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Cross Subspace Alignment Codes
for Coded Distributed Batch Computation

Zhuqing Jia and Syed A. Jafar

Center for Pervasive Communications and Computing (CPCC), UC Irvine
Email: {zhuqingj, syed}@uci.edu

Abstract

The goal of coded distributed computation is to efficiently distribute a computation task,
such as matrix multiplication, N -linear computation, or multivariate polynomial evaluation,
across S servers through a coding scheme, such that the response from any R servers (R is
called the recovery threshold) is sufficient for the user to recover the desired computed value.
Current state-of-art approaches are based on either exclusively matrix-partitioning (Entangled
Polynomial (EP) Codes for matrix multiplication), or exclusively batch processing (Lagrange
Coded Computing (LCC) for N -linear computations or multivariate polynomial evaluations).
We present three related classes of codes, based on the idea of Cross-Subspace Alignment (CSA)
which was introduced originally in the context of secure and private information retrieval. CSA
codes are characterized by a Cauchy-Vandermonde matrix structure that facilitates interference
alignment along Vandermonde terms, while the desired computations remain resolvable along
the Cauchy terms. These codes are shown to unify, generalize and improve upon the state-of-
art codes for distributed computing. First we introduce CSA codes for matrix multiplication,
which yield LCC codes as a special case, and are shown to outperform LCC codes in general
in download-limited settings. While matrix-partitioning approaches (EP codes) for distributed
matrix multiplication have the advantage of flexible server computation latency, batch pro-
cessing approaches (CSA, LCC) have significant advantages in communication costs as well as
encoding and decoding complexity per matrix multiplication. In order to combine the benefits
of these approaches, we introduce Generalized CSA (GCSA) codes for matrix multiplication
that bridge the extremes of matrix-partitioning and batch processing approaches and demon-
strate synergistic gains due to cross subspace alignment. Finally, we introduce N -CSA codes
for N -linear distributed batch computations and multivariate batch polynomial evaluations.
N -CSA codes include LCC codes as a special case, and are in general capable of outperforming
LCC codes in download-constrained settings by upto a factor of N . Generalizations of N -CSA
codes to include X-secure data and B-byzantine servers are also provided.
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1 Introduction

In the era of big data and cloud computing along with massive parallelization, there is particu-
lar interest in algorithms for coded distributed computation that are resilient to stragglers [1–24].
The goal in coded distributed computation is to distribute the computation task according to a
coding scheme across S servers (also known as workers or processors), such that the response
from any R servers is sufficient for the user to recover (decode) the result of the computation.
The parameter R is called the recovery threshold. Coded distributed computing offers the advan-
tage of reduced latency from massive parallelization, because the tasks assigned to each server are
smaller, and the redundancy added by coding helps avoid bottlenecks due to stragglers. The main
metrics of interest for coded distributed computation include: the encoding and decoding com-
plexity, latency1 and complexity of server computation, the recovery threshold, and the upload
and download costs (communication costs). With high end communication speeds approaching
Gbps and computing speeds (processor clock speeds) commonly of the order of GHz, commu-
nication and computation costs may be comparable for many applications, allowing meaningful
tradeoffs between the two. On the other hand, since communication bottlenecks are quite com-
mon, communication costs remain a key concern in distributed computing. Note that even with
higher communication costs distributed computing may be necessary if, e.g., the computation
task is too large to be efficiently carried out locally, or if the sources that generate the inputs for
computation are not the same as the destination where the output of computation is desired, i.e.,
communication is unavoidable. Figure 1 shows such a setting for coded distributed batch matrix
multiplication (CDBMM). Another notable aspect of such settings is that the cost dynamics for
uploads and downloads may be different, e.g., if the input data is relatively static and multiple
users request computations on different parts of the same dataset, then the download cost may
be much more of a concern than upload cost. This will be significant when we compare different
coding schemes in this work.

Distributed coded computing can be applied to a myriad of computational tasks. Of partic-
ular interest to this work are matrix multiplications, N -linear computations (e.g., computing the
determinants of N × N matrices, or the product of N matrices), and evaluations of multivariate
polynomials. These are some of the most fundamental building blocks of computation. Moreover,
these problems are closely related. Indeed matrix multiplications are bilinear operations, so they
are special cases of multilinear computations, and multilinear computations may be seen as spe-
cial cases of multivariate polynomial evaluations. Several elegant coding schemes, or codes, have
been proposed for solving these problems. Codes for distributed matrix multiplication evolved
through MDS codes [8], Polynomial codes [1], MatDot and PolyDot codes [2] to the current state of
art reflected in Generalized PolyDot codes [3] and Entangled Polynomial (EP) codes [4]. For mul-
tilinear computations and evaluations of multivariate polynomials, the state of art is represented
by Lagrange Coded Computing (LCC), introduced in [5].

It is interesting to note that the solutions to these problems fall into two distinct categories —
those based on partitioning of a single computation task [1–4], and those based on batch process-
ing of multiple computation tasks [5]. For example, consider the CDBMM problem shown in Fig-
ure 1 where the goal is to efficiently multiply L instances of λ×κ matrices, A = (A1,A2, · · · ,AL),
with L instances of κ× µ matrices B = (B1,B2, · · · ,BL), to compute the batch of L matrix prod-

1Latency is the time it takes a server to complete a specific computation job. Unlike server computation complexity,
it is not normalized by the size of the job, so it depends on the size of the job assigned to the server. Latency constraints
are explored in the discussion following Theorem 2 in Section 5.
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A = (A1, . . . ,AL) B = (B1, . . . ,BL)

Server 1 · · · Server i · · · Server j · · · Server S

ÃSÃ1 ÃjÃi B̃1 B̃i B̃j B̃S

User

Y1 Yj YS

AB = (A1B1, . . . ,ALBL)

A total of R answers downloaded

Figure 1: The CDBMM problem. Source (master) nodes generate matrices A = (A1,A2, · · · ,AL) and
B = (B1,B2, · · · ,BL), and upload them to S distributed servers in coded form Ã[s], B̃[s], respectively.
For all l ∈ [L], Al and Bl are λ×µ and µ×κmatrices, respectively, over a field F. The sth server computes
the answer Ys, which is a function of all information available to it, i.e., Ãs and B̃s. For effective straggler
(e.g., Server i in the figure) mitigation, upon downloading answers from any R servers, where R < S, the
user must be able to recover the product AB = (A1B1,A2B2, . . . ,ALBL).

ucts, AB = (A1B1,A2B2, · · · ,ALBL). Matrix-partitioning approaches compute each of the L
products AlBl one at a time by partitioning individual matrices Al and Bl and coding across
these partitions. Batch processing approaches do not partition individual matrices, instead they
code across the batch of A matrices and across the batch of B matrices. The state-of-art for matrix-
partitioning approaches is represented by Entangled Polynomial Codes (EP codes) [4], while La-
grange Coded Computing (LCC) [5] represents the state of art for batch processing. Since the
problems are related, it is natural to ask, how do the matrix-partitioning solutions compare with
the batch-processing solutions? Furthermore, can these solutions be improved, unified, general-
ized? These are the questions that we address in this work.

The essential ingredient in this work that allows us to compare, improve, unify and generalize
the solutions to matrix multiplication, multilinear computation and multivariate polynomial eval-
uation, turns out to be the idea of cross-subspace alignment. Cross-subspace alignment (CSA) was
originally introduced in the context of X-Secure T -Private Information Retrieval (XSTPIR) [25].
Coding schemes that exploit CSA have been used to improve upon and generalize the best known
schemes for PIR with X-secure data, T -private queries and various forms of storage, e.g., fully
replicated [26], graph based replicated storage with limited replication factor [27], or MDS coded
storage [28]. CSA schemes have also recently been shown to be useful to minimize download
communication cost for secure and/or private matrix multiplication [28–31]. Building upon these
efforts, in this work we introduce a new and generalized class of coded distributed computation
codes, called CSA codes, that are inspired by the idea of cross-subspace alignment. The contribu-
tions of this work are summarized as follows.

1. CSA Codes. In Theorem 1 of this paper that appears in Section 4, we introduce CSA codes
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for coded distributed batch matrix multiplication. These codes are used to multiply a batch
of matrices A1,A2, · · · ,AL with B1,B2, · · · ,BL to recover the L desired matrix products
A1B1,A2B2, · · · ,ALBL. There is no partitioning of individual matrices. Instead, coding is
done across the matrices within a batch. CSA codes partition a batch of Lmatrices into ` sub-
batches of Kc matrices each (L = `Kc). Due to cross-subspace alignment, the interference is
limited to Kc − 1 dimensions regardless of the number of sub-batches `, so that the recovery
threshold R = L + Kc − 1. The download per server does not depend on `, although the
upload and server computation complexity do scale with `. Surprisingly, setting ` = 1
recovers the Lagrange Coded Computing (LCC) solution to coded distributed batch matrix
multiplication as a special case of CSA codes. Besides the additional flexibility, the main
advantage of choosing ` > 1 in CSA codes is to reduce the download cost relative to LCC
codes (see Fig. 4 in Section 5.1). This advantage is especially significant in settings where the
download cost is the primary bottleneck.

2. EP vs CSA Codes. We compare matrix partitioning approaches (say EP codes that generalize
MatDot and Polynomial codes) with batch processing approaches (CSA codes that general-
ize Lagrange Coded Computing) for distributed matrix multiplication (see Fig. 2 in Section
4.2). Remarkably, we find that batch processing presents a significant advantage in commu-
nication cost per matrix multiplication (i.e., normalized by the batch size L). As a function
of the recovery threshold R, and for any fixed recovery ratio R/S, CSA codes have the same
server computation complexity per matrix multiplication as EP codes, but CSA codes si-
multaneously achieve normalized (upload cost, download cost)=(O(1),O(1)), overcoming
a key barrier of existing matrix-partitioning codes where upload cost of O(1) can only be
achieved with download cost ofO(R) and download cost ofO(1) can only be achieved with
upload cost ofO(

√
R). A corresponding improvement in the tradeoff between encoding and

decoding complexity is also observed.

3. GCSA Codes. Since there is no partitioning of individual matrices in the aforementioned
CSA codes, this means that each server must carry out a computational load equivalent to
at least one full matrix multiplication before it can respond with an answer. This presents
a latency barrier for batch processing schemes that cannot be overcome regardless of the
number of servers and the batch size. For applications with stricter latency requirements
such a solution may be infeasible, making it necessary to reduce the computational load
per server by further parallelization, i.e., partitioning of individual matrices. To this end,
in Theorem 2 that appears in Section 5.1 of this paper, we present Generalized CSA codes
(GCSA codes in short) that combine the matrix partitioning approach of, say EP codes, with
the batch processing of CSA codes. GCSA codes bridge the two extremes by efficiently
combining both matrix-partitioning and batch processing, and offer flexibility in how much
of each approach is used. Both EP codes and LCC codes can be recovered as special cases
of GCSA codes, but GCSA codes are capable of outperforming both EP and LCC codes in
general (see Fig. 3 and Fig. 4 in Section 5.1). When no matrix partitioning is used, GCSA
codes reduce to CSA codes, and if no batch processing is used then GCSA codes reduce to
EP codes. With GCSA codes, the degree of matrix partitioning controls the server latency
by limiting the computational load per server, while the batch partitioning on top yields
the advantage of batch processing in communication costs. The combination is far from
trivial. For example, consider a matrix partitioning approach that splits the task among 10
servers such that any R1 = 7 need to respond, and a similar batch processing approach that
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also splits the task among 10 servers such that any R2 = 7 need to respond. Then if we
simply take the 10 matrix-partitioned tasks and use batch processing on top to distribute
each task among 10 servers, for a total of 100 servers, then the recovery threshold of the
naive combination is 6× 10 + 4× 6 + 1 = 85. However, GCSA codes achieve a significantly
lower recovery threshold (R ≤ R1R2 = 49).

4. N -CSA Codes. As noted, CSA codes are a generalization of LCC codes for distributed batch
matrix multiplication. However, the applications of LCC codes extend beyond matrix mul-
tiplication, to N -linear batch computation and multivariate polynomial batch evaluations,
raising the question whether corresponding generalizations of LCC codes to CSA type codes
exist for these applications as well. We answer this question in the affirmative, by introduc-
ing N -CSA codes for the problem of coded distributed N -linear batch computation as well
as multivariate polynomial evaluations, that are strictly generalizations of LCC codes for
both of these applications. This generalization for batch size L = `Kc is done as follows. For
all n ∈ [N ], the batch of L realizations of the nth variable is split into ` sub-batches, each con-
taining Kc realizations. The Kc realizations within each sub-batch are coded into an MDS
(S,Kc) code according to a Cauchy structure, and distributed to the S servers. Each server
evaluates theN -linear map function with the coded variables of each sub-batch, and returns
a weighted sum of evaluations of these ` sub-batches. By cross-subspace alignment, unde-
sired evaluations only occupy (N − 1)(Kc − 1) dimensions, so that the recovery threshold
is R = L + (N − 1)(Kc − 1). Finally, because N -linear maps are fundamental construction
blocks of multivariate polynomials of total degree N , it is straightforward to apply N -CSA
codes for multivariate polynomial batch evaluation. Specifically, we can regard any mul-
tivariate polynomial of total degree N as a linear combination of various restricted eval-
uations of N -linear maps. Each server prepares answers for various N -linear maps that
constitute the given multivariate polynomial, then returns the user with the linear combi-
nation of these answers according to the given polynomial. Once again, the N -CSA code
based scheme for multivariate polynomial batch evaluation thus obtained, generalizes LCC
codes, which can be recovered by setting ` = 1. The main advantage of choosing ` > 1 with
CSA codes remains the download cost. N -CSA codes achieve normalized download cost
D = R

L = 1 +
(
N−1
`

) (
Kc−1
Kc

)
. The special case of ` = 1 which gives us LCC codes corre-

sponds to download cost of O(N), but by using the full scope of values of ` the download
cost can be reduced by up to a factor of N , albeit with increasing recovery threshold. Re-
ducing download cost generally also reduces decoding complexity, which can be important
when downlink and/or computational resource at the user side is limited.

Next we provide an overview of the state of art approaches for coded distributed computing,
summarize the key ideas behind cross-subspace alignment, and tabulate the comparisons between
the codes proposed in this work and the prior state of art.

2 EP Codes, LCC Codes, CSA Codes

2.1 Matrix Partitioning: EP Codes

EP codes [4] for coded distributed matrix multiplication problem are based on matrix partitioning.
The constituent matrices A and B are partitioned into m× p blocks and p× n blocks, respectively,
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as shown below, so that the desired matrix product involves a total of mn linear combinations of
products of block matrices.

A =


A1,1 A1,2 · · · A1,p

A2,1 A2,2 · · · A2,p

...
...

...
...

Am,1 Am,2 · · · Am,p

 B =


B1,1 B1,2 · · · B1,n

B2,1 B2,2 · · · B2,n

...
...

...
...

Bp,1 Bp,2 · · · Bp,n

 (1)

AB =


∑p

j=1A
1,jBj,1

∑p
j=1A

1,jBj,2 · · · ∑p
j=1A

1,jBj,n∑p
j=1A

2,jBj,1
∑p

j=1A
2,jBj,2 · · · ∑p

j=1A
2,jBj,n

...
...

...
...∑p

j=1A
m,jBj,1

∑p
j=1A

m,jBj,2 · · · ∑p
j=1A

m,jBj,n

 (2)

Coded matrices are constructed as follows,

Ã(α) =
∑

m′∈[m]

∑
p′∈[p]

Am′,p′αp
′−1+p(m′−1), (3)

B̃(α) =
∑
p′∈[p]

∑
n′∈[n]

Bp′,n′αp−p
′+pm(n′−1), (4)

and the sth server is sent the values Ã(αs) and B̃(αs). Here α1, α2, · · · , αS are distinct elements
from the operating field F. Each server produces the answer Ã(αs)B̃(αs), which can be expressed
as

Ã(α)B̃(α) =
R∑
i=1

C(i)αi−1, (5)

where R = pmn + p − 1 is the recovery threshold, and C(1),C(2), · · · ,C(R) are various linear
combinations of products of matrix blocks. Note that for all i ∈ [R], C(i) are distributed over
1, α, · · · , αR−1, thus from the answers of any R servers, C(1),C(2), · · · ,C(R) are recoverable by
inverting a Vandermonde matrix. Furthermore, it is proved in [4] that by the construction of
Ã(α) and B̃(α), the C(1),C(2), · · · ,C(R) terms include the mn desired terms, while the remaining
undesired terms (interference) align into the remaining R−mn dimensions.

For example, suppose p = m = n = 2, so that the coded matrices are constructed as follows.

Ã(α) = A1,1 + αA1,2 + α2A2,1 + α3A2,2, (6)

B̃(α) = αB1,1 + α5B1,2 + B2,1 + α4B2,2. (7)

And the answer can be expressed as follows.

