

l=s Tl
. (2.9.2)

When 0 ≤ j < Ts, we define c
(s)
j by induction:

c
(s)
j =

(
1 +

1

Ts

)
c

(s)
j+1 +

3L2

M
·
∏K

l=s+1 Tl

Bs

. (2.9.3)

Lemma 2.9.2. For any p, s, where 1 ≤ s ≤ K, p·∏K
j=s Tj < T and q

∏K
j=1 Tj ≤ p·∏K

j=s Tj <

(p+ 1) ·∏K
j=s Tj ≤ (q + 1)

∏K
j=1 Tj, we define

start = p ·
K∏

j=s

Tj, end = min

{
start +

K∏

j=s

Tj, T

}

for simplification. Then we have the following results:

E
[end−1∑

j=start

‖∇F (xj)‖2
2

100M
+ F (xend) + c

(s)
Ts
· ‖xend − xstart‖2

2

∣∣Fstart

]

≤ F (xstart) +
2

M
· E
[∥∥∇F (xstart)− vstart

∥∥2

2

∣∣Fstart

]
· (end− start).

Lemma 2.9.3 ([LJCJ17]). Let ai be vectors satisfying
∑N

i=1 ai = 0. Let J be a uniform

random subset of {1, . . . , N} with size m, then

E
∥∥∥∥

1

m

∑

j∈J

aj

∥∥∥∥
2

2

≤ 1(|J | < N)

mN

N∑

j=1

‖aj‖2
2.

44

Proof of Lemma 2.8.1. We have

T−1∑

j=0

E‖∇F (xj)‖2
2

100M
+ E

[
F (xT)

]
≤

T−1∑

j=0

E‖∇F (xj)‖2
2

100M
+ E

[
F (xT) + c

(1)
T1
· ‖xT − x0‖2

2

]

≤ E
[
F (x0)

]
+

2

M
· E‖∇F (x0)− g0‖2

2 · T, (2.9.4)

where the second inequality comes from Lemma 2.9.2 with we take s = 1, p = 0. Moreover

we have

E‖∇F (x0)− g0‖2
2 = E

∥∥∥∥
1

B0

∑

i∈I

[
∇fi(x0)−∇F (x0)

]∥∥∥∥
2

2

≤ 1(B0 < n) · 1

B0

· 1

n

n∑

i=1

∥∥∇fi(x0)−∇F (x0)
∥∥2

2
(2.9.5)

≤ 1(B0 < n) · σ
2

B0

, (2.9.6)

where (2.9.5) holds because of Lemma 2.9.3. Plug (2.9.6) into (2.9.4) and note that we have

M = 6L, and then we obtain

T−1∑

j=0

E‖∇F (xj)‖2
2 ≤ C

(
ME

[
F (x0)− F (xT)

]
+

2Tσ2

B0

· 1(B0 < n)

)
, (2.9.7)

where C = 100, which complete the proof of Lemma 2.8.1.

2.10 Proof of Technical Lemmas

In this section, we provide the proofs of technical lemmas used in Appendix 2.9.

2.10.1 Proof of Lemma 2.9.2

Let M, {Tl}, {Bl}, B0 be the parameters defined in Algorithm 1 and {x(l)
t }, {g(l)

t } be the

reference points and reference gradients defined in Algorithm 1. Let v
(l)
t ,Ft be the variables

and filtration defined in Appendix 2.9 and let c
(s)
j be the constant series defined in Definition

2.9.1.

In order to prove Lemma 2.9.2, we will need the following supporting propositions and

lemmas. We first state the proposition about the relationship among x
(s)
t ,g

(s)
t and v

(s)
t :

45

Proposition 2.10.1. Let v
(l)
t be defined as in (2.9.1). Let p, s satisfy 0 ≤ p ·∏K

j=s+1 Tj <

(p + 1) ·∏K
j=s+1 Tj < T . For any t, t′ satisfying p ·∏K

j=s+1 Tj ≤ t < t′ < (p + 1) ·∏K
j=s+1 Tj,

it holds that

x
(s)
t = x

(s)
t′ = xp∏K

j=s+1 Tj
, (2.10.1)

g
(s′)
t = g

(s′)
t′ , for any s′ that satisfies 0 ≤ s′ ≤ s, (2.10.2)

v
(s)
t = v

(s)
t′ = vp∏K

j=s+1 Tj
. (2.10.3)

The following lemma spells out the relationship between c
(s−1)
j and c

(s)
Ts

. In a word, c
(s−1)
j

is about 1 + Ts−1 times less than c
(s)
Ts

:

Lemma 2.10.2. If Bs ≥ 6K−s+1(
∏K

l=s Tl)
2, Tl ≥ 1 and M ≥ 6L, then it holds that

c
(s−1)
j · (1 + Ts−1) < c

(s)
Ts
, for 2 ≤ s ≤ K, 0 ≤ j ≤ Ts−1, (2.10.4)

and

c
(K)
j · (1 + TK) < M, for 0 ≤ j ≤ TK . (2.10.5)

Next lemma is a special case of Lemma 2.9.2 with s = K:

Lemma 2.10.3. Suppose p satisfies q
∏K

i=1 Ti ≤ pTK < (p+1)TK ≤ (q+1)
∏K

i=1 Ti for some

q and pTK < T. For simplification, we denote

start = pTK , end = min{(p+ 1)TK , T}.

If M > L, then we have

E

[
F
(
xend

)
+ c

(K)
TK
·
∥∥xend − xstart

∥∥2

2
+

end−1∑

j=start

∥∥∇F (xj)
∥∥2

2

100M

∣∣∣∣Fstart

]

≤ F (xstart) +
2

M
· E
[∥∥∇F (xstart)− vstart

∥∥2

2

∣∣Fstart

]
· (end− start).

The following lemma provides an upper bound of E
[∥∥∇F (x

(l)
t)− v

(l)
t

∥∥2

2

]
, which plays an

important role in our proof of Lemma 2.9.2.

46

Lemma 2.10.4. Let tl be as defined in (2.4.1), then we have x
(l)
t = xtl, and

E
[∥∥∇F (x

(l)
t)− v

(l)
t

∥∥2

2

∣∣Ftl
]
≤ L2

Bl

∥∥x(l)
t − x

(l−1)
t

∥∥2

2
+
∥∥∇F (x

(l−1)
t)− v

(l−1)
t

∥∥2

2
.

Proof of Lemma 2.9.2. We use mathematical induction to prove that Lemma 2.9.2 holds

for any 1 ≤ s ≤ K. When s = K, we have the result hold because of Lemma 2.10.3.

Suppose that for s + 1, Lemma 2.9.2 holds for any p′ which satisfies p′
∏K

j=s+1 Tj < T and

q
∏K

j=1 Tj ≤ p′
∏K

j=s+1 Tj < (p′ + 1)
∏K

j=s+1 Tj ≤ (q + 1)
∏K

j=1 Tj. We need to prove Lemma

2.9.2 still holds for s and p, where p satisfies p
∏K

j=s+1 Tj < T and q
∏K

j=1 Tj ≤ p
∏K

j=s Tj <

(p+1)
∏K

j=s Tj ≤ (q+1)
∏K

j=1 Tj. We choose p′ = pTs+u which satisfies that p′
∏K

j=s+1 Tj < T ,

and we set indices startu and endu as

startu = p′
K∏

j=s+1

Tj, endu = min

{
startu +

K∏

j=s+1

Tj, T

}
.

Then we have

E
[endu−1∑

j=startu

‖∇F (xj)‖2
2

100M
+ F (xendu) + c

(s+1)
Ts+1

· ‖xendu − xstartu‖2
2

∣∣Fstartu

]

≤ F (xstartu) +
2

M
· E
[∥∥∇F (xstartu)− vstartu

∥∥2

2

∣∣Fstartu

]
· (endu − startu), (2.10.6)

where the last inequality holds because of the induction hypothesis that Lemma 2.9.2 holds

for s+ 1 and p′. Note that we have xstartu = x
(s)
startu from Proposition 2.10.1, which implies

E
[∥∥∇F (xstartu)− vstartu

∥∥2

2

∣∣Fstartu

]
= E

[∥∥∇F (x
(s)
startu)− v

(s)
startu

∥∥2

2

∣∣Fstartu

]

≤ L2

Bs

∥∥x(s)
startu − x

(s−1)
startu

∥∥2

2
+
∥∥∇F (x

(s−1)
startu)− v

(s−1)
startu

∥∥2

2

(2.10.7)

=
L2

Bs

‖xstartu − xstart‖2
2 +

∥∥∇F (xstart)− vstart

∥∥2

2
,

(2.10.8)

where (2.10.7) holds because of Lemma 2.10.4 and (2.10.8) holds due to Proposition 2.10.1.

Plugging (2.10.8) into (2.10.6) and taking expectation E[·|Fstart] for (2.10.6) will yield

E
[endu−1∑

j=startu

‖∇F (xj)‖2
2

100M
+ F (xendu) + c

(s+1)
Ts+1
‖xendu − xstartu‖2

2

∣∣Fstart

]

47

≤ E
[
F (xstartu) + (endu − startu)

2L2

MBs

‖xstartu − xstart‖2
2

+
2(endu − startu)

M

∥∥∇F (xstart)− vstart

∥∥2

2

∣∣∣∣Fstart

]

≤ E
[
F (xstartu) +

(K∏

j=s+1

Tj

)
2L2

MBs

‖xstartu − xstart‖2
2

+
2(endu − startu)

M

∥∥∇F (xstart)− vstart

∥∥2

2

∣∣∣∣Fstart

]
. (2.10.9)

We now give a bound of ‖xendu − xstart‖2
2:

‖xendu − xstart‖2
2

= ‖xstartu − xstart‖2
2 + ‖xendu − xstartu‖2

2 + 2〈xendu − xstartu ,xstartu − xstart〉

≤ ‖xstartu − xstart‖2
2 + ‖xendu − xstartu‖2

2 +
1

Ts
· ‖xstartu − xstart‖2

2 + Ts · ‖xendu − xstartu‖2
2

(2.10.10)

=

(
1 +

1

Ts

)
· ‖xstartu − xstart‖2

2 + (1 + Ts) · ‖xendu − xstartu‖2
2, (2.10.11)

where (2.10.10) holds because of Young’s inequality. Taking expectation E[·|Fstart] over

(2.10.11) and multiplying c
(s)
u+1 on both sides, we obtain

c
(s)
u+1E

[
‖xendu − xstart‖2

2

∣∣Fstart

]
≤ c

(s)
u+1

(
1 +

1

Ts

)
E
[
‖xstartu − xstart‖2

2

∣∣Fstart

]

+ c
(s)
u+1(1 + Ts)E

[
‖xendu − xstartu‖2

2

∣∣Fstart

]
. (2.10.12)

Adding up inequalities(2.10.12) and (2.10.9) together, we have

E
[endu−1∑

j=startu

‖∇F (xj)‖2
2

100M
+ F (xendu) + c

(s)
u+1‖xendu − xstart‖2

2 + c
(s+1)
Ts+1
‖xendu − xstartu‖2

2

∣∣Fstart

]

≤ E
[
F (xstartu) + ‖xstartu − xstart‖2

2

[
c

(s)
u+1

(
1 +

1

Ts

)
+

3L2

BsM

K∏

j=s+1

Tj

]∣∣∣∣Fstart

]

+
2

M
E
[∥∥∇F (xstart)− vstart

∥∥2

2

∣∣Fstart

]
(endu − startu)

+ c
(s)
u+1(1 + Ts)E

[
‖xendu − xstartu‖2

2

∣∣Fstart

]

< E
[
F (xstartu) + c(s)

u ‖xstartu − xstart‖2
2

∣∣Fstart

]

+
2

M
E
[∥∥∇F (xstart)− vstart

∥∥2

2

∣∣Fstart

]
(endu − startu)

48

+ c
(s+1)
Ts+1

E
[
‖xendu − xstartu‖2

2

∣∣Fstart

]
, (2.10.13)

where the last inequality holds due to the fact that c
(s)
u = c

(s)
u+1(1 + 1/Ts) + 3L2/(BsM) ·

∏K
j=s+1 Tj by Definition 2.9.1 and c

(s)
u+1 · (1 + Ts) < c

(s+1)
Ts+1

by Lemma 2.10.2. Cancelling out

the term c
(s+1)
Ts+1

E
[
‖xendu − xstartu‖2

2

∣∣Fstart

]
from both sides of (2.10.13), we get

endu−1∑

j=startu

E
[‖∇F (xj)‖2

2

100M

∣∣∣∣Fstart

]
+ E

[
F (xendu) + c

(s)
u+1 · ‖xendu − xstart‖2

2

∣∣Fstart

]

≤ E
[
F (xstartu) + c(s)

u ‖xstartu − xstart‖2
2

∣∣Fstart

]

+
2

M
E
[∥∥∇F (xstart)− vstart

∥∥2

2

∣∣Fstart

]
(endu − startu). (2.10.14)

We now try to telescope the above inequality. We first suppose that u∗ = max{0 ≤ u <

Ts : startu < T}. Next we telescope (2.10.14) for u = 0 to u∗. Since we have startu =

endu−1, start0 = start for 0 ≤ u ≤ u∗, then we get

E
[u∗∑

u=0

endu−1∑

j=startu

‖∇F (xj)‖2
2

100M
+ F (xendu∗) + c

(s)
u∗ · ‖xendu∗ − xstart‖2

2

∣∣Fstart

]

≤ F (xstart) +
2Ts
M
· E
[∥∥∇F (xstart)− vstart

∥∥2

2

∣∣Fstart

]
·
u∗∑

u=0

(endu − startu).

Since for 0 ≤ u ≤ u∗, we have startu = endu−1, start0 = start, endu∗ = end, and c
(s)
u∗ > c

(s)
Ts

,

thus we have that

E
[end−1∑

j=start

‖∇F (xj)‖2
2

100M
+ F (xend) + c

(s)
Ts
· ‖xend − xstart‖2

2

∣∣Fstart

]

≤ F (xstart) +
2

M
· E
[∥∥∇F (xstart)− vstart

∥∥2

2

∣∣Fstart

]
· (end− start). (2.10.15)

Therefore, we have proved that Lemma 2.9.2 still holds for s and p. Then by mathematical

induction, we have for all 1 ≤ s ≤ K and p which satisfy q
∏K

j=1 Tj ≤ p · ∏K
j=s Tj <

(p+ 1) ·∏K
j=s Tj ≤ (q + 1)

∏K
j=1 Tj, Lemma 2.9.2 holds.

2.10.2 Proof of Lemma 2.9.3

The following proof is adapted from that of Lemma A.1 in [LJCJ17]. We provide the proof

here for the self-containedness of our work.

49

Proof of Lemma 2.9.3. We only consider the case when m < N . Let Wj = 1(j ∈ J), then

we have

EW 2
j = EWj =

m

N
,EWjWj′ =

m(m− 1)

N(N − 1)
.

Thus we can rewrite the sample mean as

1

m

∑

j∈J

aj =
1

m

N∑

i=1

Wiai,

which immediately implies

E
∥∥∥∥

1

m

∑

j∈J

aj

∥∥∥∥
2

=
1

m2

(N∑

j=1

EW 2
j ‖aj‖2

2 +
∑

j 6=j′
EWjWj′〈aj, aj′〉

)

=
1

m2

(
m

N

N∑

j=1

‖aj‖2
2 +

m(m− 1)

N(N − 1)

∑

j 6=j′
〈aj, aj′〉

=
1

m2

((
m

N
− m(m− 1)

N(N − 1)

) N∑

j=1

‖aj‖2
2 +

m(m− 1)

N(N − 1)

∥∥∥∥
N∑

j=1

aj

∥∥∥∥
2

2

)

=
1

m2

(
m

N
− m(m− 1)

N(N − 1)

) N∑

j=1

‖aj‖2
2

≤ 1

m
· 1

N

N∑

j=1

‖aj‖2
2.

This completes the proof.

2.11 Proofs of Auxiliary Lemmas

In this section, we present the additional proofs of supporting lemmas used in Appendix

2.10. Let M, {Tl}, {Bl} and B0 be the parameters defined in Algorithm 1. Let {x(l)
t }, {g(l)

t }
be the reference points and reference gradients used in Algorithm 1. Finally, v

(l)
t ,Ft are the

variables and filtration defined in Appendix 2.9 and c
(s)
j are the constant series defined in

Definition 2.9.1.

50

2.11.1 Proof of Proposition 2.10.1

Proof of Proposition 2.10.1. By the definition of reference point x
(s)
t in (2.4.1), we can easily

verify that (2.10.1) holds trivially.

Next we prove (2.10.2). Note that by (2.10.1) we have x
(s)
t = x

(s)
t′ . For any 0 ≤ s′ ≤ s,

it is also true that x
(s′)
t = x

(s′)
t′ by (2.4.1), which means xt and xt′ share the same first s+ 1

reference points. Then by the update rule of g
(s′)
t in Algorithm 1, we will maintain g

(s′)
t

unchanged from time step t to t′. In other worlds, we have g
(s′)
t = g

(s′)
t′ for all 0 ≤ s′ ≤ s.

We now prove the last claim (2.10.3). Based on (2.9.1) and (2.10.2), we have v
(s)
t =

∑s
s′=0 g

(s′)
t =

∑s
s′=0 g

(s′)

p·
∏K
j=s+1 Tj

= v
(s)

p·
∏K
j=s+1 Tj

. Since for any s ≤ s′′ ≤ K, we have the

following equations by the update in Algorithm 1 (Line 14).

x
(s′′)

p·
∏K
j=s+1 Tj

= xbp·∏K
j=s+1 Tj/

∏K
j=s′′+1 Tjc·

∏K
j=s′′+1 Tj

= xp·∏K
j=s+1 Tj/

∏K
j=s′′+1 Tj ·

∏K
j=s′′+1 Tj

= x
(s)

p·
∏K
j=s+1 Tj

.

Then for any s < s′′ ≤ K, we have

g
(s′′)

p·
∏K
j=s+1 Tj

=
1

Bs′′

∑

i∈I

[
∇fi

(
x

(s′′)

p·
∏K
j=s+1 Tj

)
−∇fi

(
x

(s′′−1)

p·
∏K
j=s+1 Tj

)]
= 0. (2.11.1)

Thus, we have

vp·∏K
j=s+1 Tj

=
K∑

s′′=0

g
(s′′)

p·
∏K
j=s+1 Tj

=
s∑

s′′=0

g
(s′′)

p·
∏K
j=s+1 Tj

=
s∑

s′′=0

g
(s′′)
t = v

(s)
t , (2.11.2)

where the first equality holds because of the definition of vp·∏K
j=s+1 Tj

, the second equality

holds due to (2.11.1) , the third equality holds due to (2.10.2) and the last equality holds

due to (2.9.1). This completes the proof of (2.10.3).

2.11.2 Proof of Lemma 2.10.2

Proof of Lemma 2.10.2. For any fixed s, it can be seen that from the definition in (2.9.3),

c
(s)
j is monotonically decreasing with j. In order to prove (2.10.4), we only need to compare

51

(1 + Ts−1) · c(s−1)
0 and c

(s)
Ts

. Furthermore, by the definition of series {c(s)
j } in (2.9.3), it can be

inducted that when 0 ≤ j ≤ Ts−1,

c
(s−1)
j =

(
1 +

1

Ts−1

)Ts−1−j

· c(s−1)
Ts−1

+
(1 + 1/Ts−1)Ts−1−j − 1

1/Ts−1

· 3L2

M
·
∏K

l=s Tl
Bs−1

. (2.11.3)

We take j = 0 in (2.11.3) and obtain

c
(s−1)
0 =

(
1 +

1

Ts−1

)Ts−1

· c(s−1)
Ts−1

+
(1 + 1/Ts−1)Ts−1 − 1

1/Ts−1

· 3L2

M
·
∏K

l=s Tl
Bs−1

< 2.8× c(s−1)
Ts−1

+
6L2

M
·
∏K

l=s−1 Tl

Bs−1

(2.11.4)

≤ 2.8M + 6L2/M

6K−s+2 ·∏K
l=s−1 Tl

(2.11.5)

<
3M

6K−s+2 ·∏K
l=s−1 Tl

, (2.11.6)

where (2.11.4) holds because (1 + 1/n)n < 2.8 for any n ≥ 1, (2.11.5) holds due to the

definition of c
(s−1)
Ts−1

in (2.9.2) and Bs−1 ≥ 6K−s+2(
∏K

l=s−1 Tl)
2 and (2.11.6) holds because

M ≥ 6L. Recall that c
(s)
j is monotonically decreasing with j and the inequality in (2.11.6).

Thus for all 2 ≤ s ≤ K and 0 ≤ j ≤ Ts−1, we have

(1 + Ts−1) · c(s−1)
j ≤ (1 + Ts−1) · c(s−1)

0

≤ (1 + Ts−1) · 3M

6K−s+2 ·∏K
l=s−1 Tl

<
6M

6K−s+2 ·∏K
l=s Tl

= c
(s)
Ts
, (2.11.7)

where the third inequality holds because (1 + Ts−1)/Ts−1 ≤ 2 when Ts−1 ≥ 1 and the last

equation comes from the definition of csTs in (2.9.2). This completes the proof of (2.10.4).

Using similar techniques, we can obtain the upper bound for cK0 which is similar to

inequality (2.11.6) with s− 1 replaced by K. Therefore, we have

(1 + TK) · c(K)
j ≤ (1 + TK) · c(K)

0 <
6M

6K−K+1 ·∏K
l=K Tl

≤M,

which completes the proof of (2.10.5).

52

2.11.3 Proof of Lemma 2.10.3

Now we prove Lemma 2.10.3, which is a special case of Lemma 2.9.2 when we choose s = K.

Proof of Lemma 2.10.3. To simplify notations, we use E[·] to denote the conditional expec-

tation E[·|Fp·TK] in the rest of this proof. For pTK ≤ pTK + j < min{(p + 1)TK , T}, we

denote hp·TK+j = −(10M)−1 · vp·TK+j. According to the update in Algorithm 1 (Line 9), we

have

xp·TK+j+1 = xp·TK+j + hp·TK+j, (2.11.8)

which immediately implies

F (xp·TK+j+1)

= F (xp·TK+j + hp·TK+j)

≤ F (xp·TK+j) + 〈∇F (xp·TK+j),hp·TK+j〉+
L

2
‖hp·TK+j‖2

2 (2.11.9)

=
[
〈vp·TK+j,hp·TK+j〉+ 5M‖hp·TK+j‖2

2

]
+ F (xp·TK+j)

+ 〈∇F (xp·TK+j)− vp·TK+j,hp·TK+j〉+

(
L

2
− 5M

)
‖hp·TK+j‖2

2

≤ F (xp·TK+j) + 〈∇F (xp·TK+j)− vp·TK+j,hp·TK+j〉+ (L− 5M)‖hp·TK+j‖2
2, (2.11.10)

where (2.11.9) is due to the L-smoothness of F and (2.11.10) holds because 〈vp·TK+j,hp·TK+j〉+
5M‖hp·TK+j‖2

2 = −5M‖hp·TK+j‖2
2 ≤ 0. Further by Young’s inequality, we obtain

F (xp·TK+j+1) ≤ F (xp·TK+j) +
1

2M
‖∇F (xp·TK+j)− vp·TK+j‖2

2 +

(
M

2
+ L− 5M

)
‖hp·TK+j‖2

2

≤ F (xp·TK+j) +
1

M
‖∇F (xp·TK+j)− vp·TK+j‖2

2 − 3M‖hp·TK+j‖2
2, (2.11.11)

where the second inequality holds because M > L. Now we bound the term c
(K)
j+1‖xp·TK+j+1−

xp·TK‖2
2. By (2.11.8) we have

c
(K)
j+1‖xp·TK+j+1 − xp·TK‖2

2

= c
(K)
j+1‖xp·TK+j − xp·TK + hp·TK+j‖2

2

= c
(K)
j+1

[
‖xp·TK+j − xp·TK‖2

2 + ‖hp·TK+j‖2
2 + 2〈xp·TK+j − xp·TK ,hp·TK+j〉

]
.

53

Applying Young’s inequality yields

c
(K)
j+1‖xp·TK+j+1 − xp·TK‖2

2

≤ c
(K)
j+1

[
‖xp·TK+j − xp·TK‖2

2 + ‖hp·TK+j‖2
2

+
1

TK
‖xp·TK+j − xp·TK‖2

2 + TK‖hp·TK+j‖2
2

]

= c
(K)
j+1

[(
1 +

1

TK

)
‖xp·TK+j − xp·TK‖2

2 + (1 + TK)‖hp·TK+j‖2
2

]
, (2.11.12)

Adding up inequalities (2.11.12) and (2.11.11), we get

F (xp·TK+j+1) + c
(K)
j+1‖xp·TK+j+1 − xp·TK‖2

2

≤ F (xp·TK+j) +
1

M
‖∇F (xp·TK+j)− vp·TK+j‖2

2 −
[
3M − c(K)

j+1(1 + TK)
]
‖hp·TK+j‖2

2

+ c
(K)
j+1

(
1 +

1

TK

)
‖xp·TK+j − xp·TK‖2

2

≤ F (xp·TK+j) +
1

M
‖∇F (xp·TK+j)− vp·TK+j‖2

2 − 2M‖hp·TK+j‖2
2

+ c
(K)
j+1

(
1 +

1

TK

)
‖xp·TK+j − xp·TK‖2

2, (2.11.13)

where the last inequality holds due to the fact that c
(K)
j+1(1 + TK) < M by Lemma 2.10.2.

Next we bound ‖∇F (xp·TK+j)‖2
2 with ‖hp·TK+j‖2

2. Note that by (2.11.8)

‖∇F (xp·TK+j)‖2
2 =

∥∥[∇F (xp·TK+j)− vp·TK+j

]
− 10Mhp·TK+j

∥∥2

2

≤ 2
(
‖∇F (xp·TK+j)− vp·TK+j‖2

2 + 100M2‖hp·TK+j‖2
2

)
,

which immediately implies

−2M‖hp·TK+j‖2
2 ≤

2

100M

(
‖∇F (xp·TK+j)− vp·TK+j‖2

2 −
1

100M
‖∇F (xp·TK+j)‖2

2. (2.11.14)

Plugging (2.11.14) into (2.11.13), we have

F (xp·TK+j+1) + c
(K)
j+1‖xp·TK+j+1 − xp·TK‖2

2

≤ F (xp·TK+j) +
1

M
‖∇F (xp·TK+j)− vp·TK+j‖2

2 +
1

50M
· ‖∇F (xp·TK+j)− vp·TK+j‖2

2

− 1

100M
‖∇F (xp·TK+j)‖2

2 + c
(K)
j+1

(
1 +

1

TK

)
‖xp·TK+j − xp·TK‖2

2

54

≤ F (xp·TK+j) +
2

M
‖∇F (xp·TK+j)− vp·TK+j‖2

2 −
1

100M
‖∇F (xp·TK+j)‖2

2

+ c
(K)
j+1

(
1 +

1

TK

)
‖xp·TK+j − xp·TK‖2

2. (2.11.15)

Next we bound ‖∇F (xp·TK+j)− vp·TK+j‖2
2. First, by Lemma 2.10.4 we have

E
∥∥∥∇F (x

(K)
p·TK+j)− v

(K)
p·TK+j

∥∥∥
2

2
≤ L2

BK

E
∥∥∥x(K)

p·TK+j − x
(K−1)
p·TK+j

∥∥∥
2

2
+ E

∥∥∥∇F (x
(K−1)
p·TK+j)− v

(K−1)
p·TK+j

∥∥∥
2

2
.

Since x
(K)
p·TK+j = xp·TK+j,v

(K)
p·TK+j = vp·TK+j, x

(K−1)
p·TK+j = xp·TK and v

(K−1)
p·TK+j = vp·TK , we have

E‖∇F (xp·TK+j)− vp·TK+j‖2
2 ≤

L2

BK

E‖xp·TK+j − xp·TK‖2
2 + E‖∇F (xp·TK)− vp·TK‖2

2.

(2.11.16)

Taking expectation E[·] with (2.11.15) and plugging (2.11.16) into (2.11.15) , we obtain

E
[
F (xp·TK+j+1) + c

(K)
j+1‖xp·TK+j+1 − xp·TK‖2

2 +
1

100M
‖∇F (xp·TK+j)‖2

2

]

≤ E
[
F (xp·TK+j) +

(
c

(K)
j+1

(
1 +

1

TK

)
+

3L2

BKM

)
‖xp·TK+j − xp·TK‖2

2

+
2

M
‖∇F (xp·TK)− vp·TK‖2

2

]

= E
[
F (xp·TK+j) + c

(K)
j ‖xp·TK+j − xp·TK‖2

2 +
2

M
· ‖∇F (xp·TK)− vp·TK‖2

2

]
, (2.11.17)

where (2.11.17) holds because we have c
(K)
j = c

(K)
j+1(1 + 1/TK) + 3L2/(BKM) by Definition

2.9.1. Telescoping (2.11.17) for j = 0 to end− start− 1, we have

E
[
F
(
xend

)
+ c

(K)
TK
· ‖xend − xstart‖2

2

]
+

1

100M

end−1∑

j=start

E‖∇F (xj)‖2
2

≤ E
[
F
(
xend

)
+ c

(K)
end−start · ‖xend − xstart‖2

2

]
+

1

100M

end−1∑

j=start

E‖∇F (xj)‖2
2

≤ F (xstart) +
2(end− start)

M
· E‖∇F (xstart)− vstart‖2

2,

which completes the proof.

2.11.4 Proof of Lemma 2.10.4

Proof of Lemma 2.10.4. If tl = tl−1, we have x
(l)
t = x

(l−1)
t and v

(l)
t = v

(l−1)
t . In this case the

statement in Lemma 2.10.4 holds trivially. Therefore, we assume tl 6= tl−1 in the following

55

proof. Note that

E
[∥∥∇F (x

(l)
t)− v

(l)
t

∥∥2

2
|Ftl
]

= E
[∥∥∇F (x

(l)
t)− v

(l)
t − E

[
∇F (x

(l)
t)− v

(l)
t

]∥∥2

2
|Ftl
]

+
∥∥E
[
∇F (x

(l)
t)− v

(l)
t |Ftl

]∥∥2

2

= E

[∥∥∥∥∇F (x
(l)
t)−

l∑

j=0

g
(j)
t − E

[
∇F (x

(l)
t)−

l∑

j=0

g
(j)
t

]∥∥∥∥
2

2

∣∣∣∣Ftl
]

︸ ︷︷ ︸
J1

+

∥∥∥∥E
[
∇F (x

(l)
t)−

l∑

j=0

g
(j)
t

∣∣∣∣Ftl
]∥∥∥∥

2

2︸ ︷︷ ︸
J2

, (2.11.18)

where in the second equation we used the definition v
(l)
t =

∑l
i=0 g

(i)
t in (2.9.1). We first

upper bound term J1. According to the update rule in Algorithm 1 (Line 20-23), when

j < l, g
(j)
t will not be updated at the tl-th iteration. Thus we have E[g

(j)
t |Ftl] = g

(j)
t for all

j < l. In addition, by the definition of Ftl , we have E[∇F (x
(l)
t)|Ftl] = ∇F (x

(l)
t). Then we

have the following equation

J1 = E
[∥∥g(l)

t − E
[
g

(l)
t |Ftl

]∥∥2

2
|Ftl
]
. (2.11.19)

We further have

g
(l)
t =

1

Bl

∑

i∈I

[
∇fi(x(l)

t)−∇fi(x(l−1)
t)

]
, E

[
g

(l)
t

∣∣Ftl
]

= ∇F (x
(l)
t)−∇F (x

(l−1)
t).

Therefore, we can apply Lemma 2.9.3 to (2.11.19) and obtain

J1 ≤
1

Bl

· 1

n

n∑

i=1

∥∥∇fi(x(l)
t)−∇fi(x(l−1)

t)−
[
∇F (x

(l)
t)−∇F (x

(l−1)
t)

]∥∥2

2

≤ 1

Bln

n∑

i=1

∥∥∇fi(x(l)
t)−∇fi(x(l−1)

t)
∥∥2

2

≤ L2

Bl

∥∥x(l)
t − x

(l−1)
t

∥∥2

2
, (2.11.20)

where the second inequality is due to the fact that E[‖X−E[X]‖2
2] ≤ E‖X‖2

2 for any random

vector X and the last inequality holds due to the fact that F has averaged L-Lipschitz

gradient.

56

Next we turn to bound term J2. Note that

E
[
g

(l)
t

∣∣Ftl
]

= E
[

1

Bl

∑

i∈I

[
∇fi(x(l)

t)−∇fi(x(l−1)
t)

]∣∣∣∣Ftl
]

= ∇F (x
(l)
t)−∇F (x

(l−1)
t),

which immediately implies

E
[
∇F (x

(l)
t)−

l∑

j=0

g
(j)
t

∣∣∣∣Ftl
]

= E
[
∇F (x

(l)
t)−∇F (x

(l)
t) +∇F (x

(l−1)
t)−

l−1∑

j=0

g
(j)
t

∣∣∣∣Ftl
]

= E
[
∇F (x

(l−1)
t)− v

(l−1)
t

∣∣Ftl
]

= ∇F (x
(l−1)
t)− v

(l−1)
t ,

where the last equation is due to the definition of Ft. Plugging J1 and J2 into (2.11.18)

yields the following result:

E
[∥∥∇F (x

(l)
t)− v

(l)
t

∥∥2

2

∣∣Ftl
]
≤ L2

Bl

∥∥x(l)
t − x

(l−1)
t

∥∥2

2
+
∥∥∇F (x

(l−1)
t)− v

(l−1)
t

∥∥2

2
,

which completes the proof.

57

CHAPTER 3

Global Convergence of Langevin Dynamics Based

Algorithms

3.1 Introduction

In this chapter, we aim to find the global optimum of the finite-sum nonconvex optimization

problem defined in (1.1.1). Recent studies by [Dal17b, Dal17a] showed that sampling from

a distribution which concentrates around the global minimum of F (x) is a similar task

as minimizing F via certain optimization algorithms. This justifies the use of Langevin

dynamics based algorithms for optimization. In detail, the first order Langevin dynamics is

defined by the following stochastic differential equation (SDE)

dX(t) = −∇F (X(t))dt+
√

2β−1dB(t), (3.1.1)

where β > 0 is the inverse temperature parameter that is treated as a constant through-

out the analysis of this chapter, and {B(t)}t≥0 is the standard Brownian motion in Rd.

Under certain assumptions on the drift coefficient ∇F , it was showed that the distribu-

tion of diffusion X(t) in (3.1.1) converges to its stationary distribution [CHS87], a.k.a.,

the Gibbs measure π(dx) ∝ exp(−βF (x)), which concentrates on the global minimum of

F [Hwa80, GM91, RT96]. Note that the above convergence result holds even when F (x)

is nonconvex. This motivates the use of Langevin dynamics based algorithms for noncon-

vex optimization [RRT17, ZLC17, TLR18, SYN+18]. However, unlike first order optimiza-

tion algorithms [Nes13, GL13, RHS+16, AZH16], which have been extensively studied, the

non-asymptotic theoretical guarantee of applying Langevin dynamics based algorithms for

nonconvex optimization, is still under studied. In a seminal work, [RRT17] provided a non-

58

asymptotic analysis of stochastic gradient Langevin dynamics (SGLD) [WT11] for nonconvex

optimization, which is a stochastic gradient based discretization of (3.1.1). They proved that

SGLD converges to an almost minimizer1 up to d2/(σ1/4λ∗) log(1/ε) within Õ(d/(λ∗ε4)) it-

erations, where σ2 is the variance of stochastic gradient and λ∗ is called the uniform spectral

gap of Langevin diffusion (3.1.1), and it is in the order of e−Õ(d). In a concurrent work,

[ZLC17] analyzed the hitting time of SGLD and proved its convergence to an approximate

local minimum. More recently, [TLR18] studied the local optimality and generalization per-

formance of Langevin algorithm for nonconvex functions through the lens of metastability

and [SYN+18] developed an asynchronous-parallel stochastic L-BFGS algorithm for non-

convex optimization based on variants of SGLD. [EMS18] further developed non-asymptotic

analysis of global optimization based on a broader class of diffusions.

In this chapter, we establish the global convergence for a family of Langevin dynamics

based algorithms, including Gradient Langevin Dynamics (GLD) [Dal17b, DM15, Dal17a],

Stochastic Gradient Langevin Dynamics (SGLD) [WT11] and Stochastic Variance Reduced

Gradient Langevin Dynamics (SVRG-LD) [DRW+16] for solving the finite sum nonconvex

optimization problem in (1.1.1). Our analysis is built upon the direct analysis of the discrete-

time Markov chain rather than the continuous-time Langevin diffusion, and therefore avoid

the discretization error.

3.1.1 Our Contributions

The major contributions of our work are summarized as follows:

• We provide a unified analysis for a family of Langevin dynamics based algorithms by a

new decomposition scheme of the optimization error, under which we directly analyze the

ergodicity of numerical approximations for Langevin dynamics (see Figure 3.1).

• Under our unified framework, we establish the global convergence of GLD for solving

1Following [RRT17], an almost minimizer is defined to be a point which is within the ball of the global
minimizer with radius O(d log(β+ 1)/β), where d is the problem dimension and β is the inverse temperature
parameter.

59

(1.1.1). In detail, GLD requires Õ
(
d/(λε)

)
iterations to converge to the almost minimizer

of (1.1.1) up to precision ε, where λ is the spectral gap of the discrete-time Markov chain

generated by GLD and is in the order of e−Õ(d). This improves the Õ
(
d/(λ∗ε4)) iteration

complexity of GLD implied by [RRT17], where λ∗ = e−Õ(d) is the spectral gap of Langevin

diffusion (3.1.1).

• We establish a faster convergence of SGLD to the almost minimizer of (1.1.1). In detail,

it converges to the almost minimizer up to ε precision within Õ
(
d7/(λ5ε5)

)
stochastic

gradient evaluations. This also improves the Õ
(
d17/(λ∗8ε8)

)
gradient complexity proved

in [RRT17].

• We also analyze the SVRG-LD algorithm and investigate its global convergence property.

We show that SVRG-LD is guaranteed to converge to the almost minimizer of (1.1.1)

within Õ
(√

nd5/(λ4ε5/2)
)

stochastic gradient evaluations. It outperforms the gradient

complexities of both GLD and SGLD when 1/ε3 ≤ n ≤ 1/ε5. To the best of our knowl-

edge, this is the first global convergence guarantee of SVRG-LD for nonconvex optimiza-

tion, while the original paper [DRW+16] only analyzed the posterior sampling property of

SVRG-LD.

3.1.2 Additional Related Work

Stochastic gradient Langevin dynamics (SGLD) [WT11] and its extensions [AKW12, MCF15,

DRW+16] have been widely used in Bayesian learning. A large body of work has focused

on analyzing the mean square error of Langevin dynamics based algorithms. In particular,

[VZT16] analyzed the non-asymptotic bias and variance of the SGLD algorithm by using

Poisson equations. [CDC15] showed the non-asymptotic bias and variance of MCMC algo-

rithms with high order integrators. [DRW+16] proposed variance-reduced algorithms based

on stochastic gradient Langevin dynamics, namely SVRG-LD and SAGA-LD, for Bayesian

posterior inference, and proved that their method improves the mean square error upon

SGLD. [LZL18] further improved the mean square error by applying the variance reduc-

tion tricks on Hamiltonian Monte Carlo, which is also called the underdamped Langevin

60

dynamics.

Another line of research [Dal17b, DM16, Dal17a, DK17, DCWY18, ZXG18c] focused on

characterizing the distance between distributions generated by Langevin dynamics based

algorithms and (strongly) log-concave target distributions. In detail, [Dal17b] proved that

the distribution of the last step in GLD converges to the stationary distribution in Õ(d/ε2)

iterations in terms of total variation distance and Wasserstein distance respectively with a

warm start and showed the similarities between posterior sampling and optimization. Later

[DM15] improved the results by showing this result holds for any starting point and estab-

lished similar bounds for the Wasserstein distance. [Dal17a] further improved the existing

results in terms of the Wasserstein distance and provide further insights on the close re-

lation between approximate sampling and gradient descent. [CCBJ18] improved existing

2-Wasserstein results by reducing the discretization error using underdamped Langevin dy-

namics. To improve the convergence rates in noisy gradient settings, [CFM+18, ZXG18d]

presented convergence guarantees in 2-Wasserstein distance for SAGA-LD and SVRG-LD

using variance reduction techniques. [ZXG18c] proposed the variance reduced Hamilton

Monte Carlo to accelerate the convergence of Langevin dynamics based sampling algorithms.

As to sampling from distribution with compact support, [BEL18] analyzed sampling from

log-concave distributions via projected Langevin Monte Carlo, and [BDMP17] proposed a

proximal Langevin Monte Carlo algorithm. This line of research is orthogonal to our work

since their analyses are regarding to the convergence of the distribution of the iterates to

the stationary distribution of Langevin diffusion in total variation distance or 2-Wasserstein

distance instead of expected function value gap.

On the other hand, many attempts have been made to escape from saddle points in

nonconvex optimization, such as cubic regularization [NP06, ZXG18b], trust region Newton

method [CRS14], Hessian-vector product based methods [AAZB+17, CD16, CDHS16], noisy

gradient descent [GHJY15, JGN+17, JNJ18] and normalized gradient [Lev16]. Yet all these

algorithms are only guaranteed to converge to an approximate local minimum rather than a

global minimum. The global convergence for nonconvex optimization remains understudied.

61

3.1.3 Preliminaries

In this section, we present some preliminaries for SDE. Note that throughout this chapter,

we use lower case bold symbol x to denote deterministic vector, and use upper case italicized

bold symbol X to denote random vector.

Kolmogorov Operator and Infinitesimal Generator

SupposeX(t) is the solution to the diffusion process represented by the stochastic differential

equation (3.1.1). For such a continuous time Markov process, let P = {Pt}t>0 be the

corresponding Markov semi-group [BGL13], and we define the Kolmogorov operator [BGL13]

Ps as follows

Psg(X(t)) = E[g(X(s+ t))|X(t)],

where g is a smooth test function. We have Ps+t = Ps ◦ Pt by Markov property. Further we

define the infinitesimal generator [BGL13] of the semi-group L to describe the the movement

of the process in an infinitesimal time interval:

Lg(X(t)) : = lim
h→0+

E[g(X(t+ h))|X(t)]− g(X(t))

h

=
(
−∇F (X(t)) · ∇+ β−1∇2

)
g(X(t)),

where β is the inverse temperature parameter.

Poisson Equation and the Time Average

Poisson equations are widely used in the study of homogenization and ergodic theory to

prove the desired limit of a time-average. Let L be the infinitesimal generator and let ψ be

defined as follows

Lψ = g − ḡ, (3.1.2)

where g is a smooth test function and ḡ is the expectation of g over the Gibbs measure,

i.e., ḡ :=
∫
g(x)π(dx). Smooth function ψ is called the solution of Poisson equation (3.1.2).

Importantly, it has been shown [EMS18] that the first and second order derivatives of the

solution ψ of Poisson equation for Langevin diffusion can be bounded by polynomial growth

functions.

62

3.2 Review of Langevin Dynamics Based Algorithms

Now we briefly review three popular Langevin dynamics based algorithms.

In practice, numerical methods (a.k.a., numerical integrators) are used to approximate

the Langevin diffusion in (3.1.1). For example, by Euler-Maruyama scheme [KP92], (3.1.1)

can be discretized as follows:

Xk+1 = Xk − η∇F (Xk) +
√

2ηβ−1 · εk, (3.2.1)

where εk ∈ Rd is standard Gaussian noise and η > 0 is the step size. The update in (3.2.1)

resembles gradient descent update except for an additional injected Gaussian noise. The

magnitude of the Gaussian noise is controlled by the inverse temperature parameter β. In our

work, we refer this update as Gradient Langevin Dynamics (GLD) [Dal17b, DM15, Dal17a].

The details of GLD are shown in Algorithm 4.

In the case that n is large, the above Euler approximation can be infeasible due to the

high computational cost of the full gradient ∇F (Xk) at each iteration. A natural idea is

to use stochastic gradient to approximate the full gradient, which gives rise to Stochastic

Gradient Langevin Dynamics (SGLD) [WT11] and its variants [AKW12, MCF15, CDC15].

However, the high variance brought by the stochastic gradient can make the convergence of

SGLD slow. To reduce the variance of the stochastic gradient and accelerate the convergence

of SGLD, we use a mini-batch of stochastic gradients in the following update form:

Yk+1 = Yk −
η

B

∑

i∈Ik

∇fi(Yk) +
√

2ηβ−1 · εk, (3.2.2)

where 1/B
∑

i∈Ik ∇fi(Yk) is the stochastic gradient, which is an unbiased estimator for

∇F (Yk) and Ik is a subset of {1, . . . , n} with |Ik| = B. Algorithm 5 displays the details of

SGLD.

Motivated by recent advances in stochastic optimization, in particular, the variance reduc-

tion based techniques [JZ13, RHS+16, AZH16], [DRW+16] proposed the Stochastic Variance

Reduced Gradient Langevin Dynamics (SVRG-LD) for posterior sampling. The key idea is

to use semi-stochastic gradient to reduce the variance of the stochastic gradient. SVRG-LD

63

takes the following update form:

Zk+1 = Zk − η∇̃k +
√

2ηβ−1 · εk, (3.2.3)

where ∇̃k = 1/B
∑

ik∈Ik

(
∇fik(Zk)−∇fik(Z̃(s))+∇F (Z̃(s))

)
is the semi-stochastic gradient,

Z̃(s) is a snapshot of Zk at every L iteration such that k = sL+` for some ` = 0, 1, . . . , L−1,

and Ik is a subset of {1, . . . , n} with |Ik| = B. SVRG-LD is summarized in Algorithm 6.

Note that although all the three algorithms are originally proposed for posterior sampling

or more generally, Bayesian learning, they can be applied for nonconvex optimization, as

demonstrated in many previous studies [AKW12, RRT17, ZLC17].

Algorithm 4 Gradient Langevin Dynamics (GLD)

input: step size η > 0; inverse temperature parameter β > 0; X0 = 0

for k = 0, 1, . . . , K − 1 do

randomly draw εk ∼ N(0, Id×d)

Xk+1 = Xk − η∇F (Xk) +
√

2η/βεk

end for

Algorithm 5 Stochastic Gradient Langevin Dynamics (SGLD)

input: step size η > 0; batch size B; inverse temperature parameter β > 0; Y0 = 0

for k = 0, 1, . . . , K − 1 do

randomly pick a subset Ik from {1, . . . , n} of size |Ik| = B; randomly draw εk ∼
N(0, Id×d)

Yk+1 = Yk − η/B
∑

i∈Ik ∇fi(Yk) +
√

2η/βεk

end for

3.3 Main Theory

We first lay out the following assumption on the loss function.

Assumption 3.3.1 (Smoothness). The function fi(x) is M-smooth for M > 0, i = 1, . . . , n,

where the smoothness condition is defined in Definition 2.3.1.

64

Algorithm 6 Stochastic Variance Reduced Gradient Langevin Dynamics (SVRG-LD)

input: step size η > 0; batch size B; epoch length L; inverse temperature parameter

β > 0

initialization: Z0 = 0, Z̃(0) = Z0

for s = 0, 1, . . . , (K/L)− 1 do

W̃ = ∇F (Z̃(s))

for ` = 0, . . . , L− 1 do

k = sL+ `

randomly pick a subset Ik from {1, . . . , n} of size |Ik| = B; draw εk ∼ N(0, Id×d)

∇̃k = 1/B
∑

ik∈Ik

(
∇fik(Zk)−∇fik(Z̃(s)) + W̃

)

Zk+1 = Zk − η∇̃k +
√

2η/βεk

end for

Z̃(s) = Z(s+1)L

end for

Assumption 3.3.2 (Dissipative). There exist constants m, b > 0, such that we have

〈∇F (x),x〉 ≥ m‖x‖2
2 − b, for all x ∈ Rd.

Assumption 3.3.2 is a typical assumption for the convergence analysis of an SDE and

diffusion approximation [MSH02, RRT17, ZLC17], which can be satisfied by enforcing a

weight decay regularization [RRT17]. It says that starting from a position that is sufficiently

far away from the origin, the Markov process defined by (3.1.1) moves towards the origin on

average. It can also be noted that all critical points are within the ball of radius O(
√
b/m)

centered at the origin under this assumption.

Let x∗ = argminx∈Rd F (x) be the global minimizer of F . Our ultimate goal is to prove

the convergence of the optimization error in expectation, i.e., E[F (Xk)] − F (x∗). In the

sequel, we decompose the optimization error into two parts: (1) E[F (Xk)] − E[F (Xπ)],

which characterizes the gap between the expected function value at the k-th iterate Xk and

the expected function value at Xπ, where Xπ follows the stationary distribution π(dx) of

Markov process {X(t)}t≥0, and (2) E[F (Xπ)] − F (x∗). Note that the error in part (1) is

65

algorithm dependent, while that in part (2) only depends on the diffusion itself and hence

is identical for all Langevin dynamics based algorithms.

Now we are ready to present our main results regarding to the optimization error of

each algorithm reviewed in Section 3.2. We first show the optimization error bound of GLD

(Algorithm 4).

Theorem 3.3.3 (GLD). Under Assumptions 3.3.1 and 3.3.2, consider XK generated by

Algorithm 4 with initial point X0 = 0. The optimization error is bounded by

E[F (XK)]− F (x∗) ≤ Θe−λKη +
Cψη

β
+

d

2β
log

(
eM(bβ/d+ 1)

m

)

︸ ︷︷ ︸
RM

, (3.3.1)

where problem-dependent parameters Θ and λ are defined as

Θ =
C0M(bβ +mβ + d)(m+ emηM(bβ +mβ + d))

m2ρ
d/2
β

, λ =
2mρdβ

log(2M(bβ +mβ + d)/m)
,

C0, Cψ > 0 are constants, and ρβ ∈ (0, 1) is a contraction parameter depending on the inverse

temperature of the Langevin dynamics.

In the optimization error of GLD (3.3.1), we denote the upper bound of the error term

E[F (Xπ)]− F (x∗) by RM , which characterizes the distance between the expected function

value at Xπ and the global minimum of F . The stationary distribution of Langevin diffusion

π ∝ e−βF (x) is a Gibbs distribution, which concentrates around the minimizer x∗ of F . Thus

a random vector Xπ following the law of π is called an almost minimizer of F within a

neighborhood of x∗ with radius RM [RRT17].

