
UNIVERSITY OF CALIFORNIA

Los Angeles

Neural Dynamics for Science: The Symbiosis of Deep Graph Learning and Differential Equations

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Zijie Huang

2024

© Copyright by

Zijie Huang

2024

ABSTRACT OF THE DISSERTATION

Neural Dynamics for Science: The Symbiosis of Deep Graph Learning and Differential Equations

by

Zijie Huang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Yizhou Sun, Co-Chair

Professor Wei Wang, Co-Chair

Many scientific problems require a deep understanding of internal structures and complex dynamics,

spanning physical interactions within molecules, brain networks, and beyond. These problems can be

formulated as modeling interacting dynamical systems using graphs, which represent entities as nodes

and their relationship as edges. Traditionally, the dynamics of interacting systems are described by

ordinary differential equations (ODEs), offering continuous and interpretable solutions but requiring

significant domain expertise. Recent data-driven approaches such as Graph Neural Networks (GNNs)

learn system dynamics from observational data, which however, struggle with long-term predictions and

irregular observations due to their discrete dynamics.

My research aims to develop novel frameworks that bridge these two worlds, i.e. combining the

learning power of neural networks (NNs) with the symbolic knowledge encoded in ODEs. In contrast with

discrete models, such methods provide a principled approach to model continuous dynamical systems,

from synthetic simulations to real-world scenarios like brain network analysis and COVID-19 prediction.

Building upon this, I have further strengthened its power in three key areas: 1.) integrating data-driven

inductive biases like energy conservation law; 2.) enhancing generalization ability; 3.) enabling causal

decision-making. By merging deep graph learning with differential equations, I believe my research will

pave the way for breakthroughs in symbolic deep learning for scientific discovery.

ii

The dissertation of Zijie Huang is approved.

Cho-Jui Hsieh

Kai-Wei Chang

Wei Wang, Committee Co-Chair

Yizhou Sun, Committee Co-Chair

University of California, Los Angeles

2024

iii

To all the love and support

throughout my journey —

which finally made who I am

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Motivation . 1

1.2 Research Overview . 2

1.3 Research Contributions . 3

2 LG-ODE: Learning Continuous System Dynamics from Irregularly-Sampled Partial Obser-

vations . 5

2.1 Introduction . 5

2.2 Problem Formulation and Preliminaries . 7

2.3 Related Work . 8

2.4 Method . 9

2.4.1 Encoder . 10

2.4.2 Generative model and decoder . 13

2.4.3 Training . 13

2.5 Experiments . 13

2.5.1 Datasets . 13

2.5.2 Baselines and Model Variants . 14

2.5.3 Results on Interpolation Task . 15

2.5.4 Results on Extrapolation Task . 16

2.6 Discussion and Conclusion . 18

I Injecting Data-Inspired Inductive Bias 20

3 CG-ODE: Coupled Graph ODE for Learning Interacting System Dynamics 21

3.1 Introduction . 21

v

3.2 Problem Formulation . 24

3.3 Related Work and Preliminaries . 25

3.4 Model . 27

3.4.1 Encoder for Initial States . 27

3.4.2 ODE Generative Model and Decoder . 31

3.4.3 Training . 32

3.5 Experiments . 34

3.5.1 Experiment Setup . 34

3.5.2 Baselines . 35

3.5.3 Performance Evaluation . 36

3.5.4 Case Studies . 39

3.6 Conclusion . 40

4 TREAT: Physics-Informed Regularization for Domain-Agnostic Dynamical System Model-

ing . 42

4.1 Introduction . 42

4.2 Preliminaries and Related Work . 45

4.2.1 NeuralODE for Dynamical Systems . 45

4.2.2 Time-Reversal Symmetry (TRS) . 46

4.3 Method: TREAT . 48

4.3.1 Time-Reversal Symmetry Loss and Training . 48

4.3.2 Theoretical Analysis of Time-Reversal Symmetry Loss 51

4.4 Experiments . 52

4.4.1 Main Results . 53

4.4.2 Ablation and Sensitivity Analysis . 55

4.4.3 Visualizations . 55

vi

4.5 Conclusions . 57

II Towards Generalizable GraphODEs 58

5 GG-ODE: Generalizing Graph ODE for Learning Complex System Dynamics across Envi-

ronments . 59

5.1 Introduction . 60

5.2 Problem Definition . 62

5.3 Preliminaries and Related Work . 63

5.4 Method . 65

5.4.1 Initial State Encoder . 66

5.4.2 Environment Encoder . 68

5.4.3 ODE Generative Model and Decoder . 71

5.4.4 Training . 72

5.5 Experiments . 73

5.5.1 Experiment Setup . 74

5.5.2 Baselines . 75

5.5.3 Performance Evaluation . 76

5.5.4 Case Study . 78

5.6 Conclusion . 79

6 SS-AGA: Multilingual Knowledge Graph Completion with Self-Supervised Adaptive Graph

Alignment . 81

6.1 Introduction . 81

6.2 Preliminaries . 84

6.2.1 Knowledge Graph Completion . 84

6.2.2 KG Embedding Models . 85

vii

6.3 Method . 86

6.3.1 Relation-aware MKG Embedding . 86

6.3.2 Self-supervised New Pair Generation . 88

6.3.3 Training . 90

6.4 Experiments . 90

6.4.1 Dataset . 90

6.4.2 Evaluation Protocol . 91

6.4.3 Baselines . 91

6.4.4 Main Results . 92

6.4.5 Ablation Study . 92

6.4.6 Impact of Seed Alignment . 95

6.4.7 Case Study . 96

6.5 Related Work . 97

6.5.1 Monolingual KG Embeddings . 97

6.5.2 Multilingual KG Embeddings . 97

6.6 Discussion and Conclusion . 98

III GraphODE for Causal Decision-Making 99

7 CAG-ODE: Coupled GraphODE . 100

7.1 Introduction . 100

7.2 Preliminaries and Related Work . 103

7.3 Problem Definition . 104

7.4 The Proposed Model: CAG-ODE . 107

7.4.1 Spatial-Temporal Initial State Encoder . 107

7.4.2 Treatment Fusing . 108

viii

7.4.3 Treatment-Induced GraphODE . 109

7.4.4 Outcome Prediction . 110

7.4.5 Domain Adversarial Learning . 110

7.5 Experiments . 112

7.5.1 Experiment Setup . 112

7.5.2 Performance Evaluation . 113

7.5.3 Case Study about COVID-19 Policies . 115

7.5.4 Visualization of Learned Balanced Representations 117

7.6 Conclusion . 117

7.7 Discussion and Future Directions . 117

ix

LIST OF FIGURES

1.1 I pioneered GraphODE, a general framework for modeling interacting dynamical systems

across many scientific domains. 2

2.1 Overall framework. 10

2.2 Visualization of interpolation results for spring system. 15

2.3 Visualization of interpolation results for walking motion data. 17

2.4 Visualization of extrapolation results for spring system. Semi-transparent paths denote

observations from first-half of time, from which the latent initial states are estimated. Solid

paths denote model predictions. 18

3.1 COVID-19 death count time series of three states in U.S. Correlation is higher between two

states that have higher population flow. 23

3.2 Population flow in May and August with self-loop flow excluded (Diagonal entries). May

has less population flow due to the "close border" policies in many states. 23

3.3 The Overall framework of Coupled Graph ODE: Firstly, the encoder computes the latent

initial states for edges and nodes respectively based on the observed sequence of node

attributes and adjacency matrix sequence so far with two steps: Step1: Dynamic node

representation learning over the constructed temporal graph. Step2: Sequence representation

learning for summarizing over each observation sequence. Then the generative model calls

the ODE solver to solve the two coupled ODEs for nodes and edges, which outputs the

predicted latent states for nodes and edges in the future. Finally, decoders generate the

predicted nodes and edges based on their respective decoding likelihood determined by the

latent states. 28

3.4 MAPE as a function of λedge on the COVID-19 dataset . 38

3.5 MAPE as a function of condition length on the COVID-19 dataset 39

x

4.1 (a) High-precision modeling for dynamical systems; (b.1) Classification of classical mechani-

cal systems based on [Tol38, LR98];(b.2) Tim-Reversal Symmetry illustration;(b.3) Error

accumulation in numerical solvers. 44

4.2 Illustration of time-reversal symmetry based on Lemma 1.The total length of the trajectory is

tK − t0 = T . t′k is the time index in the reverse trajectory, which points to the same time as

tK−k in the forward trajectory. 46

4.3 Overall framework of TREAT. O1, O2, O3 are connected agents. It follows the encoder-

processor-decoder architecture introduced in Sec 4.2.1. A novel TRS loss is incorporated to

improve modeling accuracy across systems from the numerical aspect, regardless of their

physical properties. 49

4.4 Varying prediction lengths across multi-agent datasets (Pendulum MSE is in log values). . . 54

4.5 Varying α values across multi-agent datasets. 55

4.6 Visualization for 5-body spring systems (trajectory starts from light to dark colors). 56

4.7 TRS loss visualization across multi-agent datasets (scales of two y-axes are different). . . . 56

5.1 The overall framework of GG-ODE consists of four modules. First, an initial state encoder

computes the latent initial states for all agents simultaneously by constructing a temporal

graph from the input trajectories. Additionally, an environment encoder computes the latent

representations for exogenous factors that are distinct for each environment. Then, the

generative model defined by a GNN-based ODE function calls the solver to output the

predicted latent states for agents in the future, where the learned exogenous factors are

incorporated into the ODE function. Finally, a decoder generates the predicted dynamics

for each agent based on the decoding likelihood determined by the latent states. Two

regularization terms are added to preserve the orthogonality of two encoders and the time-

invariant property of the environment encoder. 65

5.2 Temporal properties of the environment encoder. We use contrastive learning loss to force

the latent exogenous factors learned from different windows within the same environment to

be close to each other, and from different environments to be apart from each other. 70

xi

5.3 Visualization of the transductive prediction results for the Water dataset. Black lines are

ramps within the container. The length of the observation sequence is set as 20. GNS makes

less accurate predictions compared with GG-ODE. 76

5.4 Effect of λ1/λ2 on the Lennard-Jones potential dataset. Best results are circled in red for

each setting. 78

5.5 Effect of observation length on the Lennard-Jones potential dataset. 79

5.6 T-SNE visualization of the learned exogenous factors on the Lennard-Jones potential dataset.

(a) We randomly pick one data sample per temperature, where temperatures tested in the

inductive setting are circled in black. (b) Visualization of data samples from two temperatures. 80

6.1 (a) Existing methods treat alignment pairs equally as a loss, which maximally ensures

the same entity from different languages to be as similar as possible. (b) Our method

differentiates alignment pairs as a new type edge with dynamic attention weights such as α

and β, which control the influence and information propagation from other support KGs. (c)

An example of MKGC task answering the query in the Japanese KG. 82

6.2 The overall framework of the Self-Supervised Adaptive Graph Alignment (SS-AGA). 85

6.3 Hits@10 with respect to different sampling ratio of seed alignment pairs. 95

6.4 Average attention weight learned in DBP-5L. 96

7.1 Overall Framework of CAG-ODE. The encoder first computes the latent initial states. Then

the treatment-induced coupled ODE functions predict the continuous trajectories over time.

Treatment representations learned through the fusing module are incorporated into the ODE

functions to enable counterfactual prediction. Finally, the decoder outputs the predicted

dynamics. Treatment and interference balancing losses are designed to ensure unbiased

counterfactual predictions. 106

7.2 Case Study for changing different policies on the COVID-19 dataset. 115

7.3 Treatment Balancing Visualization on the COVID-19 Dataset. 116

xii

LIST OF TABLES

2.1 Mean Squared Error(MSE) ×10−2 on Interpolation task. 16

2.2 Mean Squared Error(MSE) ×10−2 on Extrapolation task. 17

3.1 Mean Absolute Percentage Error (MAPE) for Cumulative Deaths 35

3.2 Mean Absolute Percentage Error (MAPE) for Social Data. 35

3.3 Number of Deaths Reduced on Dec.26 . 40

4.1 Evaluation results on MSE (10−2). Best results are in bold numbers and second-best results

are in underline numbers. Human Motion is a real-world dataset and all others are simulated

datasets. 53

5.1 Mean Square Error (MSE) of rollout trajectories with varying prediction lengths. The

transductive setting evaluates the testing sequences whose environments are seen during

training. The inductive setting evaluates new systems with unseen environments during

training. The best results are bold-faced. 73

6.1 Statistics of DBP-5L and E-PKG datasets. #Aligned Links denotes the number of alignment

pairs where one of the aligned entities belongs to that KG. 91

6.2 Main results on DBP-5L. 93

6.3 Main results on E-PKG. 94

6.4 Ablation results on DBP-5L. 95

7.1 Root Mean Square Error (RMSE) for factual outcome evaluation across prediction lengths

(the duration for which predictions are made). For the COVID-19 dataset, we report the

mean and standard deviation accuracy with multiple runs. 112

7.2 Root Mean Square Error (RMSE) for counterfactual Outcome evaluation on the Tumor

Growth dataset with treatment flipping ratio. Treatment F.R. (Treatment Flipping Ratio)

represents the ratio of treatments that are flipped. 115

xiii

ACKNOWLEDGMENTS

I have been extremely fortunate and grateful throughout my entire Ph.D. journey to receive a lot of

guidance and support from so many great collaborators.

I want to express my deepest and sincere thanks to my two amazing Ph.D. advisors, Prof.Yizhou Sun

and Prof.Wei Wang. They are two excellent female researchers who I always consider as role models.

What impressed me the most was not the valuable and supportive guidance for my research, but the way

they treated people, their efforts in creating an inclusive research community, and their positive attitude

towards life.

I sincerely appreciate my thesis committee members, Prof. Kai-Wei Chang and Prof.Cho-Jui Hsieh.

Their insightful feedback, engaging suggestions, and constant encouragement were indispensable. I want

to thank Prof. Dominik Wodarz and Prof. Mathieu Bauchy for their valuable suggestions especially for

AI4Science.

Beyond my committee members, I am fortunate to work and learn from a lot of brilliant collaborators

during my internships. These unique experiences have broadened my research vision and better shaped

my research goals. I want to thank Zheng Li, Haoming Jiang, Bing Yin, Daheng Wang, Binxuan Huang,

Xian Li, Chenwei Zhang, Zhengyang Wang, Yan Liang, Tianyu Cao, Hanqing Lu, Karthik Subbian,

Christos Faloutsos, Jingbo Shang, at the Amazon Search Team. I also want to thank Anne Cocos, Hafez

Asgharzadeh, Lingyi Liu, Evan Cox, Colby Wise, Sudarshan Lamkhede, at Netflix. I also learned

and received a lot of support during my internship at Nvidia, and special thanks to Sanjay Choudhry,

Mohammad Amin Nabian for their endless help.

During my five wonderful Ph.D. years, I work with a lot of friends at UCLA, who makes me feel like

a big family, including: Ziniu Hu, Xiao Luo, Song Jiang, Shichang Zhang, Roshni Iyer, Zhiping Xiao,

Yewen Wang, Kewei Cheng, Fred Xu, Fang Sun, Yanqiao Zhu, Jingru Gan, Xiaoxuan Wang, Chenchen

Ye, Xiusi Chen, Yihe Deng, Junkai Zhang, Jeeyun Hwang, Yadi Cao, Wanjia Zhao, Yuanzhou Chen,

Jingdong Gao, Mingyu Ma, Yanna Ding, Derek Xu, Atefeh Sohrabizadeh, Yichao Zhou, Yunsheng Bai,

Junheng Hao, Han Liu, Ruoyan Li. I also want to sincerely thank my friends for supporting my Ph.D.

career: Fan Yin, Hejie Cui, Zhe Zeng, Yuanhao Xiong, Yihang Guo, Yangsibo Huang, Tao Zhang, Baolin

Li, Yu Wang, Zhankui He.

Finally, I would like to give my heartfelt thanks to my parents, my boyfriend, my family. Their

xiv

encouragement and support have been my rock during the hardest time of my life. Wish all the bests to

those I love.

xv

VITA

2015–2019 B.S. in Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.

2018 Visting Student Researcher, University of Illinois at Urbana-Champaign (UIUC)

, IL, US.

2021 Applied Scientist Intern, Amazon Search, CA, US.

2022 Applied Scientist Intern, Amazon Search, WA, US.

2023 Research Scientist Intern, Netflix, CA, US.

2024 Research Scientist Intern, Nvidia, CA, US.

PUBLICATIONS

Fred Xu, Song Jiang, Zijie Huang, Xiao Luo, Shichang Zhang, Yuanzhou Chen, Yizhou Sun. "FUSE:

Measure-Theoretic Compact Fuzzy Set Representation for Taxonomy Expansion." In Annual Meeting of

the Association for Computational Linguistics (ACL) 2024 [XJH24].

Zijie Huang*, Wanjia Zhao*, Jingdong Gao, Ziniu Hu, Xiao Luo, Yadi Cao, Yuanzhou Chen, Yizhou

Sun, Wei Wang. "TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical Systems." In

DLDE workshop at NeurIPS 2023. (Best Paper Award) [HZGrd].

Zijie Huang, Jeehyun Hwang, Junkai Zhang, Jinwoo Baik, Weitong Zhang, Quanquan Gu, Wei Wang.

"Causal Graph ODE: Continuous Treatment Effect Modeling in Multi-agent Dynamical Systems." In

The Web Conference (WWW) 2024 & DLDE workshop at NeurIPS 2023 [HHZ24].

Xiao Luo, Haixin Wang, Zijie Huang, Huiyu Jiang, Abhijeet Sadashiv Gangan, Song Jiang, Yizhou

Sun. "CARE: Modeling Interacting Dynamics Under Temporal Distribution Shift." In Proceeding of

Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS), 2023 [LWH23].

xvi

Zijie Huang, Yizhou Sun, Wei Wang. "Generalizing Graph ODE for Learning Complex System Dy-

namics across Environments". In Proceedings of the 29th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining (KDD), 2023 [HSW23a].

Zijie Huang, Daheng Wang, Binxuan Huang, Chenwei Zhang, Jingbo Shang, Yan Liang, Zhengyang

Wang, Xian Li, Christos Faloutsos, Yizhou Sun and Wei Wang . "Concept2Box: Joint Geometric

Embeddings for Learning Two-View Knowledge Graphs ". In Proceedings of the 2023 Annual Meeting

of the Association for Computational Linguistics (ACL), 2023 [ZWH23].

Song Jiang, Zijie Huang, Xiao Luo, Yizhou Sun. "CF-GODE: Continuous-Time Causal Inference for

Multi-Agent Dynamical Systems". In Proceedings of the 29th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining (KDD), 2023 [JHL23a].

Xiao Luo, Jingyang Yuan, Zijie Huang, Huiyu Jiang, Yifang Qin, Wei Ju, Ming Zhang, Yizhou Sun.

"HOPE: High-order Graph ODE For Modeling Interacting Dynamics". In Proceddings of the Fortieth

International Conference on Machine Learning (ICML), 2023 [LYH23].

Han Liu, Zijie Huang, Samuel S. Schoenholz, Ekin D. Cubuk, Morten M. Smedskjaer, Yizhou Sun, Wei

Wang, Mathieu Bauchy. "Watching to Simulate Glass Dynamics from Their Static Structure by Machine

Learning". In Proceddings of Materials Horizons, 2023 [LHS23].

Zijie Huang, Zheng Li, Haoming Jiang, Tianyu Cao, Hanqing Lu, Bing Yin, Karthik Subbian, Yizhou

Sun, Wei Wang. "Multilingual Knowledge Graph Completion with Self-Supervised Adaptive Graph

Alignment". In Proceedings of the 2022 Annual Meeting of the Association for Computational Linguistics

(ACL), 2022 [HLJ22].

Zijie Huang, Yizhou Sun, Wei Wang. "Coupled Graph ODE for Learning Interacting System Dynamics".

In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD),

2021 [HSW21a].

Ruijie Wang, Zijie Huang, Shengzhong Liu, Huajie Shao, Dongxin Liu, Jinyang Li, Tianshi Wang,

Dachun Sun, Shuochao Yao, Tarek Abdelzaher. "DyDiff-VAE: A Dynamic Variational Framework for

Information Diffusion Prediction". In Proceeding of Fourty-fourth International ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR), 2021 [WHL21a].

Zijie Huang, Yizhou Sun, Wei Wang. "Learning Continuous System Dynamics from Irregularly-Sampled

Partial Observations". In Proceeding of Thirty-fourth Conference on Neural Information Processing

Systems (NeurIPS), 2020 [HSW20a].

xvii

Amin Javari, Zhankui He, Zijie Huang, Raj Jeetu, Kevin Chen-Chuan Chang. "Weakly Supervised Atten-

tion for Hashtag Recommendation using Graph Data". In The Web Conference (WWW), 2020 [JHH20].

xviii

CHAPTER 1

Introduction

1.1 Motivation

Many real-world scientific problems demand a profound grasp of internal structures and dynamics,

encompassing fundamental physical interactions and intricate data patterns within molecules, brain

networks, and beyond. These problems can be formulated as modeling interacting (multi-agent) dynamical

systems using graphs, a versatile data structure representing entities as nodes and their relationship as

edges. For example, in molecular dynamics, atoms interact and evolve over time, forming trajectories

within a 3D space and ever-changing graph structures. Artificial Intelligence (AI) is fueling a new

paradigm of research discoveries across diverse natural sciences. Nonetheless, existing models tailored

for static graph-structured data fall short in capturing the dynamic nature of systems across scientific

domains, which play vital roles for scientific discovery. For example, 9 out of the world’s top 10

supercomputers are used for simulations, i.e. predicting trajectories in the future, spanning the field of

cosmology, geophysics, and fluid dynamics [Lab19]. Building a surrogate neural simulator to accelerate

these simulations, offers significant time and space efficiency for real-world applications.

Traditionally, the dynamics of a system are defined by the symbolic knowledge in the form of ordinary

differential equations (ODEs). For example, molecular dynamics can be described by Newton’s law of

motion: d2xi

dt2
= −∇U(x1,x2, . . . ,xN), in which xi is the position of each atom and U(·) is the potential

energy of the system. Despite their theoretical elegance, the practical application of ODEs to complex,

non-linear systems is challenging. Often, the precise ODEs are either unknown, or require significant

efforts from domain experts. Thus, people resort to data-driven approaches by learning a dynamic

model (e.g., spatio-temporal NNs) from observational data. Nonetheless, deep learning models have

fundamental limitations: 1) they discretize systems that are continuous in nature such as the spread of

COVID-19 [HSW21b], thus struggling with making stable long-term predictions; 2) discrete models

are restricted to learn a fixed-step state transition function, therefore, they cannot handle irregular and

1

Figure 1.1: I pioneered GraphODE, a general framework for modeling interacting dynamical systems

across many scientific domains.

incomplete observational data caused by imperfect data collectors. My research goal is to develop

neural networks that bridge deep graph learning with symbolic ODEs. Such models are built to

have better understanding of dynamical laws encoded from data, so as to make rapid, accurate,

and long-term predictions, and to support causal decision-making for scientific discovery.

1.2 Research Overview

My past research has pioneered a novel framework called GraphODE [HSW20a] which opens up a new

chapter to bridge the expressive learning power of GNNs with the symbolic knowledge preserved by

ODEs to model interacting systems. Specifically, it employs a Graph Neural Networks (GNNs) as the

ODE function and encodes initial states via another neural network, which are jointly trained from data.

With GraphODE, long-term predictions are made by calling any black-box ODE solvers. In contrast

with discrete models, GraphODE serves as a principled way to model real-world continuous dynamical

systems. It can learn from irregular and incomplete observations and shows superior prediction accuracy

in the long-range.

Chapter 2 describes the first initiative of GraphODE. Building upon that, I have further strengthened

its power in three key areas illustrated in Figure 1.1, which arises from challenges at the data, model, and

application aspects in dynamical system modeling:

• Data: Integrating data-driven inductive biases. Real-world dynamical systems often exhibit

complex dynamical patterns, such as following higher-order dynamics [LYH23] or adhering to

2

some physical principles [HZGrd]. Injecting different priors can enhance model performance and

improve the robustness of predictions.

– Chapter 3 presents Coupled GraphODE (CG-ODE) [HSW21b], that can capture the joint

evolution of graph nodes and edges in a continuous manner.

– Chapter 4 presents Time-Reversal Latent GraphODE (TREAT) [HZGrd] that numerically

achieves high-precision modeling across dynamical systems.

• Model: Building generalized GraphODEs. Model generalization is an important topic in

dynamical system modeling due to the huge cost of traditional simulations. By enabling joint

learning from multiple systems that share similarities, a general-purpose model can improve

modeling accuracy and save computational cost.

– Chapter 5 presents Generalized GraphODE (GG-ODE) [HSW23a] that jointly learn dynami-

cal systems across different environmental factors such as temperatures.

– Chapter 6 presents an initial step towards a more challenging question: how to generalize

across systems following different laws, such as the mixture of waters (which are liquid)

and sands (which are solid). The Self-Supervised Adaptive Graph Alignment Model (SS-

AGA) [HLJ22] fuses multiple knowledge graphs (KGs) together, where each KG can represent

the domain knowledge of one system category. This serves as an initial step of incorporating

multiple external sources to facilitate generalization across dynamical laws.

• Applications: From Predictions to Interventions through Causal Decision-making. The

ultimate goal of dynamical system modeling is not only about making predictions. We want to

understand the systems, and further conduct interventions and controls so that we can change

what will happen in the future. Chapter 7 presents Causal GraphODE (CAG-ODE) [HHZ24] that

enables causal decision-making in continuous dynamical systems and can consider the combined

effects of multiple treatments such as analyzing multiple COVID-19 policies over time.