Ã(α)B̃(α) = A1,1B2,1︸ ︷︷ ︸
C(1)

+α (A1,1B1,1 + A1,2B2,1)︸ ︷︷ ︸
C(2)

+α2 (A2,1B2,1 + A1,2B1,1)︸ ︷︷ ︸
C(3)

+ α3 (A2,1B1,1 + A2,2B2,1)︸ ︷︷ ︸
C(4)

+α4 (A1,1B2,2 + A2,2B1,1)︸ ︷︷ ︸
C(5)

+α5 (A1,1B1,2 + A1,2B2,2)︸ ︷︷ ︸
C(6)

+ α6 (A1,2B1,2 + A2,1B2,2)︸ ︷︷ ︸
C(7)

+α7 (A2,1B1,2 + A2,2B2,2)︸ ︷︷ ︸
C(8)

+α8 (A2,2B1,2)︸ ︷︷ ︸
C(9)

. (8)
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Note that the desired product AB corresponds to the mn = 4 terms C(2),C(4),C(6),C(8), which
appear along α, α3, α5, α7. The remaining R − mn = (pmn + p − 1) − mn = 5 terms, i.e.,
C(1),C(3),C(5),C(7),C(9) are undesired terms (interference).

In particular, note that the term C(9), which is interference, has a higher order (α8) than all
desired terms. In general, EP codes produce p − 1 such terms, namely C(pmn+1), · · · ,C(R), that
have a higher order than all desired terms. It turns out this is useful in the construction of GCSA
codes to achieve better Interference Alignment (because these higher order terms produced by EP
codes naturally align with the interference terms that result from batch processing).

EP codes may be seen as bridging the extremes of Polynomial codes and MatDot codes. Poly-
nomial codes [1] can be recovered from EP codes by setting p = 1, and MatDot codes [2] can
be obtained from EP codes by setting m = n = 1. EP codes also represent an improvement of
PolyDot codes [2] within a factor of 2 in terms of recovery threshold, due to better interference
alignment. Finally, EP codes have similar performance as Generalized PolyDot codes [3]. Thus,
EP codes represent the state of art of prior work in terms of matrix partitioning approaches to
coded distributed matrix multiplication.

2.2 Batch Processing: LCC Codes

Lagrange Coded Computing (LCC) codes [5] represent the state of art of prior work in terms
of batch processing approaches for coded distributed batch multivariate polynomial evaluation,
which includes as special cases distributed batch matrix multiplication as well as distributed
batch N -linear computation. LCC codes are so named because they exploit the Lagrange inter-
polation polynomial to encode input data. For example, consider the multivariate polynomial
Φ(·) of total degree N , and suppose we are interested in batch evaluations of the polynomial,
Φ(x1),Φ(x2), · · · ,Φ(xL) over the given batch of data points x1,x2, · · · ,xL. Note that for matrix
multiplication, xl = (Al,Bl) and Φ(xl) = AlBl, which is a bilinear operation (N = 2). LCC codes
encode the dataset according to the Lagrange interpolation polynomial,

X̃(α) =
∑
l∈[L]

xl
∏

l′∈[L]\{l}

α− βl′
βl − βl′

, (9)

and the sth server is sent the evaluation X̃(αs). Here α1, α2, · · · , αS , β1, β2, · · · , βL are (S + L)
distinct elements from the operation field F. The sth server returns the user with the answer
Φ(X̃(αs)). Note that the degree of the polynomial Φ(X̃(α)) is less than or equal to N(L − 1) =
NL−N . Therefore, from the answers of anyR = NL−N+1 servers, the user is able to reconstruct
the polynomial Φ(X̃(α)) by polynomial interpolation. Upon obtaining the polynomial Φ(X̃(α)),
the user evaluates it at βl for every l ∈ [L] to obtain Φ(X̃(βl)) = Φ(xl).

2.3 Cross Subspace Alignment: CSA Codes

The distinguishing feature of CSA codes is a Cauchy-Vandermonde structure that facilitates a
form of interference alignment (labeled cross-subspace-alignment in [25]), such that the desired
symbols occupy dimensions corresponding to the Cauchy part, and everything else (interference)
aligns within the higher order terms that constitute the Vandermonde part. As a simple example
of the CSA codes introduced in this work, consider the problem of coded distributed batch matrix
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multiplication, and suppose we wish to compute the batch of L = 4 matrix products A1B1, A2B2,
A3B3, A4B4. For this, the A and B matrices are encoded into the form

Ã(α) = ∆(α)

(
1

1− αA1 +
1

2− αA2 +
1

3− αA3 +
1

4− αA4

)
, (10)

B̃(α) =
1

1− αB1 +
1

2− αB2 +
1

3− αB3 +
1

4− αB4, (11)

and the sth server is sent the evaluations Ã(αs), B̃(αs). Here the values α1, α2, · · · , αS , 1, 2, · · · , 4
represent any S + 4 distinct elements of the operational field F, and ∆(α) = (1 − α)(2 − α)(3 −
α)(4 − α). Each server multiplies its Ã(αs) with B̃(αs) producing an answer which (after some
algebraic manipulation) can be expressed as

Ã(α)B̃(α) = c1

(
1

1− α

)
A1B1 + c2

(
1

2− α

)
A2B2 + c3

(
1

3− α

)
A3B3 + c4

(
1

4− α

)
A4B4

+ I1 + αI2 + α2I3, (12)

where c1, c2, c3, c4 are non-zero constants. The desired matrix products AiBi appear along
(

1
i−α

)
(the Cauchy terms), and everything else (interference) can be distributed over the higher order
terms 1, α, α2 (the Vandermonde terms) and consolidated into I1, I2, I3. The full-rank property
of the Cauchy-Vandermonde matrix ensures that the desired symbols are separable from inter-
ference provided we have at least R = 7 responding servers to resolve the 7 total dimensions (4
desired and 3 interference dimensions). Surprisingly, upon close inspection this special case of
CSA codes turns out to be equivalent to the Lagrange Coded computing scheme for distributed
matrix multiplication. However, CSA codes further generalize and improve upon the Lagrange
Coded Computing approach as explained next.

Suppose we double the batch size from L = 4 to L = 8, i.e., we wish to compute the matrix
products A1B1, A2B2, · · · , A8B8. A straightforward extension is to simply use the previous
scheme twice, which would double all costs. This could be accomplished equivalently with CSA
codes or with Lagrange Coded Computing. However, because CSA codes generalize Lagrange
Coded Computing, they offer much more flexibility. For example, we can partition the batch of
L = 8 A,B matrices into ` = 2 sub-batches of Kc = 4 matrices each, and then proceed as before,
so that we have,

Ã1(α) = ∆1(α)

(
1

1− αA1 +
1

2− αA2 +
1

3− αA3 +
1

4− αA4

)
, (13)

Ã2(α) = ∆2(α)

(
1

5− αA5 +
1

6− αA6 +
1

7− αA7 +
1

8− αA8

)
, (14)

B̃1(α) =
1

1− αB1 +
1

2− αB2 +
1

3− αB3 +
1

4− αB4, (15)

B̃2(α) =
1

5− αB5 +
1

6− αB6 +
1

7− αB7 +
1

8− αB8, (16)

where ∆1(α) = (1−α)(2−α)(3−α)(4−α) and ∆2(α) = (5−α)(6−α)(7−α)(8−α). Evidently the
upload cost is doubled. However, we will see that the download cost remains unchanged. This is
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because each server computes and (if responsive) returns (for its corresponding realization of α)

Ã1(α)B̃1(α) + Ã2(α)B̃2(α) (17)

= c1

(
1

1− α

)
A1B1 + c2

(
1

2− α

)
A2B2 + · · ·+ c8

(
1

8− α

)
A8B8 + I′1 + αI′2 + α2I′3. (18)

Since we have 8 desired dimensions and 3 interference dimensions, responses from any R = 11
servers suffice to separate desired matrix products from interference. Remarkably, while the num-
ber of desired matrix products has doubled, the number of interference dimensions have not
increased at all. This is why 4 additional responding servers allow us to recover 4 additional
desired matrix products. This is an advantage unique to cross-subspace alignment, that cannot
be achieved with other coding approaches, such as Lagrange Coded computing. CSA codes for
distributed matrix multiplication based on batch processing are introduced in this work in The-
orem 1, a generalization to include matrix partitioning is presented in Theorem 2, and another
generalization for N -linear batch computations and multivariate batch polynomial evaluations is
presented in Theorem 3.

For ease of reference, Table 1 and Table 2 compare EP codes, LCC codes, CSA codes, GCSA
codes and N -CSA codes with respect to their recovery thresholds, communication costs for up-
loads and downloads, encoding and decoding complexity, and server computation complexity.

This paper is organized as follows. Section 3 presents the problem statements and definitions
for coded distributed batch matrix multiplication (CDBMM), coded distributed N -linear batch
computation and coded distributed multivariate batch polynomial evaluations. CSA codes for
CDBMM are introduced in Section 4. Section 5 presents GCSA codes. N -CSA codes are presented
in Section 6. Appendix A presents further generalizations to allowX-secure data andB-byzantine
servers. Section 7 concludes the paper.

Notation: For a positive integer N , [N ] stands for the set {1, 2, . . . , N}. The notation X[N ] de-
notes the set {X1, X2, . . . , XN}. For I = {i1, i2, . . . , iN}, XI denotes the set {Xi1 , Xi2 , . . . , XiN }.
The notation ⊗ is used to denote the Kronecker product of two matrices, i.e., for two matrices A
and B, where (A)r,s = ars and (B)v,w = bvw, (A ⊗ B)p(r−1)+v,q(s−1)+w = arsbvw. IN denotes the
N × N identity matrix. T(X1, X2, · · · , XN ) denotes the N × N lower triangular Toeplitz matrix,
i.e.,

T(X1, X2, · · · , XN ) =



X1

X2 X1

X3 X2
. . .

...
. . . . . . . . .

...
. . . X2 X1

XN · · · · · · X3 X2 X1


. (19)

The notation Õ(a log2 b) suppresses polylog terms. It may be replaced with O(a log2 b) if the field
supports the Fast Fourier Transform (FFT), and with O(a log2 b log log(b)) if it does not.
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Recovery Threshold Upload Cost Download Cost
(R) (UA, UB) (D)

EP pmn+ p− 1 S/(pm), S/(pn) (pmn+ p− 1)/(mn)

codes R O(m),O(m) O(R/m2)

LCC 2K′c − 1 S/K′c, S/K
′
c (2K′c − 1)/K′c

codes R O(1),O(1) O(1)
CSA (`+ 1)Kc − 1 S/Kc, S/Kc ((`+ 1)Kc − 1)/(`Kc)

codes R O(1),O(1) O(1)

GCSA pmn((`+ 1)K′′c − 1) + p− 1 S/(K′′c pm), S/(K′′c pn)
pmn((`+1)K′′

c −1)+p−1

mn`K′′
c

codes R O(m),O(m) O(p)
Server Computation Encoding Decoding

Complexity (Cs) Complexity (CeA, CeB) Complexity (Cd)

EP O (λµκ/(pmn)) Õ
(
λκS log2 S

pm

)
, Õ
(
κµS log2 S

pn

)
Õ(λµp log2R)

codes O
(
λ3/R

)
Õ
(
λ2m log2 S

)
, Õ
(
λ2m log2 S

)
Õ
(
λ2R log2R

m2

)
LCC O (λµκ/K′c) Õ

(
λκS log2 S

K′c

)
, Õ
(
κµS log2 S

K′c

)
Õ(λµ log2R)

codes O
(
λ3/R

)
Õ
(
λ2 log2 S

)
, Õ
(
λ2 log2 S

)
Õ(λ2 log2R)

CSA O (λµκ/Kc) Õ
(
λκS log2 S

Kc

)
, Õ
(
κµS log2 S

Kc

)
Õ(λµ log2R)

codes O
(
λ3/R

)
Õ
(
λ2 log2 S

)
, Õ
(
λ2 log2 S

)
Õ(λ2 log2R)

GCSA O (λµκ/(K′′c pmn)) Õ
(
λκS log2 S

K′′c pm

)
, Õ
(
κµS log2 S

K′′c pn

)
Õ(λµp log2R)

codes O
(
λ3/R

)
Õ
(
λ2m log2 S

)
, Õ
(
λ2m log2 S

)
Õ(λ2p log2R)

Table 1: Performance summary of EP [4], LCC [5], CSA and GCSA codes for CDBMM. Note that choosing ` =
Kc = 1 reduces GCSA codes to EP codes, while setting m = n = p = 1 reduces GCSA codes to CSA codes (further
restricting ` = 1 recovers LCC codes). Shaded rows represent balanced settings with m = n, λ = µ = κ, fixed
positive integers `, `′′, and fixed ratio R/S. The batch size is L = `Kc for CSA codes, L′ = K ′

c for LCC codes, and
L′′ = `K ′′

c for GCSA codes.

Recovery Threshold Upload Cost Download Cost
(R) (UX(n) , n ∈ [N ]) (D)

LCC NK′c −N + 1 S/K′c, S/K
′
c (NK′c −N + 1)/K′c

codes R O(N) O(N)

N -CSA (N + `− 1)Kc −N + 1 S/Kc, S/Kc ((N + `− 1)Kc −N + 1)/(`Kc)

codes R O(N + `− 1) O(1 + N−1
`

)

Computational Encoding Decoding
Complexity (Cs) Complexity (CeX(n) , n ∈ [N ]) Complexity (Cd)

LCC O (ω/K′c) Õ
(
dim(Vn)S log2 S

K′c

)
Õ(dim(W )N log2R)

codes O (Nω/R) Õ
(
N dim(Vn) log

2 S
)

Õ(dim(W )N log2R)

N -CSA O (ω/Kc) Õ
(
dim(Vn)S log2 S

Kc

)
Õ
((

1 + N−1
`

)
dim(W ) log2R

)
codes O ((N + `− 1)ω/R) Õ

(
(N + `− 1) dim(Vn) log

2 S
)

Õ
((

1 + N−1
`

)
dim(W ) log2R

)
Table 2: Performance summary of LCC codes [5] and N -CSA codes for N -linear distributed batch computation.
Setting ` = 1 reduces N -CSA codes to LCC codes as a special case. Shaded rows represent settings with fixed ratio
R/S. ω is the number of arithmetic operations required to compute the N -linear map Ω(·). dim(Vn) is the dimension
of the nth variable of Ω(·), dimW is the dimension of the output of Ω(·). The batch size is L = `Kc for N -CSA codes,
and L′ = K ′

c for LCC codes.
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3 Problem Statement

3.1 Coded Distributed Batch Matrix Multiplication (CDBMM)

As shown in Figure 1, consider two source (master) nodes, each of which generates a sequence of
L matrices, denoted as A = (A1,A2, . . . ,AL) and B = (B1,B2, . . . ,BL), such that for all l ∈ [L],
we have Al ∈ Fλ×κ and Bl ∈ Fκ×µ, i.e., Al and Bl are λ × κ and κ × µ matrices, respectively,
over a finite2 field F. The sink node (user) is interested in the sequence of product matrices, AB =
(A1B1,A2B2, . . . ,ALBL). To help with this computation, there are S servers (worker nodes).
Each of the sources encodes its matrices according to the functions f = (f1, f2, . . . , fS) and g =
(g1, g2, . . . , gS), where fs and gs correspond to the sth server. Specifically, let us denote the encoded
matrices for the sth server as Ãs and B̃s, so we have

Ãs = fs(A), (20)

B̃s = gs(B). (21)

The encoded matrices, Ãs, B̃s, are uploaded to the sth server. Let us denote the number of elements
from F in Ãs and B̃s as |Ãs| and |B̃s|, respectively.

Upon receiving the encoded matrices, each Server s, s ∈ [S], prepares (computes) a response
Ys, that is a function of Ãs and B̃s, i.e.,

Ys = hs(Ã
s, B̃s), (22)

where hs, s ∈ [S] are the functions used to produce the answer, and we denote them collectively
as h = (h1, h2, . . . , hS). Some servers may fail to respond, such servers are called stragglers. The
user downloads the responses from the remaining servers, from which, using a class of decoding
functions (denoted d), he attempts to recover the desired product AB. Define

d = {dR : R ⊂ [S]}, (23)

where dR is the decoding function used when the set of responsive servers is R. We say that
(f, g,h,d) form a CDBMM code. A CDBMM code is said to be r-recoverable if the user is able
to recover the desired products from the answers obtained from any r servers. In particular, a
CDBMM code (f, g,h,d) is r-recoverable if for any R ⊂ [S], |R| = r, and for any realization of A,
B, we have

AB = dR(YR). (24)

Define the recovery threshold R of a CDBMM code (f, g,h,d) to be the minimum integer r such
that the CDBMM code is r-recoverable.

The communication cost of CDBMM is comprised of upload and download costs. The (nor-

2With the exception of the generalizations to X-security presented in Appendix A, our coding schemes are applica-
ble over infinite fields (R,C) as well. However, our problem statement assumes that F is a finite field, because of the
difficulty of defining communication costs or computation complexity over infinite fields.
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malized)3 upload costs UA and UB are defined as follows.

UA =

∑
s∈[S] |Ãs|
Lλκ

, (25)

UB =

∑
s∈[S] |B̃s|
Lκµ

. (26)

Similarly, the (normalized) download cost is defined as follows.