It is worth noting that the first term in (3.3.1) vanishes at a exponential rate due to

the ergodicity of Markov chain {Xk}k=0,1.... Moreover, the exponential convergence rate is

controlled by λ, the spectral gap of the discrete-time Markov chain generated by GLD, which

is in the order of e−Õ(d).

By setting E[F (XK)] − E[F (Xπ)] to be less than a precision ε, and solving for K, we

have the following corollary on the iteration complexity for GLD to converge to the almost

minimizer Xπ.

66

Corollary 3.3.4 (GLD). Under the same conditions as in Theorem 3.3.3, provided that

η . ε, GLD achieves E[F (XK)]− E[F (Xπ)] ≤ ε after

K = O

(
d

ελ
· log

(
1

ε

))

iterations.

Remark 3.3.5. In a seminal work by [RRT17], they provided a non-asymptotic analysis

of SGLD for nonconvex optimization. By setting the variance of stochastic gradient to 0,

their result immediately suggests an O(d/(ε4λ∗) log5((1/ε))) iteration complexity for GLD to

converge to the almost minimizer up to precision ε. Here the quantity λ∗ is the so-called

uniform spectral gap for continuous-time Markov process {Xt}t≥0 generated by Langevin

dynamics. They further proved that λ∗ = e−Õ(d), which is in the same order of our spectral

gap λ for the discrete-time Markov chain {Xk}k=0,1... generated by GLD. Both of them match

the lower bound for metastable exit times of SDE for nonconvex functions that have multiple

local minima and saddle points [BEGK04]. Although for some specific function F , the spectral

gap may be reduced to polynomial in d [GLR17], in general, the spectral gap for continuous-

time Markov processes is in the same order as the spectral gap for discrete-time Markov

chains. Thus, the iteration complexity of GLD suggested by Corollary 3.3.4 is better than

that suggested by [RRT17] by a factor of O(1/ε3).

We now present the following theorem, which states the optimization error of SGLD

(Algorithm 5).

Theorem 3.3.6 (SGLD). Under Assumptions 3.3.1 and 3.3.2, consider YK generated by

Algorithm 5 with initial point Y0 = 0, the optimization error is bounded by

E[F (YK)]− F (x∗) ≤ C1ΓKη

[
β(n−B)(M

√
Γ +G)2

B(n− 1)

]1/2

+ Θe−λKη +
Cψη

β
+RM , (3.3.2)

where C1 is an absolute constant, Cψ, λ,Θ and RM are the same as in Theorem 3.3.3, B is

the mini-batch size, G = maxi=1,...,n{‖∇fi(x∗)‖2}+bM/m and Γ = 2(1+1/m)(b+2G2+d/β).

Similar to Corollary 3.3.4, by setting E[F (Yk)]− E[F (Xπ)] ≤ ε, we obtain the following

corollary.

67

Corollary 3.3.7 (SGLD). Under the same conditions as in Theorem 3.3.6, if η . ε, SGLD

achieves

E[F (YK)]− E[F (Xπ)] = O

(
d3/2

B1/4λ
· log

(
1

ε

)
+ ε

)
, (3.3.3)

after

K = O

(
d

ελ
· log

(
1

ε

))

iterations, where B is the mini-batch size of Algorithm 5.

Remark 3.3.8. Corollary 3.3.7 suggests that if the mini-batch size B is chosen to be large

enough to offset the divergent term log(1/ε), SGLD is able to converge to the almost mini-

mizer in terms of expected function value gap. This is also suggested by the result in [RRT17].

More specifically, the result in [RRT17] implies that SGLD achieves

E[F (YK)]− E[F (Xπ)] = O

(
d2

λ∗

(
σ−1/4 log

(
1

ε

)
+ ε

))

with K = O(d/(λ∗ε4)·log5(1/ε)), where σ2 is the upper bound of stochastic variance in SGLD,

which can be reduced with larger batch size B. Recall that the spectral gap λ∗ in their work

scales as O(e−Õ(d)), which is in the same order as λ in Corollary 3.3.7. In comparison, our

result in Corollary 3.3.7 indicates that SGLD can actually achieve the same order of error for

E[F (YK)]−E[F (Xπ)] with substantially fewer number of iterations, i.e., O(d/(λε) log(1/ε))

.

Remark 3.3.9. To ensure SGLD converges in Corollary 3.3.7, one may set a sufficiently

large batch size B to offset the divergent term. For example, if we choose

B &
d6

λ4ε4
log4

(
1

ε

)
,

SGLD achieves E[F (YK)]−E[F (Xπ)] ≤ ε within K = O(d/(λε) log(1/ε)) stochastic gradient

evaluations.

In what follows, we proceed to present our result on the optimization error bound of SVRG-

LD.

68

Theorem 3.3.10 (SVRG-LD). Under Assumptions 3.3.1 and 3.3.2, consider ZK generated

by Algorithm 6 with initial point Z0 = 0. The optimization error is bounded by

E[F (ZK)]− F (x∗)

≤ C1ΓK3/4η

[
LβM2(n−B)

B(n− 1)

(
9ηL(M2Γ +G2) +

d

β

)]1/4

+ Θe−λKη +
Cψη

β
+RM , (3.3.4)

where constants C1, Cψ, λ,Θ,Γ, G and RM are the same as in Theorem 3.3.6, B is the mini-

batch size and L is the length of inner loop of Algorithm 6.

Similar to Corollaries 3.3.4 and 3.3.7, we have the following iteration complexity for

SVRG-LD.

Corollary 3.3.11 (SVRG-LD). Under the same conditions as in Theorem 3.3.10, if η . ε,

SVRG-LD achieves E[F (ZK)]− E[F (Xπ)] ≤ ε after

K = O

(
Ld5

Bλ4ε4
· log4

(
1

ε

)
+

1

ε

)

iterations. In addition, if we choose B =
√
nε−3/2, L =

√
nε3/2, the number of stochastic

gradient evaluations needed for SVRG-LD to achieve ε precision is

Õ

(√
n

ε5/2

)
· eÕ(d).

Remark 3.3.12. In Theorem 3.3.10 and Corollary 3.3.11, we establish the global conver-

gence guarantee for SVRG-LD to an almost minimizer of a nonconvex function F . To the

best of our knowledge, this is the first iteration/gradient complexity guarantee for SVRG-LD

in nonconvex finite-sum optimization. [DRW+16] first proposed the SVRG-LD algorithm

for posterior sampling, but only proved that the mean square error between averaged sample

pass and the stationary distribution converges to ε within Õ(1/ε3/2) iterations, which has no

implication for nonconvex optimization.

In large scale machine learning problems, the evaluation of full gradient can be quite

expensive, in which case the iteration complexity is no longer appropriate to reflect the

efficiency of different algorithms. To perform a comprehensive comparison among the three

69

Table 3.1: Gradient complexities of GLD, SGLD and SVRG-LD to converge to the almost

minimizer.

Work GLD SGLD2 SVRG-LD

[RRT17] Õ
(
n
ε4

)
· eÕ(d) Õ

(
1
ε8

)
· eÕ(d) N/A

this chapter Õ
(
n
ε

)
· eÕ(d) Õ

(
1
ε5

)
· eÕ(d) Õ

(√
n

ε5/2

)
· eÕ(d)

algorithms, we present their gradient complexities for converging to the almost minimizer

Xπ with ε precision in Table 3.1. Recall that gradient complexity is defined as the total

number of stochastic gradient evaluations needed to achieve ε precision. It can be seen from

Table 3.1 that the gradient complexity for GLD has worse dependence on the number of

component functions n and SVRG-LD has worse dependence on the optimization precision

ε. More specifically, when the number of component functions satisfies n ≤ 1/ε5, SVRG-LD

achieves better gradient complexity than SGLD. Additionally, if n ≥ 1/ε3, SVRG-LD is

better than both GLD and SGLD, therefore is more favorable.

3.4 Proof Sketch of the Main Results

In this section, we highlight our high level idea in the analysis of GLD, SGLD and SVRG-LD.

3.4.1 Roadmap of the Proof

Recall the problem in (1.1.1) and denote the global minimizer as x∗ = argminx F (x).

{X(t)}t≥0 and {Xk}k=0,...,K are the continuous-time and discrete-time Markov processes

generated by Langevin diffusion (3.1.1) and GLD respectively. We propose to decompose

the optimization error as follows:

E[F (Xk)]− F (x∗)

2For SGLD in [RRT17], the result in the table is obtained by choosing the exact batch size suggested by
the authors that could make the stochastic variance small enough to cancel out the divergent term in their
paper.

70

= E[F (Xk)]− E[F (Xµ)]︸ ︷︷ ︸
I1

+E[F (Xµ)]− E[F (Xπ)]︸ ︷︷ ︸
I2

+E[F (Xπ)]− F (x∗)︸ ︷︷ ︸
I3

, (3.4.1)

where Xµ follows the stationary distribution µ(dx) of Markov process {Xk}k=0,1,...,K , and

Xπ follows the stationary distribution π(dx) of Markov process {X(t)}t≥0, a.k.a., the Gibbs

distribution. Following existing literature [MSH02, MST10, CDC15], here we assume the

existence of stationary distributions, i.e., the ergodicity, of Langevin diffusion (3.1.1) and

its numerical approximation (3.2.2). Note that the ergodicity property of an SDE is not

trivially guaranteed in general and establishing the existence of the stationary distribution

is beyond the scope of this work. Yet we will discuss the circumstances when geometric

ergodicity holds in the Appendix.

X(t)

Xk

x⇤

Xµ

X⇡

Figure 3.1: Illustration of the analysis framework in our work.

We illustrate the decomposition (3.4.1) in Figure 3.1. Unlike existing optimization anal-

ysis of SGLD such as [RRT17], which measure the approximation error between Xk and

X(t) (blue arrows in the chart), we directly analyze the geometric convergence of discretized

Markov chain Xk to its stationary distribution (red arrows in the chart). Since the distance

between Xk and X(t) is a slow-convergence term in [RRT17], and the distance between

X(t) and Xπ depends on the uniform spectral gap, our new roadmap of proof will bypass

both of these two terms, hence leads to a faster convergence rate.

Bounding I1: Geometric Ergodicity of GLD

To bound the first term in (3.4.1), we need to analyze the convergence of the Markov chain

generated by Algorithm 4 to its stationary distribution, namely, the ergodic property of the

numerical approximation of Langevin dynamics. In probability theory, ergodicity describes

the long time behavior of Markov processes. For a finite-state Markov Chain, this is also

closely related to the mixing time and has been thoroughly studied in the literature of Markov

71

processes [HM08, LPW09, BGL13]. Note that [DM16] studied the convergence of the Euler-

Maruyama discretization (also referred to as the unadjusted Langevin algorithm) towards its

stationary distribution in total variation. Nevertheless, they only focus on strongly convex

functions which are less challenging than our nonconvex setting.

The following lemma ensures the geometric ergodicity of gradient Langevin dynamics.

Lemma 3.4.1. Under Assumptions 3.3.1 and 3.3.2, the gradient Langevin dynamics (GLD)

in Algorithm 4 has a unique invariant measure µ on Rd. It holds that

|E[F (Xk)]− E[F (Xµ)]| ≤ Cκρ
−d/2
β (1 + κemη) exp

(
−

2mkηρdβ
log(κ)

)
,

where C > 0 is an absolute constant, ρβ ∈ (0, 1) is a contraction parameter depending on the

inverse temperature parameter of Langevin dynamics (3.1.1), and κ = 2M(bβ +mβ + d)/b.

Lemma 3.4.1 establishes the exponential decay of function gap between F (Xk) and

F (Xπ) using coupling techniques. Note that the exponential dependence on dimension

d is consistent with the result from [RRT17] using entropy methods. The contraction pa-

rameter ρβ is a lower bound of the minorization condition for the Markov chain Xk, which is

established in [MSH02]. Nonetheless, we would like to point out that the exact computation

of ρβ requires additionally nontrivial efforts, which is beyond the scope of this work.

Bounding I2: Convergence to Stationary Distribution of Langevin Diffusion

Now we are going to bound the distance between two invariant measures µ and π in

terms of their expectations over the objective function F . Our proof is inspired by that of

[VZT16, CDC15]. The key insight here is that after establishing the geometric ergodicity of

GLD, by the stationarity of µ, we have

∫
F (x)µ(dx) =

∫
E[F (Xk)|X0 = x] · µ(dx).

This property says that after reaching the stationary distribution, any further transition

(GLD update) will not change the distribution. Thus we can bound the difference between

two invariant measures.

72

Lemma 3.4.2. Under Assumptions 3.3.1 and 3.3.2, the invariant measures µ and π satisfy

∣∣E[F (Xµ)]− E[F (Xπ)]
∣∣ ≤ Cψη

β
,

where Cψ > 0 is a constant that dominates E[‖∇pψ(Xk)‖] (p = 0, 1, 2) and ψ is the solution

of Poisson equation (3.1.2).

Lemma 3.4.2 suggests that the bound on the difference between the two invariant mea-

sures depends on the numerical approximation step size η, the inverse temperature parameter

β and the upper bound Cψ. We emphasize that the dependence on β is reasonable since

different β results in different diffusion, and further leads to different stationary distributions

of the SDE and its numerical approximations.

Bounding I3: Gap between Langevin Diffusion and Global Minimum

Most existing studies [WT11, SN14, CDC15] on Langevin dynamics based algorithms

focus on the convergence of the averaged sample path to the stationary distribution. The

property of Langevin diffusion asymptotically concentrating on the global minimum of F

is well understood [CHS87, GM91] , which makes the convergence to a global minimum

possible, even when the function F is nonconvex.

We give an explicit bound between the stationary distribution of Langevin diffusion and

the global minimizer of F , i.e., the last term E[F (Xπ)] − F (x∗) in (3.4.1). For nonconvex

objective function, this has been proved in [RRT17] using the concept of differential entropy

and smoothness of F . We formally summarize it as the following lemma:

Lemma 3.4.3. [RRT17] Under Assumptions 3.3.1 and 3.3.2, the model error I3 in (3.4.1)

can be bounded by

E[F (Xπ)]− F (x∗) ≤ d

2β
log

(
eM(mβ/d+ 1)

m

)
,

where Xπ is a random vector following the stationary distribution of Langevin diffusion

(3.1.1).

Lemma 3.4.3 suggests that Gibbs density concentrates on the global minimizer of objec-

tive function. Therefore, the random vector Xπ following the Gibbs distribution π is also

referred to as an almost minimizer of the nonconvex function F in [RRT17].

73

3.4.2 Proof of Theorems 3.3.3, 3.3.6 and 3.3.10

Now we integrate the previous lemmas to prove our main theorems in Section 3.3. First,

submitting the results in Lemmas 3.4.1, 3.4.2 and 3.4.3 into (3.4.1), we immediately obtain

the optimization error bound in (3.3.1) for GLD, which proves Theorem 3.3.3. Second,

consider the optimization error of SGLD (Algorithm 5), we only need to bound the error

between E[F (YK)] and E[F (XK)] and then apply the results for GLD, which is given by the

following lemma.

Lemma 3.4.4. Under Assumptions 3.3.1 and 3.3.2, by choosing mini-batch of size B, the

output of SGLD in Algorithm 5 (YK) and the output of GLD in Algorithm 4 (XK) satisfies

|E[F (YK)]− E[F (XK)]| ≤ C1

√
βΓ(M

√
Γ +G)Kη

[
n−B
B(n− 1)

]1/4

, (3.4.2)

where C1 is an absolute constant and Γ = 2(1 + 1/m)(b+ 2G2 + d/β).

Combining Lemmas 3.4.1, 3.4.2, 3.4.3 and 3.4.4 yields the desired result in (3.3.6) for SGLD,

which completes the proof of Theorem 3.3.6. Third, similar to the proof of SGLD, we require

an additional bound between F (ZK) and F (XK) for the proof of SVRG-LD, which is stated

by the following lemma.

Lemma 3.4.5. Under Assumptions 3.3.1 and 3.3.2, by choosing mini-batch of size B, the

output of SVRG-LD in Algorithm 6 (ZK) and the output of GLD in Algorithm 4 (XK)

satisfies

∣∣E[F (ZK)]− E[F (XK)]
∣∣ ≤ C1ΓK3/4η

[
LM2(n−B)(3Lηβ(M2Γ +G2) + d/2)

B(n− 1)

]1/4

,

where Γ = 2(1 + 1/m)(b + 2G2 + d/β), C1 is an absolute constant and L is the number of

inner loops in SVRG-LD.

The optimization error bound in (3.3.4) for SVRG-LD follows from Lemmas 3.4.1, 3.4.2,

3.4.3 and 3.4.5.

74

3.5 Fokker-Planck Equation and Backward Kolmogorov Equation

In this section, we introduce the Fokker-Planck Equation and the Backward Kolmogorov

equation. Fokker-Planck equation addresses the evolution of probability density p(x) that

associates with the SDE. We give the following specific definition.

Definition 3.5.1 (Fokker–Planck Equation). Let p(x, t) be the probability density at time t

of the stochastic differential equation and denote p0(x) the initial probability density. Then

∂tp(x, t) = L∗p(x, t), p(x, 0) = p0(x),

where L∗ is the formal adjoint of L.

Fokker-Planck equation gives us a way to find whether there exists a stationary distribu-

tion for the SDE. It can be shown [IW14] that for the stochastic differential equation (3.1.1),

its stationary distribution exists and satisfies

π(dx) =
1

Q
e−βF (x), Q =

∫
e−βF (x)dx. (3.5.1)

This is also known as Gibbs measure.

Backward Kolmogorov equation describes the evolution of E[g(X(t))|X(0) = x] with g

being a smooth test function.

Definition 3.5.2 (Backward Kolmogorov Equation). Let X(t) solves the stochastic differ-

ential equation (3.1.1). Let u(x, t) = E[g(X(t))|X(0) = x], we have

∂tu(x, t) = Lu(x, t), u(x, 0) = g(x).

Now consider doing first order Taylor expansion on u(x, t), we have

u(x, t) = u(x, 0) +
∂

∂t
u(x, t)|t=0 · (t− 0) +O(t2)

= g(x) + tLg(x) +O(t2). (3.5.2)

75

3.6 Proof of Corollaries

In this section, we provide the proofs of corollaries for iteration complexity in our main

theory section.

Proof of Corollary 3.3.4. To ensure the iterate error converge to ε precision, we need

Θe−λKη ≤ ε

2
,

Cψη

β
≤ ε

2
.

The second inequality can be easily satisfied with η = O(ε) and the first inequality implies

K ≥ 1

λη
log

(
2Θ

ε

)
.

Combining with η = O(ε) and Θ = O(d2/ρd/2), we obtain the iteration complexity

K = O

(
d

ελ
· log

(
1

ε

))
,

which completes the proof.

Proof of Corollary 3.3.7. To ensure the iterate error of SGLD converging to ε precision, we

require the following inequalities to hold

C1

√
βΓ(M

√
Γ +G)Kη

[
n−B
B(n− 1)

]1/4

≤ ε

3
, Θe−λKη ≤ ε

3
,

Cψη

β
≤ ε

3
.

The third inequality can be easily satisfied with η = O(ε). For the second inequality, similar

as in the proof of Corollary 3.3.4, we have

Kη ≥ 1

λ
log

(
3Θ

ε

)
.

Since ε < 1, we know that log(1/ε) will not go to zero when ε goes to zero. In fact, if we set

η = O(ε) and K = O(d/(λε) log(1/ε)), the first term in (3.3.2) scales as

C1

√
βΓ(M

√
Γ +G)Kη

[
n−B
B(n− 1)

]1/4

= O

(
d3/2Kη

B1/4

)
= O

(
d3/2

B1/4λ
log

(
1

ε

))
.

Therefore, within K = O(d/(ελ) · log(1/ε)) iterations, the iterate error of SGLD scales as

O

(
d3/2

B1/4λ
log

(
1

ε

)
+ ε

)
.

This completes the proof.

76

Proof of Corollary 3.3.11. Similar to previous proofs, in order to achieve an ε-precision iter-

ate error for SVRG-LD, we require

C1ΓK3/4η

[
LβM2(n−B)

B(n− 1)

(
9η(M2Γ +G2) +

d

β

)]1/4

≤ ε

3
, Θe−λKη ≤ ε

3
,

Cψη

β
≤ ε

3
.

By previous proofs we know that the second and third inequalities imply η = O(ε) and

Kη = O(1/λ log(3Θ/ε)) respectively. Combining with the first inequality, we have

η1/4 = O

(
B1/4ε

(Kη)3/4d5/4L1/4

)
.

Combining with the first inequality, we have

η = O

(
min

{
Bε4

(Kη)3d5L
, ε

})
.

Combining the above requirements yields

K = O

(
Ld5

Bλ4ε4
log4

(
1

ε

)
+

1

ε

)
. (3.6.1)

For gradient complexity, note that for each iteration we need B stochastic gradient eval-

uations and we also need in total K/L full gradient calculations. Therefore, the gradient

complexity for SVRG-LD is

O(K ·B +K/L · n) = Õ

((
n

B
+ L

)
1

ε4
+

(
n

L
+B

)
1

ε

)
· eÕ(d).

If we solve for the best B and L, we obtain B =
√
nε−3/2, L =

√
nε3/2. Therefore, we have

the optimal gradient complexity for SVRG-LD as

Õ

(√
n

ε5/2

)
· eÕ(d),

which completes the proof.

3.7 Proof of Technical Lemmas

In this section, we provide proofs of the technical lemmas used in the proof of our main

theory.

77

3.7.1 Proof of Lemma 3.4.1

Geometric ergodicity of dynamical systems has been studied a lot in the literature [RT96,

MSH02]. In particular, [RT96] proved that even when the diffusion converges exponentially

fast to its stationary distribution, the Euler-Maruyama discretization in (3.2.2) may still

lose the convergence properties and examples for Langevin diffusion can be found therein.

To further address this problem, [MSH02] built their analysis of ergodicity for SDEs on a

minorization condition and the existence of a Lyapunov function. In time discretization of

dynamics systems, they studied how time-discretization affects the minorization condition

and the Lyapunov structure. For the self-containedness of our analysis, we present the

minorization condition on a compact set C as follows.

Proposition 3.7.1. There exist t0 ∈ R and ξ > 0 such that the Markov process {X(t)}
satisfies

P(X(t0) ∈ A|X(0) = x) ≥ ξν(A),

for any A ∈ B(Rd), some fixed compact set C ∈ B(Rd), and x ∈ C, where B(Rd) denotes the

Borel σ-algebra on Rd and ν is a probability measure with ν(Cc) = 0 and ν(C) = 1.

Proposition 3.7.1 does not always hold for a Markov process generated by an arbitrary

SDE. However, for Langevin diffusion (3.1.1) studied in this chapter, [MSH02] proved that

this minorization condition actually holds under the dissipative and smooth assumptions

(see Corollary 7.4 in [MSH02]). For more explanation on the existence and robustness of the

minorization condition under discretization approximations for Langevin diffusion, we refer

interested readers to Corollary 7.5 and the proof of Theorem 6.2 in [MSH02]. Now we are

going to prove Lemma 3.4.1, which requires the following useful lemmas:

Lemma 3.7.2. Let V (x) = C + ‖x‖2
2 be a function on Rd, where C > 0 is a constant.

Denote the expectation with Markov process {X(t)} starting at x by Ex[·] = E[·|X(0) = x].

Under Assumption 3.3.2, we have

Ex[V (X(t))] ≤ e−2mtV (x) +
b+m+ d/β

m
(1− e−2mt),

for all x ∈ Rd.

78

Proof. Applying Itô’s Lemma yields

dV (X(t)) = −2〈X(t),∇F (X(t))〉dt+
2d

β
dt+ 2

√
2

β
〈X(t), dB(t)〉. (3.7.1)

Multiplying e2mt to both sides of the above equation, where m > 0 is the dissipative constant,

we obtain

2me2mtV (X(t))dt+ e2mtdV (X(t)) = 2me2mtV (X(t))dt− 2e2mt〈X(t),∇F (X(t))〉dt

+
2d

β
e2mtdt+

√
8

β
e2mt〈X(t), dB(t)〉.

We integrate the above equation from time 0 to t and have

V (X(t)) = e−2mtV (X0) + 2m

∫ t

0

e2m(s−t)V (X(s))ds− 2

∫ t

0

e2m(s−t)〈X(s),∇F (X(s))〉ds

+
2d

β

∫ t

0

e2m(s−t)ds+ 2

√
2

β

∫ t

0

e2m(s−t)〈X(s), dB(s)〉. (3.7.2)

Note that by Assumption 3.3.2, we have

−2

∫ t

0

e2m(s−t)〈X(s),∇F (X(s))〉ds ≤ −2

∫ t

0

e2m(s−t)(m‖X(s)‖2
2 − b

)
ds

= −2m

∫ t

0

e2m(s−t)V (X(s))ds+
b+m

m
(1− e−2mt).

(3.7.3)

Combining (3.7.2) and (3.7.3), and taking expectation over X(t) with initial point x, we get

Ex[V (X(t))] ≤ e−2mtV (x) +
b+m

m
(1− e−2mt) +

d

mβ
(1− e−2mt)

= e−2mtV (x) +
b+m+ d/β

m
(1− e−2mt),

where we employed the fact that dB(s) follows Gaussian distribution with zero mean and is

independent with X(s).

Lemma 3.7.3. (Theorem 7.3 in [MSH02]) Under Assumptions 3.3.1 and 3.3.2, let V (x) =

C0 + M/2‖x‖2
2 be an essential quadratic function. The numerical approximation (3.2.1)

(GLD) of Langevin diffusion (3.1.1) has a unique invariant measure µ and for all test func-

tion g such that |g| ≤ V , we have

∣∣E[g(Xk)]− E[g(Xµ)]
∣∣ ≤ Cκρ

−d/2
β (1 + κemη) exp

(
−

2mkηρdβ
log(κ)

)
,

79

where C > 0 is an absolute constant, ρβ ∈ (0, 1) is some contraction parameter depending

on the inverse temperature β of Langevin dynamics, and κ = 2M(b+m+ d)/m.

Here we provide a sketch of proof to refine the parameters in the results by [MSH02]. For

detailed proof, we refer interested readers to Theorem 7.3 in [MSH02].

Proof. Denote κ = 2M(b+m+d)/m according to Lemma 3.7.2 where b,m are the dissipative

parameters. Following the result in [MSH02], we define φ = ρdβ with some parameter 0 <

ρβ < 1 that can depend on the inverse temperature parameter β of the dynamics (3.1.1).

φ is some lower bound of the minorization condition similar to that in Proposition 3.7.1

but is established for the Markov chain for the discretized algorithm. Note that we actually

have β = 1 in [MSH02]. For the ease of presentation, we will omit the subscript β when no

confusion arises. Let {Xlτ}l=0,1,... be a sub-sampled chain from {Xk}k=0,1,... at sample rate

τ > 0. By the proof of Theorem 2.5 in [MSH02], we obtain the following result

∣∣E[g(Xlτ)]− E[g(Xµ)]
∣∣ ≤ κ[V̄ + 1](1− φ)αlτ +

√
2V (x0)δlτκαlτ/2

1√
φ
, (3.7.4)

whereXµ follows the invariant distribution of Markov process {Xk}k=0,1,..., V̄ = 2 supx∈C V (x)

is a bounded constant, δ ∈ (e−2mη, 1) is a constant, and α ∈ (0, 1) is chosen small enough

such that δκα/2 ≤ 1. In particular, we choose α ∈ (0, 1) such that δκα/2 ≤ (1 − φ)α, which

yields

α ≤ log(1/δ)

log(
√
κ/(1− φ))

≤ log(1/δ)

log(
√
κ)
,

where the last inequality is due to 1−φ < 1. Submitting the choice of α into (3.7.4) we have

∣∣E[g(Xlτ)]− E[g(Xµ)]
∣∣ ≤ 2

√
2κ√
φ

[V̄ + 1]V (x0)(1− φ)lτ log(1/δ)/ log(
√
κ)

=
2
√

2κ√
φ

[V̄ + 1]V (x0)elτ log(r), (3.7.5)

where r = (1−φ)log(1/δ)/ log(
√
κ) is defined as the contraction parameter. Note that by Taylor’s

expansion we have

log r = log(1− (1− r)) = −(1− r)− (1− r)2

2
− (1− r)3

3
− . . . ≤ −(1− r), (3.7.6)

80

when |1 − r| ≤ 1. By definition r = (1 − φ)log(1/δ)/ log(
√
κ) and φ = ρd where ρ ∈ (0, 1) is a

constant. Since it is more interesting to deal with the situation where dimension parameter

d is large enough and not negligible, we can always assume that |φ| = ρd is sufficiently small

such that for any 0 < ζ < 1

(1− φ)ζ = 1− ζφ+ ζ(ζ − 1)/2φ2 + . . .+

(
ζ

n

)
(−φ)n + . . . ≤ 1− ζφ (3.7.7)

by Taylor’s expansion. Submitting (3.7.6) and (3.7.7) into (3.7.5) yields

∣∣E[g(Xlτ)]− E[g(Xµ)]
∣∣ ≤ 2

√
2κ√
φ

[V̄ + 1]V (x0) exp

(
− 2mlτηρd

log(κ)

)
, (3.7.8)

where we chose δ = e−mη. Next we need to prove that the unsampled chain is also exponential

ergodic. Let k = lτ + j with j = 0, 1, . . . , τ − 1. We immediately get

∣∣E[g(Xlτ+j)]− E[g(Xµ)]
∣∣ ≤ 2

√
2κ√
φ

[V̄ + 1]E[V (Xj)] exp

(
− 2mlτηρd

log(κ)

)
.

Since the GLD approximation (3.2.1) of Langevin is ergodic when sampled at rate τ = 1, we

have k = lτ = l and j = 0. Note that by Lemma A.2 in [MSH02], we have C = {x : V (x) ≤
κ/e−mη}, which implies that V̄ = κemη. Thus we obtain

∣∣E[g(Xk)]− E[g(Xµ)]
∣∣ ≤ Cκρ−d/2(κemη + 1) exp

(
− 2mkηρd

log(κ)

)
,

where we used the fact that x0 = 0 and C > 0 is an absolute constant.

Proof of Lemma 3.4.1. The proof is majorly adapted from that of Theorem 7.3 and Corollary

7.5 in [MSH02]. By Assumption 3.3.1, F is M -smooth. Thus we have

F (x) ≤ F (y) + 〈∇F (y),x− y〉+
M

2
‖x− y‖2

2,

for all x,y ∈ Rd. By Lemma 3.7.5 and choosing y = 0, this immediately implies that F (x)

can always be bounded by a quadratic function V (x), i.e.,

F (x) ≤ M

2
V (x) =

M

2
(C0 + ‖x‖2

2).

Therefore V (x) is an essentially quadratic Lyapunov function such that |F (x)| ≤MV (x)/2

for x ∈ Rd. By Lemma 3.7.2 the Lyapunov function satisfies

Ex0 [V (X(t))] ≤ e−2mtV (x0) +
b+m+ d/β

m
(1− e−2mt).

81

According to Corollary 7.5 in [MSH02], the Markov chain {Xk}k=1,2,...,K satisfies

Ex0 [MV (X1)/2] ≤ e−2mη[MV (x0)/2] +
M(b+m+ d/β)

2m
. (3.7.9)

Recall the GLD update formula defined in (3.2.1)

Xk+1 = Xk − η∇F (Xk) +
√

2ηβ−1 · εk.

Define F ′(Xk) = βF (Xk) and η′ = η/β, we have

Xk+1 = Xk − η′∇F ′(Xk) +
√

2η′ · εk. (3.7.10)

This suggests that the result for β 6= 1 is equivalent to rescaling η to η/β and F (·) to βF (·).
Therefore, in the following proof, we will assume that β = 1 and then rescale η, F (·) at last.

Similar tricks are used in [RRT17, ZLC17]. Under Assumptions 3.3.1 and 3.3.2, it is proved

that Euler-Maruyama approximation of Langevin dynamics (3.1.1) has a unique invariant

measure µ on Rd. Denote Xµ as a random vector which is sampled from measure µ. By

Lemma 3.7.3, for all test function g such that |g| ≤ V , it holds that

∣∣E[g(Xk)]− E[g(Xµ)]
∣∣ ≤ Cκ′ρ

−d/2
β (1 + κ′emη) exp

(
−

2mkηρdβ
log(κ′)

)
,

where C > 0 is an absolute constant, ρβ ∈ (0, 1) is some contraction parameter depending

on the inverse temperature β of Langevin dynamics, and κ′ = 2M(b + m + d)/m. Take F

as the test function and X0 = 0, and by rescaling η and F (·) (dissipative and smoothness

parameters), we have

∣∣E[F (Xk)]− E[F (Xµ)]
∣∣ ≤ Cκρ

−d/2
β (1 + κemη) exp

(
−

2mkηρdβ
log(κ)

)
,

where κ = 2M(bβ +mβ + d)/m.

3.7.2 Proof of Lemma 3.4.2

To prove Lemma 3.4.2, we lay down the following supporting lemma, of which the derivation

is inspired and adapted from [CDC15].

82

Lemma 3.7.4. Under Assumptions 3.3.1 and 3.3.2, the Markov chain {Xk}Kk=1 generated

by Algorithm 4 satisfies
∣∣∣∣

1

K

K−1∑

k=0

E[F (Xk)|X0 = x]− F̄
∣∣∣∣ ≤ Cψ

(
β

ηK
+
η

β

)
,

where F̄ =
∫
F (x)π(dx) with π being the Gibbs measure for the Langevin diffusion (3.1.1).

To prove Lemma 3.7.4, we choose the test function in Poisson equation (3.1.2) as g = F .

Given the Poisson equation, suppose we choose g as F , the distance between the time average

of the GLD process and the expectation of F over the Gibbs measure can be expressed by

1

K

K∑

k=1

F (Xk)− F̄ =
1

K

K∑

k=1

Lψ(Xk). (3.7.11)

Note that by [MST10, VZT16], we know the Poisson equation (3.1.2) defined by the gen-

erator of Langevin dynamics has a unique solution ψ under Assumptions 3.3.1 and 3.3.2.

According to Theorem 3.2 in [EMS18], the p-th order derivatives of ψ can be bounded by

some polynomial growth function with sophisticated coefficients (p = 0, 1, 2). To simplify

the presentation, we hence follow the convention in the line of literature [CDC15, VZT16]

and assume that E
[
‖∇pψ(Xk)‖

]
can be further upper bounded by a constant Cψ for all

{Xk}k≥0 and p = (0, 1, 2), which is determined by the Langevin diffusion and its Poisson

equation. In fact, [EMS18] showed that the upper bound of derivatives (up to fourth order)

of ψ only requires the dissipative and smooth assumptions. We refer interested readers to

[EMS18] for more details on deriving the Cψ for Langevin diffusion. We show that the case

p = 0 can be easily verified as follows. By Assumption 3.3.1, using a similar argument as in

the proof of Lemma 3.4.1, we bound F (x) by a quadratic function V (x)

F (x) ≤ M

2
V (x) =

M

2
(C0 + ‖x‖2

2).

Applying Assumption 3.3.2 and Theorem 13 in [VZT16] we have

|ψ(x)| ≤ C1(1 + ‖x‖2
2) ≤ C2V (x). (3.7.12)

Note that by Assumptions 3.3.1 and 3.3.2 we can verify that a quadratic V (x) and p∗ = 2

satisfy Assumption 12 in [VZT16] and therefore we obtain that for all p ≤ p∗, we have

sup
k

EV p(Xk) ≤ ∞. (3.7.13)

83

Combining (3.7.12) and (3.7.13) we show that ψ(Xk) is bounded in expectation.

Proof. For the simplicity of notation, we first assume that β = 1 and then show the result

for arbitrary β by a scaling technique. Note that for the continuous-time Markov process

{D(t)}t≥0 defined in (3.7.33), the distribution of random vector (X1, . . . ,XK) is equivalent to

that of (D(η), . . . ,D(ηK)). Let ψ be the solution of Poisson equation Lψ = g−
∫
g(x)π(dx).

Since we have E[ψ(Xk)|X0 = x] = E[ψ(D(ηk))|D0 = x]. We denote E[ψ(D(ηk))|D0 = x]

by Ex[ψ(D(ηk))]. By applying (3.5.2), we compute the Taylor expansion of Ex[ψ(D(ηk))]

at D(η(k − 1)):

Ex[ψ(D(ηk))] = Ex[ψ(D(η(k − 1)))] + ηEx[Lψ(D(η(k − 1)))] +O(η2).

Note that the remainder also depends on the second order derivative of the Poisson equation

and are bounded by constant Cψ. Take average over k = 1, . . . , K and rearrange the equation

we have

1

ηK

(
Ex[ψ(D(ηK))]− ψ(x)

)
+O(η) =

1

K

K∑

k=1

Ex[Lψ(D(η(k − 1)))]. (3.7.14)

Submit the Poisson equation (3.7.11) into the above equation (3.7.14) we have

1

K

K−1∑

k=0

Ex[F (Xk)]− F̄ =
1

K

K∑

k=1

Ex[Lψ(Xk−1)] =
1

K

K∑

k=1

Ex[Lψ(D(η(k − 1)))]

=
1

ηK

(
Ex[ψ(D(ηK))]− ψ(x)

)
+O(η)

=
1

ηK

(
Ex[ψ(XK)]− ψ(x)

)
+O(η),

where the second and the fourth equation hold due to the fact that the distribution of {Xk}
is the same as the distribution of {D(ηk)}. We have assumed that ψ(Xk) and its first and

second order derivatives are bounded by constant Cψ in expectation over the randomness of

Xk. Therefore, we are able to obtain the following conclusion

∣∣∣∣
1

K

K−1∑

k=0

Ex[F (Xk)]− F̄
∣∣∣∣ ≤ Cψ

(
1

ηK
+ η

)
.

This completes the proof for the case β = 1. In order to apply our analysis to the case

where β can take any arbitrary constant value, we conduct the same scaling argument as in

84

(3.7.10).

∣∣∣∣
1

K

K−1∑

k=0

Ex[F (Xk)]− F̄
∣∣∣∣ ≤ Cψ

(
1

η′K
+ η′

)
= Cψ

(
β

ηK
+
η

β

)
.

This completes the proof.

Proof of Lemma 3.4.2. By definition we have

∣∣E[F (Xµ)]− E[F (Xπ)]
∣∣ =

∣∣∣∣
∫
F (x)µ(dx)−

∫
F (x)π(dx)

∣∣∣∣. (3.7.15)

For simplicity, we denote the average
∫
F (x)π(dx) as F̄ . Since µ is the ergodic limit of the

Markov chain generated by the GLD process, for a given test function F , we have

∫
F (x)µ(dx) =

∫
E[F (Xk)|X0 = x] · µ(dx).

Since µ and π are two invariant measures, we consider the case where K →∞. Take average

over K steps {Xk}K−1
k=0 we have

∫
F (x)µ(dx) = lim

K→∞

∫
1

K

K−1∑

k=0

E[F (Xk)|X0 = x] · µ(dx). (3.7.16)

Submitting (3.7.16) back into (3.7.15) yields

∣∣E[F (Xµ)]− E[F (Xπ)]
∣∣ = lim

K→∞

∣∣∣∣
∫ [

1

K

K−1∑

k=0

E[F (Xk)|X0 = x]− F̄
]
· µ(dx)

∣∣∣∣

≤ lim
K→∞

∫ ∣∣∣∣
1

K

K−1∑

k=0

E[F (Xk)|X0 = x]− F̄
∣∣∣∣ · µ(dx). (3.7.17)

Apply Lemma 3.7.4 with g chosen as F we further bound (3.7.17) by

∣∣E[F (Xµ)]− E[F (Xπ)]
∣∣ ≤ Cψ · lim

K→∞

∫ (
β

ηK
+
η

β

)
· µ(dx)

= Cψ · lim
K→∞

(
β

ηK
+
η

β

)

=
Cψη

β
.

This completes the proof.

85

3.7.3 Proof of Lemma 3.4.4

Lemma 3.4.4 gives the upper bound of function value gap between the GLD iterates and the

SGLD iterates. To bound the difference between F (XK) and F (YK), we need the following

lemmas.

We first lay down the following lemma on the bounds of gradient of fi.

Lemma 3.7.5. For any x ∈ Rd, it holds that

‖∇fi(x)‖2 ≤M‖x‖2 +G

for constant G = maxi=1,...,n{‖∇fi(x∗)‖2}+ bM/m.

Proof. By Assumption 3.3.2 we obtain

〈x∗,∇F (x∗)〉 ≥ m‖x∗‖2
2 − b.

Note that x∗ is the minimizer for F , which implies that ∇F (x∗) = 0 and therefore ‖x∗‖2 ≤
b/m. By Assumption 3.3.1 we further have

‖∇fi(x)‖2 ≤ ‖∇fi(x∗)‖2 +M‖x− x∗‖2 ≤ ‖∇fi(x∗)‖2 +
bM

m
+M‖x‖2.

The proof is completed by setting G = maxi=1,...,n{‖∇fi(x∗)‖2}+ bM/m.

Lemma 3.7.6. Under Assumptions 3.3.1 and 3.3.2, for any x ∈ Rd, it holds that

E
∥∥∥∥∇F (x)− 1

B

∑

i∈Ik

∇fi(x)

∥∥∥∥
2

2

≤ 4(n−B)(M‖x‖2 +G)2

B(n− 1)
,

where B = |Ik| is the mini-batch size and G = maxi=1,...,n{‖∇fi(x∗)‖2}+ bM/m.

Proof of Lemma 3.7.6. Let ui(x) = ∇F (x)−∇fi(x), consider

E
∥∥∥∥

1

B

∑

i∈Ik

ui(x)

∥∥∥∥
2

2

=
1

B2
E
∑

i 6=i′∈Ik

ui(x)>ui′(x) +
1

B
E‖ui(x)‖2

2

=
B − 1

Bn(n− 1)

∑

i 6=i′
ui(x)>ui′(x) +

1

B
E‖ui(x)‖2

2

86

=
B − 1

Bn(n− 1)

∑

i,i′

ui(x)>ui′(x)− B − 1

B(n− 1)
E‖ui(x)‖2

2 +
1

B
E‖ui(x)‖2

2

=
n−B
B(n− 1)

E‖ui(x)‖2
2, (3.7.18)

where the last equality is due to the fact that 1/n
∑n

i=1 ui(x) = 0. By Lemma 3.7.5 we have

‖∇fi(x)‖2 ≤ M‖x‖2 + G, therefore we have ‖∇F (x)‖2 ≤ M‖x‖2 + G and consequently,

‖ui(x)‖2 ≤ 2(M‖x‖2 +G). Thus (3.7.18) can be further bounded as:

E
∥∥∥∥

1

B

∑

i∈Ik

ui(x)

∥∥∥∥
2

2

≤ n−B
B(n− 1)

4(M‖x‖2 +G)2.

This completes the proof.

The following lemma describes the L2 bound for discrete processesXk (GLD), Yk (SGLD)

and Zk (SVRG-LD). Note that for SGLD, similar result is also presented in [RRT17].

Lemma 3.7.7. Under Assumptions 3.3.1 and 3.3.2, for sufficiently small step size η, sup-

pose the initial points of Algorithms 4, 5 and 6 are chosen at 0, then the L2 bound of the

GLD process (3.2.1), SGLD process (3.2.2) and SVRG-LD process (3.2.3) can be uniformly

bounded by

max{E[‖Xk‖2
2],E[‖Yk‖2

2],E[‖Zk‖2
2]} ≤ Γ, where Γ := 2

(
1 +

1

m

)(
b+ 2G2 +

d

β

)
,

for any k = 0, 1, . . . , K, where G = maxi=1,...,n{‖∇fi(x∗)‖2}+ bM/m.

We provide the proof of L2 bound of GLD and SVRG-LD iterates Xk and Zk. Note that

a similar result of SGLD has been proved by [RRT17] and thus we omit the corresponding

proof for the simplicity of presentation.

Proof of Lemma 3.7.7. Part I: We first prove the the upper bound for GLD. By the defini-

tion in (3.2.1), we have

E[‖Xk+1‖2
2] = E[‖Xk − η∇F (Xk)‖2

2] +

√
8η

β
E[〈Xk − η∇F (Xk), εk〉] +

2η

β
E[‖εk‖2

2]

= E[‖Xk − η∇F (Xk)‖2
2] +

2ηd

β
,

87

where the second equality follows from that εk is independent on Xk. Now we bound the

first term

E[‖Xk − η∇F (Xk)‖2
2] = E[‖Xk‖2

2]− 2ηE[〈Xk,∇F (Xk)〉] + η2E[‖∇F (Xk)‖2
2]

≤ E[‖Xk‖2
2] + 2η(b−mE[‖Xk‖2

2]) + 2η2(M2E[‖Xk‖2
2] +G2)

= (1− 2ηm+ 2η2M2)E[‖Xk‖2
2] + 2ηb+ 2η2G2,

where the inequality follows from Assumption 3.3.2, Lemma 3.7.5 and triangle inequality.

Substitute the above bound back and we will have

E[‖Xk+1‖2
2] ≤ (1− 2ηm+ 2η2M2)E[‖Xk‖2

2] + 2ηb+ 2η2G2 +
2ηd

β
. (3.7.19)

For sufficient small η that satisfies η ≤ min
{

1,m/(2M2)
}

, there are only two cases we need

to take into account:

If 1− 2ηm+ 2η2M2 ≤ 0, then from (3.7.19) we have

E[‖Xk+1‖2
2] ≤ 2ηb+ 2η2G2 +

2ηd

β
≤ ‖X0‖2

2 + 2

(
b+G2 +

d

β

)
. (3.7.20)

If 0 < 1− 2ηm+ 2η2M2 ≤ 1, then iterate (3.7.19) and we have

E[‖Xk‖2
2] ≤ (1− 2ηm+ 2η2M2)k‖X0‖2

2 +
ηb+ η2G2 + ηd

β

ηm− η2M2
≤ ‖X0‖2

2 +
2

m

(
b+G2 +

d

β

)
.

(3.7.21)

Combine (3.7.20) and (3.7.21) and we have

E[‖Xk‖2
2] ≤ ‖X0‖2

2 +

(
2 +

2

m

)(
b+G2 +

d

β

)
= 2

(
1 +

1

m

)(
b+G2 +

d

β

)
,

where the equation holds by choosing X0 = 0.

Part II: Now we prove the L2 bound for SVRG-LD, i.e., E[‖Zk‖2
2], by mathematical induc-

tion. Since ∇̃k = 1/B
∑

ik∈Ik

(
∇fik(Zk)−∇fik(Z̃(s)) +∇F (Z̃(s))

)
, we have

E[‖Zk+1‖2
2] = E[‖Zk − η∇̃k‖2

2] +

√
8η

β
E[〈Zk − η∇̃k, εk〉] +

2η

β
E[‖εk‖2

2]

= E[‖Zk − η∇̃k‖2
2] +

2ηd

β
, (3.7.22)

88

where the second equality follows from the fact that εk is independent of Zk and standard

Gaussian. We prove it by induction. First, consider the case when k = 1. Since we choose

the initial point at Z0 = 0, we immediately have

E[‖Z1‖2
2] = E[‖Z0 − η∇̃0‖2

2] +

√
8η

β
E[〈Z0 − η∇̃0, ε0〉] +

2η

β
E[‖ε0‖2

2]

= η2E[‖∇F (Z0)‖2
2] +

2ηd

β

≤ η2G2 +
2ηd

β
,

where the second equality holds due to the fact that ∇̃0 = ∇F (Z0) and the inequality follows

from Lemma 3.7.5. For sufficiently small η we can see that the conclusion of Lemma 3.7.7

holds for E[‖Z1‖2
2], i.e., E[‖Z1‖2

2] ≤ Γ, where Γ = 2(1 + 1/m)(b + 2G2 + d/β). Now assume

that the conclusion holds for all iteration from 1 to k, then for the (k + 1)-th iteration, by

(3.7.22) we have,

E[‖Zk+1‖2
2] = E[‖Zk − η∇̃k‖2

2] +
2ηd

β
, (3.7.23)

For the first term on the R.H.S of (3.7.23) we have

E[‖Zk − η∇̃k‖2
2] = E[‖Zk − η∇F (Zk)‖2

2] + 2ηE〈Zk − η∇F (Zk),∇F (Zk)− ∇̃k〉

+ η2E[‖∇F (Zk)− ∇̃k‖2
2]

= E[‖Zk − η∇F (Zk)‖2
2]︸ ︷︷ ︸

T1

+ η2E[‖∇F (Zk)− ∇̃k‖2
2]︸ ︷︷ ︸

T2

, (3.7.24)

where the second equality holds due to the fact that E[∇̃k] = ∇F (Zk). For term T1, we can

further bound it by

E[‖Zk − η∇F (Zk)‖2
2] = E[‖Zk‖2

2]− 2ηE[〈Zk,∇F (Zk)〉] + η2E[‖∇F (Zk)‖2
2]

≤ E[‖Zk‖2
2] + 2η(b−mE[‖Zk‖2

2]) + 2η2(M2E[‖Zk‖2
2] +G2)

= (1− 2ηm+ 2η2M2)E[‖Zk‖2
2] + 2ηb+ 2η2G2,

where the inequality follows from Lemma 3.7.5 and triangle inequality. For term T2, by

Lemma 3.7.11 we have

E‖∇F (Zk)− ∇̃k‖2
2 ≤

M2(n−B)

B(n− 1)
E
∥∥Zk − Z̃(s)

∥∥2

2
≤ 2M2(n−B)

B(n− 1)

(
E
∥∥Zk

∥∥2

2
+ E

∥∥Z̃(s)
∥∥2

2

)
.

