
UCLA
UCLA Electronic Theses and Dissertations

Title
Efficient Computation of Viterbi Decoder Reliability with an Application to Variable-Length 
Coding

Permalink
https://escholarship.org/uc/item/46q822rk

Author
Baldauf, Alexander Makoto

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/46q822rk
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Efficient Computation of Viterbi Decoder

Reliability with an Application

to Variable-Length Coding

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Electrical and Computer Engineering

by

Alexander Makoto Baldauf

2022



© Copyright by

Alexander Makoto Baldauf

2022



ABSTRACT OF THE THESIS

Efficient Computation of Viterbi Decoder

Reliability with an Application

to Variable-Length Coding

by

Alexander Makoto Baldauf

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Professor Richard D. Wesel, Chair

This thesis compares the accuracy and complexity of Raghavan and Baum’s Reliability Out-

put Viterbi Algorithm (ROVA), Polyanskiy’s accumulated information density (AID), and

Fricke and Hoeher’s approximation of ROVA. It turns out that AID is far less accurate

than ROVA in practice. This thesis proposes codeword information density (CID), which

modifies AID to improve its accuracy and leads to a lower-complexity implementation of

ROVA. This thesis includes an analytical expression for the random variable describing the

correct decoding probability computed by ROVA and uses this expression to characterize

how the probabilities of correct decoding, undetected error, and negative acknowledgement

behave as a function of the selected threshold for reliable decoding. This thesis examines

both the complexity and the simulation time of ROVA, CID, AID, and the Fricke and Hoe-

her approximation to ROVA. This thesis also derives an expression for the union bound on

the frame error rate for zero-terminated trellis codes with punctured symbols and uses it to

optimize the order of symbol transmission in an incremental retransmission scheme. This

thesis compares the performance of an incremental retransmission scheme using ROVA as a

stopping condition to one that uses a CRC as a stopping condition. This thesis concludes by

ii



applying the sequential differential optimization algorithm (SDO) to determine the trans-

mission lengths in an incremental transmission scheme to maximize the throughput when

limiting the maximum number of transmissions.

iii



The thesis of Alexander Makoto Baldauf is approved.

Chandra J. Joshi

Gregory J. Pottie

Richard D. Wesel, Committee Chair

University of California, Los Angeles

2022

iv



To my family,

who have always supported me

with love and understanding.

v



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.0.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.0.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Incremental Redundancy with Stop Feedback . . . . . . . . . . . . . . . . . 5

3 Viterbi Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Reliability Output Viterbi Algorithm . . . . . . . . . . . . . . . . . . . . . . 11

4.0.1 Computing ROVA as in [RB98] . . . . . . . . . . . . . . . . . . . . . 12

5 Derivation of the ROVA Distribution . . . . . . . . . . . . . . . . . . . . . . 16

6 Information Density as a Stopping Rule and Polyanskiy’s Achievable Rate 20

7 Comparison to Frick and Hoeher and AID . . . . . . . . . . . . . . . . . . . 22

7.1 Fricke and Hoeher Approximation . . . . . . . . . . . . . . . . . . . . . . . . 22

7.2 Accumulated Information Density . . . . . . . . . . . . . . . . . . . . . . . . 25

8 CID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

9 Complexity Analysis of Reliability Metrics . . . . . . . . . . . . . . . . . . 35

10 Example of incremental redundancy based on ROVA and Comparison . 41

10.1 Approximately Optimal Ordering of Symbol Transmission for Incremental Re-

transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

10.2 Numerical Results for Higher Order Modulation for Variable Length Coding

with a Comparison to a CRC-based Approach . . . . . . . . . . . . . . . . . 44

vi



10.3 Correction of results in [BBK22] . . . . . . . . . . . . . . . . . . . . . . . . . 46

11 Sequential Differential Optimization . . . . . . . . . . . . . . . . . . . . . . . 51

11.1 The incremental redundancy accumulation cycle . . . . . . . . . . . . . . . . 51

11.2 Optimizing the lengths l1, ..., lm to maximize throughput . . . . . . . . . . . 52

11.3 An Improved Model for P
Nj

ACK . . . . . . . . . . . . . . . . . . . . . . . . . . 53

11.3.1 A Gaussian approximation of highest rate of ACK . . . . . . . . . . . 53

11.3.2 Polyanskiy’s Gaussian information-density model . . . . . . . . . . . 53

11.3.3 Gaussian information density with a linear coding gap . . . . . . . . 56

11.4 Sequential Differential Optimization . . . . . . . . . . . . . . . . . . . . . . . 60

11.4.1 Application of SDO to Variable-Length Coding with Higher Order

Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vii



LIST OF FIGURES

3.1 A four-state trellis that begins at state s0 = 0 and terminates at state s4 = 0

after four symbol transmissions. Solid branches represent survivor paths while

dashed branches were rejected by the Viterbi algorithm . . . . . . . . . . . . . . 10

4.1 Graph of empirical and expected undetected codeword error rate (UER) as a

function of the ROVA threshold for 100,000 decodings of the 4-state, rate-1/2

convolutional code with k = 128 message bits at SNR 4.5 dB. . . . . . . . . . . 12

5.1 Cumulative histogram of ROVA metric computed by simulation of Viterbi/Algorithm

4 and by Monte Carlo of (5.9) with U truncated to 21 for 64-state, rate-1/3 con-

volutional code with n = 32 at SNR 1.0 dB. . . . . . . . . . . . . . . . . . . . . 18

5.2 Comparison of throughput P (C), P (E), and P (NACK) between ROVA proba-

bilities obtained by simulation for the code and channel of Fig. 5.1 and Monte

Carlo using (5.9) with U = 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7.1 Probability density of ROVA error values for correct and incorrect decodings for

the same conditions as in Fig. 4.1. The minimal overlap between the incorrect

and correct decodings indicates that setting a decision threshold using ROVA is

an effective way to reduce undetected errors. . . . . . . . . . . . . . . . . . . . . 27

7.2 Probability density of AID values for correct and incorrect decodings for the

same scenario as Fig. 4.1. There is considerable overlap between the incorrect

and correct decodings, which suggests that using AID is an ineffective way to

reduce undetected errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

viii



7.3 Undetected error rate (UER) as a function of throughput for ROVA, approxi-

mate ROVA, AID, and CID showing the operating points of (throughput, UER)

achievable with thresholds on ROVA, approximate ROVA AID, and CID metrics

for the same scenario as Fig. 4.1. ROVA and CID give identical performance as

expected by (8.5). Approximate ROVA has near identical performance to ROVA

and CID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.4 The original Nakagami distribution which describes the distribution of the noise

vector norms compared to the bias distribution for the same scenario as Fig. 4.1.

The bias distribution is a mixture distribution composed of one half of the original

Nakagami distribution with one half of a uniform distribution on the interval [9, 14]. 31

9.1 Number of operations needed per stage to implement Viterbi alongside the chosen

reliability metric. Number of operations is based on a 4 state, 128 information

bit, rate 1/2 decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9.2 Simulation time per 100 decodings with Viterbi and the chosen reliability met-

ric. Initialization includes everything that was simulated that was not a part

of the Viterbi algorithm or the chosen reliability metric. Initialization includes

tasks such as creation of the trellis structure, encoding the input sequence, and

computing every state transition bit sequence in the trellis. . . . . . . . . . . . . 38

10.1 Short-blocklength performance of the m = N ROVA-based retransmission scheme

over the AWGN channel with SNR 6.00 dB and target probability of error

ϵ = 10−3 using a 64 state rate 1/3 code with 8-PSK modulation. The ROVA

for terminated convolutional codes is used. The performance of a CRC-based

retransmission scheme with the same characteristics is also shown. Each code

shares the same set of the total number of input bits processed by the code: 15,

20, 25, 30, 35, 40, 50, 75, 100, 125. . . . . . . . . . . . . . . . . . . . . . . . . . 48

ix



10.2 Frame error rate plotted against the average blocklength for each of the simulated

points in Fig. 10.1. Each ROVA threshold and CRC polynomial is chosen such

that the frame error rate is below target error rate ϵ. ROVA is able to target

desired error rates more precisely than the CRC. . . . . . . . . . . . . . . . . . 49

10.3 A previous paper [BBK22] computed a throughput vs. average blocklength com-

parison to ROVA using a CRC as a stopping condition. The initial number of

transmitted symbols was too large at lower average blocklengths for the CRC,

leading to a transmission rate that was too small at lower average blocklengths.

The corrected curve represents simulations where transmission starts with a sin-

gle symbol and continues to transmit additional symbols until the decoder termi-

nates transmission. At higher average blocklengths, the original initial number

of transmitted symbols was sufficient, leading to convergence of the results at

higher average blocklength. The CRC still performs worse than ROVA at smaller

average blocklengths, so the analysis in [BBK22] remains unchanged. . . . . . . 50

11.1 Throughput as a function of number of transmissions m in an incremental redun-

dancy cycle for information lengths k ∈ {16, 32, 64}. Simulation performance is

compared with GR and GI-LG approximations. . . . . . . . . . . . . . . . . . . 54

11.2 Probability of acknowledgment P
Nj

ACK for TBCC-ROVA with k = 16 as a func-

tion of blocklength according to simulation and according to the Gaussian rate,

and Gaussian information density with constant gap, and Gaussian information

density with linear gap models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

11.3 Histograms of information density at successful and unsuccessful decoding show-

ing the crossover point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

11.4 Information density empirical crossover point between successful and unsuccessful

decoding, information density threshold estimated by Gauss- Newton using the

linear gap model, and the reference value of k = 16. . . . . . . . . . . . . . . . 58

x



11.5 Results of the ROVA-based retransmission scheme and CRC-based retransmission

scheme when utilizing the SDO algorithm. Predictably, the performance of m =

M retransmission converges to the M = N performance as M increases. . . . . . 62

xi



LIST OF TABLES

9.1 Operations per trellis stage (OPTS) for the Viterbi algorithm and the additional

complexity beyond Viterbi for each of the four considered reliability metrics, when

all trellis states are active. The Example OPTS value is the value of OPTS for

the example where α = 2, Ns = 4, Nb = 2, and nd = 2. Additional Time is

the average additional time needed to simulate the chosen reliability metric in

addition to the Viterbi algorithm per 100 decoding simulations. Simulations are

performed with a 4 state rate-1/2 BPSK modulated decoder where α = 2, Ns = 4,

Nb = 2, and nd = 2 on an Intel i7-4720HQ processor. . . . . . . . . . . . . . . . 40

11.1 Parameters obtained for the three models via Gauss-Newton Optimization . . . 59

.1 Complexity of a ROVA iteration when all trellis states are active. . . . . . . . . 65

.2 Complexity of an iteration of the Fricke and Hoeher approximation of ROVA

when all trellis states are active. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

.3 Complexity of an iteration of the AID algorithm when all trellis states are active. 66

.4 Complexity of an iteration of the CID implementation of ROVA when all trellis

states are active. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

.5 Implementation details of the comparison between incremental retransmission

schemes utilizing either ROVA or the CRC in Fig. 10.1. k is the number of

information bits for ROVA, m is the number of CRC bits, k′ is the number

of information bits for the CRC, λ is the average blocklength, and RT is the

throughput. Both the ROVA and CRC process an additional v termination bits. 67

.6 Implementation details of the SDO algorithm for the 8PSK AWGN channel using

either ROVA or a CRC as the reliability metric . . . . . . . . . . . . . . . . . . 68

xii



ACKNOWLEDGMENTS

I would like to acknowledge and give my heartfelt appreciation to all of the undergraduates

who have assisted me in researching the material contained in this thesis. The contributions

of Shakeh Kalantarmoradian, Alethea Sung-Miller, and Anreeta Saseetharran have been vital

to this thesis.

Secondly, I would like to thank my advisor, Professor Richard Wesel, whose support and

guidance has been invaluable throughout my time at UCLA as both an undergraduate and

a graduate.

I would also like to thank Professor Chandrashekhar Joshi, who helped create the Fast

Track To Success program within the ECE department at UCLA. Without the guidance of

this program during my time as an undergraduate, I may never have chosen to obtain my

M.S.

xiii



CHAPTER 1

Introduction

Short blocklength messages play a critical role in modern messaging ecosystems, where they

are utilized in text messages, control messages, sensors in internet-of-things environments,

and many other applications. This thesis addresses two questions involving short blocklength

messages. The first question is how to tell if a short message is reliably transmitted. The

second question is how to increase the efficiency of short blocklength messages in the context

of having feedback.

Cyclic redundancy checks (CRCs) are often used to detect errors in convolutional code-

words [LDW15,YRW18,KC04a,EST18,3GP]. CRCs play an important role in many incre-

mental redundancy hybrid automatic repeat requests (ARQ) [3GP,LMS07,CHI98,WWB18,

Ric94] but add overhead that can be significant for short block-lengths. As pointed out

by [Ric94], an alternative to using a CRC is to directly consider the reliability of the Viterbi

decoder output as was proposed by Yamamoto and Itoh [YI80]. Ragavan and Baum [RB98]

proposed the reliability-output Viterbi algorithm (ROVA) as an improvement to [YI80].

ROVA explicitly computes the probability that a Viterbi decoding decision is in error. This

allows the receiver to set a threshold on the ROVA-computed probability to achieve a target

undetected (codeword) error rate (UER) without requiring a CRC.

ROVA was used in [WCW15a,FH09,FH07] to decide whether to request additional redun-

dancy in a hybrid ARQ without the need for a CRC. For [WCW15a], ROVA was adapted as

described in [WMW14] for tail-biting convolutional codes. Although ROVA calculates code-

word error probability exactly, it suffers from high complexity. Fricke and Hoeher [FH07]

developed an approximation of ROVA that reduces complexity.

1



1.0.1 Overview

For zero-terminated convolutional codes (ZTCCs), this thesis explores an alternative to

ROVA for controlling an incremental redundancy hybrid ARQ that is based on informa-

tion density [PPV11]. Symbol-wise accumulated information density (AID) as proposed by

Polyanskiy et al. [PPV11] sums the information density of each received symbol to provide

a metric of codeword reliability with a much lower complexity than ROVA.