D = max
R,R⊂[S],|R|=R

∑
s∈R |Ys|
Lλµ

, (27)

where |Ys| is the number of elements from F in Ys.
Next let us consider the complexity of encoding, decoding and server computation. Define the

(normalized) computational complexity at each server, Cs, to be the order of the number of arith-
metic operations required to compute the function hs at each server, normalized by L. Similarly,
define the (normalized) encoding computational complexity CeA for Ã[S] and CeB for B̃[S] as the
order of the number of arithmetic operations required to compute the functions f and g, respec-
tively, each normalized by L. Finally, define the (normalized) decoding computational complexity
Cd to be the order of the number of arithmetic operations required to compute dR(YR), maximized
over R,R ⊂ [S], |R| = R, and normalized by L. Note that normalizations4 by L are needed to
have fair comparisons between batch processing approaches and individual matrix-partitioning
solutions per matrix multiplication.

3.2 Distributed N -linear Batch Computation

Consider an N -linear map, which is a function of N variables that is linear separately in each
variable. Formally, a map Ω : V1 × V2 × · · · × VN →W is called N -linear if for all n ∈ [N ],

Ω(x(1), · · · , x(n−1), c1x(n) + c2x
′(n), x(n+1), · · · , x(N))

= c1Ω(x(1), · · · , x(n−1), x(n), x(n+1), · · · , x(N)) + c2Ω(x(1), · · · , x(n−1), x′(n), x(n+1), · · · , x(N)),
(28)

where V[N ] and W are vector spaces over the base field F, for all i ∈ [N ], x(i) ∈ Vi, x′(n) ∈ Vn
and c1, c2 ∈ F. Consider N sources (master nodes), n ∈ [N ], such that the nth source generates a
sequence of L variables x(n) = (x

(n)
1 , x

(n)
2 , · · · , x(n)L ), x(n)l ∈ Vn,∀l ∈ [L]. Let us define

xl = (x
(1)
l , x

(2)
l , · · · , x(N)

l ), (29)

for all l ∈ [L]. The sink node (user) is interested in the evaluations of the N -linear map Ω over
x[L], i.e., Ω(x

(1)
l , x

(2)
l , · · · , x(N)

l ) = Ω(xl), l ∈ [L]. To help with this computation, there are S

servers (worker nodes). For all n ∈ [N ], the nth source encodes its variables according to the

3We normalize the upload cost and download cost with the number of elements contained in the constituent matrices
A,B, and the desired product AB, respectively.

4Absolute latency constraints without such normalizations are also quite important in practice. See the discussion
following Theorem 2 in Section 5 leading to Fig. 3.
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functions f (n) = (f
(n)
1 , f

(n)
2 , · · · , f (n)S ), where f (n)s corresponds to the sth server. Let us denote

(f (1), f (2), · · · , f (N)) collectively as f. Like the problem of CDBMM, for all n ∈ [N ], s ∈ [S], the

coded share of the nth source for the sth server is denoted as X̃(n)
s
, and we have

X̃(n)
s

= f (n)s (x(n)). (30)(
X̃(n)

s)
n∈[N ]

are uploaded to the sth server. Let us denote the number of elements in X̃(n)
s

as∣∣∣X̃(n)
s∣∣∣, s ∈ [S], n ∈ [N ].

Upon receiving the coded shares, each server s, s ∈ [S] prepares (computes) a response Ys, that

is a function of X̃(n)
s
, n ∈ [N ].

Ys = hs(X̃(1)
s
, X̃(2)

s
, · · · , X̃(N)

s
), (31)

where hs, s ∈ [S] are the functions used to produce the answer, and we denote them collectively as
h = (h1, h2, · · · , hS). The user downloads the responses from the servers in the setR, and exploits
a class of decoding functions (denoted d) to recover the desired evaluations Ω(xl), l ∈ [L]. Define

d = {dR : R ⊂ [S]}, (32)

where dR is the decoding function used when the set of responsive servers is R. We say that
(f,h,d) form a distributed N -linear batch computation code. A distributed N -linear batch com-
putation code is said to be r-recoverable if the user is able to recover the desired evaluations from
the answers obtained from any r servers. In particular, a distributed N -linear batch computation
code (f,h,d) is r-recoverable if for every R ⊂ [S], |R| = r, and for every realization of x[L], we
have

(Ω(xl))l∈[L] = dR(YR). (33)

Define the recovery thresholdR of a distributedN -linear batch computation code (f,h,d) to be the
minimum integer r such that the distributed N -linear batch computation code is r-recoverable.

The communication cost of distributed N -linear batch computation is comprised of upload

and download costs. For all n ∈ [N ], the (normalized) upload cost for X̃(n)
[S]

, denoted as UX(n) , is
defined as follows

UX(n) =

∑
s∈[S]

∣∣∣X̃(n)
s∣∣∣

Ldim(Vn)
. (34)

Similarly, the (normalized) download cost is defined as follows.

D = max
R,R⊂[S],|R=R|

∑
s∈R |Ys|

Ldim(W )
, (35)

where |Ys| is the number of elements from F in Ys.
Define the (normalized) computational complexity at each server, Cs, to be the order of the

number of arithmetic operations required to compute the function hs at each server, normalized
by L. For all n ∈ [N ], we also define the (normalized) encoding computational complexity CeX(n)

for X̃(n)
[S]

as the order of the number of arithmetic operations required to compute the functions
f (n), normalized by L. Similarly, define the (normalized) decoding computational complexity Cd
to be the order of the number of arithmetic operations required to compute dR(YR), maximized
overR,R ⊂ [S], |R| = R, and normalized by L.
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3.3 Distributed Multivariate Polynomial Batch Evaluation

Consider a multivariate polynomial Φ : V1 × V2 × · · · × VM →W with M variables of total degree
N , where V[M ] and W are vector spaces over the base field F. Consider M sources (master nodes).

For all m ∈ [M ], the mth source generates a sequence of L variables x(m) = (x
(m)
1 , x

(m)
2 , · · · , x(m)

L ),
such that for all l ∈ [L], x(m)

l ∈ Vm. Similarly, we define

xl = (x
(1)
l , x

(2)
l , · · · , x(M)

l ), (36)

for all l ∈ [L]. The sink node (user) wishes to compute the evaluations of the multivariate poly-
nomial Φ over x[L], i.e., Φ(x

(1)
l , x

(2)
l , · · · , x(M)

l ) = Φ(xl), l ∈ [L], with the help of S servers (worker
nodes). To this end, for allm ∈ [M ], themth source encodes its variables according to the functions
f (m) = (f

(m)
1 , f

(m)
2 , · · · , f (m)

S ), where f (m)
s corresponds to the sth server. And (f (1), f (2), · · · , f (M))

are collectively denoted as f. For all n ∈ [N ], s ∈ [S], the coded share of the mth source for the sth

server is denoted as X̃(m)
s
, and we have

X̃(m)
s

= f (m)
s (x(m)). (37)(

X̃(m)
s)
m∈[M ]

are uploaded to the sth server. Let us denote the number of elements in X̃(m)
s

as∣∣∣X̃(m)
s∣∣∣, s ∈ [S],m ∈ [M ].

Upon receiving coded variables, each server s, s ∈ [S] prepares (computes) a response Ys, that

is a function of X̃(m)
s
,m ∈ [N ].

Ys = hs(X̃(1)
s
, X̃(2)

s
, · · · , X̃(M)

s

), (38)

where hs, s ∈ [S] are the functions used to produce the answer, and we denote them collectively
as h = (h1, h2, · · · , hS). The user downloads the responses from the servers in the set R, and uses
a class of decoding functions (denoted d) to recover the desired evaluations Φ(xl), l ∈ [L]. Define

d = {dR : R ⊂ [S]}, (39)

where dR is the decoding function used when the set of responsive servers is R. We say that
(f,h,d) form a distributed multivariate polynomial batch evaluation code. A distributed multi-
variate polynomial batch evaluation code is said to be r-recoverable if the user is able to recover the
desired evaluations from the answers obtained from any r servers, i.e., for any R ⊂ [S], |R| = r,
and for any realization of x[L], we have

(Φ(xl))l∈[L] = dR(YR). (40)

Define the recovery threshold R of a distributed multivariate polynomial batch evaluation code
(f,h,d) to be the minimum integer r such that the distributed multivariate polynomial batch eval-
uation code is r-recoverable.

For all m ∈ [M ], the (normalized) upload cost for X̃(m)
[S]

, denoted as UX(m) , is defined as
follows

UX(m) =

∑
s∈[S]

∣∣∣X̃(m)
s∣∣∣

Ldim(Vm)
. (41)
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Similarly, the (normalized) download cost is defined as follows.

D = max
R,R⊂[S],|R=R|

∑
s∈R |Ys|

Ldim(W )
, (42)

where |Ys| is the number of elements from F in Ys.
Define the (normalized) computational complexity at each server, Cs, to be the order of the

number of arithmetic operations required to compute the function hs at each server, normalized
by L. For all m ∈ [M ], we also define the (normalized) encoding computational complexity CeX(m)

for X̃(m)
[S]

as the order of the number of arithmetic operations required to compute the functions
f(m), normalized by L. Similarly, define the (normalized) decoding computational complexity Cd
to be the order of the number of arithmetic operations required to compute dR(YR), maximized
overR,R ⊂ [S], |R| = R, and normalized by L.

4 CSA Codes for CDBMM

4.1 CSA Codes: Main Result

The main result of this section introduces CSA Codes, and is stated in the following theorem.

Theorem 1. For CDBMM over a field F with S servers, and positive integers `, Kc such that L = `Kc ≤
|F| − S, the CSA codes introduced in this work achieve

Recovery Threshold: R = (`+ 1)Kc − 1, (43)

Upload Cost for Ã[S], B̃[S]: (UA, UB) =

(
S

Kc
,
S

Kc

)
, (44)

Download Cost: D =
(`+ 1)Kc − 1

`Kc
, (45)

Server Computation Complexity: Cs = O(λκµ/Kc), (46)

Encoding Complexity for Ã[S], B̃[S]: (CeA, CeB) =

(
Õ
(
λκS log2 S

Kc

)
, Õ
(
κµS log2 S

Kc

))
, (47)

Decoding Complexity: Cd = Õ
(
λµ log2R

)
. (48)

The proof of Theorem 1 appears in Section 4.3. A high level summary of the main ideas is
provided here. CSA codes split the L = `Kc instances of Al matrices into ` groups, each contain-
ing Kc matrices. The Kc matrices within each group are coded into an MDS (S,Kc) code by a
Cauchy encoding matrix to create S linear combinations of these Kc matrices. Multiplication with
a Cauchy encoding matrix corresponds to the well studied Trummer’s problem [32] for which fast
algorithms have been found in [33–35] that limit the encoding complexity to CeA = Õ(λκS log2 S

Kc
).

The sth coded linear combination from each of the ` groups is sent to the sth server. The Bl matrices
are similarly encoded and uploaded to the S servers. Note that because Kc matrices are linearly
combined into one linear combination for each server, and there are S servers, the upload cost of
CSA codes is S/Kc. Each server multiplies the corresponding instances of coded A,B matrices
and returns the sum of these ` products. With straightforward matrix multiplication algorithms,
each of the ` matrix products has a computation complexity of O (λκµ) for a total of O (`λκµ),
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which upon normalization by L = `Kc, yields a complexity of Cs = O (λκµ/Kc) per server. The
responses from anyR = (`+1)Kc−1 servers provideR observations to the user, each comprised of
linear combinations of various product matrices, including both desired products and undesired
products (interference). Interpreting the R observations as occupying an R-dimensional vector
space, the L desired matrix products (AlBl)l∈[L] occupy L = `Kc of these R dimensions, leaving
onlyR−L = Kc−1 dimensions for interference. Remarkably, while there are a total of `Kc(Kc−1)
undesired matrix products, AlBl′ , l 6= l′ that appear in the responses from the servers, they col-
lectively occupy only a total of Kc − 1 dimensions. This is because of cross-subspace alignment [25],
facilitated by the specialized Cauchy structure of the encoding. Since L = `Kc desired matrix
products are recovered from a total of R that are downloaded, the normalized download cost is
R
L = (`+1)Kc−1

`Kc
. Note that the decoding operation involves inverting a Cauchy-Vandermonde ma-

trix, where the Cauchy part spans the dimensions carrying desired signals while the Vandermonde
part spans the dimensions carrying interference. Fast algorithms for inverting such matrices are
also known [36], which limits the decoding complexity to Õ(λµ log2R).

4.2 Observations

In this section we present some observations to place CSA Codes into perspective. In particular
we would like to compare CSA codes which generalize and improve upon the state of art of batch
processing approaches (LCC codes), against EP codes which represent the state of art for matrix-
partitioning approaches.

1. From the conditions of Theorem 1, the field size |F|must be at least equal to S+L. However,
it is possible to reduce the field size requirement to |F| ≥ S by constructing a systematic
version of the code (see Section 4.4).

2. To estimate the complexity of computation at each server we use only straightforward ma-
trix multiplication algorithms that require Õ(λµκ) arithmetic operations over F in order to
compute the product of a λ × µ matrix with a µ × κ matrix. It is well known that this com-
plexity can be improved upon by using more sophisticated5 algorithms [37, 39, 40]. Such
improvements do not constitute a relative advantage because they can be applied similarly
to other codes, such as Entangled Polynomial codes as well.

3. We are primarily interested in balanced settings, e.g., λ = µ = κ, that are typically studied
for complexity analysis. While the achievability claims of Theorem 1 are also applicable to
unbalanced settings, it is not difficult to improve upon Theorem 1 in certain aspects in highly
unbalanced settings. For example, as shown recently in [31], when κ� min(λ, µ), it may be
significantly beneficial for the user in terms of download cost to retrieve the A,B matrices
separately from the distributed servers and do the computation locally.

4. First let us compare CSA codes with LCC codes, both of which are based on batch processing.
Remarkably, setting ` = 1 in CSA codes recovers the LCC code for CDBMM, i.e., LCC codes
are a special case of CSA codes. The parameter ` in CSA codes is mainly6 useful to reduce

5Notably, for λ = µ = κ the best known algorithms [37] thus far have computation complexity that is still super-
quadratic (more than O(λ2.3)), and are not considered practical [38] due to large hidden constants in the O notation.

6` may be also useful for parallel processing within each server because the computation at each server is naturally
split into ` independent computations.
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download cost (by choosing large `). On the one hand, note that the download cost in (45)
is always bounded between 1 and 2, so even the worst case choice of ` will at most double
the download cost. So if the download cost is only important in the O sense (as a function
of R), then it is desirable to set ` = 1 and Kc = L which reduces the number of parameters
for the coding scheme. On the other hand, for settings where the download cost is the
dominating concern, the generalization to ` > 1 is important. For example, suppose for
some application due to latency concerns there is a hard threshold that the download from
each server cannot exceed the equivalent of one matrix multiplication, i.e., no more than λ2

elements of F. Then for large batch sizes L, the lower download cost of CSA codes translates
into a smaller recovery threshold by up to a factor of 2 relative to LCC codes (albeit at the
cost of increased upload and server computation).

5. Next, let us compare the performance of CSA codes with Entangled Polynomial7 codes [4].
For this comparison we will only focus on ` = 1, so this also applies equivalently to LCC
codes instead of CSA codes. In order to compute a batch of matrix products (AlBl)l∈[L],
we will show that joint/batch processing of all L products with CSA codes achieves signif-
icantly better communication (upload-download) costs than separate application of Entan-
gled Polynomial codes for each l ∈ [L], under the same recovery-threshold-computational-
complexity-trade-off. It is proved in [4] that for any positive integers (p,m, n), Entangled
Polynomial codes achieve

Recovery threshold: R = pmn+ p− 1, (49)
Upload cost: (UA, UB) = (S/pm, S/pn), (50)

Download cost: D =
pmn+ p− 1

mn
. (51)

To simplify the order analysis, let us assume that λ = κ = µ, and to balance the upload
costs (UA, UB) let us choose m = n. Let us regard the recovery threshold R as a variable,
and consider the upload cost UA, UB and the download cost D as functions of R. So for the
Entangled Polynomial codes [4], we have

UA = UB = U =
mS

pm2
≥ m

(
S

R

)
, D =

R

m2
. (52)

A tradeoff is evident. For example, if we want download cost of O(1), then we need m =
Θ(
√
R) which yields upload cost of O(S/

√
R). On the other hand, if we want upload cost

of O(S/R), then we should set m = Θ(1) which yields download cost of O(R). If S/R is
held constant, then to best balance the upload and download cost, we need m = Θ(R1/3),
which yields both upload cost and download cost of O(R1/3). Evidently, it is not possible to
achieve both upload and download cost ofO(1) with Entagled Polynomial codes. However,
with CSA codes, setting ` = 1, we have upload cost of O(1) and download cost of O(S/R).
In particular, if S/R is a constant, then both upload and download costs are O(1). Note that
CSA codes have the same server computational complexity of O(λ3/R) normalized by batch
size as EP codes.