89

Submit the above bound back into (3.7.22) we have

E[‖Zk+1‖2
2] ≤

(
1− 2ηm+ 2η2M2

(
1 +

n−B
B(n− 1)

))
E[‖Zk‖2

2]

+
2η2M2(n−B)

B(n− 1)
E
∥∥Z̃(s)

∥∥2

2
+ 2ηb+ 2η2G2 +

2ηd

β
. (3.7.25)

Note that by assumption we have E
∥∥Zj

∥∥2

2
≤ Γ for all j = 1, . . . , k where Γ = 2

(
1+1/m

)(
b+

2G2 + d/β
)
, thus (3.7.25) can be further bounded as:

E[‖Zk+1‖2
2] ≤

(
1− 2ηm+ 2η2M2

(
1 +

2(n−B)

B(n− 1)

))

︸ ︷︷ ︸
Cλ

Γ + 2ηb+ 2η2G2 +
2ηd

β
. (3.7.26)

For sufficient small η that satisfies

η ≤ min

(
1,

m

2M2
(
1 + 2(n−B)/(B(n− 1))

)
)
,

there are only two cases we need to take into account:

If Cλ ≤ 0, then from (3.7.26) we have

E[‖Zk+1‖2
2] ≤ 2ηb+ 2η2G2 +

2ηd

β
≤ 2

(
b+G2 +

d

β

)
. (3.7.27)

If 0 < Cλ ≤ 1, then iterate (3.7.26) and we have

E[‖Zk+1‖2
2] ≤ Ck+1

λ ‖Z0‖2
2 +

ηb+ η2G2 + ηd
β

ηm− η2M2
(

1 + 2(n−B)
B(n−1)

) ≤ 2

m

(
b+G2 +

d

β

)
. (3.7.28)

Combining (3.7.27) and (3.7.28), we have

E[‖Zk+1‖2
2] ≤ 2

(
1 +

1

m

)(
b+ 2G2 +

d

β

)
.

Thus we show that when E[‖Zj‖2
2], j = 1, . . . , k are bounded, E[‖Zk+1‖2

2] is also bounded.

By mathematical induction we complete the proof.

The following lemma gives out the upper bound for the exponential L2 bound of Xk.

Lemma 3.7.8. Under Assumptions 3.3.1 and 3.3.2, for sufficiently small step size η < 1

and the inverse temperature satisfying β ≥ max{2/(m−M2η), 4η}, it holds that

logE[exp(‖Xk‖2
2)] ≤ ‖X0‖2

2 +
2β(b+G2) + 2d

β − 4η
kη.

90

Proof. We have the following equation according to the update of GLD in (3.2.1),

E[exp
(
‖Xk+1‖2

2)] = E exp

(∥∥∥Xk − η∇F (Xk) +

√
2η

β
εk

∥∥∥
2

2

)

= E exp

(
‖Xk − η∇F (Xk)‖2

2 +

√
8η

β
〈Xk − η∇F (Xk), εk〉+

2η

β
‖εk‖2

2

)
.

(3.7.29)

Let H(x) = exp(‖x‖2
2), we have E[H(Xk+1)] = EXk

[E[H(Xk+1)|Xk]]. Thus we can first

compute the conditional expectation on the R.H.S of (3.7.29) given Xk, then compute the

expectation with respect to Xk. Note that εk follows standard multivariate normal distri-

bution, i.e., εk ∼ N(0, Id×d). Then it can be shown that

E
[

exp

(√
8η

β
〈Xk − η∇F (Xk), εk〉+

2η

β
‖εk‖2

2

)∣∣∣∣Xk

]

=
1

(
1− 4η/β

)d/2 exp

(
4η

β − 4η
‖Xk − η∇F (Xk)‖2

2

)

holds as long as β > 4η. Plugging the above equation into (3.7.29), we have

E[H(Xk+1)] =
1

(
1− 4η/β

)d/2EXk

[
exp

(
β

β − 4η
‖Xk − η∇F (Xk)‖2

2

)]
. (3.7.30)

Note that by Assumption 3.3.2 and Lemma 3.7.5 we have

EXk
exp

(
β

β − 4η
‖Xk − η∇F (X)‖2

2

)

= EXk
exp

(
β

β − 4η

(
‖Xk‖2

2 − 2η〈Xk,∇F (Xk)〉+ η2‖∇F (Xk)‖2
2

))

≤ EXk
exp

(
β

β − 4η

(
‖Xk‖2

2 − 2η(m‖Xk‖2
2 − b) + 2η2(M2‖Xk‖2

2 +G2)
))

= EXk
exp

(
β

β − 4η

(
(1− 2ηm+ 2η2M2)‖Xk‖2

2 + 2bη + 2η2G2
))
.

Consider sufficiently small η such that η < m/M2. Then for β satisfying β ≥ max{2/(m−
M2η), 4η}, we have β(1 − 2ηm + 2η2M2)/(β − 4η) ≤ 1. Therefore, the above expectation

can be upper bounded by

EXk
exp

(
β

β − 4η
‖Xk − η∇F (X)‖2

2

)
≤ exp

(
2ηβ(b+ ηG2)

β − 4η

)
E[H(Xk)].

91

Substituting the above inequality into (3.7.30), it follows that

E[H(Xk+1)] ≤ 1

(1− 4η/β)d/2
exp

(
2ηβ(b+ ηG2)

β − 4η

)
E[H(Xk)]

≤ exp

(
2η(βb+ ηβG2 + d)

β − 4η

)
E[H(Xk)],

where we used the fact that log(1/(1− x)) ≤ x/(1− x) for 0 < x < 1 and that

log

(
1

(1− 4η/β)d/2

)
=
d

2
log

(
1

1− 4η/β

)
≤ 2dη/β

1− 4η/β
=

2ηd

β − 4η
.

Then we are able to show by induction that

E[H(Xk)] ≤ exp

(
2kη(βb+ ηβG2 + d)

β − 4η

)
E[H(‖X0‖2)],

which immediately implies that

logE[exp(‖Xk‖2
2)] ≤ ‖X0‖2

2 +
2β(b+G2) + 2d

β − 4η
kη,

where we assume that η ≤ 1 and β > 4η.

Lemma 3.7.9. [PW16, RRT17] For any two probability density functions µ, ν with bounded

second moments, let g : Rd → R be a C1 function such that

‖∇g(x)‖2 ≤ C1‖x‖2 + C2,∀x ∈ Rd

for some constants C1, C2 ≥ 0. Then
∣∣∣∣
∫

Rd
g(x)dµ−

∫

Rd
g(x)dν

∣∣∣∣ ≤ (C1σ + C2)W2(µ, ν),

where W2 is the 2-Wasserstein distance and σ2 = max
{ ∫

Rd ‖x‖2
2µ(dx),

∫
Rd ‖x‖2

2ν(dx)
}

.

Lemma 3.7.10. (Corollary 2.3 in [BV05]) Let ν be a probability measure on Rd. Assume

that there exist x0 and a constant α > 0 such that
∫

exp(α‖x− x0‖2
2)dν(x) <∞. Then for

any probability measure µ on Rd, it satisfies

W2(µ, ν) ≤ Cν
(√

DKL(µ||ν) +
(
DKL(µ||ν)/2

)1/4)
,

where Cν is defined as

Cν = inf
x0∈Rd,α>0

√
1

α

(
3

2
+ log

∫
exp(α‖x− x0‖2

2)dν(x)

)
.

92

Proof of Lemma 3.4.4. Let PK , QK denote the probability measures for GLD iterate XK

and SGLD iterate YK respectively. Applying Lemma 3.7.9 to probability measures PK and

QK yields

∣∣E[F (YK)]− E[F (XK)]
∣∣ ≤ (C1

√
Γ + C2)W2(QK , PK), (3.7.31)

where C1, C2 > 0 are absolute constants and Γ = 2(1 + 1/m)(b + 2G2 + d/β) is the upper

bound for both E[‖Xk‖2
2] and E[‖Yk‖2

2] according to Lemma 3.7.7. We further bound the

W2 distance via the KL-divergence by Lemma 3.7.10 as follows

W2(QK , PK) ≤ Λ(
√
DKL(QK ||PK) + 4

√
DKL(QK ||PK)), (3.7.32)

where Λ =
√

3/2 + logEPK [exp(‖XK‖2
2)]. With Lemma 3.7.8 we have Λ =

√
(6 + 2Γ)Kη.

Therefore, we only need to bound the KL-divergence between density functions PK and QK .

To this end, we introduce a continuous-time Markov process {D(t)}t≥0 to bridge the gap

between diffusion {X(t)}t≥0 and its numerical approximation {Xk}k=0,1,...,K . Define

dD(t) = b(D(t))dt+
√

2β−1dB(t), (3.7.33)

where b(D(t)) = −∑∞k=0∇F (X(ηk))1{t ∈
[
ηk, η(k + 1)

)
}. Integrating (3.7.33) on interval

[
ηk, η(k + 1)

)
yields

D(η(k + 1)) = D(ηk)− η∇F (D(ηk)) +
√

2ηβ−1 · εk,

where εk ∼ N(0, Id×d). This implies that the distribution of random vector (X1, . . . ,XK) is

equivalent to that of (D(η), . . . ,D(ηK)). Similarly, for Yk we define

dM̃ (t) = c(M̃ (t))dt+
√

2β−1dB(t),

where the drift coefficient is defined as c(M̃ (t)) = −∑∞k=0 gk(M̃(ηk))1{t ∈ [ηk, η(k +

1))} and gk(x) = 1/B
∑

i∈Ik ∇fi(x) is a mini-batch of the full gradient with Ik being a

random subset of {1, 2, . . . , n} of size B. Now we have that the distribution of random

vector (Y1, . . . ,YK) is equivalent to that of (M̃(η), . . . ,M̃ (ηK)). However, the process

M̃ (t) is not Markov due to the randomness of the stochastic gradient gk. Therefore, we

define the following Markov process which has the same one-time marginals [Gyo86] as

dM (t) = h(M(t))dt+
√

2β−1dB(t), (3.7.34)

93

where h(·) = −E[gk(M̃ (ηk))1{t ∈ [ηk, η(k + 1))}|M̃ (t) = ·] is the conditional expectation

of the left end point of the interval which M̃ (t) lies in. Let Pt denote the distribution of

D(t) and Qt denote the distribution of M(t). By (3.7.33) and (3.7.34), the Radon-Nikodym

derivative of Pt with respective to Qt is given by the following Girsanov formula [LS13]

dPt
dQt

(M) = exp

{√
β

2

∫ t

0

(h(M (s))− b(M (s)))>(dM(s)− h(M(s))ds)

− β

4

∫ t

0

‖h(M (s))− b(M (s))‖2
2ds

}
.

Since Markov processes {D(t)}t≥0 and {M (t)}t≥0 are constructed based on Markov chains

Xk and Yk, by data-processing inequality the K-L divergence between PK and QK can be

bounded by

DKL(QK ||PK) ≤ DKL(QηK ||PηK)

= −E
[

log

(
dPηK
dQηK

(M)

)]

=
β

4

∫ ηK

0

E
[
‖h(M (r))− b(M(r))‖2

2

]
dr, (3.7.35)

where in the last equality we used the fact that dB(t) follows Gaussian distribution inde-

pendently for any t ≥ 0. By definition, we know that both h(M(r)) and b(M (r)) are step

functions when r ∈ [ηk, η(k + 1)) for any k. This observation directly yields

∫ ηK

0

E
[
‖h(M(r))− b(M (r))‖2

2

]
dr ≤

K−1∑

k=0

∫ η(k+1)

ηk

E
[
‖gk(M̃ (ηk))−∇F (M̃ (ηk))‖2

2

]
dr

= η

K−1∑

k=0

E
[
‖gk(Yk)−∇F (Yk)‖2

2

]
,

where the first inequality is due to Jensen’s inequality and the convexity of function ‖ · ‖2,

and the last equality is due to the equivalence in distribution. By Lemmas 3.7.6 and 3.7.7,

we further have
∫ ηK

0

E
[
‖h(M(r))− b(M (r))‖2

2

]
dr ≤ 4ηK(n−B)(MΓ +G)2

B(n− 1)
. (3.7.36)

Submitting (3.7.35) and (3.7.36) into (3.7.32), we have

W2(QK , PK) ≤ Λ

(√
βηK(n−B)(MΓ +G)2

B(n− 1)
+ 4

√
βηK(n−B)(MΓ +G)2

B(n− 1)

)

94

≤ Λ

√
βηK

√
n−B(MΓ +G)2

√
B(n− 1)

. (3.7.37)

Combining (3.7.31) with (3.7.37), we obtain the expected function value gap between SGLD

and GLD:

|E[F (Yk)]− E[F (Xk)]| ≤ C1Γ
√
Kη

[
βηK

√
n−B(M

√
Γ +G)2

√
B(n− 1)

]1/2

,

where we adopt the fact that Kη > 1 and assume that C1 ≥ C2.

3.7.4 Proof of Lemma 3.4.5

Similar to the proof of Lemma 3.4.4, to bound the difference between F (XK) and F (ZK),

we need the following lemmas.

Lemma 3.7.11. Under Assumptions 3.3.1 and 3.3.2, for each iteration k = sL + ` in

Algorithm 6, it holds that

E‖∇̃k −∇F (Zk)‖2
2 ≤

M2(n−B)

B(n− 1)
E
∥∥Zk − Z̃(s)

∥∥2

2
,

where ∇̃k = 1/B
∑

ik∈Ik

(
∇fik(Zk)−∇fik(Z̃(s)) +∇F (Z̃(s)

)
and B = |Ik| is the mini-batch

size.

Proof. Since by Algorithm 6 we have ∇̃k = (1/B)
∑

ik∈Ik

(
∇fik(Zk)−∇fik(Z̃(s))+∇F (Z̃(s))

)
,

therefore,

E[‖∇̃k −∇F (Zk)‖2
2] = E

∥∥∥∥
1

B

∑

ik∈Ik

(
∇fik(Zk)−∇fik(Z̃(s)) +∇F (Z̃(s))−∇F (Zk)

)∥∥∥∥
2

2

.

Let ui = ∇F (Zk)−∇F (Z̃(s))−
(
∇fik(Zk)−∇fik(Z̃(s))

)
.

E
∥∥∥∥

1

B

∑

i∈Ik

ui(x)

∥∥∥∥
2

2

=
1

B2
E
∑

i 6=i′∈Ik

ui(x)>ui′(x) +
1

B
E‖ui(x)‖2

2

=
B − 1

Bn(n− 1)

∑

i 6=i′
ui(x)>ui′(x) +

1

B
E‖ui(x)‖2

2

=
B − 1

Bn(n− 1)

∑

i,i′

ui(x)>ui′(x)− B − 1

B(n− 1)
E‖ui(x)‖2

2 +
1

B
E‖ui(x)‖2

2

95

=
n−B
B(n− 1)

E‖ui(x)‖2
2, (3.7.38)

where the last equality is due to the fact that 1/n
∑n

i=1 ui(x) = 0. Therefore, we have

E[‖∇̃k −∇F (Zk)‖2
2] ≤ n−B

B(n− 1)
E‖ui‖2

2

=
n−B
B(n− 1)

E‖∇fik(Zk)−∇fik(Z̃)− E[∇fik(Zk)−∇fik(Z̃)]‖2
2

≤ n−B
B(n− 1)

E‖∇fik(Zk)−∇fik(Z̃)‖2
2

≤ M2(n−B)

B(n− 1)
E‖Zk − Z̃‖2

2, (3.7.39)

where the second inequality holds due to the fact that E[‖x−E[x]‖2
2] ≤ E[‖x‖2

2] and the last

inequality follows from Assumption 3.3.1. This completes the proof.

Proof of Lemma 3.4.5. Denote QZ
K as the probability density functions for ZK . For the

simplicity of notation, we omit the index Z in the remaining part of this proof when no

confusion arises. Similar as in the proof of Lemma 3.4.4, we first apply Lemma 3.7.9 to

probability measures PK for XK and QZ
K for ZK , and obtain the following upper bound of

function value gap

|E[F (ZK)]− E[F (XK)]| ≤ (C1

√
Γ + C2)W2(QZ

K , PK), (3.7.40)

where C1, C2 > 0 are absolute constants and Γ = 2(1 + 1/m)(b + 2G2 + d/β) is the upper

bound for both E[‖Xk‖2
2] and E[‖Zk‖2

2] according to Lemma 3.7.7. Further by Lemma 3.7.10,

the W2 distance can be bounded by

W2(QZ
K , PK) ≤ Λ(

√
DKL(QZ

K ||PK) + 4

√
DKL(QZ

K ||PK)), (3.7.41)

where Λ =
√

3/2 + logEPK [e‖XK‖22]. Applying Lemma 3.7.8 we obtain Λ =
√

(6 + 2Γ)Kη.

Therefore, we need to bound the KL-divergence between density functions PK and QZ
K .

Similar to the proof of Lemma 3.4.4, we define a continuous-time Markov process associated

with Zk as follows dÑ (t) = p(Ñ (t))dt +
√

2β−1dB(t), where p(Ñ (t)) = −∑∞k=0 ∇̃k 1{t ∈
[ηk, η(k+1))} and ∇̃k is the semi-stochastic gradient at k-th iteration of SVRG-LD. We have

that the distribution of random vector (Z1, . . . ,ZK) is equivalent to that of (Ñ (η), . . . , Ñ (ηK)).

96

However, Ñ (t) is not Markov due to the randomness of ∇̃k. We define the following Markov

process which has the same one-time marginals as Ñ (t)

dN (t) = q(N (t))dt+
√

2β−1dB(t), (3.7.42)

where q(·) = −E[∇̃k 1{t ∈ [ηk, η(k + 1))}|p(Ñ (t)) = ·]. Let QZ
t denote the distribution of

N (t). By (3.7.33) and (3.7.42), the Radon-Nikodym derivative of Pt with respective to QZ
t

is given by the Girsanov formula [LS13]

dPt
dQZ

t

(N) = exp

{√
β

2

∫ t

0

(q(N (r))− b(N (r)))>(dN (r)− h(N (r))dr)

− β

4

∫ t

0

‖q(N (r))− b(N (r))‖2
2dr

}
.

Since Markov processes {D(t)}t≥0 and {N (t)}t≥0 are constructed based on Xk and Zk,

by data-processing inequality the K-L divergence between PK and QZ
K in (3.7.41) can be

bounded by

DKL(QZ
K ||PK) ≤ DKL(QZ

ηK ||PηK)

= −E
[

log

(
dPηK
dQZ

ηK

(N)

)]

=
β

4

∫ ηK

0

E
[
‖q(N (r))− b(N (r))‖2

2

]
dr. (3.7.43)

where in the last equality we used the fact that dB(t) follows Gaussian distribution inde-

pendently for any t ≥ 0. By definition, we know that both q(N (r)) and b(N (r)) are step

functions when r ∈ [ηk, η(k + 1)) for any k. This observation directly yields

∫ ηK

0

E
[
‖q(N (r))− b(N (r))‖2

2

]
dr ≤

K−1∑

k=0

∫ η(k+1)

ηk

E
[
∇̃k(Ñ (ηk))−∇F (Ñ (ηk))‖2

2

]
dr

= η
K−1∑

k=0

E
[
‖∇̃k(Zk)−∇F (Zk)‖2

2

]
,

where the first inequality is due to Jensen’s inequality and the convexity of function ‖ · ‖2
2,

and the last equality is due to the equivalence in distribution. Combine the above results

we obtain

DKL(QZ
K ||PK) ≤ βη

4

K−1∑

k=0

E[‖∇̃k −∇F (Zk)‖2
2]

97

≤ βη

4

K/L∑

s=0

L−1∑

`=0

E[‖∇̃sL+` −∇F (ZsL+`)‖2
2], (3.7.44)

where the second inequality follows the fact that k = sL + ` ≤ (s + 1)L for some ` =

0, 1, . . . , L− 1. Applying Lemma 3.7.11, the inner summation in (3.7.44) yields

L−1∑

`=0

E[‖∇̃sL+` −∇F (ZsL+`)‖2
2] ≤

L−1∑

`=0

M2(n−B)

B(n− 1)
E
∥∥ZsL+` − Z̃(s)

∥∥2

2
. (3.7.45)

Note that we have

E
∥∥ZsL+` − Z̃(s)

∥∥2

2

= E
∥∥∥∥
`−1∑

u=0

η
(
∇fisL+u

(ZsL+u)−∇fisL+u
(Z̃(s)) +∇F (Z̃(s))

)
−

`−1∑

u=0

√
2η

β
εsL+`

∥∥∥∥
2

2

≤ `
`−1∑

u=0

E
[
2η2
∥∥∇fisL+u

(ZsL+u)−∇fisL+u
(Z̃(s)) +∇F (Z̃(s))

∥∥2

2

]
+

`−1∑

u=0

4ηd

β

≤ 4`η

(
9`η(M2Γ2 +G2) +

d

β

)
, (3.7.46)

where the first inequality holds due to the triangle inequality for the first summation term,

the second one follows from Lemma 3.7.5 and Lemma 3.7.7. Submit (3.7.46) back into

(3.7.45) we have

L−1∑

`=0

E[‖∇̃sL+` −∇F (ZsL+`)‖2
2] ≤ 4ηM2(n−B)

B(n− 1)

L−1∑

`=0

(
9`2η(M2Γ2 +G2) +

`d

β

)

≤ 4ηM2(n−B)

B(n− 1)

(
3L3η(M2Γ +G2) +

dL2

2β

)
, (3.7.47)

Since (3.7.47) does not depend on the outer loop index i, submitting it into (3.7.44) yields

βη

4

K−1∑

k=0

E[‖∇̃k −∇F (Zk)‖2
2] ≤ η2KLM2(n−B)(3Lηβ(M2Γ +G2) + d/2)

B(n− 1)
. (3.7.48)

Combining (3.7.40), (3.7.41) (3.7.44) and (3.7.48), we obtain

∣∣E[F (ZK)]− E[F (XK)]
∣∣ ≤ C1Γ

√
Kη

[
η2KLM2(n−B)(3Lηβ(M2Γ +G2) + d/2)

B(n− 1)

]1/4

.

where we use the fact that Kη > 1, η < 1 and assume that C1 ≥ C2.

98

Part II

Efficient Nonconvex Optimization for

Reinforcement Learning

99

CHAPTER 4

Sample-Efficient Policy Optimization Methods with

Variance Reduction

4.1 Introduction

In the previous part, we have discussed nonconvex optimization algorithms for general op-

timization problems. Now, we will generalize the sample-efficient optimization algorithms

for general nonconvex optimization problems to reinforcement learning. In this chapter, we

will focus on policy gradient methods, which are the most popular approach to optimize

the agent’s policy in the high dimensional continuous action space. Policy gradient method

[SMSM00] parameterizes the policy by an unknown parameter θ ∈ Rd and directly opti-

mizes the policy by finding the optimal θ. The objective function J(θ) is chosen to be the

performance function, which is the expected return under a specific policy and is usually

non-concave. Our goal is to maximize the value of J(θ) by finding a stationary point θ∗

such that ‖∇J(θ∗)‖2 = 0 using gradient based algorithms.

Due to the expectation in the definition of J(θ), it is usually infeasible to compute the

gradient exactly. In practice, one often uses stochastic gradient estimators such as REIN-

FORCE [Wil92], PGT [SMSM00] and GPOMDP [BB01] to approximate the gradient of

the expected return based on a batch of sampled trajectories. However, this approxima-

tion will introduce additional variance and slow down the convergence of policy gradient,

which thus requires a huge amount of trajectories to find a good policy. Theoretically, these

stochastic gradient (SG) based algorithms require O(1/ε2) trajectories [RM51] to find an

ε-approximate stationary point such that E[‖∇J(θ)‖2
2] ≤ ε. In order to reduce the vari-

ance of policy gradient algorithms, [PBC+18] proposed a stochastic variance-reduced policy

100

gradient (SVRPG) algorithm by borrowing the idea from the stochastic variance reduced

gradient (SVRG) [JZ13, AZH16, RHS+16] in stochastic optimization. The key idea is to

use a so-called semi-stochastic gradient to replace the stochastic gradient used in SG meth-

ods. The semi-stochastic gradient combines the stochastic gradient in the current iterate

with a snapshot of stochastic gradient stored in an early iterate which is called a reference

iterate. In practice, SVRPG saves computation on trajectories and improves the perfor-

mance of SG based policy gradient methods. [PBC+18] also proved that SVRPG converges

to an ε-approximate stationary point θ of the nonconcave performance function J(θ) with

E[‖∇J(θ)‖2
2] ≤ ε after O(1/ε2) trajectories, which seems to have the same sample complex-

ity as SG based methods. Recently, the sample complexity of SVRPG has been improved

to O(1/ε5/3) by a refined analysis [XGG19], which theoretically justifies the advantage of

SVRPG over SG based methods.

Table 4.1: Comparison on sample complexities of different algorithms to achieve a first-order

stationary point, i.e., ‖∇J(θ)‖2
2 ≤ ε.

Algorithms Sample complexity

REINFORCE [Wil92] O(1/ε2)

PGT [SMSM00] O(1/ε2)

GPOMDP [BB01] O(1/ε2)

SVRPG [PBC+18] O(1/ε2)

SVRPG [XGG19] O(1/ε5/3)

SRVR-PG (This work) O(1/ε3/2)

This work continues on this line of research. We propose a Stochastic Recursive Vari-

ance Reduced Policy Gradient algorithm (SRVR-PG), which provably improves the sample

complexity of SVRPG. At the core of our proposed algorithm is a recursive semi-stochastic

policy gradient inspired from the stochastic path-integrated differential estimator [FLLZ18],

which accumulates all the stochastic gradients from different iterates to reduce the variance.

101

We prove that SRVR-PG only takes O(1/ε3/2) trajectories to converge to an ε-approximate

stationary point θ of the performance function, i.e., E[‖∇J(θ)‖2
2] ≤ ε. We summarize the

comparison of SRVR-PG with existing policy gradient methods in terms of sample com-

plexity in Table 4.1. Evidently, the sample complexity of SRVR-PG is lower than that

of REINFORCE, PGT and GPOMDP by a factor of O(1/ε1/2), and is lower than that of

SVRPG [XGG19] by a factor of O(1/ε1/6).

In addition, we integrate our algorithm with parameter-based exploration (PGPE) method

[SOR+08, SOR+10], and propose a SRVR-PG-PE algorithm which directly optimizes the

prior probability distribution of the policy parameter θ instead of finding the best value.

The proposed SRVR-PG-PE enjoys the same trajectory complexity as SRVR-PG and per-

forms even better in some applications due to its additional exploration over the parameter

space. Our experimental results on classical control tasks in reinforcement learning demon-

strate the superior performance of the proposed SRVR-PG and SRVR-PG-PE algorithms

and verify our theoretical analysis.

4.1.1 Additional Related Work

We briefly review additional relevant work to ours with a focus on policy gradient based

methods. For other RL methods such as value based [WD92, MKS+15] and actor-critic

[KT00, PS08a, SLH+14] methods, we refer the reader to [PS08b, KBP13, SB18] for a com-

plete review.

To reduce the variance of policy gradient methods, early works have introduced unbi-

ased baseline functions [BB01, GBB04, PS08b] to reduce the variance, which can be con-

stant, time-dependent or state-dependent. [SML+15] proposed the generalized advantage

estimation (GAE) to explore the trade-off between bias and variance of policy gradient. Re-

cently, action-dependent baselines are also used in [TBG+18, WRD+18] which introduces

bias but reduces variance at the same time. [SOR+08, SOR+10] proposed policy gradient

with parameter-based exploration (PGPE) that explores in the parameter space. It has been

shown that PGPE enjoys a much smaller variance [ZHNS11]. The Stein variational policy

gradient method is proposed in [LRLP17]. See [PS08b, DNPo13, Li17] for a more detailed

102

survey on policy gradient.

Stochastic variance reduced gradient techniques such as SVRG [JZ13, XZ14], batching

SVRG [HAV+15], SAGA [DBLJ14] and SARAH [NLST17a] were first developed in stochastic

convex optimization. When the objective function is nonconvex (or nonconcave for maxi-

mization problems), nonconvex SVRG [AZH16, RHS+16] and SCSG [LJCJ17, LL18] were

proposed and proved to converge to a first-order stationary point faster than vanilla SGD

[RM51] with no variance reduction. The state-of-the-art stochastic variance reduced gra-

dient methods for nonconvex functions are the SNVRG [ZXG18a] and SPIDER [FLLZ18]

algorithms, which have been proved to achieve near optimal convergence rate for smooth

functions.

There are yet not many papers studying variance reduced gradient techniques in RL.

[DCL+17] first applied SVRG in policy evaluation for a fixed policy. [XLP17] introduced

SVRG into trust region policy optimization for model-free policy gradient and showed that

the resulting algorithm SVRPO is more sample efficient than TRPO. [YLTZ19] further ap-

plied the techniques in SARAH [NLST17a] and SPIDER [FLLZ18] to TRPO [SLA+15]. How-

ever, no analysis on sample complexity (i.e., number of trajectories required) was provided

in the aforementioned papers [XLP17, YLTZ19]. We note that a recent work by [SRH+19]

proposed a Hessian aided policy gradient (HAPG) algorithm that converges to the station-

ary point of the performance function within O(H2/ε3/2) trajectories, which is worse than

our result by a factor of O(H2) where H is the horizon length of the environment. More-

over, they need additional samples to approximate the Hessian vector product, and cannot

handle the policy in a constrained parameter space. Another related work pointed out by

the anonymous reviewer is [YZ19], which extended the stochastic mirror descent algorithm

[GLZ16] in the optimization field to policy gradient methods and achieved O(H2/ε2) sam-

ple complexity. After the ICLR conference submission deadline, [YZ19] revised their paper

by adding a new variance reduction algorithm that achieves O(H2/ε3/2) sample complexity,

which is also worse than our result by a factor of O(H2).

Apart from the convergence analysis of the general nonconcave performance functions,

there has emerged a line of work [CYLW19, LCYW19, YCHW19, WCYW20] that stud-

103

ies the global convergence of (proximal/trust-region) policy optimization with neural net-

work function approximation, which applies the theory of overparameterized neural networks

[DZPS19, DLL+19, AZLS19, ZCZG19, CG19b] to reinforcement learning.

4.2 Backgrounds on Policy Gradient

Markov Decision Process: A discrete-time Markov Decision Process (MDP) is a tuple

M = {S,A,P , r, γ, ρ}. S and A are the state and action spaces respectively. P(s′|s, a) is

the transition probability of transiting to state s′ after taking action a at state s. Function

r(s, a) : S × A → [−R,R] emits a bounded reward after the agent takes action a at state

s, where R > 0 is a constant. γ ∈ (0, 1) is the discount factor. ρ is the distribution of

the starting state. A policy at state s is a probability function π(a|s) over action space

A. In episodic tasks, following any stationary policy, the agent can observe and collect

a sequence of state-action pairs τ = {s0, a0, s1, a1, . . . , sH−1, aH−1, sH}, which is called a

trajectory or episode. H is called the trajectory horizon or episode length. In practice,

we can set H to be the maximum value among all the actual trajectory horizons we have

collected. The sample return over one trajectory τ is defined as the discounted cumulative

reward R(τ) =
∑H−1

h=0 γ
hr(sh, ah).

Policy Gradient: Suppose the policy, denoted by πθ, is parameterized by an unknown

parameter θ ∈ Rd. We denote the trajectory distribution induced by πθ as p(τ |θ). Then

p(τ |θ) = ρ(s0)
∏H−1

h=0 πθ(ah|sh)P (sh+1|sh, ah). (4.2.1)

We define the expected return under policy πθ as J(θ) = Eτ∼p(·|θ)[R(τ)|M], which is also

called the performance function. To maximize the performance function, we can update

the policy parameter θ by iteratively running gradient ascent based algorithms, i.e., θk+1 =

θk + η∇θJ(θk), where η > 0 is the step size and the gradient ∇θJ(θ) is derived as follows:

∇θJ(θ) =
∫
τ
R(τ)∇θp(τ |θ)dτ =

∫
τ
R(τ)(∇θp(τ |θ)/p(τ |θ))p(τ |θ)dτ

= Eτ∼p(·|θ)[∇θ log p(τ |θ)R(τ)|M]. (4.2.2)

However, it is intractable to calculate the exact gradient in (4.2.2) since the trajectory

104

distribution p(τ |θ) is unknown. In practice, policy gradient algorithm samples a batch of

trajectories {τi}Ni=1 to approximate the exact gradient based on the sample average over all

sampled trajectories:

∇̂θJ(θ) = 1/N
∑N

i=1∇θ log p(τi|θ)R(τi). (4.2.3)

At the k-th iteration, the policy is then updated by θk+1 = θk + η∇̂θJ(θk). According to

(4.2.1), we know that ∇θ log p(τi|θ) is independent of the transition probability matrix P .

Recall the definition of R(τ), we can rewrite the approximate gradient as follows

∇̂θJ(θ) = 1/N
∑N

i=1

(∑H−1
h=0 ∇θ log πθ(a

i
h|sih)

)(∑H−1
h=0 γ

hr(sih, a
i
h)
)

def
= 1/N

∑N
i=1 g(τi|θ), (4.2.4)

where τi = {si0, ai0, si1, ai1, . . . , siH−1, a
i
H−1, s

i
H} for all i = 1, . . . , N and g(τi|θ) is an unbiased

gradient estimator computed based on the i-th trajectory τi. The gradient estimator in

(4.2.4) is based on the likelihood ratio methods and is often referred to as the REINFORCE

gradient estimator [Wil92]. Since E[∇θ log πθ(a|s)] = 0, we can add any constant baseline

bt to the reward that is independent of the current action and the gradient estimator still

remains unbiased. With the observation that future actions do not depend on past rewards,

another famous policy gradient theorem (PGT) estimator [SMSM00] removes the rewards

from previous states:

g(τi|θ) =
∑H−1

h=0 ∇θ log πθ(a
i
h|sih)

(∑H−1
t=h γtr(sit, a

i
t)− bt

)
, (4.2.5)

where bt is a constant baseline. It has been shown [PS08b] that the PGT estimator is

equivalent to the commonly used GPOMDP estimator [BB01] defined as follows:

g(τi|θ) =
∑H−1

h=0

(∑h
t=0∇θ log πθ(a

i
t|sit)

)(
γhr(sih, a

i
h)− bh

)
. (4.2.6)

All the three gradient estimators mentioned above are unbiased [PS08b]. It has been proved

that the variance of the PGT/GPOMDP estimator is independent of horizon H while the

variance of REINFORCE depends on H polynomially [ZHNS11, PRB13]. Therefore, we will

focus on the PGT/GPOMDP estimator in this chapter and refer to them interchangeably

due to their equivalence.

105

4.3 The Proposed Algorithm

The approximation in (4.2.3) using a batch of trajectories often causes a high variance in

practice. In this section, we propose a novel variance reduced policy gradient algorithm

called stochastic recursive variance reduced policy gradient (SRVR-PG), which is displayed

in Algorithm 7. Our SRVR-PG algorithm consists of S epochs. In the initialization, we

set the parameter of a reference policy to be θ̃0 = θ0. At the beginning of the s-th epoch,

where s = 0, . . . , S − 1, we set the initial policy parameter θs+1
0 to be the same as that of

the reference policy θ̃s. The algorithm then samples N episodes {τi}Ni=1 from the reference

policy πθ̃s to compute a gradient estimator vs0 = 1/N
∑N

i=1 g(τi|θ̃s), where g(τi|θ̃s) is the

PGT/GPOMDP estimator. Then the policy is immediately update as in Line 6 of Algorithm

7.

Within the epoch, at the t-th iteration, SRVR-PG samples B episodes {τj}Bj=1 based on

the current policy πθs+1
t

. We define the following recursive semi-stochastic gradient estimator:

vs+1
t = 1/B

∑B
j=1 g(τj|θs+1

t)− 1/B
∑B

j=1 gω(τj|θs+1
t−1) + vs+1

t−1 , (4.3.1)

where the first term is a stochastic gradient based on B episodes sampled from the current

policy, and the second term is a stochastic gradient defined based on the step-wise important

weight between the current policy πθs+1
t

and the reference policy πθ̃s . Take the GPOMDP

estimator for example, the step-wise importance weighted estimator is defined as follows

gω(τj|θ) =
∑H−1

h=0 ω0:h(τ |θ1,θ2)
(∑h

t=0∇θ log πθ(a
j
t |sjt)

)
γhr(sjh, a

j
h), (4.3.2)

where ω0:h(τ |θ1,θ2) =
∏h

h′=0 πθ1(ah|sh)/πθ2(ah|sh) is the importance weight from p(τh|θs+1
t)

to p(τh|θs+1
t−1) and τh is a truncated trajectory {(at, st)}ht=0 from the full trajectory τ . The

difference between the last two terms in (4.3.1) can be viewed as a control variate to reduce

the variance of the stochastic gradient. In many practical applications, the policy parameter

space is a subset of Rd, i.e., θ ∈ Θ with Θ ⊆ Rd being a convex set. In this case, we need to

project the updated policy parameter onto the constraint set. Base on the semi-stochastic

gradient (4.3.1), we can update the policy parameter using projected gradient ascent along

the direction of vs+1
t : θs+1

t+1 = PΘ(θs+1
t + ηvs+1

t), where η > 0 is the step size and the

106

projection operator associated with Θ is defined as

PΘ(θ) = argminu∈Θ ‖θ − u‖2
2 = argminu∈Rd{1Θ(u) + 1/(2η)‖θ − u‖2

2}, (4.3.3)

where 1Θ(u) is the set indicator function on Θ, i.e., 1Θ(u) = 0 if u ∈ Θ and 1Θ(u) = +∞
otherwise. η > 0 is any finite real value and is chosen as the step size in this work. It is

easy to see that 1Θ(·) is nonsmooth. At the end of the s-th epoch, we update the reference

policy as θ̃s+1 = θs+1
m , where θs+1

m is the last iterate of this epoch.

The goal of our algorithm is to find a point θ ∈ Θ that maximizes the performance

function J(θ) subject to the constraint, namely, maxθ∈Θ J(θ) = maxθ∈Rd{J(θ) − 1Θ(θ)}.
The gradient norm ‖∇J(θ)‖2 is not sufficient to characterize the convergence of the algo-

rithm due to additional the constraint. Following the literature on nonsmooth optimization

[RSPS16, GLZ16, NLST17a, LL18, WJZ+19], we use the generalized first-order stationary

condition: Gη(θ) = 0, where the gradient mapping Gη is defined as follows

Gη(θ) = 1/η(PΘ(θ + η∇J(θ))− θ). (4.3.4)

We can view Gη as a generalized projected gradient at θ. By definition if Θ = Rd, we have

Gη(θ) ≡ ∇J(θ). Therefore, the policy is update is displayed in Line 10 in Algorithm 7, where

prox is the proximal operator defined in (4.3.3). Similar recursive semi-stochastic gradients to

(4.3.1) were first proposed in stochastic optimization for finite-sum problems, leading to the

stochastic recursive gradient algorithm (SARAH) [NLST17a, NvDP+19] and the stochastic

path-integrated differential estimator (SPIDER) [FLLZ18, WJZ+19]. However, our gradi-

ent estimator in (4.3.1) is noticeably different from that in [NLST17a, FLLZ18, WJZ+19,

NvDP+19] due to the gradient estimator gω(τj|θs+1
t−1) defined in (4.3.2) that is equipped with

step-wise importance weights. This term is essential to deal with the non-stationarity of the

distribution of the trajectory τ . Specifically, {τj}Bj=1 are sampled from policy πθs+1
t

while the

PGT/GPOMDP estimator g(·|θs+1
t−1) is defined based on policy πθs+1

t−1
according to (4.2.6).

This inconsistency introduces extra challenges in the convergence analysis of SRVR-PG. Us-

ing importance weighting, we can obtain Eτ∼p(τ |θs+1
t)[gω(τ |θs+1

t−1)] = Eτ∼p(τ |θs+1
t−1)[g(τ |θs+1

t−1)],

which eliminates the inconsistency caused by the varying trajectory distribution.

107

Algorithm 7 Stochastic Recursive Variance Reduced Policy Gradient (SRVR-PG)

1: Input: number of epochs S, epoch size m, step size η, batch size N , mini-batch size B,

gradient estimator g, initial parameter θ̃0 = θ0 ∈ Θ

2: for s = 0, . . . , S − 1 do

3: θs+1
0 = θ̃s

4: Sample N trajectories {τi} from p(·|θ̃s)
5: vs+1

0 = ∇̂θJ(θ̃s) := 1/N
∑N

i=1 g(τi|θ̃s)
6: θs+1

1 = PΘ(θs+1
0 + ηvs+1

0)

7: for t = 1, . . . ,m− 1 do

8: Sample B trajectories {τj} from p(·|θs+1
t)

9: vs+1
t = vs+1

t−1 + 1
B

∑B
j=1

(
g
(
τj|θs+1

t

)
− gω

(
τj|θs+1

t−1

))

10: θs+1
t+1 = PΘ(θs+1

t + ηvs+1
t)

11: end for

12: θ̃s+1 = θs+1
m

13: end for

14: return θout, which is uniformly picked from {θst}t=0,...,m−1;s=0,...,S

It is worth noting that the semi-stochastic gradient in (4.3.1) also differs from the one

used in SVRPG [PBC+18] because we recursively update vs+1
t using vs+1

t−1 from the previous

iteration, while SVRPG uses a reference gradient that is only updated at the beginning

of each epoch. Moreover, SVRPG wastes N trajectories without updating the policy at

the beginning of each epoch, while Algorithm 7 updates the policy immediately after this

sampling process (Line 6), which saves computation in practice.

We notice that very recently another algorithm called SARAPO [YLTZ19] is proposed

which also uses a recursive gradient update in trust region policy optimization [SLA+15].

Our Algorithm 7 differs from their algorithm at least in the following ways: (1) our recursive

gradient vst defined in (4.3.1) has an importance weight from the snapshot gradient while

SARAPO does not; (2) we are optimizing the expected return while [YLTZ19] optimizes

the total advantage over state visitation distribution and actions under Kullback–Leibler

108

divergence constraint; and most importantly (3) there is no convergence or sample complexity

analysis for SARAPO.

4.4 Main Theory

In this section, we present the theoretical analysis of Algorithm 7. We first introduce some

common assumptions used in the convergence analysis of policy gradient methods.

Assumption 4.4.1. Let πθ(a|s) be the policy parameterized by θ. There exist constants

G,M > 0 such that the gradient and Hessian matrix of log πθ(a|s) with respect to θ satisfy

‖∇θ log πθ(a|s)‖ ≤ G and
∥∥∇2

θ log πθ(a|s)
∥∥

2
≤M , for all a ∈ A and s ∈ S.

The above boundedness assumption is reasonable since we usually require the policy func-

tion to be twice differentiable and easy to optimize in practice. Similarly, in [PBC+18], the

authors assume that ∂
∂θi

log πθ(a|s) and ∂2

∂θi∂θj
log πθ(a|s) are upper bounded elementwisely,

which is actually stronger than our Assumption 4.4.1.

In the following proposition, we show that Assumption4.4.1 directly implies that the

Hessian matrix of the performance function ∇2J(θ) is bounded, which is often referred to

as the smoothness assumption and is crucial in analyzing the convergence of nonconvex

optimization [RHS+16, AZH16].

Proposition 4.4.2. Let g(τ |θ) be the PGT estimator defined in (4.2.5). Assumption 4.4.1

implies: (1) ‖g(τ |θ1)− g(τ |θ2)‖2 ≤ L‖θ1 − θ2‖2, ∀θ1,θ2 ∈ Rd, with L = MR/(1− γ)2; (2)

J(θ) is L-smooth, namely ‖∇2
θJ(θ)‖2 ≤ L; and (3) ‖g(τ |θ)‖2 ≤ Cg for all θ ∈ Rd, with

Cg = GR/(1− γ)2.

Similar properties are also proved in [XGG19]. However, in contrast to their results, the

smoothness parameter L and the bound on the gradient norm here do not rely on horizon H

and hence are tighter. The next assumption requires the variance of the gradient estimator

is bounded.

Assumption 4.4.3. There exists a constant ξ > 0 such that Var
(
g(τ |θ)

)
≤ ξ2, for all policy

πθ.

109

In Algorithm 7, we have used importance sampling to connect the trajectories between

two different iterations. The following assumption ensures that the variance of the impor-

tance weight is bounded, which is also made in [PBC+18, XGG19].

Assumption 4.4.4. Let ω(·|θ1,θ2) = p(·|θ1)/p(·|θ2). There is a constant W <∞ such that

for each policy pairs encountered in Algorithm 7, Var(ω(τ |θ1,θ2)) ≤ W, ∀θ1,θ2 ∈ Rd, τ ∼
p(·|θ2)

4.4.1 Convergence Rate and Sample Complexity of SRVR-PG

Now we are ready to present the convergence result of SRVR-PG to a stationary point:

Theorem 4.4.5. Suppose that Assumptions 4.4.1, 4.4.3 and 4.4.4 hold. In Algorithm 7, we

choose the step size η ≤ 1/(4L) and epoch size m and mini-batch size B such that

B ≥ 72mηG2(2G2/M + 1)(W + 1)γ/(1− γ)3.

Then the generalized projected gradient of the output of Algorithm 7 satisfies

E
[∥∥Gη

(
θout

)∥∥2

2

]
≤ 8[J(θ∗)− J(θ0)− 1Θ(θ∗) + 1Θ(θ0)]/(ηSm) + 6ξ2/N,

where θ∗ = argmaxθ∈Θ J(θ).

Remark 4.4.6. Theorem 4.4.5 states that under a proper choice of step size, batch size and

epoch length, the expected squared gradient norm of the performance function at the output

of SRVR-PG is in the order of

O

(
1

Sm
+

1

N

)
.

Recall that S is the number of epochs and m is the epoch length of SRVR-PG, so Sm is the

total number of iterations of SRVR-PG. Thus the first term O(1/(Sm)) characterizes the

convergence rate of SRVR-PG. The second term O(1/N) comes from the variance of the

stochastic gradient used in the outer loop, where N is the batch size used in the snapshot

gradient vs+1
0 in Line 5 of SRVR-PG. Compared with the O(1/(Sm) + 1/N + 1/B) conver-

gence rate in [PBC+18], our analysis avoids the additional term O(1/B) that depends on the

mini-batch size within each epoch.

110

Compared with [XGG19], our mini-batch size B is independent of the horizon length

H. This enables us to choose a smaller mini-batch size B while maintaining the same

convergence rate. As we will show in the next corollary, this improvement leads to a lower

sample complexity.

Corollary 4.4.7. Suppose the same conditions as in Theorem 4.4.5 hold. Set step size as

η = 1/(4L), the batch size parameters as N = O(1/ε) and B = O(1/ε1/2) respectively, epoch

length as m = O(1/ε1/2) and the number of epochs as S = O(1/ε1/2). Then Algorithm 7

outputs a point θout that satisfies E[‖Gη(θout)‖2
2] ≤ ε within O(1/ε3/2) trajectories in total.

Note that the results in [PBC+18, XGG19] are for ‖∇θJ(θ)‖2
2 ≤ ε, while our result in

Corollary 4.4.7 is more general. In particular, when the policy parameter θ is defined on the

whole space Rd instead of Θ, our result reduces to the case for ‖∇θJ(θ)‖2
2 ≤ ε since Θ = Rd

and Gη(θ) = ∇θJ(θ). In [XGG19], the authors improved the sample complexity of SVRPG

[PBC+18] from O(1/ε2) to O(1/ε5/3) by a sharper analysis. According to Corollary 4.4.7,

SRVR-PG only needs O(1/ε3/2) number of trajectories to achieve ‖∇θJ(θ)‖2
2 ≤ ε, which is

lower than the sample complexity of SVRPG by a factor of O(1/ε1/6). This improvement is

more pronounced when the required precision ε is very small.

4.4.2 Implication for Gaussian Policy

Now, we consider the Gaussian policy model and present the sample complexity of SRVR-PG

in this setting. For bounded action space A ⊂ R, a Gaussian policy parameterized by θ is

defined as

πθ(a|s) = 1/
√

2π exp
(
− (θ>φ(s)− a)2/(2σ2)

)
, (4.4.1)

where σ2 is a fixed standard deviation parameter and φ : S 7→ Rd is a mapping from the state

space to the feature space. For Gaussian policy, under the mild condition that the actions

and the state feature vectors are bounded, we can verify that Assumptions 4.4.1 and 4.4.3

hold, which can be found in Appendix 4.9. It is worth noting that Assumption 4.4.4 does

not hold trivially for all Gaussian distributions. In particular, [CMM10] showed that for two

111

Gaussian distributions πθ1(a|s) ∼ N(µ1, σ
2
1) and πθ2(a|s) ∼ N(µ2, σ

2
2), if σ2 >

√
2/2σ1, then

the variance of ω(τ |θ1,θ2) is bounded. For our Gaussian policy defined in (4.4.1) where the

standard deviation σ2 is fixed, we have σ >
√

2/2σ trivially hold, and therefore Assumption

4.4.4 holds for some finite constant W > 0 according to (4.2.1).

Recall that Theorem 4.4.5 holds for any general models under Assumptions 4.4.1, 4.4.3

and 4.4.4. Based on the above arguments, we know that the convergence analysis in Theorem

4.4.5 applies to Gaussian policy. In the following corollary, we present the sample complexity

of Algorithm 7 for Gaussian policy with detailed dependency on precision parameter ε,

horizon size H and the discount factor γ.

Corollary 4.4.8. Given the Gaussian policy defined in (4.4.1), suppose Assumption 4.4.4

holds and we have |a| ≤ Ca for all a ∈ A and ‖φ(s)‖2 ≤Mφ for all s ∈ S, where Ca,Mφ > 0

are constants. If we set step size as η = O((1 − γ)2), the mini-batch sizes and epoch length

as N = O((1−γ)−3ε−1), B = O((1−γ)−2ε−1/2) and m = O((1−γ)−1ε−1/2), then the output

of Algorithm 7 satisfies E[‖Gη(θout)‖2
2] ≤ ε after O(1/((1− γ)4ε3/2)) trajectories in total.

Remark 4.4.9. For Gaussian policy, the number of trajectories Algorithm 7 needs to find

an ε-approximate stationary point, i.e., E[‖Gη(θout)‖2
2] ≤ ε, is also in the order of O(ε−3/2),

which is faster than PGT and SVRPG. Additionally, we explicitly show that the sample

complexity does not depend on the horizon H, which is in sharp contrast with the results in

[PBC+18, XGG19]. The dependence on 1/(1−γ) comes from the variance of PGT estimator.