For ZTCCs, this thesis compares the accuracy of ROVA with that of symbol-wise AID

as well as the ROVA approximation. After observing the low accuracy of symbol-wise AID,

this thesis proposes codeword information density (CID) as a modification to symbol-wise

AID. The CID also computes an information density, but instead of adding the density

of each symbol, it computes a single information density for the entire received codeword.

CID gives better accuracy than AID and turns out to be equivalent to ROVA. The ROVA

approximation of [FH07] has similar accuracy to ROVA, but lacks the exactness of CID.

This thesis develops an analytical expression for the distribution of ZTCC ROVA values

over an additive white gaussian noise (AWGN) channel with a fixed signal-to-noise ratio

(SNR). From this distribution, the probability of correct, probability of error, and probabil-

ity of negative acknowledgement (NACK) are computed using Monte Carlo simulation and

shown to match the Viterbi simulation results. The complexity of each of the four reliability

metrics examined in this thesis are then compared.

This thesis derives a method of computing the frame error rate union bound for punctured

codes, where puncturing refers to decreasing the blocklength by withholding certain symbols

from transmission as discussed in [Bla12,Hag88, BLW02]. This thesis uses this method to

optimize the order of additional symbol transmission in incremental retransmission schemes.

This thesis then extends the work by Williamson [WCW15a] to demonstrate that ROVA can

be used as a reliability metric for incremental retransmission schemes at short blocklengths

for 8 phase-shift keying (8-PSK) modulation. Additionally, this thesis demonstrates that

using ROVA as a reliability metric for incremental retransmission outperforms using a CRC

as a reliability metric at short blocklengths.

2



This thesis includes an additional discussion about an information density approach for

optimizing the throughput of systems using incremental redundancy controlled by feedback.

Polyanskiy’s normal approximation combined with a linear model for the information gap

of a rate-compatible code family provides an accurate characterization of the behavior of

feedback systems employing practical codes such as convolutional codes. Especially for

short message lengths on the order of k < 50 message bits, the proposed model is more

accurate than Vakilinia’s model in which the rate of first successful decoding has a Gaussian

probability density function. This thesis demonstrates that a relatively small number of

feedback transmissions (such as m = 4 or m = 8) can achieve a throughput similar to

systems that transmit feedback after every symbol, i.e. m = ∞. The sequential differential

optimization (SDO) algorithm selects the m best transmission lengths, or equivalently the

M best instances at which to send feedback, when using ROVA as the metric for assessing

decoder reliability with ZTCCs.

1.0.2 Organization

Chapter 2 explains incremental redundancy with stop-feedback systems. Chapter 3 explains

Viterbi decoding, a well-known maxmimum likelihood decoding algorithm. Chapter 4 re-

views the ROVA algorithm of [RB98]. Chapter 5 presents an analytical expression for the

random variable describing the correct decoding probability computed by ROVA and uses

this expression to characterize how the probabilities of correct decoding, undetected error,

and negative acknowledgement behave as a function of the selected threshold for reliable de-

coding. Chapter 6 discusses utilizing information density as a stopping condition and covers

Polyanskiy et al’s. [PPV11] derivation of the achievable rate for stop-feedback codes. Chap-

ter 7 reviews AID of [PPV11] and shows that it is much less predictive of reliable decoding

than ROVA. Chapter 8 proposes CID as a modification of AID, shows that CID is equivalent

to ROVA, and uses the CID perspective to compute ROVA with significantly less complexity

than [RB98]. Chapter. 9 analyzes and compares the complexity of each of the four reliability

metrics presented in this thesis. Chapter 10 develops the union bound on the frame error

rate (FER) for ZTCCs with punctured symbols and describes a method to optimize the order

3



of symbol transmission for the results shown in Sec. 10.2. Sec. 10.2 produces an analogous

plot for short-blocklength performance of a reliability-based retransmission scheme using ei-

ther a CRC or ROVA as shown in [WCW15a], but for a higher order modulation compared

to BPSK. Chapter 11 explains the premise behind the sequential differential optimization

algorithm and extends the results of Section 10.2 by restricting the maximum number of

transmissions.

4



CHAPTER 2

Incremental Redundancy with Stop Feedback

It is a well known result that feedback does not increase the asymptotic capacity of a memory-

less channel, although it can increase the zero-error capacity of the channel [Sha56]. Despite

this, utilizing feedback can offer other benefits to channels that have made it particularly

useful in modern communications systems. In variable-length coding schemes where the

blocklength is not fixed, feedback can drastically reduce the average blocklength required to

converge to capacity [PPV11]. It can also reduce the error exponent, which determines the

error probability as a function of blocklength [Bur76].

Polyanskiy et al. [PPV11] describe two types of feedback codes for discrete memoryless

channels (DMC) where the conditional probability kernels are

PYi|Xi
1Y

i−1
1

= PYi|Xi
= PY1|X1 (2.1)

and finite input/output alphabets are A and B respectively. Formally, a (l,M, ϵ) variable-

length feedback (VLF) code is defined by the following list of features for l a positive real

number, M a positive integer, and 0 ≤ ϵ ≤ 1:

1. A finite alphabet U with |U ≤ 3| and a probability distribution PU on U , which

defines a random variable U that is revealed to both transmitter and receiver before

the start of transmission. U is used to initialize the encoder and decoder with a common

randomness.

2. A sequence of encoders fn : U × {1, ...,M} × Bn−1 → A for n ≥ 1. These define the

channel inputs as

Xn = fn(U,W, Y n−1) (2.2)

5



where Y n−1 is the sequence {Y1, ..., Yn−1} of channel outputs and W ∈ {1, ...,M} is

the equiprobable message.

3. A sequence of decoders gn : U × Bn → {1, ...,M} which provides the best estimate of

W at time n.

4. A non-negative integer random variable τ , which is a stopping time of the filtration

Fn = σ{U, Y1, ..., Yn}, where σ(·) is the sigma-algebra of events. τ also satisfies

E[τ ] ≤ l (2.3)

Variable-length feedback with termination (VLFT) codes are defined identically to VLF

codes, except that the 4th condition is replaced with

4. A non-negative integer random variable τ , which is a stopping time of the filtration

Fn = σ{W,U, Y1, ..., Yn}, where σ(·) is the sigma-algebra of events. τ also satisfies

E[τ ] ≤ l (2.4)

In variable-length feedback (VLF) codes, the decision to stop transmission is made purely

by the decoder’s observation of the channel outputs in a causal manner. In variable-length

feedback with termination (VLFT) codes, the decision to stop transmission includes the

knowledge of the pre-encoded message W in addition to the channel output observations

up to the nth symbol, Y n. In VLFT, the transmitter decides when to stop transmitting

based on feedback from the receiver, usually transmitted over a special noiseless chan-

nel. VLF codes are a special case of VLFT codes, where the stopping time is determined

solely by the decoder. This thesis focuses on a special case of VLF codes called variable-

length stop-feedback (VLSF) codes, where feedback is used only to tell the transmitter when

to stop sending additional symbols. This is denoted by the encoder function satisfying

fn(U,W, Y n−1) = fn(U,W ). In other words, the encoder does not use previous channel

observations Y n−1 to generate the encoded input Xn given a message W .

6



The fundamental limit of channel coding with feedback for VLF and VLFT codes is given

by the following

M∗
VLF(l, ϵ) = max{M : ∃(l,M, ϵ)− VLF code} (2.5)

M∗
VLFT(l, ϵ) = max{M : ∃(l,M, ϵ)− VLFT code} (2.6)

Polyanskiy derives several theorems in [PPV11] that demonstrate how effective stop-

feedback is in helping codes approach capacity with significantly smaller blocklength than

non-feedback codes. [PPV11] defines the error-capacity under variable-length coding without

feedback as

[[Cϵ]] =
C

1− ϵ
, ϵ ∈ (0, 1). (2.7)

where C is the capacity of the channel and ϵ is the error probability. [PPV11] goes on further

to arrive at a an expression for capacity for both feedback and non-feedback systems:

lim
l→∞

1

l
log(M(l, ϵ)) (2.8)

where log(M(l, ϵ)) is bounded by

lC

1− ϵ
− log l +O(1) ≤ log(MVLF(l, ϵ)) ≤

lC

1− ϵ
+O(1) (2.9)

for stop-feedback codes and log(M(n, ϵ)) is equal to

log(M(n, ϵ)) = nC −
√
nV Q−1(ϵ) +O(log(n)) (2.10)

for non-feedback codes, where V is the channel dispersion and Q−1 is the inverse of the

standard Q-function. Note that the limit of M for both cases results in the same [[Cϵ]], which

shows that feedback does not increase the error capacity. With stop-feedback, the back-

off from the error-capacity is governed by the log l
l

term, while the non-feedback back-off is

primarily governed by the 1√
l

term. Thus, the primary advantage of stop-feedback systems

over systems without feedback is a significant reduction of the penalty for short blocklength.

Stop-feedback systems where feedback is only used to let the encoder know that the decoder

has made its final decision are often used in practice with acknowledgement (ACK) and

negative acknowledgement (NACK) feedback messages.

7



This thesis utilizes several different methods of assessing whether to terminate transmis-

sion. The first is to perform a cyclic redundancy check (CRC), where both receiver and

transmitter have access to a CRC polynomial. The transmitter performs polynomial long

division using the CRC polynomial to determine the check bits for the transmission, which

the transmitter appends to the end of the message. After receiving the message, the receiver

performs polynomial long division using the CRC polynomial on the decoded message. If

the result of the long division is zero, then the CRC check passes. CRCs will be used in the

results shown in Fig. 10.1. Otherwise, the receiver decides additional bits are necessary for

transmission. The other methods will be covered in Chapters 4, 7, and 8.

8



CHAPTER 3

Viterbi Decoding

An n bit sequence can take 2n possible values. If this n bit sequence is transmitted across

a noisy channel, computing the likelihood of observing the sequence from each of these

possible values scales exponentially with n. Viterbi decoding allows a method of computing

the highest likelihood sequence that will results in the observed sequence without explicitly

tracking all 2n possible sequences. Viterbi decoding is a type of convolutional decoder that

performs maximum-likelihood decoding [Vit67].

The Viterbi algorithm for zero terminated convolutional codes (ZTCC) with constraint

length v and number of transmitted symbols n can be visualized as a trellis diagram where

each row ∈ {0, ..., 2v−1} in the trellis represents a single possible state that the convolutional

encoder can take. The transition between each column ∈ {0, ..., n} represents one processed

symbol as time. For each possible state transition that is possible in the encoder, the

corresponding nodes in the trellis are connected by branches that take on the output values

of that state transition. Each possible sequence of n bits is represented by a path through

the branches in the diagram, and the encoded output of the n bits is equivalent to the

concatenated values of each branch. For ZTCCs, each possible sequence starts at state 0.

Fig. 3.1 shows an example trellis diagram for v = 2 and n = 4.

The Viterbi Algorithm works as follows for a zero-terminated convolutional code: The

decoder examines a received sequence of length n. The decoder computes a metric for each

accessible branch starting from state 0 and continues this process for each received symbol,

forming paths that represent possible transmitted sequences. If multiple paths enter the

same node, the path with the better metric is kept as a survivor path while the others are

discarded. At any given moment, the Viterbi algorithm only has to store 2v paths through

9



Figure 3.1: A four-state trellis that begins at state s0 = 0 and terminates at state s4 = 0 after four symbol

transmissions. Solid branches represent survivor paths while dashed branches were rejected by the Viterbi

algorithm

This figure was previously presented in part in an IEEE TCOM journal paper [BBK22].

the trellis, with a guarantee that one of the stored paths represents the maximum likelihood

path. For ZTCCs, the last v bits are zeros to force the encoding state back to the zero

state. By the time the last v bits are processed, all but one path has been discarded, and

the remaining path is the maximum likelihood sequence. Fig. 3.1 shows the process of path

elimination until there is only one survivor path.

Viterbi decoding algorithms can be either hard-decision or soft-decision algorithms. In

hard-decision algorithms, the Viterbi decoder utilizes the hamming distance between the

received sequence and the sequence through the trellis as the metric when comparing two

paths. In soft-decision algorithms, the Viterbi decoder acts on the reliability of each re-

ceived symbol. It uses squared euclidean distance when comparing two paths. This thesis

exclusively uses the soft-decision Viterbi decoding algorithms.

10



CHAPTER 4

Reliability Output Viterbi Algorithm

1 Most implementations of the Viterbi algorithm are performed in the logarithmic domain so

that the products of the path metrics become a sum of products. This reduces complexity and

enables fixed-point implementation. However, operating in the logarithmic domain makes

the computation of exact probabilities such as ROVA more difficult, as the sum of products

of the path metrics must be tracked in addition to the product. This thesis does not use

the logarithmic domain for this reason. There are approximation methods that could be

employed for the logarithmic domain as described in [BCJ74], but this remains a possible

topic for future research.

As described in [RB98], ROVA finds the probability that the nc-symbol codeword x̂nc

selected by maximum likelihood Viterbi decoding is also the transmitted codeword xnc
t . In

general, this thesis uses xn as a shorthand for the sequence x1, . . . , xn. Given a received

noisy sequence ync = xnc
t + znc , the probability that x̂nc = xnc

t can be expressed as follows:

P (x̂nc = xnc
t |ync) =

P (x̂nc)fY |X(y
nc |x̂nc)∑

xnc∈C P (xnc)fY |X(ync |xnc)
(4.1)

=
fY |X(y

nc|x̂nc)∑
xnc∈C fY |X(ync|xnc)

(4.2)

where C is the set of valid codewords and fY |X(y
nc |xnc) is the conditional probability

density for ync if xnc were the transmitted sequence. The simplification from (4.1) to (4.2)

follows from the assumption that all codewords are a priori equally likely.

A natural application of ROVA is to set a threshold on the ROVA value (4.2) computed

as in [RB98] and consider codewords with a ROVA value below the threshold as erasures

1This chapter was previously presented in part in an IEEE TCOM journal paper [BBK22].