7Entangled Polynomial codes generalize MatDot codes and Polynomial codes, improve upon PolyDot codes, and
have similar performance as Generalized PolyDot codes, so it suffices to compare CSA codes with Entangled Polyno-
mial codes.
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6. Continuing with the comparison between CSA codes and EP codes, Figure 2a, 2b and 2c
show lower convex hulls of achievable (balanced upload cost, download cost) pairs of En-
tangled Polynomial codes and CSA codes given the number of servers and the recovery
threshold (S = 30, R ≤ 25), (S = 300, R ≤ 250) and (S = 3000, R ≤ 2500) respectively.
Each value of (S,R) produces an achievable region in the (U,D) plane (including all pos-
sible choices of m,n, p parameters for Entagled Polynomial codes, and all choices of `,Kc

parameters for CSA codes). What is shown in the figure is the union of these regions for
each case, e.g., in the first figure the union is over all (S,R) with (S = 30, R ≤ 25). Evidently,
the advantage of CSA codes over Entangled Polynomial codes in terms of communication
cost is significant and grows stronger for larger (S,R) values.
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Figure 2: Lower convex hulls of achievable (balanced upload cost, download cost) pairs (U,D) of Entangled
Polynomial codes (EP codes) and cross subspace alignment codes (CSA codes) given (a) (S = 30, R ≤
25), (b) (S = 300, R ≤ 250) and (c) (S = 3000, R ≤ 2500).

7. CSA codes show a similar advantage over Entangled Polynomial codes in terms of the trade-
off between encoding complexity and decoding complexity normalized by batch size. For
example, consider the balanced setting of m = n, λ = µ = κ, and constant S/R. The en-
coding complexity of Entangled Polynomial codes is Õ(λ2U log2 S), and the decoding com-
plexity is Õ(λ2D log2R), where U = UA = UB is the balanced upload cost, and D is the
download cost. For CSA codes, the encoding complexity is Õ(λ2 log2 S), and the decoding
complexity is Õ(λ2 log2R), which corresponds to U = D = O(1). Thus, the communication
cost advantage of CSA codes over Entangled Polynomial codes is further manifested in the
improved tradeoff between encoding and decoding complexity.

8. Finally, let us place CSA codes in perspective with previous applications of cross-subspace
alignment. The idea of cross-subspace alignment was introduced in the context of X-secure
T -private information retrieval (XSTPIR) [25]. The goal of XSTPIR is to allow a user to re-
trieve, as efficiently as possible, a desired message Wθ out of K messages, W1,W2, · · · ,WK

that are ‘secret-shared’ across S servers in an X-secure fashion, without revealing any in-
formation about the index θ to any group of up to T colluding servers. According to the
scheme proposed in [25] the `th symbol of each message is stored in the 1 × K vector W`.
The query vector Qθ is the θth column of aK×K identity matrix, so that retrieving the prod-
uct W`Qθ retrieves the `th symbol of the desired message Wθ. In order to guarantee security
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of data and privacy of queries, the W` and Qθ vectors are mixed with independent noise
terms. Intuitively, by replacing W` and Qθ with matrices A and B, and eliminating the cor-
responding noise terms if the privacy and/or security constraints are relaxed, cross-subspace
alignment schemes can be used to retrieve arbitrary matrix products AB. This intuition
helps with some of the achievable schemes8 in [29, 31]. However, in [25], the W` vectors are
not jointly encoded. Each W` vector is separately mixed with noise. Similarly, in [29, 31]
the matrices are separately mixed with noise for security, and not jointly encoded. Joint en-
coding of messages arises in PIR when instead of replicated storage [41, 42], coded storage
is assumed [43–48]. PIR with MDS-coded storage, X-secure data and T -private queries is
studied in [28] and indeed a generalized cross-subspace alignment scheme is the key con-
tribution of [28]. However, since there is only one query vector Qθ, applications of this
cross-subspace alignment scheme are useful primarily for matrix multiplications of the form
A1B,A2B, · · · ,ALB, where we have only one B matrix to be multiplied with each A matrix.
This is indeed how the scheme is applied in the context of private secure distributed matrix
multiplication (PSDMM) in [28]. Batch multiplications of the form A1B1,A2B2, · · · ,ALBL,
that are studied in this work, present a significantly greater challenge in that joint coding is
now to be applied both among A1,A2, · · · ,AL and among B1,B2, · · · ,BL matrices, which
introduces new interference terms AlBl′ , l 6= l′. A central technical challenge behind this
work is to determine if and how these terms can be aligned. The CSA codes introduced in
this work present a solution to this challenge.

4.3 Proof of Theorem 1

In this section, we present the construction of CSA codes. Let L = `Kc. Recall Lemma 1 in [28],
which is also a standard result for Cauchy-Vandermonde matrices [49], replicated here for the sake
of completeness.

Lemma 1. If f1,1, f1,2, · · · , f`,Kc , α1, α2, · · · , αR are R + L distinct elements of F, with 1 ≤ `Kc = L ≤
R− 1 and |F| ≥ R+ L, then the following R×R Cauchy-Vandermonde matrix is invertible over F.

V`,Kc,R ,


1

f1,1−α1

1
f1,2−α1

· · · 1
f`,Kc−α1

1 α1 · · · αR−L−11
1

f1,1−α2

1
f1,2−α2

· · · 1
f`,Kc−α2

1 α2 · · · αR−L−12

...
...

...
...

...
...

...
...

1
f1,1−αR

1
f1,2−αR

· · · 1
f`,Kc−αR

1 αR · · · αR−L−1R

 (53)

Before presenting the general code construction let us start with some illustrative examples.

4.3.1 ` = 1, Kc = 2, L = 2

Let f1,1, f1,2, α1, α2, . . . , αS represent (S + 2) distinct elements from F. For all s ∈ [S], define,

∆1,2
s = (f1,1 − αs)(f1,2 − αs). (54)

8Notably, batch processing is used in [31] while matrix partitioning is used in [29]. The achievable schemes in [29,31]
can be regarded as special cases ofX-secure CSA codes presented in this work withKc = 1. See Appendix A for details.
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Shares of matrices A are constructed as follows.

Ãs = ∆1,2
s

(
1

f1,1 − αs
A1,1 +

1

f1,2 − αs
A1,2

)
(55)

= (f1,2 − αs)A1,1 + (f1,1 − αs)A1,2, (56)

where we set A1,1 = A1 and A1,2 = A2. Shares of matrices B are constructed as follows.

B̃s =
1

f1,1 − αs
B1,1 +

1

f1,2 − αs
B1,2, (57)

where we similarly set that B1,1 = B1 and B1,2 = B2. The answer from the sth server, Ys is
constructed as follows.

Ys = ÃsB̃s (58)

=
f1,2 − αs
f1,1 − αs

A1,1B1,1 +
f1,1 − αs
f1,2 − αs

A1,2B1,2 + (A1,1B1,2 + A1,2B1,1). (59)

Now let us see how the user is able to recover the desired matrix products (A1B1, A2B2) =
(A1,1B1,1, A1,2B1,2) with recovery threshold R = (` + 1)Kc − 1 = 2 × 2 − 1 = 3. We can rewrite
Ys as follows.

Ys =
f1,2 − αs
f1,1 − αs

A1,1B1,1 +
f1,1 − αs
f1,2 − αs

A1,2B1,2 + (A1,1B1,2 + A1,2B1,1) (60)

=
f1,1 − αs + (f1,2 − f1,1)

f1,1 − αs
A1,1B1,1 +

f1,2 − αs + (f1,1 − f1,2)
f1,2 − αs

A1,2B1,2

+ (A1,1B1,2 + A1,2B1,1) (61)

=
f1,2 − f1,1
f1,1 − αs

A1,1B1,1 +
f1,1 − f1,2
f1,2 − αs

A1,2B1,2

+ (A1,1B1,1 + A1,2B1,2 + A1,1B1,2 + A1,2B1,1)︸ ︷︷ ︸
I1

, (62)

where I1 represents interference due to undesired terms. For any R = 3 servers, whose indices are
denoted as s1, s2, s3, we can represent their answers in the following matrix form.Ys1Ys2

Ys3

 =


1

f1,1−αs1

1
f1,2−αs1

1
1

f1,1−αs2

1
f1,2−αs2

1
1

f1,1−αs3

1
f1,2−αs3

1


︸ ︷︷ ︸

V1,2,3

f1,2 − f1,1 f1,1 − f1,2
1


︸ ︷︷ ︸

V′1,2,3

⊗Iλ

A1,1B1,1

A1,2B1,2

I1

 (63)

It follows from Lemma 1 that the 3 × 3 matrix V1,2,3 is invertible. By definition, f1,1 6= f1,2, thus
the matrix V1,2,3V

′
1,2,3 is invertible. Since the Kronecker product of non-singular matrices is non-

singular, the 3λ × 3λ matrix (V1,2,3V
′
1,2,3) ⊗ Iλ is also invertible. Thus the user is able to recover

desired products (A1,1B1,1,A1,2B1,2) by inverting the matrix (V1,2,3V
′
1,2,3) ⊗ Iλ. This completes

the proof of recovery threshold R = 3. Now let us calculate the upload cost and download cost
of the code. Since Ãs consists of λκ q-ary symbols, and B̃s consists of κµ q-ary symbols, we have
UA = UB = S/2 = S/Kc. On the other hand, for all s ∈ [S], Ys consists of λµ q-ary symbols, and
from any R = 3 answers, the user is able to recover the two desired matrix products. So we have
normalized download cost D = 3/2.
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4.3.2 ` = 2,Kc = 2, L = 4

Let f1,1, f1,2, f2,1, f2,2, α1, . . . , αS represent (S + `Kc) = (S + 4) distinct elements from F. For all
s ∈ [S], let us define

∆1,2
s = (f1,1 − αs)(f1,2 − αs), (64)

∆2,2
s = (f2,1 − αs)(f2,2 − αs). (65)

Let us set Al,k = AKc(l−1)+k and Blk = BKc(l−1)+k for all l ∈ [2], k ∈ [2]. Coded shares of matrices
A are constructed as follows.

Ãs = (Ãs1, Ã
s
2), (66)

where

Ãs1 = ∆1,2
s

(
1

f1,1 − αs
A1,1 +

1

f1,2 − αs
A1,2

)
(67)

= (f1,2 − αs)A1,1 + (f1,1 − αs)A1,2, (68)

Ãs2 = ∆2,2
s

(
1

f2,1 − αs
A2,1 +

1

f2,2 − αs
A2,2

)
(69)

= (f2,2 − αs)A2,1 + (f2,1 − αs)A2,2. (70)

Coded shares of matrices B are constructed as follows.

B̃s = (B̃s
1, B̃

s
2), (71)

where

B̃s
1 =

1

f1,1 − αs
B1,1 +

1

f1,2 − αs
B1,2, (72)

B̃s
2 =

1

f2,1 − αs
B2,1 +

1

f2,2 − αs
B2,2. (73)

The answer provided by the sth server to the user is constructed as follows.

Ys = Ãs1B̃
s
1 + Ãs2B̃

s
2. (74)
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To see why the R = (`+ 1)Kc − 1 = 5 recovery threshold holds, we rewrite Ys as follows.

Ys = Ãs1B̃
s
1 + Ãs2B̃

s
2 (75)

=
f1,2 − αs
f1,1 − αs

A1,1B1,1 +
f1,1 − αs
f1,2 − αs

A1,2B1,2 +
f2,2 − αs
f2,1 − αs

A2,1B2,1 +
f2,1 − αs
f2,2 − αs

A2,2B2,2

+ (A1,1B1,2 + A1,2B1,1 + A2,1B2,2 + A2,2B2,1) (76)

=
f1,1 − αs + (f1,2 − f1,1)

f1,1 − αs
A1,1B1,1 +

f1,2 − αs + (f1,1 − f1,2)
f1,2 − αs

A1,2B1,2

+
f2,1 − αs + (f2,2 − f2,1)

f2,1 − αs
A2,1B2,1 +

f2,2 − αs + (f2,1 − f2,2)
f2,2 − αs

A2,2B2,2

+ (A1,1B1,2 + A1,2B1,1 + A2,1B2,2 + A2,2B2,1) (77)

=
f1,2 − f1,1
f1,1 − αs

A1,1B1,1 +
f1,1 − f1,2
f1,2 − αs

A1,2B1,2

+
f2,2 − f2,1
f2,1 − αs

A2,1B2,1 +
f2,1 − f2,2
f2,2 − αs

A2,2B2,2

+ (A1,1B1,1 + A1,2B1,2 + A2,1B2,1 + A2,2B2,2

+ A1,1B1,2 + A1,2B1,1 + A2,1B2,2 + A2,2B2,1).︸ ︷︷ ︸
I1

(78)

Therefore, for any R = 5 servers, whose indices are denoted as s1, s2, . . . , s5, we can represent
their answers in the following matrix form.


Ys1
Ys2
Ys3
Ys4
Ys5

 =



1
f1,1−αs1

1
f1,2−αs1

1
f2,1−αs1

1
f2,2−αs1

1
1

f1,1−αs2

1
f1,2−αs2

1
f2,1−αs2

1
f2,2−αs2

1
1

f1,1−αs3

1
f1,2−αs3

1
f2,1−αs3

1
f2,2−αs3

1
1

f1,1−αs4

1
f1,2−αs4

1
f2,1−αs4

1
f2,2−αs4

1
1

f1,1−αs5

1
f1,2−αs5

1
f2,1−αs5

1
f2,2−αs5

1


︸ ︷︷ ︸

V2,2,5


c1,1

c1,2
c2,1

c2,2
1


︸ ︷︷ ︸

V′2,2,5

⊗Iλ


A1,1B1,1

A1,2B1,2

A2,1B2,1

A2,2B2,2

I1

 ,

(79)
where c1,1 = f1,2 − f1,1, c2,1 = f2,2 − f2,1, c1,2 = −c1,1, c2,2 = −c2,1. Since f1,1, f1,2, f2,1, f2,2
are distinct elements from F, the constants c1,1, c1,2, c2,1, c2,2 take non-zero values. Guaranteed
by Lemma 1 and the fact that Kronecker product of non-singular matrices is non-singular, the
5λ × 5λ matrix (V2,2,5V

′
2,2,5) ⊗ Iλ is invertible, and the user is able to recover desired products

(A1B1, . . . ,A4B4) = (Al,kBl,k)l∈[2],k∈[2] from the answers received from any R = 5 servers. This
completes the proof of the R = 5 recovery threshold. Finally, note that the upload cost is UA =
UB = S/2 = S/Kc and the download cost is D = 4/5 because a total of R = 5 matrix products,
each of dimension λ× µ, are downloaded (one from each server) from which the 4 desired matrix
products, also each of dimension λ× µ, are recovered.

4.3.3 ` = 1,Kc = 3, L = 3

Let f1,1, f1,2, f1,3, α1, α2, . . . , αS represent (S + `Kc) = (S + 3) distinct elements from F. For all
s ∈ [S], let us define

∆1,3
s = (f1,1 − αs)(f1,2 − αs)(f1,3 − αs). (80)
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Shares of A and B at the sth server are constructed as follows.

Ãs = ∆1,3
s

(
1

f1,1 − αs
A1,1 +

1

f1,2 − αs
A1,2 +

1

f1,3 − αs
A1,3

)
, (81)

B̃s =
1

f1,1 − αs
B1,1 +

1

f1,2 − αs
B1,2 +

1

f1,3 − αs
B1,3, (82)

where we set A1,k = Ak and B1,k = Bk for k ∈ [3]. The answer returned by the sth server to the
user is

Ys = ÃsB̃s. (83)

Now let us prove that the user is able to recover desired products (AlBl)l∈[3] = (A1,kB1,k)k∈[3]
with recovery threshold R = (`+ 1)Kc − 1 = 2× 3− 1 = 5. Let us rewrite Ys as follows.

Ys = ÃsB̃s (84)

=
(f1,2 − αs)(f1,3 − αs)

f1,1 − αs
A1,1B1,1 +

(f1,1 − αs)(f1,3 − αs)
f1,2 − αs

A1,2B1,2

+
(f1,1 − αs)(f1,2 − αs)

f1,3 − αs
A1,3B1,3 + (f1,1 − αs)(A1,2B1,3 + A1,3B1,2)

+ (f1,2 − αs)(A1,1B1,3 + A1,3B1,1) + (f1,3 − αs)(A1,1B1,2 + A1,2B1,1). (85)

Next let us manipulate the first term on the RHS. By long division of polynomials (regard numer-
ator and denominator as polynomials of αs), we have

(f1,2 − αs)(f1,3 − αs)
f1,1 − αs

A1,1B1,1 (86)

=

(
−αs + (f1,2 + f1,3 − f1,1) +

(f1,2 − f1,1)(f1,3 − f1,1)
f1,1 − αs

)
A1,1B1,1. (87)

Now it is obvious that the scaling factor of A1,1B1,1 can be expanded into weighted sums of the
terms (f1,1 − αs)

−1, 1 and αs. For the second and third terms in (85), by the long division of
polynomials, we can similarly show that the second term can be expanded into weighted sums
of the terms (f1,2 − αs)−1, 1 and αs and that the third term can be expanded into weighted sums
of the terms (f1,3 − αs)−1, 1 and αs. Note that the last three terms in (85) can be expanded into
weighted sums of the terms 1, αs. Now, consider any R = 5 servers, whose indices are denoted as
si, i ∈ [5], and we can represent their answers in the following matrix notation.