112

0 625 1250 1875 2500
Number of Trajectories

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
Re

tu
rn

×103

GPOMDP
SVRPG
SRVR-PG

(a) Cartpole

0 750 1500 2250 3000
Number of Trajectories

7.5

3.5

0.5

4.5

8.5

Av
er

ag
e

Re
tu

rn

×101

GPOMDP
SVRPG
SRVR-PG

(b) Mountain Car

0.0 0.5 1.0 1.5 2.0
Number of Trajectories ×105

1.2

1.0

0.8

0.6

0.4

0.2

Av
er

ag
e

Re
tu

rn

×103

GPOMDP
SVRPG
SRVR-PG

(c) Pendulum

0 625 1250 1875 2500
Number of Trajectories

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

×103

B = 5
B = 10
B = 20

(d) Cartpole

0 750 1500 2250 3000
Number of Trajectories

7.5

3.5

0.5

4.5

8.5
Av

er
ag

e
Re

tu
rn

×101

B = 3
B = 5
B = 7

(e) Mountain Car

0.0 0.5 1.0 1.5 2.0
Number of Trajectories ×105

1.4

1.2

1.0

0.8

0.6

0.4

0.2

Av
er

ag
e

Re
tu

rn

×103

B = 10
B = 50
B = 100

(f) Pendulum

Figure 4.1: (a)-(c): Comparison of different algorithms. Experimental results are averaged

over 10 repetitions. (d)-(f): Comparison of different batch size B on the performance of

SRVR-PG.

4.5 Experiments

In this section, we provide experiment results of the proposed algorithm on benchmark re-

inforcement learning environments including the Cartpole, Mountain Car and Pendulum

problems. In all the experiments, we use the Gaussian policy defined in (4.4.1). In addi-

tion, we found that the proposed algorithm works well without the extra projection step.

Therefore, we did not use projection in our experiments. For baselines, we compare the pro-

posed SRVR-PG algorithm with the most relevant methods: GPOMDP [BB01] and SVRPG

[PBC+18]. For the learning rates η in all of our experiments, we use grid search to directly

tune η. For instance, we searched η for the Cartpole problem by evenly dividing the interval

[10−5, 10−1] into 20 points in the log-space. For the batch size parameters N and B and the

113

epoch length m, according to Corollary 4.7, we choose N = O(1/ε), B = O(1/ε1/2) and thus

m = O(1/ε1/2), where ε > 0 is a user-defined precision parameter. In our experiments, we set

N = C0/ε, B = C1/ε
1/2 and m = C2/ε

1/2 and tune the constant parameters C0, C1, C2 using

grid search. The detailed parameters used in the experiments are presented in Appendix

4.10.

We evaluate the performance of different algorithms in terms of the total number of

trajectories they require to achieve a certain threshold of cumulative rewards. We run each

experiment repeatedly for 10 times and plot the averaged returns with standard deviation.

For a given environment, all experiments are initialized from the same random initialization.

Figures 4.1(a), 4.1(b) and 4.1(c) show the results on the comparison of GPOMDP, SVRPG,

and our proposed SRVR-PG algorithm across three different RL environments. It is evident

that, for all environments, GPOMDP is overshadowed by the variance reduced algorithms

SVRPG and SRVR-PG significantly. Furthermore, SRVR-PG outperforms SVRPG in all

experiments, which is consistent with the comparison on the sample complexity of GPOMDP,

SRVRPG and SRVR-PG in Table 4.1.

Corollaries 4.4.7 and 4.4.8 suggest that when the mini-batch size B is in the order of

O(
√
N), SRVR-PG achieves the best performance. Here N is the number of episodes sam-

pled in the outer loop of Algorithm 7 and B is the number of episodes sampled at each

inner loop iteration. To validate our theoretical result, we conduct a sensitivity study to

demonstrate the effectiveness of different batch sizes within each epoch of SRVR-PG on its

performance. The results on different environments are displayed in Figures 4.1(d), 4.1(e)

and 4.1(f) respectively. To interpret these results, we take the Pendulum problem as an

example. In this setting, we choose outer loop batch size N of Algorithm 7 to be N = 250.

By Corollary 4.4.8, the optimal choice of batch size in the inner loop of Algorithm 7 is

B = C
√
N , where C > 1 is a constant depending on horizon H and discount factor γ.

Figure 4.1(f) shows that B = 50 ≈ 3
√
N yields the best convergence results for SRVR-PG

on Pendulum, which validates our theoretical analysis and implies that a larger batch size B

does not necessarily result in an improvement in sample complexity, as each update requires

more trajectories, but a smaller batch size B pushes SRVR-PG to behave more similar to

114

GPOMDP. Moreover, by comparing with the outer loop batch size N presented in Table

4.3 for SRVR-PG in Cartpole and Mountain Car environments, we found that the results in

Figures 4.1(d) and 4.1(e) are again in alignment with our theory. Due to the space limit,

additional experiment results are included in Appendix 4.10.

4.6 Extension to Parameter-based Exploration

Although SRVR-PG is proposed for action-based policy gradient, it can be easily extended to

the policy gradient algorithm with parameter-based exploration (PGPE) [SOR+08]. Unlike

action-based policy gradient in previous sections, PGPE does not directly optimize the policy

parameter θ but instead assumes that it follows a prior distribution with hyper-parameter

ρ: θ ∼ p(θ|ρ). The expected return under the policy induced by the hyper-parameter ρ is

formulated as follows1

J(ρ) =

∫ ∫
p(θ|ρ)p(τ |θ)R(τ)dτdθ. (4.6.1)

PGPE aims to find the hyper-parameter ρ∗ that maximizes the performance function J(ρ).

Since p(θ|ρ) is stochastic and can provide sufficient exploration, we can choose πθ(a|s) =

δ(a − µθ(s)) to be a deterministic policy, where δ is the Dirac delta function and µθ(·) is

a deterministic function. For instance, a linear deterministic policy is defined as πθ(a|s) =

δ(a − θ>s) [ZHNS11, MPFR18]. Given the policy parameter θ, a trajectory τ is only

decided by the initial state distribution and the transition probability. Therefore, PGPE is

called a parameter-based exploration approach. Similar to the action-based policy gradient

methods, we can apply gradient ascent to find ρ∗. In the k-th iteration, we update ρk by

ρk+1 = ρk + η∇ρJ(ρ). The exact gradient of J(ρ) with respect to ρ is given by

∇ρJ(ρ) =

∫ ∫
p(θ|ρ)p(τ |θ)∇ρ log p(θ|ρ)R(τ)dτdθ.

To approximate ∇ρJ(ρ), we first sample N policy parameters {θi} from p(θ|ρ). Then we

sample one trajectory τi for each θi and use the following empirical average to approximate

1We slightly abuse the notation by overloading J as the performance function defined on the hyper-
parameter ρ.

115

∇ρJ(ρ)

∇̂ρJ(ρ) =
1

N

N∑

i=1

∇ρ log p(θi|ρ)
H∑

h=0

γhr(sih, a
i
h) :=

1

N

N∑

i=1

g(τi|ρ), (4.6.2)

where γ ∈ [0, 1) is the discount factor. Compared with the PGT/GPOMDP estimator in

Section 4.2, the likelihood term ∇ρ log p(θi|ρ) in (4.6.2) for PGPE is independent of horizon

H.

Algorithm 7 can be directly applied to the PGPE setting, where we replace the policy

parameter θ with the hyper-parameter ρ. When we need to sample N trajectories, we first

sample N policy parameters {θi} from p(θ|ρ). Since the policy is deterministic with given θi,

we sample one trajectory τi from each policy p(τ |θi). The recursive semi-stochastic gradient

is given by

vs+1
t =

1

B

B∑

j=1

g(τj|ρs+1
t)− 1

B

B∑

j=1

gω(τj|ρs+1
t−1) + vs+1

t−1 , (4.6.3)

where gω(τj|ρs+1
t−1) is the gradient estimator with step-wise importance weight defined in the

way as in (4.3.2). We call this variance reduced parameter-based algorithm SRVR-PG-PE,

which is displayed in Algorithm 8.

Under similar assumptions on the parameter distribution p(θ|ρ), as Assumptions 4.4.1,

4.4.3 and 4.4.4, we can easily prove that SRVR-PG-PE converges to a stationary point of

J(ρ) with O(1/ε3/2) sample complexity. In particular, we assume the policy parameter

θ follows the distribution p(θ|ρ) and we update our estimation of ρ based on the semi-

stochastic gradient in (4.6.3). Recall the gradient ∇̂ρJ(ρ) derived in (4.6.2). Since the

policy in SRVR-PG-PE is deterministic, we only need to make the boundedness assumption

on p(θ|ρ). In particular, we assume that

1. ‖∇ρ log p(θ|ρ)‖2 and ‖∇2
ρ log p(θ|ρ)‖2 are bounded by constants in a similar way to

Assumption 4.4.1;

2. the gradient estimator g(τ |ρ) = ∇ρ log p(θ|ρ)
∑H

h=0 γ
hr(sh, ah) has bounded variance;

3. and the importance weight ω(τj|ρs+1
t−1 ,ρ

s+1
t) = p(θj|ρs+1

t−1)/p(θj|ρs+1
t) has bounded vari-

ance in a similar way to Assumption 4.4.4.

116

Then the same gradient complexity O(1/ε3/2) for SRVR-PG-PE can be proved in the same

way as the proof of Theorem 4.4.5 and Corollary 4.4.7. Since the analysis is almost the

same as that of SRVR-PG, we omit the proof of the convergence of SRVR-PG-PE. In fact,

according to the analysis in [ZHNS11, MPFR18], all the three assumptions listed above can

be easily verified under a Gaussian prior for θ and a linear deterministic policy.

Algorithm 8 Stochastic Recursive Variance Reduced Policy Gradient with Parameter-based

Exploration (SRVR-PG-PE)

1: Input: number of epochs S, epoch size m, step size η, batch size N , mini-batch size B,

gradient estimator g, initial parameter ρ0
m := ρ̃0 := ρ0

2: for s = 0, . . . , S − 1 do

3: ρs+1
0 = ρs

4: Sample N policy parameters {θi} from p(·|ρs)
5: Sample one trajectory τi from each policy πθi

6: vs+1
0 = ∇̂ρJ(ρs) := 1

N

∑N
i=1 g(τi|ρ̃s)

7: ρs+1
1 = ρs+1

0 + ηvs+1
0

8: for t = 1, . . . ,m− 1 do

9: Sample B policy parameters {θj} from p(·|ρs+1
t)

10: Sample one trajectory τj from each policy πθj

11: vs+1
t = vs+1

t−1 + 1
B

∑B
j=1

(
g
(
τj|ρs+1

t

)
− gω

(
τj|ρs+1

t−1

))

12: ρs+1
t+1 = ρs+1

t + ηvs+1
t

13: end for

14: end for

15: return ρout, which is uniformly picked from {ρst}t=0,...,m;s=0,...,S

4.7 Proof of the Main Theory

In this section, we provide the proofs of the theoretical results for SRVR-PG (Algorithm 7).

Before we start the proof of Theorem 4.4.5, we first lay down the following key lemma that

controls the variance of the importance sampling weight ω.

117

Lemma 4.7.1. For any θ1,θ2 ∈ Rd, let ω0:h

(
τ |θ1,θ2

)
= p(τh|θ1)/p(τh|θ2), where τh is a

truncated trajectory of τ up to step h. Under Assumptions 4.4.1 and 4.4.4, it holds that

Var
(
ω0:h

(
τ |θ1,θ2

))
≤ Cω‖θ1 − θ2‖2

2,

where Cω = h(2hG2 +M)(W + 1).

Recall that in Assumption 4.4.4 we assume the variance of the importance weight is

upper bounded by a constant W . Based on this assumption, Lemma 4.7.1 further bounds

the variance of the importance weight via the distance between the behavioral and the target

policies. As the algorithm converges, these two policies will be very close and the bound in

Lemma 4.7.1 could be much tighter than the constant bound.

Proof of Theorem 4.4.5. By plugging the definition of the projection operator in (4.3.3) into

the update rule θs+1
t+1 = PΘ

(
θs+1
t + ηvs+1

t

)
, we have

θs+1
t+1 = argmin

u∈Rd
1Θ(u) + 1/(2η)

∥∥u− θs+1
t

∥∥2

2
− 〈vs+1

t ,u〉. (4.7.1)

Similar to the generalized projected gradient Gη(θ) defined in (4.3.4), we define G̃s+1
t to be

a (stochastic) gradient mapping based on the recursive gradient estimator vs+1
t :

G̃s+1
t =

1

η

(
θs+1
t+1 − θs+1

t

)
=

1

η

(
PΘ

(
θs+1
t + ηvs+1

t

)
− θs+1

t

)
. (4.7.2)

The definition of G̃s+1
t differs from Gη(θs+1

t) only in the semi-stochastic gradient term vs+1
t ,

while the latter one uses the full gradient ∇J(θs+1
t). Note that 1Θ(·) is convex but not

smooth. We assume that p ∈ ∂ 1Θ(θs+1
t+1) is a sub-gradient of 1Θ(·). According to the

optimality condition of (4.7.1), we have p + 1/η(θs+1
t+1 − θs+1

t) − vs+1
t = 0. Further by the

convexity of 1Θ(·), we have

1Θ(θs+1
t+1) ≤ 1Θ(θs+1

t) + 〈p,θs+1
t+1 − θs+1

t 〉

= 1Θ(θs+1
t)− 〈1/η(θs+1

t+1 − θs+1
t)− vs+1

t ,θs+1
t+1 − θs+1

t 〉. (4.7.3)

By Proposition 4.4.2, J(θ) is L-smooth, which by definition directly implies

J
(
θs+1
t+1

)
≥ J

(
θs+1
t

)
+
〈
∇J
(
θs+1
t

)
,θs+1

t+1 − θs+1
t

〉
− L

2

∥∥θs+1
t+1 − θs+1

t

∥∥2

2
.

118

For the simplification of presentation, let us define the notation Φ(θ) = J(θ) − 1Θ(θ).

Then according to the definition of 1Θ we have argmaxθ∈Rd Φ(θ) = argmaxθ∈Θ J(θ) := θ∗.

Combining the above inequality with (4.7.3), we have

Φ
(
θs+1
t+1

)
≥ Φ

(
θs+1
t

)
+
〈
∇J
(
θs+1
t

)
− vs+1

t ,θs+1
t+1 − θs+1

t

〉
+

(
1

η
− L

2

)∥∥θs+1
t+1 − θs+1

t

∥∥2

2

= Φ
(
θs+1
t

)
+
〈
∇J
(
θs+1
t

)
− vs+1

t , ηG̃s+1
t

〉
+ η
∥∥G̃s+1

t

∥∥2

2
− L

2

∥∥θs+1
t+1 − θs+1

t

∥∥2

2

≥ Φ
(
θs+1
t

)
− η

2

∥∥∇J
(
θs+1
t

)
− vs+1

t

∥∥2

2
+
η

2

∥∥G̃s+1
t

∥∥2

2
− L

2

∥∥θs+1
t+1 − θs+1

t

∥∥2

2

= Φ
(
θs+1
t

)
− η

2

∥∥∇J
(
θs+1
t

)
− vs+1

t

∥∥2

2
+
η

4

∥∥G̃s+1
t

∥∥2

2
+

(
1

4η
− L

2

)∥∥θs+1
t+1 − θs+1

t

∥∥2

2

≥ Φ
(
θs+1
t

)
− η

2

∥∥∇J
(
θs+1
t

)
− vs+1

t

∥∥2

2
+
η

8

∥∥Gη
(
θs+1
t

)∥∥2

2

− η

4
‖Gη(θs+1

t)− G̃s+1
t ‖2

2 +

(
1

4η
− L

2

)∥∥θs+1
t+1 − θs+1

t

∥∥2

2
, (4.7.4)

where the second inequality holds due to Young’s inequality and the third inequality holds

due to the fact that ‖Gη(θs+1
t)‖2

2 ≤ 2‖G̃s+1
t ‖2

2 + 2‖Gη(θs+1
t) − G̃s+1

t ‖2
2. Denote θ̄s+1

t+1 =

proxη 1Θ
(θs+1

t + η∇J(θs+1
t)). By similar argument in (4.7.3) we have

1Θ(θs+1
t+1) ≤ 1Θ(θ̄s+1

t+1)− 〈1/η(θs+1
t+1 − θs+1

t)− vs+1
t ,θs+1

t+1 − θ̄s+1
t+1 〉,

1Θ(θ̄s+1
t+1) ≤ 1Θ(θs+1

t+1)− 〈1/η(θs+1
t+1 − θs+1

t)−∇J
(
θs+1
t

)
, θ̄s+1

t+1 − θs+1
t+1 〉.

Adding the above two inequalities immediately yields ‖θ̄s+1
t+1−θs+1

t+1‖2 ≤ η‖∇J(θs+1
t)−vs+1

t ‖2,

which further implies ‖Gη(θs+1
t)−G̃s+1

t ‖2 ≤ ‖∇J(θs+1
t)−vs+1

t ‖2. Submitting this result into

(4.7.4), we obtain

Φ
(
θs+1
t+1

)
≥ Φ

(
θs+1
t

)
− 3η

4

∥∥∇J
(
θs+1
t

)
− vs+1

t

∥∥2

2
+
η

8

∥∥Gη
(
θs+1
t

)∥∥2

2

+

(
1

4η
− L

2

)∥∥θs+1
t+1 − θs+1

t

∥∥2

2
. (4.7.5)

We denote the index set of {τj}Bj=1 in the t-th inner iteration by Bt. Note that

∥∥∇J
(
θs+1
t

)
− vs+1

t

∥∥2

2

=

∥∥∥∥∇J
(
θs+1
t

)
− vs+1

t−1 +
1

B

∑

j∈Bt

(
gω
(
τj|θs+1

t−1

)
− g
(
τj|θs+1

t

))∥∥∥∥
2

2

=

∥∥∥∥∇J
(
θs+1
t

)
−∇J(θs+1

t−1) +
1

B

∑

j∈Bt

(
gω
(
τj|θs+1

t−1

)
− g
(
τj|θs+1

t

))
+∇J(θs+1

t−1)− vs+1
t−1

∥∥∥∥
2

2

119

=

∥∥∥∥∇J
(
θs+1
t

)
−∇J(θs+1

t−1) +
1

B

∑

j∈Bt

(
gω
(
τj|θs+1

t−1

)
− g
(
τj|θs+1

t

))∥∥∥∥
2

+
2

B

∑

j∈Bt

〈
∇J
(
θs+1
t

)
−∇J(θs+1

t−1) + gω
(
τj|θs+1

t−1

)
− g
(
τj|θs+1

t

)
,∇J(θs+1

t−1)− vs+1
t−1

〉

+
∥∥∇J(θs+1

t−1)− vs+1
t−1

∥∥2

2
. (4.7.6)

Conditional on θs+1
t , taking the expectation over Bt yields

E
[〈
∇J
(
θs+1
t

)
− g
(
τj|θs+1

t

)
,∇J(θs+1

t−1)− vs+1
t−1

〉]
= 0.

Similarly, taking the expectation over θs+1
t and the choice of Bt yields

E
[〈
∇J(θs+1

t−1)− gω
(
τj|θs+1

t−1

)
,∇J(θs+1

t−1)− vs+1
t−1

〉]
= 0.

Combining the above equations with (4.7.6), we obtain

E
[∥∥∇J

(
θs+1
t

)
− vs+1

t

∥∥2

2

]

= E
∥∥∥∥∇J

(
θs+1
t

)
−∇J(θs+1

t−1) +
1

B

∑

j∈Bt

(
gω
(
τj|θs+1

t−1

)
− g
(
τj|θs+1

t

))∥∥∥∥
2

2

+ E
∥∥∇J(θs+1

t−1)− vs+1
t−1

∥∥2

2

=
1

B2

∑

j∈Bt

E
∥∥∇J

(
θs+1
t

)
−∇J(θs+1

t−1) + gω
(
τj|θs+1

t−1

)
− g
(
τj|θs+1

t

)∥∥2

2

+ E
∥∥∇J(θs+1

t−1)− vs+1
t−1

∥∥2

2
, (4.7.7)

≤ 1

B2

∑

j∈Bt

E
∥∥gω
(
τj|θs+1

t−1

)
− g
(
τj|θs+1

t

)∥∥2

2
+
∥∥∇J(θs+1

t−1)− vs+1
t−1

∥∥2

2
, (4.7.8)

where (4.7.7) is due to the fact that E‖x1+. . .+xn‖2
2 = E‖x1‖2+. . .+E‖xn‖2 for independent

zero-mean random variables, and (4.7.8) holds due to the fact that x1, . . . ,xn is due to

E‖x− Ex‖2
2 ≤ E‖x‖2

2. For the first term, we have

E
[∥∥gω

(
τj|θs+1

t−1

)
− g
(
τj|θs+1

t

)∥∥2

2

]
= E

[∥∥∥∥
H−1∑

h=0

(ω0:h − 1)

[h∑

t=0

∇θ log πθ(a
i
t|sit)

]
γhr(sih, a

i
h)

∥∥∥∥
2

2

]

=
H−1∑

h=0

E
[∥∥∥∥(ω0:h − 1)

[h∑

t=0

∇θ log πθ(a
i
t|sit)

]
γhr(sih, a

i
h)

∥∥∥∥
2

2

]

≤
H−1∑

h=0

h2(2G2 +M)(W + 1)
∥∥θs+1

t−1 − θs+1
t

∥∥2

2
· h2G2γhR

120

≤ 24RG2(2G2 +M)(W + 1)γ

(1− γ)5

∥∥θs+1
t−1 − θs+1

t

∥∥2

2
, (4.7.9)

where in the second equality we used the fact that E[∇ log πθ(a|s)] = 0, the first inequality

is due to Lemma 4.7.1 and in the last inequality we use the fact that
∑∞

h=0 h
4γh = γ(γ3 +

11γ2 + 11γ + 1)/(1− γ)5 for |γ| < 1. Combining the results in (4.7.8) and (4.7.9), we get

E
∥∥∇J

(
θs+1
t

)
− vs+1

t

∥∥2

2
≤ Cγ

B

∥∥θs+1
t − θs+1

t−1

∥∥2

2
+
∥∥∇J(θs+1

t−1)− vs+1
t−1

∥∥2

2

≤ Cγ
B

t∑

l=1

∥∥θs+1
l − θs+1

l−1

∥∥2

2
+
∥∥∇J(θs+1

0)− vs+1
0

∥∥2

2
, (4.7.10)

which holds for t = 1, . . . ,m−1, where Cγ = 24RG2(2G2 +M)(W +1)γ/(1−γ)5. According

to Algorithm 7 and Assumption 4.4.3, we have

E
∥∥∇J

(
θs+1

0

)
− vs+1

0

∥∥2

2
≤ ξ2

N
. (4.7.11)

Submitting the above result into (4.7.5) yields

EN,B
[
Φ
(
θs+1
t+1

)]
≥ EN,B

[
Φ
(
θs+1
t

)]
+
η

8

∥∥Gη
(
θs+1
t

)∥∥2

2
+

(
1

4η
− L

2

)∥∥θs+1
t+1 − θs+1

t

∥∥2

2

− 3ηCγ
4B

EN,B
[t∑

l=1

∥∥θs+1
l − θs+1

l−1

∥∥2

2

]
− 3ηξ2

4N
, (4.7.12)

for t = 1, . . . ,m− 1.Recall Line 6 in Algorithm 7, where we update θt+1
1 with the average of

a mini-batch of gradients vs0 = 1/N
∑N

i=1 g(τi|θ̃s). Similar to (4.7.5), by smoothness of J(θ),

we have

Φ
(
θs+1

1

)
≥ Φ

(
θs+1

0

)
− 3η

4

∥∥∇J
(
θs+1

0

)
− vs+1

0

∥∥2

2
+
η

8

∥∥Gη
(
θs+1

0

)∥∥2

2

+

(
1

4η
− L

2

)∥∥θs+1
1 − θs+1

0

∥∥2

2
.

Further by (4.7.11), it holds that

E
[
Φ
(
θs+1

1

)]
≥ E

[
Φ
(
θs+1

0

)]
− 3ηξ2

4N
+
η

8

∥∥Gη
(
θs+1

0

)∥∥2

2
+

(
1

4η
− L

2

)∥∥θs+1
1 − θs+1

0

∥∥2

2
. (4.7.13)

Telescoping inequality (4.7.12) from t = 1 to m− 1 and combining the result with (4.7.13),

we obtain

EN,B
[
Φ
(
θs+1
m

)]
≥ EN,B

[
Φ
(
θs+1

0

)]
+
η

8

m−1∑

t=0

EN
[∥∥Gη

(
θs+1
t

)∥∥2

2

]
− 3mηξ2

4N

121

+

(
1

4η
− L

2

)m−1∑

t=0

∥∥θs+1
t+1 − θs+1

t

∥∥2

2

− 3ηCγ
2B

EN,B
[m−1∑

t=0

t∑

l=1

∥∥θs+1
l − θs+1

l−1

∥∥2

2

]

≥ EN,B
[
Φ
(
θs+1

0

)]
+
η

8

m−1∑

t=0

EN
[∥∥Gη

(
θs+1
t

)∥∥2

2

]
− 3mηξ2

4N

+

(
1

4η
− L

2
− 3mηCγ

2B

)m−1∑

t=0

∥∥θs+1
t+1 − θs+1

t

∥∥2

2
. (4.7.14)

If we choose step size η and the epoch length B such that

η ≤ 1

4L
,

B

m
≥ 3ηCγ

L
=

72ηG2(2G2 +M)(W + 1)γ

M(1− γ)3
, (4.7.15)

and note that θs+1
0 = θ̃s, θs+1

m = θ̃s+1, then (4.7.14) leads to

EN
[
Φ
(
θ̃s+1

)]
≥ EN

[
Φ
(
θ̃s
)]

+
η

8

m−1∑

t=0

EN
[∥∥Gη

(
θs+1
t

)∥∥2

2

]
− 3mηξ2

4N
. (4.7.16)

Summing up the above inequality over s = 0, . . . , S − 1 yields

η

8

S−1∑

s=0

m−1∑

t=0

E
[∥∥Gη

(
θs+1
t

)∥∥2

2

]
≤ E

[
Φ
(
θ̃S
)]
− E

[
Φ
(
θ̃0
)]

+
3Smηξ2

4N
,

which immediately implies

E
[∥∥Gη

(
θout

)∥∥2

2

]
≤ 8

(
E
[
Φ
(
θ̃S
)]
− E

[
Φ
(
θ̃0
)])

ηSm
+

6ξ2

N
≤ 8(Φ(θ∗)− Φ(θ0))

ηSm
+

6ξ2

N
.

This completes the proof.

Proof of Corollary 4.4.7. Based on the convergence results in Theorem 4.4.5, in order to

ensure E
[∥∥∇J

(
θout

)∥∥2

2

]
≤ ε, we can choose S,m and N such that

8(J(θ∗)− J(θ0))

ηSm
=
ε

2
,

6ξ2

N
=
ε

2
,

which implies Sm = O(1/ε) and N = O(1/ε). Note that we have set m = O(B). The total

number of stochastic gradient evaluations Tg we need is

Tg = SN + SmB = O

(
N

Bε
+
B

ε

)
= O

(
1

ε3/2

)
,

where we set B = 1/ε1/2.

122

4.8 Proof of Technical Lemmas

In this section, we provide the proofs of the technical lemmas. We first prove the smoothness

of the performance function J(θ).

Proof of Proposition 4.4.2. Recall the definition of PGT in (4.2.5). We first show the Lips-

chitzness of g(τ |θ) with baseline b = 0 as follows:

‖∇g(τ |θ)‖2 =

∥∥∥∥∥
H−1∑

h=0

∇2
θ log πθ(ah|sh)

(
H−1∑

t=h

γtr(st, at)

)∥∥∥∥∥
2

≤
(

H−1∑

t=0

γh
∥∥∇2

θ log πθ(at|st)
∥∥

2

)
R

1− γ

≤ MR

(1− γ)2
,

where we used the fact that 0 < γ < 1. When we have a nonzero baseline bh, we can simply

scale it with γh and the above result still holds up to a constant multiplier.

Since the PGT estimator is an unbiased estimator of the policy gradient ∇θJ(θ), we

have ∇θJ(θ) = Eτ [g(τ |θ)] and ∇2
θJ(θ) = Eτ [∇θg(τ |θ)]. Therefore, the smoothness of J(θ)

can be directly implied from the Lipschitzness of g(τ |θ):

∥∥∇2
θJ(θ)

∥∥
2

= ‖Eτ [∇θg(τ |θ)]‖2 ≤ ‖∇θg(τ |θ)‖2 ≤
MR

(1− γ)2
,

which implies that J(θ) is L-smooth with L = MR/(1− γ)2.

Similarly, we can bound the norm of gradient estimator as follows

‖g(τ |θ)‖2 ≤
∥∥∥∥
H−1∑

h=0

∇θ log πθ(ah|sh)
γhR(1− γH−h)

1− γ

∥∥∥∥
2

≤ GR

(1− γ)2
,

which completes the proof.

Lemma 4.8.1 (Lemma 1 in [CMM10]). Let ω(x) = P (x)/Q(x) be the importance weight for

distributions P and Q. Then E[ω] = 1,E[ω2] = d2(P ||Q), where d2(P ||Q) = 2D2(P ||Q) and

D2(P ||Q) is the Rényi divergence between distributions P and Q. Note that this immediately

implies Var(ω) = d2(P ||Q)− 1.

123

Proof of Lemma 4.7.1. According to the property of importance weight in Lemma 4.8.1, we

know

Var
(
ω0:h

(
τ |θ̃s,θs+1

t

))
= d2

(
p(τh|θ̃s)||p(τh|θs+1

t)
)
− 1.

To simplify the presentation, we denote θ1 = θ̃s and θ2 = θs+1
t in the rest of this proof. By

definition, we have

d2(p(τh|θ1)||p(τh|θ2)) =

∫

τ

p(τh|θ1)
p(τh|θ1)

p(τh|θ2)
dτ =

∫

τ

p(τh|θ1)2p(τh|θ2)−1dτ.

Taking the gradient of d2(p(τh|θ1)||p(τh|θ2)) with respect to θ1, we have

∇θ1d2(p(τh|θ1)||p(τh|θ2)) = 2

∫

τ

p(τh|θ1)∇θ1p(τh|θ1)p(τh|θ2)−1dτ.

In particular, if we set the value of θ1 to be θ1 = θ2 in the above formula of the gradient,

we get

∇θ1d2(p(τh|θ1)||p(τh|θ2))
∣∣
θ1=θ2

= 2

∫

τ

∇θ1p(τh|θ1)dτ
∣∣
θ1=θ2

= 0.

Applying mean value theorem with respect to the variable θ1, we have

d2(p(τh|θ1)||p(τh|θ2)) = 1 + 1/2(θ1 − θ2)>∇2
θd2(p(τh|θ)||p(τh|θ2))(θ1 − θ2), (4.8.1)

where θ = tθ1 +(1−t)θ2 for some t ∈ [0, 1] and we used the fact that d2(p(τh|θ2)||p(τh|θ2)) =

1. To bound the above exponentiated Rényi divergence, we need to compute the Hessian

matrix. Taking the derivative of ∇θ1d2(p(τh|θ1)||p(τh|θ2)) with respect to θ1 further yields

∇2
θd2(p(τh|θ)||p(τh|θ2)) = 2

∫

τ

∇θ log p(τh|θ)∇θ log p(τh|θ)>
p(τh|θ)2

p(τh|θ2)
dτ

+ 2

∫

τ

∇2
θp(τh|θ)p(τh|θ)p(τh|θ2)−1dτ. (4.8.2)

Thus we need to compute the Hessian matrix of the trajectory distribution function, i.e.,

∇2
θp(τh|θ), which can further be derived from the Hessian matrix of the log-density function.

∇2
θ log p(τh|θ) = −p(τh|θ)−2∇θp(τh|θ)∇θp(τh|θ)> + p(τh|θ)−1∇2

θp(τh|θ). (4.8.3)

Submitting (4.8.3) into (4.8.2) yields

‖∇2
θd2(p(τh|θ)||p(τh|θ2))‖2 =

∥∥∥∥4

∫

τ

∇θ log p(τh|θ)∇θ log p(τh|θ)>
p(τh|θ)2

p(τh|θ2)
dτ

124

+ 2

∫

τ

∇2
θ log p(τh|θ)

p(τh|θ)2

p(τh|θ2)
dτ

∥∥∥∥
2

≤
∫

τ

p(τh|θ)2

p(τh|θ2)

(
4‖∇θ log p(τh|θ)‖2

2 + 2‖∇2
θ log p(τh|θ)‖2

)
dτ

≤ (4h2G2 + 2hM)E[ω(τ |θ,θ2)2]

≤ 2h(2hG2 +M)(W + 1),

where the second inequality comes from Assumption 4.4.1 and the last inequality is due to

Assumption 4.4.4 and Lemma 4.8.1. Combining the above result with (4.8.1), we have

Var
(
ω0:h

(
τ |θ̃s,θs+1

t

))
= d2

(
p(τh|θ̃s)||p(τh|θs+1

t)
)
− 1 ≤ Cω‖θ̃s − θs+1

t ‖2
2,

where Cω = h(2hG2 +M)(W + 1).

4.9 Proof of Theoretical Results for Gaussian Policy

In this section, we prove the sample complexity for Gaussian policy. According to (4.4.1),

we can calculate the gradient and Hessian matrix of the logarithm of the policy.

∇ log πθ(a|s) =
(a− θ>φ(s))φ(s)

σ2
, ∇2 log πθ(a|s) = −φ(s)φ(s)>

σ2
. (4.9.1)

It is easy to see that Assumption 4.4.1 holds with G = CaMφ/σ
2 and M = M2

φ/σ
2. Based

on this observation, Proposition 4.4.2 also holds for Gaussian policy with parameters defined

as follows

L =
RM2

φ

σ2(1− γ)2
, and Cg =

RCaMφ

σ2(1− γ)2
. (4.9.2)

The following lemma gives the variance ξ2 of the PGT estimator, which verifies Assumption

4.4.3.

Lemma 4.9.1 (Lemma 5.5 in [PRB13]). Given a Gaussian policy πθ(a|s) ∼ N(θ>φ(s), σ2),

if the |r(s, a)| ≤ R and ‖φ(s)‖2 ≤ Mφ for all s ∈ S, a ∈ A and R,Mφ > 0 are constants,

then the variance of PGT estimator defined in (4.2.5) can be bounded as follows:

Var(g(τ |θ)) ≤ ξ2 =
R2M2

φ

(1− γ)2σ2

(
1− γ2H

1− γ2
−Hγ2H − 2γH

1− γH
1− γ

)
.

125

Proof of Corollary 4.4.8. The proof will be similar to that of Corollary 4.4.7. By Theorem

4.4.5, to ensure that E[‖∇J(θout)‖2
2] ≤ ε, we can set

8(J(θ∗)− J(θ0))

ηSm
=
ε

2
,

6ξ2

N
=
ε

2
.

Plugging the value of ξ2 in Lemma 4.9.1 into the second equation above yields N = O(ε−1(1−
γ)−3). For the first equation, we have S = O(1/(ηmε)). Therefore, the total number of

stochastic gradient evaluations Tg required by Algorithm 7 is

Tg = SN + SmB = O

(
N

ηmε
+
B

ηε

)
.

So a good choice of batch size B and epoch length m will lead to Bm = N . Combining this

with the requirement of B in Theorem 4.4.5, we can set

m =

√
LN

ηCγ
, and B =

√
NηCγ
L

.

Note that Cγ = 24RG2(2G2 +M)(W + 1)γ/(1−γ)5. Plugging the values of G,N and L into

the above equations yields

m = O

(
1

(1− γ)
√
ε

)
, B = O

(
1

(1− γ)2
√
ε

)
.

The corresponding sample complexity is

Tg = O

(
1

(1− γ)4ε3/2

)
.

This completes the proof for Gaussian policy.

4.10 Additional Details on Experiments

Now, we provide more details of our experiments presented in Section 4.5. We first present

the parameters for all algorithms we used in all our experiments in Tables 4.2 and 4.3.

Among the parameters, the neural network structure and the RL environment parameters

are shared across all the algorithms. As mentioned in Section 4.5, the order of the batch size

parameters of our algorithm are chosen according to Corollary 4.7 and we multiply them by

126

0 500 1000 1500 2000
Number of Trajectories

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Av

er
ag

e
Re

tu
rn

×103

PGPE
SRVR-PG-PE

(a) Cartpole

0 125 250 375 500
Number of Trajectories

1.5

1.0

0.5

0.0

0.5

1.0

Av
er

ag
e

Re
tu

rn

×102

PGPE
SRVR-PG-PE

(b) Mountain Car

0 350 700 1050 1400 1750
Number of Trajectories

1.5

1.0

0.5

0.0

0.5

Av
er

ag
e

Re
tu

rn

×103

PGPE
SRVR-PG-PE

(c) Pendulum

Figure 4.2: Performance of SRVR-PG-PE compared with PGPE. Experiment results are

averaged over 10 runs.

a tuning constant via grid search. Similarly, the orders of batch size parameters of SVRPG

and GPOMDP are chosen based on the theoretical results suggested by [PBC+18, XGG19].

Moerover, the learning rates for different methods are tuned by grid search.

We then present the results of PGPE and SRVR-PG-PE on Cartpole, Mountain Car

and Pendulum in Figure 4.2. In all three environments, our SRVR-PG-PE algorithm shows

improvement over PGPE [SOR+10] in terms of number of trajectories. It is worth noting

that in all these environments both PGPE and SRVR-PG-PE seem to solve the problem

very quickly, which is consistent with the results reported in [ZHNS11, ZHT+13, MPFR18].

Our primary goal in this experiment is to show that our proposed variance reduced policy

gradient algorithm can be easily extended to the PGPE framework. To avoid distracting the

audience’s attention from the variance reduction algorithm on the sample complexity, we do

not thoroughly compare the performance of the parameter based policy gradient methods

such as PGPE and SRVR-PG-PE with the action based policy gradient methods. We refer

interested readers to the valuable empirical studies of PGPE based algorithms presented in

[ZHNS11, ZHT+13, MPFR18].

127

Table 4.2: Parameters used in the SRVR-PG-PE experiments.

Parameters Cartpole Mountain Car Pendulum

NN size - 64 8×8

NN activation function Tanh Tanh Tanh

Task horizon 100 1000 200

Total trajectories 2000 500 1750

Discount factor γ 0.99 0.999 0.99

Learning rate η 0.01 0.0075 0.01

Batch size N 10 5 50

Batch size B 5 3 10

Epoch size m 2 1 2

128

Table 4.3: Parameters used in the SRVR-PG experiments.

Parameters Algorithm Cartpole Mountain Car Pendulum

NN size - 64 64 8×8

NN activation function - Tanh Tanh Tanh

Task horizon - 100 1000 200

Total trajectories - 2500 3000 2× 105

Discount factor γ

GPOMDP 0.99 0.999 0.99

SVRPG 0.999 0.999 0.995

SRVR-PG 0.995 0.999 0.995

Learning rate η

GPOMDP 0.005 0.005 0.01

SVRPG 0.0075 0.0025 0.01

SRVR-PG 0.005 0.0025 0.01

Batch size N

GPOMDP 10 10 250

SVRPG 25 10 250

SRVR-PG 25 10 250

Batch size B

GPOMDP - - -

SVRPG 10 5 50

SRVR-PG 5 3 50

Epoch size m

GPOMDP - - -

SVRPG 3 2 1

SRVR-PG 3 2 1

129

CHAPTER 5

Finite-Time Analysis for Policy Optimization with

Linear Value Function Approximation

5.1 Introduction

In the previous chapter, we discussed about optimization techniques in policy gradient meth-

ods. The gradient estimators for REINFORCE defined in (4.2.4) and for SRVR-PG in (4.3.2)

are all based on the discounted average of the rewards obtained from a batch of trajectories.

In this chapter, we will study the Actor-Critic (AC) method [BSA83, KT00], which use value

function approximation to learn the gradient estimator used in policy gradient methods. The

policy parameter is called the actor, and the value function approximator is called the critic.

Specifically, actor-only methods, such as policy gradient [SMSM00] and trust region pol-

icy optimization [SLA+15], utilize a parameterized policy function class and improve the

policy by optimizing the parameters of some performance function using gradient ascent,

whose exact form is characterized by the Policy Gradient Theorem [SMSM00]. Actor-only

methods can be naturally applied to continuous setting but suffer from high variance when

estimating the policy gradient. On the other hand, critic-only methods, such as temporal

difference learning [Sut88] and Q-learning [WD92], focus on learning a value function (ex-

pected cumulative rewards), and determine the policy based on the value function, which is

recursively approximated based on the Bellman equation. Although the critic-only methods

can efficiently learn a satisfying policy under tabular setting [JAZBJ18], they can diverge

with function approximation under continuous setting [Wie04]. Therefore, it is natural to

combine actor and critic based methods to achieve the best of both worlds. The principal

idea behind actor-critic methods is simple: the critic tries to learn the value function, given

130

the policy from the actor, while the actor can estimate the policy gradient based on the

approximate value function provided by the critic.

If the actor is fixed, the policy remains unchanged throughout the updates of the critic.

Thus one can use policy evaluation algorithm such as temporal difference (TD) learning

[SB18] to estimate the value function (critic). After many steps of the critic update, one can

expect a good estimation of the value function, which in turn enables an accurate estimation

of the policy gradient for the actor. A more favorable implementation is the so-called two

time-scale actor-critic algorithm, where the actor and the critic are updated simultaneously

at each iteration except that the actor changes more slowly (with a small step size) than the

critic (with a large step size). In this way, one can hope the critic will be well approximated

even after one step of update. From the theoretical perspective, the asymptotic analysis of

two time-scale actor-critic methods has been established in [BK97, KT00]. In specific, under

the assumption that the ratio of the two time-scales goes to infinity (i.e. limt→∞ βt/αt =∞),

the asymptotic convergence is guaranteed through the lens of the two time-scale ordinary

differential equations(ODE), where the slower component is fixed and the faster component

converges to its stationary point. This type of analysis was also applied in the context of

generic two time-scale stochastic approximation [Bor97].

However, finite-time analysis (non-asymptotic analysis) of two-time scale actor-critic is

still largely missing in the literature, which is important because it can address the questions

that how many samples are needed for two time-scale actor-critic to converge, and how to

appropriately choose the different learning rates for the actor and the critic. Some recent

work has attempted to provide the finite-time analysis for the “decoupled” actor-critic meth-

ods [KKR19, QYYW19]. The term “decoupled” means that before updating the actor at the

t-th iteration, the critic starts from scratch to estimate the state-value (or Q-value) function.

At each iteration, the “decoupled” setting requires the critic to perform multiple sampling

and updating (often from another new sample trajectory). As we will see in the later com-

parison, this setting is sample-inefficient or even impractical. Besides, their analyses are

based on either the i.i.d. assumption [KKR19] or the partially i.i.d. assumption [QYYW19]

(the actor receives i.i.d. samples), which is unrealistic in practice. In this chapter, we present

131

the first finite-time analysis on the convergence of the two time-scale actor-critic algorithm.

We summarize our contributions as follows:

• We prove that, the actor in the two time-scale actor critic algorithm converges to an ε-

approximate stationary point of the non-concave performance function J after accessing at

most Õ(ε−2.5) samples. Compared with existing finite-time analysis of actor-critic methods

[KKR19, QYYW19], the algorithm we analyzed is based on two time-scale update and

therefore more practical and efficient than the “decoupled” version. Moreover, we do not

need any i.i.d. data assumptions in the convergence analysis as required by [KKR19,

QYYW19], which do not hold in real applications.

• From the technical viewpoint, we also present a new proof framework that can tightly

characterize the estimation error in two time-scale algorithms. Compared with the proof

technique used in [XZL19], we remove the extra artificial factor O(tξ) in the convergence

rate introduced by their “iterative refinement” technique. Therefore, our new proof tech-

nique may be of independent interest for analyzing the convergence of other two time-scale

algorithms to get sharper rates.

5.2 Related Work

In this section, we briefly review and discuss existing work, which is mostly related to ours.

Stochastic Bias Characterization The main difficulty in analyzing reinforcement

learning algorithms under non-i.i.d. data assumptions is that the samples and the trainable

parameters are correlated, which makes the noise term biased. [BRS18] used information-

theoretical techniques to bound the Markovian bias and provide a simple and explicit anal-

ysis for the temporal difference learning. Similar techniques were also established in [SY19]

through the lens of stochastic approximation methods. [GSY19, XZL19] applied such meth-

ods to deriving the non-asymptotic convergence of two time-scale temporal difference learning

algorithms (TDC). [ZXL19, CZD+19, XG20] further applied these analysis methods to on-

policy learning algorithms including SARSA and Q-learning. In addition, [HS19] formulated

132

a family of TD learning algorithms as Markov jump linear systems and analyzed the evo-

lution of the mean and covariance matrix of the estimation error. [CYJW19] studied TD

learning with neural network approximation, and proved its global convergence.

Two Time-Scale Reinforcement Learning The two time-scale stochastic approxima-

tion can be seen as a general framework for analyzing reinforcement learning [Bor97, TM03,

KTo04]. Recently, the finite-time analysis of two time-scale stochastic approximation has

gained much interest. [DSTM17] proved convergence rate for the two time-scale linear

stochastic approximation under i.i.d. assumption. [GSY19] also provided finite-time analysis

for the two time-scale linear stochastic approximation algorithms. Both can be applied to

analyze two time-scale TD methods like GTD, GTD2 and TDC. [XZL19] proved convergence

rate and sample complexity for the TDC algorithm over Markovian samples. [KMN+20] fur-

ther improved the convergence rate of two time-scale linear stochastic approximation and

removed the projection step. However, since the update rule for the actor is generally not

linear, we cannot apply these results to the actor-critic algorithms.

Analysis for Actor-Critic Methods The asymptotic analysis of actor-critic methods

has been well established. [KT00] proposed the actor-critic algorithm, and established the

asymptotic convergence for the two time-scale actor-critic, with TD(λ) learning-based critic.

[BSGL09] proved the convergence result for the original actor-critic and natural actor-critic

methods. [CM10] proposed a single time-scale actor-critic algorithm and proved its conver-

gence. Recently, [ZLYW19] proved convergence of two time-scale off-policy actor-critic with

function approximation. Recently, there has emerged some works concerning the finite-time

behavior of actor-critic methods. [YCHW19] studied the global convergence of actor-critic

algorithms under the Linear Quadratic Regulator. [YZHB18] analyzed the finite-sample

performance of batched actor-critic, where all samples are assumed i.i.d. and the critic per-

forms several empirical risk minimization (ERM) steps. [QYYW19] treated the actor-critic

algorithms as a bilevel optimization problem and established a finite sample analysis under

the “average-reward” setting, assuming that the actor has access to independent samples.

Similar result has also been established by [KKR19], where they considered the sample com-

plexity for the “decoupled” actor-critic methods under i.i.d. assumption. [WCYW20] also

133

proved the global convergence of actor-critic algorithms with both actor and critic being

approximated by overparameterized neural networks.

When we were preparing this work, we noticed that there is a concurrent and independent

work [XWL20] which also analyzes the non-asymptotic convergence of two time-scale actor-

critic algorithms and achieves the same sample complexity, i.e., Õ(ε−2.5). However, there

are two key differences between their work and ours. First, the two time-scale algorithms

analyzed in both papers are very different. We analyze the classical two time-scale algorithm

described in [SB18], where both actor and critic take one step update in each iteration. It

is very easy to implement and has been widely used in practice, while the update rule

in [XWL20] for the critic needs to call a sub-algorithm, which involves generating a fresh

episode to estimate the Q-function. Second, the analysis in [XWL20] relies on the compatible

function approximation [SMSM00], which requires the critic to be a specific linear function

class, while our analysis does not require such specific approximation, and therefore is more

general. This makes our analysis potentially extendable to non-linear function approximation

such as neural networks [CYJW19].

5.3 Preliminaries

In this section, we present the background of the two time-scale actor-critic algorithm.

5.3.1 Markov Decision Processes

Reinforcement learning tasks can be modeled as a discrete-time Markov Decision Process

(MDP)M = {S,A,P , r}, where S andA are the state and action spaces respectively. In this

work we consider the finite action space |A| <∞. P(s′|s, a) is the transition probability that

the agent transits to state s′ after taking action a at state s. Function r : S ×A → [−Ur, Ur]
emits a bounded reward after the agent takes action a at state s, where Ur > 0 is a constant.

A policy parameterized by θ at state s is a probability function πθ(a|s) over action space A.

µθ denotes the stationary distribution induced by the policy πθ.

134

In this work we consider the “average reward” setting [SMSM00], where under the ergod-

icity assumption, the average reward over time eventually converges to the expected reward

under the stationary distribution:

r(θ) := lim
N→∞

∑N
t=0 r(st, at)

N
= Es∼µθ ,a∼πθ

[
r(s, a)

]
.

To evaluate the overall rewards given a starting state s0 and the behavior policy πθ, we

define the state-value function as

V πθ(·) := E
[∞∑

t=0

(
r(st, at)− r(θ)

)
|s0 = ·

]
,

where the action follows the policy at ∼ πθ(·|st) and the next state follows the transition

probability st+1 ∼ P(·|st, at). Another frequently used function is the state-action value

function, also called Q-value function:

Qπθ(s, a) : = E
[∞∑

t=0

(
r(st, at)− r(θ)

)
|s0 = s, a0 = a

]
= r(s, a)− r(θ) + E

[
V πθ(s′)

]
,

where the expectation is taken over s′ ∼ P(·|s, a).

Throughout this chapter, we use O to denote the tuple O = (s, a, s′), some variants are

like Ot = (st, at, st+1) and Õt = (s̃t, ãt, s̃t+1).

5.3.2 Policy Gradient Theorem

We define the performance function associated with policy πθ naturally as the expected

reward under the stationary distribution µθ induced by πθ, which takes the form

J(θ) : = r(θ). (5.3.1)

To maximize the performance function with respect to the policy parameters, [SMSM00]

proved the following policy gradient theorem.

Lemma 5.3.1 (Policy Gradient). Consider the performance function defined in (5.3.1), its

gradient takes the form

∇J(θ) = Es∼µθ(·)

[∑

a∈A

Qπθ(s, a)∇π(a|s)
]
.

135

The policy gradient also admits a neat form in expectation:

∇J(θ) = Es∼µθ(·),a∼πθ(·|s)
[
Qπθ(s, a)∇ log πθ(a|s)

]
.

A typical way to estimate the policy gradient ∇J(θ) is by Monte Carlo method, namely

using the summed return along the trajectory as the estimated Q-value, which is known as

the “REINFORCE” method [Wil92].

Remark 5.3.2. The problem formulation in this chapter is what [SMSM00] had defined as

“average-reward” formulation. An alternative formulation is the “start-state” formulation,

which avoids estimating the average reward, but gives a more complicated form for the policy-

gradient algorithm and the AC algorithm.