1.3 Research Contributions

By collaborating with domain experts in material science, physics, biomedical engineering and healthcare,

we successfully deployed the proposed GraphODEs to many real-world scientific problems, from synthetic

3

physical simulations [LYH23] and molecular dynamics [LZS23] to more complex real-world systems

including brain network analysis in biomedical engineering [HYH23] and COVID-19 prediction in

public health [HSW21b]. Many researchers over the world also use my work for electromagnetic

simulations [YKR22], robotics [GVK22], sports analysis [XW23], and recommendations [GZL22]. The

GraphODE series work has been generously acknowledged and supported by the NSF #2312501 award,

and the Best Paper Award at the Deep Learning and Differential Equation workshop in Neurisp 2023.

4

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2312501&HistoricalAwards=false
https://dlde-2023.github.io/

CHAPTER 2

LG-ODE: Learning Continuous System Dynamics from

Irregularly-Sampled Partial Observations

Many real-world systems, such as moving planets, can be considered as multi-agent dynamic systems,

where objects interact with each other and co-evolve along with the time. Such dynamics is usually

difficult to capture, and understanding and predicting the dynamics based on observed trajectories of

objects become a critical research problem in many domains. Most existing algorithms, however, assume

the observations are regularly sampled and all the objects can be fully observed at each sampling time,

which is impractical for many applications. In this paper, we propose to learn system dynamics from

irregularly-sampled partial observations with underlying graph structure for the first time. To tackle

the above challenge, we present LG-ODE, a latent ordinary differential equation generative model for

modeling multi-agent dynamic system with known graph structure. It can simultaneously learn the

embedding of high dimensional trajectories and infer continuous latent system dynamics. Our model

employs a novel encoder parameterized by a graph neural network that can infer initial states in an

unsupervised way from irregularly-sampled partial observations of structural objects and utilizes neural

ODE to infer arbitrarily complex continuous-time latent dynamics. Experiments on motion capture,

spring system, and charged particle datasets demonstrate the effectiveness of our approach.

2.1 Introduction

Learning system dynamics is a crucial task in a variety of domains, such as planning and control in

robotics [LWZ19a], predicting future movements of planets in physics [KFW18a], etc. Recently, with the

rapid development of deep learning techniques, researchers have started building neural-based simulators,

aiming to approximate complex system interactions with neural networks [LWZ19a, BPL16, KFW18a,

CUT16, SsF16] which can be learned automatically from data. Existing models, such as Interaction

Networks (IN) [BPL16], usually decompose the system into distinct objects and relations and learn

5

to reason about the consequences of their interactions and dynamics based on graph neural networks

(GNNs). However, one major limitation is that they only work for fully observable systems, where the

individual trajectory of each object can be accessed at every sampling time. In reality, many applications

have to deal with partial observable states, meaning that the observations for different agents are not

temporally aligned. For example, when a robot wants to push a set of blocks into a target configuration,

only the blocks in the top layer are visible to the camera [LWZ19a]. More challengingly, the visibility of

a specific object might change over time, meaning that observations can happen at non-uniform intervals

for each agent, i.e. irregularly-sampled observations. Such data can be caused by various reasons such

as broken sensors, failed data transmissions, or damaged storage [TYS20]. How to learn an accurate

multi-agent dynamic system simulator with irregular-sampled partial observations remains a fundamental

challenge.

Tang et al. [TYS20] recently have studied a seemingly similar problem which is predicting the missing

values for multivariate time series (MTS) as we can view the trajectory of each object as a time series.

They assumed there exist some close temporal patterns in many MTS snippets and proposed to jointly

model local and global temporal dynamics for MTS forecasting with missing values, where the global

dynamics is captured by a memory module. However, it differs from multi-agent dynamic systems in

that the model does not assume a continuous interaction among each variable, i.e. the underlying graph

structure is not considered. Such interaction plays a very important role in multi-agent dynamic systems

which drives the system to move forward.

Recently Rubanova et al. [RCD19b] has proposed a VAE-based latent ODE model for modeling

irregularly-sampled time series, which is a special case of the multi-agent dynamic system where it only

handles one object. They assume there exists a latent continuous-time system dynamics and model the

state evolution using a neural ordinary differential equation (neural ODE) [CRB18a]. The initial state is

drawn from an approximated posterior distribution which is parameterized by a neural network and is

learned from observations.

Inspired by this, we propose a novel model for learning continuous multi-agent system dynamics

under the same framework with GNN as the ODE function to model continuous interaction among objects.

However, the main challenge lies in how to approximate the posterior distributions of latent initial states

for the whole system, as now the initial states of agents are closely coupled and related to each other.

We handle this challenge by firstly aggregating information from observations of neighborhood nodes,

6

obtaining a contextualized representation for each observation, then employ a temporal self-attention

mechanism to capture the temporal pattern of the observation sequence for each object. The benefits of

joint learning of initial states is twofold: First, it captures the complex interaction among objects. Second,

when an object only has few observations, borrowing the information from its neighbors would facilitate

the learning of its initial state. We conduct extensive experiments on both simulated and real datasets

over interpolation and extrapolation tasks. Experiment results verify the effectiveness of our proposed

method.

2.2 Problem Formulation and Preliminaries

Consider a multi-agent dynamic system as a graph G = ⟨O,R⟩, where vertices O = {o1, o2 · · · oN}

represent a set of N interacting objects, R = {⟨i, j⟩} represents relations. For each object, we have a

series of observations oi = {ot
i} at times {tji}

Ti
j=0,where ot

i ∈ RD denotes the feature vector of object i at

time t, and {tji}
Ti
j=0 can be of variable length and values for each object. Observations are often at discrete

spacings with non-uniform intervals and for different objects, observations may not be temporally aligned.

We assume there exists a latent generative continuous-time dynamic system, which we aim to uncover.

Our goal is to learn latent representations zt
i ∈ Rd for each object at any given time, and utilize it to

reconstruct missing observations and forecast trajectories in the future.

Ordinary differential equations (ODE) for multi-agent dynamic system. In continuous multi-agent

dynamic system, the dynamic nature of state is described for continuous values of t over a set of

dependent variables. The state evolution is governed by a series of first-order ordinary differential

equations: żt
i :=

dzt
i

dt
= gi(z

t
1, z

t
2 · · · zt

N) that drive the system states forward in infinitesimal steps over

time. Given the latent initial states z0
0, z

0
1 · · · z0

N ∈ Rd for every object, zt
i is the solution to an ODE

initial-value problem (IVP), which can be evaluated at any desired times using a numerical ODE solver

such as Runge-Kutta [MSH19]:

zT
i = z0

i +

∫ T

t=0

gi(z
t
1, z

t
2 · · · zt

N)dt (2.1)

The ODE function gi specifies the dynamics of latent state and recent works [CRB18a, RCD19b,

YHL19] have proposed to parameterize it with a neural network, which can be learned automatically

from data. Different from single-agent dynamic system, gi should be able to model interaction among

objects. Existing works [BPL16, LWZ19a, KFW18a, SRB17] in discrete multi-agent dynamic system

7

employ a shared graph neural network (GNN) as the state transition function. It defines an object function

fO and a relation function fR to model objects and their relations in a compositional way. By adding

residual connection and let the stepsize go to infinitesimal, we can generalize such transition function to

the continuous setting as shown in Eqn 2.2, where Ni is the set of immediate neighbors of object oi.

żt
i :=

dzt
i

dt
= gi(z

t
1, z

t
2 · · · zt

N) = fO(
∑
j∈Ni

fR([z
t
i, z

t
j])) (2.2)

Given the ODE function, the latent initial state z0
i for each object determine the whole trajectories.

Latent ODE model for single-agent dynamic system. Continuous single-agent dynamic system is

a special case in our setting. Recent work [RCD19b] has proposed a latent ODE model following the

framework of variational autoencoder [KW14], where they assume a posterior distribution over the latent

initial state z0. The encoder computes the posterior distribution q
(
z0| {oi, ti}Ni=0

)
for the single object

with an autoregressive model such as RNN, and sample latent initial state z0 from it. Then the entire

trajectory is determined by the initial state z0 and the generative model defined by ODE. Finally the

decoder recovers the whole trajectory based on the latent state at each timestamp by sampling from the

decoding likelihood p(oi|zi).

We model multi-agent dynamic system under the same framework with GNN as the ODE function

to model continuous interaction among objects. Since the latent initial states of each object are tightly

coupled, we introduce a novel recognition network in the encoder to infer the initial states of all objects

simultaneously.

2.3 Related Work

Neural Physical Simulator. Existing works have developed various neural-based physical simulators

that learn the system dynamics from data [LWZ19a, BPL16]. In particular, Kipf et al. [KFW18a] and

Battaglia et al. [BPL16] have explored learning a simulator by approximating pair-wise object interactions

with graph neural networks. These approaches restrict themselves to learn a fixed-step state transition

function that takes the system state at time t as input to predict the state at time t + 1. However, they

can not be applied to the scenarios where system observations are irregularly sampled. Our model

handles such issue by combining a neural ODE [CRB18a] to model continuous system dynamics and a

temporal-aware graph neural network followed by a temporal self-attention module to estimate system

8

initial states. Another issue lies in that they need to observe the full states of a system; but in reality,

system states are often partially observed where number and set of observable objects vary over time.

A recent work [LWZ19a] tackled this issue where system is partially observed but observations are

regularly sampled by learning the dynamics over a latent global representation for the system, which is

for example an average over the sets of object states. However it cannot directly learn the dynamic state

for each object. In our work, we design a dynamic model that explicitly operates on the latent dynamic

representations over each object. This allows us to define object-centric dynamics, which can better

capture system dynamics compared to the coarse global system representation.

Dynamic Graph Representation. Our model takes the form of variational auto-encoder. The encoder

which is used to infer latent initial states is closely related to dynamic graph representation. Most existing

methods [SWG20a, HHN19, ZGY16] learn the dynamic representations of nodes by splitting the input

graph into snapshot sequence based on timestamps [HDW20b]. Each snapshot is passed through a graph

neural network to capture structural dependency among neighbors and then a recurrent network is utilized

to capture temporal dependency by summarizing historical snapshots. However recurrent methods scale

poorly with the increase in number of time-steps [SWG20a]. Moreover, when system states are partially

observed, each timestamp may only contain a small portion of objects and abundant structural information

across different snapshots is ignored. A recent work [HDW20b] proposed to maintain all the edges

happening in different times as a whole and introduced relative temporal encoding strategy (RTE) to

model structural temporal dependencies with any duration length. RTE utilizes a linear transformation of

the sender node with regard to a given timestamp based on positional encoding [VSP17]. In our work, we

explored a more complex nonlinear transformation to capture complex temporal dependency in dynamic

physical system.

2.4 Method

In this section, we present Latent Graph ODE (LG-ODE) for learning continuous multi-agent system

dynamics. Following the structure of VAE, LG-ODE consists of three parts that are trained jointly: 1.)

An encoder that infers the latent initial states of all objects simultaneously given their partially-observed

trajectories; 2.) a generative model defined by an ODE function that learns the latent dynamics given the

sampled initial states. 3.) a decoder that recovers the trajectory based on the decoding likelihood p(ot
i|zt

i).

The overall framework is depicted in Figure 7.1. In the following, we describe the three components in

9

Residual
Connection

ℎ(#$%)[𝑜%)*]

ℎ(#$%)[𝑜,)-]

ℎ(#$%)[𝑜.)/]

(a) Temporal Graph Construction

(b) Dynamic Node Representation Learning (c) Temporal Self-Attention

𝐴𝑡𝑡

𝐴𝑡𝑡

𝑞(𝑧45|𝑜%, 𝑜, …𝑜9)

𝑡% 𝑡. 𝑡: 𝑡;

𝑂%

𝑂,

𝑂.

𝑂,

𝑂%

𝑂.

𝑡𝑖𝑚𝑒

𝐷𝑒𝑐𝑜𝑑𝑒𝑟 𝑝(𝑜4)|𝑧4))

𝑂𝐷𝐸 𝑆𝑜𝑙𝑣𝑒 𝐺𝑁𝑁, (𝑧%
5… 𝑧95 , (𝑡5 … 𝑡K))

Encoder

𝑡,

Generative Model and Decoder

𝑡L 𝑡M

+

Temporal
Encoding

𝑊K

𝑊K
𝑡% - 𝑡.

𝑡, - 𝑡.
𝑊O

𝑊P

𝑊O

ℎ(#)[𝑜%)*]

𝑊K
Temporal
Encoding

𝛼%

𝛼,

𝐼𝑛𝑡𝑒𝑟po𝑙𝑎𝑡𝑖𝑜𝑛 𝐸𝑥𝑡𝑟𝑎𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛

+

×

×

×

×

+

𝑊Y

𝑊Y

Figure 2.1: Overall framework.

detail.

2.4.1 Encoder

Let Zt ∈ RN×d denotes the latent state matrix of all N objects at time t. The encoder returns a factorized

distribution of initial states: qϕ(Z0|o1, o2 · · · oN) =
∏N

i=1 qϕ(z
0
i |o1, o2 · · · oN). In multi-agent dynamic

system, objects are highly-coupled and related. Instead of encoding temporal pattern for each observation

sequence oi = {ot
i}

t
Ti
i

t=t0i
independently using an RNN [RCD19b], we incorporate structural information

by first aggregating information from neighbors’ observations, then employ a temporal self-attention

mechanism to encode observation sequence for each object. Such process can be decomposed into two

steps: 1.) Dynamic Node Representation Learning, where we aim to learn an encoding function fupdate

that outputs structural contextualized representation ht
i for each observation ot

i. 2.) Temporal Self-

Attention, where we learn an function faggre that aggregates the structural observation representations

into a fixed-dimensional sequence representation ui for each object. ui is then utilized to approximate

the posterior distribution for each latent initial state z0
i .

10

ht
i = fupdate(oi, {oj|if j ∈ Ni}), ui = faggre(h

t1
i ,h

t2
i · · ·htTi

i) (2.3)

Dynamic Node Representation Learning. One naive way to incorporate structural information is to

construct a graph snapshot at each timestamp [SWG20a, ZGY16]. However, when system is partially

observed, each snapshot may only contain a small portion of objects. For example in Figure 2.1 (a), 6 out

of 7 timestamps only contains one object thus abundant structural information across different snapshots

is ignored. We therefore preserve temporal edges and nodes across times to form a temporal graph,

where every node is an observation, every edge exists when two objects are connected via a relation

r ∈ R{⟨i, j⟩}. Suppose on average every object has K observations, and there are E relations among

objects. The constructed temporal graph has O(EK2 + (K − 1)KN) edges, which grows rapidly with

the increase of average observation number K. We therefore set a slicing time window that filters out

edges when the relative temporal gap is larger than a preset threshold.

To learn a structural representation for each observation, we propose a temporal-aware graph neural

network characterized by the information propagation equation in Eqn 2.4, where hl−1
t ,hl−1

s are the

representations of target and source node from layer l − 1 respectively.

hl
t = hl−1

t + σ(
∑
s∈Nt

(Attention(hl−1
s ,hl−1

t) · Message(hl−1
s)) (2.4)

To model temporal dependencies among nodes, a simple alternative is to introduce a time-dependent

attention score [VSP17] multiply by a linear transformation of the sender node W vh
l−1
s . However, the

information loss of a sender node w.r.t different temporal gap is linear, as the Message of a sender node

is time-independent. Recently Transformer [VSP17] has proposed to add positional encoding to the

sender node hl−1
s and obtain a time-dependent Message. As adding is a linear operator, we hypothesize

that taking a nonlinear transformation of the sender node as time-dependent Message would be more

sufficient to capture the complex nature of information loss caused by temporal gap between nodes. We

define the nonlinear transformation w.r.t the temporal gap ∆t(s, t) as follows:

Message(hl−1
s ,∆t(s, t)) = W vĥ

l−1

s , ĥ
l−1

s = σ(W t[h
l−1
s ||∆tst]) + TE(∆tst)

TE(∆t)2i+1 = cos(∆t/100002i/d), TE(∆t)2i = sin(∆t/100002i/d)

Attention(hl−1
s ,hl−1

t ,∆t(s, t)) = (W kĥ
l−1

s)T (W qh
l−1
t) · 1√

d

(2.5)

11

where || is the concatenation operation and σ(·) is a non-linear activation function. d is the dimension

of node embeddings and W t is a linear transformation applied to the concatenation of the sender node

and temporal gap. We adopt the dot-product form of attention where W v,W k,W q projects input node

representations into values, keys and queries. The learned attention coefficient is normalized via softmax

across all neighbors. Additionally, to distinguish the sender from observations of the object itself, and

observations from its neighbors, we learn two sets of projection matrices W k,W v for each of these two

types. Finally, we stack L layers to get the final representation for each observation as ht
i = hL(ot

i). The

overall process is depicted in Figure 2.1 (b).

Temporal Self-Attention. To encode temporal pattern for each observation sequence, we design a non-

recurrent temporal self-attention layer that aggregates variable-length sequences into fixed-dimensional

sequence representations ui, which is then utilized to approximate the posterior distribution for each

latent initial state z0
i . Compared with traditional recurrent models such as RNN,LSTM, self-attention

mechanism can be better parallelized for speeding up training process and alleviate the vanishing/explod-

ing gradient problem in these models [SWG20a, VSP17]. Note that we have introduced inter-time edges

when creating temporal graph, the observation representations ht
i already preserve temporal dependency

across timestamps. To encode the whole sequence, we introduce a global sequence vector ai to calculate

a weighted sum of observations as the sequence representation :

ai = tanh((
1

N

∑
t

ĥ
t

i)W a), ui =
1

N

∑
t

σ(aT
i ĥ

t

i)ĥ
t

i (2.6)

where ai is a simple average of node representations with nonlinear transformation towards the

system initial time tstart followed by a linear projection W a. The nonlinear transformation is defined as

ĥ
t

i = σ(W t[h
t
i||∆t]) + TE(∆t) with ∆t = (t − tstart), which is analogous to the Message calculation

in step 1. Note that if we directly use the observation representation ht
i from step 1, the sequence

representation ui would be the same when we shift the timestamp for each observation by ∆T , as we

only utilize the relative temporal gap between observations. By taking the nonlinear transformation,

we actually view each observation has an underlying inter-time edge connected to the virtual initial

node at system initial time tstart. In this way, the sequence representation ui reflects latent initial state

towards a given time tstart, and varies when the initial time changes. The process is depicted in Figure 2.1

(c). Finally, we have the approximated posterior distribution as in Eqn2.7 where f is a neural network

12

translating the sequential representation into the mean and variance of z0
i .

qϕ(z
0
i |o1, o2 · · · oN) = N

(
µz0i

,σz0i

)
, where µz0i

, σz0i
= f(ui) (2.7)

2.4.2 Generative model and decoder

We consider a generative model defined by an ODE whose latent initial state z0
i is sampled from the

approximated posterior distribution qϕ(z
0
i |o1, o2 · · · oN) from the encoder. We employ a graph neural

network (GNN) in Eqn 2.2 as the ODE function gi to model the continuous interaction of objects. A

decoder is then utilized to recover trajectory from the decoding probability p(ot
i|zt

i), characterized by a

neural network.
z0
i ∼ p(z0

i) ≈ qϕ(z
0
i |o1, o2 · · · oN)

z0
i , z

1
i · · · zT

i = ODESolve(gi, [z0
1, z

0
2 · · · z0

N], (t0, t1 · · · tT))

ot
i ∼ p(ot

i|zt
i)

(2.8)

2.4.3 Training

We jointly train the encoder, decoder and generative model by maximizing the evidence lower bound

(ELBO) as shown below. As observations for each object are not temporally aligned in a minibatch, we

take the union of these timestamps and output the solution of the ODE at them.

ELBO(θ, ϕ)

= EZ0∼qϕ(Z
0|o1,···oN)[log pθ(o1, . . . , oN)]−KL[qϕ(Z

0|o1, · · · , oN)∥p(Z0)]

= EZ0∼
∏N

i=1 qϕ(z
0
i |o1,··· ,oN)[log pθ(o1, · · · , oN)]−KL[

∏N
i=1 qϕ(z

0
i |o1, · · · , oN)∥p(Z0)]

(2.9)

2.5 Experiments

2.5.1 Datasets

We illustrate the performance of our model on three different datasets: particles connected by springs,

charged particles [KFW18a] and motion capture data [CMU03]. The first two are simulated datasets,

where each sample contains 5 interacting particles in a 2D box with no external forces (but possible

collisions with the box). The trajectories are simulated by solving two types of motion PDE for spring

system and charged system respectively [KFW18a] with the same number of forward steps 6000 and

13

then subsampling each 100 steps. To generate irregularly-sampled partial observations, for each particle

we sample the number of observations n from U(40, 52) and draw the n observations uniformly from

the PDE steps to get the training trajectories. To evaluate extrapolation task, we additionally sample 40

observations following the same procedure from PDE steps [6000, 12000] for testing. The above sampling

procedure is conducted independently for each object. We generate 20k training samples and 5k testing

samples for these two datasets respectively. For motion capture data, we select the walking sequences

of subject 35. Every sample is in the form of 31 trajectories, each tracking a single joint. Similar as

simulated datasets, for each joint we sample the number of observations n from U(30, 42) and draw the n

observations uniformly from first 50 frames for training trajectories. For testing, we additionally sampled

40 observations from frames [51, 99]. We split the different walking trials into non-overlapping training

(15 trials) and test sets (7 trials).

We conduct experiment on both interpolation and extrapolation tasks as proposed in [RCD19b]. For

all experiments, we report the mean squared error (MSE) on the test set. For all datasets, we rescale

the time range to be in [0, 1]. Our implementation is available online1. More details can be found in the

supplementary materials.

2.5.2 Baselines and Model Variants

Baselines. To the best of our knowledge, existing works on modeling multi-agent dynamic system with

underlying graph structure cannot handle irregularly-sampled partial observations, in which these models

require full observation at timestamp t in order to make prediction at timestamp t+1 [KFW18a, BPL16].

Therefore, we firstly compare our model with different encoder structures to infer the initial states.

Specifically, we consider Latent-ODE [RCD19b] which has shown to be successful for encoding single

irregularly-sampled time series without considering graph interaction among agents. Edge-GNN [GC19]

incorporates temporal information by viewing time gap as an edge attribute. Weight-Decay considers

a simple exponential decay function for time gap as similar in [CWL18], which models h(t + ∆t) =

exp{−τ∆t} · h(t) with a learnable decay parameter τ . The sequence representation of Edge-GNN and

Weight-Decay is the weighted sum of observations within a sequence. We additionally compare LG-ODE

against an RNN-based MTS model for handling irregularly-sampled missing values [CPC18] where the

graph structure is not considered. It jointly imputes missing values for all agents by simple concatenation

1https://github.com/ZijieH/LG-ODE.git

14

Figure 2.2: Visualization of interpolation results for spring system.

of their feature vectors. We compare it in the Interpolation Task which is to imputes missing values within

the observed sequences. After imputation, we employ NRI [KFW18a] which is a multi-agent dynamic

system model with regular observations and graph input to predict future sequences. We refer to this task

as Extrapolation Task. In what follows, we refer to the combination of these two models as RNN-NRI.

Model Variants. Our proposed encoder contains two modules: dynamic node representation network

followed by a temporal self-attention. To further analyze the components within each module, we conduct

an ablation study by considering five model variants. Firstly, module one contains two core components:

attention mechanism and learnable positional encoding within GNN for capturing temporal and spatial

dependency among nodes. We therefore remove them separately and get LG-ODE-no att, LG-ODE-no

PE respectively. We additionally compare our learnable positional encoding with manually-designed

positional encoding [VSP17] denoted as LG-ODE-fixed PE. Secondly, we apply various sequence

representation methods to test the efficiency of module two: LG-ODE-first takes the first observation in a

sequence as sequence representation and LG-ODE-mean uses the mean pooling of all observations as

sequence representation.

2.5.3 Results on Interpolation Task

Set up. In this task, we condition on a subset of observations (40%, 60%, 80%) from time (t0, tN) and

aim to reconstruct the full trajectories in the same time range. We subsample timepoints for each object

independently.

Table 2.1 shows the interpolation MSE across different datasets and methods. Latent-ODE performs

well on encoding single timeseries but fails to consider the interaction among objects, resulting in its

poor performance in the multi-agent dynamic system setting. Weight-Decay and Edge-GNN utilize

fixed linear transformation of sender node to model information loss across timestamps, which is not

15

Table 2.1: Mean Squared Error(MSE) ×10−2 on Interpolation task.