Ys1
Ys2
Ys3
Ys4
Ys5

 =



1
f1,1−αs1

1
f1,2−αs1

1
f1,3−αs1

1 α1

1
f1,1−αs2

1
f1,2−αs2

1
f1,3−αs2

1 α2

1
f1,1−αs3

1
f1,2−αs3

1
f1,3−αs3

1 α3

1
f1,1−αs4

1
f1,2−αs4

1
f1,3−αs4

1 α4

1
f1,1−αs5

1
f1,2−αs5

1
f1,3−αs5

1 α5


︸ ︷︷ ︸

V1,3,5


c1,1

c1,2
c1,3

1
1


︸ ︷︷ ︸

V′1,3,5

⊗Iλ


A1,1B1,1

A1,2B1,2

A1,3B1,3

∗
∗

 , (88)

where we have used ∗ to represent various combinations of interference symbols that can be found
explicitly by expanding (85), since those forms are not important. We have c1,1 = (f1,2−f1,1)(f1,3−
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f1,1), c1,2 = (f1,1 − f1,2)(f1,3 − f1,2) and c1,3 = (f1,1 − f1,3)(f1,2 − f1,3). Since f1,1, f1,2 and f1,3
are distinct by definition, it follows that c1,1, c1,2 and c1,3 are non-zero values. Therefore, the
matrix (V1,3,5V

′
1,3,5) ⊗ Iλ is invertible according to Lemma 1 and the properties of Kronecker

products. Thus, the user is able to recover the desired matrix products by inverting the matrix
(V1,3,5V

′
1,3,5) ⊗ Iλ. This completes the proof of R = 5 recovery threshold. Similarly, we can

compute the upload cost and download cost of the code as follows, UA = UB = S/Kc = S/3, and
D = 5/3, which achieves desired costs.

4.3.4 Arbitrary `,Kc and L = `Kc

Now let us present the general code construction. Let f1,1, f1,2, · · · , f`,Kc , α1, α2, · · · , αS represent
(S + L) distinct elements from F. For all l ∈ [`], s ∈ [S], let us define

∆l,Kc
s =

∏
k∈[Kc]

(fl,k − αs). (89)

Let us also define

Al,k = AKc(l−1)+k, (90)

Bl,k = BKc(l−1)+k, (91)

for all l ∈ [`], k ∈ [Kc]. Note that by this definition, desired products can be represented as follows.
A1,1B1,1 · · · A1,KcB1,Kc

A2,1B2,1 · · · A2,KcB2,Kc

...
...

...
A`,1B`,1 · · · A`,KcB`,Kc

 =


A1B1 · · · AKcBKc

AKc+1BKc+1 · · · A2KcB2Kc

...
...

...
A(`−1)Kc+1B(`−1)Kc+1 · · · A`KcB`Kc

 . (92)

Now we are ready to construct the CSA code with arbitrary parameters (`,Kc). For all s ∈ [S], let
us construct shares of matrices A and B at the sth server as follows.

Ãs = (Ãs1, Ã
s
2, . . . , Ã

s
`), (93)

B̃s = (B̃s
1, B̃

s
2, . . . , B̃

s
` ), (94)

where for l ∈ [`], let us set

Ãsl = ∆l,Kc
s

∑
k∈[Kc]

1

fl,k − αs
Al,k, (95)

B̃s
l =

∑
k∈[Kc]

1

fl,k − αs
Bl,k. (96)

The answer returned by the sth server to the user is constructed as follows.

Ys =
∑
l∈[`]

Ãsl B̃
s
l (97)

= Ãs1B̃
s
1 + Ãs2B̃

s
2 + · · ·+ Ãs`B̃

s
` . (98)
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Now let us see why the R = (` + 1)Kc − 1 recovery threshold holds. First, let us rewrite Ys as
follows.

Ys = Ãs1B̃
s
1 + Ãs2B̃

s
2 + · · ·+ Ãs`B̃

s
` (99)

=
∑
l∈[`]

∆l,Kc
s

 ∑
k∈[Kc]

1

fl,k − αs
Al,k

 ∑
k∈[Kc]

1

fl,k − αs
Bl,k

 (100)

=
∑
l∈[`]

∆l,Kc
s

 ∑
k∈[Kc]

∑
k′∈[Kc]

Al,kBl,k′

(fl,k − αs)(fl,k′ − αs)

 (101)

=
∑
l∈[`]

∑
k∈[Kc]

∏
k′∈[Kc]\{k}(fl,k′ − αs)

(fl,k − αs)
Al,kBl,k

+
∑
l∈[`]

∑
k,k′∈[Kc]
k 6=k′

 ∏
k′′∈[Kc]\{k,k′}

(fl,k′′ − αs)

Al,kBl,k′ , (102)

where in the last step, we split the summation into two parts depending on whether or not k = k′.
Let us consider the first term in (102). If we regard both numerator and denominator as poly-

nomials of αs, then by long division of polynomials, for each l ∈ [`], k ∈ [Kc], the following term∏
k′∈[Kc]\{k}(fl,k′ − αs)

(fl,k − αs)
Al,kBl,k, (103)

can be expanded into weighted sums of the terms (fl,k − αs)
−1, 1, αs, · · · , αKc−2

s , i.e., it can be
rewritten as (

c−1(fl,k − αs)−1 + c0 + c1αs + · · ·+ cKc−2α
Kc−2
s

)
Al,kBl,k. (104)

Now note that the numerator polynomial
∏
k′∈[Kc]\{k}(fl,k′ − αs) has no root fl,k, while fl,k is the

only root of the denominator polynomial. Since (fl,k)l∈[`],k∈[Kc] are distinct elements from F by
definition, by the polynomial remainder theorem, c−1 =

∏
k′∈[Kc]\{k}(fl,k′ − fl,k) 6= 0.

Next we note that the second term in (102) can be expanded9 into weighted sums of the terms
1, αs, · · · , αKc−2

s , so in the matrix form, answers from anyR = (`+1)Kc−1 servers, whose indices

9 When Kc = 1, the second term in (102) equal zero, thus the Vandermonde terms do not appear and the matrix
form representation only involves Cauchy matrices, i.e., Cauchy-Vandermonde matrices without Vandermonde part.
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are denoted as s1, s2, · · · , sR, can be written as follows.
Ys1
Ys2

...
YsR

 =


1

f1,1−αs1

1
f1,2−αs1

· · · 1
f`,Kc−αs1

1 αs1 · · · αR−L−1s1
1

f1,1−αs2

1
f1,2−αs2

· · · 1
f`,Kc−αs2

1 αs2 · · · αR−L−1s2

...
...

...
...

...
...

...
...

1
f1,1−αsR

1
f1,2−αsR

· · · 1
f`,Kc−αsR

1 αsR · · · αR−L−1sR


︸ ︷︷ ︸

V`,Kc,R

c1,1
c1,2

. . .
c`,Kc

1
. . .

1


︸ ︷︷ ︸

V′`,Kc,R

⊗Iλ



A1,1B1,1

A1,2B1,2
...

A`,KcB`,Kc

∗
...
∗


, (105)

where we have used ∗ to represent various combinations of interference symbols that can be found
explicitly by expanding (102), whose exact forms are irrelevant. We note thatR−L−1 = (`+1)Kc−
1− `Kc − 1 = Kc − 2. And we also note that for all l ∈ [`] and k ∈ [Kc], cl,k =

∏
k′∈[Kc]\{k}(fl,k′ −

fl,k) 6= 0. Therefore, guaranteed by Lemma 1 and the fact that the Kronecker product of non-
singular matrices is non-singular, the matrix (V`,Kc,RV

′
`,Kc,R

)⊗Iλ is invertible. Therefore, the user
is able to recover desired products (Al,kBl,k)l∈[`],k∈[Kc] by inverting the matrix. This completes the
proof of R = (` + 1)Kc − 1 recovery threshold. For the upload costs, it is easy to see that we
have UA = UB = (`S)/L = S/Kc. The download cost is D = R/L = ((`+ 1)Kc − 1) /(`Kc).
The computational complexity at each server is O(λκµ/Kc) if we assume straightforward matrix
multiplication algorithms.

Finally, let us consider the encoding and decoding complexity. Recall the encoding functions
(93), (94), (95), (96). Note that each of the Ãs` can be regarded as products of an S × Kc Cauchy
matrix with a total of λκ column vectors of length Kc. Similarly, each of the B̃s

` can be considered
as products of an S×Kc Cauchy matrix by a total of κµ column vectors of length Kc. Remarkably,
the problem of efficiently multiplying an S × S Cauchy matrix with a column vector is known as
Trummer’s problem [32]. Fast algorithms exist [33–35] that solve Trummer’s problem with com-
putational complexity as low as Õ(S log2 S), in contrast to straightforward algorithms that have
computational complexity of O(S2). Similarly, with fast algorithms the computational complex-
ity of multiplying a S × Kc Cauchy matrix with a column vector is at most Õ(S log2 S), so the
encoding complexity of Ã[S] and B̃[S] is at most Õ

((
λκS log2 S

)
/Kc

)
and Õ

((
κµS log2 S

)
/Kc

)
,

respectively. On the other hand, consider the decoding procedure of CSA codes, which can be re-
garded as solving a total of λµ linear systems defined by an R×R coefficient matrix. Indeed, this
coefficient matrix is a Cauchy-Vandermonde matrix. There is a large body of literature studying
fast algorithms for solving linear systems defined by R × R Cauchy-Vandermonde matrices, and
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the best known computational complexity is Õ(R log2R), see, e.g., [36]10. Therefore, the decod-
ing complexity of Õ

(
(λµR log2R)/L

)
= Õ(λµ log2R) is achievable. This completes the proof of

Theorem 1.

4.4 Systematic Construction of CSA Codes

In this section, we present a systematic construction of CSA codes. Instead of uploading coded
version of matrices A and B to all of the S servers, the systematic construction of CSA codes
uploads uncoded constituent matrix pair (As,Bs) directly to the sth server for the first L servers,
i.e., for all s ∈ [L]. For the remaining S−L servers, coded shares are uploaded following the same
construction that was presented in Section 4.3. We will see that the systematic construction of
CSA codes works on a smaller field F, compared to the construction presented in Section 4.3. The
systematic construction of CSA codes requires less encoding complexity. Its decoding complexity
decreases as more of the first L servers respond. In fact, if all of the first L servers respond, then no
computation is required at all for decoding. The systematic construction also preserves backward
compatibility to current systems that apply straightforward parallelization strategies. Formally,
we have

Ãs = As, (106)

B̃s = Bs (107)

for all s ∈ [L] and

Ãs = (Ãs1, Ã
s
2, . . . , Ã

s
`), (108)

B̃s = (B̃s
1, B̃

s
2, . . . , B̃

s
` ) (109)

for all s ∈ {L + 1, · · · , S}, where Ãs[`] and B̃s
[`] are defined in (95) and (96) respectively. Similarly,

the answer returned by the sth server is constructed as follows.

Ys = ÃsB̃s (110)

for all s ∈ [L] and
Ys =

∑
l∈[`]

Ãsl B̃
s
l (111)

for all s ∈ {L + 1, · · · , S}. Note that since coded shares are used only for S − L servers, we no
longer need distinct values α1, α2, · · · , αL, so the field size required is only |F| ≥ S.

Now, let us prove that the recovery threshold R is not affected by the systematic construction,
i.e., the desired products are still recoverable from the answers of any R = L + Kc − 1 servers.
Denote the set of responsive servers asR, |R| = R. Note that if [L] ⊂ R, then the desired products
AB can be directly recovered from answers of the first L servers. On the other hand, if [L]∩R = ∅,
then we can recover the desired products AB following the same argument that was presented

10The fast algorithm of solving Cauchy-Vandermonde type linear systems here takes inputs of only parameters of a
Cauchy-Vandermonde matrix V, i.e, (αs1 , αs2 , · · · , αsR , f1,1, f1,2, · · · , f`,Kc) and a column vector y, and outputs the
column vector x such that Vx = y with the computational complexity of at most O(R log2R). Therefore, it is not
necessary for the user (decoder) to store extra information beyond α[S] and (fl,k)l∈[`],k∈[Kc].
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in Section 4.3. When [L] ∩ R 6= ∅, denote the elements in the set R \ [L] as (s1, s2, · · · , sR′). The
answers from these R′ servers can be written in the following matrix form.


Ys1
Ys2

...
YsR′

 =


c1,1

f1,1−αs1

c1,2
f1,2−αs1

· · · c`,Kc
f`,Kc−αs1

1 αs1 · · · αR−L−1s1
c1,1

f1,1−αs2

c1,2
f1,2−αs2

· · · c`,Kc
f`,Kc−αs2

1 αs2 · · · αR−L−1s2

...
...

...
...

...
...

...
...

c1,1
f1,1−αsR′

c1,2
f1,2−αsR′

· · · c`,Kc
f`,Kc−αsR′

1 αsR · · · αR−L−1sR′

⊗ Iλ



A1,1B1,1

A1,2B1,2
...

A`,KcB`,Kc

∗
...
∗


,

(112)

Note that the dimension of the first matrix on the RHS, or the decoding matrix, is (R′ × R), thus
it appears to be not invertible. However, from answers of the servers in the set R ∩ [L], we can
directly recover |R ∩ [L]| desired products. Note that the desired products appear along the di-
mension spanned by the Cauchy part. By subtracting these known products from the answers,
we obtain the decoding matrix of dimension (R′ × R′), which is invertible by Lemma 1. This
completes the proof of recovery threshold R = L + Kc − 1. It is easy to see that the upload and
download costs are also not affected by the systematic construction. For the encoding complexity,
the systematic construction requires less arithmetic operations because no computation is needed
to obtain Ã[L] and B̃[L]. For the decoding complexity, when [L] ⊂ R, no computation is needed,
and when [L]∩R = ∅, it follows the same argument presented in Section 4.3. When [L]∩R 6= ∅, the
user (decoder) eliminates all products obtained from answers of the servers in the setR∩ [L], and
then decodes the remaining products according to the fast decoding algorithm. Thus the decoding
complexity is not increased.

5 Generalized Cross-Subspace Alignment (GCSA) Codes: Combining
Batch Processing and Matrix-Partitioning

In this section, we present Generalized CSA codes (GCSA codes), which combine the batch pro-
cessing of CSA codes with the matrix-partitioning approach of EP codes. Although we have
shown that batch processing with CSA codes significantly improves the tradeoff between upload-
download costs, evidently CSA codes require at least one matrix multiplication of dimensions λ×κ
and κ×µ at each server. For a computation-latency limited setting, partitioning may be necessary
to reduce the computation load per server. A naive approach to combine the batch processing of
CSA codes and the partitioning of EP codes is to first (separately for each l ∈ [L]) apply EP codes
for each pair of matrices, Al,Bl. Next, since only matrix multiplication is involved in obtaining the
answers for EP codes, we can then apply CSA codes for these matrix multiplications. Specifically,
for positive integers `′,K ′c, S′, p,m, n such that L = `′K ′c, m | λ, n | µ, p | κ and S′ ≥ pmn + p− 1,
apply EP codes of parameter p,m, n with S′ servers for each matrix multiplication. This yields
a total of S′`′K ′c matrix multiplications. For these matrix multiplications, we can further ap-
ply CSA codes. Now we can see that by this construction, if we choose CSA codes parameters
` = `′,Kc = K ′cS

′, we can achieve the upload cost (UA, UB) = (S/(K ′cpm), S/(K ′cpn)). It is also
easy to see that for this simple combination of EP and CSA codes, the recovery threshold achieved
is R = `′K ′cS

′ +K ′cS
′ − 1, and the download cost is D = (`′K ′cS

′ +K ′cS
′ − 1)/(`′K ′cmn). However,
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we will see that under the same upload cost, GCSA codes can improve the recovery threshold to
R = pmn(`′K ′c+K

′
c−1)+p−1 and the download cost toD = (pmn(`′K ′c+K

′
c−1)+p−1)/(`′K ′cmn).

This result is better than the naive construction because S′ ≥ pmn+ p− 1 ≥ 1. On the other hand,
note that the Lagrange Coded Computation (LCC) codes in [5] can be regarded as a special case of
CSA codes with parameter ` = 1, so the naive approach of combining LCC codes with EP codes
achieves the recovery threshold of R = 2LS′ − 1. With GCSA codes of parameter ` = 1, the
recovery threshold is improved to R = 2Lpmn+ p− 1.

5.1 GCSA Codes: Main Result

Our main result for GCSA codes appears in the following theorem.

Theorem 2. For CDBMM over a field F with S servers, and positive integers (`,Kc, p,m, n) such that
m | λ, n | µ, p | κ and L = `Kc ≤ |F| − S, the GCSA codes presented in this work achieve

Recovery Threshold: R = pmn((`+ 1)Kc − 1) + p− 1, (113)

Upload Cost for Ã[S], B̃[S]: (UA, UB) =

(
S

Kcpm
,

S

Kcpn

)
, (114)

Download Cost: D =
pmn((`+ 1)Kc − 1) + p− 1

mn`Kc
, (115)

Server Computation Complexity: Cs = O
(

λκµ

Kcpmn

)
, (116)

Encoding Complexity for Ã[S], B̃[S]: (CeA, CeB) =

(
Õ
(
λκS log2 S

Kcpm

)
, Õ
(
κµS log2 S

Kcpn

))
, (117)

Decoding Complexity: Cd = Õ
(
λµp log2R

)
. (118)

5.2 Observations

1. GCSA codes generalize almost all state of art approaches for coded distributed batch matrix
multiplication. Setting m = n = p reduces GCSA codes to CSA codes. Further setting ` = 1
recovers LCC codes. Setting ` = Kc = 1 reduces GCSA codes to EP codes. Further setting
p = 1 recovers Polynomial codes, while setting m = n = 1 recovers MatDot codes.