5.3.3 REINFORCE with a Baseline

Note that for any function b(s) depending only on the state, which is usually called “baseline”

function, we have

∑

a∈A

b(s)∇πθ(a|s) = b(s)∇
(∑

a∈A

πθ(a|s)
)

= 0.

So we also have

∇J(θ) = E
[∑

a∈A

(
Qπθ(s, a)− b(s)

)
∇πθ(a|s)

]
.

A popular choice of b(s) is b(s) = V πθ(s) and ∆πθ(s, a) = Qπθ(s, a) − V πθ(s) is viewed as

the advantage of taking a specific action a, compared with the expected reward at state s.

Also note that the expectation form still holds:

∇J(θ) = Es,a
[
∆πθ(s, a)∇ log πθ(a|s)

]
.

Based on this fact, [Wil92] also proposed a corresponding policy gradient algorithm named

“REINFORCE with a baseline” which performs better due to the reduced variance.

In practice the policy gradient method could suffer from high variance. An alternative

approach is to introduce another trainable model to approximate the state-value function,

which is called the actor-critic methods.

136

5.3.4 The Two Time-Scale Actor-Critic Algorithm

In previous subsection, we have seen how the policy gradient theorem appears in the form

of the advantage value instead of the Q-value. Assume the critic uses linear function ap-

proximation V̂ (·;ω) = φ>(·)ω, and is updated by TD(0) algorithm, then this gives rise to

Algorithm 9 that we are going to analyze.

Algorithm 9 has been proposed in many literature, and is clearly introduced in [SB18]

as a classic on-line one-step actor-critic algorithm. It uses the advantage (namely temporal

difference error) to update the critic and the actor simultaneously. Based on its on-line

nature, this algorithm can be implemented both under episodic and continuing setting. In

practice, the asynchronous variant of this algorithm, called Asynchronous Advantage Actor-

Critic(A3C), is an empirically very successful parallel actor-critic algorithm.

Sometimes, Algorithm 9 is also called Advantage Actor-Critic (A2C) because it is the

synchronous version of A3C and the name indicates its use of advantage instead of Q-value

[MBM+16].

Algorithm 9 Two Time-Scale Actor-Critic

1: Input: initial actor parameter θ0, initial critic parameter ω0, initial average reward

estimator η0, step size αt for actor, βt for critic and γt for the average reward estimator.

2: Draw s0 from some initial distribution

3: for t = 0, 1, 2, . . . do

4: Take the action at ∼ πθt(·|st)
5: Observe next state st+1 ∼ P(·|st, at) and the reward rt = r(st, at)

6: δt = rt − ηt + φ(st+1)>ωt − φ(st)
>ωt

7: ηt+1 = ηt + γt(rt − ηt)
8: ωt+1 = ΠRω

(
ωt + βtδtφ(st)

)

9: θt+1 = θt + αtδt∇θ log πθt(at|st)
10: end for

In Line 6 of Algorithm 9, the temporal difference error δt can be calculated based on

the critic’s estimation of the value function φ(·)>ωt, where ωt ∈ Rd and φ(·) : S → Rd is a

137

known feature mapping. Then the critic will be updated using the semi-gradient from TD(0)

method. Line 8 in Algorithm 9 also contains a projection operator. This is required to control

the algorithm’s convergence which also appears in some other literature [BRS18, XZL19].

The actor uses the advantage δt (estimated by critic) and the samples to get an estimation

of the policy gradient.

Algorithm 9 is more general and practical than the algorithms analyzed in many previous

work [QYYW19, KKR19]. In our algorithm, there is no need for independent samples or

samples from the stationary distribution. There is only one naturally generated sample path.

Also, the critic inherits from last iteration and continuously updates its parameter, without

requiring a restarted sample path (or a new episode).

5.4 Main Theory

In this section, we first discuss on some standard assumptions used in the literature for de-

riving the convergence of reinforcement learning algorithms and then present our theoretical

results for two time-scale actor-critic methods.

5.4.1 Assumptions and Propositions

We consider the setting where the critic uses TD [SB18] with linear function approximation

to estimate the state-value function, namely V̂ (·;ω) = φ>(·)ω. We assume that the feature

mapping has bounded norm ‖φ(·)‖ ≤ 1. Denote by ω∗(θ) the limiting point of TD(0)

algorithms under the behavior policy πθ, and define A and b as:

A := Es,a,s′
[
φ(s)

(
φ(s′)− φ(s)

)>]
,

b := Es,a,s′ [(r(s, a)− r(θ))φ(s)],

where s ∼ µθ(·), a ∼ πθ(·|s), s′ ∼ P(·|s, a). It is known that the TD limiting point satisfies:

Aω∗(θ) + b = 0.

138

In the sequel, when there is no confusion, we will use a shorthand notation ω∗ to denote

ω∗(θ). Based on the complexity of the feature mapping, the approximation error of this

function class can vary. The approximation error of the linear function class is defined as

follows:

εapp(θ) :=

√
Es∼µθ

(
φ(s)>ω∗(θ)− V πθ(s)

)2
.

Throughout this chapter, we assume the approximation error for all potential policies is

uniformly bounded,

∀θ, εapp(θ) ≤ εapp,

for some constant εapp ≥ 0.

In the analysis of TD learning, the following assumption is often made to ensure the

uniqueness of the limiting point of TD and the problem’s solvability.

Assumption 5.4.1. For all potential policy parameters θ, the matrix A defined above is

negative definite and has the maximum eigenvalues as −λ.

Assumption 5.4.1 is often made to guarantee the problem’s solvability [BRS18, ZXL19,

XZL19]. Note that Algorithm 9 contains a projection step at Line 8. To guarantee conver-

gence it is required all ω∗ lie within this projection radius Rω. Assumption 5.4.1 indicates

that a sufficient condition is to set Rω = 2Ur/λ because ‖b‖ ≤ 2Ur and ‖A−1‖ ≤ λ−1.

The next assumption, first adopted by [BRS18] in TD learning, addresses the issue of

Markovian noise.

Assumption 5.4.2 (Uniform ergodicity). For a fixed θ, denote µθ(·) as the stationary

distribution induced by the policy πθ(·|s) and the transition probability measure P(·|s, a).

Consider a Markov chain generated by the rule at ∼ πθ(·|st), st+1 ∼ P(·|st, at). Then there

exists m > 0 and ρ ∈ (0, 1) such that:

dTV
(
P(sτ ∈ ·|s0 = s), µθ(·)

)
≤ mρτ , ∀τ ≥ 0, ∀s ∈ S.

We also need some regularity assumptions on the policy.

139

Assumption 5.4.3. Let πθ(a|s) be a policy parameterized by θ. There exist constants

L,B, Ll > 0 such that for all given state s and action a it holds

(a)
∥∥∇ log πθ(a|s)

∥∥ ≤ B, ∀θ ∈ Rd,

(b)
∥∥∇ log πθ1(a|s)−∇ log πθ2(a|s)

∥∥ ≤ Ll‖θ1 − θ2‖, ∀θ1,θ2 ∈ Rd,

(c)
∣∣πθ1(a|s)− πθ2(a|s)

∣∣ ≤ L‖θ1 − θ2‖, ∀θ1,θ2 ∈ Rd.

The first two inequalities are regularity conditions to guarantee actor’s convergence in

the literature of policy gradient [PBC+18, ZKZB19, KKR19, XGG19, XGG20]. The last

inequality in Assumption 5.4.3 is also adopted by [ZXL19] when analyzing SARSA.

An important fact arises from our assumptions is that the limiting point ω∗ of TD(0) ,

which can be viewed as a mapping of the policy’s parameter θ, is Lipschitz.

Proposition 5.4.4. Under Assumptions 5.4.1 and 5.4.2, there exists a constant L∗ > 0

such that

∥∥ω∗(θ1)− ω∗(θ2)
∥∥ ≤ L∗‖θ1 − θ2‖,∀θ1,θ2 ∈ Rd.

Proposition 5.4.4 states that the target point ω∗ moves slowly compared with the actor’s

update on θ. This is an observation pivotal to the two time-scale analysis. Specifically, the

two time-scale analysis can be informally described as “the actor moves slowly while the

critic chases the slowly moving target determined by the actor”.

Now we are ready to present the convergence result of two time-scale actor-critic methods.

We first define an integer that depends on the learning rates αt and βt.

τt := min
{
i ≥ 0|mρi−1 ≤ min{αt, βt}

}
, (5.4.1)

where m, ρ are defined as in Assumption 5.4.2. By definition, τt is a mixing time of an

ergodic Markov chain. We will use τt to control the Markovian noise encountered in the

training process.

140

5.4.2 Convergence of the Actor

At the k-th iteration of the actor’s update, ωk is the critic parameter estimated by Line

7 of Algorithm 9 and ω∗k is the unknown parameter of value function V πθk (·) defined in

Assumption 5.4.1. The following theorem gives the convergence rate of the actor when the

averaged mean squared error between ωk and ω∗k and the error between ηk and r(θk) from

k = τt to k = t are small.

Theorem 5.4.5. Suppose Assumptions 5.4.1-5.4.3 hold and we choose αt = cα/(1 + t)σ in

Algorithm 9, where σ ∈ (0, 1) and cα > 0 are constants. If we assume at the t-th iteration,

the critic satisfies

8

t

t∑

k=1

E‖ωk − ω∗k‖2 +
2

t

t∑

k=1

E
(
ηk − r(θk)

)2
= E(t), (5.4.2)

where E(t) is a bounded sequence, then we have

min
0≤k≤t

E
∥∥∇J(θk)

∥∥2
= O(εapp) +O

(
1

t1−σ

)
+O

(
log2 t

tσ

)
+O

(
E(t)

)
,

where O(·) hides constants, whose exact forms can be found in the detailed proof in Appendix

5.7.1.

Note that E(t) in Theorem 5.4.5 is the averaged estimation error made by the critic

throughout the learning process, which will be bounded in the next Theorem 5.4.7.

Remark 5.4.6. Theorem 5.4.5 recovers the results for the decoupled case [QYYW19, KKR19]

by setting σ = 1/2. Nevertheless, we are considering a much more practical and challeng-

ing case where the actor and critic are simultaneously updated under Markovian noises. It

is worth noting that the non-i.i.d. data assumption leads to an additional logarithm term,

which is also observed in [BRS18, ZXL19, SY19, CZD+19].

5.4.3 Convergence of the Critic

The condition in (5.4.2) is guaranteed by the following theorem that characterizes the con-

vergence of the critic.

141

Theorem 5.4.7. Suppose Assumptions 5.4.1-5.4.3 hold and we choose αt = cα/(1 + t)σ

and βt = cβ/(1 + t)ν in Algorithm 9, where 0 < ν < σ < 1, cα and cβ ≤ λ−1 are positive

constants. Then we have

1

1 + t− τt

t∑

k=τt

E‖ωk − ω∗k‖2 = O

(
1

t1−ν

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
, (5.4.3)

1

1 + t− τt

t∑

k=τt

E
(
ηk − r(θk)

)2
= O

(
1

t1−ν

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
, (5.4.4)

where O(·) hides constants, whose exact forms can be found in the detailed proof in Appendix

5.7.2 and 5.7.3.

Remark 5.4.8. The first term O(tν−1) on the right hand side of (5.4.3) and (5.4.4) comes

from loosely bounding the error’s norm, and can be removed by applying the “iterative re-

finement” technique used in [XZL19]. Using this technique, we can obtain a bound (also

holds for ηt) E‖ωt − ω∗t ‖2 = O(log t/tν) + O(1/t2(σ−ν)−ξ), where ξ > 0 is an arbitrarily

small constant. The constant ξ is an artifact due to the the “iterative refinement” technique.

Similar simplification can be done for (5.4.4). Nevertheless, if we plug (5.4.3) and (5.4.4)

(after some transformation) into the result of Theorem 5.4.5, it is easy to see that the term

O(1/t1−ν) is actually dominated by the term O(1/t1−σ). Thus this term makes no difference

in the total sample complexity of Algorithm 9 and we choose not to complicate the proof or

introduce the extra artificial parameter ξ in the result of Theorem 5.4.7.

The second term in both (5.4.3) and (5.4.4) comes from the Markovian noise and the

variance of the semi-gradient. The third term in these two equations comes from the slow

drift of the actor. These two terms together can be interpreted as follows: if the actor moves

much slower than the critic (i.e., σ− ν � ν), then the error is dominated by the Markovian

noise and gradient variance; if the actor moves not too slowly compared with the critic (i.e.

σ − ν � ν), then the critic’s error is dominated by the slowly drifting effect of the actor.

5.4.4 Convergence Rate and Sample Complexity

Combining Theorems 5.4.5 and 5.4.7 leads to the following convergence rate and sample

complexity for Algorithm 9. The detailed proof is in Appendix 5.7.4.

142

Corollary 5.4.9. Under the same assumptions of Theorems 5.4.5 and 5.4.7, we have

min
0≤k≤t

E‖∇J(θk)‖2 = O(εapp) +O

(
1

t1−σ

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
.

If we set σ = 3/5, ν = 2/5, leading to the actor step size αt = O(1/t3/5) and the critic step

size βt = O(1/t2/5), Algorithm 9 can find an ε-approximate stationary point of J(·) within

T steps, namely,

min
0≤k≤T

E
∥∥∇J(θk)

∥∥2 ≤ O(εapp) + ε,

where T = Õ(ε−2.5) is the total iteration number.

Corollary 5.4.9 combines the results of Theorems 5.4.5 and 5.4.7 and shows that the

convergence rate of Algorithm 9 is Õ(t−2/5). Since the per iteration sample is 1, the sample

complexity of two time-scale actor-critic is Õ(ε−2.5).

Remark 5.4.10. We compare our results with existing results on the sample complexity

of actor-critic methods in the literature. [KKR19] provided a general result that after T =

O(ε−2) updates for the actor, the algorithm can achieve min0≤k≤T E‖∇J(θk)‖2 ≤ ε , as long

as the estimation error of the critic can be bounded by O(t−1/2) at the t-th actor’s update.

However, to ensure such a condition on the critic, they need to draw t samples to estimate

the critic at the t-th actor’s update. Therefore, the total number of samples drawn from the

whole training process by the actor-critic algorithm in [KKR19] is O(T 2), yielding a O(ε−4)

sample complexity. Under the similar setting, [QYYW19] proved the same sample complexity

Õ(ε−4) when TD(0) is used for estimating the critic. Thus Corollary 5.4.9 suggests that the

sample complexity of Algorithm 9 is significantly better than the sample complexity presented

in [KKR19, QYYW19] by a factor of O(ε−1.5).

Remark 5.4.11. The gap between the “decoupled” actor-critic and the two time-scale actor-

critic seems huge. Intuitively, this is due to the inefficient usage of the samples. At each

iteration, the critic in the “decoupled” algorithm starts over to evaluate the policy’s value

function and discards the history information, regardless of the fact that the policy might

only changed slightly. The two time-scale actor-critic keeps the critic’s parameter and thus

takes full advantage of each samples in the trajectory.

143

Remark 5.4.12. According to [PBC+18], the sample complexity of policy gradient meth-

ods such as REINFORCE is O(ε−2). As a comparison, if the critic converges faster than

O(t−1/2), namely E(t) = O(t−1/2), then Theorem 5.4.5 combined with Corollary 5.4.9 implies

that the complexity of two time-scale actor-critic is Õ(ε−2), which matches the result of policy

gradient methods [PBC+18] up to logarithmic factors. Nevertheless, as we have discussed in

the previous remarks, a smaller estimation error for critic often comes at the cost of more

samples needed for the critic update [QYYW19, KKR19], which eventually increases the total

sample complexity. Therefore, the Õ(ε−2.5) sample complexity in Corollary 5.4.9 is indeed

the lowest we can achieve so far for classic two time-scale actor-critic methods. However,

it is possible to further improve the sample complexity by using policy evaluation algorithms

better than vanilla TD(0), such as GTD and TDC methods.

5.5 Proof Sketch

In this section, we provide the proof roadmap of the main theory. Detailed proofs can be

found in Appendix 5.7.

5.5.1 Proof Sketch of Theorem 5.4.5

The following lemma is important in that it enables the analysis of policy gradient method:

Lemma 5.5.1 ([ZKZB19]). For the performance function defined in (5.3.1), there exists a

constant LJ > 0 such that for all θ1,θ2 ∈ Rd, it holds that

∥∥∇J(θ1)−∇J(θ2)
∥∥ ≤ LJ‖θ1 − θ2‖,

which by the definition of smoothness [Nes18] is also equivalent to

J(θ2) ≥ J(θ1) +
〈
∇J(θ1),θ2 − θ1

〉
− LJ

2
‖θ1 − θ2‖2.

This lemma enables us to perform a gradient ascent style analysis on the non-concave

function J(θ):

J(θt+1) ≥ J(θt) + αt
〈
∇J(θt), δt∇ log πθt(at|st)

〉
− LJα2

t

∥∥δt∇ log πθt(at|st)
∥∥2

144

= J(θt) + αt
〈
∇J(θt),∆h(Ot, ηt,ωt,θt)

〉
+ αt

〈
∇J(θt),∆h

′(Ot,θt)
〉

+ αtΓ(Ot,θt) + αt
∥∥∇J(θt)

∥∥2 − LJα2
t

∥∥δt∇ log πθt(at|st)
∥∥2
, (5.5.1)

where Ot = (st, at, st+1) is a tuple of observations. The second term ∆h(Ot,ωt,θt) on the

right hand side of (5.5.1) is the bias introduced by the critic. The third term ∆h′(Ot,θt)

is from the linear approximation error. The fourth term Γ(Ot,θt) is due to the Markovian

noise. The last term can be viewed as the variance of the stochastic gradient update. Please

refer to (5.7.1) for the definition of each notation.

Now we bound each term’s expectation in (5.5.1) respectively.

First, we have

E
〈
∇J(θt),∆h(Ot, ηt,ωt,θt)

〉
≥ −B

√
E
∥∥∇J(θt)

∥∥2
√

8E‖zt‖2 + 2E[y2
t],

where zt := ωt − ω∗t and yt := ηt − η∗t , and the inequality is due to Cauchy inequality and

Lemma 5.7.2.

Second, taking expectation over the approximation error term containing ∆h′, we have

E
〈
∇J(θt),∆h

′(Ot,θt)
〉
≥ −Gθ

√
E
∥∥∆h′(Ot,θt)

∥∥2

≥ −Gθ · 2B
√
E
(
φ(s)>ω∗t − V πθt (s)

)2

≥ −2BGθεapp,

Third, we have

E[Γ(Ot,θt)] ≥ −Gθ
(
D1(τ + 1)

t∑

k=t−τ+1

E‖θk − θk−1‖+D2mρ
τ−1

)
,

≥ −Gθ
(
D1(τ + 1)Gθ

t−1∑

k=t−τ+1

αk +D2mρ
τ−1

)
,

where the first inequality is due to Lemma 5.7.3, and the second inequality is due to
∥∥δt∇ log πθt(at|st)

∥∥ ≤ Gθ by Lemma 5.7.3. Taking the expectation of (5.7.2), plugging

the above terms back into it and rearranging give

E
∥∥∇J(θt)

∥∥2 ≤ α−1
t

(
E[J(θt+1)]− E[J(θt)]

)
+B

√
E
∥∥∇J(θt)

∥∥2
√

8E‖zt‖2 + 2E[y2
t]

145

+D1G
2
θ(τ + 1)

t−1∑

k=t−τ

αk +D2Gθmρ
τ−1 + LJG

2
θαt.

Setting τ = τt and summing over each term, and further dividing (1 + t− τt) at both sides

and assuming t > 2τt − 1, we can express the result as

1

1 + t− τt

t∑

k=τt

E
∥∥∇J(θt)

∥∥2 ≤ O

(
1

t1−σ

)
+O

(
(log t)2

tσ

)
+O(εapp)

+
2B

1 + t− τt

t∑

k=τt

√
E
∥∥∇J(θt)

∥∥2
√

8E‖zt‖2 + 2E[y2
t]. (5.5.2)

By Cauchy-Schwartz inequality, we have

1

1 + t− τt

t∑

k=τt

√
E
∥∥∇J(θt)

∥∥2
√

8E‖zt‖2 + 2E[y2
t]

≤
(

1

1 + t− τt

t∑

k=τt

E
∥∥∇J(θt)

∥∥2
) 1

2
(

1

1 + t− τt

t∑

k=τt

(
8E‖zt‖2 + 2E[y2

t]
)) 1

2

.

Now, denote F (t) := 1/(1+t−τt)
∑t

k=τt
E‖∇J(θk)‖2 and Z(t) := 1/(1+t−τt)

∑t
k=τt

(
8E‖zt‖2+

2E[y2
t]
)
, and putting them back to (5.5.2) (O-notation for simplicity):

F (t) ≤ O

(
1

t1−σ

)
+O

(
(log t)2

tσ

)
+O(εapp) + 2B

√
F (t) ·

√
Z(t),

which further gives

(√
F (t)−B

√
Z(t)

)2 ≤ O

(
1

t1−σ

)
+O

(
(log t)2

tσ

)
+O(εapp) +B2Z(t).

Note that for a general function H(t) = A(t) +B(t)(with each positive), we have

H2(t) = O
(
A2(t)

)
+O

(
B2(t)

)
,
√
H(t) = O

(√
A(t)

)
+O

(√
B(t)

)
.

This means

min
0≤k≤t

E
∥∥∇J(θk)

∥∥2 ≤ 1

1 + t− τt

t∑

k=τt

E
∥∥∇J(θk)

∥∥2

= O

(
1

t1−σ

)
+O

(
1

tσ

)
+O(εapp) +O

(
E(t)

)
.

5.5.2 Proof Sketch of Theorem 5.4.7

The proof of Theorem 5.4.7 can be divided into the following two parts.

146

5.5.2.1 Estimating the Average Reward ηk

We denote yk := ηk − r(θk). First, we shall mention that many components in this step is

uses the same framework and partial result as the proof regarding ωt in the next part. Also,

part of the proof is intriguingly similar with the proof of Theorem 5.4.5. For simplicity, here

we only present the final result regarding ηk. Please refer to Section 5.7.2 for the detailed

proof. By setting γk = (1 + t)−ν , we have that

t∑

k=τt

E[y2
k] = O(tν) +O(log t · t1−ν) +O(t1−2(σ−ν)).

5.5.2.2 Approximating the TD Fixed Point

Step 1: decomposition of the estimation error. For simplicity, we denote zt := ωt−ω∗t ,
where the ω∗t denotes the exact parameter under policy πθt . By the critic update in Line 7

of Algorithm 9, we have

‖zt+1‖2 = ‖zt‖2 + 2βt
〈
zt, ḡ(ωt,θt)

〉
+ 2βtΛ(Ot,ωt,θt) + 2βt

〈
zt,∆g(Ot, ηt,θt)

〉

+ 2〈zt,ω∗t − ω∗t+1〉+
∥∥βt(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + (ω∗t − ω∗t+1)

∥∥2
.

(5.5.3)

where Ot := (st, at, st+1) is a tuple of observations, g(Ot,ωt) and ḡ(θt,ωt) are the estimated

gradient and the true gradient respectively. Λ(Ot,ωt,θt) := 〈ωt − ω∗t , g(Ot,ωt)− ḡ(θt,ωt)〉
can be seen as the error induced by the Markovian noise. Please refer to (5.7.7) for formal

definition of each notation.

The second term on the right hand side of (5.5.3) can be bounded by −2λβt‖zt‖2 due to

Assumption 5.4.1. The third term is a bias term caused by the Markovian noise. The fourth

term ∆g(Ot, ηt,θt) is another bias term caused by inaccurate average reward estimator ηt.

The fifth term is caused by the slowly drifting policy parameter θt. And the last term can

be considered as the variance term.

147

Rewriting (5.5.3) and telescoping from τ = τt to t, we have

2λ
t∑

k=τt

E‖zk‖2 ≤
t∑

k=τt

1

βk

(
E‖zk‖2 − E‖zk+1‖2

)

︸ ︷︷ ︸
I1

+2
t∑

k=τt

EΛ(θk,ωk, Ok)

︸ ︷︷ ︸
I2

+ 2L∗Gθ

t∑

k=τt

αk
βk

√
E‖zk‖

︸ ︷︷ ︸
I3

+
t∑

k=τt

√
E[y2

k] ·
√
E‖zk‖

︸ ︷︷ ︸
I4

+Cq

t∑

k=τt

βk

︸ ︷︷ ︸
I5

. (5.5.4)

We will see that the Markovian noise I2, the “slowly drifting policy” term I3 and the estima-

tion bias I4 from ηt are significant, and bounding the Markovian term is another challenge.

Step 2: bounding the Markovian bias. We first decompose Λ(θt,ωt, Ot) as follows.

Λ(θt,ωt, Ot) =
(
Λ(θt,ωt, Ot)− Λ(θt−τ ,ωt, Ot)

)
+
(
Λ(θt−τ ,ωt, Ot)− Λ(θt−τ ,ωt−τ , Ot)

)

+
(
Λ(θt−τ ,ωt−τ , Ot)− Λ(θt−τ ,ωt−τ , Õt)

)
+ Λ(θt−τ ,ωt−τ , Õt). (5.5.5)

The motivation is to employ the uniform ergodicity defined by Assumption 5.4.2. This tech-

nique was first introduced by [BRS18] to address the Markovian noise in policy evaluation.

[ZXL19] extended to the Q-learning setting where the parameter itself both keeps updated

and determines the behavior policy. In this work we take one step further to consider that the

policy parameter θt is changing, and the evaluation parameter ωt is updated. The analysis

relies on the auxiliary Markov chain constructed by [ZXL19], which is obtained by repeatedly

applying policy πθt−τ :

st−τ
θt−τ−−→ at−τ

P−→ st−τ+1
θt−τ−−→ ãt−τ+1

P−→ s̃t−τ+2
θt−τ−−→ ãt−τ+2

P−→ · · · P−→ s̃t
θt−τ−−→ ãt

P−→ s̃t+1.

For reference, recall that the original Markov chain is given by:

st−τ
θt−τ−−→ at−τ

P−→ st−τ+1
θt−τ+1−−−−→ at−τ+1

P−→ st−τ+2
θt−τ+2−−−−→ at−τ+2

P−→ · · · P−→ st
θt−→ at

P−→ st+1.

By Lipschitz conditions, we can bound the first two terms in (5.5.5). The third term will be

bounded by the total variation between sk and s̃k, which is achieved by recursively bounding

total variation between sk−1 and s̃k−1.

In fact, the Markovian noise Γ(Ot,θt) in Section 5.7.1 is obtained in a similar way. Due

to the space limit, we only present how to bound the more complicated Λ(θt,ωt, Ot).

148

We have the final form as:

Λ(θt,ωt, Ot) ≤ C1(τ + 1)‖θt − θt−τ‖+ C2mρ
τ−1 + C3‖ωt − ωt−τ‖, (5.5.6)

where C1 = 2U2
δ |A|L(1+dlogρm

−1e+1/(1−ρ))+2UδL∗, C2 = 2U2
δ , C3 = 4Uδ are constants.

Step 3: integrating the results. By some calculation, terms I1, I2 and I4 can be re-

spectively bounded as follows (set τ = τt defined in (5.4.1)). The detailed derivation can be

found in Appendix 5.7.3,

I1 = 4R2
ω

1

βt
= O(tν),

I2 ≤ C1Gθ(τt + 1)2

t−τt∑

k=0

αk + C2(t− τt + 1)αt + C3Uδτt

t−τt∑

k=0

βk

= O
(
(log t)2t1−σ

)
+O(t1−σ) +O

(
(log t)t1−ν

)

= O
(
(log t)t1−ν

)
,

I5 =
t−τt∑

k=0

βk = O(t1−ν).

The log t comes from τt = O(log t). Performing the same technique on I3 as in Step 3 in the

proof sketch of Theorem 5.4.5, we have

I3 ≤
(t−τt∑

k=0

α2
k

β2
k

) 1
2
(t∑

k=τt

E‖zk‖2

) 1
2

,

I4 ≤
(t∑

k=τt

E[y2
k]

) 1
2
(t∑

k=τt

E‖zk‖2

) 1
2

.

After plugging each term into (5.5.4), we have that

2λ
t∑

k=τt

E‖zk‖2 ≤ O(tν) +O
(
(log t)t1−ν

)

+ 2L∗Gθ

(t−τt∑

k=0

α2
k

β2
k

) 1
2
(t∑

k=τt

E‖zk‖2

) 1
2

+

(t−τt∑

k=0

E[y2
k]

) 1
2
(t∑

k=τt

E‖zk‖2

) 1
2

.

This inequality actually resembles (5.5.2). Following the same procedure as the proof of

Theorem 5.4.5, starting from (5.5.2), we can finally get

1

1 + t− τt

t∑

k=τt

E‖zk‖2 = O

(
1

t1−ν

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
.

Note that this requires the step sizes γt and βt should be of the same order O(t−ν).

149

5.6 Preliminary Lemmas

These useful lemmas are frequently applied throughout the proof.

5.6.1 Probabilistic Lemmas

The first two statements in the following lemma come from [ZXL19].

Lemma 5.6.1. For any θ1 and θ2, it holds that

dTV (µθ1 , µθ2) ≤ |A|L
(
dlogρm

−1e+
1

1− ρ

)
‖θ1 − θ2‖,

dTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2) ≤ |A|L
(

1 + dlogρm
−1e+

1

1− ρ

)
‖θ1 − θ2‖,

dTV (µθ1 ⊗ πθ1 ⊗ P , µθ2 ⊗ πθ2 ⊗ P) ≤ |A|L
(

1 + dlogρm
−1e+

1

1− ρ

)
‖θ1 − θ2‖.

Proof. The proof of the first two inequality is exactly the same as Lemma A.3 in [ZXL19],

which mainly depends on Theorem 3.1 in [Mit05]. Here we provide the proof of the third

inequality. Note that

dTV (µθ1 ⊗ πθ1 ⊗ P , µθ2 ⊗ πθ2 ⊗ P)

=
1

2

∫

S

∑

A

∫

S

∣∣µθ1(ds)πθ1(a|s)P(ds′|s, a)− µθ2(ds)πθ2(a|s)P(ds′|s, a)
∣∣

=
1

2

∫

S

∑

A

∫

S
P(ds′|s, a)

∣∣µθ1(ds)πθ1(a|s)− µθ2(ds)πθ2(a|s)
∣∣

=
1

2

∫

S

∑

A

∣∣µθ1(ds)πθ1(a|s)− µθ2(ds)πθ2(a|s)
∣∣

= dTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2), (5.6.1)

so it has the same upper bound as the second inequality.

Lemma 5.6.2. Given time indexes t and τ such that t ≥ τ > 0, consider the auxiliary

Markov chain starting from st−τ . Conditioning on st−τ+1 and θt−τ , the Markov chain is

obtained by repeatedly applying policy πθt−τ .

st−τ
θt−τ−−→ at−τ

P−→ st−τ+1
θt−τ−−→ ãt−τ+1

P−→ s̃t−τ+2
θt−τ−−→ ãt−τ+2

P−→ · · · P−→ s̃t
θt−τ−−→ ãt

P−→ s̃t+1.

150

For reference, recall that the original Markov chain is given as:

st−τ
θt−τ−−→ at−τ

P−→ st−τ+1
θt−τ+1−−−−→ at−τ+1

P−→ st−τ+2
θt−τ+2−−−−→ at−τ+2

P−→ · · · P−→ st
θt−→ at

P−→ st+1.

Throughout this lemma, we always condition the expectation on st−τ+1 and θt−τ and omit

this in order to simplify the presentation. Under the setting introduced above, we have:

dTV
(
P(st+1 ∈ ·),P(s̃t+1 ∈ ·)

)
≤ dTV

(
P(Ot ∈ ·),P(Õt ∈ ·)

)
, (5.6.2)

dTV
(
P(Ot ∈ ·),P(Õt ∈ ·)

)
= dTV

(
P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)

)
, (5.6.3)

dTV
(
P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)

)
≤ dTV

(
P(st ∈ ·),P((s̃t ∈ ·)

)
+

1

2
|A|LE

[
‖θt − θt−τ‖

]
.

(5.6.4)

Proof of (5.6.2). By the Law of Total Probability,

P(st+1 ∈ ·) =

∫

S

∑

A

P(st = ds, at = a, st+1 ∈ ·),

and a similar argument also holds for Õt. Then we have

2dTV
(
P(st+1 ∈ ·),P(s̃t+1 ∈ ·)

)

=

∫

S

∣∣∣∣
∫

S

∑

A

P(st = ds, at = a, st+1 = ds′)−
∫

S

∑

A

P(st = ds, at = a, st+1 = ds′)

∣∣∣∣

≤
∫

S

∫

S

∑

A

∣∣P(st = ds, at = a, st+1 = ds′)− P(st = ds, at = a, st+1 = ds′)
∣∣

=

∫

S

∫

S

∑

A

∣∣P(Ot = (ds, a, ds′))− P(Õt = (ds, a, ds′))
∣∣

= 2dTV
(
P(Ot ∈ ·),P(Õt ∈ ·)

)
.

The last equality requires exchange of integral, which should be guaranteed by the regularity.

Proof of (5.6.3).

2dTV
(
P(Ot ∈ ·),P(Õt ∈ ·)

)

=

∫

S

∑

A

∫

S

∣∣P(Ot = (ds, a, ds′))− P(Õt = (ds, a, ds′))
∣∣

151

=

∫

S

∑

A

∫

S

∣∣P(ds′|s, a)P((st, at) = (ds, a))− P(ds′|s, a)P((s̃t, ãt) = (ds, a))
∣∣

=

∫

S

∑

A

∫

S
P(ds′|s, a)

∣∣P((st, at) = (ds, a))− P((s̃t, ãt) = (ds, a))
∣∣

=

∫

S

∑

A

∣∣P((st, at) = (ds, a))− P((s̃t, ãt) = (ds, a))
∣∣

= 2dTV
(
P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)

)
.

Proof of (5.6.4). Because θt is also dependent on st, we make it clear here that

P
(
(st, at) = (ds, a)

)
=

∫

θ∈Rd
P(st = ds)P(θt = dθ|st = ds)P(at = a|st = ds,θt = dθ)

=

∫

θ∈Rd
P(st = ds)P(θt = dθ|st = ds)πθt(a|ds)

= P(st = ds)

∫

θ∈Rd
P(θt = dθ|st = ds)πθt(a|ds)

= P(st = ds)E
[
πθt(a|ds)|st = ds

]
.

Therefore, the total variance can be bounded as

2dTV
(
P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)

)

=

∫

S

∑

A

∣∣P(st = ds)E[πθt(a|ds)|st = ds]− P(s̃t = ds)πθt−τ (a|ds)
∣∣

=

∫

S

∑

A

∣∣P(st = ds)E[πθt(a|ds)|st = ds]− P(st = ds)πθt−τ (a|ds)
∣∣

+

∫

S

∑

A

∣∣P(st = ds)πθt−τ (a|ds)− P(s̃t = ds)πθt−τ (a|ds)
∣∣

=

∫

S
P(st = ds)

∑

A

∣∣E[πθt(a|ds)|st = ds]− πθt−τ (a|ds)
∣∣

+ 2dTV
(
P(st ∈ ·),P((s̃t ∈ ·)

)

≤ |A|LE
[
‖θt − θt−τ‖

]
+ 2dTV

(
P(st ∈ ·),P((s̃t ∈ ·)

)
,

where the inequality holds due to the Lipschitz continuity of the policy as in Assumption

5.4.3.

152

5.6.2 Lipschitzness of the Optimal Parameter

This section is used to present the proof of Proposition 5.4.4.

Proof of Proposition 5.4.4. [SB18] has proved in Chapter 9 the fact that the linear TD(0) will

converge to the optimal point (w.r.t. Mean Square Projected Bellman Error) which satisfies

Aiω
∗(θi) = bi, where Ai := E[φ(s)(φ(s)− φ(s′))>] and bi := E[(r(s, a)− r(θi))φ(s)]. The

expectation is taken over the stationary distribution s ∼ µθi , the action a ∼ πθi(·|s) and

the transition probability matrix s′ ∼ P(·|s, a). Now we denote ω∗1,ω
∗
2, ω̂1 as the unique

solutions of the following equations respectively:

A1ω
∗
1 = b1, A2ω̂1 = b1, A2ω

∗
2 = b2.

First we bound ‖ω∗1 − ω̂1‖. By definition, we have

‖ω∗1 − ω̂1‖ ≤ ‖A−1
1 −A−1

2 ‖‖b1‖.

It can be easily shown that

A−1
1 −A−1

2 = A−1
1 (A2 −A1)A−1

2 ,

which further gives

‖ω∗1 − ω̂1‖ ≤ ‖A−1
1 ‖‖A1 −A2‖‖A−1

2 ‖‖b1‖.

Then we bound ‖ω̂1 − ω∗2‖ as ‖ω̂1 − ω∗2‖ ≤ ‖A−1
2 ‖‖b1 − b2‖. By Assumption 5.4.1, the

eigenvalues of Ai are bounded from below by λ > 0, therefore ‖A−1
i ‖ ≤ λ−1. Also ‖b1‖ ≤ Ur

due to the assumption that |r(s, a)| ≤ Ur and ‖φ(s)‖ ≤ 1. To bound ‖A1−A2‖ and ‖b1−b2‖,
we first note that

‖A1 −A2‖2 ≤ sup
s,s′∈S

∥∥φ(s)(φ(s)− φ(s′))>
∥∥

2
· 2dTV

(
P(O1 ∈ ·),P(O2 ∈ ·)

)
,

≤ 4dTV
(
P(O1 ∈ ·),P(O2 ∈ ·)

)

‖b1 − b2‖ ≤
∥∥E[r(s1, a1)φ(s1)]− E[r(s2, a2)φ(s2)]

∥∥+
∥∥r(θ1)E[φ(s1)]− r(θ2)E[φ(s2)]

∥∥

≤ 6UrdTV
(
P(O1 ∈ ·),P(O2 ∈ ·)

)
,

153

where Oi is the tuple obtained by si ∼ µθi(·), ai ∼ πθi(·|si) and (s′)i ∼ P(·|si, ai). And the

total variation norm can be bounded by Lemma 5.6.1 as:

dTV
(
P(O1 ∈ ·),P(O2 ∈ ·)

)
≤ |A|L

(
1 + dlogρm

−1e+
1

1− ρ

)
‖θ1 − θ2‖.

Collecting the results above gives

‖ω∗1 − ω∗2‖ ≤ ‖ω∗1 − ω̂1‖+ ‖ω̂1 − ω∗2‖

≤ (2λ−2Ur + 3λ−1Ur)|A|L
(

1 + dlogρm
−1e+

1

1− ρ

)
‖θ1 − θ2‖,

and we set L∗ := (2λ−2Ur + 3λ−1Ur)|A|L(1 + dlogρm
−1e + 1/(1 − ρ)) to obtain the final

result.

5.6.3 Asymptotic Equivalence

Lemma 5.6.3. Suppose {ai} is a non-negative, bounded sequence, τ := C1+C2 log t(C2 > 0),

then for any large enough t such that t ≥ τ > 0, we have:

1

1 + t− τ
t∑

k=τ

ai = O

(
1

t

t∑

k=1

ai

)
,

1

t

t∑

k=1

ai = O

(
log t

t

)
+O

(
1

1 + t− τ
t∑

k=τ

ai

)
.

Proof. We know that τ = O(log t) and the sequence is bounded: 0 < ai < B. For the first

equation, we have

1

1 + t− τ
t∑

k=τ

ai ≤
1

1 + t− τ
t∑

k=1

ai ≤
t

1 + t− τ ·
1

t

t∑

k=1

ai ≤ O

(
1

t

t∑

k=1

ai

)
,

and further assuming t ≥ 2τ − 2 gives a constant 2. For the second equation, we have

1

t

t∑

k=1

ai ≤
1

t

(
(τ − 1)B +

t∑

k=τ

ai

)
=
τ − 1

t
B +

1

t

t∑

k=τ

ai = O

(
log t

t

)
+O

(
1

1 + t− τ
t∑

k=τ

ai

)
.

154

5.7 Proof of Main Theorems and Propositions

5.7.1 Proof of Theorem 5.4.5

We first define several notations to clarify the dependence:

Ot : = (st, at, st+1),

η∗ : = η(θ) = Es∼µθ ,a∼πθ(·|s)[r(s, a)]

∆h(O, η,ω,θ) : =
(
η(θ)− η +

(
φ(s′)− φ(s)

)>
(ω − ω∗)

)
∇ log πθ(a|s),

∆h′(O,θ) : =
((
φ(s′)>ω∗ − V πθ(s′)

)
−
(
φ(s)>ω∗ − V πθ(s)

))
∇ log πθ(a|s),

h(O,θ) : =
(
r(s, a)− η(θ) + φ(s′)>ω∗ − φ(s)>ω∗

)
∇ log πθ(a|s),

Γ(O,θ) : =
〈
∇J(θ), h(O,θ)− Es∼µθ ,a∼πθ ,s′∼P

[
h(O′,θ)

]〉
. (5.7.1)

Note that ∆h, ∆h′ and h−∆h′ together gives a decomposition of the actual gradient we use

in Algorithm 9. They each correspond to the error caused by the critic ωt, the approximation

error of the linear class, and the stochastic policy gradient.

Γ(O,θ) is the Markovian noise for h(O,θ). Here O′ = (s, a, s′) is a shorthand for an

independent sample from s ∼ µθ, a ∼ πθ, s
′ ∼ P. Using a more compact notation EO′ [·], it is

clear we have EO′ [h(O′,θ)−∆h′(O′,θ)] = ∇J(θ) and EO′‖∆h′(O,θ)‖2 ≤ 4B2ε2app because

EO′‖∆h′(O,θ)‖2 = EO′
∥∥∥∥
((
φ(s′)>ω∗ − V πθ(s′)

)
−
(
φ(s)>ω∗ − V πθ(s)

))
∇ log πθ(a|s)

∥∥∥∥
2

≤ EO′
[
B2
((
φ(s′)>ω∗ − V πθ(s′)

)
−
(
φ(s)>ω∗ − V πθ(s)

))2
]

≤ EO′
[
2B2

(
φ(s′)>ω∗ − V πθ(s′)

)2
+
(
φ(s)>ω∗ − V πθ(s)

)2
]

= 4B2EO′
[(
φ(s)>ω∗(θ)− V πθ(s)

)2
]

= 4B2ε2app.

There are several lemmas that will be used in the proof.

Lemma 5.7.1. For the performance function defined in (5.3.1), there exists a constant

LJ > 0 such that for all θ1,θ2 ∈ Rd, it holds that

∥∥∇J(θ1)−∇J(θ2)
∥∥ ≤ LJ‖θ1 − θ2‖,

155

which by the definition of smoothness [Nes18] implies

J(θ2) ≥ J(θ1) +
〈
∇J(θ1),θ2 − θ1

〉
− LJ

2
‖θ1 − θ2‖2.

The following two lemmas characterize the bias introduced by the critic’s approximation

and the Markovian noise.

Lemma 5.7.2. For any t ≥ 0,

∥∥∆h(Ot, ηt,ωt,θt)
∥∥2 ≤ B2

(
8‖ωt − ω∗t ‖2 + 2(ηt − η∗t)2

)
.

Lemma 5.7.3. For any θ ∈ Rd, we have ‖δ∇ log πθ(a|s)‖ ≤ Gθ := Uδ · B, where Uδ =

2Ur + 2Rω. Furthermore, for any t ≥ 0, it holds that

E
[
Γ(Ot,θt)

]
≥ −Gθ

(
D1(τ + 1)

t∑

k=t−τ+1

E‖θk − θk−1‖+D2mρ
τ−1
)
,

where D1 = max{(UδLl + 2L∗B + 3LJ), 2UδB|A|L} and D2 = 4UδB.

Proof of Theorem 5.4.5. Under the update rule of Algorithm 9, we have

J(θt+1) ≥ J(θt) + αt
〈
∇J(θt), δt∇ log πθt(at|st)

〉
− LJα2

t

∥∥δt∇ log πθt(at|st)
∥∥2

= J(θt) + αt
〈
∇J(θt),∆h(Ot, ηt,ωt,θt)

〉

+ αt
〈
∇J(θt), h(Ot,θt)

〉
− LJα2

t

∥∥δt∇ log πθt(at|st)
∥∥2

= J(θt) + αt
〈
∇J(θt),∆h(Ot, ηt,ωt,θt)

〉

+ αt
〈
∇J(θt),EO′ [h(O′,θt)]

〉
+ αtΓ(Ot,θt)− LJα2

t

∥∥δt∇ log πθt(at|st)
∥∥2

= J(θt) + αt
〈
∇J(θt),∆h(Ot, ηt,ωt,θt)

〉
+ αt

〈
∇J(θt),EO′ [∆h′(O′,θt)]

〉

+ αt
∥∥∇J(θt)

∥∥2
+ αtΓ(Ot,θt)− LJα2

t

∥∥δt∇ log πθt(at|st)
∥∥2
. (5.7.2)

The first inequality is by Lemma 5.7.1. The first equality is by the definitions in (5.7.1); the

second equality is by the definition of Λ(Ot,θt) in (5.7.1). The last inequality is due to the

remarks under (5.7.1).

We will bound the expectation of each term on the right hand side of (5.7.2) as follows.

First, we have

E
〈
∇J(θt),∆h(Ot, ηt,ωt,θt)

〉
≥ −B

√
E
∥∥∇J(θt)

∥∥2
√

8E‖zt‖2 + 2E[y2
t],

156

where zt := ωt − ω∗t and yt := ηt − η∗t , and the inequality is due to Cauchy inequality and

Lemma 5.7.2.

Second, we have

E[Γ(Ot,θt)] ≥ −Gθ
(
D1(τ + 1)

t∑

k=t−τ+1

E‖θk − θk−1‖+D2mρ
τ−1

)
,

≥ −Gθ
(
D1(τ + 1)Gθ

t−1∑

k=t−τ+1

αk +D2mρ
τ−1

)
,

where the first inequality is due to Lemma 5.7.3, and the second inequality is due to
∥∥δt∇ log πθt(at|st)

∥∥ ≤ Gθ by Lemma 5.7.3.

Third, by the remarks under (5.7.1) regarding ∆h′, we have

〈
∇J(θt),EO′ [∆h′(Ot,θt)]

〉
≥ −Gθ

√∥∥EO′ [∆h′(Ot,θt)]
∥∥2

≥ −Gθ
√

EO′
∥∥∆h′(Ot,θt)

∥∥2

≥ −2BGθεapp,

Taking the expectation of (5.7.2) and plugging the above terms back into it gives

E[J(θt+1)] ≥ E[J(θt)]− αtB
√

E
∥∥∇J(θt)

∥∥2
√

8E‖zt‖2 + 2E[y2
t]− 2BGθεappαt

− αtGθ
(
D1(τ + 1)Gθ

t−1∑

k=t−τ

αk +D2mρ
τ−1

)
+ αtE‖∇J(θt)‖2 − LJG2

θα
2
t .

Rearranging the above inequality gives

E
∥∥∇J(θt)

∥∥2 ≤ 1

αt

(
E[J(θt+1)]− E[J(θt)]

)
+B

√
E
∥∥∇J(θt)

∥∥2
√

8E‖zt‖2 + 2E[y2
t]

+D1G
2
θ(τ + 1)

t−1∑

k=t−τ

αk +D2Gθmρ
τ−1 + LJG

2
θαt.

By setting τ = τt, we get

E
∥∥∇J(θt)

∥∥2 ≤ 1

αt

(
E
[
J(θt+1)

]
− E

[
J(θt)

])
+B

√
E
∥∥∇J(θt)

∥∥2
√

8E‖zt‖2 + 2E[y2
t]

+ 2BGθεapp +D1G
2
θ(τt + 1)2αt−τt +D2Gθαt + LJG

2
θαt.

157

Summing over k from τt to t gives

t∑

k=τt

E
∥∥∇J(θt)

∥∥2

≤
t∑

k=τt

1

αk

(
E[J(θk+1)]− E[J(θk)]

)

︸ ︷︷ ︸
I1

+B
t∑

k=τt

√
E
∥∥∇J(θt)

∥∥2
√

8E‖zt‖2 + 2E[y2
t]

+
t∑

k=τt

D1G
2
θ(τt + 1)2αk−τt +

t∑

k=τt

(D2Gθ + LJG
2
θ)αk

︸ ︷︷ ︸
I2

+2BGθεapp(t− τt + 1).

For the term I1, we have,

t∑

k=τt

1

αk

(
J(θk+1)− J(θk)

)
=

t∑

k=τt

(
1

αk−1

− 1

αk

)
E[J(θk)]−

1

ατt−1

E[J(θτt)] +
1

αt
E[J(θt+1)]

≤
t∑

k=τt

(
1

αk
− 1

αk−1

)
Ur +

1

ατt−1

Ur +
1

αt
Ur

= Ur

[t∑

k=τt

(
1

αk
− 1

αk−1

)
+

1

ατt−1

+
1

αt

]

= 2Urα
−1
t ,

where the inequality holds due to |E[J(θ)]| ≤ Ur.

For the term I2, we have

t∑

k=τt

D1G
2
θ(τt + 1)2αk−τt = D1G

2
θ(τt + 1)2

t∑

k=τt

αk−τt

= D1G
2
θ(τt + 1)2

t−τt∑

k=0

αk

= D1G
2
θ(τt + 1)2cα

t−τt∑

k=0

1

(1 + k)σ
,

and

t∑

k=τt

(D2Gθ + LJG
2
θ)αk = (D2Gθ + LJG

2
θ)

t∑

k=τt

αk

≤ (D2Gθ + LJG
2
θ)

t−τt∑

k=0

αk

158

= (D2Gθ + LJG
2
θ)cα

t−τt∑

k=0

1

(1 + k)σ
.

Note that both upper bounds rely on the summation
∑t−τt

k=0 1/(1 + k)σ ≤
∫ t−τt+1

0
x−σdx =

1/(1− σ)(t− τt + 1)1−σ. Combining the results for terms I1 and I2, we have

t∑

k=τt

E
∥∥∇J(θt)

∥∥2 ≤ 2Ur
cα

(1 + t)σ

+
(
D1G

2
θ(τt + 1)2 +D2Gθ + LJG

2
θ

) cα
1− σ (t− τt + 1)1−σ

+B

t∑

k=τt

√
E
∥∥∇J(θt)

∥∥2
√

8E‖zt‖2 + 2E[y2
t]

+ 2BGθεapp(t− τt + 1).