Springs Charged Motion

Observed ratio 40% 60% 80% 40% 60% 80% 40% 60% 80%

Latent-ODE 0.5454 0.5036 0.4290 1.1799 1.1198 0.8332 0.7709 0.4826 0.3603

Weight-Decay 1.1634 1.1377 1.6217 2.8419 2.2547 1.5390 1.9007 2.0023 1.6894

Edge-GNN 1.3370 1.2786 0.8188 1.5795 1.5618 1.1420 2.7670 2.6582 1.8485

NRI + RNN 0.5225 0.4049 0.3548 1.3913 1.1659 1.0344 0.5845 0.5395 0.5204

LG-ODE 0.3350 0.3170 0.2641 0.9234 0.8277 0.8046 0.4515 0.2870 0.3414

LG-ODE-first 1.3017 1.1918 1.0796 2.5105 2.6714 2.3208 1.4904 1.3702 1.2107

LG-ODE-mean 0.3896 0.3901 0.3268 1.1246 1.0050 0.9133 0.6415 0.5834 0.5549

LG-ODE-no att 0.5145 0.4198 0.4510 0.9372 0.9503 0.9752 0.6991 0.6998 0.7452

LG-ODE-no PE 0.4431 0.4278 0.3879 1.0450 1.0350 0.9621 0.4677 0.4808 0.4799

LG-ODE-fixed PE 0.4285 0.4445 0.4083 0.9838 0.9775 0.9524 0.4215 0.4371 0.4313

sufficient to capture the complex temporal dependency. RNN-NRI though handles the irregular temporal

information by a specially designed decay function, it conducts imputation without considering the graph

interaction among objects and thus obtaining a poor performance. By comparing model variants for

temporal self-attention module, we notice that taking the first observation as sequence representation

produces high reconstruction error, which is expected as the first observable time for each sequence

may not be the same so the inferred latent initial states are not aligned. Averaging over observations

assumes equal contribution for each observation and ignores the temporal dependency, resulting in its

poor performance. For module one, experiment results on model variants suggest that distinguishing the

importance of nodes w.r.t time and incorporating temporal information via learnable positional encoding

would benefit model performance. Notably, the performance gap between LG-ODE and other methods

increases when the observation percentage gets smaller, which indicates the effectiveness of LG-ODE on

sparse data. When observation percentage increases, the reconstruction loss of all models tends to be

smaller, which is expected. Figure 2.2 visualizes the interpolation results of our model under different

observation percentage for the spring system. Figure 2.3 visualizes the interpolation results for motion

capture data with 60% observation percentage.

2.5.4 Results on Extrapolation Task

Set up. In this task we split the time into two parts: (t0, tN1) and (tN1 , tN). We condition on the first half

of observations and reconstruct the second half. For training, we condition on observations from (t1, t2)

16

(a) Groundtruth.

(b) Predictions with 0.6 observation ratio.

Figure 2.3: Visualization of interpolation results for walking motion data.

and reconstruct the trajectories in (t2, t3). For testing, we condition on the observations from (t1, t3)

but tries to reconstruct future trajectories within (t3, t4). Similar to interpolation task, we experiment

on conditioning only on a subset of observations in the first half and run the encoder on the subset to

estimate the latent initial states. We evaluate model’s performance on reconstructing the full trajectories

in the second half.

Table 2.2: Mean Squared Error(MSE) ×10−2 on Extrapolation task.

Extrapolation Springs Charged Motion

Observed ratio 40% 60% 80% 40% 60% 80% 40% 60% 80%

Latent-ODE 6.6923 4.2478 4.3192 13.5852 12.7874 20.5501 2.4186 2.9061 2.6590

Weight-Decay 6.1559 5.7416 5.3712 9.4764 9.1008 9.0886 16.8031 13.6696 13.6796

Edge-GNN 6.0417 4.9220 3.2281 9.2124 9.1410 8.8341 13.2991 13.9676 9.8669

NRI + RNN 2.6638 2.4003 2.5550 7.1776 6.9882 6.6736 3.5380 3.0119 2.6006

LG-ODE 1.7839 1.8084 1.7139 6.5320 6.4338 6.2448 1.2843 1.2435 1.2010

LG-ODE-first 6.5742 6.3243 5.7788 9.3782 9.2107 8.4765 3.8864 3.2849 3.0001

LG-ODE-mean 2.2499 2.1165 2.2516 9.1355 8.7820 8.4422 1.3169 1.3008 1.2534

LG-ODE-no att 2.3847 2.1216 1.9634 7.2958 7.3609 6.7026 3.4510 3.2178 3.9917

LG-ODE-no PE 1.7943 1.8172 1.7332 6.9961 6.7208 6.5852 1.5054 1.2997 1.2029

LG-ODE-fixed PE 1.7905 1.7634 1.7545 6.4520 6.4706 6.3543 1.4624 1.2517 1.1992

Table 2.2 shows the MSE on extrapolation task. The average MSE in extrapolation task is greater

17

Figure 2.4: Visualization of extrapolation results for spring system. Semi-transparent paths denote

observations from first-half of time, from which the latent initial states are estimated. Solid paths denote

model predictions.

than interpolation task, which is expected as predicting the future is a more challenging task. Similar as

in interpolation task, when observation percentage increases, the prediction error of all models tends to

become smaller. LG-ODE achieves better results across different datasets and settings, which verifies the

effectiveness of our design to capture structural dependency among objects, and temporal dependency

within observation sequence. Specifically, RNN-NRI is a two-step model that first imputes each time

series into regular-sampled one to make it a valid input for NRI, and then predict trajectories with the

graph structure. LG-ODE instead is an end-to-end framework. The prediction error for RNN-NRI is

large and one possible reason is that we use estimated imputation values for missing data which would

add noise to NRI. We also notice that the performance drop due to the sparsity of observations is small in

LG-ODE compared with other baselines, which shows our model is more powerful especially when data

is sparse. We illustrate the predicted trajectories of spring system under different observation percentage

as shown in Figure 2.4.

2.6 Discussion and Conclusion

In this paper, we propose LG-ODE for learning continuous multi-agent system dynamics from irregularly-

sampled partial observations. We model system dynamics through a neural ordinary differential equation

and draw the latent initial states for each object simultaneously through a novel encoder that is able to

capture the interaction among objects. The joint learning of initial states not only captures interaction

among objects but can benefit the learning when an object only has few observations. We achieve

state-of-the-art performance in both interpolating missing values and extrapolating future trajectories. An

18

limitation of current model is that we assume the underlying interaction graph is fixed over time. In the

future, we plan to learn the system dynamics when the underlying interaction graph is evolving.

19

Part I

Injecting Data-Inspired Inductive Bias

20

CHAPTER 3

CG-ODE: Coupled Graph ODE for Learning Interacting System

Dynamics

Many real-world systems such as social networks and moving planets are dynamic in nature, where a

set of coupled objects are connected via the interaction graph and exhibit complex behavior along the

time. For example, the COVID-19 pandemic can be considered as a dynamical system, where objects

represent geographical locations (e.g., states) whose daily confirmed cases of infection evolve over time.

Outbreak at one location may influence another location as people travel between these locations, forming

a graph. Thus, how to model and predict the complex dynamics for these systems becomes a critical

research problem. Existing work on modeling graph-structured data mostly assumes a static setting.

How to handle dynamic graphs remains to be further explored. On one hand, features of objects change

over time, influenced by the linked objects in the interaction graph. On the other hand, the graph itself

can also evolve, where new interactions (links) may form and existing links may drop, which may in

turn be affected by the dynamic features of objects. In this paper, we propose coupled graph ODE: a

novel latent ordinary differential equation (ODE) generative model that learns the coupled dynamics of

nodes and edges with a graph neural network (GNN) based ODE in a continuous manner. Our model

consists of two coupled ODE functions for modeling the dynamics of edges and nodes based on their

latent representations respectively. It employs a novel encoder parameterized by a GNN for inferring the

initial states from historical data, which serves as the starting point of the predicted latent trajectories.

Experiment results on the COVID-19 dataset and the simulated social network dataset demonstrate the

effectiveness of our proposed method.

3.1 Introduction

Real-world systems in various domains such as physics, biology, robotics can be viewed as dynamic

interacting systems, where a set of objects interact with each other and demonstrate complex behavior

21

longitudinally. Learning the underlying dynamics of an interacting system is essential in many real-world

applications. For example, learning the movement of robotics can improve planning and control in

future design [LWZ19b]; studying the trajectories of moving planets can discover potential new physical

laws [CSB20]; understanding the spread of COVID-19 can help governments develop disease prevention

and intervention plans [CPK21], etc. With the recent advances in deep learning techniques, researchers

have started building neural-based simulators, aiming to approximate complex system interactions

with neural networks [KFW18a, LWZ19b, BPL16, CUT16, HSW20b]. As interacting systems contain

multiple objects and are thus graph structured data, existing work [BPL16, KFW18a] usually employs

graph neural networks (GNN) to reason how objects interact and to predict object (node) features in the

future. However, a fundamental assumption behind a vast majority of work is that the interaction graphs

among objects are static [lDH17], such as particles connected by springs where the spring structure

remains unchanged. Nonetheless, the dynamic nature of many real-world systems does not only exhibit

in the evolution of node features, but may also manifest as the dynamic changes in the graph structure.

One example is the spread of COVID-19 within U.S., where nodes are 50 states and the interaction graph

represents the population travel patterns between states. Both the daily outbreak statistics (such as the

number of new cases of each state) and the mobility patterns between states (such as the number of

people traveling from one state to another) evolve over time [CPK21].

Even though the graph structure and node features are two distinct data representations, they are

inherently correlated [lDH17]. On one hand, node features are likely to be affected by other nodes

whom they interact with in the graph. In the aforementioned COVID-19 example, New Jersey’s daily

confirmed cases are more likely to be affected by states with large population inflow (such as New York,

Pennsylvania) than by others such as California. This is shown in Figure 3.1 where the daily death counts

of New Jersey is more correlated with that of New York than California. Similar phenomena can also

be observed in social networks where individuals are likely to be influenced by their friends [GSG17,

JHH20, WWW20, WHL21a, WYW18]. On the other hand, the dynamics of node features may also

affect the interaction. For example, the states’ severity of the epidemic situation may, in short term,

impact the population flow between them as shown in Figure 3.2. Inspired by these observations, we

propose a novel ordinary differential equation (ODE) based generative model: coupled graph ODE, for

predicting the dynamics of node features by jointly considering the evolution of nodes and edges.

In order to model the co-evolution of nodes and edges, we design two coupled ODE functions to

22

05
-13

05
-17

05
-21

05
-25

05
-29

06
-02

06
-06

06
-10

days

0

50

100

150

200

In
cr

ea
se

d
nu

m
be

r o
f d

ea
th

s

California
New Jersey
New York

Figure 3.1: COVID-19 death count time series of three states in U.S. Correlation is higher between two

states that have higher population flow.

CA IL MI NJ NY TX

CA
IL

M
I

NJ
NY

TX 0

500

1000

1500

2000

2500

3000

CA IL MI NJ NY TX

CA
IL

M
I

NJ
NY

TX 0

500

1000

1500

2000

2500

3000

(a) Population flow on May.11 (b) Population flow on Aug.8

Figure 3.2: Population flow in May and August with self-loop flow excluded (Diagonal entries). May has

less population flow due to the "close border" policies in many states.

model the continuous evolution of nodes and edges in the latent space respectively, considering the

mutual influence between them. The continuous nature of our model allows it to track the evolution

of the underlying system from irregular observations, and is expected to offer improved performance

23

compared to using discrete methods to model a continuous dynamical system such as the spread of

COVID-19 [PMP19b, CPC18]. For the edge ODE, the widely-used generative process assumes that

the new edges are completely determined by the features of source and target nodes [GSG17, HHN19].

However, we add an additional term to model the self-evolution of edges. Such self-evolution is widely

observed in many real-world systems. For example, the population flow between two states will change

naturally due to some seasonal factors (e.g. holidays), which is not necessarily related to the node features

(severity of the epidemic situation). Likewise, for the node ODE, we consider the self-evolution of nodes,

as well as the potential influence received from neighbors in the interaction graph.

Since we propose to learn continuous system dynamics using ODEs, a fundamental challenge lies in

how to estimate the latent initial states for the whole system. We borrow a similar idea from [RCD19b,

HSW20b] where a VAE-based latent ODE model is proposed to estimate the latent initial states with

uncertainty. As objects are highly-coupled in interacting systems, we propose a novel GNN as the encoder

which infers the latent initial states for all objects simultaneously. Overall, our model consists of three

parts that are jointly trained together: (1) An encoder that infers the latent initial states for all objects

and edges simultaneously considering their interaction; (2) A generative model parameterized by two

coupled ODEs that learns the evolution pattern for edges and nodes respectively. (3) Two decoders for

nodes and edges respectively which project the latent states for nodes and edges to the original input

spaces. We conduct extensive experiments on the COVID-19 dataset and one simulated social network

dataset. Experiment results verify the effectiveness of our proposed method, especially for long-range

predictions. We also conduct case studies on how travel-related policies could affect the number of

confirmed cases in the future on the COVID-19 dataset, by adding intervention to the interaction graph,

which has demonstrated that our model is a promising tool for policymakers.

3.2 Problem Formulation

We consider a dynamical system with N interacting objects. Our input consists of the trajectories

(features) of these objects and the directed weighted interaction graph among them which changes over

time. We denote the snapshots of the interaction graph as G =
{
G1, G2, . . . , GT

}
, where Gt = (V , E t) is

the interaction graph at timestamp t with V denoting the set of N interacting objects and E t being the

set of directed weighted edges, respectively. For every pair of connected nodes i, j ∈ V at timestamp t,

wt
i→j ∈ R denotes the weight of the directed edge linking them. The edge weight can be asymmetric,

24

i.e., wt
i→j ∈ R may not necessarily hold the same value as wt

i→j ∈ R. We use A =
{
A1, A2, . . . , AT

}
to

denote the weighted adjacency matrix sequence.

We denote the node trajectory sequence as X = {X1, X2, . . . , XT}, where X t is the feature matrix

of all N objects at timestamp t. We use xt
i to denote the feature vector of object i at timestamp t. Based

on the observed coupled trajectories of a dynamical system, i.e. X ,A, our goal is to learn the underlying

dynamics which is built upon the latent representations for nodes zt
i ∈ Rd and edges zt

i→j ∈ Rd, and to

utilize them to forecast trajectories X t(t > T) in the future.

3.3 Related Work and Preliminaries

Ordinary Differential Equations (ODE) for Multi-agent Dynamical Systems. The dynamic nature of

a multi-agent dynamical system can be captured by a series of first-order ordinary differential equations

(ODE), which describes the state evolution for a set of M latent dependent variables over continuous

time t ∈ R. Existing work [RCD19b, CRB18a] usually associates each object with a latent state variable

zti ∈ Rd, i = 1, 2 · · ·N , with the corresponding ODE: żt
i :=

dzt
i

dt
= g (zt

1, z
t
2 · · · zt

N), which describes

how the trajectory of each object changes over time. The ODE function g is usually hand-crafted by

domain experts in the past and some recent studies [RCD19b, HSW20b] have proposed to parameterize

it as a neural network which can be learned from data. To capture the continuous interaction among

objects, graph neural network (GNN) is employed to parameterize the ODE function g in a recent

study [HSW20b]. Given the latent initial states z0
1, · · · z0

N ∈ Rd for each object, zti is the solution to an

ODE initial-value problem (IVP), which can be evaluated at any desired time as shown in Eqn 7.1 using a

numerical ODE solver such as Runge-Kuttais [MSH19]. The latent state zti is further decoded to generate

the predicted trajectory at timestamp t: xt
i = fdec(z

t
i). Given the ODE function, the latent initial states z0i

for each object determine the whole trajectory.

zT
i = z0

i +

∫ T

t=0

g
(
zt
1, z

t
2 · · · zt

N

)
dt (3.1)

However, one major limitation of these methods is that, they assume the interaction graph among

agents is static. Therefore, the set of M latent state variables zti are only for nodes, i.e. M = N . In reality,

the network structure may change over time, which requires the modeling of latent edge state zti→j as

well. Moreover, the evolution of latent node and edge states are highly-coupled. Taking the spread of

25

COVID-19 as an example, the number of cases for each state xt
i can be affected by other states xt

j via the

(past) population flow between them. On the other hand, the (future) population flow between two states

may change in response to the varying severity of states’ epidemic situation xt
i, x

t
j .

GNN for Static Graphs. GNN is a class of neural networks that operate directly on graph-structured data

by passing local messages[KW17, VCC18, XHL19]. It has been widely used for approximating pair-wise

object interactions in multi-agent dynamical systems[KFW18a, CUT16]. The majority of work on GNN

mainly focus on static graphs and is designed for tasks such as node classification [KW17, VCC18],

graph clustering and matching [BDB19], etc. While various architecture exists, the update procedure for a

single GNN layer can be characterized by two major operations: (1) Extracting information. For example,

graph convolution network (GCN) [KW17] utilizes the normalized Laplacian as the attention weight for

attending each sender node with a linear transformation. It could be regarded as an approximation of

spectral domain convolution of the graph signals. (2) Aggregating information from neighbors. Basic

aggregation operators including mean, sum and max, while sophisticated pooling and normalization

functions are also been proposed. In multi-agent dynamical systems where edges are static and only

node attributes evolve, static GNNs are often employed as neural physical simulators to capture the

complex interaction among objects, which reveals how system changes from timestamp t to timestamp

t+1 [BPL16]. However, discrete GNNs may have inferior performance compared with continuous graph

ODE-based methods when the system is continuous by nature, such as the spread of COVID-19. They

also fail to handle irregularity and partial observations in multi-agent dynamical systems, as opposed to

the aforementioned ODE-based methods [HSW20b].

GNN for Dynamic Graphs. In many real-world applications, both nodes and edges are dynamic such

as the traffic network [PMP19b]. In order to learn hidden patterns from those dynamic graphs, spatial-

temporal GNNs are proposed which is able to consider spatial and temporal dependency at the same time.

To achieve this, existing approaches integrate static graph convolutions to capture spatial dependency with

RNNs,CNNs or self-attention mechanism to model temporal dependency [SWG20b, HHN19, KFW18a].

The learned node representations can be utilized for downstream tasks such as link prediction [HHN19,

SWG20b, GSG17, HDW20b]. However, they usually assume the new edges are solely determined by

the end nodes, while in many real-life scenarios like the spread COVID-19, the self-evolution of edges

also exists. Also, they are discrete models and may fail to model dynamical systems that are continuous

by nature, compared to ODE-based methods.

26

Latent Graph ODE model for Dynamical Systems. Dynamical systems with static interaction graph is

a special case in our setting. As mentioned in Sec 3.1, [HSW20b] employed GNN as the ODE function

and it follows the framework of variational autoencoder (VAE) [KW14], where an approximate posterior

distribution qϕ (z
0
i | X ,A) is computed over each latent initial state for an object from the encoder. The

prior distribution p(z0i), which is a standard normal distribution, adds significant regularization over how

latent distribution looks like via the Kullback–Leibler divergence term in the loss function, which differs

VAE from other autoencoder frameworks. z0i is then sampled from the posterior distribution and the

entire trajectory is determined by z0i and the generative model defined by the ODE function g for all

objects. Finally, the decoder outputs the predicted trajectories by mapping zti to the original feature space:

xt
i = fdec(z

t
i). We model dynamical systems with evolving interaction graph under the same framework,

where in addition to modeling latent states for nodes, we also incorporate latent states for edges. Then

the challenges lie in: (1) How can we infer the initial states for both edges and nodes considering their

mutual influence? (2) How to specify the ODE functions for guiding the co-evolution for node and edge

latent states respectively?

3.4 Model

In this section, we present Coupled Graph ODE (CG-ODE) for learning continuous multi-agent dynamical

systems with evolving interaction graph. The overall framework is depicted in Figure 7.1. Following the

framework of VAE, CG-ODE consists of three parts that are trained jointly: (1) An encoder that infers

the latent initial states for nodes and edges considering the interaction among objects. (2) A generative

model characterized by two coupled ODE functions for edges and nodes respectively, with the goal of

learning the latent dynamics of the system. (3) Two decoders that generate the predicted nodes and edges

based on the decoding likelihood determined by the latent states p (xt
i | zt

i) and p
(
wt

i→j | zt
i→j

)
.

3.4.1 Encoder for Initial States

Given the trajectory sequence X and the snapshots of the interaction graph among objects, the encoder

firstly computes a posterior distribution of latent initial state for each object: qϕ (z
0
i | X ,A), from

which z0i is sampled. As in multi-agent dynamical systems, objects are highly-coupled and their mutual

influence is propagated through the directed weighted edges, we compute the distributions for all objects

simultaneously by considering both their trajectories and the dynamic interaction graph among them.

27

Step1. Dynamic Node Representation Learning
𝑡"# 𝑡"$ 𝑡%

𝑂'

𝑂(

𝑂)

𝑂(

𝑂'

𝑂)
𝑡"*

GNN
Module

Encoder

Temporal Edges Spatial Edges

Coupled-ODE for nodes:

Coupled-ODE for edges:

Generative Model

Natural
Physique

Neighbor
Aggregation

Natural
Recovery

+,-

./
= 𝜎(3𝐴/𝑍6𝑊) - 𝑍6 + 𝑍%

.89→;
-

+6
= f=(𝑧(6||𝑧)6) + fB=CD(𝑧(→)6)

𝐴()/ = fE+FE*GHIJE(𝑧(→)6) 3𝐴/ = 𝐷"$𝐴/

𝑍6 3𝐴/

𝑧)→(%

Temporal
Self-attention

Step2. Sequence Representation Learning

fLM+E*E+FE

Latent Node
Initial States

Latent Edge
Initial States

𝑧(→)%

Encoder:Latent Initial
States Inference.

Generative Model:
Coupled-ODE for nodes and edges Decoder

Step1: Dynamic Node
Representation Learning

Step2: Sequence
Representation Learning

𝑧(%, 𝑧(→O% 𝑧(/, 𝑧(→O/

𝑥(/, 𝑤(→O/

𝑠𝑎𝑚𝑝𝑙𝑒

𝑧(%

𝑧)%

𝑧'%

𝑝(𝑥(/|𝑧(/)

𝑝(𝑤(→)/ |𝑧(→)/)

Decoder

𝑡𝑖𝑚𝑒

Architecture Flow

𝑥(/

𝑥)/

𝑥'/

Figure 3.3: The Overall framework of Coupled Graph ODE: Firstly, the encoder computes the latent

initial states for edges and nodes respectively based on the observed sequence of node attributes and

adjacency matrix sequence so far with two steps: Step1: Dynamic node representation learning over

the constructed temporal graph. Step2: Sequence representation learning for summarizing over each

observation sequence. Then the generative model calls the ODE solver to solve the two coupled ODEs

for nodes and edges, which outputs the predicted latent states for nodes and edges in the future. Finally,

decoders generate the predicted nodes and edges based on their respective decoding likelihood determined

by the latent states.

28

After inferring the latent initial states for all nodes, we generate the latent initial states for edges based on

the inferred node initial states.

3.4.1.1 Latent initial states for nodes

We now present how to infer the latent initial states for each object. Instead of encoding the temporal

pattern for each object independently using an RNN [RCD19b], we incorporate the structural pattern

by constructing a temporal graph as shown in Figure 7.1 Step 1, where each node is an observation of

an object at a specific timestamp. For edges, we firstly construct spatial edges between two objects at

each timestamp t based on the corresponding weighted adjacency matrix At, where the edge weight is

naturally given by wt
i→j . Then, to preserve the autoregressive nature of each trajectory, we only introduce

directed temporal edges wi(t)→i(t′) where t < t′ are the timestamps of two consecutive observations of i.

We use wi(t)→j(t′) as a uniform expression for both spatial and temporal edges, i.e. for spatial edges (when

t = t′), wi(t)→j(t′) is equivalent to wt
i→j; for temporal edges (when i = j, t < t′), wi(t)→i(t′) becomes

wt
i→i. By introducing temporal edges and stacking multiple layers of GNN, we can capture the influence

from historical observations to the current observation.

Based on the constructed temporal graph, we infer the latent initial states for objects via a two-step

process similar as in [RCD19b]: 1.) Dynamic Node Representation Learning, where we aim to learn a

structural representation hi(t) for each observation xt
i. 2.) Sequence Representation Learning, where

we employ a self-attention mechanism to summarize each observation sequence into a fixed-dimensional

vector ui. The sequence representation ui is then utilized to generate the mean and variance for the

Gaussian posterior distribution for the latent initial state of object z0i .

To learn a structural representation for each observation over the weighted, directed temporal graph,

we propose an attention-based spatial-temporal GNN that attends over the immediate neighbors of a

node as defined in Eqn 3.2. Here hl−1
j(t′) is the representation of object j at timestamp t′ from layer l − 1,

σ(·) is a non-linear activation function and d is the dimension of the latent node representations. The

attention score elj(t′)→i(t) for both spatial edges (where t = t′) and temporal edges (where i = j and

t < t′), is defined as the multiplication of the corresponding edge weight, and the computed affinity

score based on representations of sender node and target node. We adopt the dot-product to compute

the affinity score where Wv,Wk,Wq projects input node representations into values, keys and queries.