2. Let us explain why GCSA codes, which include CSA codes, LCC codes and EP codes as
special cases, are capable of achieving more than what each of these codes can achieve in
general. Consider a finite horizon setting, where11 the job size J , i.e., the number of matrices
to be multiplied, is fixed. So we need to compute J matrix multiplications, A1B1, · · · ,AJBJ ,
where each Aj ,Bj , j ∈ [J ] is a λ × λ matrix. Suppose each scalar multiplication takes Tm
seconds, and it takes Tc seconds to communicate one scalar over any communication chan-
nel. For simplicity let us assume that multiplying two λ× λ matrices requires λ3Tm seconds
of computation time. There is a required latency constraint for this job, such that the total
computation time at each server cannot exceed λ3Tm/K, where K > 1 is a given parameter
that determines the server latency constraint. Note that this latency constraint immediately

11We make a distinction between batch size and job size, in that the job size is fixed as part of the problem specification
while the batch size may be chosen arbitrarily by a coding scheme, e.g., to partition the job into smaller jobs.

29



rules out LCC codes, and even CSA codes because they need at least λ3Tm seconds of com-
putation time at each server which violates the given constraint. Now consider EP codes
which can partition the matrices to reduce the size of computation task at each server, but
need to repeat the process J times because each AjBj is computed separately. EP codes
need computation time Jλ3Tm/(pmn) at each server, so they can satisfy the latency con-
straint by choosing pmn ≥ JK. On the other hand, GCSA codes with, say ` = 1 and Kc = J ,
need computation time λ3Tm/(p′′m′′n′′) at each server. So GCSA codes can satisfy the la-
tency constraint by choosing p′′m′′n′′ ≥ K, i.e., with less partitioning than needed for EP
codes. Note that GCSA codes need less partitioning than EP codes to satisfy the same la-
tency constraint, because they make up some of the computation time by batch processing
of the J multiplications that must be carried out separately by EP codes. It turns out that
this allows GCSA codes to have lower communication cost. EP codes require a total down-
load time of JREPλ

2Tc
mn = J(pmn+p−1)λ2Tc

mn , and an upload time of JSλ2Tc
pm + JSλ2Tc

pn seconds,
where S is the number of servers utilized by the scheme. For straggler tolerance, suppose
REP /S = η < 1, so that the upload time is expressed as J(pmn+p−1)λ2Tc

ηp ( 1
m + 1

n ). For bal-
anced upload and download times we need m = n and ηpm/2 ≈ m2, so that the balanced
upload/download time for EP codes is ≈ J(2m3/η+2m/η−1)λ2Tc

m2 . Given the latency constraint
which forces 2m3/η ≥ JK, we find that the optimal balanced upload/download time for

EP codes is achieved with m ≈
(
ηJK
2

)1/3
. On the other hand, now consider GCSA codes,

which need total download time of RGCSAλ
2Tc

m′′n′′ = (p′′m′′n′′(2J−1)+p′′−1)λ2Tc
m′′n′′ , and total upload

time of S′′λ2Tc
p′′m′′ + S′′λ2Tc

p′′n′′ . For similar straggler robustness, let RGCSA/S′′ = η be the same as
for EP codes. For balanced costs, similarly set m′′ = n′′ and ηp′′m′′/2 ≈ m′′2. Thus GCSA
codes achieve balanced upload/download time of ≈ ((2m′′3/η)(2J−1)+2m′′/η−1)λ2Tc

m′′2 , respec-
tively. Combined with the latency constraint which forces 2m′′3/η ≥ K, we find that the
optimal balanced upload/download time for this particular construction of GCSA codes is

achieved with m′′ ≈
(
ηK
2

)1/3
. For a quick comparison of approximately optimal balanced

upload/download time, note that for EP codes it is lower bounded by 2Jmλ2Tc
η , and for

GCSA codes it is upper bounded by 8Jm′′λ2Tc
η , so EP codes need more balanced communica-

tion time by a factor of at least m
4m′′ ≈ J1/3

4 which can be significantly larger than 1 for large
job sizes J . To complement the approximate analysis, Figure 3 explicitly compares the bal-
anced upload/download time (the maximum of upload and download times) versus the job
latency constraint parameter K. The values shown for EP codes are precisely lowerbounds,
i.e., EP codes cannot do any better, while those for GCSA codes are strictly achievable. Thus,
GCSA codes can achieve more than what can be achieved by CSA, LCC or EP codes.

3. The finite horizon, i.e., fixed job size and fixed latency constraint for each job is important
in the previous discussion. If instead of the absolute value of server latency for a fixed job
size, we only insisted on normalized server latency per job, where each job is still comprised
of J matrix multiplications, then we could jointly process K jobs codes with an absolute
latency of λ3Tc which allows LCC and CSA codes, while still achieving the latency per job
of λ3/K. Since batch processing approaches like LCC codes and CSA codes have already
been shown to achieve better communication costs than any matrix partitioning approach,
neither EP codes nor GCSA codes would be needed in that case. On the other hand, it is
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Figure 3: Balanced upload/download time vs the value of the latency constraint parameterK for EP codes, CSA/LCC
codes and GCSA codes (normalized by λ3Tc). CSA/LCC codes are not feasible for K > 1. The values for EP codes are
lower bounds while those for GCSA codes are upper bounds, showing that GCSA codes strictly outperform both batch
processing (CSA/LCC) and matrix-partitioning (EP) codes.

also worth noting that if we go to the other extreme and require a fixed server latency of
less than λ3Tc/K for each matrix multiplication, i.e., set J = 1, then it can be seen that batch
processing cannot help, i.e., matrix partitioning alone is enough. In other words, if latency
constraints are imposed on each matrix multiplication (J = 1) , then EP codes suffice, and
neither LCC codes, nor CSA or GCSA codes are needed.

4. Figure 3 shows the advantage of GCSA codes in terms of communication cost over exclu-
sively batch processing (LCC) and matrix-partitioning (EP) codes under absolute server la-
tency constraints, even when GCSA codes are restricted to the choice ` = 1. However, the
advantage of GCSA codes over LCC and EP codes can be seen even without absolute latency
constraints. This is illustrated in Figure 4 which only constrains the recovery thresholdR and
the number of servers S. The figure shows lower convex hulls of achievable (balanced up-
load cost, download cost) pairs of GCSA codes for various bounds on the matrix partitioning
parameters pmn, given that the number of servers S = 300 and the overall recovery thresh-
old R ≤ 250. Each value of (S,R, pmn) produces an achievable region in the (U,D) plane
(including all possible choices of parametersm,n, p, `,Kc). What is shown in the figure is the
union of these regions. The larger the value of pmn, the more the GCSA code construction
shifts toward EP codes, generally with the benefit of reduced latency of computation at each
server that comes with matrix partitioning. On the other hand, the smaller the value of pmn,
the more the GCSA code construction shifts toward CSA codes, with the benefit of improved
communication costs that come with batch processing. As noted previously, when no ma-
trix partitioning is allowed, LCC codes can be recovered as a special case of GCSA codes by
setting ` = 1. The figure also shows how GCSA codes are capable of improving upon LCC
codes in terms of download cost by choosing ` > 1.
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Figure 4: Lower convex hulls of achievable (balanced upload cost, download cost) pairs (U,D) of GCSA codes for
various bounds on pmn, given that S = 300 and the overall recovery thresholdR ≤ 250. Note that EP codes and LCC
codes are also special cases of GCSA codes, obtained by setting ` = Kc = 1, and ` = m = n = p = 1, respectively.
CSA codes are obtained by setting m = n = p = 1.

5.3 Proof of Theorem 2

Let us recall the standard result for Confluent Cauchy-Vandermonde matrices [49], reproduced
here for the sake of completeness.

Lemma 2. If f1,1, f1,2, · · · , f`,Kc , α1, α2, · · · , αR are R+L distinct elements of F, with |F| ≥ R+L and
L = `Kc, then the following R×R Confluent Cauchy-Vandermonde matrix is invertible over F.

V̂`,Kc,R′,R ,


1

(f1,1−α1)R
′ · · · 1

f1,1−α1
· · · 1

(f`,Kc−α1)R
′ · · · 1

f`,Kc−α1
1 · · · αR−R

′L−1
1

1
(f1,1−α2)R

′ · · · 1
f1,1−α2

· · · 1
(f`,Kc−α2)R

′ · · · 1
f`,Kc−α2

1 · · · αR−R
′L−1

2

...
...

...
...

...
...

...
...

...
...

1
(f1,1−αR)R′

· · · 1
f1,1−αR

· · · 1
(f`,Kc−αR)R′

· · · 1
f`,Kc−αR

1 · · · αR−R
′L−1

R


(119)

Before presenting the generalized CSA codes construction let us start with some illustrative
examples.

5.3.1 ` = 1,Kc = 2, L = 2, p = 1,m = n = 2

Let f1,1, f1,2, α1, α2, . . . , αS represent (S + 2) distinct elements from F. For all s ∈ [S], define,

∆1,2
s = (f1,1 − αs)4(f1,2 − αs)4. (120)

We set A1,1 = A1, A1,2 = A2, B1,1 = B1 and B1,2 = B2. Besides, we partition each of the matrices
A1,1 and A1,2 into 2 × 1 blocks, denoted as A1,1

1,1, A2,1
1,1 and A1,1

1,2, A2,1
1,2 respectively. Similarly, we

partition each of the matrices B1,1 and B1,2 into 1 × 2 blocks, denoted as B1,1
1,1, B1,2

1,1 and B1,1
1,2,

B1,2
1,2 respectively. Note that the desired products A1,1B1,1,A1,2B1,2 corresponds to the products

32



(Ai,1
1,kB

1,j
1,k)i∈[2],j∈[2],k∈[2]. Shares of matrices A are constructed as follows.

Ãs = ∆1,2
s

(
1

(f1,1 − αs)4
(
A1,1

1,1 + (f1,1 − αs)A2,1
1,1

)
+

1

(f1,2 − αs)4
(
A1,1

1,2 + (f1,2 − αs)A2,1
1,2

))
(121)

= (f1,2 − αs)4
(
A1,1

1,1 + (f1,1 − αs)A2,1
1,1

)
︸ ︷︷ ︸

P 1,1
s

+(f1,1 − αs)4
(
A1,1

1,2 + (f1,2 − αs)A2,1
1,2

)
︸ ︷︷ ︸

P 1,2
s

. (122)

Note that the term P 1,1
s follows the construction of Entangled Polynomial codes of parameter

m = n = 2, p = 1. In the original construction of Entangled Polynomial codes, the term P 1,1
s is

a polynomial of αs, however in the construction of generalized CSA codes, it is a polynomial of
(f1,1 − αs). Similarly, the term P 1,2

s follows the construction of Entangled Polynomial codes, and
it is a polynomial of (f1,2 − αs). Shares of matrices B are constructed as follows.

B̃s =
1

(f1,1 − αs)4
(
B1,1

1,1 + (f1,1 − αs)2B1,2
1,1

)
︸ ︷︷ ︸

Q1,1
s

+
1

(f1,2 − αs)4
(
B1,1

1,2 + (f1,2 − αs)2B1,2
1,2

)
︸ ︷︷ ︸

Q1,2
s

. (123)

The term Q1,1
s and Q1,2

s follows the construction of Entangled Polynomial codes of given parame-
ter, and they are polynomials of (f1,1 − αs) and (f1,2 − αs) respectively.

The answer from the sth server, Ys is constructed as Ys = ÃsB̃s. To see why it is possible to
recover the desired products from the answers of any R = 12 servers, let us rewrite Ys as follows.

Ys = ÃsB̃s (124)

=
(f1,2 − αs)4
(f1,1 − αs)4

P 1,1
s Q1,1

s +
(f1,1 − αs)4
(f1,2 − αs)4

P 1,2
s Q1,2

s + (P 1,1
s Q1,2

s + P 1,2
s Q1,1

s ) (125)

=
((f1,1 − αs) + (f1,2 − f1,1))4

(f1,1 − αs)4
P 1,1
s Q1,1

s +
((f1,2 − αs) + (f1,1 − f1,2))4

(f1,2 − αs)4
P 1,2
s Q1,2

s

+ (P 1,1
s Q1,2

s + P 1,2
s Q1,1

s ) (126)

=

(
c1,1,0

(f1,1 − αs)4
+

c1,1,1
(f1,1 − αs)3

+
c1,1,2

(f1,1 − αs)2
+

c1,1,3
f1,1 − αs

)
P 1,1
s Q1,1

s

+

(
c1,2,0

(f1,2 − αs)4
+

c1,2,1
(f1,2 − αs)3

+
c1,2,2

(f1,2 − αs)2
+

c1,2,3
f1,2 − αs

)
P 1,2
s Q1,2

s

+ (P 1,1
s Q1,1

s + P 1,2
s Q1,2

s + P 1,1
s Q1,2

s + P 1,2
s Q1,1

s ), (127)

where in the last step, we perform binomial expansion for numerator polynomials. According to
the Binomial theorem, (c1,k,i)k∈[2],i∈{0,1,2,3} are non-zero. Note that

P 1,1
s Q1,1

s = A1,1
1,1B

1,1
1,1 + (f1,1 − αs)A2,1

1,1B
1,1
1,1 + (f1,1 − αs)2A1,1

1,1B
1,2
1,1 + (f1,1 − αs)3A2,1

1,1B
1,2
1,1, (128)

P 1,2
s Q1,2

s = A1,1
1,2B

1,1
1,2 + (f1,2 − αs)A2,1

1,2B
1,1
1,2 + (f1,2 − αs)2A1,1

1,2B
1,2
1,2 + (f1,2 − αs)3A2,1

1,2B
1,2
1,2. (129)
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Therefore, we can further rewrite the first term in (127) as follows.

c1,1,0A
1,1
1,1B

1,1
1,1

(f1,1 − αs)4
+
c1,1,1A

1,1
1,1B

1,1
1,1 + c1,1,0A

2,1
1,1B

1,1
1,1

(f1,1 − αs)3
+
c1,1,2A

1,1
1,1B

1,1
1,1 + c1,1,1A

2,1
1,1B

1,1
1,1 + c1,1,0A

1,1
1,1B

1,2
1,1

(f1,1 − αs)2

+
c1,1,3A

1,1
1,1B

1,1
1,1 + c1,1,2A

2,1
1,1B

1,1
1,1 + c1,1,1A

1,1
1,1B

1,2
1,1 + c1,1,0A

2,1
1,1B

1,2
1,1

f1,1 − αs
+ (c1,1,1A

2,1
1,1B

1,2
1,1 + c1,1,2A

1,1
1,1B

1,2
1,1 + c1,1,3A

2,1
1,1B

1,1
1,1)

+ (f1,1 − αs)(c1,1,2A2,1
1,1B

1,2
1,1 + c1,1,3A

1,1
1,1B

1,2
1,1) + (f1,1 − αs)2(c1,1,3A2,1

1,1B
1,2
1,1). (130)

The second term in (127) can be similarly rewritten. Note that the third term in (127) and the last
three terms in (130) can be expanded into weighted sums of the terms 1, αs, α

2
s, α

3
s , so in the matrix

form, answers from any 12 servers, whose indices are denoted as s1, s2, · · · , s12, can be written as
follows.

Ys1
Ys2

...
Ys12

 =


1

(f1,1−αs1 )
4 · · · 1

f1,1−αs1

1
(f1,2−αs1 )

4 · · · 1
f1,2−αs1

1 αs1 · · · α3
s1

1
(f1,1−αs2 )

4 · · · 1
f1,1−αs2

1
(f1,2−αs2 )

4 · · · 1
f1,2−αs2

1 αs2 · · · α3
s2

...
...

...
...

...
...

...
...

...
...

1
(f1,1−αs12 )

4 · · · 1
f1,1−αs12

1
(f1,2−αs12 )

4 · · · 1
f1,2−αs12

1 αs12 · · · α3
s12


︸ ︷︷ ︸

V̂1,2,4,12

 T(c1,1,0, · · · , c1,1,3)
T(c1,2,0, · · · , c1,2,3)

I4


︸ ︷︷ ︸

V̂′1,2,4,12

⊗Iλ/m



A1,1
1,1B

1,1
1,1

A2,1
1,1B

1,1
1,1

A1,1
1,1B

1,2
1,1

A2,1
1,1B

1,2
1,1

A1,1
1,2B

1,1
1,2

A2,1
1,2B

1,1
1,2

A1,1
1,2B

1,2
1,2

A2,1
1,2B

1,2
1,2

∗
...
∗



, (131)

where we have used ∗ to represent various combinations of interference symbols that can be found
explicity by exapnding (127), whose exact forms are irrelevant. Note that the matrix V̂′1,2,4,12 is
a block diagonal matrix composed with two lower triangular toeplitz matrices and an identity
matrix, thus is invertible, and the matrix V̂1,2,4,12V̂

′
1,2,4,12 ⊗ Iλ/m is then invertible from Lemma

2 and the fact that the Kronecker product of invertible matrices is invertible. Therefore, the user
is able to recover desired products from the answers of any 12 servers by inverting the matrix.
This completes the proof of recovery threshold R = 12. Finally, it is straightforward to verify
that the upload cost is UA = S/4 = S/(Kcpm), UB = S/4 = S/(Kcpn), and the download cost is
D = 12/8 = 3/2, which matches Theorem 2.
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5.3.2 ` = 1,Kc = 2, L = 2, p = 2,m = n = 1

Let f1,1, f1,2, α1, α2, . . . , αS represent (S + 2) distinct elements from F. For all s ∈ [S], define,

∆1,2
s = (f1,1 − αs)2(f1,2 − αs)2. (132)

We set A1,1 = A1, A1,2 = A2, B1,1 = B1 and B1,2 = B2. Besides, we partition each of the matrices
A1,1 and A1,2 into 1 × 2 blocks, denoted as A1,1

1,1, A1,2
1,1 and A1,1

1,2, A1,2
1,2 respectively. Similarly, we

partition each of the matrices B1,1 and B1,2 into 2× 1 blocks, denoted as B1,1
1,1, B2,1

1,1 and B1,1
1,2, B2,1

1,2

respectively. Note that the desired products A1,1B1,1,A1,2B1,2 can be written as follows.