Dividing (1 + t− τt) at both sides and assuming t > 2τt − 1, we can express the result as

1

1 + t− τt

t∑

k=τt

E
∥∥∇J(θt)

∥∥2 ≤
(
D1G

2
θ(τt + 1)2 +D2Gθ + LJG

2
θ

) cα
1− σ

1

(t− τt + 1)σ

+
2B

1 + t− τt

t∑

k=τt

√
E
∥∥∇J(θt)

∥∥2
√

8E‖zt‖2 + 2E[y2
t]

+
4Ur
cα

1

(t+ 1)1−σ + 2BGθεapp. (5.7.3)

By Cauchy-Schwartz inequality, we have

1

1 + t− τt

t∑

k=τt

√
E
∥∥∇J(θt)

∥∥2
√

8E‖zt‖2 + 2E[y2
t]

≤
(

1

1 + t− τt

t∑

k=τt

E
∥∥∇J(θt)

∥∥2
) 1

2
(

1

1 + t− τt

t∑

k=τt

(
8E‖zt‖2 + 2E[y2

t]
)) 1

2

.

Denote F (t) = (1 + t− τt)−1
∑t

k=τt
E‖∇J(θk)‖2 and Z(t) = (1 + t− τt)−1

∑t
k=τt

(
8E‖zt‖2 +

2E[y2
t]
)
, and putting them back to (5.7.3) (O-notation for simplicity):

F (t) ≤ O

(
1

t1−σ

)
+O

(
(log t)2

tσ

)
+O(εapp) + 2B

√
F (t) ·

√
Z(t),

which further gives

(√
F (t)−B

√
Z(t)

)2 ≤ O

(
1

t1−σ

)
+O

(
(log t)2

tσ

)
+O(εapp) +B2Z(t). (5.7.4)

159

Note that for a general function H(t) ≤ A(t) +B(t)(with each positive), we have

H2(t) ≤ 2A2(t) + 2B2(t),
√
H(t) ≤

√
A(t) +

√
B(t).

This means (5.7.4) implies

√
F (t)−B

√
Z(t) ≤

√
A(t) +B

√
Z(t),

√
F (t) ≤

√
A(t) + 2B

√
Z(t),

F (t) ≤ 2A(t) + 8B2Z(t).

By Lemma 5.6.3, assuming t ≥ 2τt − 1, it holds that

Z(t) =
1

1 + t− τt

t∑

k=τt

8E‖zk‖2 + 2E[y2
t] ≤

2

t

t∑

k=1

8E‖zk‖2 + 2E[y2
t] = 2E(t).

And finally, we have

min
0≤k≤t

E
∥∥∇J(θk)

∥∥2 ≤ 1

1 + t− τt

t∑

k=τt

E
∥∥∇J(θk)

∥∥2

≤ 8Ur
cα

1

(t+ 1)1−σ

+
(
D1G

2
θ(τt + 1)2 +D2Gθ + LJG

2
θ

) 2cα
1− σ

1

(t− τt + 1)σ

+ 4BGθεapp

+ 16B2E(t)

= O

(
1

t1−σ

)
+O

(
1

tσ

)
+O(εapp) +O

(
E(t)

)
.

5.7.2 Proof of Theorem 5.4.7: Estimating the Average Reward

The two time-scale analysis with Markovian noise and moving behavior policy can be com-

plicated, so we define some useful notations here that could hopefully clarify the probabilistic

160

dependency.

Ot : = (st, at, st+1),

η∗t : = η∗(θt) = J(θt),

yt : = ηt − η∗t ,

Ξ(O, η,θ) : = yt(rt − η∗t).

(5.7.5)

We also write J(θt) = r(θt) sometimes in the proof.

Lemma 5.7.4. For any θ1,θ2, we have |J(θ1) − J(θ2)| ≤ CJ‖θ1 − θ2‖, where CJ =

2Ur|A|L(1 + dlogρm
−1e+ 1/(1− ρ)).

Lemma 5.7.5. Given the definition of Ξ(Ot, ηt,θt), for any t > 0, we have

E[Ξ(Ot, ηt,θt)] ≤ 4UrCJ‖θt − θt−τ‖+ 2Ur|ηt − ηt−τ |

+ 2U2
r |A|L

t∑

i=t−τ

E‖θi − θt−τ‖.+ 4U2
rmρ

τ−1.

Proof. From the definition, ηt is the average reward estimator, η∗t = J(θt) = E[r(s, a)] is

the average reward under the stationary distribution µθt ⊗ πθt , and yt = ηt − η∗t . From the

algorithm we have the update rule as ηt+1 := ηt + γt
(
r(st, at)− ηt

)
, where we leave the step

size γt unspecified for now. Unrolling the recursive definition we have

y2
t+1 =

(
yt + η∗t − η∗t+1 + γt(rt − ηt)

)2

≤ y2
t + 2γtyt(rt − ηt) + 2yt(η

∗
t − η∗t+1) + 2(η∗t − η∗t+1)2 + 2γ2

t (rt − ηt)2

= (1− 2γt)y
2
t + 2γtyt(rt − η∗t) + 2yt(η

∗
t − η∗t+1) + 2(η∗t − η∗t+1)2 + 2γ2

t (rt − ηt)2

= (1− 2γt)y
2
t + 2γtΞ(Ok, ηk,θk) + 2yt(η

∗
t − η∗t+1) + 2(η∗t − η∗t+1)2 + 2γ2

t (rt − ηt)2.

Rearranging and summing from τt to t, we have

t∑

k=τt

E[y2
k] ≤

t∑

k=τt

1

2γk
E(y2

k − y2
k+1)

︸ ︷︷ ︸
I1

+
t∑

k=τt

E[Ξ(Ok, ηk,θk)]

︸ ︷︷ ︸
I2

+
t∑

k=τt

1

γk
E[yk(η

∗
k − η∗k+1)]

︸ ︷︷ ︸
I3

+
t∑

k=τt

1

γk
E[(η∗k − η∗k+1)2]

︸ ︷︷ ︸
I4

+
t∑

k=τt

γkE[(rk − ηk)2]

︸ ︷︷ ︸
I5

.

161

For I1, following the Abel summation formula, we have

I1 =
t∑

k=τt

1

2γk
(y2
k − y2

k+1)

=
t∑

k=τt

(
1

2γk
− 1

2γk−1

)
y2
k +

1

2γτt−1

y2
τt −

1

2γt
y2
t+1

≤ 2U2
r

γt
.

For I2, from Lemma 5.7.5, we have

E[Ξ(Ot, ηt,θt)]

≤ 4UrCJ‖θt − θt−τ‖+ 2Ur|ηt − ηt−τ |+ 2U2
r |A|L

t∑

i=t−τ

E‖θi − θt−τ‖.+ 4U2
rmρ

τ−1

≤ 4UrCJGθταt−τ + 4U2
r τγt−τ + 2U2

r |A|Lτ(τ + 1)Gθαt−τ + 4U2
rmρ

τ−1

≤ C1τ
2αt−τ + C2τγt−τ + C3mρ

τ−1.

By the choice of τt, we have

I2 =
t∑

k=τt

E[Ξ(Ok, ηk,θk)] ≤ (C1τ
2
t + C3)

t∑

k=τt

αk + C2τt

t∑

k=τt

γk.

For I3, we have

I3 ≤
(t∑

k=τt

E[y2
k]

)1/2(
C2
JG

2
θ

t∑

k=τt

α2
k

γ2
k

)1/2

,

which is because by Lemma 5.7.4, (η∗k−η∗k+1) can be linearly bounded by ‖θk−θk+1‖ ≤ Gθ·αk.
For I4, by the same argument it holds that

I4 =
t∑

k=τt

1

γk
E[(η∗k − η∗k+1)2]

=
t∑

k=τt

1

γk
E
[(
J(θk)− J(θk+1)

)2]

≤
t∑

k=τt

1

γk
C2
J‖θk − θk+1‖2

≤
t∑

k=τt

1

γk
C2
JG

2
θα

2
k

162

= O

(t∑

k=τt

α2
k

γk

)
.

For I5, we have

I5 =
t∑

k=τt

γkE[(rk − ηk)2] ≤
t∑

k=τt

4U2
r γk = O

(t∑

k=τt

γk

)
,

by bounding the expectation uniformly.

Now, we set γk = 1/(1 + t)ν and combine all the terms together to get

t∑

k=τt

E[y2
k] ≤ 2U2

r (1 + t)ν + (C1τ
2
t + C3)cα

t∑

k=τt

(1 + k)−σ + C2τt

t∑

k=τt

(1 + k)−ν

+ CJGθcα

(t∑

k=τt

E[y2
k]

)1/2(t∑

k=τt

(1 + k)−2(σ−ν)

)1/2

+ C2
JG

2
θc

2
α

t∑

k=τt

(1 + k)ν−2σ + 4U2
r

t∑

k=τt

(1 + k)−ν

≤ 2U2
r (1 + t)ν +

[
(C1τ

2 + C3)cα + C2τt + C2
JG

2
θc

2
α + 4U2

r

] t∑

k=τt

(1 + k)−ν

+ CJGθcα

(t∑

k=τt

E[y2
k]

)1/2(t∑

k=τt

(1 + k)−2(σ−ν)

)1/2

≤ 2U2
r (1 + t)ν +

[
(C1τ

2 + C3)cα + C2τt + C2
JG

2
θc

2
α + 4U2

r

](1 + t− τt)1−ν

1− ν

+ CJGθcα

(t∑

k=τt

E[y2
k]

)1/2(
(1 + t− τt)1−2(σ−ν)

1− 2(σ − ν)

)1/2

By applying the squaring technique already stated in the proof of Theorem 5.4.5, we have

t∑

k=τt

E[y2
k] ≤ 4U2

r (1 + t)ν + 2
[
(C1τ

2
t + C3)cα + C2τt + C2

JG
2
θc

2
α + 4U2

r

](1 + t− τt)1−ν

1− ν

+ 8C2
JG

2
θc

2
α

(1 + t− τt)1−2(σ−ν)

1− 2(σ − ν)
(5.7.6)

= O(tν) +O(log2 t · t1−ν) +O(t1−2(σ−ν)).

163

5.7.3 Proof of Theorem 5.4.7: Approximating the TD Fixed Point

Now we deal with the critic’s parameter ωt. The two time-scale analysis with Markovian

noise and moving behavior policy can be complicated, so we define some useful notations

here that could hopefully clarify the probabilistic dependency.

Ot : = (st, at, st+1),

g(O,ω,θ) : = [r(s, a)− J(θ) + (φ(s′)− φ(s))>ω]φ(s),

∆g(O, η,θ) : = [J(θ)− η]φ(s),

ḡ(ω,θ) : = Es∼µθ ,a∼πθ ,s′∼P
[[
r(s, a)− J(θ) +

(
φ(s′)− φ(s)

)>
ω
]
φ(s)

]
,

ω∗t : = ω∗(θt),

η∗t : = η∗(θt) = J(θt)

Λ(O,ω,θ) : =
〈
ω − ω∗(θ), g(O,ω,θ)− ḡ(ω,θ)

〉
,

zt : = ωt − ω∗t
yt : = ηt − η∗t . (5.7.7)

A bounded lemma is used frequently in this section.

Lemma 5.7.6. Under Assumption 5.4.3, for any θ, ω, O = (s, a, s′) such that ‖ω‖ ≤ Rω,

∥∥g(O,ω,θ)
∥∥ ≤ Uδ := 2Ur + 2Rω,

∥∥∆g(O, η,θ)
∥∥ ≤ 2Ur,

∣∣Λ(O,ω,θ)
∣∣ ≤ 2Rω · 2Uδ ≤ 2U2

δ .

The following lemma is used to control the bias due to Markovian noise.

Lemma 5.7.7. Given the definition of Λ(θt,ωt, Ot), for any 0 ≤ τ ≤ t, we have

E[Λ(Ot,ωt,θt)] ≤ C1(τ + 1)‖θt − θt−τ‖+ C2mρ
τ−1 + C3‖ωt − ωt−τ‖,

where C1 = 2U2
δ |A|L(1+ dlogρm

−1e+1/(1−ρ))+2UδL∗, C2 = 2U2
δ , C3 = 4Uδ are constants.

Proof of Theorem 5.4.7. By the updating rule of ωt in Algorithm 9, unrolling and decom-

posing the squared error gives

‖zt+1‖2 =
∥∥zt + βt(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + (ω∗t − ω∗t+1)

∥∥2

164

= ‖zt‖2 + 2βt
〈
zt, g(Ot,ωt,θt)

〉
+ 2βt

〈
zt,∆g(Ot, ηt,θt)

〉

+ 2〈zt,ω∗t − ω∗t+1〉+
∥∥βt(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + (ω∗t − ω∗t+1)

∥∥2

= ‖zt‖2 + 2βt
〈
zt, ḡ(ωt,θt)

〉
+ 2βtΛ(Ot,ωt,θt) + 2βt

〈
zt,∆g(Ot, ηt,θt)

〉

+ 2〈zt,ω∗t − ω∗t+1〉+
∥∥βt(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + (ω∗t − ω∗t+1)

∥∥2

≤ ‖zt‖2 + 2βt
〈
zt, ḡ(ωt,θt)

〉
+ 2βtΛ(Ot,ωt,θt) + 2βt

〈
zt,∆g(Ot, ηt,θt)

〉

+ 2〈zt,ω∗t − ω∗t+1〉+ 2β2
t

∥∥g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)
∥∥2

+ 2‖ω∗t − ω∗t+1‖2

≤ ‖zt‖2 + 2βt
〈
zt, ḡ(ωt,θt)

〉
+ 2βtΛ(Ot,ωt,θt) + 2βt

〈
zt,∆g(Ot, ηt,θt)

〉

+ 2〈zt,ω∗t − ω∗t+1〉+ 2U2
δ β

2
t + 2‖ω∗t − ω∗t+1‖2,

where the first inequality is due to ‖x + y‖2 ≤ 2‖x‖2 + 2‖y‖2 and the second is due to

‖g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)‖ ≤ Uδ. First, note that due to Assumption 5.4.1, we have

〈
zt, ḡ(ωt,θt)

〉
=
〈
zt, ḡ(ωt,θt)− ḡ(ω∗t ,θt)

〉

=
〈
zt,E

[(
φ(s′)− φ(s)

)>
(ωt − ω∗t)φ(s)

]〉

= z>t E
[
φ(s)

(
φ(s′)− φ(s)

)>]
zt

= z>t Azt

≤ −λ‖zt‖2,

where the first equation is due to the fact that ḡ(ω∗,θ) = 0 [SB18]. Taking expectation up

to st+1, we have

E‖zt+1‖2 ≤ E‖zt‖2 + 2βtE
〈
zt, ḡ(ωt,θt)

〉
+ 2βtEΛ(Ot,ωt,θt) + 2βtE

〈
zt,∆g(Ot, ηt,θt)

〉

+ 2E〈zt,ω∗t − ω∗t+1〉+ 2U2
δ β

2
t + 2E‖ω∗t − ω∗t+1‖2

≤ (1− 2λβt)E‖zt‖2 + 2βtEΛ(Ot,ωt,θt) + 2βtE
〈
zt,∆g(Ot, ηt,θt)

〉

+ 2E〈zt,ω∗t − ω∗t+1〉+ 2U2
δ β

2
t + 2E‖ω∗t − ω∗t+1‖2.

Based on the result above, we can further rewrite it as:

E‖zt+1‖2 ≤ (1− 2λβt)E‖zt‖2 + 2βtEΛ(Ot,ωt,θt) + 2βtE‖zt‖ · |yt|

+ 2L∗E‖zt‖ · ‖θt − θt+1‖+ 2U2
δ β

2
t + 2L2

∗E‖θt − θt+1‖2

165

≤ (1− 2λβt)E‖zt‖2 + 2βtEΛ(Ot,ωt,θt) + 2βtE‖zt‖ · |yt|

+ 2L∗GθαtE‖zt‖+ 2U2
δ β

2
t + 2L2

∗G
2
θα

2
t

≤ (1− 2λβt)E‖zt‖2 + 2βtEΛ(Ot,ωt,θt) + 2βtE‖zt‖ · |yt|

+ 2L∗GθαtE‖zt‖+

(
2U2

δ + 2L2
∗G

2
θ

(
max
t

αt
βt

)2
)
β2
t

= (1− 2λβt)E‖zt‖2 + 2βtEΛ(Ot,ωt,θt) + 2βtE‖zt‖ · |yt|+ 2L∗GθαtE‖zt‖+ Cqβ
2
t ,

where we denote the constant coefficient before the quadratic stepsize β2
t as Cq at the last

step. The first inequality is due to Proposition 5.4.4 and Cauchy-Schwartz inequality. The

second inequality is due to the update of θt is bounded by Gθαt. The third inequality is

from employing the fact that σ > ν so αt/βt is bounded. Rearranging the inequality yields

2λE‖zt‖2 ≤ 1

βt

(
E‖zt‖2 − E‖zt+1‖2

)
+ 2EΛ(Ot,ωt,θt) + E‖zt‖ · |yt|+ 2L∗Gθ

αt
βt
E‖zt‖+ Cqβt

≤ 1

βt

(
E‖zt‖2 − E‖zt+1‖2

)
+ 2EΛ(Ot,ωt,θt) +

√
Ey2

t ·
√

E‖zt‖2

+ 2L∗Gθ
αt
βt

√
E‖zt‖2 + Cqβt,

where the second inequality is due to the concavity of square root function. Telescoping

from τt to t gives:

2λ
t∑

k=τt

E‖zk‖2 ≤
t∑

k=τt

1

βk

(
E‖zk‖2 − E‖zk+1‖2

)

︸ ︷︷ ︸
I1

+2
t∑

k=τt

EΛ(θk,ωk, Ok)

︸ ︷︷ ︸
I2

+ 2L∗Gθ

t∑

k=τt

αk
βk

√
E‖zk‖2

︸ ︷︷ ︸
I3

+
t∑

k=τt

√
Ey2

k ·
√
E‖zk‖2

︸ ︷︷ ︸
I4

+Cq

t∑

k=τt

βk

︸ ︷︷ ︸
I5

. (5.7.8)

From (5.7.8), we can see the proof of the critic again shares the same spirit with the proof

of Theorem 5.4.5. For term I1, we have

I1 :=
t∑

k=τt

1

βk
(E‖zk‖2 − E‖zk+1‖2)

=
t∑

k=τt

(
1

βk
− 1

βk−1

)
E‖zk‖2 +

1

βτt−1

E‖zτt‖2 − 1

βt
E‖zt+1‖2

166

≤
t∑

k=τt

(
1

βk
− 1

βk−1

)
E‖zk‖2 +

1

βτt−1

E‖zτt‖2

≤ 4R2
ω

(t∑

k=τt

(
1

βk
− 1

βk−1

)
+

1

βτt−1

)

= 4R2
ω

1

βt

= 4R2
ω(1 + t)ν = O(tν),

where the first inequality is due to discarding the last term, and the second inequality is due

to E‖zk‖2 ≤ (Rω +Rω)2.

For term I2, note that due to Lemma 5.7.7, we actually have

Λ(Ok,ωk,θk) ≤ C1(τt + 1)‖θk − θk−τt‖+ C2mρ
τt−1 + C3‖ωk − ωk−τt‖

≤ C1(τt + 1)
k−1∑

i=k−τt

Gθαi + C2mρ
τt−1 + C3

k−1∑

i=k−τt

Uδβi

≤ C1Gθ(τt + 1)2αk−τt + C2αt + C3Uδτtβk,

and the summation is

I2 :=
t∑

k=τt

EΛ(Ok,ωk,θk)

≤ C1Gθ(τt + 1)2

t∑

k=τt

αk−τt + C2

t∑

k=τt

αt + C3Uδτt

t∑

k=τt

βk

≤ C1Gθ(τt + 1)2

t−τt∑

k=0

αk + C2(t− τt + 1)αt + C3Uδτt

t−τt∑

k=0

βk

≤ C1Gθ(τt + 1)2cα
(1 + t− τt)1−σ

1− σ + C2(t− τt + 1)cα(1 + t)−σ + C3Uδτt
(1 + t− τt)1−ν

1− ν
≤
[
C1Gθ(τt + 1)2cα

1− σ + C2cα +
C3Uδτt
1− ν

]
(1 + t)1−ν

= O
(
(log t)2t1−ν

)
,

where the second inequality is due to the monotonicity of αk and βk. The O(·) comes from

that τ = O(log t) and
∑
k−ν = O(t1−ν).

For term I3 and I4, we will instead show it can be bounded in a different form. Using

167

Cauchy-Schwartz inequality we have

I3 :=
t∑

k=τt

αk
βk

√
E‖zk‖2 ≤

(t∑

k=τt

α2
k

β2
k

) 1
2
(t∑

k=τt

E‖zk‖2

) 1
2

≤
(t−τt∑

k=0

α2
k

β2
k

) 1
2
(t∑

k=τt

E‖zk‖2

) 1
2

,

I4 :=
t∑

k=τt

√
Ey2

k ·
√

E‖zk‖2 ≤
(t∑

k=τt

Ey2
k

) 1
2
(t∑

k=τt

E‖zk‖2

) 1
2

≤
(t−τt∑

k=0

Ey2
k

) 1
2
(t∑

k=τt

E‖zk‖2

) 1
2

.

For term I5, simply bound it as
∑t−τt

k=0 βk ≤ (1 + t)1−ν/(1− ν).

Collecting the upper bounds of the above five terms, and writing them using O(·) notation

give

2λ
t∑

k=τt

E‖zk‖2 ≤ 4R2
ω(1 + t)ν + 2

[
C1Gθ(τt + 1)2cα

1− σ + C2cα +
C3Uδτt + Cq

1− ν

]
(1 + t)1−ν

+ 2L∗Gθ

(t−τt∑

k=0

α2
k

β2
k

) 1
2 (t∑

k=τt

E‖zk‖2

) 1
2

+

(t−τt∑

k=0

Ey2
k

) 1
2
(t∑

k=τt

E‖zk‖2

) 1
2

. (5.7.9)

Now, we first divide both sides by (1 + t− τt), and denote

Z(t) : =
1

1 + t− τt

t∑

k=τt

E‖zk‖2,

F (t) : =
1

1 + t− τt

t−τt∑

k=0

α2
k

β2
k

≤ t−2(σ−ν)

1− 2(σ − ν)
= O(t−2(σ−ν)),

G(t) : =
1

1 + t− τt

t−τt∑

k=0

E[y2
k] = O(tν−1) +O(log t · t−ν) +O(t−2(σ−ν)),

and the rest as A(t) = O(tν) + O(t1−ν). G(t)’s constants appear at (5.7.6) in exact form.

This simplification leads to

2λ
(√

Z(t)− L∗Gθ
2λ
·
√
F (t)− 1

4λ

√
G(t)

)2

≤ A(t) + 2λ

(
L∗Gθ

2λ

√
F (t) +

1

4λ

√
G(t)

)2

,

which further gives Z(t) ≤ A(t)/λ + 16F (t) + 16G(t). This is again a similar reasoning as

in the end of the proof of Theorem 5.4.5. We actually show that

1

1 + t− τt

t∑

k=τt

E‖ωk − ω∗k‖2 = O

(
1

t1−ν

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
.

This completes the proof. To obtain the exact constant, please refer to (5.7.6) and (5.7.9).

168

5.7.4 Proof of Corollary 5.4.9

Proof of Corollary 5.4.9. By Theorem 5.4.7, we have

1

1 + t− τt

t∑

k=τt

E‖ωk − ω∗k‖2 = O

(
1

t1−ν

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
.

By Lemma 5.6.3, E(t) in Theorem 5.4.5 is of the equivalent order:

E1(t) =
1

t

t∑

k=1

E‖ωk − ω∗k‖2

= O

(
1

1 + t− τt

t∑

k=τt

E‖ωk − ω∗k‖2

)
+O

(
log t

t

)

= O

(
1

t1−ν

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
+O

(
log t

t

)

= O

(
1

t1−ν

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
.

The same reasoning also applies to

E2(t) =
1

t

t∑

k=1

E(ηk − r(θk))2 = O

(
1

t1−ν

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
.

Plugging the above results into Theorem 5.4.5, and optimizing over the choice of σ and ν

(which gives σ = 3/5 and ν = 2/5), we have

min
0≤k≤t

E‖∇J(θk)‖2 = O

(
1

t1−σ

)
+O

(
log2 t

tσ

)
+O

(
1

t1−ν

)
+O

(
log t

tν

)

+O

(
1

t2(σ−ν)

)
+O(εapp)

= O

(
1

t1−σ

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
+O(εapp)

= O

(
log t

t2/5

)
+O(εapp).

Therefore, in order to obtain an ε-approximate(ignoring the approximation error) stationary

point of J , namely,

min
0≤k≤T

E
∥∥∇J(θk)

∥∥2
= O

(
log T

T 2/5

)
+O(εapp) ≤ O(εapp) + ε,

we need to set T = Õ(ε−2.5).

169

5.8 Proof of Technical Lemmas

5.8.1 Proof of Lemma 5.7.1

Proof of Lemma 5.7.1. The first inequality comes from Lemma 3.2 in [ZKZB19]. The second

inequality is well known as a partial result of [−L,L]-smoothness of non-convex functions.

5.8.2 Proof of Lemma 5.7.2

Proof of Lemma 5.7.2. Applying the definition of ∆h() and Cauchy-Schwartz inequality im-

mediately yields the result.

5.8.3 Proof of Lemma 5.7.3

The proof of Lemma 5.7.3 will be built on the following supporting lemmas.

Lemma 5.8.1. For any t ≥ 0,

∣∣Γ(Ot,θt)− Γ(Ot,θt−τ)
∣∣ ≤ Gθ(UδLl + 2L∗B + 3LJ)‖θt − θt−τ‖.

Proof of Lemma 5.8.1. Let δ(Ot,θ) := r(st, at) + (φ(st+1)−φ(st))
>ω∗ − r(θ) and it can be

shown that δ(Ot,θ1)− δ(Ot,θ2) = (φ(st+1)− φ(st))
>(ω∗1 − ω∗2)− (r(θ1)− r(θ2)).

∥∥h(Ot,θt)− h(Ot,θt−τ)
∥∥ =

∥∥δ(Ot,θt)∇ log πθt(at|st)− δ(Ot,θt−τ)∇ log πθt−τ (at|st)
∥∥

≤
∥∥δ(Ot,θt)∇ log πθt(at|st)− δ(Ot,θt)∇ log πθt−τ (at|st)

∥∥

+
∥∥δ(Ot,θt)∇ log πθt−τ (at|st)− δ(Ot,θt−τ)∇ log πθt−τ (at|st)

∥∥

≤ UδLl‖θt − θt−τ‖+ 2L∗B‖θt − θt−τ‖.

By triangle inequality, we have

∣∣Γ(Ot,θt)− Γ(Ot,θt−τ)
∣∣ ≤ Gθ

∥∥h(Ot,θt)− h(Ot,θt−τ)
∥∥+ 3Gθ

∥∥∇J(θt)−∇J(θt−τ)
∥∥

≤ Gθ(UδLl + 2L∗B + 3LJ)‖θt − θt−τ‖.

170

Lemma 5.8.2. For any t ≥ 0,

∣∣E[Γ(Ot,θt−τ)− Γ(Õt,θt−τ)]
∣∣ ≤ 2UδBGθ|A|L

t∑

i=t−τ

‖θi − θt−τ‖.

Proof of Lemma 5.8.2. By the definition of in (5.7.1),

E
[
Γ(Ot,θt−τ)− Γ(Õt,θt−τ)

]
= E

[〈
∇J(θt−τ), h(Ot,θt−τ)− h(Õt,θt−τ)

〉]

= E
[〈
∇J(θt−τ), h(Ot,θt−τ)

〉
−
〈
∇J(θt−τ), h(Õt,θt−τ)

〉]

≤ 4UδBGθdTV
(
P(Ot = ·|st−τ+1,θt−τ),P(Õt = ·|st−τ+1,θt−τ)

)
,

(5.8.1)

where the inequality is by the definition of total variation. By Lemma 5.6.2 we have

dTV
(
P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ)

)

= dTV
(
P((st, at) ∈ ·|st−τ+1,θt−τ),P((s̃t, ãt) ∈ ·|st−τ+1,θt−τ)

)

≤ dTV
(
P(st ∈ ·|st−τ+1,θt−τ),P(s̃t ∈ ·|st−τ+1,θt−τ)

)
+

1

2
|A|LE‖θt − θt−τ‖

≤ dTV
(
P(Ot−1 ∈ ·|st−τ+1,θt−τ),P(Õt−1 ∈ ·|st−τ+1,θt−τ)

)
+

1

2
|A|LE‖θt − θt−τ‖.

Repeat the inequality above over t to t− τ + 1 we have

dTV
(
P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ)

)
≤ 1

2
|A|L

t∑

i=t−τ

E‖θi − θt−τ‖. (5.8.2)

Plugging (5.8.2) into (5.8.1) we get

E
[
Γ(Ot,θt−τ)− Γ(Õt,θt−τ)

]
≤ 2UδBGθ|A|L

t∑

i=t−τ

‖θi − θt−τ‖.

Lemma 5.8.3. For any t ≥ 0, it holds
∣∣E[Γ(Õt,θt−τ)− Γ(O′t,θt−τ)]

∣∣ ≤ 4UδBGθmρ
τ−1.

Proof of Lemma 5.8.3.

E
[
Γ
(
Õt,θt−τ

)
− Γ(O′t,θt−τ)

]
≤ 4UδBGθdTV

(
P(Õt = ·|st−τ+1,θt−τ), µθt−τ ⊗ πθt−τ ⊗ P

)

≤ 4UδBGθmρ
τ−1.

The first inequality is by the definition of total variation norm and the second inequality is

shown in Lemma 5.8.11.

171

Proof of Lemma 5.7.3. First note that

δ =
∣∣r(s, a)− J(θ) + φ>(s′)ω − φ>(s)ω

∣∣

≤
∣∣r(s, a)

∣∣+
∣∣J(θ)

∣∣+
∣∣φ>(s′)ω

∣∣+
∣∣φ>(s)ω

∣∣

= 2Ur + 2Rω

=: Uδ,

which immediately implies

∥∥δ∇ log πθ(a|s)
∥∥ ≤ |δ| ·

∥∥∇ log πθ(a|s)
∥∥ ≤ Uδ ·B,

where the last inequality is due to Assumption 5.4.3. We decompose the Markovian bias as

E[Γ(Ot,θt)] = E[Γ(Ot,θt)− Γ(Ot,θt−τ)] + E[Γ(Ot,θt−τ)− Γ(Õt,θt−τ)]

+ E[Γ(Õt,θt−τ)− Γ(O′t,θt−τ)] + E[Γ(O′t,θt−τ)],

where Õt is from the auxiliary Markovian chain and O′t is from the stationary distribution

which actually satisfy E[Γ(O′t,θt−τ)] = 0. By collecting the corresponding bounds from

Lemmas 5.8.1, 5.8.2 and 5.8.3, we have that

E[Γ(Ot,θt)] ≥ −Gθ(UδLl + 2L∗B + 3LJ)E‖θt − θt−τ‖ − 2UδBGθ|A|L
t∑

i=t−τ

E‖θi − θt−τ‖

− 4UδBGθmρ
τ−1

≥ −Gθ(UδLl + 2L∗B + 3LJ)
t∑

i=t−τ+1

E‖θi − θi−1‖

− 2UδBGθ|A|L
t∑

i=t−τ+1

i∑

j=t−τ+1

E‖θj − θj−1‖ − 4UδBGθmρ
τ−1

≥ −Gθ(UδLl + 2L∗B + 3LJ)
t∑

i=t−τ+1

E‖θi − θi−1‖

− 2UδBGθ|A|Lτ
t∑

j=t−τ+1

E‖θj − θj−1‖ − 4UδBGθmρ
τ−1

≥ −Gθ
(
D1(τ + 1)

t∑

k=t−τ+1

E‖θk − θk−1‖+D2mρ
τ−1

)
,

where D1 := max{(UδLl + 2L∗B + 3LJ), 2UδB|A|L} and D2 := 4UδB, which completes the

proof.

172

5.8.4 Proof of Lemma 5.7.4

Proof of Lemma 5.7.4. By definition, we have

J(θ1)− J(θ2) = E[r(s(1), a(1))− r(s(2), a(2))],

where s(i) ∼ µθi , a
(i) ∼ πθi . Therefore, it holds that

J(θ1)− J(θ2) = E[r(s(1), a(1))− r(s(2), a(2))]

≤ 2UrdTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2)

≤ 2Ur|A|L
(

1 + dlogρm
−1e+

1

1− ρ

)
‖θ1 − θ2‖

= CJ‖θ1 − θ2‖.

5.8.5 Proof of Lemma 5.7.5

The proof of this lemma depends on several auxiliary lemmas as follows.

Lemma 5.8.4. For any θ1,θ2, eta, O = (s, a, s′), we have

∣∣Ξ(O, η,θ1)− Ξ(O, η,θ2)
∣∣ ≤ 4UrCJ‖θ1 − θ2‖.

Proof of Lemma 5.8.4. By the definition of Ξ(O, η,θ) in (5.7.5), we have

∣∣Ξ(O, η,θ1)− Ξ(O, η,θ2)
∣∣ =

∣∣(η − η∗1)(r − η∗1)− (η − η∗2)(r − η∗2)
∣∣

≤
∣∣(η − η∗1)(r − η∗1)− (η − η∗1)(r − η∗2)

∣∣

+
∣∣(η − η∗1)(r − η∗2)− (η − η∗2)(r − η∗2)

∣∣

≤ 4Ur|η∗1 − η∗2|

= 4Ur
∣∣J(θ1)− J(θ2)

∣∣

≤ 4UrCJ‖θ1 − θ2‖.

173

Lemma 5.8.5. For any θ, η1, η2, O, we have

∣∣Ξ(O, η1,θ)− Ξ(O, η2,θ)
∣∣ ≤ 2Ur|η1 − η2|.

Proof of Lemma 5.8.5. By definition,

∣∣Ξ(O, η1,θ)− Ξ(O, η2,θ)
∣∣ =

∣∣(η1 − η∗)(r − η∗)− (η2 − η∗)(r − η∗)
∣∣

≤ 2Ur|η1 − η2|.

Lemma 5.8.6. Consider original tuples Ot = (st, at, st+1) and the auxiliary tuples Õt =

(s̃t, ãt, s̃t+1). Conditioned on st−τ+1 and θt−τ , we have

∣∣E[Ξ(Ot, ηt−τ ,θt−τ)− Ξ(Õt, ηt−τ ,θt−τ)]
∣∣ ≤ 2U2

r |A|L
t∑

i=t−τ

E‖θi − θt−τ‖.

Proof of Lemma 5.8.6. By the Cauchy-Schwartz inequality and the definition of total varia-

tion norm, we have

E
[
Ξ(Ot, ηt−τ ,θt−τ)− Ξ(Õt, ηt−τ ,θt−τ)

]
= (ηt−τ − η∗t−τ)E[r(st, at)− r(s̃t, ãt)].

Since

E[r(st, at)− r(s̃t, ãt)] ≤ 2UrdTV
(
P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ)

)
,

the total variation between Ot and Õt has appeared in (5.8.2), in the proof of Lemma 5.8.2,

which is

dTV
(
P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ)

)
≤ 1

2
|A|L

t∑

i=t−τ

E‖θi − θt−τ‖.

Plugging this bound, we have

∣∣E[Ξ(Ot, ηt−τ ,θt−τ)− Ξ(Õt, ηt−τ ,θt−τ)]
∣∣ ≤ 2U2

r |A|L
t∑

i=t−τ

E‖θi − θt−τ‖.

Lemma 5.8.7. Conditioned on st−τ+1 and θt−τ , we have E[Ξ(Õt, ηt−τ ,θt−τ)] ≤ 4U2
rmρ

τ−1.

174

Proof of Lemma 5.8.7. We first note that according to the definition,

E[η(O′t, ηt−τ ,θt−τ)|θt−τ] = 0,

where O′t = (s′t, a
′
t, s
′
t+1) is the tuple generated by s′t ∼ µθt−τ , a

′
t ∼ πθt−τ , s

′
t+1 ∼ P . By the

ergodicity in Assumption 5.4.2, it holds that dTV
(
P(s̃t = ·|st−τ+1,θt−τ), µθt−τ

)
≤ mρτ−1. It

can be shown that

E[Ξ(Õt, ηt−τ ,θt−τ)] = E
[
Ξ
(
Õt, ηt−τ ,θt−τ

)
− Ξ(O′t, ηt−τ ,θt−τ)

]

= E
[
(ηt−τ − η∗t−τ)

(
r(s̃t, ãt)− r(s′, a′)

)]

≤ 4U2
r dTV

(
P
(
Õt = ·|st−τ+1,θt−τ

)
, µθt−τ ⊗ πθt−τ ⊗ P

)

≤ 4U2
rmρ

τ−1.

The argument used here is the same as that in the proof of Lemma 5.8.11.

Proof of Lemma 5.7.5. By the Lemma 5.8.4, 5.8.5, 5.8.6 and 5.8.7, we can collect the corre-

sponding term and get the bound

E[Ξ(Ot, ηt,θt)] = E[Ξ(Ot, ηt,θt)− Ξ(Ot, ηt,θt−τ)] + E[Ξ(Ot, ηt,θt−τ)− Ξ(Ot, ηt−τ ,θt−τ)]

+ E[Ξ(Ot, ηt−τ ,θt−τ)− Ξ(Õt, ηt−τ ,θt−τ)] + E[Ξ(Õt, ηt−τ ,θt−τ)]

≤ 4UrCJ‖θt − θt−τ‖+ 2Ur|ηt − ηt−τ |+ 2U2
r |A|L

t∑

i=t−τ

E‖θi − θt−τ‖

+ 4U2
rmρ

τ−1.

5.8.6 Proof of Lemma 5.7.6

Proof of Lemma 5.7.6. For the first inequality, apply the property of norm and the Cauchy-

Schwartz inequality:

∥∥g(O,ω,θ)
∥∥ =

∥∥(r(s, a)− J(θ) + φ>(s′)ω − φ>(s)ω)φ(s)
∥∥

≤
∣∣r(s, a)

∣∣+
∥∥J(θ)

∥∥+
∣∣φ>(s′)ω

∣∣ ·
∥∥φ>(s)

∥∥+
∣∣φ>(s)ω

∣∣ ·
∥∥φ>(s)

∥∥

175

= Ur + Ur +Rω +Rω ≤ 2Ur + 2Rω.

For the second inequality, we can directly apply Cauchy-Schwartz inequality and obtain the

result. For the third inequality, apply Cauchy-Schwartz inequality as we have

∣∣Λ(O,ω,θ)
∣∣ =

∣∣∣
〈
ω − ω∗, g(O,ω,θ)− ḡ(ω,θ)

〉∣∣∣

≤ ‖ω − ω∗‖ ·
∥∥g(O,ω,θ)− ḡ(ω,θ)

∥∥

≤ 2Rω · 2Uδ ≤ 2U2
δ ,

which completes the proof.

5.8.7 Proof of Lemma 5.7.7

This Lemma is actually a combination of several auxiliary lemmas listed here:

Lemma 5.8.8. For any θ1,θ2, ω and tuple O = (s, a, s′),

∣∣Λ(O,ω,θ1)− Λ(O,ω,θ2)
∣∣ ≤ K1‖θ1 − θ2‖,

where K1 = 2U2
δ |A|L(1 + dlogρm

−1e+ 1/(1− ρ)) + 2UδL∗.

Proof of Lemma 5.8.8.

∣∣Λ(O,ω,θ1)− Λ(O,ω,θ2)
∣∣

=
∣∣∣
〈
ω − ω∗1, g(O,ω)− ḡ(θ1,ω)

〉
−
〈
ω − ω∗2, g(O,ω)− ḡ(θ2,ω)

〉∣∣∣

≤
∣∣∣
〈
ω − ω∗1, g(O,ω)− ḡ(θ1,ω)

〉
−
〈
ω − ω∗1, g(O,ω)− ḡ(θ2,ω)

〉∣∣∣
︸ ︷︷ ︸

I1

+
∣∣∣
〈
ω − ω∗1, g(O,ω)− ḡ(θ2,ω)

〉
−
〈
ω − ω∗2, g(O,ω)− ḡ(θ2,ω)

〉∣∣∣
︸ ︷︷ ︸

I2

.

For the term I2, we simply use the Cauchy-Schwartz inequality to get 2Uδ‖ω∗1 − ω∗2‖.
For the term I1, it can be bounded as:

∣∣∣
〈
ω − ω∗1, g(O,ω)− ḡ(θ1,ω)

〉
−
〈
ω − ω∗1, g(O,ω)− ḡ(θ2,ω)

〉∣∣∣

176

=
∣∣∣
〈
ω − ω∗1, ḡ(θ1,ω)− ḡ(θ2,ω)

〉∣∣∣

≤ 2Rω
∥∥ḡ(θ1,ω)− ḡ(θ2,ω)

∥∥

≤ 2Rω · 2Uδ · dTV (µθ1 ⊗ πθ1 ⊗ P , µθ2 ⊗ πθ2 ⊗ P)

≤ 2U2
δ dTV (µθ1 ⊗ πθ1 ⊗ P , µθ2 ⊗ πθ2 ⊗ P),

where the first inequality is due to Cauchy-Schwartz; the second inequality is by the definition

of total variation norm; the third inequality is due to the fact Uδ ≥ 2Rω. Therefore, we have

∣∣Λ(θ1,ω, O)− Λ(θ2,ω, O)
∣∣

≤ 2U2
δ dTV (µθ1 ⊗ πθ1 ⊗ P , µθ2 ⊗ πθ2 ⊗ P) + 2Uδ‖ω∗1 − ω∗2‖

≤ 2U2
δ |A|L

(
1 + dlogρm

−1e+
1

1− ρ

)
‖θ1 − θ2‖+ 2UδL∗‖θ1 − θ2‖

= K1‖θ1 − θ2‖,

where the second inequality is due to Lemma 5.6.1 and Proposition 5.4.4.

Lemma 5.8.9. For any θ, ω1,ω2 and tuple O = (s, a, s′),

∣∣Λ(O,ω1,θ)− Λ(O,ω2,θ)
∣∣ ≤ 6Uδ‖ω1 − ω2‖.

Proof of Lemma 5.8.9. By definition,

∣∣Λ(O,ω1,θ)− Λ(O,ω2,θ)
∣∣

=
∣∣∣
〈
ω1 − ω∗, g(O,ω1)− ḡ(ω1,θ)

〉
−
〈
ω2 − ω∗, g(O,ω2)− ḡ(ω2,θ)

〉∣∣∣

≤
∣∣∣
〈
ω1 − ω∗, g(O,ω1)− ḡ(ω1,θ)

〉
−
〈
ω1 − ω∗, g(O,ω2)− ḡ(ω2,θ)

〉∣∣∣

+
∣∣∣
〈
ω1 − ω∗, g(O,ω2)− ḡ(ω2,θ)

〉
−
〈
ω2 − ω∗, g(O,ω2)− ḡ(ω2,θ)

〉∣∣∣

≤ 2Rω

∥∥∥
(
g(O,ω1)− g(O,ω2)

)
−
(
ḡ(ω1,θ)− ḡ(ω2,θ)

)∥∥∥+ 2Uδ‖ω1 − ω2‖.

Note that we have ‖g(O,ω1,θ)−g(O,ω2,θ)‖ = |(φ(s′)−φ(s))>(ω1−ω2)| ≤ 2‖ω1−ω2‖ and

similarly ‖ḡ(ω1,θ)− ḡ(ω2,θ)‖ ≤ |E
[
(φ(s′)− φ(s))>(ω1 − ω2)

]
| ≤ 2‖ω1 − ω2‖. Therefore,

∣∣Λ(O,ω1,θ)− Λ(O,ω2,θ)
∣∣

177

≤ 2Rω

∥∥∥
(
g(O,ω1)− g(O,ω2)

)
−
(
ḡ(ω1,θ)− ḡ(ω2,θ)

)∥∥∥+ 2Uδ‖ω1 − ω2‖

≤ 2Rω · 4‖ω1 − ω2‖+ 2Uδ‖ω1 − ω2‖

≤ 6Uδ‖ω1 − ω2‖.

Lemma 5.8.10. Consider original tuples Ot = (st, at, st+1) and the auxiliary tuples Õt =

(s̃t, ãt, s̃t+1). Conditioned on st−τ+1 and θt−τ , we have

E[Λ(Ot,ωt−τ ,θt−τ)− Λ(Õt,ωt−τ ,θt−τ)] ≤ U2
δ |A|L

t∑

i=t−τ

E‖θi − θt−τ‖ (5.8.3)

Proof of Lemma 5.8.10. By the Cauchy-Schwartz inequality and the definition of total vari-

ation norm, we have

E[Λ(Ot,ωt−τ ,θt−τ)− Λ(Õt,ωt−τ ,θt−τ)] (5.8.4)

= E
[〈
ωt−τ − ω∗t−τ , g(Ot,ωt−τ)− g(Õt,ωt−τ)

〉]

≤ 2U2
δ dTV

(
P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ)

)
. (5.8.5)

The total variation between Ot and Õt has appeared in (5.8.2), in the proof of Lemma 5.8.2,

which is

dTV
(
P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ)

)
≤ 1

2
|A|L

t∑

i=t−τ

E‖θi − θt−τ‖.

Plugging this bound into (5.8.5), we have

E
∣∣Λ(Ot,ωt−τ ,θt−τ)− Λ(Õt,ωt−τ ,θt−τ)

∣∣ ≤ U2
δ |A|L

t∑

i=t−τ

E‖θi − θt−τ‖.

Lemma 5.8.11. Conditioned on st−τ+1 and θt−τ , we have E[Λ(Õt,ωt−τ ,θt−τ)] ≤ 2U2
δmρ

τ−1.

Proof of Lemma 5.8.11. We first note that according to the definition in Section 5.7.3,

E[Λ(O′t,ωt−τ ,θt−τ)|st−τ+1,θt−τ] = 0,

178

where O′t = (s′t, a
′
t, s
′
t+1) is the tuple generated by s′t ∼ µθt−τ , a

′
t ∼ πθt−τ , s

′
t+1 ∼ P . By the

ergodicity in Assumption 5.4.2, it holds that dTV
(
P(s̃t = ·|st−τ+1,θt−τ), µθt−τ

)
≤ mρτ−1. It

can be shown that

E[Λ(Õt,ωt−τ ,θt−τ)] = E[Λ(Õt,ωt−τ ,θt−τ)− Λ(O′t,ωt−τ ,θt−τ)]

= E
〈
ωt−τ − ω∗t−τ , g(Õt,ωt−τ)− g(O′t,ωt−τ)

〉

≤ 4RωUδdTV
(
P(Õt = ·|st−τ+1,θt−τ), µθt−τ ⊗ πθt−τ ⊗ P

)

≤ 2U2
δ dTV

(
P(s̃t = ·|st−τ+1,θt−τ), µθt−τ

)

≤ 2U2
δmρ

τ−1.

The third inequality holds because 2Rω < Uδ and

dTV
(
P(Õt = ·|st−τ+1,θt−τ), µθt−τ ⊗ πθt−τ ⊗ P

)

= dTV
(
P((s̃t, ãt) = ·|st−τ+1,θt−τ), µθt−τ ⊗ πθt−τ

)

= dTV
(
P(s̃t = ·|st−τ+1,θt−τ), µθt−τ

)
.

This can be shown following the same procedure in (5.6.1), because P(Õt = ·|st−τ+1,θt−τ) =

P(s̃t = ·|st−τ+1,θt−τ)⊗ πθt−τ ⊗ P .

Proof of Lemma 5.7.7. By the Lemma 5.8.8, 5.8.9, 5.8.10 and 5.8.11, we can collect the

corresponding term and get the bound

E[Λ(Ot,ωt,θt)] = E[Λ(Ot,ωt,θt)− Λ(Ot,ωt,θt−τ)] + E[Λ(Ot,ωt,θt−τ)− Λ(Ot,ωt−τ ,θt−τ)]

+ E[Λ(Ot,ωt−τ ,θt−τ)− Λ(Õt,ωt−τ ,θt−τ)] + E[Λ(Õt,ωt−τ ,θt−τ)]

≤ C1(τ + 1)‖θt − θt−τ‖+ C2mρ
τ−1 + C3‖ωt − ωt−τ‖,

where C1 = 2U2
δ |A|L(1 + dlogρm

−1e+ 1/(1− ρ)) + 2UδL∗, C2 = 2U2
δ , C3 = 4Uδ.

179

CHAPTER 6

Q-Learning with Deep Neural Network Function

Approximation

6.1 Introduction

Apart from policy gradient methods and actor-critic methods, Q-learning has been another

important and effective learning strategies in Reinforcement Learning (RL) over the past

decades [WD92, Sch15, SB18]. Different from policy gradient methods in Chapter 4 and

actor-critic methods in Chapter 5 which directly optimizes the parameterized policy, Q-

learning estimates an action-value function (a.k.a., Q-value function) for all action-state

pairs and the agent takes an action based on the Q-value of actions at the current state.

Recent advance in deep learning has also enabled the application of Q-learning algorithms

to large-scale decision problems such as mastering Go [SHM+16, SSS+17], robotic motion

control [LWA15, KIP+18] and autonomous driving [SSSS16, SAMR18]. In particular, the

seminal work by [MKS+15] introduced the Deep Q-Network (DQN) to approximate the

action-value function and achieved a superior performance versus a human expert in playing

Atari games, which triggers a line of research on deep reinforcement learning such as Double

Deep Q-Learning [VHGS16] and Dueling DQN [WSH+16].

Apart from its widespread empirical success in numerous applications, the convergence

of Q-learning and temporal difference (TD) learning algorithms has also been extensively

studied in the literature [JJS94, Bai95, TVR97, PP02, MMR08, MM09, LLG+15, BRS18,

LS18, ZXL19]. However, the convergence guarantee of deep Q-learning algorithms remains a

largely open problem. The only exceptions are [YXW19] which studied the fitted Q-iteration

(FQI) algorithm [Rie05, MS08] with action-value function approximation based on a sparse

180

ReLU network, and [CYLW19] which studied the global convergence of Q-learning algorithm

with an i.i.d. observation model and action-value function approximation based on a two-

layer neural network. The main limitation of the aforementioned work is the unrealistic

assumption that all the data used in the Q-learning algorithm are sampled i.i.d. from a fixed

stationary distribution, which fails to capture the practical setting of neural Q-learning.