11



10
-4

10
-3

10
-2

10
-1

10
0

Codeword Error Probability Threshold

10
-4

10
-3

10
-2

U
n
d
e
te

c
te

d
 E

rr
o
r 

R
a
te

Empirical UER

Expected UER derived from ROVA

Figure 4.1: Graph of empirical and expected undetected codeword error rate (UER) as a function of the

ROVA threshold for 100,000 decodings of the 4-state, rate-1/2 convolutional code with k = 128 message bits

at SNR 4.5 dB.

This figure was previously presented in part in an IEEE TCOM journal paper [BBK22].

because they are not sufficiently reliable. Fig. 4.1 shows how varying the threshold can

control the UER for an example 4-state rate-1/2 convolutional code with {101,111}, which

is (5,7) in octal, as described in [RL09]. The empirical UER achieved with a ROVA threshold

is shown for threshold values from P (x̂nc = xnc
t |ync) = 0.7 to 1− 10−4 in increments of 10−4.

Also shown is the expected UER associated with the threshold, which is computed as the

UER implied by the empirical average of observed ROVA values that exceed the threshold.

There is excellent agreement between the observed and expected UER. The average P (x̂nc =

xnc
t |ync) will be substantially higher than the threshold because the threshold is the lowest

acceptable value. As a result, the empirical UER achieved when applying a particular UER

threshold is significantly below that UER threshold.

4.0.1 Computing ROVA as in [RB98]

Algorithm 1 describes the procedure for computing the ROVA value (4.2) as described in

[RB98]. Consider a trellis with 2v states defined by the set S = {0, 1, . . . 2v − 1}. Let sm

be the trellis state after the mth transmitted symbol. Let the trellis be initialized to state

12



s0 = 0 and assume that terminating input bits drive the state back to sn = 0 at the last

transmitted symbol xnc . For each received symbol ym for m ∈ {1, 2, . . . nc} and for every

possible value i of the trellis state sm in S, two probabilities are computed in [RB98]: Pm
i

and P̄m
i . We now define these two probabilities.

Let x̂m(i) be the symbol sequence corresponding to the Viterbi survivor path terminating

at state i after the mth transmitted symbol. Pm
i is P (sm = i, x̂m(i) = xm

t |ym), which is the

probability that i is the correct state after the mth transmitted symbol and that the Viterbi

algorithm has correctly identified the survivor path to state i so that x̂m(i) = xm
t . P̄m

i is

P (sm = i, x̂m(i) ̸= xm
t |ym), which is the probability that i is the correct state at symbol m

but the Viterbi algorithm has not correctly identified the survivor path to state i so that

x̂m(i) ̸= xm
t . Thus P̄m

i is the probability that Viterbi decoding has incorrectly pruned away

the transmitted sequence xm
t , which is a path to state i, after the mth transmitted symbol.

For each m, Algorithm 1 makes use of the scaling factor

∆m =

∑
T γ1γ2 . . . γm∑

T γ1γ2 . . . γm−1

, (4.7)

where γm is the branch metric for the mth symbol associated with one of the paths in

the trellis T so that γ1γ2 . . . γm is a path metric for one of the paths in the trellis T and∑
T γ1γ2 . . . γm is the sum of all the path metrics in the first m stages of trellis T regardless

of whether they are survivors in the Viterbi algorithm.

For a ZTCC, when m = nc, the state is forced to zero by terminating input bits so that

P nc
0 + P̄ nc

0 = 1, and P̄ nc
0 is the probability that the codeword selected by Viterbi is incorrect.

For m < nc and a particular state i ∈ S, Pm
i + P̄m

i will generally be less than one. These

values must be summed over all states to account for all the probability:

2v−1∑
i=0

(
Pm
i + P̄m

i

)
= 1 . (4.8)

Let Ns = |S| be the number of states, and let Nb be the number of branches entering

each state. Table .1 describes the complexity of Algorithm 1 for processing one trellis stage

assuming all branches in the trellis are active. Step 2 requires NsNb metric computations.

Step 3 requires Ns additions to compute Pm−1
i + P̄m−1

i and NsNb additional multiplications

13



Algorithm 1: An algorithmic adaptation of the ROVA Algorithm described in [RB98].

Initialization: For i, j ∈ S, let Tm be the set of valid trellis branches possible during

transmission of the mth symbol. Each such trellis branch is defined by the ordered pair (i, j)

where i is the origin state and j is the destination state. Note that this set is smallest at

m = 1 when there are only 2k branches emanating from s0 = 0 to s1 and at m = nc when

there are only 2k branches entering sn = 0. Initialize m = 0, P 0
0 = 1 and P̄ 0

0 = 0

Iterations: The calculation of (4.2) in [RB98] proceeds as follows:

1. m = m+ 1

2. For each valid branch (i, j) ∈ Tm compute metrics

γm(i, j) = f
(
ym|xm(i, j)

)
(4.3)

where xm(i, j) is the symbol transmitted on branch (i, j), and f
(
ym|xm(i, j)

)
is the

conditional probability that we receive sequence ym at stage m if xm(i, j) were trans-

mitted.

3. Compute the scaling factor

∆m =
∑

(i,j)∈Tm

γm(i, j)(P
m−1
i + P̄m−1

i ) . (4.4)

4. For each j ∈ S with branches (i, j) ∈ Tm where Viterbi has identified branch (i∗, j) to

be the survivor branch to j compute

Pm
j = ∆−1

m γm(i
∗, j)Pm−1

i∗ (4.5)

P̄m
j = ∆−1

m

∑
{i:(i,j)∈Tm}

γm(i, j)(P
m−1
i + P̄m−1

i )− Pm
j (4.6)

5. if m = nc conclude by reporting the ROVA value of P nc
0 and the probability of codeword

error as P̄ nc
0 = 1− P nc

0 , otherwise, go to step 1.

14



and additions to compute ∆m. Step 4 requires one multiplicative inverse computation to

produce ∆−1
m and then 2×Ns multiplications to compute Pm

j∗ and NsNb multiplications and

additions to compute P̄m
j∗ .

15



CHAPTER 5

Derivation of the ROVA Distribution

1 An analytical expression for the distribution of P nc
0 reveals the relationship between the

selected threshold and the induced UER (as shown in Fig. 4.1) and between the selected

threshold and the induced throughput. The analysis below assumes BPSK symbols 1 and -1

are transmitted over an additive white Gaussian noise (AWGN) channel with noise variance

σ2.

Consider the computed conditional pdf fY |X(y
nc |x̂nc) in (4.2) as a random variable F and

recall that for an AWGN channel it is computed as

F =

nb∏
i=1

1√
2πσ2

e−
(yi−x̂i)

2

2σ2 (5.1)

where nb is the number of binary symbols in xnc . For example, with a rate-1/3 convolu-

tional code, nb = 3nc. If x̂nc = xnc
t , using a subscript to denote the Hamming distance

dH(x̂
nc , xnc

t ) = 0,

F0 =

nb∏
i=1

1√
2πσ2

e−
z2i
2σ2 (5.2)

where zi is the AWGN in the ith symbol. If dH(x̂nc , xnc
t ) = 1, with the one difference bit in

the jth symbol, then

F1 =
1√
2πσ2

e−
(zj+2)2

2σ2

nb∏
i=1,i ̸=j

1√
2πσ2

e−
z2i
2σ2 (5.3)

= e−
4+4zj

2σ2

nb∏
i=1

1√
2πσ2

e−
z2i
2σ2 (5.4)

= e−
4+4zj

2σ2 F0 (5.5)

1This chapter was previously presented in part in an IEEE TCOM journal paper [BBK22].

16



where the mean of Gaussian describing the jth symbol in (5.3) is shifted by the difference

between the true and decoded values of xj. For our BPSK modulation, this difference is

always 2. This can be generalized to any Hamming distance. For dH(x̂
nc , xnc

t ) = m,

Fm = e−
4m+

∑m
ℓ=1 4zℓ

2σ2 F0 (5.6)

Because Viterbi decoding only considers valid codewords xnc ∈ T , the multiplicity of each

possible value of dH(x̂nc , xnc
t ) is a function of the specific convolutional code used to encode

the message, and for a terminated trellis dH(x̂
nc , xnc

t ) has some maximum value D. Let

Am be the number of valid codewords x̂nc with dH(x̂
nc , xnc

t ) = m, which by linearity is the

number of valid codewords with Hamming weight u:

Au = |{x̂nc ∈ T : dH(x̂
nc , xnc

0 ) = u}| , (5.7)

where xnc
0 is the transmitted codeword for the all-zeros input.

Viterbi selects the correct codeword with high probability, and when it doesn’t the se-

lected x̂nc usually has similar value of fY |X(y
nc|x̂nc). Thus we can approximate fY |X(y

nc |x̂nc)

with F0 so that

P nc
0 ≈ F0

F0

∑U
u=0Aue

−
4u+

∑u
ℓ=1

4zℓ

2σ2

, (5.8)

which can also be expressed as

P nc
0 ≈

(
1 +

U∑
u=1

Aue
− 4u+

∑k
ℓ=1 4zℓ

2σ2

)−1

. (5.9)

The expression for P nc
0 given in (5.9) includes a sum of U log-normal random variables.

Because the magnitude of the terms decreases rapidly, summing a few of the most significant

terms gives a good estimate. For a convolutional code with {117, 127, 155} as described

in [WCW15b] as well as Table 12.1 of [LC04], Fig. 5.1 compares the cumulative histogram of

P nc
0 found by a simulation of Viterbi decoding with P nc

0 computed as described in Algorithm

4 with the cumulative histogram of P nc
0 given in (5.9) generated by Monte Carlo using

U = 21, using seven active terms for u = 15 to u = 21 and neglects terms with u > 21.

These seven active terms provide an excellent approximation in Fig. 5.1.

17



-14 -12 -10 -8 -6 -4 -2 0

log
10

(1-T)

0

0.2

0.4

0.6

0.8

1
C

u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty
Monto Carlo

Sim. Viterbi + Alg. 4

Figure 5.1: Cumulative histogram of ROVA metric computed by simulation of Viterbi/Algorithm 4 and by

Monte Carlo of (5.9) with U truncated to 21 for 64-state, rate-1/3 convolutional code with n = 32 at SNR

1.0 dB.

This figure was previously presented in part in an IEEE TCOM journal paper [BBK22].

For the following analysis, P (C) is the probability of Viterbi selecting the correct code-

word a.k.a. the throughput, P (E) is the probability of Viterbi selecting an incorrect code-

word, i.e., UER, and P (NACK) is probability of negative acknowledgement, i.e. rejecting

the selected codeword because P nc
0 < T , where T is the ROVA threshold.

The expression of (5.9) indicates a probability distribution fP on the computed probabil-

ity of correct decoding P nc
0 . The corresponding computed probability of incorrect decoding

is 1− P nc
0 . Thus, with P nc

0 > T required to accept the Viterbi decoding result, we have the

following expressions:

P (C) =

∫ 1

p=T

pfP (p)dp (5.10)

P (E) =

∫ 1

p=T

(1− p)fP (p)dp (5.11)

P (NACK) =

∫ T

p=0

fP (p)dp . (5.12)

18



-8 -7 -6 -5 -4 -3 -2 -1 0

log
10

(1-T)

10
-5

10
0

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty P(C) Monte Carlo

P(C) Viterbi Simulation

P(E) Monte Carlo

P(E) Viterbi Simulation

P(NACK) Monte Carlo

P(NACK) Viterbi Simulation

Figure 5.2: Comparison of throughput P (C), P (E), and P (NACK) between ROVA probabilities obtained

by simulation for the code and channel of Fig. 5.1 and Monte Carlo using (5.9) with U = 21.

This figure was previously presented in part in an IEEE TCOM journal paper [BBK22].

Fig. 5.2 compares the application of (5.10), (5.11), and (5.12) using the cumulative

histogram of P nc
0 generated by Monte Carlo using U = 21 (shown in Fig. 5.1) to the values

of P (C), P (E), and P (NACK) obtained by simulation of Viterbi decoding with P nc
0 computed

as described in Algorithm 4 and then applying the threshold T to decide if the codeword

selected by Viterbi should be accepted.

The Monte Carlo prediction is very close to the simulated values except for P (NACK) for

values of log(1−T ) above -0.5. As shown in Fig. 7.1 (for a different code), when log(1−T ) is

sufficiently large, the fraction of incorrectly decoded codewords increases significantly causing

the approximation of fY |X(y
nc |x̂nc) with F0 to be inaccurate.

19



CHAPTER 6

Information Density as a Stopping Rule and Polyanskiy’s

Achievable Rate

Polyanskiy et al. in [PPV11] derives an achievability bound for an (l,M, ϵ) VLSF code on a

DMC. (Theorem 3, [PPV11]) Fix a scalar γ > 0 Let X and X be independent copies of the

same process. Let Y be the output of the DMC when X is the input. Define a sequence of

information density functions

i(an; bn) = log
PY n|Xn(bn|an)

PY n(bn)
(6.1)

and a pair of hitting times

τ = inf{n ≥ 0 : i(Xn;Y n) ≥ γ} (6.2)

τ = inf{n ≥ 0 : i(Xn;Y n) ≥ γ} (6.3)

Then, for an integer message size M ≥ 2, there exists an (l,M, ϵ) VLSF code with

l ≤ E[τ ] (6.4)

ϵ ≤ (M − 1)P[τ ≤ τ ] (6.5)

Although computing E[τ ] and P[τ ≤ τ ] precisely is difficult, Polyanksiy et al. proved the

following upper bounds when drawing i.i.d. Xn from a capacity achieving input distribution

PX

E[τ ] ≤ γ + a0
C

(6.6)

P[τ ≤ τ ] ≤ 2−γ (6.7)

20



where a0 = supx∈X ,y∈Y i(x; y) < ∞. By setting γ = log M−1
ϵ′

in (6.4) and (6.5) for a given

target probability of error ϵ′ ∈ (0, 1), (6.2) and (6.3) become

l ≤
log M−1

ϵ′
+ a0

C
(6.8)

ϵ ≤ (M − 1)2− log M−1
ϵ′ =

(M − 1)ϵ′

M − 1
= ϵ′ (6.9)

This thesis uses the (6.8) and (6.9) to compute Polyankskiy’s VLSF achievability bound on

the rate for an AWGN channel with 8PSK modulated symbols in Chapter 10.