A1,1B1,1 = A1,1
1,1B

1,1
1,1 + A1,2

1,1B
2,1
1,1, (133)

A1,2B1,2 = A1,1
1,2B

1,1
1,2 + A1,2

1,2B
2,1
1,2. (134)

Shares of matrices A are constructed as follows.

Ãs = ∆1,2
s

(
1

(f1,1 − αs)2
(
A1,1

1,1 + (f1,1 − αs)A1,2
1,1

)
+

1

(f1,2 − αs)2
(
A1,1

1,2 + (f1,2 − αs)A1,2
1,2

))
(135)

= (f1,2 − αs)2
(
A1,1

1,1 + (f1,1 − αs)A1,2
1,1

)
︸ ︷︷ ︸

P 1,1
s

+(f1,1 − αs)2
(
A1,1

1,2 + (f1,2 − αs)A1,2
1,2

)
︸ ︷︷ ︸

P 1,2
s

. (136)

Note that now the term P 1,1
s follows the construction of Entangled Polynomial codes of parameter

m = n = 1, p = 2, and it is a polynomial of (f1,1 − αs). Similarly, the term P 1,2
s follows the con-

struction of Entangled Polynomial codes, and it is a polynomial of (f1,2 − αs). Shares of matrices
B are constructed as follows.

B̃s =
1

(f1,1 − αs)2
(

(f1,1 − αs)B1,1
1,1 + B2,1

1,1

)
︸ ︷︷ ︸

Q1,1
s

+
1

(f1,2 − αs)2
(

(f1,2 − αs)B1,1
1,2 + B2,1

1,2

)
︸ ︷︷ ︸

Q1,2
s

. (137)

The terms Q1,1
s and Q1,2

s also follow the construction of EP codes for the given parameter values
p,m, n, and they are polynomials of (f1,1 − αs) and (f1,2 − αs) respectively.

The answer from the sth server, Ys is constructed as Ys = ÃsB̃s. To see why it is possible to
recover the desired products from the answers of any R = 7 servers, let us rewrite Ys as follows.

Ys = ÃsB̃s (138)

=
(f1,2 − αs)2
(f1,1 − αs)2

P 1,1
s Q1,1

s +
(f1,1 − αs)2
(f1,2 − αs)2

P 1,2
s Q1,2

s + (P 1,1
s Q1,2

s + P 1,2
s Q1,1

s ) (139)

=
((f1,1 − αs) + (f1,2 − f1,1))2

(f1,1 − αs)2
P 1,1
s Q1,1

s +
((f1,2 − αs) + (f1,1 − f1,2))2

(f1,2 − αs)2
P 1,2
s Q1,2

s

+ (P 1,1
s Q1,2

s + P 1,2
s Q1,1

s ) (140)

=

(
c1,1,0

(f1,1 − αs)2
+

c1,1,1
f1,1 − αs

)
P 1,1
s Q1,1

s +

(
c1,2,0

(f1,2 − αs)2
+

c1,2,1
f1,2 − αs

)
P 1,2
s Q1,2

s

+ (P 1,1
s Q1,1

s + P 1,2
s Q1,2

s + P 1,1
s Q1,2

s + P 1,2
s Q1,1

s ), (141)
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where in the last step, we perform binomial expansion for numerator polynomials. According to
the Binomial Theorem, (c1,k,i)k∈[2],i∈{0,1} are non-zero. Note that

P 1,1
s Q1,1

s = A1,1
1,1B

2,1
1,1 + (f1,1 − αs)(A1,1

1,1B
1,1
1,1 + A1,2

1,1B
2,1
1,1) + (f1,1 − αs)2A1,2

1,1B
1,1
1,1, (142)

P 1,2
s Q1,2

s = A1,1
1,2B

2,1
1,2 + (f1,2 − αs)(A1,1

1,2B
1,1
1,2 + A1,2

1,2B
2,1
1,2) + (f1,2 − αs)2A1,2

1,2B
1,1
1,2. (143)

Therefore, we can further rewrite the first term in (141) as follows.

c1,1,0A
1,1
1,1B

2,1
1,1

(f1,1 − αs)2
+
c1,1,1A

1,1
1,1B

2,1
1,1 + c1,1,0(A

1,1
1,1B

1,1
1,1 + A1,2

1,1B
2,1
1,1)

f1,1 − αs
+ (c1,1,0A

1,2
1,1B

1,1
1,1 + c1,1,1(A

1,1
1,1B

1,1
1,1 + A1,2

1,1B
2,1
1,1))

+ (f1,1 − αs)(c1,1,1A1,2
1,1B

1,1
1,1). (144)

The second term in (141) can be similarly rewritten. Note that the third term in (141) and the last
two terms in (144) can be expanded into weighted sums of the terms 1, αs, α

2
s , so in the matrix

form, answers from any 7 servers, whose indices are denoted as s1, s2, · · · , s7, can be written as
follows.

Ys1
Ys2

...
Ys7

 =


1

(f1,1−αs1 )
2

1
f1,1−αs1

1
(f1,2−αs1 )

2
1

f1,2−αs1
1 αs1 α2

s1
1

(f1,1−αs2 )
2

1
f1,1−αs2

1
(f1,2−αs2 )

2
1

f1,2−αs2
1 αs2 α2

s2

...
...

...
...

...
...

...
1

(f1,1−αs7 )
2

1
f1,1−αs7

1
(f1,2−αs7 )

2
1

f1,2−αs7
1 αs7 α2

s7


︸ ︷︷ ︸

V̂1,2,2,7

 T(c1,1,0, c1,1,1)

T(c1,2,0, c1,2,1)

I3


︸ ︷︷ ︸

V̂′1,2,2,7

⊗Iλ/m



A1,1
1,1B

2,1
1,1

A1,1
1,1B

1,1
1,1 + A1,2

1,1B
2,1
1,1

A1,1
1,2B

2,1
1,2

A1,1
1,2B

1,1
1,2 + A1,2

1,2B
2,1
1,2

∗
∗
∗


, (145)

where we have used ∗ to represent various combinations of interference symbols that can be found
explicity by exapnding (141), whose exact forms are irrelevant. Note that the matrix V̂′1,2,2,7 is
a block diagonal matrix composed with two lower triangular toeplitz matrices and an identity
matrix, thus is invertible, and the matrix V̂1,2,2,7V̂

′
1,2,2,7 ⊗ Iλ/m is then invertible from Lemma 2

and the fact that the Kronecker product of invertible matrices is invertible. Therefore, the user is
able to recover desired products, i.e., (A1,1

1,1B
1,1
1,1 + A1,2

1,1B
2,1
1,1) and (A1,1

1,2B
1,1
1,2 + A1,2

1,2B
2,1
1,2), from the

answers of any 7 servers by inverting the matrix. This completes the proof of recovery threshold
R = 7. Finally, it is straightforward to verify that the upload cost is UA = S/4 = S/(Kcpm),
UB = S/4 = S/(Kcpn), and the download cost is D = 7/2, which matches Theorem 2.

36



5.3.3 Arbitrary (`,Kc, p,m, n) and L = `Kc

Define R′ = pmn. Let f1,1, f1,2, · · · , f`,Kc , α1, α2, · · · , αS be (S+L) distinct elements from the field
F. For all l ∈ [`], k ∈ [Kc], we define cl,k,i, i ∈ {0, 1, · · · , R′(Kc − 1)} to be the coefficients satisfying

Ψl,k(α) =
∏

k′∈[Kc]\{k}

(
α+ (fl,k′ − fl,k)

)R′
=

R′(Kc−1)∑
i=0

cl,k,iα
i, (146)

i.e., they are the coefficients of the polynomial Ψl,k(α) =
∏
k′∈[Kc]\{k}

(
α+ (fl,k′ − fl,k)

)R′ , which
is defined here by its roots. Now for all l ∈ [`], s ∈ [S], let us define

∆l,Kc
s =

∏
k∈[Kc]

(fl,k − αs)R
′
. (147)

Let us also split the L = `Kc instances of A and B matrices into ` groups, i.e.,

Al,k = AKc(l−1)+k, (148)

Bl,k = BKc(l−1)+k (149)

for all l ∈ [`], k ∈ [Kc]. Further, for each matrix Al,k, we partition it into m × p blocks, denoted as
A1,1
l,k ,A

1,2
l,k , · · · ,A

m,p
l,k . Similarly, for each matrix Bl,k, we partition it into p × n blocks, denoted as

B1,1
l,k ,B

1,2
l,k , · · · ,B

p,n
l,k . Now, for all l ∈ [`], k ∈ [Kc], let us define

P l,ks =
∑

m′∈[m]

∑
p′∈[p]

Am′,p′

l,k (fl,k − αs)p
′−1+p(m′−1), (150)

Ql,ks =
∑
p′∈[p]

∑
n′∈[n]

Bp′,n′

l,k (fl,k − αs)p−p
′+pm(n′−1), (151)

i.e., we apply EP codes for each Al,k and Bl,k. Note that the original EP codes can be regarded as
polynomials of αs, and here for each (l, k), we construct the EP codes as polynomials of (fl,k−αs).
Now recall that by the construction of EP codes, the product P l,ks Ql,ks can be written as weighted
sums of the terms 1, (fl,k − αs), · · · , (fl,k − αs)R

′+p−2, i.e.,

P l,ks Ql,ks =

R′+p−2∑
i=0

C
(i+1)
l,k (fl,k − αs)i, (152)

where C
(1)
l,k ,C

(2)
l,k , · · · ,C

(R′+p−1)
l,k are various linear combinations of products of blocks of Al,k and

blocks of Bl,k. In particular, the desired product Al,kBl,k can be obtained from C
(1)
l,k , · · · ,C

(R′)
l,k .

Now we are ready to formally present the construction of generalized CSA codes. For all s ∈ [S],
let us construct shares of matrices A and B at the sth server as follows.

Ãs = (Ãs1, Ã
s
2, . . . , Ã

s
`), (153)

B̃s = (B̃s
1, B̃

s
2, . . . , B̃

s
` ), (154)
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where for l ∈ [`], let us set

Ãsl = ∆l,Kc
s

∑
k∈[Kc]

1

(fl,k − αs)R′
P l,ks , (155)

B̃s
l =

∑
k∈[Kc]

1

(fl,k − αs)R′
Ql,ks . (156)

The answer returned by the sth server to the user is constructed as follows.

Ys =
∑
l∈[`]

Ãsl B̃
s
l . (157)

Now let us prove that the generalized CSA codes are R = pmn((`+ 1)Kc− 1) + p− 1 recoverable.
Let us rewrite Ys as follows.

Ys = Ãs1B̃
s
1 + Ãs2B̃

s
2 + · · ·+ Ãs`B̃

s
` (158)

=
∑
l∈[`]

∆l,Kc
s

 ∑
k∈[Kc]

1

(fl,k − αs)R′
P l,ks

 ∑
k∈[Kc]

1

(fl,k − αs)R′
Ql,ks

 (159)

=
∑
l∈[`]

∑
k∈[Kc]

∏
k′∈[Kc]\{k}(fl,k′ − αs)R

′

(fl,k − αs)R′
P l,ks Ql,ks

+
∑
l∈[`]

∑
k,k′∈[Kc]
k 6=k′

 ∏
k′′∈[Kc]\{k,k′}

(fl,k′′ − αs)R
′

P l,ks Ql,k
′

s . (160)

Note that in the last step, we split the summation into two parts depending on whether or not
k = k′.

Let us consider the first term in (160). For each l ∈ [`], k ∈ [Kc], we have∏
k′∈[Kc]\{k}(fl,k′ − αs)R

′

(fl,k − αs)R′
P l,ks Ql,ks (161)

=

∏
k′∈[Kc]\{k}

(
(fl,k − αs) + (fl,k′ − fl,k)

)R′
(fl,k − αs)R′

P l,ks Ql,ks (162)

=
Ψl,k(fl,k − αs)
(fl,k − αs)R′

P l,ks Ql,ks (163)

=

(
cl,k,0

(fl,k − αs)R′
+

cl,k,1
(fl,k − αs)R′−1

+ · · ·+ cl,k,R′−1
fl,k − αs

)
P l,ks Ql,ks

+

R′(Kc−1)∑
i=R′

cl,k,i(fl,k − αs)i−R
′

P l,ks Ql,ks , (164)

where in (163), we used the definition of Ψl,k(·), and in the next step, we rewrite the polynomial
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Ψl,k(fl,k − αs) in terms of its coefficients. Let us consider the first term in (164).(
cl,k,0

(fl,k − αs)R′
+

cl,k,1
(fl,k − αs)R′−1

+ · · ·+ cl,k,R′−1
fl,k − αs

)
P l,ks Ql,ks (165)

=

(
cl,k,0

(fl,k − αs)R′
+

cl,k,1
(fl,k − αs)R′−1

+ · · ·+ cl,k,R′−1
fl,k − αs

)R′+p−2∑
i=0

C
(i+1)
l,k (fl,k − αs)i (166)

=
R′−1∑
i=0

∑i
i′=0 cl,k,i−i′C

(i′+1)
l,k

(fl,k − αs)R′−i
+

p−2∑
i=0

(fl,k − αs)i
(

R′+i∑
i′=i+1

cl,k,R′−i′+iC
(i′+1)
l,k

)

+

R′+p−3∑
i=p−1

(fl,k − αs)i
R′+p−2∑

i′=i+1

cl,k,R′−i′+iC
(i′+1)
l,k

 . (167)

We further note that when Kc = 1, for all i 6= 0, cl,k,i = 0, thus the second term in (160), the second
term in (164) and the third term in (167) equal zero. The second term in (167) can be expanded12

into weighted sums of the terms 1, αs, · · · , αp−2s . Since Kc = 1, we can equivalently write these
terms as 1, αs, · · · , αR

′(Kc−1)+p−2
s . On the other hand, when Kc > 1, the second term in (160), the

second term in (164), the second and the third terms in (167) can also be expanded into weighted
sums of the terms 1, αs, · · · , αR

′(Kc−1)+p−2
s . BecauseR′(Kc−1)+p−2 = R−R′L−1, in the matrix

form, answers from any R = pmn((` + 1)Kc − 1) + p − 1 servers, whose indices are denoted as
s1, s2, · · · , sR, can be written as follows.
Ys1
Ys2

...
YsR

 =


1

(f1,1−αs1 )
R′ · · · 1

f1,1−αs1
· · · 1

(f`,Kc−αs1 )
R′ · · · 1

f`,Kc−αs1
1 · · · αR−R

′L−1
s1

1
(f1,1−αs2 )

R′ · · · 1
f1,1−αs2

· · · 1
(f`,Kc−αs2 )

R′ · · · 1
f`,Kc−αs2

1 · · · αR−R
′L−1

s2

...
...

...
...

...
...

...
...

...
...

1
(f1,1−αsR

)R′
· · · 1

f1,1−αsR
· · · 1

(f`,Kc−αsR
)R′

· · · 1
f`,Kc−αsR

1 · · · αR−R
′L−1

sR


︸ ︷︷ ︸

V̂`,Kc,R′,R


T(c1,1,0, · · · , c1,1,R′−1)

. . .
T(c`,Kc,0, · · · , c`,Kc,R′−1)

IR−R′L


︸ ︷︷ ︸

V̂′
`,Kc,R′,R

⊗Iλ/m



C
(1)
1,1
...

C
(R′)
1,1
...