In this chapter, in order to bridge the gap between the empirical success of neural Q-

learning and the theory of conventional Q-learning (i.e., tabular Q-learning, and Q-learning

with linear function approximation), we study the non-asymptotic convergence of a neural

Q-learning algorithm under non-i.i.d. observations. In particular, we use a deep neural

network with the ReLU activation function to approximate the action-value function. In

each iteration of the neural Q-learning algorithm, it updates the network weight parameters

using the temporal difference (TD) error and the gradient of the neural network function. Our

work extends existing finite-time analyses for TD learning [BRS18] and Q-learning [ZXL19],

from linear function approximation to deep neural network based function approximation.

Compared with the very recent theoretical work for neural Q-learning [YXW19, CYLW19],

our analysis relaxes the non-realistic i.i.d. data assumption and applies to neural network

approximation with arbitrary number of layers. Our main contributions are summarized as

follows

• We establish the first finite-time analysis of Q-learning with deep neural network function

approximation when the data are generated from a Markov decision process (MDP). We

show that, when the network is sufficiently wide, neural Q-learning converges to the op-

timal action-value function up to the approximation error of the neural network function

class.

• We establish an O(1/
√
T) convergence rate of neural Q-learning to the optimal Q-value

function up to the approximation error, where T is the number of iterations. This con-

vergence rate matches the one for TD-learning with linear function approximation and

constant stepsize [BRS18]. Although we study a more challenging setting where the data

are non-i.i.d. and the neural network approximator has multiple layers, our convergence

181

Table 6.1: Comparison with existing finite-time analyses of Q-learning.

Work Non-i.i.d. Neural Approximation Multiple Layers Rate

[BRS18] 3 7 7 O(1/T)

[ZXL19] 3 7 7 O(1/T)

[CYLW19] 7 3 7 O(1/
√
T)

This work 3 3 3 O(1/
√
T)

rate also matches the O(1/
√
T) rate proved in [CYLW19] with i.i.d. data and a two-layer

neural network approximator.

To sum up, we present a comprehensive comparison between our work and the most relevant

work in terms of their respective settings and convergence rates in Table 6.1.

6.2 Related Work

We review the most relevant work here in this section.

Asymptotic analysis The asymptotic convergence of TD learning and Q-learning algo-

rithms has been well established in the literature [JJS94, TVR97, KT00, BM00, OS02,

MMR08, DM17]. In particular, [TVR97] specified the precise conditions for TD learning with

linear function approximation to converge and gave counterexamples that diverge. [MMR08]

proved the asymptotic convergence of Q-learning with linear function approximation from

standard ODE analysis, and identified a critic condition on the relationship between the

learning policy and the greedy policy that ensures the almost sure convergence.

Finite-time analysis The finite-time analysis of the convergence rate for Q-learning algo-

rithms has been largely unexplored until recently. In specific, [DSTM18, LS18] studied the

convergence of TD(0) algorithm with linear function approximation under i.i.d. data assump-

tions and constant step sizes. Concurrently, a seminal work by [BRS18] provided a unified

framework of analysis for TD learning under both i.i.d. and Markovian noise assumptions

with an extra projection step. The analysis has been extended by [ZXL19] to SARSA and

182

Q-learning algorithms with linear function approximation. More recently, [SY19] established

the finite-time convergence for TD learning algorithms with linear function approximation

and a constant step-size without the extra projection step under non-i.i.d. data assumptions

through carefully choosing the Lyapunov function for the associated ordinary differential

equation of TD update. A similar analysis was also extended to Q-learning with linear func-

tion approximation [CZD+19]. [HS19] further provided a unified analysis for a class of TD

learning algorithms using Markov jump linear system.

Neural function approximation Despite the empirical success of DQN, the theoretical

convergence of Q-learning with deep neural network approximation is still missing in the lit-

erature. Following the recent advances in the theory of deep learning for overparameterized

networks [JGH18, CB18, DZPS19, DLL+19, AZLS19, AZLL19, ZCZG19, ADH+19, CG19b,

ZG19b, CGH+19], two recent work by [YXW19] and [CYLW19] proved the convergence rates

of fitted Q-iteration and Q-learning with a sparse multi-layer ReLU network and two-layer

neural network approximation respectively, under i.i.d. observations.

6.3 Preliminaries

A discrete-time Markov Decision Process (MDP) is denoted by a tuple M = (S,A,P , r, γ).

S and A are the sets of all states and actions respectively. P : S × A → P(S) is the

transition kernel such that P(s′|s, a) gives the probability of transiting to state s′ after

taking action a at state s. r : S ×A → [−1, 1] is a deterministic reward function. γ ∈ (0, 1)

is the discounted factor. A policy π : S → P(A) is a function mapping a state s ∈ S to

a probability distribution π(·|s) over the action space. Let st and at denote the state and

action at time step t. Then the transition kernel P and the policy π determine a Markov

chain {st}t=0,1,... For any fixed policy π, its associated value function V π : S → R is defined

as the expected total discounted reward:

V π(s) = E[
∑∞

t=0 γ
tr(st, at)|s0 = s], ∀s ∈ S.

183

The corresponding action-value function Qπ : S ×A → R is defined as

Qπ(s, a) = E[
∑∞

t=0 γ
tr(st, at)|s0 = s, a0 = a] = r(s, a) + γ

∫
S V

π(s′)P(s′|s, a)ds′,

for all s ∈ S, a ∈ A. The optimal action-value function Q∗ is defined as Q∗(s, a) =

supπQ
π(s, a) for all (s, a) ∈ S × A. Based on Q∗, the optimal policy π∗ can be derived

by following the greedy algorithm such that π∗(a|s) = 1 if Q(s, a) = maxb∈AQ
∗(s, b) and

π∗(a|s) = 0 otherwise. We define the optimal Bellman operator T as follows

T Q(s, a) = r(s, a) + γ · E
[
maxb∈AQ(s′, b)|s′ ∼ P(·|s, a)

]
. (6.3.1)

It is worth noting that the optimal Bellman operator T is γ-contractive in the sup-norm and

Q∗ is the unique fixed point of T [Ber95].

6.4 The Neural Q-Learning Algorithm

In this section, we start with a brief review of Q-learning with linear function approximation.

Then we will present the neural Q-learning algorithm.

6.4.1 Q-Learning with Linear Function Approximation

In many reinforcement learning algorithms, the goal is to estimate the action-value function

Q(·, ·), which can be formulated as minimizing the mean-squared Bellman error (MSBE)

[SB18]:

min
Q(·,·)

Eµ,π,P
[
(T Q(s, a)−Q(s, a))2

]
, (6.4.1)

where state s is generated from the initial state distribution µ and action a is chosen based

on a fixed learning policy π. To optimize (6.4.1), Q-learning iteratively updates the action-

value function using the Bellman operator in (6.3.1), i.e., Qt+1(s, a) = T Qt(s, a) for all

(s, a) ∈ S × A. However, due to the large state and action spaces, whose cardinalities, i.e.,

|S| and |A|, can be infinite for continuous problems in many applications, the aforementioned

update is impractical. To address this issue, a linear function approximator is often used

184

[Sze10, SB18], where the action-value function is assumed to be parameterized by a linear

function, i.e., Q(s, a;θ) = φ(s, a)>θ for any (s, a) ∈ S ×A, where φ : S ×A → Rd maps the

state-action pair to a d-dimensional vector, and θ ∈ Θ ⊆ Rd is an unknown weight vector.

The minimization problem in (6.4.1) then turns to minimizing the MSBE over the parameter

space Θ.

6.4.2 Neural Q-Learning

Analogous to Q-learning with linear function approximation, the action-value function can

also be approximated by a deep neural network to increase the representation power of the

approximator. Specifically, we define a L-hidden-layer neural network as follows

f(θ; x) =
√
mWLσL(WL−1 · · ·σ(W1x) · · ·), (6.4.2)

where x ∈ Rd is the input data, W1 ∈ Rm×d, WL ∈ R1×m and Wl ∈ Rm×m for l =

2, . . . , L − 1, θ = (vec(W1)>, . . . , vec(WL)>)> is the concatenation of the vectorization of

all parameter matrices, and σ(x) = max{0, x} is the ReLU activation function. Then, we

can parameterize Q(s, a) using a deep neural network as Q(s, a;θ) = f(θ;φ(s, a)), where

θ ∈ Θ and φ : S × A → Rd is a feature mapping. Without loss of generality, we assume

that ‖φ(s, a)‖2 ≤ 1 in this chapter. Let π be an arbitrarily stationary policy. The MSBE

minimization problem in (6.4.1) can be rewritten in the following form

min
θ∈Θ

Eµ,π,P
[
(Q(s, a;θ)− T Q(s, a;θ))2

]
. (6.4.3)

Recall that the optimal action-value function Q∗ is the fixed point of Bellman optimality

operator T which is γ-contractive. Therefore Q∗ is the unique global minimizer of (6.4.3).

The nonlinear parameterization of Q(·, ·) turns the MSBE in (6.4.3) to be highly noncon-

vex, which imposes difficulty in finding the global optimum θ∗. To mitigate this issue, we

will approximate the solution of (6.4.3) by project the Q-value function into some function

class parameterized by θ, which leads to minimizing the mean square projected Bellman

error (MSPBE):

min
θ∈Θ

Eµ,π,P
[
(Q(s, a;θ)− ΠFT Q(s, a;θ))2

]
, (6.4.4)

185

Algorithm 10 Neural Q-Learning with Gaussian Initialization

1: Input: learning policy π, learning rate {ηt}t=0,1,..., discount factor γ, constraint set Θ,

Randomly generate the entries of W
(0)
l from N(0, 1/m), l = 1, . . . ,m

2: Initialization: θ0 = (W
(1)>
0 , . . . ,W

(L)>
0)>

3: for t = 0, . . . , T − 1 do

4: Sample data (st, at, rt, st+1) from policy π

5: ∆t = f(θt;φ(st, at))− (rt + γmaxb∈A f(θt;φ(st+1, b)))

6: gt(θt) = ∇θf(θt;φ(st, at))∆t

7: θt+1 = ΠΘ(θt − ηtgt(θt))
8: end for

where F = {Q(·, ·;θ) : θ ∈ Θ} is some function class parameterized by θ ∈ Θ, and ΠF is

a projection operator. Then the neural Q-learning algorithm updates the weight parameter

θ using the following projected descent step: θt+1 = ΠΘ(θt − ηtgt(θt)), where the gradient

term gt(θt) is defined as

gt(θt) = ∇θf(θt;φ(st, at))
(
f(θt;φ(st, at))− rt − γmaxb∈A f(θt;φ(st+1, b))

)

def
= ∆t(st, at, st+1;θt)∇θf(θt;φ(st, at)), (6.4.5)

and ∆t is the temporal difference (TD) error. It should be noted that gt is not the gradient of

the MSPBE nor an unbiased estimator for it. The details of the neural Q-learning algorithm

are displayed in Algorithm 10, where θ0 is randomly initialized, and the constraint set is

chosen to be Θ = B(θ0, ω), which is defined as follows

B(θ0, ω)
def
= {θ = (vec(W1)>, . . . , vec(WL)>)> : ‖Wl −W

(0)
l ‖F ≤ ω, l = 1, . . . , L} (6.4.6)

for some tunable parameter ω. It is easy to verify that ‖θ − θ′‖2
2 =

∑L
l=1 ‖Wl −W′

l‖2
F .

6.5 Convergence Analysis of Neural Q-Learning

In this section, we provide a finite-sample analysis of neural Q-learning. Throughout this

chapter, we reserve the notations {Ci}i=0,1,... to represent universal positive constants that

186

are independent of problem parameters. The specific value of {Ci}i=1,2,... can be different line

by line. Note that the optimization problem in (6.4.4) is nonconvex. We focus on finding a

surrogate action-value function in the network function class that well approximates Q∗.

6.5.1 Approximate Stationary Point in the Constrained Space

To ease the presentation, we abbreviate f(θ;φ(s, a)) as f(θ) when no confusion arises. We

define the function class FΘ,m as a collection of all local linearization of f(θ) at the initial

point θ0

FΘ,m = {f(θ0) + 〈∇θf(θ0),θ − θ0〉 : θ ∈ Θ}. (6.5.1)

Following to the local linearization analysis in [CYLW19], we define the approximate sta-

tionary point of Algorithm 10 as follows.

Definition 6.5.1 ([CYLW19]). A point θ∗ ∈ Θ is said to be the approximate stationary

point of Algorithm 10 if for all θ ∈ Θ it holds that

Eµ,π,P
[
∆̂(s, a, s′;θ∗)〈∇θf̂(θ∗;φ(s, a)),θ − θ∗〉

]
≥ 0, (6.5.2)

where f̂(θ;φ(s, a)) := f̂(θ) ∈ FΘ,m and the temporal difference error ∆̂ is

∆̂(s, a, s′;θ) = f̂(θ;φ(s, a))−
(
r(s, a) + γmaxb∈A f̂(θ;φ(s′, b))

)
. (6.5.3)

For any f̂ ∈ FΘ,m, it holds that 〈∇θf̂(θ∗),θ − θ∗〉 = 〈∇θf(θ0),θ − θ∗〉 = f̂(θ)− f̂(θ∗).

Definition 6.5.1 immediately implies

Eµ,π,P
[(
f̂(θ∗)− T f̂(θ∗)

)(
f̂(θ)− f̂(θ∗)

)]
≥ 0, ∀θ ∈ Θ. (6.5.4)

According to Proposition 4.2 in [CYLW19], this further indicates f̂(θ∗) = ΠFΘ,m
T f̂(θ∗). In

other words, f̂(θ∗) is the unique fixed point of the MSPBE in (6.4.4). Therefore, we can

show the convergence of neural Q-learning to the optimal action-value function Q∗ by first

connecting it to the minimizer f̂(θ∗) and then adding the approximation error of FΘ,m.

187

6.5.2 The Main Theory

Before we present the convergence of Algorithm 10, let us lay down the assumptions used

throughout this chapter. The first assumption controls the bias caused by the Markovian

noise in the observations through assuming the uniform ergodicity of the Markov chain

generated by the learning policy π.

Assumption 6.5.2. The learning policy π and the transition kernel P induce a Markov

chain {st}t=0,1,... such that there exist constants λ > 0 and ρ ∈ (0, 1) satisfying

sups∈SdTV (P(st ∈ ·|s0 = s), π) ≤ λρt, for all t = 0, 1, . . .

Assumption 6.5.2 also appears in [BRS18, ZXL19], which is essential for the analysis of

the Markov decision process. The uniform ergodicity can be established via the minorization

condition for irreducible Markov chains [MT12, LP17].

For the purpose of exploration, we also need to assume that the learning policy π satisfies

some regularity condition. Denote bmax(θ) = argmaxb∈A |〈∇θf(θ0; s, b),θ〉| for any θ ∈ Θ.

Similar to [MMR08, ZXL19, CZD+19], we define

Σπ = 1/mEµ,π
[
∇θf(θ0; s, a)∇θf(θ0; s, a)>

]
, (6.5.5)

Σ∗π(θ) = 1/mEµ,π
[
∇θf(θ0; s, bmax(θ))∇θf(θ0; s, bmax(θ))>

]
. (6.5.6)

Note that Σπ is independent of θ and only depends on the policy π and the initial point θ0

in the definition of f̂ . In contrast, Σ∗π(θ) is defined based on the greedy action under the

policy associated with θ. The scaling parameter 1/m is used to ensure that the operator

norm of Σπ to be in the order of O(1). It is worth noting that Σπ is different from the neural

tangent kernel (NTK) or the Gram matrix in [JGH18, DLL+19, ADH+19], which are n× n
matrices defined based on a finite set of data points {(si, ai)}i=1,...,n. When f is linear, Σπ

reduces to the covariance matrix of the feature vector.

Assumption 6.5.3. There exists a constant α > 1 such that Σπ − αγ2Σ∗π(θ) � 0 for all θ

and θ0.

188

Assumption 6.5.3 is also made for Q-learning with linear function approximation in

[MMR08, ZXL19, CZD+19]. Moreover, [CZD+19] presented numerical simulations to verify

the validity of Assumption 6.5.3. [CYLW19] imposed a slightly different assumption but

with the same idea that the learning policy π should be not too far away from the greedy

policy. The regularity assumption on the learning policy is directly imposed on the action

value function in [CYLW19], which can be implied by Assumption 6.5.3 and thus is slightly

weaker. We note that Assumption 6.5.3 can be relaxed to the one made in [CYLW19] with-

out changing any of our analysis. Nevertheless, we choose to present the current version

which is more consistent with existing work on Q-learning with linear function approxima-

tion [MMR08, CZD+19].

Theorem 6.5.4. Suppose Assumptions 6.5.2 and 6.5.3 hold. The constraint set Θ is defined

as in (6.4.6). We set the radius as ω = C0m
−1/2L−9/4, the step size in Algorithm 10 as

η = 1/(2(1− α−1/2)mT), and the width of the neural network as

m ≥ C1 max{dL2 log(m/δ), ω−4/3L−8/3 log(m/(ωδ))},

where δ ∈ (0, 1). Then with probability at least 1− 2δ−L2 exp(−C2m
2/3L) over the random-

ness of the Gaussian initialization θ0 , it holds that

1

T

T−1∑

t=0

E
[(
f̂(θt)− f̂(θ∗)

)2∣∣θ0

]
≤ 1√

T
+
C2τ

∗ log(T/δ) log T

β2
√
T

+
C3 logm log(T/δ)

βm1/6
,

where β = 1− α−1/2 ∈ (0, 1) is a constant, τ ∗ = min{t = 0, 1, 2, . . . |λρt ≤ ηT} is the mixing

time of the Markov chain {st, at}t=0,1,..., and {Ci}i=0,...,5 are universal constants independent

of problem parameters.

Remark 6.5.5. Theorem 6.5.4 characterizes the distance between the output of Algorithm

10 to the approximate stationary point defined in function class FΘ,m. From (6.5.4), we

know that f̂(θ∗) is the minimizer of the MSPBE (6.4.4). Note that τ ∗ is in the order of

O(log(mT/ log T)). Theorem 6.5.4 suggests that neural Q-learning converges to the mini-

mizer of MSPBE with a rate in the order of O((log(mT))3/
√
T + logm log T/m1/6), which

reduces to Õ(1/
√
T) when the width m of the neural network is sufficiently large.

189

In the following theorem, we show that neural Q-learning converges to the optimal action-

value function within finite time if the neural network is overparameterized.

Theorem 6.5.6. Under the same conditions as in Theorem 6.5.4, with probability at least

1− 3δ − L2 exp(−C0m
2/3L) over the randomness of θ0, it holds that

1

T

T−1∑

t=0

E
[
(Q(s, a;θt)−Q∗(s, a))2

]
≤ 3E

[(
ΠFΘ,m

Q∗(s, a)−Q∗(s, a)
)2]

(1− γ)2
+

1√
T

+
C1τ

∗ log(T/δ) log T

β2
√
T

+
C2 log(T/δ) logm

βm1/6
,

where all the expectations are taken conditional on θ0, Q∗ is the optimal action-value func-

tion, δ ∈ (0, 1) and {Ci}i=0,...,2 are universal constants.

The optimal policy π∗ can be obtained by the greedy algorithm derived based on Q∗.

Remark 6.5.7. The convergence rate in Theorem 6.5.6 can be simplifies as follows

1

T

T−1∑

t=0

E[(Q(s, a;θt)−Q∗(s, a))2
∣∣θ0] = Õ

(
E
[(

ΠFΘ,m
Q∗(s, a)−Q∗(s, a)

)2]
+

1

m1/6
+

1√
T

)
.

The first term is the projection error of the optimal Q-value function on to the function

class FΘ,m, which decreases to zero as the representation power of FΘ,m increases. In fact,

when the width m of the DNN is sufficiently large, recent studies [CG19b, CG19a] show that

f(θ) is almost linear around the initialization and the approximate stationary point f̂(θ∗)

becomes the fixed solution of the MSBE [CYLW19]. Moreover, this term diminishes when

the Q function is approximated by linear functions when the underlying parameter has a

bounded norm [BRS18, ZXL19]. As m goes to infinity, we obtain the convergence of neural

Q-learning to the optimal Q-value function with an O(1/
√
T) rate.

6.6 Proof of Main Results

In this section, we provide the detailed proof of the convergence of Algorithm 10. To simplify

the presentation, we write f(θ;φ(s, a)) as f(θ; s, a) throughout the proof when no confusion

arises.

190

We first define some notations that will simplify the presentation of the proof. Recall the

definition of gt(·) in (6.4.5). For any θ ∈ Θ, we define the following vector-value map g that

is independent of the data point.

g(θ) = Eµ,π,P [∇θf(θ; s, a)(f(θ; s, a)− r(s, a)− γmaxb∈A f(θ; s′, b))], (6.6.1)

where s follows the initial state distribution µ, a is chosen based on the policy π(·|s) and s′

follows the transition probability P(·|s, a). Similarly, for all θ ∈ Θ, we define the following

gradient terms based on the linearized function f̂ ∈ FΘ,m

mt(θ) = ∆̂(st, at, st+1;θ)∇θf̂(θ), m(θ) = Eµ,π,P
[
∆̂(s, a, s′;θ)∇θf̂(θ)

]
, (6.6.2)

where ∆̂ is defined in (6.5.3), and a population version based on the linearized function.

Now we present the technical lemmas that are useful in our proof of Theorem 6.5.4.

For the gradients gt(·) defined in (6.4.5) and mt(·) defined in (6.6.2), we have the following

lemma that characterizes the difference between the gradient of the neural network function

f and the gradient of the linearized function f̂ .

Lemma 6.6.1. The gradient of neural network function is close to the linearized gradient.

Specifically, if θt ∈ B(Θ, ω) and m and ω satisfy

m ≥ C0 max{dL2 log(m/δ), ω−4/3L−8/3 log(m/(ωδ))},

and C1d
3/2L−1m−3/4 ≤ ω ≤ C2L

−6(logm)−3,
(6.6.3)

then it holds that

|〈gt(θt)−mt(θt),θt − θ∗〉| ≤ C3(2 + γ)ω1/3L3
√
m logm log(T/δ)‖θt − θ∗‖2

+
(
C4ω

4/3L11/3m
√

logm+ C5ω
2L4m

)
‖θt − θ∗‖2,

with probability at least 1 − 2δ − 3L2 exp(−C6mω
2/3L) over the randomness of the ini-

tial point, and ‖gt(θt)‖2 ≤ (2 + γ)C7

√
m log(T/δ) holds with probability at least 1 − δ −

L2 exp(−C6mω
2/3L). where {Ci > 0}i=0,...,7 are universal constants.

The next lemma upper bounds the bias of the non-i.i.d. data for the linearized gradient

map.

191

Lemma 6.6.2. Suppose the step size sequence {η0, η1, . . . , ηT} is nonincreasing. Then it

holds that

E[〈mt(θt)−m(θt),θt − θ∗〉|θ0] ≤ C0(m log(T/δ) +m2ω2)τ ∗ηmax{0,t−τ∗},

for any fixed t ≤ T , where C0 > 0 is an universal constant and τ ∗ = min{t = 0, 1, 2, . . . |λρt ≤
ηT} is the mixing time of the Markov chain {st, at}t=0,1,....

Since f̂ is a linear function approximator of the neural network function f , we can show

that the gradient of f̂ satisfies the following nice property in the constrained set Θ.

Lemma 6.6.3. Under Assumption 6.5.3, m(·) defined in (6.6.2) satisfies

〈m(θ)−m(θ∗),θ − θ∗〉 ≥ (1− α−1/2)E
[(
f̂(θ)− f̂(θ∗)

)2∣∣θ0

]
, ∀θ ∈ Θ.

Now we can integrate the above results and obtain proof of Theorem 6.5.4.

Proof of Theorem 6.5.4. By Algorithm 10 and the non-expansiveness of projection ΠΘ, we

have

‖θt+1 − θ∗‖2
2 = ‖ΠΘ

(
θt − ηtgt

)
− θ∗‖2

2

≤ ‖θt − ηtgt − θ∗‖2
2

= ‖θt − θ∗‖2
2 + η2

t ‖gt‖2
2 − 2ηt〈gt,θt − θ∗〉. (6.6.4)

We need to find an upper bound for the gradient norm and a lower bound for the inner

product. According to Definition 6.5.1, the approximate stationary point θ∗ of Algorithm 10

satisfies 〈m(θ∗),θ− θ∗〉 ≥ 0 for all θ ∈ Θ. The inner product in (6.6.4) can be decomposed

into

〈gt,θt − θ∗〉 = 〈gt −mt(θt),θt − θ∗〉+ 〈mt(θt)−m(θt),θt − θ∗〉+ 〈m(θt),θt − θ∗〉

≥ 〈gt −mt(θt),θt − θ∗〉+ 〈mt(θt)−m(θt),θt − θ∗〉

+ 〈m(θt)−m(θ∗),θt − θ∗〉. (6.6.5)

192

Combining results from (6.6.4)and (6.6.5), we have

‖θt+1 − θ∗‖2
2 ≤ ‖θt − θ∗‖2

2 + η2
t ‖gt‖2

2 − 2ηt 〈gt −mt(θt),θt − θ∗〉︸ ︷︷ ︸
I1

− 2ηt 〈mt(θt)−m(θt),θt − θ∗〉︸ ︷︷ ︸
I2

−2ηt 〈m(θt)−m(θ∗),θt − θ∗〉︸ ︷︷ ︸
I3

. (6.6.6)

Recall constraint set defined in (6.4.6). We have Θ = B(θ0, ω) = {θ : ‖Wl −W
(0)
l ‖F ≤

ω,∀l = 1, . . . , L} and that m and ω satisfy the condition in (6.6.3).

Term I1 is the error of the local linearization of f(θ) at θ0. By Lemma 6.6.1, with probability

at least 1− 2δ − 3L2 exp(−C1mω
2/3L) over the randomness of the initial point θ0, we have

|〈gt −mt(θt),θt − θ∗〉| ≤ C2(2 + γ)m−1/6
√

logm log(T/δ) (6.6.7)

holds uniformly for all θt,θ
∗ ∈ Θ, where we used the fact that ω = C0m

−1/2L−9/4.

Term I2 is the bias of caused by the non-i.i.d. data (st, at, st+1) used in the update of

Algorithm 10. Conditional on the initialization, by Lemma 6.6.2, we have

E[〈mt(θt)−m(θt),θt − θ∗〉|θ0] ≤ C3(m log(T/δ) +m2ω2)τ ∗ηmax{0,t−τ∗}, (6.6.8)

where τ ∗ = min{t = 0, 1, 2, . . . |λρt ≤ ηT} is the mixing time of the Markov chain {st, at}t=0,1,....

Term I3 is the estimation error for the linear function approximation. By Lemma 6.6.3, we

have

〈m(θt)−m(θ∗),θt − θ∗〉 ≥ βE
[(
f̂(θt)− f̂(θ∗)

)2∣∣θ0

]
, (6.6.9)

where β = (1 − α−1/2) ∈ (0, 1) is a constant. Substituting (6.6.7), (6.6.8) and (6.6.9) into

(6.6.6), we have it holds that

‖θt+1 − θ∗‖2
2 ≤ ‖θt − θ∗‖2

2 + η2
tC

2
4(2 + γ)2m log(T/δ)

− 2ηtC2(2 + γ)m−1/6
√

logm log(T/δ)− 2ηtβE
[(
f̂(θt)− f̂(θ∗)

)2∣∣θ0

]

− 2ηtC3(m log(T/δ) +m2ω2)τ ∗ηmax{0,t−τ∗}, (6.6.10)

with probability at least 1 − 2δ − 3L2 exp(−C1mω
2/3L) over the randomness of the initial

point θ0, where we used the fact that ‖gt‖F ≤ C4(2 + γ)
√
m log(T/δ) from Lemma 6.6.1.

193

Rearranging the above inequality yields

E
[(
f̂(θt)− f̂(θ∗)

)2∣∣θ0

]

≤ ‖θt − θ
∗‖2

2 − ‖θt+1 − θ∗‖2
2

2βηt
+
C2(2 + γ)m−1/6 logm log(T/δ)

β

+
C4(2 + γ)2m log(T/δ)ηt

β
+
C3m(log(T/δ) +mω2)τ ∗ηmax{0,t−τ∗}

β
,

with probability at least 1 − 2δ − 3L2 exp(−C1mω
2/3L) over the randomness of the initial

point θ0. Recall the choices of the step sizes η0 = . . . = ηT = 1/(2βm
√
T) and the radius

ω = C0m
−1/2L−9/4. Dividing the above inequality by T and telescoping it from t = 0 to T

yields

1

T

T−1∑

t=0

E
[(
f̂(θt)− f̂(θ∗)

)2∣∣θ0

]
≤ m‖θ0 − θ∗‖2

2√
T

+
C2(2 + γ)m−1/6 logm log(T/δ)

β

+
C4(2 + γ)2 log(T/δ) log T

β2
√
T

+
C3(log(T/δ) + 1)τ ∗ log T

β
√
T

.

For θ0,θ
∗ ∈ Θ, again by ω = Cm−1/2L−9/4, we have ‖θ0 − θ∗‖2

2 ≤ 1/m. Since f̂(·) ∈ FΘ,m,

by Lemma 6.6.1, it holds with probability at least 1 − 2δ − 3L2 exp(−C0m
2/3L) over the

randomness of the initial point θ0 that

1

T

T−1∑

t=0

E
[(
f̂(θt)− f̂(θ∗)

)2∣∣θ0

]
≤ 1√

T
+
C1τ

∗ log(T/δ) log T

β2
√
T

+
C2 logm log(T/δ)

βm1/6
,

where we used the fact that γ < 1. This completes the proof.

6.7 Proof of Theorem 6.5.6

Before we prove the global convergence of Algorithm 10, we present the following lemma

that shows that near the initialization point θ0, the neural network function f(θ; x) is almost

linear in θ for all unit input vectors.

Lemma 6.7.1 (Theorems 5.3 and 5.4 in [CG19b]). Let θ0 = (W
(1)>
0 , . . . ,W

(L)>
0)> be the

initial point and θ = (W(1)>, . . . ,W(L)>)> ∈ B(θ0, ω) be a point in the neighborhood of θ0.

If

m ≥ C1 max{dL2 log(m/δ), ω−4/3L−8/3 log(m/(ωδ))}, and ω ≤ C2L
−5(logm)−3/2,

194

then for all x ∈ Sd−1, with probability at least 1− δ it holds that

|f(θ; x)− f̂(θ; x)| ≤ ω1/3L8/3
√
m logm

L∑

l=1

∥∥W(l) −W
(l)
0

∥∥
2

+ C3L
3
√
m

L∑

l=1

∥∥W(l) −W
(l)
0

∥∥2

2
.

Under the same conditions on m and ω, if θt ∈ B(θ0, ω) for all t = 1, . . . , T , then with

probability at least 1− δ, we have |f(θt;φ(st, at))| ≤ C4

√
log(T/δ) for all t ∈ [T].

Proof of Theorem 6.5.6. By triangle inequality, it holds that

Q(s, a;θT)−Q∗(s, a) ≤ f(θT ; s, a)− f̂(θT ; s, a) + f̂(θT ; s, a)− f̂(θ∗; s, a)

+ f̂(θ∗; s, a)−Q∗(s, a). (6.7.1)

Recall that f̂(θ∗; ·, ·) is the fixed point of ΠFT and Q∗(·, ·) is the fixed point of T . Then we

have

∣∣f̂(θ∗; s, a)−Q∗(s, a)
∣∣ =

∣∣f̂(θ∗; s, a)− ΠFΘ,m
Q∗(s, a) + ΠFΘ,m

Q∗(s, a)−Q∗(s, a)
∣∣

=
∣∣ΠFΘ,m

T f̂(θ∗; s, a)− ΠFΘ,m
T Q∗(s, a) + ΠFΘ,m

Q∗(s, a)−Q∗(s, a)
∣∣

≤
∣∣ΠFΘ,m

T f̂(θ∗; s, a)− ΠFΘ,m
T Q∗(s, a)

∣∣+
∣∣ΠFΘ,m

Q∗(s, a)−Q∗(s, a)
∣∣

≤ γ|f̂(θ∗; s, a)−Q∗(s, a)|+
∣∣ΠFΘ,m

Q∗(s, a)−Q∗(s, a)
∣∣,

where the first inequality follows the triangle inequality and in the second inequality we used

the fact that ΠFΘ,m
T is γ-contractive. This further leads to

(1− γ)|f̂(θ∗; s, a)−Q∗(s, a)| ≤ |ΠFΘ,m
Q∗(s, a)−Q∗(s, a)|.

To simplify the notation, we abbreviate E[·
∣∣θ0] as E[·] in the rest of this proof. Therefore,

we have

E
[
(Q(s, a;θT)−Q∗(s, a))2

]

≤ 3E
[(
f(θT ; s, a)− f̂(θT ; s, a)

)2]
+ 3E

[(
f̂(θT ; s, a)− f̂(θ∗; s, a)

)2]

+ 3E
[(
f̂(θ∗; s, a)−Q∗(s, a)

)2]

≤ 3E
[(
f(θT ; s, a)− f̂(θT ; s, a)

)2]
+ 3E

[(
f̂(θT ; s, a)− f̂(θ∗; s, a)

)2]

+ 3(1− γ)−2E
[(

ΠFΘ,m
Q∗(s, a)−Q∗(s, a)

)2]
.

195

By Lemma 6.7.1 and the parameter choice that ω = C1/(
√
mL9/4), we have

E[(f(θT ; s, a)− f̂(θT ; s, a))2] ≤ C2(ω4/3L4
√
m logm)2 ≤ C

4/3
1 C2m

−1/3 logm

with probability at least 1− δ. Combining the above result with Theorem 6.5.4, we have

E
[
(Q(s, a;θT)−Q∗(s, a))2

]
≤ 3E

[(
ΠFΘ,m

Q∗(s, a)−Q∗(s, a)
)2]

(1− γ)2
+

1√
T

+
C2τ

∗ log(T/δ) log T

β2
√
T

+
C3 log(T/δ) logm

βm1/6
,

with probability at least 1− 3δ − L2 exp(−C6m
2/3L), which completes the proof.

6.8 Proof of Supporting Lemmas

6.8.1 Proof of Lemma 6.6.1

Before we prove the error bound for the local linearization, we first present some useful

lemmas from recent studies of overparameterized deep neural networks. Note that in the

following lemmas, {Ci}i=1,... are universal constants that are independent of problem param-

eters such as d,θ,m, L and their values can be different in different contexts. The first lemma

states the uniform upper bound for the gradient of the deep neural network. Note that by

definition, our parameter θ is a long vector containing the concatenation of the vectorization

of all the weight matrices. Correspondingly, the gradient ∇θf(θ; x) is also a long vector.

Lemma 6.8.1 (Lemma B.3 in [CG19a]). Let θ ∈ B(θ0, ω) where ω is the radius satisfying

C1d
3/2L−1m−3/2 ≤ ω ≤ C2L

−6(logm)−3/2. Then for all unit vectors in Rd, i.e., x ∈ Sd−1,

the gradient of the neural network f defined in (6.4.2) is bounded as ‖∇θf(θ; x)‖2 ≤ C3

√
m

with probability at least 1− L2 exp(−C4mω
2/3L).

The second lemma provides the perturbation bound for the gradient of the neural network

function. Note that the original theorem holds for any fixed d dimensional unit vector x.

However, due to the choice of ω and its dependency on m and d, it is easy to modify the

results to hold for all x ∈ Sd−1.

196

Lemma 6.8.2 (Theorem 5 in [AZLS19]). Let θ ∈ B(θ0, ω) with the radius satisfying

C1d
3/2L−3/2m−3/2(logm)−3/2 ≤ ω ≤ C2L

−9/2(logm)−3.

Then for all x ∈ Sd−1, with probability at least 1− exp(−C3mω
2/3L) over the randomness of

θ0, it holds that

‖∇θf(θ; x)−∇θf(θ0; x)‖2 ≤ C4ω
1/3L3

√
logm‖∇θf(θ0; x)‖2.

Now we are ready to bound the linearization error.

Proof of Lemma 6.6.1. Recall the definition of gt(θt) and mt(θt) in (6.4.5) and (6.6.2) re-

spectively. We have

‖gt(θt)−mt(θt)‖2 =
∥∥∇θf(θt; st, at)∆(st, at, st+1;θt)−∇θf̂(θt; st, at)∆̂(st, at, st+1;θt)

∥∥
2

≤
∥∥(∇θf(θt; st, at)−∇θf̂(θt; st, at))∆(st, at, st+1;θt)

∥∥
2

+
∥∥∇θf̂(θt; st, at)

(
∆(st, at, st+1;θt)− ∆̂(st, at, st+1;θt)

)∥∥
2
. (6.8.1)

Since f̂(θ) ∈ FΘ,m, we have f̂(θ) = f(θ0)+〈∇θf(θ0),θ−θ0〉 and ∇θf̂(θ) = ∇θf(θ0). Then

with probability at least 1− 2L2 exp(−C1mω
2/3L), we have

∥∥(∇θf(θt; st, at)−∇θf̂(θt; st, at))∆(st, at, st+1;θt)
∥∥

2

= |∆(st, at, st+1;θt)| ·
∥∥(∇θf(θt; st, at)−∇θf(θ0; st, at))

∥∥
2

≤ C2ω
1/3L3

√
m logm|∆(st, at, st+1;θt)|,

where the inequality comes from Lemmas 6.8.1 and 6.8.2. By Lemma 6.7.1, with probability

at least 1− δ, it holds that

|∆(st, at, st+1;θt)| =
∣∣∣f(θt; st, at)− rt − γmax

b∈A
f(θt; st+1, b)

∣∣∣ ≤ (2 + γ)C3

√
log(T/δ),

which further implies that with probability at least 1− δ − 2L2 exp(−C1mω
2/3L), we have

∥∥(∇θf(θt; st, at)−∇θf̂(θt; st, at))∆(st, at, st+1;θt)
∥∥

2

≤ (2 + γ)C2C3ω
1/3L3

√
m logm log(T/δ).

197

For the second term in (6.8.1), we have

∥∥∇θf̂(θt; st, at)
(
∆(st, at, st+1;θt)− ∆̂(st, at, st+1;θt)

)∥∥
2

≤
∥∥∇θf̂(θt; st, at)

(
f(θt; st, at)− f̂(θt; st, at)

)∥∥
2

+
∥∥∥∇θf̂(θt; st, at)

(
max
b∈A

f(θt; st+1, b)−max
b∈A

f̂(θt; st+1, b)
)∥∥∥

2

≤
∥∥∇θf̂(θt; st, at)

∥∥
2
·
∣∣f(θt; st, at)− f̂(θt; st, at)

∣∣

+
∥∥∇θf̂(θt; st, at)‖2 max

b∈A

∣∣f(θt; st+1, b)− f̂(θ; st+1, b)
∣∣. (6.8.2)

By Lemma 6.7.1, with probability at least 1− δ we have

|f(θt; st, at)− f̂(θt; st, at)| ≤ ω4/3L11/3
√
m logm+ C4ω

2L4
√
m,

for all (st, at) ∈ S × A such that ‖φ(st, at)‖2 = 1. Substituting the above result into

(6.8.2) and applying the gradient bound in Lemma 6.8.1, we obtain with probability at least

1− δ − L2 exp(−C1mω
2/3L) that

∥∥∇θf̂(θt; st, at)
(
∆(st, at, st+1;θt)− ∆̂(st, at, st+1;θt)

)∥∥
2

≤ C5ω
4/3L11/3m

√
logm+ C6ω

2L4m.

Note that the above results require that the choice of ω should satisfy all the constraints in

Lemmas 6.8.1, 6.7.1 and 6.8.2, of which the intersection is

C7d
3/2L−1m−3/4 ≤ ω ≤ C8L

−6(logm)−3.

Therefore, the error of the local linearization of gt(θt) can be upper bounded by

|〈g(θt)−m(θt),θt − θ∗〉| ≤ (2 + γ)C2C3ω
1/3L3

√
m logm log(T/δ)‖θt − θ∗‖2

+
(
C5ω

4/3L11/3m
√

logm+ C6ω
2L4m

)
‖θt − θ∗‖2,

which holds with probability at least 1− 2δ − 3L2 exp(−C1mω
2/3L) over the randomness of

the initial point. For the upper bound of the norm of gt, by Lemmas 6.8.1 and 6.7.1, we

have

‖gt‖2 =
∥∥∥∇θf(θt; st, at)

(
f(θt; st, at)− rt − γmax

b∈A
f(θt; st+1, b)

)∥∥∥
2
≤ (2 + γ)C9

√
m log(T/δ)

holds with probability at least 1− δ − L2 exp(−C1mω
2/3L).

198

6.8.2 Proof of Lemma 6.6.2

Let us define ζt(θ) = 〈mt(θ)−m(θ),θ−θ∗〉, which characterizes the bias of the data. Differ-

ent from the similar quantity ζt in [BRS18], our definition is based on the local linearization of

f , which is essential to the analysis in our proof. It is easy to verify that E[mt(θ)] = m(θ) for

any fixed and deterministic θ. However, it should be noted that E[mt(θt)|θt = θ] 6= m(θ) be-

cause θt depends on all historical states and actions {st, at, st−1, at−1, . . .} and mt(·) depends

on the current observation {st, at, st+1} and thus also depends on {st−1, at−1, st−2, at−2, . . .}.
Therefore, we need a careful analysis of Markov chains to decouple the dependency between

θt and mt(·).

The following lemma uses data processing inequality to provide an information theoretic

control of coupling.

Lemma 6.8.3 (Control of coupling, [BRS18]). Consider two random variables X and Y

that form the following Markov chain:

X → st → st+τ → Y,

where t ∈ {0, 1, 2, . . .} and τ > 0. Suppose Assumption 6.5.2 holds. Let X ′ and Y ′ be

independent copies drawn from the marginal distributions of X and Y respectively, i.e.,

P(X ′ = ·, Y ′ = ·) = P(X = ·)⊗ P(Y = ·). Then for any bounded function h : S × S → R, it

holds that

|E[h(X, Y)]− E[h(X ′, Y ′)]| ≤ 2 sup
s,s′
|h(s, s′)|λρτ .

Proof of Lemma 6.6.2. The proof of this lemma is adapted from [BRS18], where the result

was originally proved for linear function approximation of temporal difference learning. We

first show that ζt(θ) is Lipschitz. For any θ,θ′ ∈ B(θ0, ω), we have

ζt(θ)− ζt(θ′) = 〈mt(θ)−m(θ),θ − θ∗〉 − 〈mt(θ
′)−m(θ′),θ′ − θ∗〉

= 〈mt(θ)−m(θ)− (mt(θ
′)−m(θ′)),θ − θ∗〉

+ 〈mt(θ
′)−m(θ′),θ − θ′〉,

199

which directly implies

|ζt(θ)− ζt(θ′)| ≤ ‖mt(θ)−mt(θ
′)‖2 · ‖θ − θ∗‖2 + ‖m(θ)−m(θ′)‖2 · ‖θ − θ∗‖2

+ ‖mt(θ
′)−m(θ′)‖2 · ‖θ − θ′‖2.

By the definition of mt, we have

‖mt(θ)−mt(θ
′)‖2

=
∥∥∥∇θf(θ0)

((
f(θ; s, a)− f(θ′; s, a)

)
− γ
(

max
b∈A

f(θ; s′, b)−max
b∈A

f(θ′; s′, b)
))∥∥∥

2

≤ (1 + γ)C2
3m‖θ − θ′‖2,

which holds with probability at least 1−L2 exp(−C4mω
2/3L), where we used the fact that the

neural network function is Lipschitz with parameter C3

√
m by Lemma 6.8.1. Similar bound

can also be established for ‖mt(θ) −mt(θ
′)‖ in the same way. Note that for θ ∈ B(θ0, ω)

with ω and m satisfying the conditions in Lemma 6.6.1, we have by the definition in (6.6.2)

that

‖mt(θ)‖2 ≤
(
|f̂(θ; s, a)|+ r(s, a) + γ

∣∣max
b
f̂(θ; s′, b)

∣∣
)
‖∇θf̂(θ)‖2

≤ 2(2 + γ)(|f(θ0)|+ ‖∇θf(θ0)‖2 · ‖θ − θ0‖2)‖∇θf(θ0)‖2

≤ 2(2 + γ)C3(C8

√
m
√

log(T/δ) + C3mω).

The same bound can be established for ‖m̄t‖ in a similar way. Therefore, we have |ζt(θ)−
ζt(θ

′)| ≤ `m,L‖θ − θ′‖2, where `m,L is defined as

`m,L = 2(1 + γ)C2
3mω + 2(2 + γ)C3(C8

√
m
√

log(T/δ) + C3mω).

Applying the above inequality recursively, for all τ = 0, . . . , t, we have

ζt(θt) ≤ ζt(θt−τ) + `m,L

t−1∑

i=t−τ

‖θi+1 − θi‖2

≤ ζt(θt−τ) + 2(2 + γ)C3(C8

√
m
√

log(T/δ) + C3mω)`m,L

t−1∑

i=t−τ

ηi. (6.8.3)

Next, we need to bound ζt(θt−τ). Define the observed tuple Ot = (st, at, st+1) as the collection

of the current state and action and the next state. Note that θt−τ → st−τ → st → Ot forms a

200

Markov chain induced by the target policy π. Recall that mt(·) depends on the observation

Ot. Let’s rewrite m(θ, Ot) = mt(θ). Similarly, we can rewrite ζt(θ) as ζ(θ, Ot). Let θ′t

and O′t be independently drawn from the marginal distributions of θt and Ot respectively.

Applying Lemma 6.8.3 yields

E[ζ(θt−τ , Ot)]− E[ζ(θ′t−τ , O
′
t)] ≤ 2 sup

θ,O
|ζ(θ, O)|λρτ ,

where we used the uniform mixing result in Assumption 6.5.2. By definition θ′t−τ and O′t are

independent, which implies E[m(θ′t, O
′
t)|θ′t] = m(θ′t) and

E[ζ(θ′t−τ , O
′
t)] = E[E[〈m(θ′t, O

′
t)−m(θ′t),θ

′
t − θ∗〉]|θ′t] = 0.

Therefore, for any τ = 0, . . . , t, we have

E[ζt(θt)] ≤ Eζt(θt−τ) + 2(2 + γ)C3(C8

√
m
√

log(T/δ) + C3mω)`m,L

t−1∑

i=t−τ

ηi

≤ 2 supλρτ + 2(2 + γ)C3(C8

√
m
√

log(T/δ) + C3mω)`m,Lτηt−τ . (6.8.4)

Define τ ∗ as the mixing time of the Markov chain that satisfies

τ ∗ = min{t = 0, 1, 2, . . . |λρt ≤ ηT}.

When t ≤ τ ∗, we choose τ = t in (6.8.4) and obtain

E[ζt(θt)] ≤ E[ζt(θ0)] + 2(2 + γ)C3(C8

√
m
√

log(T/δ) + C3mω)`m,Lτ
∗η0

= 2(2 + γ)C3(C8

√
m
√

log(T/δ) + C3mω)`m,Lτ
∗η0,

where we used the fact that the initial point θ0 is independent of {st, at, st−1, at−1, . . . , s0, a0}
and thus independent of ζt(·). When t > τ ∗, we can choose τ = τ ∗ in (6.8.4) and obtain

E[ζt(θt)] ≤ 2ηT + 2(2 + γ)C3(C8

√
m
√

log(T/δ) + C3mω)`m,Lτ
∗ηt−τ∗

≤ C̃(m log(T/δ) +m2ω2)τ ∗ηt−τ∗ ,

where C̃ > 0 is a universal constant, which completes the proof.

201

6.8.3 Proof of Lemma 6.6.3

Proof of Lemma 6.6.3. To simplify the notation, we use Eπ to denote Eµ,π,P , namely, the

expectation over s ∈ µ, a ∼ π(·|s) and s′ ∼ P(·|s, a), in the rest of the proof. By the

definition of m in (6.6.2), we have

〈m(θ)−m(θ∗),θ − θ∗〉

= Eπ
[(

∆̂(s, a, s′;θ)− ∆̂(s, a, s′;θ∗)
)
〈∇θf(θ0; s, a),θ − θ∗〉

]

= Eπ
[(
f̂(θ; s, a)− f̂(θ∗; s, a)

)
〈∇θf(θ0; s, a),θ − θ∗〉

]

− γEπ
[(

max
b∈A

f̂(θ; s′, b)−max
b∈A

f̂(θ∗; s′, b)
)
〈∇θf(θ0; s, a),θ − θ∗〉

]
,

where in the first equation we used the fact that ∇θf̂(θ) = ∇θf(θ0) for all θ ∈ Θ and

f̂ ∈ FΘ,m. Further by the property of the local linearization of f at θ0, we have

f̂(θ; s, a)− f̂(θ∗; s, a) = 〈∇θf(θ0; s, a),θ − θ∗〉, (6.8.5)

which further implies

E
[(
f̂(θ; s, a)− f̂(θ∗; s, a)

)
〈∇θf(θ0; s, a),θ − θ∗〉|θ0

]

= (θ − θ∗)>E
[
∇θf(θ0; s, a)∇θf(θ0; s, a)>|θ0

]
(θ − θ∗)

= m‖θ − θ∗‖2
Σπ
.

where Σπ is defined in Assumption 6.5.3. Let us define bmax(θ) = argmaxb∈A f̂(θ; s′, b) and

bmax(θ∗) = argmaxb∈A f̂(θ∗; s′, b). Then for the remaining term, we have

Eπ
[(

max
b∈A

f̂(θ; s′, b)−max
b∈A

f̂(θ∗; s′, b)
)
〈∇θf(θ0; s, a),θ − θ∗〉

]

= Eπ
[(
f̂(θ; s′, bmax)− f̂(θ∗; s′, b∗max)

)
〈∇θf(θ0; s, a),θ − θ∗〉

]
. (6.8.6)

For all (s, a, s′), when 〈∇θf(θ0; s, a),θ − θ∗〉 ≥ 0, (6.8.6) can be upper bounded by

(
f̂(θ; s′, bmax)− f̂(θ∗; s′, b∗max)

)
〈∇θf(θ0; s, a),θ − θ∗〉

=
(
f̂(θ; s′, bmax)− f̂(θ∗; s′, bmax) + f̂(θ∗; s′, bmax)− f̂(θ∗; s′, b∗max)

)
〈∇θf(θ0; s, a),θ − θ∗〉

≤
(
f̂(θ; s′, bmax)− f̂(θ∗; s′, bmax)

)
〈∇θf(θ0; s, a),θ − θ∗〉

202

= (θ − θ∗)>∇θf(θ0; s′, bmax)∇θf(θ0; s, a)>(θ − θ∗)

≤ |(θ − θ∗)>∇θf(θ0; s′, bmax)| · |∇θf(θ0; s, a)>(θ − θ∗)|,

where the inequality comes from the optimality of b∗max and the last equality follows the fact

that f̂(θ; ·, ·) is linear. When 〈∇θf(θ0; s, a),θ − θ∗〉 < 0, using the same argument, we can

upper bound (6.8.6) as follows

(
f̂(θ; s′, bmax)− f̂(θ∗; s′, b∗max)

)
〈∇θf(θ0; s, a),θ − θ∗〉

=
(
f̂(θ; s′, bmax)− f̂(θ; s′, b∗max) + f̂(θ; s′, b∗max)− f̂(θ∗; s′, b∗max)

)
〈∇θf(θ0; s, a),θ − θ∗〉

≤
(
f̂(θ; s′, b∗max)− f̂(θ∗; s′, b∗max)

)
〈∇θf(θ0; s, a),θ − θ∗〉

≤ |(θ − θ∗)>∇θf(θ0; s′, b∗max)| · |∇θf(θ0; s, a)>(θ − θ∗)|.