21



CHAPTER 7

Comparison to Frick and Hoeher and AID

1

7.1 Fricke and Hoeher Approximation

Fricke and Hoeher [FH07] developed an approximation of ROVA that reduces complexity.

The computations utilize the path metric Γj
m = γ1γ2 . . . γm which is the product of the path

metrics γ = f
(
y|x(i, j)

)
that have been selected for the survivor path that concludes at

state sm = j. The Fricke and Hoeher approximation computes, for each surviving branch,

the probability P̂m(i
∗, j∗) that the survivor branch to j∗ was correctly selected, assuming

that the state i∗ is the correct state (corresponding to the transmitted codeword) and that

the survivor path to i∗ was correctly selected. Fricke and Hoeher’s algorithm is presented as

Algorithm 2 below.

Table .2 describes the complexity of the Fricke & Hoeher approximation for one stage

assuming all branches in the trellis are active.

To understand the inaccuracy introduced by the approximation proposed in [FH07] as

compared to the original ROVA proposed in [RB98], consider the simple example shown in

Fig. 3.1. Applying Algorithm 1, produces the result

P 4
0 =

γ1(0, 0)γ2(0, 0)γ3(0, 0)γ4(0, 0)∑
T γ1γ2γ3γ4

, (7.4)

1This chapter was previously presented in part in an IEEE TCOM journal paper [BBK22].

22



Algorithm 2: An algorithmic adaptation of the Approximate ROVA Algorithm from [FH07].

Initialization: Let Tm be the set of valid trellis branches as defined in Alg. 1. Initialize

m = 0, and Γ0
0 = 1.

Iterations:

1. m = m+ 1

2. For symbol m compute the branch metric

γm(i, j) = f
(
ym|xm(i, j)

)
(7.1)

for each valid branch (i, j) in Tm, as in Algorithm 1.

3. For each j ∈ S with branches (i, j) ∈ Tm where Viterbi has identified branch (i∗, j) to

be the survivor branch to j compute

Γj
m = Γi∗

m−1γm(i
∗, j) , (7.2)

P̂m(i
∗, j) =

Γj
m∑

(i,j)∈Tm Γi
m−1γm(i, j)

. (7.3)

4. if m = nc conclude by reporting the probability of codeword error as 1−
∏nc

m=1 P̂m(i
∗, j)

for the branches (i∗, j) of the winning path selected by Viterbi, otherwise, go to step

1.

23



where for this trellis,

∑
T

γ1γ2γ3γ4 =γ1(0, 0)γ2(0, 0)γ3(0, 0)γ4(0, 0)

+ γ1(0, 1)γ2(1, 2)γ3(2, 0)γ4(0, 0)

+ γ1(0, 1)γ2(1, 3)γ3(3, 2)γ4(2, 0)

+ γ1(0, 0)γ2(0, 1)γ3(1, 2)γ4(2, 0)

Equation (7.4) is precisely the probability given in (4.2) that the codeword has been correctly

decoded.

In contrast, applying Algorithm 2, produces the result

nc∏
m=1

P̂m(i
∗, j∗) =

γ1(0, 0)γ2(0, 0)γ3(0, 0)γ4(0, 0)

D
, (7.5)

where D = γ1(0, 0)γ2(0, 0)γ3(0, 0)γ4(0, 0)

+ γ1(0, 1)γ2(1, 2)γ3(2, 0)γ4(0, 0)

+ γ1(0, 1)γ2(1, 3)γ3(3, 2)γ4(2, 0)

+ γ1(0, 1)γ2(1, 3)γ3(3, 2)γ4(2, 0)α

In this example the γ1(0, 0)γ2(0, 1)γ3(1, 2)γ4(2, 0) term of
∑

T γ1γ2γ3γ4 computed by

ROVA is replaced by a different term that scales the ”available” alternative path γ1(0, 1)γ2(1, 3)γ3(3, 2)γ4(2, 0)

by

α =
γ1(0, 1)γ2(1, 2)γ3(2, 0)

γ1(0, 0)γ2(0, 0)γ3(0, 0)
. (7.6)

As this example illustrates, the limitation of the Fricke-Hoeher approximation is that it

does not have access to certain paths in T that were pruned away by states that are not on

the final winning path. The denominator in (7.3) is a sum of the path metrics of the surviving

paths at stage m− 1 that enter state j at stage m. Thus, the probability of codeword error

1−
∏nc

m=1 P̂m(i
∗, j) will only have access to the winning path and (Nb−1)(nc−v) terminated

paths out of the total (nc − v)Nb paths. To the extent that the pruned paths have low

probability, the Fricke-Hoeher approximation can be accurate.

24



7.2 Accumulated Information Density

Polyanskiy et al. [PPV11] used a threshold on information density at the receiver to decide

when to terminate random codes. This termination approach provides bounds on achievable

throughput for codes with finite blocklength. The information density of a received symbol

yi with respect to a selected codeword symbol x̂i is computed as

i(yj, x̂j) = log2
fY |X(yj|x̂j)

fY (yj)
. (7.7)

In (7.7), fY (yj) is computed assuming that each possible symbol x ∈ X is drawn i.i.d.

according to an input distribution, either a probability density function (PDF) fX(x) or

a probability mass function (PMF) PX(x). For practical communication systems in which

a convolutional code is used in conjunction with a constellation of possible transmitted

symbols, the input alphabet X is finite and is exactly the constellation. For a typical

encoder (without probabilistic shaping [WDY21]), each constellation point is equally likely

so that PX(x) = |X |−1.

Following the termination approach of [PPV11], accumulated information density (AID)

sums (7.7) for each symbol in the codeword to produce iAID(y
nc , x̂nc) as follows:

iAID(y
nc , x̂nc) =

nc∑
j=1

i(yj, x̂j) (7.8)

=
nc∑
j=1

log2

(
fY |X(yj|x̂j)

fY (yj)

)
(7.9)

= log2

(∏nc

j=1 fY |X(yj|x̂j)∏nc

j=1 fY (yj)

)
(7.10)

= log2

(
fY |X(y

nc|x̂nc)∑
xnc∈Xnc |X |−nfY |X(ync |xnc)

)
(7.11)

where X nc is the set of all sequences of nc symbols. For AID, the denominator in (7.11)

includes every possible sequence of nc symbols from the alphabet (constellation) X . However,

only sequences that are actually codewords could have been transmitted. Including all

possible sequences allows the computation of AID to be symbol-wise and thus much simpler

than ROVA, but it introduces an inaccuracy.

25



Algorithm 3: Computation of iAID.

Initialization: Let Tm be the set of valid trellis branches as defined in Alg. 1. Initialize

m = 0, Γ0
0 = 1, Π(0) = 1.

Iterations:

1. m = m+ 1

2. Compute branch metrics γm(i, j) as in Alg. 1.

3. For each j ∈ S with branches (i, j) ∈ Tm where Viterbi has identified survivor branch

(i∗, j) compute

Γj
m = Γi∗

m−1γm(i
∗, j) . (7.12)

4. Compute fY (ym) =
∑

x∈X |X |−1f(ym|x) and

Π(m) = Π(m− 1)fY (ym) (7.13)

5. if m = nc conclude by reporting

iAID(y
nc , x̂nc) = log2

Γ0
n

Π(n)
, (7.14)

otherwise, go to step 1.

Algorithm 3, above, provides a procedure for computing iAID. Let Ns be the number of

states |S| and Nb be the number of branches entering each state. For the common scenario

where Nb = 2, Algorithm 1 (ROVA) requires about 6Ns multiplications per trellis stage, but

Algorithm 3 (AID) requires only about Ns multiplications.

Figs. 7.1 and 7.2 compare the efficacy of ROVA and AID by plotting the probability

density function of metric values for correctly and incorrectly decoded sequences. For AID,

the sequences are organized by the AID metric, which is the accumulated information density.

For ROVA, they are organized by the ROVA metric of word-error probability. In Figs.

7.1 and 7.2, a smaller overlap between the density functions for correctly and incorrectly

26



-18 -16 -14 -12 -10 -8 -6 -4 -2 0

log(1 - ROVA)

0

0.2

0.4

0.6

0.8

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Correctly decoded

Incorrectly decoded

Figure 7.1: Probability density of ROVA error values for correct and incorrect decodings for the same

conditions as in Fig. 4.1. The minimal overlap between the incorrect and correct decodings indicates that

setting a decision threshold using ROVA is an effective way to reduce undetected errors.

This figure was previously presented in part in an IEEE TCOM journal paper [BBK22].

decoded sequences indicates a better ability for the metric to indicate when a sequence

should be deemed unreliable. The better separation (smaller overlap area) seen in Fig. 7.1

as compared to Fig. 7.2 shows how ROVA is more effective than AID in this example.

Fig. 7.3 shows the UER versus throughput for ROVA, the ROVA approximation by Frick

and Hoeher, and AID, where the throughput is a function of the threshold that determines

whether to accept the Viterbi result as reliable. Throughput is defined as the ratio of correctly

decoded sequences that passed the threshold to the total number of received sequences. Fig.

7.3 confirms the relatively poor performance of AID that was suggested in Figs. 7.1 and 7.2

. For a given target UER, AID supports a much lower throughput than ROVA. Despite its

lower complexity, AID turns out to be too inaccurate to use as a decoder reliability metric

in practice. The ROVA approximation performs similarly to ROVA, suggesting that either

of these could be used as a decoder reliability metric.

To generate Figs. 7.1 and 7.2, it was necessary to simulate a sufficient number of in-

correctly decoded sequences in the tail of the distribution, which posed a challenge as these

events are much less likely to occur. In order to reduce overall simulation time, importance

27



160 170 180 190 200 210 220 230 240

AID

0

0.01

0.02

0.03

0.04

0.05
P

ro
b
a
b
ili

ty
 D

e
n
s
it
y

Correctly decoded

Incorrectly decoded

Figure 7.2: Probability density of AID values for correct and incorrect decodings for the same scenario as

Fig. 4.1. There is considerable overlap between the incorrect and correct decodings, which suggests that

using AID is an ineffective way to reduce undetected errors.

This figure was previously presented in part in an IEEE TCOM journal paper [BBK22].

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Throughput

10
-4

10
-3

10
-2

10
-1

U
n
d
e
te

c
te

d
 E

rr
o
r 

R
a
te AID

ROVA

CID

F&H

Figure 7.3: Undetected error rate (UER) as a function of throughput for ROVA, approximate ROVA,

AID, and CID showing the operating points of (throughput, UER) achievable with thresholds on ROVA,

approximate ROVA AID, and CID metrics for the same scenario as Fig. 4.1. ROVA and CID give identical

performance as expected by (8.5). Approximate ROVA has near identical performance to ROVA and CID.

This figure was previously presented in part in an IEEE TCOM journal paper [BBK22].

28



sampling was utilized to increase the likelihood of the decoder choosing incorrect codewords.

The probability of incorrect decoding increases with the Euclidean norm of the Gaussian

noise. Noise points with a large Euclidean distance were drawn with higher probability than

with the Gaussian noise distribution according to an importance-sampling bias function.

The distribution of the norm of an N-dimensional IID zero-mean Gaussian noise vector

with variance σ2 in each dimension is equivalent to the Nakagami distribution with m = N/2

and Ω = Nσ2. Fig. 7.4 shows the noise norm distribution after the importance-sampling bias

function. It is a mixture distribution including two equally-likely components: the above

Nakagami distribution and a uniform distribution on the interval [9, 14].

The combination of these two distributions provides sufficient data samples in both the

body and tail of the distribution. Following the importance-sampling paradigm, each gener-

ated data sample is weighted by the ratio of the original probability distribution to the biased

probability distribution. The weighted data is then used to generate a weighted cumulative

distribution, which is then used to approximate a probability density curve by taking the

local derivative.

The proof that the AWGN vector norm for BPSK modulation follows a Nakagami dis-

tribution is as follows: The noise vector norm ||g|| is defined as

||g|| =
√
(g1)2 + ...+ (gN)2 =

√√√√ N∑
k=1

(gk)2 (7.15)

where each gk is an i.i.d. normal variable with mean 0 and standard deviation σk.

gi ∼ Ni(0, σ
2
i ) →

gi
σi

∼ Ni(0, 1) (7.16)

(
gi
σi

)2

∼ (Ni(0, 1))
2 = X 2(1) ≡ Γ

(
1

2
, 2

)
(7.17)

where X 2(1) is a chi-squared random variable with 1 degree of freedom and Γ (k, θ) is the

gamma distribution random variable with shape k and scale θ.

g2i ∼ σ2
i Γ

(
1

2
, 2

)
= Γ

(
1

2
, 2σ2

i

)
(7.18)

29



Each gi has the same standard deviation σ, which leads to the following simplification.

Γ

(
1

2
, 2σ2

i

)
= Γ

(
1

2
, 2σ2

)
(7.19)

The sum of independent Gamma distributions with the same rate is equivalent to a single

Gamma distribution with individual shapes summed together. Therefore, ||g|| is the square

root of a gamma distribution random variable with
N

2
shape and 2σ2 scale, which is a

Nakagami distribution.

30



7 8 9 10 11 12 13 14 15

Noise vector Norm

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Original Distribution

Importance Sampled Distribution

Figure 7.4: The original Nakagami distribution which describes the distribution of the noise vector norms

compared to the bias distribution for the same scenario as Fig. 4.1. The bias distribution is a mixture

distribution composed of one half of the original Nakagami distribution with one half of a uniform distribution

on the interval [9, 14].

This figure was previously presented in part in an IEEE TCOM journal paper [BBK22].

31



CHAPTER 8

CID

1 As an improvement to AID, we propose a new metric, the codeword information density

(CID), which similar to AID but computed for an entire codeword rather than for a single

symbol. The CID metric is computed for the codeword selected by Viterbi as follows:

iCID(y
nc , x̂nc) = log2

fY |X(y
nc |x̂nc)∑

xnc∈C P (xnc)fY |X(ync|xnc)
(8.1)

CID operates on the complete sequences ync and x̂nc and is limited to only consider valid

codewords xnc ∈ C. This gives a higher complexity, but higher accuracy relative to AID.