The learned attention coefficient is normalized via softmax across all neighbors. As the temporal graph

29

contains spatial and temporal edges, we add temporal encoding [VSP17, RCD19b] to the sender node

representation in order to distinguish them. Finally, we stack L layers to get the final representation for

each node: hi(t) = hL
i(t)

hl
i(t) = hl

i(t) + σ

 ∑
j(t′)∈Ni(t)

elj(t′)→i(t) ×Wvĥ
l−1
j(t′)


elj(t′)→i(t) = wj(t′)→i(t) × αl

j(t′)→i(t)

αl
j(t′)→i(t) =

(
Wkĥ

l−1
j(t′)

)T (
Wqh

l−1
i(t)

)
· 1√

d
(3.2)

ĥl−1
j(t′) = hl−1

j(t′) + TE(t′ − t)

TE(∆t)2i = sin

(
∆t

100002i/d

)
, TE(∆t)2i+1 = cos

(
∆t

100002i/d

)
Next, we employ a self-attention mechanism to generate sequence representation for each object,

which is then utilized to compute the posterior distribution for the latent node initial state. Compared with

traditional recurrent models that encode temporal pattern within each sequence such as RNN, LSTM,

self-attention mechanism can be better parallelized for speeding up the training process and alleviate

the vanishing/exploding gradient problem in these models [SWG20b]. We introduce a global sequence

vector ai to calculate a weighted sum of observations as the sequence representation, where ai is the

average of node representations with a nonlinear transformation Wa. The process is shown in Figure 7.1

Step 2 and Eqn 5.3, where ĥi(t) = hi(t) + TE(t).

ui =
1

N

∑
t

σ
(
aTi ĥi(t)ĥi(t)

)
, ai = tanh

((
1

N

∑
t

ĥi(t)

)
Wa

)
(3.3)

Finally, we compute the mean and variance of the approximated posterior distribution from the

sequence representation ui, and sample z0i from it.

qϕ
(
z0i | X ,A

)
= N

(
µz0i

,σz0i

)
, µz0i

, σz0i
= ftrans (ui)

z0i ∼ p
(
z0i
)
≈ qϕ

(
z0i | X ,A

) (3.4)

30

3.4.1.2 Latent initial states for edges

Given the latent initial states for a pair of nodes z0i , z
0
j , the latent initial state for each edge is given by

Eqn 3.5, where || denotes the concatenation operation.

z0i→j = fedge
(
[z0i ||z0j]

)
(3.5)

3.4.2 ODE Generative Model and Decoder

After computing the latent initial states for nodes and edges, we now define the ODE function that

drives the system to move forward. In multi-agent dynamical systems, the latent node and edge states

are co-evolving along with time. We therefore propose the coupled ODE functions for edge and

nodes respectively as shown in Eqn 3.6, where Zt ∈ RN×d denotes the latent state matrix for all N

objects, W ∈ Rd×d is a linear feature transformation matrix. The node ODE function consists of three

parts and can be understood from an epidemic modeling perspective [XQT20]. If we view Zt as the

infection conditions for all states in the U.S at timestamp t, the first term accounts for the infection from

neighbors; the second term −Zt can be viewed as natural recovery and the third term Z0 is for natural

physique [BBH19]. Note that we use the normalized adjacency matrix Ã = D−1A to compute message

passing from neighbors, where D is the degree matrix of A defined as Dii =
∑

j Aij . This is because when

solving the ODE using a numerical solver, it is equivalent to stack multiple GNN layers as time progresses.

Using an unnormalized adjacency matrix would therefore cause the potential gradient exploding problem.

As our interaction graph is asymmetric, we normalize it to D−1A instead of D− 1
2AD− 1

2 for symmetric

adjacency matrix. The edge ODE function consists of two parts. fe : R2d → Rd is a mapping function that

transforms the concatenation of two nodes to the latent state of their corresponding edge. fself : Rd → Rd

accounts for the self-evolution of edges. For example, the population flow between California and

Washington may change over time due to factors like holidays and quarantine policies, which may not be

driven by the severity of COVID-19 at these two locations, i.e. zti and ztj . fedge2value : Rd → R transforms

the latent edge states to a scalar, which is then utilized in the node ODE function.

dZt

dt
= σ

(
ÃtZtW

)
− Zt + Z0

dzti→j

dt
= fe

(
[zti ||ztj]

)
+ fself

(
zti→j

)
(3.6)

At
ij = fedge2value

(
zti→j

)
, Ãt = D−1At

31

Given the coupled ODE functions and the initial states for nodes and edges, the trajectories for all

objects are determined. We compute the predicted trajectories for each object and the graph based on the

decoding likelihood p (xt
i | zt

i) and p
(
wt

i→j | zt
i→j

)
with two decoding functions fdecN, fdecE respectively.

3.4.3 Training

Now that we have described all the elements, the overall training process goes as follows: Each training

sample is separated into two halves along the time, where we condition on the first half [T0, T1] in order

to predict/reconstruct the second half [T1, T2]. Given the trajectory sequence X and weighted adjacency

matrix sequence A, we firstly run the encoder to compute the posterior distribution qϕ (z
0
i | X,A) for

each object, based on the first half. Then we sample the latent node initial states z0i from it for all

objects, and compute the latent initial states for edges as z0i→j = fedge
([
z0i ∥z0j

])
. We then run the

generative model defined by two coupled ODE functions to compute latent states for predicted nodes

and edges in the future. Next, we run the decoder to compute the mean of each decoding distribution as

:µt
i = fdecN(z

t
i), µ

t
i→j = fdecE(z

t
i→j), which is treated as the predicted value for edges and nodes. Finally,

we jointly train the encoder, generative model and decoder by maximizing the evidence lower bound

(ELBO) as shown below, where the first term is the reconstruction loss for nodes and edges, and the

second term is the KL divergence. We additionally introduce a hyperparameter λedge for balancing the

reconstruction loss of edges and nodes.

ELBO (θ, ϕ) = EZ0∼
∏N

i=1 qϕ(z0i |X ,A) [log pθ (X ,A)]−KL[
N∏
i=1

qϕ
(
z0i | X ,A

)
∥p(Z0)]

= (1− λedge)Lnode + λedgeLedge −KL[
N∏
i=1

qϕ
(
z0i | X ,A

)
∥p(Z0)]

(3.7)

The reconstruction loss is estimated as below where the constant σ is the standard derivation of each prior

distribution. The overall pipeline is illustrated in Algo 1.

Lnode = −
∑
i

∑
t

∥xt
i − µt

i∥
2

2σ2

Ledge = −
∑
i

∑
j

∑
t

∥∥wt
i→j − µt

i→j

∥∥2
2σ2

(3.8)

32

Algorithm 1: Coupled Graph ODE training procedure.
Input: Adjacency matrix sequence A =

{
A1, A2, . . . , AT

}
;

Node feature sequences X =
{
X(1), X(2), . . . , X(T)

}
.

Output: Model parameters ϕ and θ.

1 while model not converged do

2 for Each training sample do

3 Separate the sequence into observed half [T0, T1] and predicted half [T1, T2];

4 //For the encoder:

5 Construct the temporal graph as shown in Figure 7.1 Step 1 based on the observed data in

the first half;

6 Conduct dynamic node representation learning on the temporal graph according to

Eqn 3.2;

7 Generate sequence representation for each object according to Eqn 5.3, then sample latent

initial states z0i for each object according to Eqn 5.4;

8 Generate latent initial state z0i→j for each edge according to Eqn 3.5;

9 //For the generative model:

10 Given initial nodes, edges state, and timestamps to predict [T1, T2], solve the coupled

ODE in Eqn 3.6;

11 //For the decoder:

12 Compute predicted nodes and edges based on the decoding likelihood p (xt
i | zt

i) and

p
(
wt

i→j | zt
i→j

)
respectively;

13 end

14 Update the parameters ϕ and θ by optimizing ELBO loss in Eq. 3.7;

15 end

33

3.5 Experiments

In this section, we present the evaluation results over our model. We first introduce the dataset we used,

followed by our experimental results and analysis.

3.5.1 Experiment Setup

Dataset. We conduct experiments on the COVID-19 data as well as the simulated social network data

from [GSG17]. For the COVID-19 dataset, we utilize the daily trendency data [DDG20] from the Johns

Hopkins University (JHU) Center for Systems Science and Engineering1 to train our model for the

United States. More specifically, we focus on predicting the state-level daily cumulative deaths. For node

features, we choose five out of ten dynamic features provided by JHU , which are: #Confirmed, #Deaths,

#Recovered, Mortality-Rate and Testing-Rate. Details about their semantic meaning and preprocessing

can be found in Appendix. Additionally, we utilize the population for each state as one static feature, which

has been widely used in many existing disease prediction models [Het00, ZWX20, WXW20, YWG20].

We use the mobility data provided by Safegraph2 to construct the interaction graph. SafeGraph is a

company that aggregates anonymized location data from numerous mobile applications [CPK21]. The

mobility data captures the movement of people between census block groups (CBGs) and we group

them by states to form the daily population flow including in-state flow (See Appendix for details). We

additionally use the in-state flow as the sixth node dynamic feature, thus each node has seven features in

total. The social network data simulates the opinion migration of individuals in a social network over

time [GSG17]. We set the number of nodes as 80 and generate 399 timestamps. The initial positions

(opinions) of individuals follow uniform distribution in a 2-d space. We set the noise parameter as 0.2,

the sparsity parameter as e−0.4.

Data Split and Task. We train our model in a sequence to sequence setting where we split the

time of each training sample into two parts [T0, T1] and [T1, T2]. We condition on the first half of

observations and reconstruct the second half. To achieve this, we generate training samples by setting

three hyperparameters: prediction length, condition length and interval, where prediction length is the

size of the second half; condition length is the size of the first half, and interval is the overlap between two

1https://github.com/CSSEGISandData/COVID-19

2https://www.safegraph.com/covid-19-data-consortium

34

consecutive training samples. We generate different training samples to train our model when predicting

at different horizons. For the COVID-19 dataset, we utilize data from April.12.2020 to Nov.30.2020

to train our model and test the performance on data from Dec.01.2020 to Dec.31.2020. For the social

network dataset, we utilize data from the first 320 timestamps to make predictions in timestamps 321-399.

Table 3.1: Mean Absolute Percentage Error (MAPE) for Cumulative Deaths

Step Length Pred Date UCLA-SuEIR UT-Mobility Columbia IHME LSTM NRI VGRNN CG-ODE

1-week

-ahead

Nov.29-Dec.05 0.03297 0.02707 0.02001 - 0.08094 0.07784 0.06807 0.02144

Dec.07-Dec.12 0.02283 0.03736 0.02455 0.02458 0.08363 0.07448 0.06086 0.02653

Dec.14-Dec.19 0.01946 0.04178 0.01443 - 0.07144 0.06462 0.06102 0.01997

Dec.21-Dec.26 0.01851 0.05460 0.02595 - 0.04912 0.04616 0.04297 0.01849

Average 0.02344 0.04020 0.02124 0.02458 0.07128 0.06578 0.05823 0.02161

2-weeks

-ahead

Nov.29-Dec.12 0.11036 0.07119 0.08194 - 0.15922 0.15004 0.13791 0.04341

Dec.07-Dec.19 0.07951 0.05830 0.09248 0.06252 0.14873 0.13782 0.12812 0.04702

Dec.14-Dec.26 0.06356 0.04112 0.05174 - 0.13012 0.11423 0.10712 0.03709

Average 0.08448 0.05687 0.07539 0.06252 0.14602 0.13403 0.12438 0.04251

3-weeks

-ahead

Nov.29-Dec.19 0.17361 0.13255 0.13721 - 0.11793 0.10752 0.10624 0.04513

Dec.06-Dec.26 0.13116 0.09570 0.14445 0.10671 0.19561 0.18088 0.17322 0.09832

Average 0.15239 0.11413 0.14083 0.10671 0.15677 0.14420 0.13973 0.07173

Table 3.2: Mean Absolute Percentage Error (MAPE) for Social Data.

Pred Length 10 20 40

LSTM 0.12419 0.37031 0.69579

NRI 0.28879 0.41980 0.68417

VGRNN 0.11312 0.27789 0.56763

CG-ODE 0.12359 0.26340 0.45434

3.5.2 Baselines

For both datasets, we compare with the following three discrete neural network-based methods.

• LSTM [SJ97]: A classic recurrent neural network (RNN) that learns the dynamics of each node

independently.

• NRI [KFW18a]: A VAE-based relation inference model. The encoder infers the static graph

structure among nodes and the GNN-based decoder uses the inferred graph to generate the node

features in the future.

35

• VGRNN [HHN19]: A VAE-based graph recurrent neural network that jointly learns the evolution

of network topology and node attribute changes.

For the COVID-19 dataset, we additionally considers traditional statistical models which learn the

dynamic for each state (node) independently. We choose the following four baselines developed by

different institutions and obtain their predictions from the forecast hub3 which is officially used by the

centers for disease control and prevention (CDC)4.

• UCLA-SuEIR [ZWX20]: A SuEIR model which is a variant of the SEIR [Het00] model consider-

ing both untested and unreported cases. The model considers reopening and assumes susceptible

population will increase after the reopening. Parameters are learned via machine learning algo-

rithms.

• IHME [tM20]: A non-linear curve-fitting method with the assumption that current interventions

remain unchanged.

• UT-Mobility [WTD20]: A non-linear curve-fitting method where mobility data within each state

is utilized to quantify the changing impact of social-distancing.

• Columbia [WXW20]: A survival-convolution model with piece-wise transmission rates that

incorporates incubation period and provides a time-varying effective reproductive number.

3.5.3 Performance Evaluation

We evaluate the performance of our model based on Mean Absolute Percentage Error (MAPE) as shown

in Table 3.1 and Table 3.2. For the COVID-19 dataset, as the prediction results for statistical baselines are

obtained from their weekly official submissions to CDC, we compare the performance across all models

using the same weekly prediction periods. Specifically, Pred Date denotes the targeted prediction period

while Step Length denotes the number of days before the prediction is made. For example, for Pred Date

of Nov.29 - Dec.05, the prediction is made for Dec.05 by using the data up to Nov.29. Therefore it is a

1-week-ahead prediction.

3https://github.com/reichlab/covid19-forecast-hub/tree/master/data-processed

4https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html

36

We first observe that CG-ODE is able to outperform all baselines in long-term predictions by a big

margin while achieves similar short-term prediction performance. In both datasets, there is a wider

performance gap between CG-ODE and other baselines (e.g. LSTM) that do not consider the interaction

among objects, when predicting longer-range node attributes. This indicates that the interaction graph

plays a more important role in facilitating long-term predictions. Similar observation can be found

in some dynamic physical systems such as particles connected by springs [HSW20b]: to predict the

location for each object in a spring system, usually the object’s own velocity can be a good approximation

for predicting the location at the next timestamp, while it fails to predict locations in the longer-range

without considering its interaction among objects. Secondly, neural network-based baselines fail to

produce accurate predictions for the COVID19-dataset, which is expected as they are discrete models

and may fail to capture the underlying dynamics for a continuous interacting system. Among three

neural network-based models, by comparing LSTM with NRI and VGRNN, where the latter two consider

underlying interaction among objects and LSTM only models the trajectory for each state independently,

we found that by jointly modeling the evolution of graph and node attributes, models can achieve better

prediction results. However, NRI performs bad on the social network dataset. This is because the topology

change in the social network dataset is more sharp than that of the COVID-19 dataset, and the static

network topology assumption in NRI would no longer holds. Among four statistical methods, we observe

that UT-Mobility shows better performance in long-term predictions than others. This indicates that the

mobility data can serve as a useful signal for predicting the spread of COVID-19. However, UT-Mobility

only utilizes the mobility data for each state independently, instead of utilizing it to model the interaction

among states as in our model, thus it achieves worse prediction results compared to CG-ODE.

Hyperparameter Study. We then study two important hyperparameters in CG-ODE in the COVID-

19 dataset, which are λedge in Eqn 3.7 for balancing the reconstruction loss for nodes and edges, and the

condition length for different prediction horizons. Figure 3.4 shows the MAPE changes as a function

of λedge for three prediction horizons respectively. First, we can see that the optimal λedge for 1-week-,

2-week- and 3-week-ahead predictions are 0.3, 0.4, 0.5 respectively, which increases when predicting

node attributes in the longer range. This is consistent with the prediction errors illustrated in Table 3.1,

where the performance gap between our models and other baselines that do not consider graph interaction

increases, when predicting longer-range node attributes. They indicate that the interaction graph plays a

more important role in facilitating long-term predictions. Second, for all of the three prediction horizons,

37

0.0 0.2 0.4 0.6 0.8 1.0
edge

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
M

AP
E

1 wk
2 wks
3 wks

Figure 3.4: MAPE as a function of λedge on the COVID-19 dataset

when λedge = 0, the MAPE increases sharply as the model is only trained to recover the node attributes,

without supervision from the dynamic interaction graph. In this case, our model has degenerated to a

relation inference model where the ground truth graph is not known during training and is learned in

an unsupervised way. Notably, CG-ODE is able to achieve comparable results for the 3-week-ahead

predictions compared with statistical baselines even when λedge = 0, which verifies the effectiveness of

our co-evolution model and the importance of introducing interaction graph for long-term predictions.

Last, when λedge = 1, our model is only trained for recovering the dynamic interaction graph, and

learns the dynamic node attributes in an unsupervised way. Therefore, the MAPE increases as expected.

However, the prediction error is still comparable with some statistical baselines especially in the long-term

prediction. For example in the 3-week-ahead prediction, UCLA-SuEIR has MAPE of 0.15239 while

CG-ODE has MAPE of 0.16245 when λedge = 1. This shows the capability of CG-ODE of learning on

semi-supervised data or sparse data.

Figure 3.5 shows the MAPE changes as a function of condition length for three different prediction

horizons. The optimal condition length for 1-week-, 2-week- and 3-week-ahead predictions are 2 weeks,

3 weeks, 4 weeks respectively, which increases when predicting node attributes in the longer range. This

is expected as long-term prediction would usually depend more on the dynamic pattern in the historical

38

1 wk 2 wks 3 wks 4 wks 5 wks 6 wks
condition_length

0.03

0.04

0.05

0.06

0.07

0.08
M

AP
E 1 wk

2 wks
3 wks

Figure 3.5: MAPE as a function of condition length on the COVID-19 dataset

data, i.e. require longer range dependency from the past. This is similar to a spring system: the location

of an object at next timestamp can be well-approximated by its current location and velocity, while the

locations in the longer future should depend on its historical trajectories, instead of a single point.

3.5.4 Case Studies

We conduct a case study by adding three different interventions to the interaction graph. Table 3.3 shows

the summation of the number of deaths reduced for all states on Dec.26 compared to the ground truth,

when adding different interventions. We set the duration of each intervention as 2 weeks and study the

effect of adding the same intervention at different times. For example, 1-wk-ahead means the intervention

period is one week ago, i.e. the intervention ends at Dec.20 and starts at Dec.7. The first intervention

adds 20% reduction to all in-state population flows. The second intervention adds 20% reduction to

all between-state population flows. The third one removes the same amount of population flow as in

the second intervention, but reduces the population flow in descending order of states’ original outflow.

Specifically, we rank states by their daily population outflow in descending order and set the outflow for

each state to zero starting from the state with the largest population outflow, until the total amount of

outflow reduction equals to that of the second intervention.

39

We firstly observe that reducing the in-state flow will decrease the number of deaths the most. This

is expected as the value of in-state population is much larger than that of the between-state population.

Secondly, compared with evenly reducing between-state flow for all states, reducing the population

outflow from core states will result in a larger drop in the number of deaths. This can be due to the fact

that states with larger population outflow are likely to have larger in-state flow as well, due to the loose

control over traveling. Thus the severity of these states are likely to be higher. Finally, by comparing the

number of reduced deaths for the same intervention happened at different times, we notice that the effect

of all interventions tends to decrease day by day.

Table 3.3: Number of Deaths Reduced on Dec.26

1-wk-ahead 2-wk-ahead 3-wk-ahead

In-state flow

deduction (20%)
-8973 - 7084 -6824

Between-state flow

deduction (20%)
-2465 -2215 -2197

Flow deducted from

core states
-3854 -3625 -3517

3.6 Conclusion

In this paper, we investigate the problem of learning the dynamics of interacting systems by jointly

modeling the evolution of nodes and edges. We model system dynamics in a continuous fashion through

two coupled neural ordinary differential equations. Specifically, the evolution of a node would depend

on its self-evolution and influence received from the interaction graph; the evolution of an edge would

depend on its end node’s attributes and the edge’s self-evolution. We infer the latent initial states for

the two ODEs through a novel encoder, which is a VAE-based graph neural network (GNN) that infers

the initial states for all objects simultaneously with uncertainty. The proposed model, coupled graph

ODE (CG-ODE) is able to achieve accurate prediction for the cumulative deaths of COVID-19 in the

United States as well as the simulated social network dataset, especially for long-term predictions. We

also conduct an ablation study where we add intervention to the interaction graph and provide insights

on how to make efficient intervention policies to control the population flow between the 50 states

40

within the United States. There are some limitations though. Our current model tries to learn latent

edge representations by assuming a fully-connected graph, which is time-consuming especially for large

dataset. In the future, we plan to design efficient sampling methods for the edge ODEs to balance model

efficiency and performance.

41

CHAPTER 4

TREAT: Physics-Informed Regularization for Domain-Agnostic

Dynamical System Modeling

Learning complex physical dynamics purely from data is challenging due to the intrinsic properties of

systems to be satisfied. Incorporating physics-informed priors, such as in Hamiltonian Neural Networks

(HNNs), achieves high-precision modeling for energy-conservative systems. However, real-world systems

often deviate from strict energy conservation and follow different physical priors. To address this, we

present a framework that achieves high-precision modeling for a wide range of dynamical systems

from the numerical aspect, by enforcing Time-Reversal Symmetry (TRS) via a novel regularization

term. It helps preserve energies for conservative systems while serving as a strong inductive bias for

non-conservative, reversible systems. While TRS is a domain-specific physical prior, we present the first

theoretical proof that TRS loss can universally improve modeling accuracy by minimizing higher-order

Taylor terms in ODE integration, which is numerically beneficial to various systems regardless of their

properties, even for irreversible systems. By integrating the TRS loss within neural ordinary differential

equation models, the proposed model TREAT demonstrates superior performance on diverse physical

systems. It achieves a significant 11.5% MSE improvement in a challenging chaotic triple-pendulum

scenario, underscoring TREAT’s broad applicability and effectiveness. Code and further details are

available at here.

4.1 Introduction

Dynamical systems, spanning applications from physical simulations [KFW18a, WKM20, LLC22]

to robotic control [LXM22, NQ22], are challenging to model due to intricate dynamic patterns and

potential interactions under multi-agent settings. Traditional numerical simulators require extensive

domain knowledge for design, which is sometimes unknown [SGP20a], and can consume significant

computational resources. Therefore, directly learning dynamics from the observational data becomes an

42

https://anonymous.4open.science/r/TANGO-ANOY/

attractive alternative.

Existing deep learning approaches [SGP20a, PFS21] usually learn a fixed-step transition function to

predict system dynamics from timestamp t to timestamp t+ 1 and rollout trajectories recursively. The

transition function can have different inductive biases, such as Graph Neural Networks (GNNs) [LSW23]

for capturing pair-wise interactions among agents through message passing. Most recently, neural

ordinary differential equations (ODEs) [CRB18b, RCD19a] have emerged as a potent solution for

modeling system dynamics in a continuous manner, which offer superior prediction accuracy over

discrete models in the long-range, and can handle systems with partial observations. In particular,

GraphODEs [HSW20a, LYH23, ZW20, JHL23a] extend NeuralODEs to model interacting (multi-agent)

dynamical systems, where agents co-evolve and form trajectories jointly.

However, the complexity of dynamical systems necessitates large amounts of data. Models trained on

limited data risk violating fundamental physical principles such as energy conservation. A promising

strategy to improve modeling accuracy involves incorporating physical inductive biases [RPK19, CGH20].

Existing models like Hamiltonian Neural Networks (HNNs) [GDY19, SBC19] strictly enforce energy

conservation, yielding more accurate predictions for energy-conservative systems. However, not all

real-world systems strictly adhere to energy conservation, and they may adhere to various physical priors.

Such system diversity largely limits the usage of existing models which are designed for individual

physical prior.

To address this, we present a framework that achieves high-precision modeling for a wide range

of dynamical systems from the numerical aspect, by enforcing Time-Reversal Symmetry (TRS) via a

novel regularization term. Specifically, TRS posits that a system’s dynamics should remain invariant

when time is reversed [LR98]. To incorporate TRS, we propose a simple-yet-effective self-supervised

regularization term that acts as a soft constraint. This term aligns forward and backward trajectories

predicted by a neural network and we use GraphODE as the backbone. We theoretically prove that the

TRS loss effectively minimizes higher-order Taylor expansion terms during ODE integration, offering a

general numerical advantage for improving modeling accuracy across a wide array of systems, regardless

of their physical properties. It forces the model to capture fine-grained physical properties such as jerk

(the derivatives of accelerations) and provides more regularization for long-term prediction. We also

justify our TRS design choice, showing case its superior performance both analytically and empirically.

We name the model as TREAT (Time-Reversal Symmetry ODE).

43

Time-Reversal

Dynamical Systems under
Classical Mechanics

Energy-Conservative

(a) High-Precision Modeling of Dynamical Systems

𝑑𝑅(𝑧)
𝑑𝑡

= −𝐹(𝑅 𝑧)

𝑡

backward
forward

𝑧 = 𝑞, 𝑝

𝑅 𝑧 = (𝑞,−𝑝)Identical
positions (𝑞)

(b.2) Time-Reversal Symmetry

TRS Loss
Injecting
Physical Prior

Reducing Error
Accumulation over
Integration Steps

(b.1) Physical Priors

Integration steps
Euler’s method
Grorund truth

𝑧!"# = 𝑧! +
𝑑𝐹
𝑑𝑧!

∆𝑡 + 𝑂 ∆𝑡$ + . .

Numerical Errors

(b.3) Error Accumulation

Figure 4.1: (a) High-precision modeling for dynamical systems; (b.1) Classification of classical mechani-

cal systems based on [Tol38, LR98];(b.2) Tim-Reversal Symmetry illustration;(b.3) Error accumulation

in numerical solvers.

Note that TRS itself is a physical prior, that is broader than energy conservation as depicted in

Figure 4.1(b.1). It covers classical energy-conservative systems such as Newtonian mechanics, and

also non-conservative, reversible systems like Stokes flow [Poz01], commonly encountered in microflu-

idics [KK13, CL18, CGL19]. Therefore, TRS loss achieves high-precision modeling from both the

physical aspect, and the numerical aspect as shown in Figure 4.1(a), making it domain-agnostic and

widely applicable to various dynamical systems. We systematically conduct experiments across 9 diverse

datasets spanning across 1.) single-agent, multi-agent systems; 2.) simulated and real-world systems; and

3.) systems with different physical priors. TREAT consistently outperforms state-of-the-art baselines,

affirming its effectiveness and versatility across various dynamic scenarios.