Combining the above result, we have for all tuples (s, a, s′) it holds that

(
f̂(θ; s′, bmax)− f̂(θ∗; s′, b∗max)

)
〈∇θf(θ0; s, a),θ − θ∗〉

≤ |(θ − θ∗)>∇θf(θ0; s′, bmax)| · |∇θf(θ0; s, a)>(θ − θ∗)|1+

+ |(θ − θ∗)>∇θf(θ0; s′, b∗max)| · |∇θf(θ0; s, a)>(θ − θ∗)|1−,

where we denote 1+ = 1{〈∇θf(θ0; s, a),θ − θ∗〉 ≥ 0} and 1− = 1{〈∇θf(θ0; s, a),θ − θ∗〉 <
0}. Taking expectation over the above inequality and applying Cauchy-Schwarz inequality,

we have

Eµ,π,P
[(
f̂(θ; s′, bmax)− f̂(θ∗; s′, b∗max)

)
〈∇θf(θ0; s, a),θ − θ∗〉

]

≤
√

Eπ
[(

max
b
|(θ − θ∗)>∇θf(θ0; s′, b)|

)2]√Eπ
[(
∇θf(θ0; s, a)>(θ − θ∗)

)2]

= m‖θ − θ∗‖Σ∗π(θ−θ∗)‖θ − θ∗‖Σπ ,

where we used the fact that Σ∗π(θ − θ∗) = 1/mEµ[∇θf(θ0; s, b̃max)∇θf(θ0; s, b̃max)>] and

b̃max = argmaxb∈A |〈∇θf(θ0; s, b),θ−θ∗〉| according to (6.5.6). Substituting the above results

into (6.8.6), we obtain

Eπ
[(

max
b∈A

f̂(θ; s′, b)−max
b∈A

f̂(θ∗; s′, b)
)
〈∇θf(θ0; s, a),θ − θ∗〉

]

≤ m‖θ − θ∗‖Σ∗π(θ−θ∗)‖θ − θ∗‖Σπ ,

203

which immediately implies

〈m(θ)−m(θ∗),θ − θ∗〉 ≥ m‖θ − θ∗‖Σπ ·
(
‖θ − θ∗‖Σπ − ‖θ − θ∗‖Σ∗π(θ−θ∗)

)

= m‖θ − θ∗‖Σπ ·
‖θ − θ∗‖2

Σπ
− γ2‖θ − θ∗‖2

Σ∗π(θ−θ∗)

‖θ − θ∗‖Σπ + γ‖θ − θ∗‖Σ∗π(θ−θ∗)

≥ m(1− α−1/2)‖θ − θ∗‖2
Σπ

= (1− α−1/2)E
[(
f̂(θ)− f̂(θ∗)

)2|θ0

]
,

where the second inequality is due to Assumption 6.5.3 and the last equation is due to (6.8.5)

and the definition of Σπ in (6.5.5).

204

CHAPTER 7

Conclusion

This thesis discussed how to find the first-order stationary point, the local optimum, and the

global optimum in finite-sum nonconvex optimization problems, where the objective function

is an average of loss functions over a finite or infinite dataset. We proposed sample-efficient

optimization algorithms for these different settings and provided asymptotic analyses of

their convergence rates and sample complexities, matching or outperforming previous state-

of-the-art methods. We also generalized these sample-efficient optimization algorithms and

their analyses to reinforcement learning problems, including policy gradient, actor-critic,

and Q-learning methods. The works presented in this thesis are an incomplete collection

of the recent advances in sample-efficient nonconvex optimization methods in both machine

learning and reinforcement learning.

205

Bibliography

[AAB+17] Naman Agarwal, Zeyuan Allenzhu, Brian Bullins, Elad Hazan, and Tengyu Ma.

Finding approximate local minima for nonconvex optimization in linear time.

2017.

[AAZB+17] Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma.

Finding approximate local minima faster than gradient descent. In Proceedings

of the 49th annual ACM SIGACT symposium on theory of computing, pages

1195–1199, 2017. tex.organization: ACM.

[ADH+19] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-

grained analysis of optimization and generalization for overparameterized two-

layer neural networks. In International conference on machine learning, pages

322–332, 2019.

[AG16] Animashree Anandkumar and Rong Ge. Efficient approaches for escaping higher

order saddle points in non-convex optimization. In Conference on learning the-

ory, pages 81–102, 2016.

[AKW12] Sungjin Ahn, Anoop Korattikara, and Max Welling. Bayesian posterior sam-

pling via stochastic gradient fisher scoring. In Proceedings of the 29th interna-

tional conference on machine learning, pages 1771–1778, 2012.

[AZ18] Zeyuan Allen-Zhu. Natasha 2: Faster non-convex optimization than sgd. In

Advances in neural information processing systems, pages 2676–2687, 2018.

[AZH16] Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex

optimization. In International conference on machine learning, pages 699–707,

2016.

[AZL18] Zeyuan Allen-Zhu and Yuanzhi Li. Neon2: Finding local minima via first-order

oracles. In Advances in neural information processing systems, pages 3720–3730,

2018.

[AZLL19] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization

in overparameterized neural networks, going beyond two layers. In Advances in

206

neural information processing systems, 2019.

[AZLS19] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep

learning via over-parameterization. In International conference on machine

learning, pages 242–252, 2019.

[Bai95] Leemon Baird. Residual algorithms: Reinforcement learning with function ap-

proximation. In Machine learning proceedings 1995, pages 30–37. Elsevier, 1995.

[BB01] Jonathan Baxter and Peter L Bartlett. Infinite-horizon policy-gradient estima-

tion. Journal of Artificial Intelligence Research, 15:319–350, 2001.

[BDMP17] Nicolas Brosse, Alain Durmus, Eric Moulines, and Marcelo Pereyra. Sampling

from a log-concave distribution with compact support with proximal Langevin

Monte Carlo. In Conference on learning theory, pages 319–342, 2017.

[BEGK04] Anton Bovier, Michael Eckhoff, Véronique Gayrard, and Markus Klein.

Metastability in reversible diffusion processes I: Sharp asymptotics for capacities

and exit times. Journal of the European Mathematical Society, 6(4):399–424,

2004.

[BEL18] Sébastien Bubeck, Ronen Eldan, and Joseph Lehec. Sampling from a log-concave

distribution with Projected Langevin Monte Carlo. Discrete & Computational

Geometry, 59(4):757–783, 2018. Publisher: Springer.

[Ber95] Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1.

Athena scientific Belmont, MA, 1995.

[BGL13] Dominique Bakry, Ivan Gentil, and Michel Ledoux. Analysis and geometry of

Markov diffusion operators, volume 348. Springer Science & Business Media,

2013.

[BK97] Vivek S Borkar and Vijaymohan R Konda. The actor-critic algorithm as multi-

time-scale stochastic approximation. Sadhana. Academy Proceedings in Engi-

neering Sciences, 22(4):525–543, 1997. Publisher: Springer.

[BM00] Vivek S Borkar and Sean P Meyn. The ODE method for convergence of stochas-

tic approximation and reinforcement learning. SIAM Journal on Control and

Optimization, 38(2):447–469, 2000. Publisher: SIAM.

207

[BNS16] Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Global optimality

of local search for low rank matrix recovery. In Advances in neural information

processing systems, pages 3873–3881, 2016.

[Bor97] Vivek S Borkar. Stochastic approximation with two time scales. Systems &

Control Letters, 29(5):291–294, 1997. Publisher: Elsevier.

[BRS18] Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of

temporal difference learning with linear function approximation. In Conference

on learning theory, pages 1691–1692, 2018.

[BSA83] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements

that can solve difficult learning control problems. IEEE Transactions on Sys-

tems, Man, and Cybernetics, SMC-13(5):834–846, 1983.

[BSGL09] Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark

Lee. Natural actor–critic algorithms. Automatica, 45(11):2471–2482, 2009. Pub-

lisher: Elsevier.

[BV05] Francois Bolley and Cedric Villani. Weighted csiszár-kullback-pinsker inequal-

ities and applications to transportation inequalities. Annales de la Faculté des

Sciences de Toulouse. Série VI. Mathématiques, 14, January 2005.

[CB18] Lenaic Chizat and Francis Bach. On the global convergence of gradient descent

for over-parameterized models using optimal transport. In Advances in neural

information processing systems, pages 3036–3046, 2018.

[CCBJ18] Xiang Cheng, Niladri S. Chatterji, Peter L. Bartlett, and Michael I. Jordan.

Underdamped Langevin MCMC: A non-asymptotic analysis. In Proceedings of

the 31st conference on learning theory, volume 75, pages 300–323, 2018.

[CD16] Yair Carmon and John C Duchi. Gradient descent efficiently finds the Cubic-

Regularized non-convex newton step. arXiv preprint arXiv:1612.00547, 2016.

[CDC15] Changyou Chen, Nan Ding, and Lawrence Carin. On the convergence of stochas-

tic gradient MCMC algorithms with high-order integrators. In Advances in

neural information processing systems, pages 2278–2286, 2015.

[CDHS16] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Accelerated

208

methods for non-convex optimization. 2016.

[CDHS17] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. “Convex until

proven guilty”: Dimension-free acceleration of gradient descent on non-convex

functions. In International conference on machine learning, pages 654–663,

2017.

[CFM+18] Niladri Chatterji, Nicolas Flammarion, Yian Ma, Peter Bartlett, and Michael

Jordan. On the theory of variance reduction for stochastic gradient Monte Carlo.

In Proceedings of the 35th international conference on machine learning, pages

764–773, 2018.

[CG19a] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient

descent for wide and deep neural networks. In Advances in neural information

processing systems, 2019.

[CG19b] Yuan Cao and Quanquan Gu. A generalization theory of gradient de-

scent for learning over-parameterized deep relu networks. arXiv preprint

arXiv:1902.01384, 2019.

[CGH+19] Tianle Cai, Ruiqi Gao, Jikai Hou, Siyu Chen, Dong Wang, Di He, Zhihua Zhang,

and Liwei Wang. A gram-gauss-newton method learning overparameterized deep

neural networks for regression problems. arXiv preprint arXiv:1905.11675, 2019.

[CHM+15] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and

Yann LeCun. The loss surfaces of multilayer networks. In Artificial intelligence

and statistics, pages 192–204, 2015.

[CHS87] Tzuu-Shuh Chiang, Chii-Ruey Hwang, and Shuenn Jyi Sheu. Diffusion for global

optimization in Rˆn. SIAM Journal on Control and Optimization, 25(3):737–

753, 1987. Publisher: SIAM.

[CM10] Dotan Di Castro and Ron Meir. A convergent online single time scale actor critic

algorithm. Journal of Machine Learning Research, 11(Jan):367–410, 2010.

[CMM10] Corinna Cortes, Yishay Mansour, and Mehryar Mohri. Learning bounds for

importance weighting. In Advances in neural information processing systems,

pages 442–450, 2010.

209

[CRS14] Frank E Curtis, Daniel P Robinson, and Mohammadreza Samadi. A trust region

algorithm with a worst-case iteration complexity of O(\epsilon-3/2) for noncon-

vex optimization. Mathematical Programming, pages 1–32, 2014. Publisher:

Springer.

[CRS17] Frank E Curtis, Daniel P Robinson, and Mohammadreza Samadi. A trust region

algorithm with a worst-case iteration complexity of O(\epsilon-3/2) for noncon-

vex optimization. Mathematical Programming, 162(1-2):1–32, 2017. Publisher:

Springer.

[CYJW19] Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient explo-

ration in policy optimization. arXiv preprint arXiv:1912.05830, 2019.

[CYLW19] Qi Cai, Zhuoran Yang, Jason D Lee, and Zhaoran Wang. Neural temporal-

difference learning converges to global optima. In Advances in neural informa-

tion processing systems, 2019.

[CZD+19] Zaiwei Chen, Sheng Zhang, Thinh T. Doan, Siva Theja Maguluri, and John-Paul

Clarke. Performance of q-learning with linear function approximation: Stability

and finite-time analysis. arXiv preprint arXiv:1905.11425, 2019.

[Dal17a] Arnak Dalalyan. Further and stronger analogy between sampling and optimiza-

tion: Langevin Monte Carlo and gradient descent. In Conference on learning

theory, pages 678–689, 2017.

[Dal17b] Arnak S Dalalyan. Theoretical guarantees for approximate sampling from

smooth and log-concave densities. Journal of the Royal Statistical Society: Se-

ries B (Statistical Methodology), 79(3):651–676, 2017. Publisher: Wiley Online

Library.

[DBLJ14] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremen-

tal gradient method with support for non-strongly convex composite objectives.

In Advances in neural information processing systems, pages 1646–1654, 2014.

[DCL+17] Simon S Du, Jianshu Chen, Lihong Li, Lin Xiao, and Dengyong Zhou. Stochastic

variance reduction methods for policy evaluation. In Proceedings of the 34th

international conference on machine learning-volume 70, pages 1049–1058, 2017.

210

tex.organization: JMLR. org.

[DCWY18] Raaz Dwivedi, Yuansi Chen, Martin J Wainwright, and Bin Yu. Log-concave

sampling: Metropolis-Hastings algorithms are fast! In Proceedings of the 31st

conference on learning theory, pages 793–797, 2018.

[DDo14] Aaron Defazio, Justin Domke, and others. Finito: A faster, permutable incre-

mental gradient method for big data problems. In International conference on

machine learning, pages 1125–1133, 2014.

[DK17] Arnak S Dalalyan and Avetik G Karagulyan. User-friendly guarantees

for the Langevin Monte Carlo with inaccurate gradient. arXiv preprint

arXiv:1710.00095, 2017.

[DKLH18] Hadi Daneshmand, Jonas Kohler, Aurelien Lucchi, and Thomas Hofmann. Es-

caping saddles with stochastic gradients. In International Conference on Ma-

chine Learning, pages 1155–1164. PMLR, 2018.

[DLL+19] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient

descent finds global minima of deep neural networks. In International conference

on machine learning, pages 1675–1685, 2019.

[DM15] Alain Durmus and Eric Moulines. Non-asymptotic convergence analysis for the

Unadjusted Langevin Algorithm. arXiv preprint arXiv:1507.05021, 2015.

[DM16] Alain Durmus and Eric Moulines. High-dimensional bayesian inference via the

unadjusted Langevin algorithm. arXiv preprint arXiv:1605.01559, 2016.

[DM17] Adithya M Devraj and Sean Meyn. Zap q-learning. In Advances in neural

information processing systems, pages 2235–2244, 2017.

[DNPo13] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, and others. A survey on

policy search for robotics. Foundations and Trends® in Robotics, 2(1–2):1–142,

2013. Publisher: Now Publishers, Inc.

[DPG+14] Yann Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Gan-

guli, and Yoshua Bengio. Identifying and attacking the saddle point problem

in high-dimensional non-convex optimization. Mathematics, 111(6 Pt 1):2475–

2485, 2014.

211

[DRW+16] Kumar Avinava Dubey, Sashank J Reddi, Sinead A Williamson, Barnabas Poc-

zos, Alexander J Smola, and Eric P Xing. Variance reduction in stochastic

gradient Langevin dynamics. In Advances in neural information processing sys-

tems, pages 1154–1162, 2016.

[DSTM17] Gal Dalal, Balazs Szorenyi, Gugan Thoppe, and Shie Mannor. Finite sample

analysis of two-timescale stochastic approximation with applications to rein-

forcement learning. arXiv preprint arXiv:1703.05376, 2017.

[DSTM18] Gal Dalal, Balázs Szörényi, Gugan Thoppe, and Shie Mannor. Finite sample

analyses for td (0) with function approximation. In Thirty-second AAAI con-

ference on artificial intelligence, 2018.

[DZPS19] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent

provably optimizes over-parameterized neural networks. In International con-

ference on learning representations, 2019.

[EMS18] Murat A Erdogdu, Lester Mackey, and Ohad Shamir. Global non-convex opti-

mization with discretized diffusions. In Advances in neural information process-

ing systems, pages 9693–9702, 2018.

[FLLZ18] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. SPIDER: Near-

optimal non-convex optimization via stochastic path-integrated differential es-

timator. In Advances in neural information processing systems, pages 686–696,

2018.

[FLZ19] Cong Fang, Zhouchen Lin, and Tong Zhang. Sharp analysis for nonconvex sgd

escaping from saddle points. In Conference on Learning Theory, pages 1192–

1234. PMLR, 2019.

[GBB04] Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction

techniques for gradient estimates in reinforcement learning. Journal of Machine

Learning Research, 5(Nov):1471–1530, 2004.

[GH15] Dan Garber and Elad Hazan. Fast and simple PCA via convex optimization.

arXiv preprint arXiv:1509.05647, 2015.

[GHJY15] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle

212

points—online stochastic gradient for tensor decomposition. In Conference on

learning theory, pages 797–842, 2015.

[GL13] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order meth-

ods for nonconvex stochastic programming. SIAM Journal on Optimization,

23(4):2341–2368, 2013. Publisher: SIAM.

[GL16] Saeed Ghadimi and Guanghui Lan. Accelerated gradient methods for noncon-

vex nonlinear and stochastic programming. Mathematical Programming, 156(1-

2):59–99, 2016. Publisher: Springer.

[GLM16] Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious

local minimum. In Advances in neural information processing systems, pages

2973–2981, 2016.

[GLR17] Rong Ge, Holden Lee, and Andrej Risteski. Beyond log-concavity: Provable

guarantees for sampling multi-modal distributions using simulated tempering

Langevin Monte Carlo. arXiv preprint arXiv:1710.02736, 2017.

[GLZ16] Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic ap-

proximation methods for nonconvex stochastic composite optimization. Mathe-

matical Programming, 155(1-2):267–305, 2016. Publisher: Springer.

[GM91] Saul B Gelfand and Sanjoy K Mitter. Recursive stochastic algorithms for global

optimization in $Rˆd$. SIAM Journal on Control and Optimization, 29(5):999–

1018, 1991. Publisher: SIAM.

[GSY19] Harsh Gupta, R Srikant, and Lei Ying. Finite-time performance bounds and

adaptive learning rate selection for two time-scale reinforcement learning. In

Advances in neural information processing systems, pages 4706–4715, 2019.

[Gyo86] Istvan Gyongy. Mimicking the one-dimensional marginal distributions of pro-

cesses having an Itô differential. Probability theory and related fields, 71(4):501–

516, 1986. Publisher: Springer.

[HAV+15] Reza Harikandeh, Mohamed Osama Ahmed, Alim Virani, Mark Schmidt, Jakub

Kone{\v{c}}n{\‘y}, and Scott Sallinen. Stop wasting my gradients: Practical

svrg. In Advances in neural information processing systems, pages 2251–2259,

213

2015.

[HL13] Christopher J Hillar and Lek-Heng Lim. Most tensor problems are NP-hard.

Journal of the ACM (JACM), 60(6):45, 2013. Publisher: ACM.

[HM08] Martin Hairer and Jonathan C Mattingly. Spectral gaps in Wasserstein distances

and the 2D stochastic Navier-Stokes equations. The Annals of Probability, pages

2050–2091, 2008. Publisher: JSTOR.

[HS19] Bin Hu and Usman Ahmed Syed. Characterizing the exact behaviors of tempo-

ral difference learning algorithms using markov jump linear system theory. In

Advances in neural information processing systems, 2019.

[Hwa80] Chii-Ruey Hwang. Laplace’s method revisited: weak convergence of probability

measures. The Annals of Probability, pages 1177–1182, 1980. Publisher: JSTOR.

[IW14] Nobuyuki Ikeda and Shinzo Watanabe. Stochastic differential equations and

diffusion processes, volume 24. Elsevier, 2014.

[JAZBJ18] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-

learning provably efficient? In Advances in neural information processing sys-

tems, pages 4863–4873, 2018.

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel:

Convergence and generalization in neural networks. In Advances in neural in-

formation processing systems, pages 8571–8580, 2018.

[JGN+17] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan.

How to escape saddle points efficiently. In International conference on machine

learning, pages 1724–1732, 2017.

[JJS94] Tommi Jaakkola, Michael I Jordan, and Satinder P Singh. Convergence of

stochastic iterative dynamic programming algorithms. In Advances in neural

information processing systems, pages 703–710, 1994.

[JNJ18] Chi Jin, Praneeth Netrapalli, and Michael I. Jordan. Accelerated gradient de-

scent escapes saddle points faster than gradient descent. In Proceedings of the

31st conference on learning theory, pages 1042–1085, 2018.

[JZ13] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using

214

predictive variance reduction. In Advances in neural information processing

systems, pages 315–323, 2013.

[KB14] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. CoRR, abs/1412.6980, 2014.

[KBP13] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning

in robotics: A survey. The International Journal of Robotics Research,

32(11):1238–1274, 2013. Publisher: SAGE Publications Sage UK: London, Eng-

land.

[KIP+18] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Her-

zog, Eric Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent

Vanhoucke, and others. Scalable deep reinforcement learning for vision-based

robotic manipulation. In Conference on robot learning, pages 651–673, 2018.

[KKR19] Harshat Kumar, Alec Koppel, and Alejandro Ribeiro. On the sample complexity

of actor-critic method for reinforcement learning with function approximation.

arXiv preprint arXiv:1910.08412, 2019.

[KL17] Jonas Moritz Kohler and Aurelien Lucchi. Sub-sampled cubic regularization for

non-convex optimization. In Proceedings of the 34th international conference on

machine learning, volume 70, pages 1895–1904. PMLR, 2017.

[KMN+20] Maxim Kaledin, Eric Moulines, Alexey Naumov, Vladislav Tadic, and Hoi-To

Wai. Finite time analysis of linear two-timescale stochastic approximation with

Markovian noise. arXiv preprint arXiv:2002.01268, 2020.

[KP92] Peter E Kloeden and Eckhard Platen. Higher-order implicit strong numeri-

cal schemes for stochastic differential equations. Journal of statistical physics,

66(1):283–314, 1992. Publisher: Springer.

[Kri09] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech-

nical report, Citeseer, 2009.

[KT00] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in

neural information processing systems, pages 1008–1014, 2000.

[KTo04] Vijay R Konda, John N Tsitsiklis, and others. Convergence rate of linear

215

two-time-scale stochastic approximation. The Annals of Applied Probability,

14(2):796–819, 2004. Publisher: Institute of Mathematical Statistics.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998. Publisher: IEEE.

[LCYW19] Boyi Liu, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural Proximal/Trust

region policy optimization attains globally optimal policy. In Advances in neural

information processing systems, 2019.

[Lev16] Kfir Y Levy. The power of normalization: Faster evasion of saddle points. arXiv

preprint arXiv:1611.04831, 2016.

[Li17] Yuxi Li. Deep reinforcement learning: An overview. CoRR, abs/1701.07274,

2017. arXiv: 1701.07274.

[LJCJ17] Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex finite-sum

optimization via scsg methods. In Advances in neural information processing

systems, pages 2348–2358, 2017.

[LL18] Zhize Li and Jian Li. A simple proximal stochastic gradient method for nons-

mooth nonconvex optimization. In Advances in neural information processing

systems, pages 5569–5579, 2018.

[LLG+15] Bo Liu, Ji Liu, Mohammad Ghavamzadeh, Sridhar Mahadevan, and Marek

Petrik. Finite-sample analysis of proximal gradient TD algorithms. In Proceed-

ings of the thirty-first conference on uncertainty in artificial intelligence, pages

504–513, 2015. tex.organization: AUAI Press.

[LP17] David A Levin and Yuval Peres. Markov chains and mixing times, volume 107.

American Mathematical Soc., 2017.

[LPW09] David Asher Levin, Yuval Peres, and Elizabeth Lee Wilmer. Markov chains and

mixing times. American Mathematical Soc., 2009.

[LRLP17] Yang Liu, Prajit Ramachandran, Qiang Liu, and Jian Peng. Stein variational

policy gradient. 2017.

[LS13] Robert S Liptser and Albert N Shiryaev. Statistics of random processes: I.

216

general theory, volume 5. Springer Science & Business Media, 2013.

[LS18] Chandrashekar Lakshminarayanan and Csaba Szepesvari. Linear stochastic ap-

proximation: How far does constant step-size and iterate averaging go? In In-

ternational conference on artificial intelligence and statistics, pages 1347–1355,

2018.

[LWA15] Sergey Levine, Nolan Wagener, and Pieter Abbeel. Learning contact-rich manip-

ulation skills with guided policy search. In 2015 IEEE international conference

on robotics and automation (ICRA), pages 156–163, 2015. tex.organization:

IEEE.

[LZL18] Zhize Li, Tianyi Zhang, and Jian Li. Stochastic gradient hamiltonian

Monte Carlo with variance reduction for bayesian inference. arXiv preprint

arXiv:1803.11159, 2018.

[MBM+16] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-

othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-

chronous methods for deep reinforcement learning. In International conference

on machine learning, pages 1928–1937, 2016.

[MCF15] Yi-An Ma, Tianqi Chen, and Emily Fox. A complete recipe for stochastic

gradient MCMC. In Advances in neural information processing systems, pages

2917–2925, 2015.

[Mit05] A Yu Mitrophanov. Sensitivity and convergence of uniformly ergodic Markov

chains. Journal of Applied Probability, 42(4):1003–1014, 2005. Publisher: Cam-

bridge University Press.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-

ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,

Georg Ostrovski, and others. Human-level control through deep reinforcement

learning. Nature, 518(7540):529, 2015. Publisher: Nature Publishing Group.

[MM09] Prashant Mehta and Sean Meyn. Q-learning and pontryagin’s minimum princi-

ple. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC)

held jointly with 2009 28th Chinese Control Conference, pages 3598–3605, 2009.

217

tex.organization: IEEE.

[MMR08] Francisco S Melo, Sean P Meyn, and M Isabel Ribeiro. An analysis of reinforce-

ment learning with function approximation. In Proceedings of the 25th interna-

tional conference on machine learning, pages 664–671, 2008. tex.organization:

ACM.

[MPFR18] Alberto Maria Metelli, Matteo Papini, Francesco Faccio, and Marcello Restelli.

Policy optimization via importance sampling. In Advances in neural information

processing systems, pages 5447–5459, 2018.

[MS08] Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value iteration.

Journal of Machine Learning Research, 9(May):815–857, 2008.

[MSH02] Jonathan C Mattingly, Andrew M Stuart, and Desmond J Higham. Ergodicity

for SDEs and approximations: locally Lipschitz vector fields and degenerate

noise. Stochastic processes and their applications, 101(2):185–232, 2002. Pub-

lisher: Elsevier.

[MST10] Jonathan C Mattingly, Andrew M Stuart, and Michael V Tretyakov. Conver-

gence of numerical time-averaging and stationary measures via Poisson equa-

tions. SIAM Journal on Numerical Analysis, 48(2):552–577, 2010. Publisher:

SIAM.

[MT12] Sean P Meyn and Richard L Tweedie. Markov chains and stochastic stability.

Springer Science & Business Media, 2012.

[Nes13] Yurii Nesterov. Introductory lectures on convex optimization: A basic course,

volume 87. Springer Science & Business Media, 2013.

[Nes18] Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

[NLST17a] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. SARAH: A novel

method for machine learning problems using stochastic recursive gradient. In

Proceedings of the 34th international conference on machine learning-volume 70,

pages 2613–2621, 2017. tex.organization: JMLR. org.

[NLST17b] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Stochas-

tic recursive gradient algorithm for nonconvex optimization. arXiv preprint

218

arXiv:1705.07261, 2017.

[NP06] Yurii Nesterov and B. T. Polyak. Cubic regularization of Newton method and

its global performance. Mathematical Programming, 108(1):177–205, 2006.

[NvDP+19] Lam M Nguyen, Marten van Dijk, Dzung T Phan, Phuong Ha Nguyen, Tsui-

Wei Weng, and Jayant R Kalagnanam. Optimal finite-sum smooth non-convex

optimization with SARAH. CoRR, abs/1901.07648, 2019.

[NWC+11] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-

drew Y Ng. Reading digits in natural images with unsupervised feature learning.

In NIPS workshop on deep learning and unsupervised feature learning, 2011.

[Oja82] Erkki Oja. Simplified neuron model as a principal component analyzer. Journal

of mathematical biology, 15(3):267–273, 1982.

[OS02] Dirk Ormoneit and {\’S}aunak Sen. Kernel-based reinforcement learning. Ma-

chine learning, 49(2-3):161–178, 2002. Publisher: Springer.

[PBC+18] Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and

Marcello Restelli. Stochastic variance-reduced policy gradient. In International

conference on machine learning, pages 4023–4032, 2018.

[PP02] Theodore J Perkins and Mark D Pendrith. On the existence of fixed points

for q-learning and sarsa in partially observable domains. In Proceedings of the

nineteenth international conference on machine learning, pages 490–497, 2002.

tex.organization: Morgan Kaufmann Publishers Inc.

[PRB13] Matteo Pirotta, Marcello Restelli, and Luca Bascetta. Adaptive step-size for

policy gradient methods. In Advances in neural information processing systems,

pages 1394–1402, 2013.

[PS08a] Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7-

9):1180–1190, 2008. Publisher: Elsevier.

[PS08b] Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy

gradients. Neural Networks, 21(4):682–697, 2008. Publisher: Elsevier.

[PW16] Yury Polyanskiy and Yihong Wu. Wasserstein continuity of entropy and outer

bounds for interference channels. IEEE Transactions on Information Theory,

219

62(7):3992–4002, 2016. Publisher: IEEE.

[Qia99] Ning Qian. On the momentum term in gradient descent learning algorithms.

Neural networks, 12(1):145–151, 1999.

[QYYW19] Shuang Qiu, Zhuoran Yang, Jieping Ye, and Zhaoran Wang. On the finite-time

convergence of actor-critic algorithm. NeurIPS 2019 Optimization Foundations

of Reinforcement Learning Workshop, 2019.

[RHS+16] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola.

Stochastic variance reduction for nonconvex optimization. In International con-

ference on machine learning, pages 314–323, 2016.

[Rie05] Martin Riedmiller. Neural fitted Q iteration–first experiences with a data effi-

cient neural reinforcement learning method. In European conference on machine

learning, pages 317–328, 2005. tex.organization: Springer.

[RM51] Herbert Robbins and Sutton Monro. A stochastic approximation method. The

Annals of Mathematical Statistics, pages 400–407, 1951. Publisher: JSTOR.

[Ro61] Alfréd Rényi and others. On measures of entropy and information. In Proceed-

ings of the fourth berkeley symposium on mathematical statistics and probability,

volume 1: Contributions to the theory of statistics, 1961. tex.organization: The

Regents of the University of California.

[RRT17] Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learn-

ing via stochastic gradient Langevin dynamics: a nonasymptotic analysis. In

Conference on learning theory, pages 1674–1703, 2017.

[RSB12] Nicolas L Roux, Mark Schmidt, and Francis R Bach. A stochastic gradient

method with an exponential convergence rate for finite training sets. In Advances

in neural information processing systems, pages 2663–2671, 2012.

[RSPS16] Sashank J Reddi, Suvrit Sra, Barnabas Poczos, and Alexander J Smola. Prox-

imal stochastic methods for nonsmooth nonconvex finite-sum optimization. In

Advances in neural information processing systems, pages 1145–1153, 2016.

[RT96] Gareth O Roberts and Richard L Tweedie. Exponential convergence of Langevin

distributions and their discrete approximations. Bernoulli, pages 341–363, 1996.

220

Publisher: JSTOR.

[RZS+18] Sashank Reddi, Manzil Zaheer, Suvrit Sra, Barnabas Poczos, Francis Bach,

Ruslan Salakhutdinov, and Alex Smola. A generic approach for escaping saddle

points. In International conference on artificial intelligence and statistics, pages

1233–1242, 2018.

[SAMR18] Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus. Planning and decision-

making for autonomous vehicles. Annual Review of Control, Robotics, and Au-

tonomous Systems, 2018. Publisher: Annual Reviews.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-

tion. MIT press, 2018.

[Sch15] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural

Networks, 61:85–117, 2015. Publisher: Elsevier.

[SHM+16] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George

van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneer-

shelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal

Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray

Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go

with deep neural networks and tree search. Nature, 529:484–489, 2016.

[SLA+15] John Schulman, Sergey Levine, Pieter Abbeel, Michael I Jordan, and Philipp

Moritz. Trust region policy optimization. In International conference on ma-

chine learning, volume 37, pages 1889–1897, 2015.

[SLH+14] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and

Martin Riedmiller. Deterministic policy gradient algorithms. In International

conference on machine learning, 2014.

[SML+15] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter

Abbeel. High-dimensional continuous control using generalized advantage esti-

mation. CoRR, abs/1506.02438, 2015.

[SMSM00] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.

Policy gradient methods for reinforcement learning with function approxima-

221

tion. In Advances in neural information processing systems, pages 1057–1063,

2000.

[SN14] Issei Sato and Hiroshi Nakagawa. Approximation analysis of stochastic gradient

Langevin dynamics by using fokker-planck equation and ito process. In Pro-

ceedings of the 31st international conference on machine learning (ICML-14),

pages 982–990, 2014.

[SOR+08] Frank Sehnke, Christian Osendorfer, Thomas R{\”u}ckstie{\ss}, Alex Graves,

Jan Peters, and J{\”u}rgen Schmidhuber. Policy gradients with parameter-

based exploration for control. In International conference on artificial neural

networks, pages 387–396, 2008. tex.organization: Springer.

[SOR+10] Frank Sehnke, Christian Osendorfer, Thomas R{\”u}ckstie{\ss}, Alex Graves,

Jan Peters, and J{\”u}rgen Schmidhuber. Parameter-exploring policy gradi-

ents. Neural Networks, 23(4):551–559, 2010. Publisher: Elsevier.

[SRH+19] Zebang Shen, Alejandro Ribeiro, Hamed Hassani, Hui Qian, and Chao Mi.

Hessian aided policy gradient. In International conference on machine learning,

pages 5729–5738, 2019.

[SS02] Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support

vector machines, regularization, optimization, and beyond. MIT press, 2002.

[SS16] Shai Shalev-Shwartz. Sdca without duality, regularization, and individual con-

vexity. In International conference on machine learning, pages 747–754, 2016.

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian

Bolton, and others. Mastering the game of go without human knowledge. Na-

ture, 550(7676):354, 2017. Publisher: Nature Publishing Group.

[SSSS16] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-

agent, reinforcement learning for autonomous driving. CoRR, abs/1610.03295,

2016. arXiv: 1610.03295.

[SSZ13] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent meth-

ods for regularized loss minimization. Journal of Machine Learning Research,

222

14(Feb):567–599, 2013.

[Sut88] Richard S Sutton. Learning to predict by the methods of temporal differences.

Machine learning, 3(1):9–44, 1988. Publisher: Springer.

[SY19] R Srikant and Lei Ying. Finite-time error bounds for linear stochastic approx-

imation andTD learning. In Conference on learning theory, pages 2803–2830,

2019.

[SYN+18] Umut Simsekli, Cagatay Yildiz, Than Huy Nguyen, Taylan Cemgil, and Gael

Richard. Asynchronous stochastic quasi-Newton MCMC for non-convex opti-

mization. In Proceedings of the 35th international conference on machine learn-

ing, pages 4674–4683, 2018.

[Sze10] Csaba Szepesvári. Algorithms for reinforcement learning. In Algorithms for

reinforcement learning, Synthesis lectures on artificial intelligence and machine

learning. Morgan & Claypool Publishers, 2010.

[TBG+18] George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard Turner, Zoubin

Ghahramani, and Sergey Levine. The mirage of action-dependent baselines in

reinforcement learning. In International conference on machine learning, pages

5022–5031, 2018.

[TLR18] Belinda Tzen, Tengyuan Liang, and Maxim Raginsky. Local optimality and

generalization guarantees for the Langevin algorithm via empirical metastability.

In Proceedings of the 31st conference on learning theory, pages 857–875, 2018.

[TM03] Vladislav B Tadic and Sean P Meyn. Asymptotic properties of two time-scale

stochastic approximation algorithms with constant step sizes. In Proceedings of

the 2003 american control conference, 2003., volume 5, pages 4426–4431, 2003.

tex.organization: IEEE.

[TVR97] John N Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learn-

ing with function approximation. In Advances in neural information processing

systems, pages 1075–1081, 1997.

[Ver10] Roman Vershynin. Introduction to the non-asymptotic analysis of random ma-

trices. arXiv preprint arXiv:1011.3027, 2010.

223

[VHGS16] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning

with double q-learning. In Thirtieth AAAI conference on artificial intelligence,

2016.

[VZT16] Sebastian J Vollmer, Konstantinos C Zygalakis, and Yee Whye Teh. Exploration

of the (non-) asymptotic bias and variance of stochastic gradient Langevin dy-

namics. Journal of Machine Learning Research, 17(159):1–48, 2016.

[WCYW20] Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy

gradient methods: Global optimality and rates of convergence. In International

conference on learning representations, 2020.

[WD92] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,

8(3-4):279–292, 1992. Publisher: Springer.

[Wie04] Marco A Wiering. Convergence and divergence in standard and averaging rein-

forcement learning. In European conference on machine learning, pages 477–488,

2004. tex.organization: Springer.

[Wil92] Ronald J Williams. Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine Learning, 8(3-4):229–256, 1992. Pub-

lisher: Springer.

[WJZ+19] Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh. SpiderBoost:

A class of faster variance-reduced algorithms for nonconvex optimization. Ad-

vances in Neural Information Processing Systems, 32:2406–2416, 2019.

[WRD+18] Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M

Bayen, Sham Kakade, Igor Mordatch, and Pieter Abbeel. Variance reduction

for policy gradient with action-dependent factorized baselines. In International

conference on learning representations, 2018.

[WSH+16] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and

Nando Freitas. Dueling network architectures for deep reinforcement learning.

In International conference on machine learning, pages 1995–2003, 2016.

[WT11] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin

dynamics. In Proceedings of the 28th international conference on machine learn-

224

ing, pages 681–688, 2011.

[WZXG20] Yue Frank Wu, Weitong ZHANG, Pan Xu, and Quanquan Gu. A finite-time

analysis of two time-scale actor-critic methods. In Advances in Neural Informa-

tion Processing Systems, volume 33, pages 17617–17628, 2020.

[XCZG18] Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global Convergence of

Langevin Dynamics Based Algorithms for Nonconvex Optimization. Advances

in neural information processing systems, 2018.

[XG20] Pan Xu and Quanquan Gu. A Finite-Time Analysis of Q-Learning with Neural

Network Function Approximation. In International Conference on Machine

Learning, pages 10555–10565. PMLR, November 2020. ISSN: 2640-3498.

[XGG19] Pan Xu, Felicia Gao, and Quanquan Gu. An improved convergence analysis

of stochastic variance-reduced policy gradient. In International conference on

uncertainty in artificial intelligence, 2019.

[XGG20] Pan Xu, Felicia Gao, and Quanquan Gu. Sample efficient policy gradient meth-

ods with recursive variance reduction. In International conference on learning

representations, 2020.

[XLP17] Tianbing Xu, Qiang Liu, and Jian Peng. Stochastic variance reduction for policy

gradient estimation. CoRR, abs/1710.06034, 2017. arXiv: 1710.06034.

[XRM20] Peng Xu, Fred Roosta, and Michael W Mahoney. Newton-type methods for

non-convex optimization under inexact Hessian information. Mathematical Pro-

gramming, 184(1):35–70, 2020.

[XRY18] Yi Xu, Jing Rong, and Tianbao Yang. First-order stochastic algorithms for

escaping from saddle points in almost linear time. In Advances in neural infor-

mation processing systems, pages 5531–5541, 2018.

[XWL20] Tengyu Xu, Zhe Wang, and Yingbin Liang. Non-asymptotic convergence

analysis of two time-scale (natural) actor-critic algorithms. arXiv preprint

arXiv:2005.03557, 2020.

[XZ14] Lin Xiao and Tong Zhang. A proximal stochastic gradient method with pro-

gressive variance reduction. SIAM Journal on Optimization, 24(4):2057–2075,

225

2014. Publisher: SIAM.

[XZL19] Tengyu Xu, Shaofeng Zou, and Yingbin Liang. Two time-scale off-policy TD

learning: Non-asymptotic analysis over Markovian samples. In Advances in

neural information processing systems, pages 10634–10644, 2019.

[YCHW19] Zhuoran Yang, Yongxin Chen, Mingyi Hong, and Zhaoran Wang. On the global

convergence of actor-critic: A case for linear quadratic regulator with ergodic

cost. In Advances in neural information processing systems, 2019.

[YLTZ19] Huizhuo Yuan, Chris Junchi Li, Yuhao Tang, and Yuren Zhou. Policy optimiza-

tion via stochastic recursive gradient algorithm. 2019.

[YXG18] Yaodong Yu, Pan Xu, and Quanquan Gu. Third-order smoothness helps: Faster

stochastic optimization algorithms for finding local minima. In Advances in

neural information processing systems, pages 4526–4536, 2018.

[YXW19] Zhuoran Yang, Yuchen Xie, and Zhaoran Wang. A theoretical analysis of deep

Q-learning. arXiv preprint arXiv:1901.00137, 2019.

[YZ19] Long Yang and Yu Zhang. Policy optimization with stochastic mirror descent.

arXiv preprint arXiv:1906.10462, 2019.

[YZG17] Yaodong Yu, Difan Zou, and Quanquan Gu. Saving gradient and negative

curvature computations: Finding local minima more efficiently. arXiv preprint

arXiv:1712.03950, 2017.

[YZHB18] Zhuoran Yang, Kaiqing Zhang, Mingyi Hong, and Tamer Başar. A finite sample

analysis of the actor-critic algorithm. In 2018 IEEE conference on decision and

control (CDC), pages 2759–2764, 2018. tex.organization: IEEE.

[ZCZG19] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient

descent optimizes over-parameterized deep relu networks. Machine Learning,

2019.

[ZG19a] Dongruo Zhou and Quanquan Gu. Lower bounds for smooth nonconvex finite-

sum optimization. In International Conference on Machine Learning, pages

7574–7583. PMLR, 2019.

[ZG19b] Difan Zou and Quanquan Gu. An improved analysis of training over-

226

parameterized deep neural networks. In Advances in neural information pro-

cessing systems, 2019.

[ZHNS11] Tingting Zhao, Hirotaka Hachiya, Gang Niu, and Masashi Sugiyama. Analysis

and improvement of policy gradient estimation. In Advances in neural informa-

tion processing systems, pages 262–270, 2011.

[ZHT+13] Tingting Zhao, Hirotaka Hachiya, Voot Tangkaratt, Jun Morimoto, and Masashi

Sugiyama. Efficient sample reuse in policy gradients with parameter-based ex-

ploration. Neural computation, 25(6):1512–1547, 2013. Publisher: MIT Press.

[ZKZB19] Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Başar. Global convergence

of policy gradient methods to (almost) locally optimal policies. arXiv preprint

arXiv:1906.08383, 2019.

[ZLC17] Yuchen Zhang, Percy Liang, and Moses Charikar. A hitting time analysis of

stochastic gradient Langevin dynamics. In Conference on learning theory, pages

1980–2022, 2017.

[ZLYW19] Shangtong Zhang, Bo Liu, Hengshuai Yao, and Shimon Whiteson. Provably

convergent two-timescale off-policy actor-critic with function approximation.

arXiv, pages arXiv–1911, 2019.

[ZWYG18] Xiao Zhang, Lingxiao Wang, Yaodong Yu, and Quanquan Gu. A primal-dual

analysis of global optimality in nonconvex low-rank matrix recovery. In Inter-

national conference on machine learning, 2018.

[ZXG18a] Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic nested variance reduced

gradient descent for nonconvex optimization. In Advances in neural information

processing systems, pages 3922–3933, 2018.

[ZXG18b] Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic variance-reduced cubic

regularized Newton methods. In Proceedings of the 35th international conference

on machine learning, pages 5990–5999, 2018.

[ZXG18c] Difan Zou, Pan Xu, and Quanquan Gu. Stochastic variance-reduced Hamilton

Monte Carlo methods. In Proceedings of the 35th international conference on

machine learning, pages 6028–6037, 2018.

227

[ZXG18d] Difan Zou, Pan Xu, and Quanquan Gu. Subsampled stochastic variance-reduced

gradient Langevin dynamics. In Proceedings of international conference on un-

certainty in artificial intelligence, 2018.

[ZXG20] Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic nested variance reduc-

tion for nonconvex optimization. Journal of machine learning research, 2020.

[ZXL19] Shaofeng Zou, Tengyu Xu, and Yingbin Liang. Finite-sample analysis for sarsa

with linear function approximation. In Advances in neural information process-

ing systems, pages 8665–8675, 2019.

228

	Introduction
	Overview and Background
	Organization of Chapters
	Notations

	I Efficient Algorithms for General Nonconvex Optimization Problems
	Local Convergence of Stochastic Algorithms for Nonconvex Optimization
	Introduction
	Contribution

	Background and Related Work
	Preliminaries
	Stochastic Nested Variance-Reduced Gradient Descent
	Convergence of SNVRG

	SNVRG for Finding Local Minima
	SNVRG + Neon2: Finding Local Minima
	Convergence Analysis of SNVRG + Neon2
	Finding Local Minima with the Third-Order Smoothness Condition

	Experiments
	SNVRG for Training CNNs for Image Classification
	Experimental Results for Escaping Saddle Points

	Proof of Main Theory
	Proof of Main Theory for Finding Stationary Points
	Proof of Main Theory for Finding Local Minima
	Proof of Main Theory with Third-order Smoothness

	Proof of Supporting Lemmas
	Proof of Lemma 2.7.1
	Proof of Lemma 2.7.2

	Proof of Key Lemma 2.8.1
	Proof of Technical Lemmas
	Proof of Lemma 2.9.2
	Proof of Lemma 2.9.3

	Proofs of Auxiliary Lemmas
	Proof of Proposition 2.10.1
	Proof of Lemma 2.10.2
	Proof of Lemma 2.10.3
	Proof of Lemma 2.10.4

	Global Convergence of Langevin Dynamics Based Algorithms
	Introduction
	Our Contributions
	Additional Related Work
	Preliminaries

	Review of Langevin Dynamics Based Algorithms
	Main Theory
	Proof Sketch of the Main Results
	Roadmap of the Proof
	Proof of Theorems 3.3.3, 3.3.6 and 3.3.10

	Fokker-Planck Equation and Backward Kolmogorov Equation
	Proof of Corollaries
	Proof of Technical Lemmas
	Proof of Lemma 3.4.1
	Proof of Lemma 3.4.2
	Proof of Lemma 3.4.4
	Proof of Lemma 3.4.5

	II Efficient Nonconvex Optimization for Reinforcement Learning
	Sample-Efficient Policy Optimization Methods with Variance Reduction
	Introduction
	Additional Related Work

	Backgrounds on Policy Gradient
	The Proposed Algorithm
	Main Theory
	Convergence Rate and Sample Complexity of SRVR-PG
	Implication for Gaussian Policy

	Experiments
	Extension to Parameter-based Exploration
	Proof of the Main Theory
	Proof of Technical Lemmas
	Proof of Theoretical Results for Gaussian Policy
	Additional Details on Experiments

	Finite-Time Analysis for Policy Optimization with Linear Value Function Approximation
	Introduction
	Related Work
	Preliminaries
	Markov Decision Processes
	Policy Gradient Theorem
	REINFORCE with a Baseline
	The Two Time-Scale Actor-Critic Algorithm

	Main Theory
	Assumptions and Propositions
	Convergence of the Actor
	Convergence of the Critic
	Convergence Rate and Sample Complexity

	Proof Sketch
	Proof Sketch of Theorem 5.4.5
	Proof Sketch of Theorem 5.4.7

	Preliminary Lemmas
	Probabilistic Lemmas
	Lipschitzness of the Optimal Parameter
	Asymptotic Equivalence

	Proof of Main Theorems and Propositions
	Proof of Theorem 5.4.5
	Proof of Theorem 5.4.7: Estimating the Average Reward
	Proof of Theorem 5.4.7: Approximating the TD Fixed Point
	Proof of Corollary 5.4.9

	Proof of Technical Lemmas
	Proof of Lemma 5.7.1
	Proof of Lemma 5.7.2
	Proof of Lemma 5.7.3
	Proof of Lemma 5.7.4
	Proof of Lemma 5.7.5
	Proof of Lemma 5.7.6
	Proof of Lemma 5.7.7

	Q-Learning with Deep Neural Network Function Approximation
	Introduction
	Related Work
	Preliminaries
	The Neural Q-Learning Algorithm
	Q-Learning with Linear Function Approximation
	Neural Q-Learning

	Convergence Analysis of Neural Q-Learning
	Approximate Stationary Point in the Constrained Space
	The Main Theory

	Proof of Main Results
	Proof of Theorem 6.5.6
	Proof of Supporting Lemmas
	Proof of Lemma 6.6.1
	Proof of Lemma 6.6.2
	Proof of Lemma 6.6.3

	Conclusion