Algorithm 4 below provides a procedure for computing iCID.

Comparing (4.2) and (8.1), we find that ROVA and CID have almost the same formula.

Starting with (4.2), including a P (xnc) term in the denominator and taking a logarithm

produces (8.1). Consequently, CID and ROVA have a one-to-one transformation given by

iCID(y
nc , x̂nc) = log2

(
P nc
0

P (xnc)

)
. (8.5)

Thus, CID and ROVA turn out to be identical metrics. However, the journey from AID to

CID and the recognition that CID computes exactly the same value as ROVA reveals a lower-

complexity approach to computing ROVA. The original ROVA implementation computes

the normalization factor ∆m for each trellis stage, which in turn requires the additional

computation of P̄m
j for each surviving trellis branch. The algorithm we propose for computing

CID does not require these computations.

As an example, consider the number of multiplications required for the common case of a

rate-1/n convolutional code where Nb = 2, excluding the number of multiplications necessary

1This chapter was previously presented in part in an IEEE TCOM journal paper [BBK22].

32



Algorithm 4: Computation of proposed iCID (and ROVA).

Initialization: For i, j ∈ S, let Tm be the set of valid trellis branches as defined in Algorithm

1. Initialize m = 0, Γ0
0 = 1, Z0

0 = 1.

Iterations:

1. m = m+ 1

2. Compute branch metrics γm(i, j) as in Algorithm 1.

3. Compute Γj
m as in Algorithm 2.

4. For each j ∈ S compute

Zj
m =

∑
(i,j)∈Tm

Zi
m−1γm(i, j) . (8.2)

5. if m = nc conclude by reporting either

iCID(y
nc , x̂nc) = log2

(
Γ0
n

P (xnc)Z0
n

)
, or (8.3)

P nc
0 =

Γ0
n

Z0
n

(8.4)

otherwise, go to Step 1.

33



for the branch metric γm(i, j). The original ROVA algorithm requires approximately (3 +

2Nb)Ns = 7Ns multiplications per trellis stage. AID requires only Ns multiplications per

trellis stage, but is inaccurate. The CID-inspired ROVA computation in Algorithm 4 requires

only (1 + Nb)Ns = 3Ns multiplies per trellis stage and computes the identical ROVA value

of P nc
0 as in Algorithm 1. It is noted that the total complexity savings are not directly

proportional to the difference in the listed number of operations, as each algorithm must

still separately compute γm(i, j).

34



CHAPTER 9

Complexity Analysis of Reliability Metrics

1 This section analyzes the additional complexity beyond standard Viterbi decoding required

by each reliability metric in a ZTCC with Ns states, Nb branches per state, k trellis stages,

and nd transmitted dimensions per transmitted symbol, i.e. per trellis stage.

For analysis, the trellis stages are decomposed into three sections:

1. The initialization section where the number of active trellis states is increasing from

one to Ns.

2. The regular transmission section where all Ns states are trellis active.

3. The termination section where the number of active trellis states is decreasing from

Ns to one.

The decoder performs reliability metric computations along each branch. For each of

the three sections we will compute the total number of branches on which reliability metric

computations are performed.

The initialization section begins in only one state, the zero state. With each subsequent

stage, the number of active states increases by a factor of Nb. Thus, the number of stages

needed to activate all available trellis states is given by logNb
(Ns). The number of branches

in the initialization section on which reliability metric computations are performed is given

by
logNb

(Ns)∑
i=1

(Nb)
i =

N
logNb

(Ns)+1

b −Nb

Nb − 1
(9.1)

1This chapter was previously presented in part in an IEEE TCOM journal paper [BBK22].

35



There are k − 2 logNb
(Ns) stages in the regular transmission section. Each stage in this

section contains NbNs branches connecting the previous states to the current states. The

decoder must therefore perform NbNs(k−2 logNb
(Ns)) reliability metric branch computations

in this section.

The termination section begins with all Ns states active. With each subsequent stage,

the number of active states decreases by a factor of Nb until only the zero state is active

at the end of the transmission. Thus, the number of stages in the termination section is

given by logNb
(Ns). The number of branches in the termination section on which reliability

metric computations are performed is the same as for the initialization section, as described

in (9.1).

Thus, the total number of reliability metric computations performed throughout the

decoding process is given by

NbNs(k − 2 logNb
(Ns)) +

2(N
logNb

(Ns)+1

b −Nb)

Nb − 1
(9.2)

Neglecting overhead computations that occur once per codeword or once per stage, the com-

putational complexity required by a reliability metric can be estimated by multiplying (9.2)

by the number of operations needed per branch for that reliability metric. The initialization

and termination sections each occupy logNb
(Ns) trellis stages. If k is much greater than

2 logNb
(Ns), then the regular transmission section will dominate the overall complexity.

As shown in step 2 of each of Algs. 1-4, each reliability metric requires the computation

of branch metric γm along every branch in the trellis. For an AWGN channel, γm is computed

for each branch by multiplying the conditional densities for each dimension of the symbol

corresponding to that branch as follows:

γm =

nd∏
i=1

1√
2πσ2

e−
(yi−x̂i)

2

2σ2 (9.3)

If the SNR of the channel is fixed, the terms involving σ can be treated as a constants and

precomputed.

For all the algorithms considered, in addition to computing γm, the reliability metric

algorithm requires steps that need to be performed either along every branch within the

36



0

50

100

150

200

250

ROVA(R&B) F&H AID ROVA(CID)

N
u

m
b

e
r 

o
f 

O
p

e
ra

�

o
n

s 
p

e
r 

S
ta

g
e

Simulated Reliability Metric

Viterbi ROVA F&H AID CID

Figure 9.1: Number of operations needed per stage to implement Viterbi alongside the chosen reliability

metric. Number of operations is based on a 4 state, 128 information bit, rate 1/2 decoder.

This figure was previously presented in part in an IEEE TCOM journal paper [BBK22].

trellis stage Tm, or along the surviving branches chosen by the Viterbi algorithm. For the

Raghavam and Baum implementation of ROVA [RB98], the computation of ∆m in (4.4) must

be performed once per stage using values from all valid branches, while the computation of

Pm
j and P̄m

j in (4.5)-(4.6) only needs to be performed along the surviving branches. The Frick

and Hoeher Approximation of ROVA [FH07] requires the computation of Γj
m in (7.2) along

every valid branch as those values are necessary for the computation of the denominator in

(7.3) for the winning branches. The AID algorithm only requires the computation of Γj
m in

(7.12) on the surviving branches chosen by Viterbi, and Π(m) in (7.13) can be computed

once for every stage. The CID implementation of ROVA requires the computation of Zj
m in

(8.2) for each state and Γj
m for each surviving path.

Table 9.1 shows the number of operations per stage necessary to compute each reliability

metric using the most efficient implementation we could devise. Fig. 9.1 illustrates how the

additional computation required for each reliability metric compares with the computations

37



0

0.2

0.4

0.6

0.8

1

1.2

ROVA(R&B) F&H AID ROVA(CID)

S
Im

u
la

�

o
n

 T
Im

e
 (

s)

Simulated Reliability Metric

Ini�aliza�on Viterbi ROVA(R&B) F&H AID ROVA(CID)

Figure 9.2: Simulation time per 100 decodings with Viterbi and the chosen reliability metric. Initialization

includes everything that was simulated that was not a part of the Viterbi algorithm or the chosen reliability

metric. Initialization includes tasks such as creation of the trellis structure, encoding the input sequence,

and computing every state transition bit sequence in the trellis.

This figure was previously presented in part in an IEEE TCOM journal paper [BBK22].

required for Viterbi decoding for the example of α = 2, Ns = 4, Nb = 2, and nd = 2. Fig.

9.2 shows the simulation time results for this same example.

While Viterbi requires only squared Euclidean distance as a metric, the various reliability

metrics all require the computation of (9.3) over all branches. This is the most expensive step

in each metric evaluation. A straightforward approach requires 7nd operations per branch.

However, pre-computing each multiplicand in (9.3) once per stage can significantly reduce

the computation. For each unique symbol value in each dimension of the mapped symbol

alphabet, the term
1√
2πσ2

e−
(yi−x̂i)

2

2σ2 (9.4)

can be computed for a received symbol x̂. This requires 6nd calculations α times, where α

represents the number of unique values of the mapped symbol alphabet in each dimension.

38



Thus the overall reduction is from 7ndNsNb computations per stage to ndNsNb + 6ndα

computations per stage.

For example, a code that uses BPSK modulation would have an α of 2, while 8PSK

modulation would have an α of 5, corresponding to the five possible values per dimension

{−1,−1/
√
2, 0, 1/

√
2, 1}. Thus, (9.4) can be computed once for each of these five values,

and the results can be cached and accessed when they are multiplied together in (9.3). Each

metric computation now requires nd + 1 steps per branch to multiply the cached values

together and incorporate the result into Γj
m.

The implementation of each metric contains an additional 3nd overhead operations per

branch and 2nd operations per stage. ROVA as in [RB98] has an additional 3NbNs and 4Ns

term necessary to compute (4.4)-(4.6) of Algorithm 1. The ROVA approximation [FH07]

and ROVA computed as CID have an additional NbNs term necessary to compute (7.3)

and (8.2) respectively. After these optimizations, AID [PPV11] is the fastest metric, ROVA

computed as CID and the ROVA approximation share the same complexity, and ROVA

computed as in [RB98] has the highest complexity. Although the ROVA approximation is

very accurate in our simulation, ROVA computed as CID offers the exact reliability at no

additional complexity as compared to the approximation.

39



Table 9.1: Operations per trellis stage (OPTS) for the Viterbi algorithm and the additional complexity

beyond Viterbi for each of the four considered reliability metrics, when all trellis states are active. The

Example OPTS value is the value of OPTS for the example where α = 2, Ns = 4, Nb = 2, and nd = 2.

Additional Time is the average additional time needed to simulate the chosen reliability metric in addition

to the Viterbi algorithm per 100 decoding simulations. Simulations are performed with a 4 state rate-1/2

BPSK modulated decoder where α = 2, Ns = 4, Nb = 2, and nd = 2 on an Intel i7-4720HQ processor.

Algorithm Operations per trellis stage

Example

OPTS

value

Add.

Time (s)

Viterbi NsNb(5nd + 1) 88 0

ROVA

(R&B)

NbNs(4nd + 4)

+4Ns + 2nd + 6ndα
140 0.317

F&H
NsNb(4nd + 2)

+2nd + 6ndα
108 0.280

AID
Ns(4nd + 1)

+4nd + 6ndα
68 0.203

ROVA

(CID)

NsNb(4nd + 2)

+2nd + 6ndα
108 0.281

40



CHAPTER 10

Example of incremental redundancy based on ROVA and

Comparison

1

10.1 Approximately Optimal Ordering of Symbol Transmission for

Incremental Retransmission

The techniques described in this section will optimize the order of additionally transmitted

symbols when a retransmission request occurs in an incremental retransmission scheme. The

results of this section will be applied to Sec. 10.2.

Let εx,x′ denote the event of decoding codeword x′ when x is sent, and let ex,x′ denote

the event that codeword x′ is more likely than codeword x given the received y. We have

the union bound

FER = P

 ⋃
x,x′∈C
x ̸=x′

εx,x′

 = P

 ⋃
x,x′∈C
x ̸=x′

ex,x′

 (10.1)

≤
∑
x,x′∈C
x ̸=x′

P (ex,x′) . (10.2)

1This chapter was previously presented in part in an IEEE TCOM journal paper [BBK22].

41



We denote P (ex,x′) as the pairwise error probability. We have the Q-function approximation:

P (ex,x′) = Q

√d2 (x, x′)

2N0

 p(x) (10.3)

≤ Q

√d2free
2N0

 e
d2free
4N0 e

− d2(x,x′)
4N0 p(x) , (10.4)

where d2(x, x′) denotes the squared Euclidean distance between codewords x and x′, and

p(x) =
nc∏
ℓ=1

q(xℓ) (10.5)

is the probability that the codeword x is sent, where q(·) is input distribution chosen for the

channel.

Let

W = e
− 1

4N0 . (10.6)

Using the additivity of squared Euclidean distance over components, we have

∑
x,x′∈C
x ̸=x′

exp

(
−d2 (x, x′)

4N0

)
p(x) (10.7)

=
∑
x,x′∈C
x ̸=x′

exp

(
− 1

4N0

nc∑
ℓ=1

d2 (xℓ, x
′
ℓ)

)
p(x) (10.8)

=
∑
x,x′∈C
x ̸=x′

nc∏
ℓ=1

[
W d2(xℓ,x

′
ℓ)q (xℓ)

]
(10.9)

=
∑
x,x′∈C

nc∏
ℓ=1

[
W d2(xℓ,x

′
ℓ)q (xℓ)

]
−
∑
x

nc∏
ℓ=1

[
W 0q (xℓ)

]
(10.10)

=
∑
x,x′∈C

nc∏
ℓ=1

[
W d2(xℓ,x

′
ℓ)q (xℓ)

]
− 1 , (10.11)

We convert the sum over codewords into a sum over paths through the trellis. In order

to compute (10.11), it is necessary to compute W d2(xℓ,x
′
ℓ) for each branch in each codeword.

All paths that start and end at the zero state are valid for a zero-terminated convolutional

42



code. Since the decoded codeword is always zero-terminated, the starting and ending states

are always correct.

Previous work in [Wes04] describes a symmetry-based technique for reducing the size of

state-diagrams necessary to describe trellis codes with standard constellations and labeling.

The minimal state transition diagram as a function of W takes the form

d c

b A

 (10.12)

where A specifies the transition labels from errored states to errored states, b specifies the

transitions from correct states to errored states, c specifies the transitions from errored states

to correct states, and d specifies the transitions from correct states to correct states. Each

element in the minimal state transition diagram is a linear combination of the W d2(xℓ,x
′
ℓ)

terms for each equivalence class associated with that state transition as defined by [Wes04].