Our primary contributions can be summarized as follows:

• We introduce TREAT, a powerful framework that achieves high-precision modeling for a wide

range of systems from the numerical aspect, by enforcing Time-Reversal Symmetry (TRS) via a

regularization term.

• We establish the first theoretical proof that the time-reversal symmetry loss could in general help

learn more fine-grained and long-context system dynamics from the numerical aspect, regardless

of systems’ physical properties (even irreversible systems). This bridges the specific physical

44

implication and the general numerical benefits of the physical prior -TRS.

• We present empirical evidence of TREAT’s state-of-the-art performance in a variety of systems over

9 datasets, including real-world & simulated systems, etc. It yields a significant MSE improvement

of 11.5% on the challenging chaotic triple-pendulum system.

4.2 Preliminaries and Related Work

We represent a dynamical system as a graph G = (V , E), where V denotes the node set of N agents1 and

E denotes the set of edges representing their physical interactions. For simplicity, we assumed G to be

static over time. Single-agent dynamical system is a special case where the graph only has one node. In

the following, we use the multi-agent setting by default to illustrate our model. We denote X(t) ∈ RN×d

as the feature matrix at timestamp t for all agents, with d as the feature dimension. Model input consists

of trajectories of feature matrices over M historical timestamps X(t−M :−1) = {X(t−M), . . . ,X(t−1)}

and G. The timestamps t−1, · · · , t−M < 0 can have non-uniform intervals and take any continuous values.

Our goal is to learn a neural simulator fθ(·) :
[
X(t−M :−1),G

]
→ Y (t0:K), which predicts node dynamics

Y (t) in the future on timestamps 0 = t0 < · · · < tK = T sampled within [0, T]. We use yi(t) to denote

the targeted dynamic vector of agent i at time t. In some cases when we are only predicting system

feature trajectories, Y (·) ≡ X(·).

4.2.1 NeuralODE for Dynamical Systems

NeuralODEs [CRB18b, RCD19a] are a family of continuous models that define the evolution of dy-

namical systems by ordinary differential equations (ODEs). The state evolution can be described as:

żi(t) :=
dzi(t)
dt

= g (z1(t), z2(t) · · · zN(t)), where zi(t) ∈ Rd denotes the latent state variable for agent i

at timestamp t. The ODE function g is parameterized by a neural network such as Multi-Layer Perception

(MLP), which is automatically learned from data. GraphODEs [PMP19a, HSW20a, LYH23, WWM22]

are special cases of NeuralODEs, where g is a Graph Neural Network (GNN) to capture the continuous

interaction among agents.

GraphODEs have been shown to achieve superior performance, especially in long-range predictions

and can handle data irregularity issues. They usually follow the encoder-processor-decoder architecture,

1Following [KFW18a], we use “agents” to denote “objects” in dynamical systems, which is different from “intelligent
agent” in AI.

45

𝐳𝐢𝐟𝐰𝐝(𝐭𝐊)𝐳𝐢𝐟𝐰𝐝(𝐭𝟎) 𝐳𝐢𝐟𝐰𝐝(𝐭𝟏)
𝐳𝐢𝐟𝐰𝐝(𝐭𝐊(𝟏)

𝒛𝒊𝐫𝐞𝐯(𝒕𝑲.)
……

Latent forward trajectory

Latent reverse trajectory
𝝓𝑻

𝑅𝑅

𝝓𝑻

𝑹 ∘ 𝝓𝑻	∘ 𝑹 ∘ 𝝓𝑻= 𝑰

𝒛𝒊𝐫𝐞𝐯(𝒕𝑲(𝟏.)
𝒛𝒊𝐫𝐞𝐯(𝒕𝟏.)

𝒛𝒊𝐫𝐞𝐯(𝒕𝟎.)

……

Figure 4.2: Illustration of time-reversal symmetry based on Lemma 1.The total length of the trajectory is

tK − t0 = T . t′k is the time index in the reverse trajectory, which points to the same time as tK−k in the

forward trajectory.

where an encoder first computes the latent initial states z1(t0), · · · zN(t0) for all agents simultaneously

based on their historical observations as in Eqn 4.1.

z1(t0), z2(t0), ...,zN(t0) = fENC
(
X(t−M :−1),G) (4.1)

Then the GNN-based ODE predicts the latent trajectories starting from the learned initial states.

The latent state zi(t) can be computed at any desired time using a numerical solver such as Runge-

Kuttais [MSH19] as:

zi(t) = ODE-Solver
(
g, [z1(t0), ...zN(t0)], t

)
= zi(t0) +

∫ t

t0

g (z1(t), z2(t) · · · zN(t)) dt. (4.2)

Finally, a decoder extracts the predicted dynamics ŷi(t) based on the latent states zi(t) for any

timestamp t:

ŷi(t) = fDEC(zi(t)). (4.3)

However, vanilla GraphODEs can violate physical properties of a system, resulting in unrealistic

predictions. We therefore propose to inject physics-informed regularization term to make more accurate

predictions.

4.2.2 Time-Reversal Symmetry (TRS)

Consider a dynamical system described in the form of dx(t)
dt

= F (x(t)), where x(t) ∈ Ω is the observed

states such as positions. The system is said to follow the Time-Reversal Symmetry if there exists a

46

reversing operator R : Ω 7→ Ω such that [LR98]:

d
(
R ◦ x(t)

)
dt

= −F
(
R ◦ x(t)

)
, (4.4)

where ◦ denote the action of functional R on the function x.

Intuitively, we can assume x(t) is the position of a flying ball and the conventional reversing operator

is defined as R : x 7→ R ◦ x, R ◦ x(t) = x(−t). This implies when x(t) is a forward trajectory

position with initial position x(0), x(−t) is then a position in the time-reversal trajectory, where x(−t)

is calculated using the same function F , but with the integration time reversed, i.e. dt 7→ d(−t). Eqn 4.4

shows how to create the reverse trajectory of a flying ball: at each position, the velocity (i.e., the derivative

of position with respect to time) should be the opposite. In neural networks, we usually model trajectories

in the latent space via z [SGP20a], which can be decoded back to real observation state i.e. positions.

Therefore, we apply the reversal operator for z.

Now we introduce a time evolution operator ϕτ such that ϕτ ◦ z(t) = z(t+ τ) for arbitrary t, τ ∈ R.

It satisfies ϕτ1 ◦ ϕτ2 = ϕτ1+τ2 , where ◦ denotes composition. The time evolution operator helps us to

move forward (when τ > 0) or backward (when τ < 0) through time, thus forming a trajectory. Based

on [LR98], in terms of the evolution operator, Eqn 4.4 implies:

R ◦ ϕt = ϕ−t ◦R = ϕ−1
t ◦R, (4.5)

which means that moving forward t steps and then turning to the opposite direction is equivalent to firstly

turning to the opposite direction and then moving backwards t steps2. Eqn 4.5 has been widely used to

describe time-reversal symmetry in existing literature [HYH20, VWT22]. Nevertheless, we propose the

following lemma, which is more intuitive to understand and straightforward to guide the design of our

time-reversal regularizer.

Lemma 1. Eqn 4.5 is equivalent to R ◦ ϕt ◦R ◦ ϕt = I , where I denotes identity mapping.

Lemma 1 means if we move t steps forward, then turn to the opposite direction, and then move

forward for t more steps, it shall restore back to the same state. This is illustrated in Figure 4.2 where

2Time-reversal symmetry is a property of physical systems, which requires the forward and reverse trajectories to be
generated by the same mechanism F (·). It differs from reversibility of neural networks [CMH18, LKB19], which is a property
of machine learning models and ensures the recovery of input from output via a reversed operator f−1(·). We highlight the
detailed discussions in Appendix.

47

the reverse trajectory should be the same as the forward trajectory.3 It can be understood as rewinding a

video to the very beginning. The proof of Lemma 1 is in Appendix.

4.3 Method: TREAT

We present a novel framework TREAT that achieves high-precision modeling for a wide range of

systems from the numerical aspect, by enforcing Time-Reversal Symmetry (TRS) via a regularization

term. It improves modeling accuracy regardless of systems’ physical properties. We first introduce our

architecture design, followed by theoretical analysis to explain its numerical benefits.

TREAT uses GraphODE [HSW20a] as the backbone and flexibly incorporates TRS as a regularization

term based on Lemma 1. This term aligns model forward and reverse trajectories. In practice, our model

predicts the forward trajectories at a series of timestamps {tk}Kk=0 as ground truth observations are

discrete, where 0 = t0 < t1 < · · · < tK = T . The reverse trajectories are also at the same series

of K timestamps so as to be aligned with the forward one, which we denote as {t′k}Kk=0 satisfying

0 = t′0 < t′1 < · · · < t′K = T . It’s important to note that the values of the time variable t′k in the reverse

trajectories do not represent real time, but serve as indexes of reverse trajectories. This leads to the

relation t′K−k = T − tk, which means the reverse trajectories at timestamp t′K−k correspond to the forward

trajectories at time tk. For example, t′0 = T − tK = 0. It indicates t′0 and tK are both pointing to the same

real time T , which is the ending point of the forward trajectory as shown in Figure 4.3. Based on Lemma 1,

the difference of the two trajectories at any observed time should be small, i.e. zfwd(tk) ≈ zrev(t′K−k).

This serves as the guideline for our regularizer design. The weight of the regularizer is also adjustable to

adapt different systems. The overall framework is depicted in Figure 4.3.

4.3.1 Time-Reversal Symmetry Loss and Training

Forward Trajectory Prediction and Reconstruction Loss. For multi-agent systems, we utilize the

GNN operator described in [KFW18a] as our ODE function g(·), which drives the system to move

forward and output the forward trajectories for latent states zfwd
i (t) at each continuous time t ∈ [0, T] and

each agent i.We then employ a Multilayer Perceptron (MLP) as a decoder to predict output trajectories

3We explain Figure 4.2 with implementation in Appendix.

48

𝑂𝐷𝐸 𝑆𝑜𝑙𝑣𝑒 𝑔, (𝑧!(𝑡")… 𝑧#(𝑡") , (𝑡"…𝑡$))

Time-Reversal Symmetry Constraint

𝑡%& 𝑡%'

𝑂!
𝑂(

𝑂'

𝑡%(𝑡%!

Processor: Learnable ODE function

Forward trajectory)𝒚𝒊𝐟𝐰𝐝

Reverse trajectory)𝒚𝒊𝐫𝐞𝐯

Encoder

Input 𝑿, 𝓖 Output 𝒀

𝑂!

𝑂"

𝑂#
𝑡" 𝑡$%!𝑡$

𝑂!

𝑂'

𝑡!

𝑂(

𝑧"(0) 𝑧#(0) 𝑧!(0)

+𝑦()*+ 𝑡 = 𝑓,-.(𝑧()*+(𝑡))

Decoder

!𝒚𝒊𝐟𝐰𝐝(𝒕𝑲)
!𝒚𝒊𝐫𝐞𝐯(𝒕𝟎*)

𝒛𝒊𝐟𝐰𝐝(𝒕𝟎)
𝒛𝒊𝐟𝐰𝐝(𝒕𝑲+𝟏) 𝒛𝒊

𝐟𝐰𝐝(𝒕𝑲)𝒛𝒊𝐟𝒘𝒅(𝒕𝟏)

𝑅

𝝓𝑻

𝝓𝑻

!𝒚𝒊𝐟𝐰𝐝(𝒕𝟎)

!𝒚𝒊𝐫𝐞𝐯(𝒕𝑲*)

=4
𝐢1𝟏

𝐍
4

𝒌1𝟎

𝐊
55)𝒚𝒊𝐟𝐰𝐝 𝑡7 −)𝒚𝒊𝐫𝐞𝐯(𝑡897:)
𝟐

𝟐
𝓛𝐫𝐞𝐯𝐞𝐫𝐬𝐞

𝑹

!𝒚𝒊𝐟𝐰𝐝(𝒕𝟏)

!𝒚𝒊𝐫𝐞𝐯(𝐭𝐊+𝟏*)

Latent dynamics

!𝒚𝒊𝐟𝐰𝐝(𝒕𝑲+𝟏)

!𝒚𝒊𝐫𝐞𝐯(𝐭𝟏*)

1𝑦!"#$ 𝑡 = 𝑓%&'(𝑧!"#$(𝑡))

𝑧()*+(𝑡=) = 𝑓->.(𝑋 𝑡9?:9A , 𝒢)

Figure 4.3: Overall framework of TREAT. O1, O2, O3 are connected agents. It follows the encoder-

processor-decoder architecture introduced in Sec 4.2.1. A novel TRS loss is incorporated to improve

modeling accuracy across systems from the numerical aspect, regardless of their physical properties.

49

ŷfwd
i (t) based on the latent states. We summarize the whole procedure as:

żfwd
i (t) :=

dzfwd
i (t)

dt
= g(zfwd

1 (t), zfwd
2 (t), · · · zfwd

N (t)),

zfwd
i (t0) = fENC(X(t−M :−1),G), ŷfwd

i (t) = fDEC(z
fwd
i (t)).

(4.6)

To train the model, we use the reconstruction loss that minimizes the L2 distance between predicted

forward trajectories {ŷfwd
i (tk)}Kk=0 and the ground truth trajectories {yi(tk)}Kk=0 as :

Lpred =
N∑
i=1

K∑
k=0

||yi(tk)− ŷfwd
i (tk)||22. (4.7)

Reverse Trajectory Prediction and Regularization Loss. We design a novel time-reversal symmetry

loss as a soft constraint to flexibly regulate systems’ behavior based on Lemma 1. Specifically, we

first compute the latent reverse trajectories zrev(t) by starting from the ending state of the forward one,

traversed back over time. We then employ the decoder to output dynamic trajectories yrev(t).

żrev
i (t) :=

dzrev
i (t)

dt
= −g(zrev

1 (t), zrev
2 (t), · · · zrev

N (t)),

zrev
i (t′0) = zfwd

i (tK), ŷrev
i (t) = fDEC(z

rev
i (t)).

(4.8)

Next, based on Lemma 1, if the system follows Time-Reversal Symmetry, the forward and backward

trajectories shall be exactly overlap. We thus design the reversal loss by minimizing the L2 distances

between model forward and backward trajectories decoded from the latent trajectories:

Lreverse =
N∑
i=1

K∑
k=0

||ŷfwd
i (tk)− ŷrev

i (t′K−k)||22. (4.9)

Finally, we jointly train TREAT as a weighted combination of the two losses:

L = Lpred + αLreverse =
N∑
i=1

K∑
k=0

||yi(tk)− ŷfwd
i (tk)||22 + α

N∑
i=1

K∑
k=0

||ŷfwd
i (tk)− ŷrev

i (t′K−k)||22,

(4.10)

where α is a positive coefficient to balance the two losses based on different targeted systems.

Remark. The computational time of Lreverse is of the same scale as the reconstruction loss Lpred.

As the computation process of the reversal loss is to first use the ODE solver to generate the reverse

trajectories, which has the same computational overhead as computing the forward trajectories, and then

compute the L2 distances.

50

4.3.2 Theoretical Analysis of Time-Reversal Symmetry Loss

We next theoretically show that the time-reversal symmetry loss numerically helps to improve prediction

accuracy in general, regardless of systems’ physical properties. Specifically, we show that it minimizes

higher-order Taylor expansion terms during the ODE integration steps.

Theorem 1. Let ∆t denote the integration step size in an ODE solver and T be the prediction length.

The reconstruction loss Lpred defined in Eqn 4.7 is O(T 3∆t2). The time-reversal loss Lreverse defined in

Eqn 4.9 is O(T 5∆t4).

We prove Theorem 1 in Appendix. From Theorem 1, we can see two nice properties of our proposed

time-reversal loss: 1) Regarding the relationship to ∆t, Lreverse is optimizing a high-order term ∆t4,

which forces the model to predict fine-grained physical properties such as jerk (the derivatives of

accelerations). In comparison, the reconstruction loss optimizes ∆t2, which mainly guides the model

to predict the locations/velocities accurately. Therefore, the combined loss enables our model to be

more noise-tolerable; 2) Regarding the relationship to T , Lreverse is more sensitive to total sequence

length (T 5), thus it provides more regularization for long-context prediction, a key challenge for dynamic

modeling.

TRS Loss Design Choice. We define Lreverse as the distance between model forward trajectories and

backward trajectories. Based on the definition of TRS, there are other implementation choices. One prior

work TRS-ODE [HYH20] designed a TRS loss based on Eqn 4.5, where a reverse trajectory shares the

same starting point as the forward one. However, we show that our implementation based on Lemma 1

to approximate time-reversal symmetry has a lower maximum error compared to their implementation

below, supported by empirical experiments.

Lemma 2. Let Lreverse be the TRS implementation of TREAT based on Lemma 1, Lreverse2 be the one

in [HYH20] based on Eqn 4.5. When the reconstruction loss defined in Eqn 4.7 of both methods are equal,

and the two TRS losses are equal, i.e. Lreverse = Lreverse2, the maximum error between the reversal

and ground truth trajectory for each agent, i.e. MaxErrorgt_rev = maxk∈[K] ∥yi(tk)− ŷrev
i (t′K−k)∥2 for

i = 1, 2 · · ·N , made by TREAT is smaller.

We prove Lemma 2 in Appendix. Another implementation is to minimize the distances between

model backward trajectories and ground truth trajectories. When both forward and backward trajectories

51

are close to ground-truth, they are implicitly symmetric. The major drawback is that at the early stage of

learning when the forward is far away from ground truth (Lpred), such implicit regularization does not

force time-reversal symmetry, but introduces more noise.

4.4 Experiments

Datasets. We conduct systematic evaluations over five multi-agent systems including three 5-body

spring systems [KFW18a], a complex chaotic pendulum system and a real-world motion capture

dataset [CMU03]; and four single-agent systems including three spring systems (with only one node) and

a chaotic strange attractors system [HYH20].

The settings of spring systems include: 1) conservative, i.e. no interactions with the environments, we

call it Simple Spring; 2) non-conservative with frictions, we call it Damped Spring; 3) non-conservative

with periodic external forces, we call it Forced Spring. The Pendulum system contains three connected

sticks in a 2D plane. It is highly sensitive to initial states, with minor disturbances leading to significantly

different trajectories [SGW92, AKW08]. The real-world motion capture dataset [CMU03] describes

the walking trajectories of a person, each tracking a single joint. We call it Human Motion. The strange

attractor consists of symmetric attractor/repellor force pairs and is chaotic [SC15]. It is also highly

sensitive to the initial states [KTK19]. We call it Attractor.

Towards physical properties, Simple Spring and Pendulum are conservative and reversible; Force

Spring and Attractor are reversible but non-conservative; Damped Spring are irreversible and non-

conservative. For Human Motion, it does not adhere to specific physical laws since it is a real-world

dataset. Details of the datasets and generation pipelines can be found in Appendix.

Task Setup. We conduct evaluation by splitting trajectories into two halves: [t1, tM], [tM+1, tK]

where timestamps can be irregular. We condition the first half of observations to make predictions for the

second half as in [RCD19a]. For spring datasets and Pendulum, we generate irregular-sampled trajectories

and set the training samples to be 20,000 and testing samples to be 5,000 respectively. For Attractor,

We generate 1,000 and 50 trajectories for training and testing respectively following [HYH20]. 10% of

training samples are used as validation sets and the maximum trajectory prediction length is 60. Details

can be found in Appendix.

Baselines. We compare TREAT against three baseline types: 1) pure data-driven approaches including

LG-ODE [HSW20a] and LatentODE [RCD19a], where the first one is a multi-agent approach considering

52

pair-wise interactions, and the second one is a single-agent approach that predicts each trajectory

independently; 2) energy-preserving HODEN [GDY19]; and 3) time-reversal TRS-ODEN [HYH20].

The latter two are single-agent approaches and require initial states as given input. To handle

missing initial states in our dataset, we approximate the initial states for the two methods via linear spline

interpolation [End03]. In addition, we substitute the ODE network in TRS-ODEN with a GNN [KFW18a]

as TRS-ODENGNN, which serves as a new multi-agent approach for fair comparison. HODEN cannot be

easily extended to the multi-agent setting as replacing the ODE function with a GNN can violate energy

conservation of the original HODEN. For running LGODE and TREAT on single-agent datasets, we

only include self-loop edges in the graph G = (V , E), which makes the ODE function g a simple MLP.

Implementation details can be found in Appendix.

Table 4.1: Evaluation results on MSE (10−2). Best results are in bold numbers and second-best results

are in underline numbers. Human Motion is a real-world dataset and all others are simulated datasets.

Multi-Agent Systems Single-Agent Systems

Dataset
Simple

Spring

Forced

Spring

Damped

Spring
Pendulum

Human

Motion

Simple

Spring

Forced

Spring

Damped

Spring
Attractor

LatentODE 5.2622 5.0277 3.3419 2.6894 2.9061 5.7957 0.4563 1.3012 0.58394

HODEN 3.0039 4.0668 8.7950 741.2296 1.9855 3.2119 4.004 1.5675 54.2912

TRS-ODEN 3.6785 4.4465 1.7595 741.4988 0.5400 3.0271 0.4056 1.5667 2.2683

TRS-ODENGNN 1.4115 2.1102 0.5951 596.0319 0.2609 / / / /

LG-ODE 1.7429 1.8929 0.9718 1.4156 0.7610 1.6156 0.1465 1.1223 0.6942

TREAT 1.1178 1.4525 0.5944 1.2527 0.2192 1.6026 0.0960 1.0750 0.5581

(—-Ablation of our method with different implementation of Lreverse—-)

TREATLrev=gt-rev 1.1313 1.5254 0.6171 1.6158 0.2495 1.6190 0.1104 1.1205 0.6364

TREATLrev=rev2 1.6786 1.9786 0.9692 1.5631 0.8785 1.6901 0.0983 1.0952 0.7286

4.4.1 Main Results

Table 4.1 shows the prediction performance on both multi-agent systems and single-agent systems

measured by mean squared error (MSE). We can see that TREAT consistently surpasses other models,

highlighting its generalizability and the efficacy of the proposed TRS loss.

For multi-agent systems, approaches that consider interactions among agents (LG-ODE, TRS-

53

ODENGNN, TREAT) consistently outperform single-agent baselines (LatentODE, HODEN, TRS-ODEN),

and TREAT achieves the best performance across datasets.

The chaotic nature of the Pendulum system and the Attractor system, with their sensitivity to initial

states 4, poses extreme challenges for dynamic modeling. This leads to highly unstable predictions

for models like HODEN and TRS-ODEN, as they estimate initial states via inaccurate linear spline

interpolation [End03]. In contrast, LatentODE, LG-ODE, and TREAT employ advanced encoders that

infer latent states from observed data and demonstrate superior accuracy. Among them, TREAT achieves

the most accurate predictions, further showing its robust generalization capabilities.

We observe that misapplied inductive biases can degrade results, which limits the usage of physics-

informed methods that are designed for individual physical prior such as HODEN. HODEN only excels

on energy-conservative systems, such as Simple Spring compared with LatentODE and TRS-ODEN

in the multi-agent setting. Its performance drop dramatically on Force Spring, Damped Spring, and

Attractor. Note that HODEN naively forces each agent to be energy-conservative, instead of the whole

system. Therefore, it performs poorly than LG-ODE, TREAT in the multi-agent settings.

For the Human Motion dataset, characterized by its dynamic ambiguity as it does not adhere to

specific physical laws, we cannot directly determine whether it is conservative or time-reversal. For such

a system with an unknown nature, TREAT outperforms other purely data-driven methods significantly,

showcasing its strong numerical benefits in improving prediction accuracy across diverse system types.

This is also shown by its superior performance on Damped Spring, which is irreversible.

(a) Simple Spring (b) Damped Spring (c) Forced Spring (d) Pendulum

LG-ODE
TREAT
TRS-ODEN
HODEN

LG-ODE
TREAT
TRS-ODEN
HODEN

LG-ODE
TREAT
TRS-ODEN
HODEN

LG-ODE
TREAT
TRS-ODEN
HODEN

Figure 4.4: Varying prediction lengths across multi-agent datasets (Pendulum MSE is in log values).

4Video to show Pendulum is highly sensitive to initial states.

54

https://drive.google.com/file/d/1w0Zl-MMoBecNBbQnycgVZTDvgmPxh4Ib/view?usp=sharing

(a) Simple Spring (b) Damped Spring (c) Forced Spring (d) Pendulum

TREAT
LG-ODE

TREAT
LG-ODE

TREAT
LG-ODE

TREAT
LG-ODE

Figure 4.5: Varying α values across multi-agent datasets.

4.4.2 Ablation and Sensitivity Analysis

Ablation on implementation of Lreverse. We conduct two ablation by changing the implementation of

Lreverse discussed in Sec. 4.3.2: 1) TREATLrev=gt-rev , which computes the reversal loss as the L2 distance

between ground truth trajectories to model backward trajectories; 2) TREATLrev=rev2, which implements

the TRS loss based on Eqn 4.5 as in TRS-ODEN [HYH20]. From the last block of Table 4.1, we can

clearly see that our implementation achieves the best performance against the two.

Evaluation across prediction lengths. We vary the maximum prediction lengths from 20 to 60 and

report model performance as shown in Figure 4.4. As the prediction step increases, TREAT consistently

maintains optimal prediction performance, while other baselines exhibit significant error accumulations.

The performance gap between TREAT and baselines widens when making long-range predictions,

highlighting the superior predictive capability of TREAT.