C
(1)
`,Kc

...
C

(R′)
`,Kc

∗
...
∗



,

(168)

12 When Kc = p = 1, the second term in (167) is zero, thus the Vandermonde terms do not appear. The matrix form
representation now involves only confluent Cauchy matrices, i.e., confluent Cauchy-Vandermonde matrices without
Vandermonde part.
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We have used ∗ to represent various combinations of interference symbols that can be found ex-
plicitly by expanding (160), whose exact forms are irrelevant. Now since f1,1, f1,2, · · · , f`,Kc are
distinct, for all l ∈ [`], k ∈ [Kc], we must have

cl,k,0 =
∏

k′∈[Kc]\{k}

(fl,k′ − fl,k)R
′

(169)

are non-zero. Hence, the lower triangular toeplitz matrices T(c1,1,0, c1,1,1, · · · , c1,1,R′−1), · · · ,
T(c`,Kc,0, c`,Kc,1, · · · , c`,Kc,R′−1) are non-singular, and the block diagonal matrix V̂′`,Kc,R′,R

is in-
vertible. Guaranteed by Lemma 2 and the fact that the Kronecker product of non-singular ma-
trices is non-singular, the matrix (V̂`,Kc,R′,RV̂

′
`,Kc,R′,R

) ⊗ Iλ/m is invertible. Therefore, the user is

able to recover (C
(i)
l,k)l∈[`],k∈[Kc],i∈[R′] by inverting the matrix. And the desired products (AlBl)l∈[L]

are recoverable from (C
(i)
l,k)l∈[`],k∈[Kc],i∈[R′], guaranteed by the construction of Entangled Polyno-

mial codes. This completes the proof of recovery threshold R = pmn((` + 1)Kc − 1) + p − 1.
It is also easy to see that the upload cost UA = S/(Kcpm) and UB = S/(Kcpn). Note that we
are able to recover Lmn desired symbols from R downloaded answers, so the download cost is
D = R

Lmn = pmn((`+1)Kc−1)+p−1
mn`Kc

. Thus the desired costs are achievable. Note that the encoding pro-
cedure can be considered as products of Confluent Cauchy matrices by vectors. By fast algorithms
[50], the encoding complexity of (CeA, CeB) =

(
Õ
(
λκS log2 S
Kcpm

)
, Õ
(
κµS log2 S
Kcpn

))
is achievable. Now

let us consider the decoding complexity. Note that the decoding procedure involves matrix-vector
multiplications of inverse of Toeplitz matrix and inverse of confluent Cauchy-Vandermonde ma-
trix. From the inverse formula of confluent Cauchy-Vandermonde matrix presented in [51], the
matrix-vector multiplication of the inverse of confluent Cauchy-Vandermonde matrix V̂`,Kc,R′,R

can be decomposed into a series of structured matrix-vector multiplications including confluent
Cauchy matrix, transpose of Vandermonde matrix, Hankel matrix and Toeplitz matrix. By fast
algorithms [50, 52], the complexity of decoding is at most Õ(λµp log2R). With straightforward
matrix multiplication algorithms, the server computation complexity is Cs = (λκµ)/(Kcpmn).
This completes the proof of Theorem 2.

6 N -CSA Codes for N -linear Coded Distributed Batch Computation
(N -CDBC)

6.1 N -CSA Codes: Main Result

In this section, let us generalize CSA codes for N -CDBC. The generalization, called N -CSA codes,
is presented in the following theorem.

Theorem 3. For N -CDBC over a field F with S servers, and positive integers `,Kc such that L = `Kc ≤

40



|F| − S, the N -CSA codes introduced in this section achieve

Recovery Threshold: R = Kc(N + `− 1)−N + 1, (170)

Upload Cost for X̃(n)
[S]
, n ∈ [N ]: UX(n) =

S

Kc
, (171)

Download Cost: D =
Kc(N + `− 1)−N + 1

`Kc
, (172)

Server Computation Complexity: Cs = O(ω/Kc), (173)

Encoding complexity for X̃(n)
[S]

, n ∈ [N ]: CeX(n) = Õ
(

dim(Vn)S log2 S

Kc

)
, (174)

Decoding complexity: Cd = Õ
(
`+N − 1

`
dim(W )R log2R

)
, (175)

where ω is the number of arithmetic operations required to compute the N -linear map Ω(·).

6.2 Proof of Theorem 3

Now let us present the construction of N -CSA codes for N -CDBC. Let f1,1, f1,2, · · · , f`,Kc , α1, α2,
· · · , αS represent (S + L) distinct elements from F. For all l ∈ [`], s ∈ [S], let us define

∆l,Kc
s =

∏
k∈[Kc]

(fl,k − αs). (176)

For all n ∈ [N ], l ∈ [`], k ∈ [Kc], we define

x
(n)
l,k = x

(n)
Kc(l−1)+k. (177)

For all s ∈ [S], n ∈ [N ], we construct X̃(n)
s

as follows.

X̃(n)
s

= (X̃(n)
s

1, X̃
(n)

s

2, · · · , X̃(n)
s

`), (178)

where for l ∈ [`], let us set

X̃(n)
s

l = ∆l,Kc
s

∑
k∈[Kc]

1

fl,k − αs
x
(n)
l,k . (179)

The answer returned by the sth server is constructed as follows.

Ys =
∑
l∈[`]

1

∆l,Kc
s

Ω(X̃(1)
s

l , X̃
(2)

s

l , · · · , X̃(N)
s

l ). (180)
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To prove that the code is R-recoverable, let us rewrite Ys as follows.

Ys =
∑
l∈[`]

1

∆l,Kc
s

Ω(X̃(1)
s

l , X̃
(2)

s

l , · · · , X̃(N)
s

l ) (181)

=
∑
l∈[`]

1

∆l,Kc
s

Ω

∆l,Kc
s

∑
k∈[Kc]

1

fl,k − αs
x
(1)
l,k , · · · ,∆l,Kc

s

∑
k∈[Kc]

1

fl,k − αs
x
(N)
l,k

 (182)

=
∑
l∈[`]

(∆l,Kc
s )N−1

 ∑
k1∈[Kc]

1

fl,k1 − αs
· · ·

∑
kN∈[Kc]

1

fl,kN − αs

(
Ω(x

(1)
l,k1
, · · · , x(N)

l,kN
)
) (183)

=
∑
l∈[`]

∑
k∈[Kc]

∏
k′∈[Kc]\{k}(fl,k′ − αs)N−1

(fl,k − αs)
Ω(x

(1)
l,k , · · · , x

(N)
l,k )

+
∑
l∈[`]

∑
k1,··· ,kN∈[Kc],
¬(k1=···=kN )

(
(∆l,Kc

s )N−1

(fl,k1 − αs) · · · (fl,kN − αs)
Ω(x

(1)
l,k1
, · · · , x(N)

l,kN
)

)
, (184)

where in (184), we split the summation depending on whether or not k1 = k2 = · · · = kN . Fol-
lowing the same argument presented in Section 4.3, by performing long division of polynomials
for the first term in (184), and noting that the second term in (184) can be expanded to weighted
sums of the terms 1, αs, α

2
s, · · · , αKc(N−1)−N

s , the presented code is (R = Kc(N + `− 1)−N + 1)-
recoverable as long as the following matrix is non-singular.


1

f1,1−αs1

1
f1,2−αs1

· · · 1
f`,Kc−αs1

1 αs1 · · · αR−L−1s1
1

f1,1−αs2

1
f1,2−αs2

· · · 1
f`,Kc−αs2

1 αs2 · · · αR−L−1s2

...
...

...
...

...
...

...
...

1
f1,1−αsR

1
f1,2−αsR

· · · 1
f`,Kc−αsR

1 αsR · · · αR−L−1sR


︸ ︷︷ ︸

V`,Kc,R



c1,1
c1,2

. . .
c`,Kc

1
. . .

1


︸ ︷︷ ︸

V′`,Kc,R

,

(185)

where for all l ∈ [`], k ∈ [Kc], cl,k =
∏
k′∈[Kc]\{k}(fl,k′ − fl,k)N−1. The indices of any R respon-

sive servers are denoted as s1, s2, · · · , sR. Since f1,1, f1,2, · · · , fl,k are distinct elements from F,
(cl,k)l∈[`],k∈[Kc] are non-zero, and R − L − 1 = Kc(N − 1) − N , the matrix V`,Kc,RV

′
`,Kc,R

is
invertible guaranteed by Lemma 1. This completes the proof of recovery threshold. The up-

load cost for X̃(n)
[S]
, n ∈ [N ] is readily verified to be S/Kc, and the download cost is D =

R/L = Kc(N+`−1)−N+1
`Kc

. By fast algorithms discussed in Section 4.3, we can achieve the encod-
ing/decoding complexity as presented in Theorem 3. The computational complexity at each
server is O(`ω/L) = O(ω/Kc), where ω is the number of arithmetic operations required to com-
pute Ω(·). This completes the proof of Theorem 3.

Remark 1: Let us regard a multivariate polynomial of total degree N as a linear combination of

various restricted evaluations of N -linear maps. Note that the construction for X̃(n)
s

is symmetric
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across all n ∈ [N ]. N -CSA codes can also be transformed to evaluate a multivariate polynomial at
L points as follows. For each server s ∈ [S], the answer is computed for eachN -linear map accord-
ing to N -CSA codes, and each server returns the user with the linear combination of the answers.
It is easy to see that the user is able to recover the evaluation of the multivariate polynomial of
total degree N at the given L points from answers of any R = Kc(N + `− 1)−N + 1 servers. The
LCC codes in [5], which achieve the recovery threshold R = KcN − N + 1, are a special case of
this construction, where ` = 1.

Remark 2: The systematic construction presented in Section 4.4 can be also applied directly to
N -CSA codes for N -CDBC, i.e., for all s ∈ [L], uncoded variables (x

(n)
s )n∈[N ] are uploaded to the

sth server, and coded shares are uploaded to the remaining S − L servers, according to the same
coding scheme. Similarly, the recovery threshold is not affected by the systematic construction.

Remark 3: The Lagrange codes presented in [5] for N -CDBC and can be considered as a special
case of N -CSA codes obtained by setting the parameter ` = 1. Note that the download cost can
be written as D = 1 +

(
N−1
`

) (
Kc−1
Kc

)
. The parameter ` plays an important role in improving

the download cost, which may be of interest when N is large and the down-link is costly. For
example, let us assume that R/S is held constant, then the order of the download cost achieved is

O(1 + (N − 1)/`) and the order of the upload cost for X̃(n)
[S]
, n ∈ [N ] achieved is O(`+ (N − 1)),

which offers flexible trade-off between the upload cost and download cost.

7 Conclusion

The main contribution of this work is a class of codes, based on the idea of Cross Subspace Align-
ment (CSA) that originated in private information retrieval (PIR) literature. These codes are shown
to unify, generalize and improve upon existing algorithms for coded distributed batch matrix
multiplication, N -linear batch computation, and multivariate batch polynomial evaluation, such
as Polynomial, MatDot and PolyDot codes, Generalized PolyDot and Entangled Polynomial (EP)
codes, and Lagrange Coded Computing (LCC). CSA codes for coded distributed batch matrix
multiplication, which include LCC codes as a special case, improve significantly upon state of
art matrix-partitioning approaches (EP codes) in terms of communication cost, and upon LCC
codes in download-constrained settings. Generalized CSA (GCSA) codes bridge the extremes of
matrix partitioning based approaches (EP codes) and batch processing approaches (CSA codes,
LCC codes), and allow a tradeoff between server computation complexity, which is improved
by emphasizing the matrix partitioning aspect, and communication costs, which are improved
by emphasizing the batch processing aspect. N -CSA codes for N -linear batch computations and
multivariate polynomial evaluations similarly generalize LCC codes, offering advantages espe-
cially in download constrained settings. As a final observation, note that LCC codes in [5] also
allow settings with X-secure data and B-byzantine servers. Given that cross-subspace align-
ment schemes originated in PIR with X-security constraints [25] and have also been applied to
B-byzantine settings in [28], extensions of CSA codes, GCSA codes and N -CSA codes to X-secure
and B-byzantine settings are relatively straightforward, as shown in Appendix A. An interesting
direction for future work is the possibility of task partitioning (similar to matrix partitioning) for
N -CSA codes to reduce the computation cost per server in settings where latency constraints pre-
vent any server from fully computing theN -linear map, or the multivariate polynomial evaluation
by itself.
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A N -CSA Codes for X-secure B-byzantine N -linear Coded Distributed
Batch Computation

Let us consider the problem of X-secure B-byzantine N -linear coded distributed batch computa-

tion (XSBNCDBC) over a finite field Fq, where the shares X̃(n)
[S]
, n ∈ [N ] are coded in anX-secure

fashion, i.e., any X colluding servers learn nothing about the data, x(n)[L] . Formally, we have

I

(
X̃(n)

X
;x

(n)
[L]

)
= 0, ∀X ⊂ [S], |X | = X,n ∈ [N ]. (186)

Furthermore, we assume that there exists a set of servers B, B ⊂ [S], |B| ≤ B, known as Byzantine
servers. The user knows the number of Byzantine servers B but the realization of the set B is
not known to the user apriori. The Byzantine servers respond to the user arbitrarily, possibly
introducing errors. However, the remaining servers, i.e., all servers s ∈ [S] \ B, if they respond at
all, respond truthfully with the function hs. We will follow the problem statement and definitions
of N -CDBC in all other aspects. The goal in this section is to present a generalized N -CSA codes
construction for XSBNCDBC, which achieves the recovery threshold R = Kc(N + `− 1) +N(X −
1) + 2B + 1. To construct N -CSA codes for XSBNCDBC, let f1,1, f1,2, · · · , f`,Kc and α1, α2, · · · , αS
be (S + L) distinct elements from Fq, where q ≥ S + L. For all n ∈ [N ], let (z

(n)
l,k,x)l∈[`],k∈[Kc],x∈[X]

be independent uniformly random noise vectors from Vn, that are used to guarantee the security.
The independence between data and random noise symbols is specified as follows.

H(x[L], (z
(n)
l,k,x)n∈[N ],l∈[`],k∈[Kc],x∈[X]) = H(x[L]) +

∑
n∈[N ],l∈[`],
k∈[Kc],x∈[X]

H(z
(n)
l,k,x). (187)

For all l ∈ [`], s ∈ [S], let us define

∆l,Kc
s =

∏
k∈[Kc]

(fl,k − αs). (188)

For all n ∈ [N ], l ∈ [`], k ∈ [Kc], we define

x
(n)
l,k = x

(n)
Kc(l−1)+k. (189)

For all s ∈ [S], n ∈ [N ], we construct X̃(n)
s

as follows.

X̃(n)
s

= (X̃(n)
s

1, X̃
(n)

s

2, · · · , X̃(n)
s

`), (190)

where for l ∈ [`], let us set

X̃(n)
s

l = ∆l,Kc
s

 ∑
k∈[Kc]

1

fl,k − αs
x
(n)
l,k +

∑
x∈[X]

αx−1s z
(n)
l,k,x

 . (191)

Now it is readily seen that the X-security of data is guaranteed by the i.i.d. and uniformly dis-
tributed noise terms, i.e., (z

(n)
l,k,x)n∈[N ],l∈[`],k∈[Kc],x∈[X] that are coded according to an MDS(X,S)
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code (a Reed-Solomon code). The answer returned by the sth server is constructed as follows.

Ys =
∑
l∈[`]

1

∆l,Kc
s

Ω(X̃(1)
s

l , X̃
(2)

s

l , · · · , X̃(N)
s

l ). (192)

Now let us see why it is possible to recover the desired evaluations from the answers of any
R = Kc(N + `− 1) +N(X − 1) + 1 servers. Note that Ys can be rewritten as follows.

Ys =
∑
l∈[`]

1

∆l,Kc
s

Ω(X̃(1)
s

l , X̃
(2)

s

l , · · · , X̃(N)
s

l ) (193)

=
∑
l∈[`]

(∆l,Kc
s )N−1Ω

 ∑
k∈[Kc]

1

fl,k − αs
x
(1)
l,k +

∑
x∈[X]

αx−1s z
(1)
l,k,x, · · · ,

, · · · ,
∑
k∈[Kc]

1

fl,k − αs
x
(N)
l,k +

∑
x∈[X]

αx−1s z
(N)
l,k,x

 (194)

=
∑
l∈[`]

∑
k∈[Kc]

∏
k′∈[Kc]\{k}(fl,k′ − αs)N−1

(fl,k − αs)
Ω(x

(1)
l,k , · · · , x

(N)
l,k ) +

∑
i∈[(Kc−1)(N−1)+NX]

αi−1s Ii. (195)

In (195), we rewrite (194) following the same argument that we used in Section 4.3. Note that Ii, i ∈
[(Kc−1)(N−1)+NX] represent various linear combinations of Ω(·), which can be found explicitly
by expanding (194). Their exact forms are irrelevant, hence omitted for ease of exposition. Now
we can see that the answers from any R = Kc(N + ` − 1) + N(X − 1) + 2B + 1 servers, whose
indices are denoted as s1, s2, · · · , sR, are coded according to the following R× (R− 2B) generator
matrix of an MDS(R− 2B,R) code.

1
f1,1−αs1

1
f1,2−αs1

· · · 1
f`,Kc−αs1

1 αs1 · · · αR−2B−L−1s1
1

f1,1−αs2

1
f1,2−αs2

· · · 1
f`,Kc−αs2

1 αs2 · · · αR−2B−L−1s2

...
...

...
...

...
...

...
...

1
f1,1−αsR

1
f1,2−αsR

· · · 1
f`,Kc−αsR

1 αsR · · · αR−2B−L−1sR

 . (196)

Thus the user (decoder) can correct up to (R− (R− 2B))/2 = B errors in the answers. Upon error
correction, the user is able to recover desired evaluations, which appear along the dimensions
spanned by the Cauchy part. This completes the proof of recovery threshold R = Kc(N + `− 1) +
N(X − 1) + 2B + 1.

Remark 1: Because of the X-secure constraint, the systematic construction presented in Section
4.4 cannot be applied to N -CSA codes for XSBNCDBC.

Remark 2: GCSA codes for coded distributed batch matrix multiplication presented in Section
5 can similarly be generalized to allow X-secure and B-Byzantine settings. Such a generalization
is straightforward, thus omitted here.
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