We can rewrite (10.11) as the following transfer function

T (W ) =
[
d c

]d c

b A

nc−2 d
b

− 1 , (10.13)

Noting that the Hamming weight does not appear in (10.11), we can combine (10.4) and

(10.13) as the bound

FER ≤ Q

√d2free
2N0

 e
d2free
4N0 T

(
W = e

− 1
4N0

)
, (10.14)

where dfree is the free distance of the code. For punctured trellis codes, [WL98] states that

the transfer function in (10.14) should not be evaluated with a single W . Each matrix in

(10.13) must be evaluated separately with W = e
− 1

4N0 for transmitted symbols and W = 1

for punctured symbols. For an 8-PSK zero-terminated trellis code with constraint length v

and puncturing, (10.14) becomes the following:

FER ≤ Q

(√
r2

2N0

)
e

r2

4N0 T
(
W ℓ
)
, (10.15)

43



where r is the residual Euclidean distance of the punctured code and W ℓ is the set of all

Wi = exp− ai
4N0

from i = 1 to ℓ where ai is 1 if the i-th symbol from the end of the transmission

is transmitted and 0 if it is punctured. The transfer function with puncturing is given by

T (W ℓ) =
[
d c

] ∣∣∣∣
W1

nc−1∏
j=2

d c

b A

 ∣∣∣∣
Wj

d
b

 ∣∣∣∣
Wℓ

− 1 (10.16)

A greedy search algorithm detailed in Algorithm 5 is performed in Section 10.2 to select

the order of additionally transmitted symbols. Greedy algorithms are in general not globally

optimal, but are approximations of the globally optimal solution. The algorithm uses (10.15)

to lower bound the FER for every valid additional transmitted symbol when a retransmission

request occurs. The additional symbol that results in the lowest FER is the locally optimal

symbol to transmit for that request given the previous selections. This process starts with

the most aggressive puncturing pattern and repeats until all symbols have been transmitted.

10.2 Numerical Results for Higher Order Modulation for Variable

Length Coding with a Comparison to a CRC-based Approach

Previous work by Williamson [WCW15a] has demonstrated the performance of reliability-

based retransmission schemes over the AWGN channel using ROVA as the reliability metric

for BPSK modulation. This section demonstrates using ROVA as a reliability metric in an

incremental transmission scheme for 8-PSK modulation and compares it to using a CRC as

the reliability metric.

Fig. 10.1 shows the performance of both a ROVA-based and a CRC-based incremental

transmission scheme over the AWGN channel at an SNR of 6 dB and target error rate

ϵ = 10−3 using 8-PSK modulation and convolutional code {173,46,133} as described in

[WLS00] with soft-decision decoding and feedback of the selected metric after every symbol

to determine when to terminate the transmission. Every CRC polynomial was chosen from

[KC04b] such that each data point in Fig. 10.1 achieves a frame error rate less than target

ϵ. Fig. 10.2 shows the observed frame error rates for each of the simulated data points

in Fig. 10.1. It can be seen that ROVA is able to target specific error rates much more

44



Algorithm 5: Greedy search algorithm to determine the order of additionally transmitted

symbols.

Initialization: Compute the minimal state transition diagram as in eq. (10.12). Select

the most aggressive puncturing pattern to be considered as the initial puncturing pattern.

Initialize m to be equal the number of punctured symbols in the initial pattern.

Iterations:

1. m = m− 1

2. Select a punctured symbol in the puncturing pattern.

3. Compute (10.15) for the current puncturing pattern if the selected symbol were addi-

tionally transmitted. Store the result.

4. Return to step 2 until all punctured symbols have been evaluated.

5. Update the puncturing pattern so that the additional symbol that results in the lowest

FER bound is transmitted.

6. If m ̸= 0, return to step 1.

45



precisely than the CRC. Both schemes utilize the techniques in Section 10 to determine the

optimal order of symbol transmission. The performance of the ROVA-based approach when

additional symbols are chosen randomly is also shown. The optimal-order ROVA achieves a

higher throughput at similar average blocklengths compared to the random-order ROVA.

The throughput Rt of the channel is plotted against the average blocklength λ for various

values of the message length k, which is a hidden parameter of Fig. 10.1. The total number

of symbols processed is k+ v for ROVA and k+ v+m for the CRC, where m is the number

of CRC bits. The variables λ and Rt are defined as the following:

λ ≤ 1 +
∑N−1

i=1 PNACK(i)

1− PNACK(N)
(10.17)

Rt =
k

λ
(1− PUE) (10.18)

where PNACK(i) is the probability that the receiver generates a NACK due to ROVA metric

being below the threshold when i coded symbols have been received. PUE is the probability of

undetected error. The achievability curve for variable-length coding with feedback represents

the random coding lower bound as defined in [WCW15a] according to [PPV11]. Similar to the

results shown in [WCW15a], the simulations in Fig. 10.1 demonstrate that the throughput

of this convolutional code exceeds the random-coding lower bound at short blocklengths.

Fig. 10.1 also demonstrates that the CRC-based retransmission scheme performs poorly

compared to ROVA at lower average blocklength. This is expected, as the additional bits

required for the CRC are expensive when the number of transmitted symbols is low.

It is possible to form a hybrid scheme by combining ROVA and a CRC. If this decoder

receives a message and the CRC does not pass, then the decoder choice is selected. If the

message passes the CRC, then computations similar to the ROVA computations described

in this thesis can aid in determining if the decoding is sufficiently reliable.

10.3 Correction of results in [BBK22]

The comparison between the ROVA-based retransmission scheme and the CRC-based re-

transmission scheme published in [BBK22] did not compare the two in a fair manner. This

46



section will correct the result shown for the CRC-based retransmission scheme while noting

that the qualitative analysis of the comparison stay the same. The results in [BBK22] all

share the same initial transmission lengths for the same values of the total number of input

bits processed, which corresponds to the number of information bits k in Table .5. This initial

transmission length was two-fifths of the total number of input bits. For the ROVA-based

retransmission scheme, the empirical probability that the computed ROVA values were suf-

ficiently high at the initial transmission rate was small. However, for smaller values of k, the

CRC-based scheme could reliably terminate transmission with a smaller number of symbols

than were initially transmitted. Fig. 10.3 shows the results when the initial transmission

starts at one symbol and continues until the decoder terminates. It can be seen that as the

average blocklength increases, the two curves converge on each other. The reason is that at

larger values of k, the CRC-based scheme needs more than two-fifths of the bits to decode

reliably. The CRC-based scheme performs better than was previously shown, but impor-

tantly the ROVA-based scheme continues to perform better at lower average blocklengths.

The analysis performed in [BBK22] and in this thesis still hold true.

47



0 10 20 30 40 50 60 70 80 90

Average Blocklength 

0.5

1

1.5

2

2.5

T
h

ro
u

g
h

p
u

t 
(R

t)

Optimal ROVA m=N

Random ROVA m=N

Optimal CRC m=N

8PSK Capacity at 6dB SNR: 2.041

8PSK Achievability for variable length coding with feedback

Figure 10.1: Short-blocklength performance of the m = N ROVA-based retransmission scheme over the

AWGN channel with SNR 6.00 dB and target probability of error ϵ = 10−3 using a 64 state rate 1/3 code

with 8-PSK modulation. The ROVA for terminated convolutional codes is used. The performance of a

CRC-based retransmission scheme with the same characteristics is also shown. Each code shares the same

set of the total number of input bits processed by the code: 15, 20, 25, 30, 35, 40, 50, 75, 100, 125.

This figure was previously presented in part in an IEEE TCOM journal paper [BBK22].

48



0 10 20 30 40 50 60 70 80 90

Average Blocklength

10-4

10-3

F
ra

m
e

 E
rr

o
r 

R
a

te

optimal order, m=N 8PSK ROVA

random order, m=N 8PSK ROVA

optimal order, m=N 8PSK CRC

Figure 10.2: Frame error rate plotted against the average blocklength for each of the simulated points in Fig.

10.1. Each ROVA threshold and CRC polynomial is chosen such that the frame error rate is below target

error rate ϵ. ROVA is able to target desired error rates more precisely than the CRC.

This figure was previously presented in part in an IEEE TCOM journal paper [BBK22].

49



0 10 20 30 40 50 60 70 80 90

Average Blocklength 

0.5

1

1.5

2

2.5

T
h

ro
u

g
h

p
u

t 
(R

t)

Optimal CRC m=N corrected

Optimal CRC m=N original

8PSK Capacity at 6dB SNR: 2.041

Figure 10.3: A previous paper [BBK22] computed a throughput vs. average blocklength comparison to

ROVA using a CRC as a stopping condition. The initial number of transmitted symbols was too large at

lower average blocklengths for the CRC, leading to a transmission rate that was too small at lower average

blocklengths. The corrected curve represents simulations where transmission starts with a single symbol

and continues to transmit additional symbols until the decoder terminates transmission. At higher average

blocklengths, the original initial number of transmitted symbols was sufficient, leading to convergence of

the results at higher average blocklength. The CRC still performs worse than ROVA at smaller average

blocklengths, so the analysis in [BBK22] remains unchanged.

50



CHAPTER 11

Sequential Differential Optimization

1

11.1 The incremental redundancy accumulation cycle

Consider a system that communicates a k-bit message by using incremental redundancy to

send up to m possible transmissions in an accumulation cycle. The transmissions have lengths

of l1, ..., lm, where sending each additional transmission depends on ACK/NACK feedback.

Each subsequenct attempt in the accumulation cycle has the advantage of a successively

larger cumulative blocklength of Ni where

Ni =
i∑

j=1

lj (11.1)

The decision of whether to send an ACK to terminate the transmission or to send a

NACK to request additional redundancy is based on some indicator of reliable decoding

such as a cyclic redundancy check (CRC) code [KC04b] or comparing a soft indicator of

decoding reliability to a threshold such as the ROVA algorithm of [WMW14]. The receiver

does not know whether it has truly decoded correctly; the CRC or soft information threshold

is designed to achieve a desired target probability of undetected error PUE. A decoding error

is only possible when the receiver makes a final decision and an ACK is sent, and all such

errors are undetected.

Let PNj
ACK and P

Nj

NACK be the marginal probabilities of a decoding “success” or “failure”

1This chapter was previously presented in part in an IEEE ISIT conference paper [WWB17].

51



based on the reliability indicator when the decoder is presented with a received codeword

having blocklength Nj. Note that PNj
ACK + P

Nj

NACK = 1.

If decoding is still unsuccessful after all m decoding attempts in the accumulation cycle,

the associated k-bit message is not lost, rather the transmission is attempted again from

scratch. This is referred to by Heindlmaier and Soljanin in [HS14] as a fixed incremental

redundancy scheme, but as shown in [HS14] the loss from the infinite incremental redundancy

scheme where m = ∞ is small when the failure rate is low.

11.2 Optimizing the lengths l1, ..., lm to maximize throughput

Let I be the number of successfully transmitted information bits in an accumulation cycle.

Let N be the number of symbols transmitted in an accumulation cycle. The throughput rate

RT is defined as

RT =
E[I]

E[N ]
=

k(1− PNm
NACK − PUE)

E[N ]
(11.2)

where

E[N ] ≈ N1P
N1
ACK +

m∑
j=2

Nj[P
Nj

ACK − P
Nj−1

ACK ] +NmP
Nm
NACK (11.3)

The expression for E[N ] in (11.3) is an approximation because it assumes that if an ACK

was sent when decoding a message of length Nj−1, then certainly an ACK would also be sent

when decoding the corresponding longer message with length Nj . While observed to be true

for the non-binary LDPC codes explored in (11.3), this is not true in general and specifically

not the case for the convolutional codes explored in this thesis. However, events where an

ACK would be followed by a NACK are relatively rare, and ignoring this effect simply leads

to a slight underestimate of throughput by under-counting the ACKs that occur for the first

time on the jth attempt.

To further simplify the optimization of RT , noting that E[I] is not affected much by

varying the length Nj (indeed E[I] ≈ k for most systems of interest in which PNm
NACK and

52



PUE are both small), maximizing RT is essentially equivalent to minimizing E[N ].

11.3 An Improved Model for P
Nj

ACK

11.3.1 A Gaussian approximation of highest rate of ACK

The model proposed in [VRD16] approximates P
Nj

ACK with a Gaussian distribution on the

rate at which decoding is first successful. The model’s parameters are the mean µs and

variance σ2
s of the first successful decoding rate. Thus the approximation is

P
Nj

ACK = Q

(
k
Nj

− µs

σs

)
(11.4)

where Q(t) is the probability that a unit-variance, zero-mean Gaussian random variable

(r.v.) takes a value larger than t. This model was shown to be extremely accurate for the

cases studied in [VRD16] where the average blocklengths were all larger than 150. However,

[WVW17] found that the approximation became inaccurate for average blocklengths less

than 100.

Fig. 11.1 illustrates the accuracy problem identified in [WVW17] by comparing simulated

throughput to throughput approximated using the GR model of [VRD16] as well as the

model we will introduce in the next section. The figure shows how the throughput rate RT

increases as a function of the number of transmissions m in an accumulation cycle. The

key observation for the purposes of this thesis is that for k = 16 and k = 32 with average

blocklengths below 100 symbols, the GR model has a noticeable approximation error. For

k = 64 with average blocklengths above 100 symbols, the GR model provides an excellent

approximation, consistent with the results in [VRD16].

11.3.2 Polyanskiy’s Gaussian information-density model

To improve on the model of [VRD16], we utilize the analysis of Polyanskiy et al. in [PPV11].

Consider a discrete memoryless channel in which the transmitted symbol is the random r.v.

53



Number of Transmissions (m)

4 8 16 32

T
h
ro

u
g
h
p
u
t 
(R

T
)

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

k = 64
115 ≤ E[N ] ≤ 125

k = 32
61 ≤ E[N ] ≤ 66

k = 16
34 ≤ E[N ] ≤ 38

Binary Input AWGN SNR 2.00 dB, P
UE

 < 10-3

Simulation

GR Model

GI-LG Model

Figure 11.1: Throughput as a function of number of transmissions m in an incremental redundancy cycle for

information lengths k ∈ {16, 32, 64}. Simulation performance is compared with GR and GI-LG approxima-

tions.