Evaluation across different α. We vary the values of the coefficient α defined in Eqn 4.10, which

balances the reconstruction loss and the TRS loss. Figure 4.5 demonstrates that the optimal α values

being neither too high nor too low. This is because when α is too small, the model tends to neglect the

TRS physical bias, resulting in error accumulations. Conversely, when α becomes too large, the model

can emphasize TRS at the cost of accuracy. Nonetheless, across different α values, TREAT consistently

surpasses the purely data-driven LG-ODE, showcasing its superiority and flexibility in modeling diverse

dynamical systems.

Finally, we study its sensitivity towards solver choice and observation ratios in Appendix.

4.4.3 Visualizations

Trajectory Visualizations. Model predictions and ground truth are visualized in Figure 4.6. As HODEN

is a single-agent baseline that individually forces every agent’s energy to be constant over time which is

55

LG-ODE
TREAT
HODEN

LG-ODE
TREAT
HODEN

LG-ODE
TREAT
HODEN

Ground Truth TANGO LG-ODE EnergyHODEN
(a
)S
im
pl
e
Sp
rin
g

(b
)D
am
pe
d
Sp
rin
g

(c
)F
or
ce
d
Sp
rin
g

TREAT

LG-ODE
TREAT
HODEN

LG-ODE
TREAT
HODEN

LG-ODE
TREAT
HODEN

Figure 4.6: Visualization for 5-body spring systems (trajectory starts from light to dark colors).

(a) Simple Spring (b) Damped Spring (c) Forced Spring (d) Pendulum

×1#!"# ×1#!"# ×1#!"# ×1#!"$

TREAT
LG-ODE

TREAT
LG-ODE

TREAT
LG-ODE

TREAT
LG-ODE

TR
EA

T
Re

ve
rs
al

Lo
ss

TR
EA

T
Re

ve
rs
al

Lo
ss

TR
EA

T
Re

ve
rs
al

Lo
ss

TR
EA

T
Re

ve
rs
al

Lo
ss

LG
-O

D
E
Re

ve
rs
al

Lo
ss

LG
-O

D
E
Re

ve
rs
al

Lo
ss

LG
-O

D
E
Re

ve
rs
al

Lo
ss

LG
-O

D
E
Re

ve
rs
al

Lo
ss

Figure 4.7: TRS loss visualization across multi-agent datasets (scales of two y-axes are different).

not valid, the predicted trajectories is having the largest errors and systems’ total energy is not conserved

for all datasets. The purely data-driven LG-ODE exhibits unrealistic energy patterns, as seen in the energy

spikes in Simple Spring and Force Spring. In contrast, TREAT, incorporating reversal loss, generates

realistic energy trends, and consistently produces trajectories closest to the ground truth, showing its

superior performance.

Reversal Loss Visualizations To illustrate the issue of energy explosion from the purely data-driven

LG-ODE, we visualize the TRS loss over training epochs from LG-ODE5 and TREAT in Figure 4.7.

As results suggest, LG-ODE has increased TRS loss over training epochs, meaning it is violating the

5There is no reversal loss backpropagation in LG-ODE, we just compute its value along training.

56

time-reversal symmetry sharply, in contrast to TREAT which has decreased reversal loss over epochs.

4.5 Conclusions

We propose TREAT, a deep learning framework that achieves high-precision modeling for a wide range

of dynamical systems by injecting time-reversal symmetry as an inductive bias. TREAT features a

novel regularization term to softly enforce time-reversal symmetry by aligning predicted forward and

reverse trajectories from a GraphODE model. Notably, we theoretically prove that the regularization term

effectively minimizes higher-order Taylor expansion terms during the ODE integration, which serves as a

general numerical benefit widely applicable to various systems (even irreversible systems) regardless of

their physical properties. Empirical evaluations on different kinds of datasets illustrate TREAT’s superior

efficacy in accurately capturing real-world system dynamics.

57

Part II

Towards Generalizable GraphODEs

58

CHAPTER 5

GG-ODE: Generalizing Graph ODE for Learning Complex System

Dynamics across Environments

Learning multi-agent system dynamics has been extensively studied for various real-world applications,

such as molecular dynamics in biology, multi-body system in physics, and particle dynamics in material

science. Most of the existing models are built to learn single system dynamics, which learn the dynamics

from observed historical data and predict the future trajectory. In practice, however, we might observe

multiple systems that are generated across different environments, which differ in latent exogenous

factors such as temperature and gravity. One simple solution is to learn multiple environment-specific

models, but it fails to exploit the potential commonalities among the dynamics across environments and

offers poor prediction results where per-environment data is sparse or limited. Here, we present GG-

ODE (Generalized Graph Ordinary Differential Equations), a machine learning framework for learning

continuous multi-agent system dynamics across environments. Our model learns system dynamics

using neural ordinary differential equations (ODE) parameterized by Graph Neural Networks (GNNs) to

capture the continuous interaction among agents. We achieve the model generalization by assuming the

dynamics across different environments are governed by common physics laws that can be captured via

learning a shared ODE function. The distinct latent exogenous factors learned for each environment are

incorporated into the ODE function to account for their differences. To improve model performance, we

additionally design two regularization losses to (1) enforce the orthogonality between the learned initial

states and exogenous factors via mutual information minimization; and (2) reduce the temporal variance

of learned exogenous factors within the same system via contrastive learning. Experiments over various

physical simulations show that our model can accurately predict system dynamics, especially in the long

range, and can generalize well to new systems with few observations.

59

5.1 Introduction

Building a simulator that can understand and predict multi-agent system dynamics is a crucial research

topic spanning over a variety of domains such as planning and control in robotics [LWZ19a], where

the goal is to generate future trajectories of agents based on what has been seen in the past. Traditional

simulators can be very expensive to create and use [SGP20b] as it requires sufficient domain knowledge

and tremendous computational resources to generate high-quality results1. Therefore, learning a neural-

based simulator directly from data that can approximate the behavior of traditional simulators becomes

an attractive alternative.

As the trajectories of agents are usually coupled with each other and co-evolve along with the time,

existing studies on learning system dynamics from data usually view the system as a graph and employ

Graph Neural Networks (GNNs) to approximate pair-wise node (agent) interaction to impose strong

inductive bias [BPL16]. As a pioneering work, Interaction Networks (IN) [BPL16] decompose the system

into distinct objects and relations, and learn to reason about the consequences of their interactions and

dynamics. Later work incorporates domain knowledge [LWZ19c], graph structure variances [PFS20],

and equivariant representation learning [SLX21, GBG21] into learning from discrete GNNs, achieving

state-of-the-art performance in various domains including mesh-based physical simulation [PFS20] and

molecular prediction [GG22]. However, these discrete models usually suffer from low accuracy in

long-range predictions as (1) they approximate the system by discretizing observations into some fixed

timestamps and are trained to make a single forward-step prediction and (2) their discrete nature fails to

adequately capture systems that are continuous in nature such as the spread of COVID-19 [HSW21b]

and the movements of an n-body system [KFW18a, HSW20b].

Recently, researchers propose to combine ordinary differential equations (ODEs) - the principled way

for modeling dynamical systems in a continuous manner in the past, with GNNs to learn continuous-time

dynamics on complex networks in a data-driven way [HSW20b, HSW21b, ZW20, LYH23, JHL23b].

These Graph-ODE methods have demonstrated the power of capturing long-range dynamics, and are

capable of learning from irregular-sampled partial observations [HSW20b]. They usually assume all

the data are generated from one single system, and the goal is to learn the system dynamics from his-

1To date, out of the 10 most powerful supercomputers in the world, 9 of them are used for simulations, spanning the fields
of cosmology, geophysics and fluid dynamics [jur19]

60

torical trajectories to predict the future. In practice, however, we might observe data that are generated

from multiple systems, which can differ in their environments. For example, we may observe particle

trajectories from systems that are with different temperatures, which we call exogenous factors. These

exogenous factors can span over a wide range of settings such as particle mass, gravity, and temper-

ature [SGP20b, BNM20a, BNM20b] across environments. One simple solution is to learn multiple

environment-specific models, but it can fail to exploit the potential commonalities across environments

and make accurate predictions for environments with sparse or zero observations. In many useful

contexts, the dynamics in multiple environments share some similarities, yet being distinct reflected

by the (substantial) differences in the observed trajectories. For example, considering the movements

of water particles within multiple containers of varying shapes, the trajectories are driven by both the

shared pair-wise physical interaction among particles (i.e. fluid dynamics) and the different shapes of the

containers where collisions can happen when particles hit the boundaries. Also, the computational cost

for training multiple environment-specific models would be huge. More challengingly, the exogenous

factors within each environment can be latent, such as we only know the water trajectories are from

different containers, without knowing the exact shape for each of them. Therefore, how to learn a single

efficient model that can generalize across environments by considering both their commonalities and the

distinct effect of per-environment latent exogenous factors remains unsolved. This model, if developed,

may help us predict dynamics for systems under new environments with very few observed trajectories.

Inspired by these observations, in this paper, we propose Generalized Graph ODE (GG-ODE), a

general-purpose continuous neural simulator that learns multi-agent system dynamics across environments.

Our key idea is to assume the dynamics across environments are governed by common physics laws that

can be captured via learning a shared ODE function. We introduce in the ODE function a learnable vector

representing the distinct latent exogenous factors for each environment to account for their differences.

We learn the representations for the latent exogenous factors from systems’ historical trajectories through

an encoder by optimizing the prediction goal. In this way, different environments share the same ODE

function framework while incorporating environment-specific factors in the ODE function to distinguish

them.

However, there are two main challenges in learning such latent exogenous factor representations.

Firstly, since both the latent initial states for agents and the latent exogenous factors are learned through

the historical trajectory data, how can we differentiate them to guarantee they have different semantic

61

meanings? Secondly, when inferring from different time windows from the same trajectory, how can we

guarantee the learned exogenous factors are for the same environment?

Towards the first challenge, we enforce the orthogonality between the initial state encoder and the

exogenous factor encoder via mutual information minimization. For the second challenge, we reduce the

variance of learned exogenous factors within the same environment via a contrastive learning loss. We

train our model in a multi-task learning paradigm where we mix the training data from multiple systems

with different environments. In this way, the model is expected to fast adapt to other unseen systems with

a few data points. We conduct extensive experiments over a wide range of physical systems, which show

that our GG-ODE is able to accurately predict system dynamics, especially in the long range.

The main contributions of this paper are summarized as follows:

• We investigate the problem of learning continuous multi-agent system dynamics across environ-

ments. We propose a novel framework, known as GG-ODE, which describes the dynamics for each

system with a shared ODE function and an environment-specific vector for the latent exogenous

factors to capture the commonalities and discrepancies across environments respectively.

• We design two regularization losses to guide the learning process of the latent exogenous factors,

which is crucial for making precise predictions in the future.

• Extensive experiments verify the effectiveness of GG-ODE to accurately predict system dynamics,

especially in the long range prediction tasks. GG-ODE also generalizes well to unseen or low-

resource systems that have very few training samples.

5.2 Problem Definition

We aim to build a neural simulator to learn continuous multi-agent system dynamics automatically from

data that can be generalized across environments. Throughout this paper, we use boldface uppercase

letters to denote matrices or vectors, and regular lowercase letters to represent the values of variables.

We consider a multi-agent dynamical system of N interacting agents as an evolving interaction graph

Gt = {V , E t}, where nodes are agents and edges are interactions between agents that can change over

time. For each dynamical system, we denote e ∈ E as the environment from which the data is acquired.

We denote X t,e ∈ X as the feature matrix for all N agents and xt,e
i as the feature vector of agent i at time

62

t under environment e. The edges between agents are assigned if two agents are within a connectivity

radius R based on their current locations pt,e
i which is part of the node feature vector, i.e. pt,e

i ∈ xt,e
i .

They reflect the local interactions of agents and the radius is kept constant over time [SGP20b].

Our model input consists of the trajectories of N agents over K timestamps and we denote them as

X t1:K ,e = {X t1,e,X t2,e, . . . ,X tK ,e}, where the timestamps t1, t2 · · · tK can have non-uniform intervals

and be of any continuous values. Our goal is to learn a generalized simulator sθ : X t1:K ,e → Y tK+1:T ,e

that predicts node dynamics in the future for any environment e. Here Y t,e ∈ Y represents the targeted

node dynamic information at time t, and can be a subset of the input features. We use yt,e
i to denote the

targeted node dynamic vector of agent i at time t under environment e.

5.3 Preliminaries and Related Work

Dynamical System Simulations with Graph Neural Networks (GNNs). Graph Neural Networks

(GNNs) are a class of neural networks that operate on graph-structured data by passing local messages[KW17,

VCC18, XHL19, HSW21b, HLJ22]. They have been extensively employed in various applications such

as node classification [WPZ20, ZZW21], link prediction [QZD20, BK19], and recommendation sys-

tems [HDW20a, WHW19, WHL21b, JHH20]. By viewing each agent as a node and interaction among

agents as edges, GNNs have shown to be efficient for approximating pair-wise node interactions and

achieved accurate predictions for multi-agent dynamical systems [KFW18a, CUT16, SGP20b]. The

majority of existing studies propose discrete GNN-based simulators where they take the node features

at time t as input to predict the node features at time t+1. To further capture the long-term temporal

dependency for predicting future trajectories, some work utilizes recurrent neural networks such as RNN,

LSTM or self-attention mechanism to make prediction at time t +1 based on the historical trajectory

sequence within a time window [HHN19, SWG20b, GSG17, HDW20b]. However, they all restrict them-

selves to learn a one-step state transition function. Therefore, when successively apply these one-step

simulators to previous predictions in order to generate the rollout trajectories, error accumulates and

impairs the prediction accuracy, especially for long-range prediction. Also, when applying most discrete

GNNs to learn over multiple systems under different dynamical laws (environments), they usually retrain

the GNNs individually for dealing with each specific system environment [SGP20b, KFW18a], which

yields a large computational cost.

Ordinary Differential Equations (ODEs) for Multi-agent Dynamical Systems. The dynamic

63

nature of a multi-agent system can be captured by a series of nonlinear first-order ordinary differential

equations (ODEs), which describe the co-evolution of states for a set of N dependent variables (agents)

over continuous time t ∈ R as [BB00, RCD19b]: żt
i :=

dzt
i

dt
= g (zt

1, z
t
2 · · · zt

N). Here zt
i ∈ Rd denotes

the state variable for agent i at timestamp t and g denotes the ODE function that drives the system move

forward. Given the initial states z0
1 , · · · z0

N for all agents and the ODE function g, any black box numerical

ODE solver such as Runge-Kuttais [MSH19] can solve the ODE initial-value problem (IVP), of which

the solution zT
i can be evaluated at any desired time as shown in Eqn 7.1.

zT
i = z0

i +

∫ T

t=0

g
(
zt
1, z

t
2 · · · zt

N

)
dt (5.1)

Traditionally, the ODE function g is usually hand-crafted based on some domain knowledge such

as in robot motion control [SPA00] and fluid dynamics [LPZ02], which is hard to specify without

knowing too much about the underlying principles. Even if the exact ODE functions are given, they

are usually hard to scale as they require complicated numerical integration [MMD16, SGP20b]. Some

recent studies [RCD19b, HSW20b, HSW21b] propose to parameterize it with a neural network and

learn it in a data-driven way. They combine the expressive power of neural networks along with the

principled modeling of ODEs for dynamical systems, which have achieved promising results in various

applications [HSW20b, HSW21b, RCD19b].

GraphODE for Dynamical Systems. To model the complex interplay among agents in a dynamical

system, researchers have recently proposed to combine ODE with GNNs, which has been shown to

achieve superior performance in long-range predictions [HSW20b, HSW21b, ZW20]. In [ZW20], an

encoder-processor-decoder architecture is proposed, where an encoder first computes the latent initial

states for all agents individually based on their first observations. Then an ODE function parameterized

by a GNN predicts the latent trajectories starting from the learned initial states. Finally, a decoder extracts

the predicted dynamic features based on a decoding function that takes the predicted latent states as

input. Later on, a Graph-ODE framework has been proposed [HSW20b, HSW21b] which follows the

structure of variational autoencoder [KW14]. They assume an approximated posterior distribution over

the latent initial state for each agent, which is learned based on the whole historical trajectories instead

of a single point as in [ZW20]. The encoder computes the approximated posterior distributions for all

agents simultaneously considering their mutual influence and then sample the initial states from them.

Compared with [ZW20], they are able to achieve better prediction performance, especially in the long

range, and are also capable of handling the dynamic evolution of graph structures [HSW21b] which is

64

assumed to be static in [ZW20].

We follow a similar framework to this line but aim at generalizing GraphODE to model multiple

systems across environments.

5.4 Method

Initial State
Encoder

𝑡" 𝑡# 𝑡$

𝑂&

𝑂'

𝑂(

𝑡)

𝑿: Node Trajectory Inputs

(Augmented with bidirectional spatial edges
and directional temporal edges)

ODE
Generative
Model

Decoder

𝒀: Predicted Dynamics

Environment
Encoder

𝑢.

𝑧'
0,.

2𝑧'
3,. = 𝑓676(𝑧'

3,.||𝑢.)

𝑑𝑧'
3,.

𝑑𝑡 = <
(∈>?

𝑓. 2𝑧'
3,., 2𝑧(

3,., 𝑒'(
3,. + 𝑓6.BC(2𝑧'

3,.)

𝑦'
3,.

𝑦&
3,.

𝑦(
3,.

𝑳𝑴𝑰: Orthogonality

𝑳𝒄𝒐𝒏𝒕𝒓𝒂: Time Invariance

Figure 5.1: The overall framework of GG-ODE consists of four modules. First, an initial state encoder

computes the latent initial states for all agents simultaneously by constructing a temporal graph from

the input trajectories. Additionally, an environment encoder computes the latent representations for

exogenous factors that are distinct for each environment. Then, the generative model defined by a

GNN-based ODE function calls the solver to output the predicted latent states for agents in the future,

where the learned exogenous factors are incorporated into the ODE function. Finally, a decoder generates

the predicted dynamics for each agent based on the decoding likelihood determined by the latent states.

Two regularization terms are added to preserve the orthogonality of two encoders and the time-invariant

property of the environment encoder.

In this section, we present Generalized Graph ODE (GG-ODE) for learning complex system dynamics

across environments. As depicted in Figure 5.1, GG-ODE consists of four main components that are

trained jointly: (1) an initial state encoder for inferring the latent initial states for all agents simultaneously;

(2) an environment encoder which learns the latent representations for exogenous factors; (3) a generative

model defined by a GNN-based ODE function that is shared across environments for modeling the

continuous interaction among agents in the latent space. The distinct latent exogenous factors learned for

65

each environment are incorporated into the ODE function to account for their discrepancies, and (4) a

decoder that extracts the predicted dynamic features based on a decoding function. We now introduce

each component in detail.

5.4.1 Initial State Encoder

Given the observed trajectories X t1:K ,e, the initial state encoder computes a posterior distribution of latent

initial state qϕ
(
z0,e
i | X t1:K ,e

)
for each agent, from which z0,e

i is sampled. The latent initial state z0,e
i for

each agent determines the starting point for the predicted trajectory. We assume the prior distribution

p(z0,e
i) is a standard normal distribution, and use Kullback–Leibler divergence term in the loss function

to add significant regularization towards how the learned distributions look like, which differs VAE

from other autoencoder frameworks [KFW18a, HSW21b, RCD19b]. In multi-agent dynamical systems,

agents are highly-coupled and influence each other. Instead of learning such distribution separately

for each agent, such as using an RNN [RCD19b] to encode the temporal pattern for each individual

trajectory, we compute the posterior distributions for all agents simultaneously (similar to [HSW21b]).

Specifically, we fuse all trajectories as a whole into a temporal graph to consider both the temporal

patterns of individual agents and the mutual interaction among them, where each node is an observation

of an agent at a specific timestamp. Two types of edges are constructed, which are (1) spatial edges V t

that are among observations of interacting agents at each timestamp if the Euclidean distance between the

agents’ positions rt,eij = ||pt,e
i − pt,e

j ||2 is within a (small) connectivity radius R; and (2) temporal edges

that preserve the autoregressive nature of each trajectory, defined between two consecutive observations of

the same agent. Note that spatial edges are bidirectional while temporal edges are directional to preserve

the autoregressive nature of each trajectory, as shown in Figure 5.1. Based on the constructed temporal

graph, we learn the latent initial states for all agents through a two-step procedure: (1) dynamic node

representation learning that learns the representation ht,e
i for each observation node whose feature vector

is xt,e
i . (2) sequence representation learning that summarizes each observation sequence (trajectory) into

a fixed-dimensional vector through a self-attention mechanism.

66

5.4.1.1 Dynamic Node Representation Learning.

We first conduct dynamic node representation learning on the temporal graph through an attention-based

spatial-temporal GNN defined as follows:

h
l+1(t,e)
j = h

l(t,e)
j + σ

 ∑
i(t

′,e)∈N (t,e)
j

α
l(t′,e)→j(t,e)
i ×Wvĥ

l(t′,e)
i


α
l(t′,e)→j(t,e)
i =

(
Wkĥ

l(t′,e)
i

)T (
Wqh

l(t,e)
j

)
· 1√

d
(5.2)

ĥ
l(t′,e)
i = h

l(t′,e)
i + TE(t′ − t)

TE(∆t)2i = sin

(
∆t

100002i/d

)
, TE(∆t)2i+1 = cos

(
∆t

100002i/d

)
where σ(·) is a non-linear activation function; d is the dimension of node embeddings. The node

representation is computed as a weighted summation over its neighbors plus residual connection where

the attention score is a transformer-based [VSP17] dot-product of node representations by the use of

value, key, query projection matrices Wv,Wk,Wq. The learned attention scores are normalized via

softmax across all neighbors. Here h
l(t,e)
j is the representation of agent j at time t in the l-th layer.

h
l(t′,e)
i is the general representation for a neighbor which is connected either by a temporal edge (where

t′ < t and i = j) or a spatial edge (where t = t′ and i ̸= j) to the observation h
l(t,e)
j . We add temporal

encoding [VSP17, RCD19b] to each neighborhood node representation in order to distinguish the

message delivered via spatial and temporal edges respectively. Finally, we stack L layers to get the final

representation for each observation node as : ht,e
i = h

L(t,e)
i .

5.4.1.2 Sequence Representation Learning

We then employ a self-attention mechanism to generate the sequence representation me
i for each agent,

which is used to compute the mean µ0,e
i and variance σ0,e

i of the approximated posterior distribution of

the agent’s initial state. Compared with recurrent models such as RNN, LSTM [SJ97], it offers better

parallelization for accelerating training speed and in the meanwhile alleviates the vanishing/exploding

gradient problem brought by long sequences [SWG20b].

We follow [HSW21b] and compute the sequence representation me
i as a weighted sum of observations

for agent i:

me
i =

1

K

∑
t

σ
(
(ae

i)
T ĥt,e

i ĥt,e
i

)
, ae

i = tanh

((
1

K

∑
t

ĥt,e
i

)
Wa

)
, (5.3)

67

where ae
i is the average of observation representations with a nonlinear transformation Wa and ĥt,e

i =

ht,e
i + TE(t). K is the number of observations for each trajectory. Then the initial state is drawn from the

approximated posterior distribution as:

qϕ
(
z0,e
i | X t1:K ,e

)
= N

(
µ0,e

i ,σ0,e
i

)
, µ0,e

i ,σ0,e
i = ftrans (m

e
i)

z0,e
i ∼ p

(
z0,e
i

)
≈ qϕ

(
z0,e
i | X t1:K ,e

) (5.4)

where ftrans is a simple Multilayer Perceptron (MLP) whose output vector is equally split into two halves

to represent the mean and variance respectively.

5.4.2 Environment Encoder

The dynamic nature of a multi-agent system can be largely affected by some exogenous factors from its

environment such as gravity, temperature, etc. These exogenous factors can span over a wide range of

settings and are sometimes latent and not observable. To make our model generalize across environments,

we design an environment encoder to learn the effect of the exogenous factors automatically from data to

account for the discrepancies across environments. Specifically, we use the environment encoder to learn

the representations of exogenous factors from observed trajectories and then incorporate the learned vector

into the ODE function which is shared across environments and defines how the system evolves over time.

In this way, we use a shared ODE function framework to capture the commonalities across environments

while preserving the differences among them with the environment-specific latent representation, to

improve model generalization performance. It also allows us to learn the exogenous factors of an unseen

environment based on only its leading observations. We now introduce the environment encoder in detail.

The exogenous factors would pose influence on all agents within a system. On the one hand, they

will influence the self-evolution of each individual agent. For example, temperatures would affect the

velocities of agents. On the other hand, they will influence the pair-wise interaction among agents. For

example, temperatures would also change the energy when two particles collide with each other. The

environment encoder f env
enc therefore learns the latent representation of exogenous factors ue by jointly

consider the trajectories from all agents, i.e. f env
enc : X t1:K ,e → ue. Specifically, we learn an environment-

specific latent vector from the aforementioned temporal graph in Sec 5.4.1 that is constructed from

observed trajectories. The temporal graph contains both the information for each individual trajectory

and the mutual interaction among agents through temporal and spatial edges. To summarize the whole

68

temporal graph into a vector ue, we attend over the sequence representation me
i for each trajectory

introduced in Sec 5.4.1 as:

ue =
1

N

∑
i

σ
(
(be)Tme

im
e
i

)
, be = tanh

((
1

N

∑
i

me
i

)
Wb

)
, (5.5)

where Wb is a transformation matrix and the attention weight is computed based on the average sequence

representation with nonlinear transformation similar as in Eqn (5.3). Note that we use different parameters

to compute the sequence representation me
i as opposed to the initial state encoder. The reason is that the

semantic meanings of the two sequence representations are different: one is for the latent initial states

and another is for the exogenous factors.

5.4.2.1 Time Invariance.

A desired property of the learned representation for exogenous factors ue is that it should be time-invariant

towards the input trajectory time window. In other words, for the same environment, if we chunk the

whole trajectories into several pieces, the inferred representations should be similar to each other as they

are describing the same environment.

To achieve this, we design a contrastive learning loss to guide the learning process of the exogenous

factors. As shown in Figure 5.2, we force the learned exogenous factor representations to be similar

if they are generated based on the trajectories from the same environment (positive pairs), and to be

apart from each other if they are from different environments (negative pairs). Specifically, we define the

contrastive leanring loss as follows:

Lcontra = − log
exp (sim (f env

enc (X t1:t2,e) , f env
enc (X t3:t4,e)) /τ)∑

e′ ̸=e exp (sim (f env
enc (X t1:t2,e, f env

enc (X t5:t6,e′) /τ)
(5.6)

where τ is a temperature scalar and sim(·, ·) is cosine similarity between two vectors. Note that the

lengths of the observation sequences can vary. The detailed generation process for positive and negative

pairs can be found in Appendix.

5.4.2.2 Orthogonality.

GG-ODE features two encoders that take the input of observed trajectories X t1:K ,e for learning the latent

initial states and the latent exogenous factors respectively. As they are designed for different purposes

but are both learned from the same input, we disentangle the learned representations from them via a

regularization loss defined via mutual information minimization.

69

𝑡" 𝑡# 𝑡$

𝑂&

𝑂'

𝑂(

𝑡) 𝑡" 𝑡# 𝑡$

𝑂&

𝑂'

𝑂(

𝑡)

Environment 𝑒 Environment 𝑒+

Similar Apart

Figure 5.2: Temporal properties of the environment encoder. We use contrastive learning loss to force the

latent exogenous factors learned from different windows within the same environment to be close to each

other, and from different environments to be apart from each other.

Mutual information measures the dependency between two random variables X,Z [ZZL21]. Since

we are not interested in the exact value of the mutual information, a lower bound derived from Jensen

Shannon Divergence [HFL18] could be formulated as

IJSD(X,Z) = EPXZ
[− sp(−M(x, z))]− EPXPZ

[sp(M(x, z))], (5.7)

where PXPZ is the product of the marginal distributions and PXZ is the joint distribution. sp(w) =

log(1 + ew) and M is a discriminator modeled by a neural network to compute the score for measuring

their mutual information.

According to recent literature [ZZL21, HFL18, SSO20], the sample pair (positive pairs) (x, z) drawn

from the joint distribution PXZ are different representations of the same data sample, and the sample

pair (negative pairs) drawn from PXPZ are different representations from different data samples. We

70

therefore attempt to minimize the mutual information from the two encoders as follows

LMI = Ee∈E,i[−sp(−Ψ(z0,e
i ,ue))]− Ee∈E×e′∈E,i[sp(Ψ(z0,e

i ,ue′))] (5.8)

where Ψ is a MLP-based discriminator. Specifically, we force the latent initial states z0,e
i for all agents

from environment e to be dissimilar to the learned exogenous factors ue. And construct negative pairs by

replacing the learned exogenous factors from another environment as ue′ . The generation process for

positive and negative pairs can be found in Appendix.

5.4.3 ODE Generative Model and Decoder

5.4.3.1 ODE Generative Model

After describing the initial state encoder and the environment encoder, we now define the ODE function

that drives the system to move forward. The future trajectory of each agent can be determined by two

important factors: the potential influence received from its neighbors in the interaction graph and the

self-evolution of each agent. For example, in the n-body system, the position of each agent can be

affected both by the force from its connected neighbors and its current velocity which can be inferred

from its historical trajectories. Therefore, our ODE function consists of two parts: a GNN that captures

the continuous interaction among agents and the self-evolution of the node itself. One issue here is how

can we decide the neighbors for each agent in the ODE function as the interaction graph is evolving,

the neighbors for each agent are dynamically changing based on their current positions, which are

implicitly encoded in their latent state representations zt,e
i , zt,e

j . We propose to first decode the latent

node representations zt,e
i , zt,e

j with a decoding function fdec to obtain their predicted positions pt,e
i ,pt,e

j

at current timestamp. Then we determine their connectivity based on whether their Euclidean distance

rt,eij = ||pt,e
i − pt,ej ||2 is within the predefined radius R. This can be computed efficiently by using a

multi-dimensional index structure such as the k-d tree. The decoding function fdec is the same one that

we will use in the decoder.

To incorporate the influence of exogenous factors, we further incorporate ue into the general ODE

function to improve model generalization ability as:

dzt,e
i

dt
= g

(
zt,e
1 , zt,e

2 · · · zt,e
N

)
=
∑
j∈Ni

fGNN(z̃
t,e
i , z̃t,e

j) + fself(z̃
t,e
i)

z̃t,e
i = fenv(z

t,e
i ||ue)

(5.9)

71

where || denotes concatenation and fGNN can be any GNN that conducts message passing among

agents. fself, fenv are implemented as two MLPs respectively. In this way, we learn the effect of latent

exogenous factors from data without supervision where the latent representation ue is trained end-to-end

by optimizing the prediction loss.

5.4.3.2 Decoder

Given the ODE function g and agents’ initial states z0,e
i for i = 1, 2 · · ·N , the latent trajectories for

all agents are determined, which can be solved via any black-box ODE solver. Finally, a decoder

generates the predicted dynamic features based on the decoding probability p(yt,e
i |zt,e

i) computed from

the decoding function fdec as shown in Eqn 7.7. We implement fdec as a simple two-layer MLP with

nonlinear activation. It outputs the mean of the normal distribution p(yt,e
i |zt,e

i), which we treat as the

predicted value for each agent.

zt1,e
i · · · ztT ,e

i = ODESolve(g, [z0,e
1 , z0,e

2 · · · z0,e
N], (t1 · · · tT))

yt,e
i ∼ p(yt,e

i |zt,e
i) = fdec(z

t,e
i)

(5.10)

5.4.4 Training

We now introduce the overall training procedure of GG-ODE . For each training sample, we split it into

two halves along the time, where we condition on the first half [t1, tK] in order to predict dynamics in the

second half [tK+1, tT]. Given the observed trajectories X t1:K ,e, we first run the initial state encoder to

compute the latent initial state z0,e
i for each agent, which is sampled from the approximated posterior

distribution qϕ
(
z0,e
i | X t1:K ,e

)
. We then generate the latent representations of exogenous factors ue from

the environment e via the environment encoder. Next, we run the ODE generative model that incorporates

the latent exogenous factors to compute the latent states for all agents in the future. Finally, the decoder

outputs the predicted dynamics for each agent.

We jointly train the encoders, ODE generative model, and decoder in an end-to-end manner. The

loss function consists of three parts: (1) the evidence lower bound (ELBO) which is the addition of

the reconstruction loss for node trajectories and the KL divergence term for adding regularization to

the inferred latent initial states for all agents. We use Z0,e to denote the latent initial state matrix of all

N agents. The standard VAE framework is trained to maximize ELBO so we take the negative as the

ELBO loss; (2) the contrastive learning loss for preserving the time invariance properties of the learned

72

exogenous factors; (3) the mutual information loss that disentangles the learned representations from the

two encoders. λ1, λ2 are two hyperparameters for balancing the three terms. We summarize the whole

procedure in Appendix.

L = LELBO + λ1Lcontra + λ2LMI (5.11)

LELBO(θ,ϕ) = −EZ0,e∼
∏N

i=1 qϕ(z
0,e
i |Xt1:K,e)[log pθ(Y

tK+1:T ,e)]

+KL[
N∏
i=1

qϕ(z
0,e
i |X t1:K ,e)∥p(Z0,e)]

(5.12)

5.5 Experiments

Table 5.1: Mean Square Error (MSE) of rollout trajectories with varying prediction lengths. The

transductive setting evaluates the testing sequences whose environments are seen during training. The

inductive setting evaluates new systems with unseen environments during training. The best results are

bold-faced.

Dataset
Lennard-Jones potential

Transductive MSE (10−2)

Lennard-Jones potential

Inductive MSE (10−1)

Water

Transductive MSE (10−3)

Water

Inductive MSE (10−2)

Rollout Percentage 30% 60% 100% 30% 60% 100% 30% 60% 100% 30% 60% 100%

LSTM 6.73 20.69 31.88 1.64 8.82 18.01 4.87 23.09 30.44 1.01 6.72 14.79

NRI 5.83 17.99 28.18 1.33 4.34 13.97 3.87 19.64 26.34 0.83 3.84 10.59

NDCN 5.99 17.54 27.06 1.35 4.27 12.37 3.95 18.76 24.33 0.85 3.79 10.11

CG-ODE 5.43 17.01 26.01 1.32 4.25 12.03 3.41 18.13 23.62 0.80 3.64 9.91

SocialODE 5.62 17.23 26.89 1.34 4.26 12.44 3.68 18.42 23.77 0.84 3.70 10.01

GNS 5.03 16.28 25.44 1.28 4.23 11.88 3.17 17.88 23.14 0.76 3.45 9.78

GG-ODE 5.18 16.03 24.97 1.10 3.98 10.77 3.20 16.94 22.58 0.63 3.11 8.02

-w/o Lcontra 5.32 17.03 26.53 1.30 4.25 12.13 3.32 18.03 23.01 0.75 3.58 10.03

-w/oLMI 5.45 17.25 26.11 1.32 4.11 11.76 3.43 18.32 22.95 0.78 3.51 9.88

shared encoders 5.66 17.44 26.79 1.33 4.46 12.22 3.55 18.57 23.55 0.81 3.66 10.08

73

5.5.1 Experiment Setup

5.5.1.1 Datasets

We illustrate the performance of our model across two physical simulations that exhibit different system

dynamics over time: (1) The Water dataset [SGP20b], which describes the fluid dynamics of water within

a container. Containers can have different shapes and numbers of ramps with random positions inside

them, which we view as different environments. The dataset is simulated using the material point method

(MPM), which is suitable for simulating the behavior of interacting, deformable materials such as solids,

liquids, gases 2. For each data sample, the number of particles can vary but the trajectory lengths are kept

the same as 600. The input node features are 2-D positions of particles, and we calculate the velocities

and accelerations as additional node features using finite differences of these positions. The total number

of data samples (trajectories) is 1200 and the number of environments is 68, where each environment

can have multiple data samples with different particle initializations such as positions, velocities, and

accelerations. (2) The Lennard-Jones potential dataset [Jon24], which describes the soft repulsive and

attractive interactions between simple atoms and molecules 3. We generate data samples with different

temperatures, which could affect the potential energy preserved within the whole system thus affecting

the dynamics. We view temperatures as different environments. The total number of data samples

(trajectories) is 6500 and the number of environments is 65. Under each environment, we generate 100

trajectories with different initializations. The trajectory lengths are kept the same as 100. The number of

particles is 1000 for all data samples. More details about datasets can be found in Appendix.

5.5.1.2 Task Evaluation and Data Split

We predict trajectory rollouts across varying lengths and use Mean Square Error (MSE) as the evaluation

metric.

Task Evaluation. The trajectory prediction task is conducted under two settings: (1) Transductive setting,

where we evaluate the test sequences whose environments are seen during training; (2) Inductive setting,

where we evaluate the test sequences whose environments are not observed during training. It helps to

test the model’s generalization ability to brand-new systems.

2https://en.wikipedia.org/wiki/Material_point_method

3https://en.wikipedia.org/wiki/Lennard-Jones_potential

74

https://en.wikipedia.org/wiki/Material_point_method
https://en.wikipedia.org/wiki/Lennard-Jones_potential

Data Split. We train our model in a sequence-to-sequence setting where we split the trajectory of each

training sample into two parts [t1, tK] and [tK+1, tT]. We condition on the first part of observations

to predict the second part. To conduct data split, we first randomly select 20% environments whose

trajectories are all used to construct the testing set X Induct
test in the inductive setting. For the remaining

trajectories that cover the 80% environments, we randomly split them into three partitions: 80% for the

training set Xtrain, 10% for the validation set Xval and 10% for the testing set in the transductive setting

X trans
test . In other words, we have two test sets for the inductive and transductive settings respectively, one

training set and one validation set. To fully utilize the data points within each trajectory, we generate

training and validation samples by splitting each trajectory into several chunks that can overlap with

each other, using a sliding window. The sliding window has three hyperparameters: the observation

length and prediction length for each sample, and the interval between two consecutive chunks (samples).

Specifically, for the Water dataset, we set the observation length as 50 and the prediction length as 150.

We obtain samples from each trajectory by using a sliding window of size 200 and setting the sliding

interval as 50. For the Lennard-Jones potential dataset, we set the observation length as 20, the prediction

length as 50, and the interval as 10. The procedure is summarized in Appendix. During evaluations for

both settings, we ask the model to roll out over the whole trajectories without further splitting, whose

prediction lengths are larger than the ones during training. The observation lengths during testing are set

as 20 for the Lennard-Jones potential dataset and 50 for the Water dataset across the two settings.

5.5.2 Baselines

We compare both discrete neural models as well as continuous neural models where they do not have

special treatment for modeling the influence from different environments. For discrete ones we choose:

NRI [KFW18a] which is a discrete GNN model that uses VAE to infer the interaction type among

pairs of agents and is trained via one-step predictions; GNS [SGP20b], a discrete GNN model that uses

multiple rounds of message passing to predict every single step; LSTM [SJ97], a classic recurrent neural

network (RNN) that learns the dynamics of each agent independently. For the continuous models, we

compare with NDCN [ZW20] and Social ODE [WWM22], two ODE-based methods that follow the

encoder-processor-decoder structure with GNN as the ODE function. The initial state for each agent is

drawn from a single data point instead of a leading sequence. CG-ODE [HSW21b] which has the same

architecture as our model, but with two coupled ODE functions to guide the evolution of systems.

75

(a) Ground Truth

(b) Predictions of GNS

(c) Predictions of GG-ODE

Figure 5.3: Visualization of the transductive prediction results for the Water dataset. Black lines are

ramps within the container. The length of the observation sequence is set as 20. GNS makes less accurate

predictions compared with GG-ODE.

5.5.3 Performance Evaluation

We evaluate the performance of our model based on Mean Square Error (MSE) as shown in Table 5.1.

As data samples have varying trajectory lengths, we report the MSEs over three rollout percentages

regarding different prediction horizons: 30%, 60%, 100% where 100% means the model conditions on

the observation sequence and predicts all the remaining timestamps.

Firstly, we can observe that GG-ODE consistently outperforms all baselines across different settings

when making long-range predictions, while achieving competitive results when making short-range

predictions. This demonstrates the effectiveness of GG-ODE in learning continuous multi-agent system

dynamics across environments. By comparing the performance of LSTM with other methods, we can

see that modeling the latent interaction among agents can indeed improve the prediction performance

compared with predicting trajectories for each agent independently. Also, we can observe the performance

gap between GG-ODE and other baselines increase when we generate longer rollouts, showing its

expressive power when making long-term predictions. This may be due to the fact that GG-ODE is a

continuous model trained in a sequence-to-sequence paradigm whereas discrete GNN methods are only

trained to make a fixed-step prediction. Another continuous model NDCN only conditions a single data

76

point to make predictions for the whole trajectory in the future, resulting in suboptimal performance.

Finally, we can see that GG-ODE has a larger performance gain over existing methods in the inductive

setting than in the transductive setting, which shows its generalization ability to fast adapt to other unseen

systems with a few data points. Figure 5.3 visualizes the prediction results under the transductive setting

for the Water dataset.

5.5.3.1 Ablation Studies

To further analyze the rationality behind our model design, we conduct an ablation study by considering

three model variants: (1) We remove the contrastive learning loss which forces the learned exogenous

factors to satisfy the time invariance property, denoted as −w/oLcontra; (2) We remove the mutual

information minimization loss which reduces the variance of the learned exogenous factors from the same

environment, denoted as −w/oLMI . (3) We share the parameters of the two encoders for computing the

latent representation me
i for each observation sequence in the temporal graph, denoted as shared encoders.

As shown in Table 5.1, all three variants have inferior performance compared to GG-ODE , verifying

the rationality of the three key designs. Notably, when making long-range predictions, removing LMI

would cause more harm to the model than removing Lcontra. This can be understood as the latent initial

states are more important for making short-term predictions, while the disentangled latent initial states

and exogenous factors are both important for making long-range predictions.

5.5.3.2 Hyperparameter Study

We study the effect of λ1/λ2, which are the hyperparameters for balancing the two regularization terms

that guide the learning of the two encoders, towards making predictions under different horizons. As

illustrated in Figure 5.4, the optimal ratio for making 30%, 60%, 100% rollout predictions are 2, 1,0.5

respectively, under both the transductive and inductive settings. They indicate that the exogenous factors

modeling plays a more important role in facilitating long-term predictions, which is consistent with the

prediction errors illustrated in Table 5.1 when comparing −w/oLMI with −w/oLcontra. However, overly

elevating LMI would also harm the model performance, as the time invariance property achieved by

Lcontra is also important to guarantee the correctness of the learned latent initial states, which determines

the starting point of the predicted trajectories in the future.

77

𝜆"/𝜆$
(a) Inductive Setting (b) Transductive Setting

𝜆"/𝜆$

(1
0(

")

(1
0(

$)

Figure 5.4: Effect of λ1/λ2 on the Lennard-Jones potential dataset. Best results are circled in red for each

setting.

5.5.3.3 Sensitivity Analysis.

GG-ODE can take arbitrary observation lengths to make trajectory predictions, as opposed to existing

baselines that only condition on observations with fixed lengths. It allows the model to fully utilize all

the information in the past. We then study the effect of observation lengths on making predictions in

different horizons. As shown in Figure 5.5, the optimal observation lengths for predicting the rollouts

with 20, 40, and 50 steps are 20, 25, 35 in the inductive setting, and 15, 25, 30 in the transductive setting.

When predicting long-range trajectories, our model typically requires a longer observation sequence to

get more accurate results. Also, for making predictions at the same lengths, the inductive setting requires

a longer observation length compared with the transductive setting.

5.5.4 Case Study

We conduct a case study to examine the learned representations of the latent exogenous factors on

the Lennard-Jones potential dataset. We first randomly choose one data sample for each of the 65

temperatures and visualize the learned representations of exogenous factors. As shown in Figure 7.2

(a), the representations of higher temperatures are closer to each other on the right half of the figure,

whereas the lower temperatures are mostly distributed on the left half. Among the 65 temperatures, 20%

of them are not seen during training which we circled in black. We can see those unseen temperatures

78

(a) Inductive Setting (b) Transductive Setting

(1
0$

%)

(1
0$

')

Observation Length Observation Length

Figure 5.5: Effect of observation length on the Lennard-Jones potential dataset.

are also properly distributed, indicating the great generalization ability of our model. We next plot the

representations for all data samples under temperatures 2.5 and 3.5 respectively as shown in Figure 7.2

(b). We can see that the learned representations are clustered within the two temperatures, indicating our

contrastive learning loss is indeed beneficial to guide the learning process of exogenous factors.

5.6 Conclusion

In this paper, we investigate the problem of learning the dynamics of continuous interacting systems

across environments. We model system dynamics in a continuous fashion through graph neural ordinary

differential equations. To achieve model generalization, we learn a shared ODE function that captures the

commonalities of the dynamics among environments while design an environment encoder that learns

environment-specific representations for exogenous factors automatically from observed trajectories. To

disentangle the representations from the initial state encoder and the environment encoder, we propose a

regularization loss via mutual information minimization to guide the learning process. We additionally

design a contrastive learning loss to reduce the variance of learned exogenous factors across time windows

under the same environment. The proposed model is able to achieve accurate predictions for varying

79

(a) Exogenous Factors Across Environments (b) Exogenous Factors from two Environments

Figure 5.6: T-SNE visualization of the learned exogenous factors on the Lennard-Jones potential dataset.

(a) We randomly pick one data sample per temperature, where temperatures tested in the inductive setting

are circled in black. (b) Visualization of data samples from two temperatures.

physical systems under different environments, especially for long-term predictions. There are some

limitations though. Our current model only learns one static environment-specific variable to achieve

model generalization. However, the environment can change over time such as temperatures. How to

capture the dynamic influence of those evolving environments remain challenging.

80

CHAPTER 6

SS-AGA: Multilingual Knowledge Graph Completion with

Self-Supervised Adaptive Graph Alignment

Predicting missing facts in a knowledge graph (KG) is crucial as modern KGs are far from complete. Due

to labor-intensive human labeling, this phenomenon deteriorates when handling knowledge represented

in various languages. In this paper, we explore multilingual KG completion, which leverages limited

seed alignment as a bridge, to embrace the collective knowledge from multiple languages. However,

language alignment used in prior works is still not fully exploited: (1) alignment pairs are treated equally

to maximally push parallel entities to be close, which ignores KG capacity inconsistency; (2) seed

alignment is scarce and new alignment identification is usually in a noisily unsupervised manner. To

tackle these issues, we propose a novel self-supervised adaptive graph alignment (SS-AGA) method.

Specifically, SS-AGA fuses all KGs as a whole graph by regarding alignment as a new edge type. As such,

information propagation and noise influence across KGs can be adaptively controlled via relation-aware

attention weights. Meanwhile, SS-AGA features a new pair generator that dynamically captures potential

alignment pairs in a self-supervised paradigm. Extensive experiments on both the public multilingual

DBPedia KG and newly-created industrial multilingual E-commerce KG empirically demonstrate the

effectiveness of SS-AGA1.

6.1 Introduction

Knowledge graphs (KGs) like Freebase [BEP08] and DBPedia [LIJ15] are essential for various knowledge-

driven applications such as question answering [YRB21] and commonsense reasoning [LSD21]. A KG

contains structured and semantic information among entities and relations, where prior knowledge can be

instantiated as factual triples (head entity, relation, tail entity), e.g., (Apple Inc., Founded by, Steven Jobs).

As new facts are continually emerging, modern KGs are still far from being complete due to the high cost

1Code and data are open-source and available at https://github.com/amzn/ss-aga-kgc

81

https://github.com/amzn/ss-aga-kgc

Steven Jobs

Business
Person

Apple_Inc.

United States

IOS
Consumer
Electronics

English DBPedia (80K facts)
(Support KG, Resource-Rich)

Pancreatic
Cancer

Japanese DBPedia (28K facts)
(Target KG)

アメリカ
(United States)

ピクサー
(Pixar)

トイ・ストーリー
(Toy_Story)

Apple_Inc.

Greek DBPedia (13K facts)
(Support KG, Resource-Poor)

Μπρους_Λη
(Bruce Lee)

(Apple_Inc, Founded_by, ?)

Occupation
Nationality

Founded_by

Industry
Produce_by

Death Cause

Chairman
Produced_by

Nationality

Birthplace

Deathplace

Nationality

Steven Jobs

Seed Alignment Relation

𝛼
𝛽

(a) Alignment as Loss (b) Alignment as a new edge type

(c) Multilingual Knowledge Graph Completion Example

Founded_by?

New Alignment

スティーブ・ジョブズ
(Steven Jobs)

Στηβ_Τζομπς
(Steven Jobs)

Ηνωμένες Πολιτείες
(United States)

Πάλο_Άλτο
(Palo Alto)

Στηβ_Τζομπς
(Steven Jobs)

Query:

Steven Jobs

スティーブ・ジョブズ
(Steven Jobs)

Στηβ_Τζομπς
(Steven Jobs)

スティーブ・ジョブズ
(Steven Jobs)

minimize

minimize

Figure 6.1: (a) Existing methods treat alignment pairs equally as a loss, which maximally ensures the

same entity from different languages to be as similar as possible. (b) Our method differentiates alignment

pairs as a new type edge with dynamic attention weights such as α and β, which control the influence and

information propagation from other support KGs. (c) An example of MKGC task answering the query in

the Japanese KG.

of human annotation, which spurs on the Knowledge Graph Completion (KGC) task to automatically

predict missing triples to complete the knowledge graph.

The KG incompletion circumstance is exacerbated in the multilingual setting, as human annota-

tions are rare and difficult to gather, especially for low-resource languages. Unfortunately, most efforts

for KGC have been devoted to learning each monolingual KG separately [PCL21, XZK21, LYL21,

CJL21, LNV21], which usually underperform in low-resource language KGs that suffer from the sparse-

ness [CTY17, CCF20, SZH20]. In contrast, KGs from multiple languages are not naturally isolated,

which usually share some real-world entities and relations. The transferable knowledge can be treated as

a bridge to align different KGs, which not only facilitates the knowledge propagation to low-resource

KGs but also alleviates costly manual labeling for all languages.

In this paper, we explore multilingual KG completion (MKGC) [CCF20] with limited seed alignment

across languages. To mitigate language gaps, some efforts have been initiated on multilingual KG

82

embedding methods, which leverage a KG embedding module (e.g., TransE [BUG13]) to encode each

language-specific KG independently and then employ an alignment loss to force pairs of aligned entities to

be close maximally [CCF20, ZSH19, SZH20]. However, such approaches mainly involve two limitations:

(1) the KG inconsistency issue among different languages is neglected due to the equal treatment for

parallel entities; (2) the scarcity of seed alignment hinders the efficient knowledge transfer across

languages.