This figure was previously presented in part in an IEEE ISIT conference paper [WWB17].

X and the corresponding received symbol is the r.v. Y . In [PPV11], a fundamental tool

used to establish the achievability results for communication with feedback is the information

density, defined for each received symbol y corresponding to transmitted symbol x as

i(x, y) = log2
fY |X(y|x)
fY (y)

(11.5)

The accumulated information density for n symbols is

i(xn, yn) =
i=1∑
n

log2
fY |X(yi|xi)

fY (yi)
(11.6)

The receiver does not know the true sequence of transmitted x values, and thus does not

know the “true” accumulated information density. However, at least in theory, the receiver

can compute a tentative accumulated information density for each possible codeword xn.

The approach of [PPV11] is to set a threshold γ and terminate decoding whenever one of

these tentative accumulated information densities exceeds γ.

The sequence of information densities, one associated with each symbol, is independent

54



and identically distributed (i.i.d.). Furthermore, the mean and variance of the symbol-wise

information densities can be computed from the channel model directly, with no need for

simulation. In particular, the mean of the symbol-wise information density is the mutual

information I(X;Y ) of the channel.

For the example of the BI-AWGN channel with x ∈ ±1, the symbol-wise information

density has the p.d.f.

1− log2(1 + exp−2(z + 1)/(σ2)) (11.7)

where z is the zero-mean Gaussian noise y − x. The mean and variance are obtained by

computing the appropriate expectations with respect to the Gaussian p.d.f. of z. Because

the sequence of information densities is i.i.d., Polyanskiy et al. have modeled the accumu-

lated information density as a Gaussian r.v. [PPV10]. This “normal approximation” is quite

accurate even for a relatively small number of symbols.

Consider a rate-compatible code communicating k bits of information by transmitting

a growing amount of redundancy. Asymptotically (as k grows large), information theory

informs us that the receiver should be able to decode successfully when the accumulated

information density i(xn, yn) slightly exceeds k and that this would happen approximately

when n exceeds k/I(X;Y ). By using a fixed constant γ, the analysis in [PPV11] adds a

fixed “gap” ϵ to the asymptotically limiting case where γ would simply be k. In other words,

γ = k+ ϵ, where ϵ is the constant information gap needed to ensure that a particular desired

frame error rate is achieved with a particular finite k.

Thus, the model for P
Nj

ACK due to the analysis of [PPV11], [PPV10] is

P
Nj

ACK = Q

(
k + ϵ−Njµi

σi

√
Nj

)
(11.8)

= Q

 k√
Nj

+ ϵ√
Nj

− µi

σi√
Nj

 (11.9)

where µi and σ2
i are the mean and variance of the symbol-wise information density,

which can be derived analytically from the channel probability distribution. In contrast

55



to the model of [VRD16], the accumulated information density is modeled as a Gaussian

rather than the highest rate of successful being modeled as a Gaussian. Note that while

(11.4) evaluates the tail of a Gaussian that always has the same variance, the comparable

expression in (11.9) evaluates the tail of a sequence of Gaussians whose variance is decreasing

with blocklength Nj.

Despite the theoretical appeal of the Gaussian information with constant gap (GI-CG)

model in (11.8)-(11.9), it turns out also to be inaccurate for the TBCC using ROVA for

k = 16. Fig. 11.2 shows the probability of ACK as a function of blocklength Nj according

to simulation, the GR model, the GI-CG model, and the model we will discuss in the next

subsection. The GI-CG model fails to capture the behavior of the simulation.

Blocklength (N
j
)

20 25 30 35 40 45

P
ro

b
a
b
ili

ty
 o

f 
A

c
k
n
o
w

le
d
g
e
m

e
n
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probability of Acknowledgement for k = 16

Simulation

GR Approximation

GI-CG Approximation

GI-LG Approximation

Figure 11.2: Probability of acknowledgment PNj

ACK for TBCC-ROVA with k = 16 as a function of blocklength

according to simulation and according to the Gaussian rate, and Gaussian information density with constant

gap, and Gaussian information density with linear gap models.

This figure was previously presented in part in an IEEE ISIT conference paper [WWB17].

11.3.3 Gaussian information density with a linear coding gap

The inaccuracy of the GI-CG model is caused by the assumption that the gap ϵ remains con-

stant for a variable-length code as its blocklength is increased with incremental redundancy.

This turns out not to be the case for the rate-compatible TBCC examined in this thesis and

56



Accumulated Information Density

0 5 10 15 20 25 30 35

E
m

p
ir
ic

a
l 
P

ro
b
a
b
ili

ty

0

0.005

0.01

0.015
Information Density Histograms for k = 16 at blocklength 31

Information Density Histogram for ACKs

Information Density Histogram for NACKs

k = 16

GR Model

GI-CG Model

GI-LG Model

Crossover Point

Figure 11.3: Histograms of information density at successful and unsuccessful decoding showing the crossover

point.

This figure was previously presented in part in an IEEE ISIT conference paper [WWB17].

perhaps other variable-length codes with short average blocklengths.

To examine how the gap behaves as a function of blocklength, we study the amount of

accumulated information density when the TBCC-ROVA algorithm triggered an ACK. Fig.

11.3 shows separate histograms of information density for length Nj = 33 codewords for

which an ACK was declared and for which a NACK was declared. Unlike the algorithm

analyzed theoretically in [PPV11], the TBCC does not declare an ACK explicitly based on

information density. However, using histogram data as shown in Fig. 11.3, the crossover

point can be determined so the approximate amount of information density required to

trigger an ACK is identified.

According to (11.8) of the GI-CG model, the amount of information density required to

trigger an ACK should remain constant at k+ ϵ. However, this is not the behavior observed

for the k = 16 TBCC using ROVA. Fig. 11.4 plots the accumulated information density

crossover points (as shown by example in Fig. 11.3) as a function of blocklength. Fig. 11.4

shows that the crossover points decrease as a function of blocklength.

To capture the behavior observed in Fig. 11.4, a linear gap term α is added to the

57



Blocklength

20 25 30 35 40 45

T
o
ta

l 
A

c
c
u
m

u
la

te
d
 I
n
fo

rm
a
ti
o
n
 D

e
n
s
it
y

15

17

19

21

23

25
Linear Gap Model and Crossover Points for k = 16

k=16

GR Model

GI-CG Model

GI-LG Model

Crossover

Figure 11.4: Information density empirical crossover point between successful and unsuccessful decoding,

information density threshold estimated by Gauss- Newton using the linear gap model, and the reference

value of k = 16.

This figure was previously presented in part in an IEEE ISIT conference paper [WWB17].

argument of the Q function to create the Gaussian information density with linear gap

(GI-LG) model, with P
Nj

ACK shown below:

P
Nj

ACK = Q

(
k + ϵ−Nj(µi + α)

σi

√
Nj

)
(11.10)

= Q

 k√
Nj

+ ϵ√
Nj

− (µi + α)

σi√
Nj

 (11.11)

where µi and σi are computed from the channels p.d.f. for symbol-wise information

density. The parameters ϵ and α in the linear gap model must be estimated. Monte-Carlo

simulation provides an empirical estimate of PNj

ACK , which can be used to estimate ϵ and α

through least squares optimization.

Let p = (ϵ, α) be the parameter vector. The objective function that needs to be minimized

is

C(p) =

Nj=e∑
Nj=b

(
P

Nj

ACK − P̂
Nj

ACK

)2
(11.12)

where PNj

ACK is the modeled probability of acknowledgment (11.10) and P̂
Nj

ACK is the empirical

probability of acknowledgment, and b and e represent the shortest and longest blocklengths

58



of the range of blocklengths for the optimization. The gradient of the objective function can

be obtained as

∇C(p) = 2 · (JG(p))
T ·G(p) (11.13)

where JG(p) is the Jacobian matrix of the difference vector G(p), and G(p) can be calculated

as

G(p) =
[
P b
ACK − P̂ b

ACK , P b+1
ACK − P̂ b+1

ACK , · · ·, P e
ACK − P̂ e

ACK

]′
(11.14)

We use the Gauss-Newton algorithm [Ake96] to estimate p by solving a nonlinear least

squares problem. The algorithm minimizes the objective function through a sequence of

linear approximations of the difference vector G(p). The parameters obtained by Gauss-

Newton for all three models can be found in Table 11.1. Note that with the ϵ and α identified

by Gauss-Newton, the GI-LG model is shown to closely approximate performance in Fig.

11.2, which was our goal.

Table 11.1: Parameters obtained for the three models via Gauss-Newton Optimization

µi or µs σ2
i or σ2

s ϵ α

GR 0.497716 0.00522976

GI-CG 0.642149 0.606315 5.22411

GI-LG 0.642149 0.606315 10.6350 0.162808

Examining Table 11.1 in conjunction with Fig. 11.4 reveals the limitations of the GR

and GI-CG models. With respect to the GI-CG model, the lack of the linear term α forced

the ϵ parameter to place the horizontal line of the GI-CG model in Fig. 11.4 where it would

best intersect the actual line of crossover points. Looking at the GR model, we can see that

µs is essentially µi + α with α = −0.1444333. Because the GR model lacks the term ϵ, the

y-intercept must be at k = 16, so that α is chosen to provide a slope that allows the line

to best intersect the actual crossover points in a reasonable way. Only the GI-LG model

has both the α of the GR model and the ϵ of the GI-CG model so that it has the necessary

degrees of freedom to properly model the crossover points of Fig. 11.4.

59



11.4 Sequential Differential Optimization

A key benefit of the GR model of [VRD16] is that it facilitates SDO, which greatly simplifies

the optimization of the incremental lengths l1, ..., lm to maximize RT . The SDO approach

applies equally well to all three models described in this chapter: GR, GI-CG, and the GI-LG

model which turns out to be the most accurate.

With the approximations E[I] ≈ k, we seek to minimize E[N ] as approximated by (11.3).

Over a range of possible N1 values, SDO optimizes {N2, ..., Nm} to minimize E[N ] for each

fixed value of N1.

For each j ∈ {2, ...,m}, the optimal value of Nj is found by setting ∂E[N ]
∂Nj−1

= 0, yielding

a sequence of relatively simple computations. In other words, we select the Nj that makes

our previous choice of Nj−1 optimal in retrospect. For example, to find N2 we compute the

derivative

∂E[N ]

∂N1

= PN1
ACK + (N1 −N2)P

′N1
ACK = 0 (11.15)

and solve for N2 as

N2 =
PN1
ACK +N1P

′N1
ACK

P
′N1
ACK

(11.16)

where for the GI-LG model P
′Nj

ACK is defined as

∂P
Nj

ACK

∂Nj

=
(µi + α)Nj + k + ϵ

2
√
2πσiN1.5

j

e
−

(k+ϵ−(µi+α)Nj)
2

2σ2
i
Nj (11.17)

For j > 2, ∂E[N ]
∂Nj−1

= 0 depends only on {Nj−2, Nj−1, Nj} as follows:

∂E[N ]

∂Nj−1

= P
Nj−1

ACK + (Nj−1 −Nj)P
′Nj−1

ACK − P
Nj−1

ACK (11.18)

Thus we can solve for Nj as

Nj =
P

Nj−1

ACK +Nj−1P
′Nj−1

ACK − P
Nj−2

ACK

P
′Nj−1

ACK

(11.19)

For each possible N1, SDO can be used to produce an infinite sequence of Nj values

using (11.16) and (11.19). Each such sequence is an optimal sequence of increment lengths

60



for a given density of ACK/NACK transmissions on the time axis. As N1 increases, the

density decreases. Using SDO to compute the optimal m points is equivalent to selecting

the most dense SDO-optimal sequence that when truncated to m points results in the highest

throughput.

11.4.1 Application of SDO to Variable-Length Coding with Higher Order Mod-

ulation

As an extension to the results shown in Fig 10.1, we now apply the SDO algorithm to

determine the optimal transmission lengths when we limit the system to m transmissions.

For an 8-PSK modulated signal, if the probability of selecting input symbol x ∈ R2 is

uniformly distributed around the constellation, the symbol-wise information density takes

the form

i(x, y) = log2

(
fY |X(y|x)
fY (y)

)
= log2

(
fY |X(y|x = x0)

fY (y)

)
(11.20)

where the second equivalence is due to symmetry in the constellation points. For an 8-PSK

modulated signal on an AWGN channel,

fY |X(y|x = x0) =
1

2πσ2
e−

||y−x0||
2
2

2σ2 (11.21)

where x0 is the transmitted constellation point and

fY (y) =
7∑

i=0

fY |X(y|x = xi) (11.22)

where xi is the ith constellation point. Taking the symbol-wise information density mean

and variance to be

µi = E[i(x, y)] (11.23)

=

∫
y∈R2

fY |X(y|x = x0) log2
fY |X(y|x = x0)

fY (y)
dy (11.24)

σ2
i = E[i(x, y)2]− µ2

i (11.25)

=

∫
y∈R2

fY |X(y|x = x0)

(
log2

fY |X(y|x = x0)

fY (y)

)2

dy − µ2
i (11.26)

61



we numerically integrate over a large area of y to obtain µi = 2.0428 and σi = 1.0938 for

an SNR of 6dB. Each point in Fig. 11.5 corresponds to a different message length k, and

therefore has a unique value of α and ϵ for the GI-LG model that models the probability

that ROVA returns an ACK. These α and ϵ values are detailed in Table. .6 in the appendix.

0 10 20 30 40 50 60 70 80 90

Average Blocklength 

0.5

1

1.5

2

2.5

T
h

ro
u

g
h

p
u

t 
(R

t)

Optimal ROVA m=N

Optimal ROVA m=4 SDO

Optimal ROVA m=5 SDO

Optimal ROVA m=8 SDO

Optimal CRC m=N

Optimal CRC m=5 SDO

8PSK Capacity at 6dB SNR: 2.041

8PSK Achievability for variable length coding with feedback

Figure 11.5: Results of the ROVA-based retransmission scheme and CRC-based retransmission scheme when

utilizing the SDO algorithm. Predictably, the performance of m = M retransmission converges to the

M = N performance as M increases.

Fig. 11.5 shows the performance of the feedback system when using m = {4, 5, 8} trans-

missions for ROVA and m = 5 transmissions for the CRC. The performance of the system

only slightly decreases when limited to these transmission lengths. Predictably, the perfor-

mance of m = M transmission converges to m = N transmission as M increases.

62



CHAPTER 12

Conclusion

This thesis compares the accuracy and complexity of Raghaven and Baum’s ROVA, Polyan-

skiy’s AID, and Fricke and Hoeher’s approximation of ROVA. It turns out that AID is far less

accurate than ROVA because it considers all xnc sequences as possible rather than restricting

attention only to valid codewords. When AID is modified to consider only valid codewords,

it becomes equivalent to ROVA, and reveals a lower complexity approach to ROVA as com-

pared to the algorithm presented in [RB98]. This CID implementation of ROVA achieves

similar complexity reduction as Fricke and Hoeher while computing the exact probability

rather than an approximation.

This thesis derives an analytical expression for the random variable describing the correct

decoding probability computed by ROVA and uses this expression to characterize how the

probabilities of correct decoding, undetected error, and negative acknowledgement behave

as a function of the selected threshold for reliable decoding.

This thesis examines both the complexity and the simulation time of ROVA, CID, AID,

and the Fricke and Hoeher approximation to ROVA. This thesis also derives an expression

for the union bound on the frame error rate for zero-terminated trellis codes with punc-

tured symbols and uses it to optimize the order of symbol transmission in an incremental

retransmission scheme.

This thesis compares the performance of an incremental retransmission scheme using

ROVA as a stopping condition to one that uses a CRC as a stopping condition. This

thesis found that that at short average blocklengths, the scheme using ROVA as a stopping

condition outperforms the scheme using a CRC as a stopping condition due to the extra

overhead required by the CRC.

63



This thesis concludes by applying the SDO algorithm to determine the transmission

lengths in an incremental transmission scheme to maximize the throughput when limiting

the maximum number of transmissions. This thesis demonstrates that a relatively small

number of feedback transmissions can achieve a throughput similar to systems that transmit

feedback after every symbol.

Short blocklength messages are commonly used in modern communications systems for

a variety of tasks. Whether they are used in text messages, control messaging, or low

power internet-of-things sensors, assessing the reliability of these transmissions in an efficient

manner can be crucial. This thesis presents tools and techniques for improving the efficiency

of these assessments.

64



APPENDIX A

Table .1: Complexity of a ROVA iteration when all trellis states are active.

Algorithm Step Complexity

Step 2 NsNb metric computations

Step 3 Ns(Nb + 1) additions and NsNb multiplications

Step 4 Computation of one multiplicative inverse: ∆−1
m

2×Ns multiplications to compute Pm
j∗

Ns(Nb + 1) multiplications and

2NsNb adds to compute P̄m
j∗

Table .2: Complexity of an iteration of the Fricke and Hoeher approximation of ROVA when all trellis states

are active.

Algorithm Step Complexity

Step 2 NsNb metric computations

Step 3 Ns multiplications to compute Γj
m

Ns(Nb − 1) adds. and mults. for denom. of (7.3)

Ns divisions to compute (7.3) for each state

Step 4 nc multiplies to compute
∏nc

m=1 P̂m(i
∗, j∗).

65



Table .3: Complexity of an iteration of the AID algorithm when all trellis states are active.

Algorithm Step Complexity

Step 2 NsNb metric computations

Step 3 Ns multiplications to compute Γj
m

Step 4 |X | metric computations to compute fY (ym|x)

|X | adds. and mults. to compute fY (ym)

1 multiply to compute Π(m)

Table .4: Complexity of an iteration of the CID implementation of ROVA when all trellis states are active.

Algorithm Step Complexity

Step 2 NsNb metric computations

Step 3 Ns multiplications to compute Γj
m

Step 4 NsNb adds. and mults. to compute Zj
m.

66



Table .5: Implementation details of the comparison between incremental retransmission schemes utilizing

either ROVA or the CRC in Fig. 10.1. k is the number of information bits for ROVA, m is the number of

CRC bits, k′ is the number of information bits for the CRC, λ is the average blocklength, and RT is the

throughput. Both the ROVA and CRC process an additional v termination bits.

ROVA with optimal ordering CRC with optimal ordering

k λ RT m k′ = k −m λ RT

9 6.39 1.409 5 4 6.04 0.662

14 9.34 1.499 6 8 8.15 0.982

19 12.22 1.555 8 11 10.31 1.067

24 15.19 1.580 8 16 12.55 1.275

29 18,16 1.597 8 21 14.87 1.413

34 21.30 1.596 9 25 17.26 1.448

44 27.44 1.603 10 34 22.19 1.532

69 43.51 1.590 12 57 35.23 1.618

94 59.34 1.584 12 82 48.75 1.682

119 75.78 1.570 13 106 62.47 1.697

67



Table .6: Implementation details of the SDO algorithm for the 8PSK AWGN channel using either ROVA or

a CRC as the reliability metric

ROVA CRC

k α ϵ m k α ϵ

9 0.5225 6.3865 5 4 -0.2354 1.8855

14 0.9102 13.1134 6 8 -0.4238 0.8132

19 0.8294 15.3622 8 11 -0.2189 4.0857

24 0.5282 14.4189 8 16 -0.2024 3.9213

29 0.3232 13.7053 8 21 -0.2184 3.3779

34 0.3969 17.7099 9 25 -0.2345 3.8005

44 0.3152 20.7218 10 34 -0.3790 1.0030

69 -0.0020 19.4503 12 57 -0.5963 -7.3907

94 -0.3235 8.4628 12 82 -0.6856 -16.8761

119 -0.5213 -3.2577 13 106 -0.7253 -24.7011

68



REFERENCES

[3GP] “European Telecommunications Standards Institute 3GPP TS 25.212 version
7.0.0 Release 7.”.

[Ake96] Bjorck Ake. Numerical methods for least squares problems. SIAM, 1996.

[BBK22] Alex Baldauf, Adam Belhouchat, Shakeh Kalantarmoradian, Alethea Sung-
Miller, Dan Song, Nathan Wong, and Richard D. Wesel. “Efficient computation
of Viterbi decoder reliability with an application to variable-length coding.”
IEEE Transactions on Communications, 70(9):5711–5723, 2022.

[BCJ74] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. “Optimal decoding of linear codes for
minimizing symbol error rate (Corresp.).” IEEE Transactions on Information
Theory, 20(2):284–287, 1974.

[Bla12] Richard Blahut. Algebraic codes for data transmission, p. 62–62. Cambridge
Univ. Press, 2012.

[BLW02] A. Bernard, Xueting Liu, R.D. Wesel, and A. Alwan. “Speech transmission using
rate-compatible trellis codes and embedded source coding.” IEEE Transactions
on Communications, 50(2):309–320, 2002.

[Bur76] Marat V Burnashev. “Data transmission over a discrete channel with feed-
back. Random transmission time.” Problems of Information Transmission,
12(4):10–30, 1976.

[CHI98] D. J. Costello, J. Hagenauer, H. Imai, and S. B. Wicker. “Applications of Error
Control Coding.” IEEE Trans. Inform. Theory, 44(6):2531–2560, Oct. 1998.

[EST18] "ETSI TS 136 212 V15.3.0 LTE; Evolved Universal Terrestrial Radio Access
(E-UTRA); Multiplexing and channel coding (3GPP TS 36.212 version 15.3.0
Release 15)", 2018.

[FH07] Justus Ch. Fricke and Peter A. Hoeher. “Word Error Probability Estimation by
Means of a Modified Viterbi Decoder.” In 2007 IEEE 66th Vehicular Technology
Conference, Sep 2007.

[FH09] Justus Fricke and Peter Hoeher. “Reliability-based retransmission criteria for
hybrid ARQ.” IEEE Transactions on Communications, 57(8):2181–2184, Aug
2009.

[Hag88] J. Hagenauer. “Rate-compatible punctured convolutional codes (RCPC codes)
and their applications.” IEEE Transactions on Communications, 36(4):389–400,
1988.

[HS14] Michael Heindlmaier and Emina Soljanin. “Isn’t hybrid arq sufficient?” 2014
52nd Annual Allerton Conference on Communication, Control, and Computing
(Allerton), 2014.

69



[KC04a] P. Koopman and T. Chakravarty. “Cyclic redundancy code (CRC) polynomial
selection for embedded networks.” In Int. Conf. Dependable Systems and Net-
works, pp. 145–154, June 2004.

[KC04b] P. Koopman and T. Chakravarty. “Cyclic redundancy code (CRC) polynomial
selection for embedded networks.” International Conference on Dependable Sys-
tems and Networks, 2004, 2004.

[LC04] Shu J. Lin and Daniel J. Costello. Error control coding: fundamentals and
applications. Prentice-Hall, 2nd edition, 2004.

[LDW15] Chung-Yu Lou, Babak Daneshrad, and Richard D. Wesel. “Convolutional-
Code-Specific CRC Code Design.” IEEE Transactions on Communications,
63(10):3459–3470, Oct 2015.

[LMS07] C. Lott, O. Milenkovic, and E. Soljanin. “Hybrid ARQ: Theory, state of the art
and future directions.” In IEEE Inf. Theory Workshop (ITW), Bergen, Norway,
Jul. 2007.

[PPV10] Yury Polyanskiy, H. Vincent Poor, and Sergio Verdu. “Channel coding rate
in the finite blocklength regime.” IEEE Transactions on Information Theory,
56(5):2307–2359, 2010.

[PPV11] Y. Polyanskiy, H. V. Poor, and S. Verdu. “Feedback in the non-asymptotic
regime.” IEEE Trans. Inf. Theory, 57(8):4903 – 4925, August 2011.

[RB98] A. Raghavan and C. Baum. “A reliability output Viterbi algorithm with ap-
plications to hybrid ARQ.” IEEE Trans. Inf. Theory, 44(3):1214–1216, May
1998.

[Ric94] M. Rice. “Comparative analysis of two realizations for hybrid-ARQ error con-
trol.” In 1994 IEEE GLOBECOM. Communications: Communications Theory
Mini-Conference Record,, pp. 115–119, 1994.

[RL09] William E. Ryan and Shu Lin. Channel codes: classical and modern, p. 148.
Cambridge University Press, 2009.

[Sha56] C. Shannon. “The zero error capacity of a noisy channel.” IEEE Transactions
on Information Theory, 2(3):8–19, 1956.

[Vit67] A. Viterbi. “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm.” IEEE Transactions on Information Theory,
13(2):260–269, 1967.

[VRD16] Kasra Vakilinia, Sudarsan V. Ranganathan, Dariush Divsalar, and Richard D.
Wesel. “Optimizing transmission lengths for limited feedback with Nonbinary
LDPC examples.” IEEE Transactions on Communications, 64(6):2245–2257,
2016.

70



[WCW15a] Adam R. Williamson, Tsung-Yi Chen, and Richard D. Wesel. “Variable-Length
Convolutional Coding for Short Blocklengths With Decision Feedback.” IEEE
Trans. on Comm., 63(7):2389–2403, Jul 2015.

[WCW15b] Adam R. Williamson, Tsung-Yi Chen, and Richard D. Wesel. “Variable-Length
Convolutional Coding for Short Blocklengths With Decision Feedback.” IEEE
Transactions on Communications, 63(7):2395, 2015.

[WDY21] Thomas Wiegart, Francesco Da Ros, Metodi Plamenov Yankov, Fabian Steiner,
Simone Gaiarin, and Richard D. Wesel. “Probabilistically Shaped 4-PAM for
Short-Reach IM/DD Links With a Peak Power Constraint.” Journal of Light-
wave Technology, 39(2):400–405, 2021.

[Wes04] Richard D. Wesel. “Reduced-state representations for trellis codes using constel-
lation Symmetry.” IEEE Transactions on Communications, 52(8):1302–1310,
Aug 2004.

[WL98] Richard D Wesel and Xueting Liu. Analytic Techniques for Periodic Trellis
Codes*. University of Illinois Urbana-Champaign, 1998.

[WLS00] R.D. Wesel, Xueting Liu, and Wei Shi. “Trellis codes for periodic erasures.”
IEEE Transactions on Communications, 48(6):938–947, 2000.

[WMW14] Adam R. Williamson, Matthew J. Marshall, and Richard D. Wesel. “Reliability-
Output Decoding of Tail-Biting Convolutional Codes.” IEEE Transactions on
Communications, 62(6):1768–1778, Jun 2014.

[WVW17] Nathan Wong, Kasra Vakilinia, Haobo Wang, Sudarsan V. Ranganathan, and
Richard D. Wesel. “Sequential differential optimization of incremental redun-
dancy transmission lengths: An example with tail-biting convolutional codes.”
2017 Information Theory and Applications Workshop (ITA), 2017.

[WWB17] Haobo Wang, Nathan Wong, Alexander M. Baldauf, Christopher K. Bachelor,
Sudarsan V. Ranganathan, Dariush Divsalar, and Richard D. Wesel. “An infor-
mation density approach to analyzing and optimizing incremental redundancy
with feedback.” 2017 IEEE International Symposium on Information Theory
(ISIT), 2017.

[WWB18] R. D. Wesel, N. Wong, A. Baldauf, A. Belhouchat, A. Heidarzadeh, and J. Cham-
berland. “Transmission Lengths that Maximize Throughput of Variable-Length
Coding & ACK/NACK Feedback.” In IEEE Global Communications Confer-
ence, Abu Dhabi, UAE., Dec 2018.

[YI80] H. Yamamoto and K. Itoh. “Viterbi decoding algorithm for convolutional codes
with repeat request.” IEEE Transactions on Information Theory, 26(5):540–
547, 1980.

71



[YRW18] H. Yang, S. V. S. Ranganathan, and R. D. Wesel. “Serial List Viterbi Decod-
ing with CRC: Managing Errors, Erasures, and Complexity.” In IEEE Global
Communications Conference, Abu Dhabi, UAE., Dec 2018.

72