Concretely, prior methods treat all alignment pairs equally by forcing all parallel entities to be

maximally close to each other [CTC18, SHZ18, CTY17]. This ignores potentially negative effects from

the KG inconsistency due to the language diversity. For example, as shown in Figure 6.1, the support

English KG in DBP-5L [CCF20] has much more enriched knowledge (80K facts) than the Greek one

(13K facts). In order to complete the query (Apple Inc., Founded by, ?) in the resource-poor Japanese

KG (28K facts), we can transfer more knowledge from resource-rich English KG through the alignment

link of Steven Jobs than that of the low-data Greek. However, if roughly pushing Steven Jobs to be

equally close to that English KG and Greek KG, the learned embeddings for Steven Jobs will be similar

even though they have different structures, KG capacity, coverage and quality. As such, it will bring in

irrelevant information regarding this query and may cause the model to get the wrong answer. Thus, we

encourage the model to automatically distinguish the underlying inconsistency and transfer knowledge

from suitable support KGs2 for better language-specific KGC performance.

One the other hand, seed alignment is critical for cross-lingual transfer [CCF20, SZH20], while

acquisition of such parallel entities across languages is costly and often noisy. To mitigate such issue, some

recent works [CTC18, CCF20] propose to generate new alignment pairs based on the entity embedding

similarity during the training process. The generated new pairs can increase the inter-connectivity between

KGs to facilitate knowledge transfer. However, simple usage of correlations between entities without

any supervision may increase the noise during training, and inhibit the effectiveness of realistic language

alignment in KGs [SZH20].

Motivated by these observations, we propose a Self-Supervised Adaptive Graph Alignment (SS-AGA)

framework for MKGC. To tackle the knowledge inconsistency issue, SS-AGA regards alignment as

a new edge type between parallel entities instead of a loss constrain, which fuses KGs from different

2We regard the remaining KGs as the support KGs when conducting the KGC task in the target one.

83

languages as a whole graph. Based on such unified modeling, we propose a novel GNN encoder with a

relation-aware attention mechanism, which aggregates local neighborhood information with learnable

attention weights and differs the influence received from multiple alignment pairs for the same entity as

shown in Figure 6.1(b). To alleviate the scarcity of seed alignment, SS-AGA exploits a new pair generator

that iteratively identifies new alignment pairs in a self-supervised manner. This is achieved by masking

some seed alignment in the fused KG before GNN encoding and teaching the generation module to

recover them. Empirically, SS-AGA outperforms popular baselines in both public and industrial datasets.

For the public dataset, we use the multilingual DBPedia KG [CCF20] and for the industrial dataset, we

create a multilingual E-commerce Product KG called E-PKG.

Our contributions are as follows: (1) We handle the knowledge inconsistency issue for MKGC by

treating entity alignment as a new edge type and introducing a relation-aware attention mechanism to

control the knowledge propagation; (2) We propose a new alignment pair generation mechanism with

self-supervision to alleviate the scarcity of seed alignment; (3) We constructed a new industrial-level

multilingual E-commerce KG dataset; (4) Extensive experiments verify the effectiveness of SS-AGA in

both public and industrial datasets.

6.2 Preliminaries

6.2.1 Knowledge Graph Completion

A knowledge graph G = (E ,R, T) consists of a set of entities E , relations R, and relational facts

T ={(eh, r, et)}, where eh, et∈E are head and tail entities, and r∈R is a relation. Entities and relations

are represented by their text descriptions. The KG completion task seeks to impute the missing head

or tail entity of a triple given the relation and the other entity. Without loss of generality, we hereafter

discuss the case of predicting missing tails, which we also refer to as a query q = (eh, r, ?et).

Multilingual KG completion (MKGC) utilizes KGs across multiple languages to achieve more accurate

KG completion task on each individual KG [CCF20]. Formally, we are given M different language-

specific KGs as G1, G2, · · · , GM , and only limited entity alignment pairs ΓGi↔Gj
⊆ {(ei, ej) : ei ∈

Ei, ej ∈ Ej} between Gi and Gj . We also call ΓGi↔Gj
the seed alignment pairs to distinguish it from the

new or pseudo alignment. Each KG Gi has their own relation set Ri. We denote the union of relation sets

from all KGs as a unified relation set R=R1∪R2∪· · ·RM . MKGC is related to but different from the

84

KGC Decoder
𝑓(·)

GNN'()*+
𝑔-(·)

e/
01 e/

02

e3
01 e4

01

𝑒6
71

e/
01

𝑟3
𝑟4 𝑟6

𝑟4

e3
02

e4
02𝑟6 𝑟/ e9

02

KG 2

KG 1

e6
02 e/

02
𝑟9𝑟/𝑟3

𝐺;<=>

e3
01 e4

01

e6
01

e/
01

𝑟3
𝑟4 𝑟6

𝑟4

e3
02

e4
02𝑟6 𝑟/ e9

02

KG 2

KG 1

e6
02 e/

02
𝑟9𝑟/𝑟3

?𝐺;<=>

(a)

Seed Alignment

New Alignment

Train

inference

Relations

𝐺;<=>@-=A>B

𝐺;<=>

(b)

New Pair Generation

GNN'()*+
𝑔-(·)

GNNC0
𝑔D(·)

Iterative

Masked
Recover Loss

𝒥F

KGC Loss

𝒥G
?𝐺;<=>

Figure 6.2: The overall framework of the Self-Supervised Adaptive Graph Alignment (SS-AGA).

entity alignment (EA) task [CLL19, SZH20]. In MKGC, seed alignment is not direct supervision while

the auxiliary input features, all used in the training stage for cross-lingual transfer to boost the KGC

results.

6.2.2 KG Embedding Models

KG embedding models aim to learn latent low-dimensional representations for entities {e}e∈E and

relations {r}r∈R. A naive implementation is an embedding lookup table [BUG13, SDN19]. Recently,

Graph Neural Networks (GNN) have been explored to aggregate neighborhood information in KGs,

where each triple is no longer considered independent of each other [HCY19]. Mathematically, these

methods employ a GNN-based encoder g that embeds entities considering the neighborhood information,

{e}e∈E = g(G).

Then, the plausibility of a relational fact (eh, r, et) can be measured by the triple score:

f(eh, r, et),

where f can be any scoring function such as TransE [BUG13], RotatE [SDN19]. We also refer it to as

the KGC decoder.

85

6.3 Method

We introduce SS-AGA for MKGC, consisting of two alternating training components (a) and (b) in

Figure 6.2: (a) A new alignment pair generation module for alleviating the limited seed alignment

in Gfuse. Specifically, we mask some seed alignment in the fuse KG to obtain GMasked
fuse and train the

generator ga(·) to recover them. Then, the trained generator will propose new edges based on the learned

entity embeddings, which will be incorporated to Gfuse as G̃fuse for MKG embedding model gk(·) in the

next iteration; (b) A novel relation-aware MKG embedding model gk(·) for addressing the knowledge

inconsistency across multilingual KGs. Specifically, we fuse different KGs as a whole graph Gfuse by

treating alignment as a new edge type. Then gk(·) computes the contextualized embeddings for each node

with learnable relation-aware attention weights that differ the influence received from multiple alignment

pairs. Finally, a KGC decoder f(·) computes the triple scores.

6.3.1 Relation-aware MKG Embedding

As mentioned before, the knowledge transfer is inefficient in existing MKGC methods, as they encode

each KG separately and transfer knowledge by forcing aligned entities to share the same embedding. To

handle the knowledge inconsistency, we first fuse all KGs as a whole, which relaxes the entity alignment

to relational facts. We then design an attention-based relation-aware GNN to learn the contextualized

MKG embeddings for entities, which can differ the influence from multiple alignment sources with

learnable attention weights. Afterwards, we apply a KGC decoder on the contextualized embedding to

get the triple scores for relational facts.

More specifically, we create the fused KG by preserving triples within each KG and converting

each cross-KG alignment pair (ei, ej) to two relational facts (ei, ralign, ej) and (ej, ralign, ei) with the

alignment edge as a newly introduced relation ralign. In this way, we enable direct message passing

among entities from different KGs, where the attention weight can be learned automatically from

data to differ the influence from multiple alignment pairs. We denote the fused knowledge graph as

Gfuse = (Efuse,Rfuse, Tfuse), where Efuse =
⋃M

i=1 Ei, Rfuse = (
⋃M

i=1Ri) ∪ {ralign} and Tfuse = (
⋃M

i=1 Ti) ∪

(
⋃

i,j{(eh, ralign, et) : (eh, et) or (et, eh) ∈ ΓGi↔Gj
}) .

Given the fused KG Gfuse, we propose an attention-based relation-aware GNN encoder gk(·) to learn

contextualized embeddings for entities following a multi-layer message passing architecture.

86

At the l-th layer of GNN, we first compute the relation-aware message delivered by the entity ei in a

relational fact (ei, r, ej) as follows:

hl
i(r) = Msg

(
hl

i, r
)
:= W l

vConcat(hl
i, r), (6.1)

where hl
i is the latent representation of ei at the l-th layer, Concat(·, ·) is the vector concatenation

function, and W l
v is a transformation matrix. Then, we propose a relation-aware scaled dot product

attention mechanism to characterize the importance of each entity’s neighbor ei to itself ej , which is

computed as follows:

Att
(
hl

i(r),h
l
j

)
=

exp(αr
ij)∑

(ei′ ,r)∈N (ej)
exp

(
αr
i′j

)
αr
ij =

(
W l

kh
l
i(r)

)T ·
(
W l

qh
l
j

)
· 1√

d
· βr, (6.2)

where d is the dimension of the entity embeddings, W l
k,W

l
q are two transformation matrices, and βr

is a learnable relation factor. Different from the traditional attention mechanism [VCC18, BDB19],

we introduce βr to characterize the general significance of each relation r. It is essential as not all the

relationships contribute equally to the query entity. We also remark that the neighborhood is bidirectional,

i.e. N (ej) := {(ei′ , r) : (ei′ , r, ej) ∈ Tfuse or (ej, r, ei′) ∈ Tfuse} as the tail entity will also influence the

head entity.

We then update the hidden representation of entities by aggregating the message from their neighbor-

hoods based on the attention score:

hl+1
j = hl

j + σ

 ∑
(ei′ ,r)∈N (ej)

Att
(
hl

i′(r),h
l
j

)
· hl

i′(r)

 ,

where σ(·) is a non-linear activation function, and the residual connection is used to improve the stability

of GNN [HZR15].

Finally, we stack L layers to aggregate information from multi-hop neighbors and obtain the con-

textualized embedding for each entity ej as: ej = hL
j . Given the contextualized entity embeddings, the

KGC decoder computes the triple score for each relational fact: f(eh, r, et). The learning object is to

minimize the following hinge loss:

87

JK=
∑

(eh,r,et)∈Tm
(eh′ ,r,et′)/∈Tm

m=1,...,M

[
f
(
eh

′, r, e′t
)
− f (eh, r, et) + γ

]
+
, (6.3)

where γ > 0 is a positive margin, f is the KGC decoder, (eh′ , r, et′) is a negative sampled triple obtained

by replacing either head or tail entity of the true triple (eh, r, et) randomly by other entities in the same

language-specific KG.

Remark 1. Our method views cross-KG alignment as a relation ralign in the fused KG. The knowledge

transfer cross KGs is essentially conducted via the learnable attention weight αralign
ij , where ei and ej are

connected through the relation ralign. Thanks to the power of GNN, αralign
ij differs the influence from

multiple alignment sources, as opposed to some existing models that simply force pairs of entities to be

close to each other through a pre-defined alignment loss. In this way, we properly conduct knowledge

transfer among KGs with aware of their knowledge inconsistency.

Scalability issue. Since we fuse all the M KGs as a whole, and duplicate edges for head entities, the

scale of the graph Gfuse would become very large. We therefore employ a k-hop graph sampler that

samples the k-hop neighbors for each node and compute their contextualized embeddings.

6.3.2 Self-supervised New Pair Generation

In multilingual KGs, we are only provided with limited seed alignment pairs to facilitate knowledge

transfer, as they are expensive to obtain and even sometimes noisy [SZH20]. To tackle such challenge,

we propose a self-supervised new alignment pair generator. In each iteration, the generator identifies

new alignment pairs which will be fed into the GNN encoder gk(·) to produce the contextualized entity

embeddings in the next iteration. The training of the generator is conducted in a self-supervised manner,

where the generator is required to recover masked alignment pairs.

New Pair Generation (NPG) relies on two sets of entity embeddings: the structural embeddings

and the textual embeddings. The structural embeddings are obtained by another GNN encoder ga:

{ea}e∈Efuse = ga(Gfuse), which shares the same architecture with gk(·) in the relation-aware MKG

Embedding model (Section 6.3.1). The reason we employ two GNN encoders is that the set of embeddings

that generate the best alignment results may differ from those that can best achieve the KG completion

task.

88

The textual embeddings are obtained by entities’ text description and mBERT: etext = mBERT (e).

mBERT is a multilingual pre-trained language model [DCL19] and is particularly attractive to the new

alignment pair generation due to the following merits: (1) it captures rich semantic information of the

text; (2) the pre-trained BERT embeddings are also aligned across different languages [DCL19, SZH20].

We then model the pairwise similarity score between entity ei and ej as the maximum of the cosine

similarities of their structural embeddings and textual embeddings:

sim(ei, ej) = max
(
cos
(
ea
i , e

a
j

)
, cos

(
etext
i , etext

j

))
.

Then we introduce new alignment pairs if a pair of unaligned entities in two KGs are mutual nearest

neighbors according to the cross-domain similarity local scaling (CSLS) measure [CLR18] as shown

below,

CSLS(ei, ej) = 2sim(ei, ej)− s(ei)− s(ej)

subject to s (ei) =
1

K

∑
ei′∈N (ei)

sim (ei, ei′) ,

where K is the number of each node’s k-nearest neighbors. CSLS is able to capture the sturctural

similarity between pairs of entities. The generated pairs are then utilized to update the graph structure of

Gfuse to G̃fuse in the next iteration, to alleviate the challenge of limited seed alignment.

Self-Supervised Learning (SSL) Similar to many existing works [CCF20, SZH20], the aforementioned

NPG paradigm is unsupervised and may bring in unexpected noises. Inspired by masked language

modeling [DCL19] which captures contextual dependencies between tokens, we propose a self-supervised

learning procedure to guide and denoise the new pair generation. Specifically, we randomly mask out

some alignment relational facts, Tmasked⊆{(eh, r, et)∈Tfuse : r=ralign}, and let the generator to recover

them. Such masked alignment recovery in KGs can automatically identify the underlying correlations

for alignment neighbors and encourage the NPG to generate high-quality alignment pairs that are real

existences but hide due to the limited seed alignment.

Given the fused KG with masked alignment GMasked
fuse = {Efuse,Rfuse, Tfuse/Tmasked}, the GNN

encoder ga embeds the entities as

{ẽ}e∈Efuse = ga(GMasked
fuse).

89

The GNN ga is then trained via minimizing the following hinge loss JA,

J Gi↔Gj

A =
∑

(eh,et)∈Γ
p
ij

(eh′ ,et′)∈Γn
ij

[∥ẽah − ẽat ∥2 − ∥ẽah′ − ẽat′∥2 + γa]+

JA =
∑

1≤i<j≤M

J Gi↔Gj

A , (6.4)

where Γp
ij = {(eh ∈ Ei, et ∈ Ej) : (eh, ralign, et) ∈ Tmasked} is the masked alignment set, Γn

ij = {(eh ∈

Ei, et ∈ Ej) : (eh, et) /∈ ΓGi↔Gj
} is the unaligned entity pair set, and γa > 0 is a positive margin. (eh′ , et′)

is randomly sampled by replacing one of the entities in the positive entity pairs.

6.3.3 Training

The overall loss function is the combination of the KG completion loss Eq. (6.3) and the self-supervised

alignment loss Eq. (6.4) as shown below

J = JK + λJA, (6.5)

where λ > 0 is a positive hyperparameter to balance between the two losses. We summarize the training

process in the Appendix.

6.4 Experiments

6.4.1 Dataset

We conduct experiments over two real-world datasets. (i) DBP-5L [CCF20] contains five language-

specific KGs from DBpedia [LIJ15], i.e., English (EN), French (FR), Spanish (ES), Japanese (JA), Greek

(EL). As the original dataset only contains structural information, we additionally crawled the text

information for these entities and relations based on the given URLs. (ii) E-PKG is a new industrial

multilingual E-commerce product KG dataset, which describes phone-related product information from

an E-commerce platform across six different languages: English (EN), German (DE), French (FR),

Japanese (JA), Spanish (ES), Italian (IT). The statistics are shown in Table 6.1. The # Aligned Links for

a specific KG Gi denotes the number of alignment pairs where one of the aligned entities belong to that

KG. It is possible for an entity to have multiple alignment pairs across different KG sources. For both

datasets, we randomly split the facts in each KG into three parts: 60% for training, 30% for validation,

and 10% for testing. Please refer to Appendix for the details of E-PKG construction.

90

Dataset #Entity #Relation #Triple #Aligned Links

Multilingual Academic KG (DBP-5L)

EN 13,996 831 80,167 16,916

FR 13,176 178 49,015 16,877

ES 12,382 144 54,066 16,347

JA 11,805 128 28,774 16,263

EL 5,231 111 13,839 9,042

Multilingual Industrial KG (E-PKG)

EN 16,544 21 100,531 21,382

DE 17,223 21 75,870 24,696

FR 17,068 21 80,015 24,812

JA 2,642 21 16,703 5,175

ES 9,595 21 30,163 20,184

IT 15,670 21 71,292 23,827

Table 6.1: Statistics of DBP-5L and E-PKG datasets. #Aligned Links denotes the number of alignment

pairs where one of the aligned entities belongs to that KG.

6.4.2 Evaluation Protocol

In the testing phase, given each query (eh, r, ?et), we compute the plausibility scores f(eh, r, ẽt) for

triples formed by each possible tail entity ẽt in the test candidate set and rank them. We report the

mean reciprocal ranks (MRR), accuracy (Hits@1) and the proportion of correct answers ranked within

the top 10 (Hits@10) for testing. We also adopt the filtered setting following previous works based

on the premise that the candidate space has excluded the triples that have been seen in the training

set [WZF14a, YYH15a].

6.4.3 Baselines

• Monolingual Baselines. (i) TransE [BUG13] models relations as translations in the Euclidean space;

(ii) RotatE [SDN19] models relations as rotations in the complex space; (iii) DisMult [YYH15b]

uses a simple bilinear formulation; (iv) KG-BERT [YML20] employs pre-trained language models for

knowledge graph completion based on text information of relations and entities.

91

• Multilingual Baselines. (i) KEnS [CCF20] embeds all KGs in a unified space and exploits an ensemble

technique to conduct knowledge transfer; (ii) CG-MuA [ZWS20] is a GNN-based KG alignment model

with collective aggregation. We revise its loss function to conduct MKGC. (iii) AlignKGC [SJC21]

jointly trains the KGC loss with entity and relation alignment losses. For fair comparison, we use

mBERT [DCL19] to obtain initial embeddings of entities and relations from their text for all methods.

We do not employ any pretrained tasks such as EA to obtain these initial text embeddings as in [SJC21].

6.4.4 Main Results

The main results are shown in Table 6.2 and Table 6.3. Firstly, by comparing multilingual and monolingual

KG models, we can observe that multilingual methods can achieve better performance. This indicates

that the intuition behind utilizing multiple KG sources to conduct KG completion is indeed beneficial,

compared with inferring each KG independently. Notably, multilingual models tend to bring larger

performance gains for those low-resource KGs such as Greek in DBP-5L, which is expected as low-

resource KGs are far from complete and efficient external knowledge transfer can bring in potential

benefits. Among multilingual models, our proposed method SS-AGA can achieve better performance in

most cases across different metrics, languages, and datasets, which verifies the effectiveness of SS-AGA.

6.4.5 Ablation Study

To evaluate the effectiveness of our model design, we conduct ablation study by proposing the following

model variants: (i) GNN applies the GNN encoder without relation modeling to each KG independently,

and directly forces all alignment pairs to be close to each other as in prior works [CCF20, ZWS20]; (ii)

R-GNN is the proposed relation-aware MKG embedding model (Section 6.3.1), which utilizes all seed

alignment to construct Gfused and differs the influence from other KGs by the relation-aware attention

mechanism; (iii) R-GNN + NPG conducts additional new pair generation for R-GNN; (iv) R-GNN +

NPG + SSL is our proposed full model SS-AGA, which leverages SSL to guide the NPG process. We

also investigate the effect of whether to share or not share the encoders ga(·), gk(·) that generate the

embeddings for the SSL and KGC loss, respectively.

We report the average Hits@1, Hits@10 and MRR over DBP-5L as shown in Table 6.4. As we can

see, applying a GNN encoder to each KG independently would cause the performance drop as all aligned

entities are being equally forced to be close to each other. Removing the new pair generation process

92

Method Metric EL JA ES FR EN

Monolingual Baselines

TransE

H@1 13.1 21.1 13.5 17.5 7.3

H@10 43.7 48.5 45.0 48.8 29.3

MRR 24.3 25.3 24.4 27.6 16.9

RotatE

H@1 14.5 26.4 21.2 23.2 12.3

H@10 36.2 60.2 53.9 55.5 30.4

MRR 26.2 39.8 33.8 35.1 20.7

DisMult

H@1 8.9 9.3 7.4 6.1 8.8

H@10 11.3 27.5 22.4 23.8 30.0

MRR 9.8 15.8 13.2 14.5 18.3

KG-BERT

H@1 17.3 26.9 21.9 23.5 12.9

H@10 40.1 59.8 54.1 55.9 31.9

MRR 27.3 38.7 34.0 35.4 21.0

Multilingual Baselines

KenS

H@1 28.1 32.1 23.6 25.5 15.1

H@10 56.9 65.3 60.1 62.9 39.8

MRR - - - - -

CG-MuA

H@1 21.5 27.3 22.3 24.2 13.1

H@10 44.8 61.1 55.4 57.1 33.5

MRR 32.8 40.1 34.3 36.1 22.2

AlignKGC

H@1 27.6 31.6 24.2 24.1 15.5

H@10 56.3 64.3 60.9 62.3 39.2

MRR 33.8 41.6 35.1 37.4 22.3

SS-AGA

H@1 30.8 34.6 25.5 27.1 16.3

H@10 58.6 66.9 61.9 65.5 41.3

MRR 35.3 42.9 36.6 38.4 23.1

Table 6.2: Main results on DBP-5L.

93

Method Metric EN DE FR JA ES IT

Monolingual Baselines

TransE

H@1 23.2 21.2 20.8 25.1 17.2 22.0

H@10 67.5 65.5 66.9 72.7 58.4 63.8

MRR 39.4 37.4 37.5 43.6 33.0 37.8

RotatE

H@1 24.2 22.3 22.1 26.3 18.3 22.5

H@10 66.8 64.3 67.1 71.9 58.9 64.0

MRR 40.0 38.2 38.0 41.8 33.7 38.1

DisMult

H@1 23.8 21.4 20.7 25.9 17.9 22.8

H@10 60.1 54.5 53.5 62.6 46.2 51.8

MRR 37.2 35.4 35.1 38.0 30.9 34.8

KG-BERT

H@1 24.3 21.8 22.3 26.9 18.7 22.9

H@10 66.4 64.7 67.2 72.4 58.8 63.7

MRR 39.6 38.4 38.3 44.1 33.2 37.2

Multilingual Baselines

KenS

H@1 26.2 24.3 25.4 33.5 21.3 25.1

H@10 69.5 65.8 68.2 73.6 59.5 64.6

MRR - - - - - -

CG-MuA

H@1 24.8 22.9 23.0 30.4 19.2 23.9

H@10 67.9 64.9 67.5 72.9 58.8 63.8

MRR 40.2 38.7 39.1 45.9 33.8 37.6

AlignKGC

H@1 25.6 22.1 22.8 31.2 19.4 24.2

H@10 68.3 65.1 67.2 72.3 59.1 63.4

MRR 40.5 38.5 38.8 46.2 34.2 37.3

SS-AGA

H@1 26.7 24.6 25.9 33.9 21.0 24.9

H@10 69.8 66.3 68.7 74.1 60.1 63.8

MRR 41.5 39.4 40.2 48.3 36.3 38.4

Table 6.3: Main results on E-PKG.

94

would also cause a performance degradation due to the sparsity of seed alignment, which shows that

iteratively proposing new alignment is indeed helpful. If the generation process is further equipped with

supervision, the performance would be enhanced, which verifies the effectiveness of the self-supervised

alignment loss. Finally, sharing the parameters of two GNN encoders would harm the performance.

Though MKGC and entity alignment are two close-related tasks that can potentially benefit each other,

the set of embeddings that produce the best alignment result do not necessarily yield the best performance

on the MKGC task.

Method Avg H@1 Avg H@10 Avg MRR

GNN 24.1 56.3 33.2

R-GNN 25.7 57.9 34.4

R-GNN + NPG 26.2 58.3 34.9

R-GNN + NPG + SSL (SS-AGA)

- encoder (shared) 25.8 57.7 34.1

- encoder (no shared) 26.9 58.7 35.3

Table 6.4: Ablation results on DBP-5L.

6.4.6 Impact of Seed Alignment

0.2 0.4 0.6 0.8 1.0
Japanese KG

59

60

61

62

63

64

65

66

67

Hi
ts

@
10

SG-KGE
KEnS
CG_MuAlign

0.2 0.4 0.6 0.8 1.0
Greek KG

42.5

45.0

47.5

50.0

52.5

55.0

57.5

Hi
ts

@
10

SG-KGE
KEnS
CG_MuAlign

0.2 0.4 0.6 0.8 1.0
French KG

54

56

58

60

62

64

66

Hi
ts

@
10

SG-KGE
KEnS
CG_MuAlign

0.2 0.4 0.6 0.8 1.0
Spanish KG

54

56

58

60

62

Hi
ts

@
10

SG-KGE
KEnS
CG_MuAlign

0.2 0.4 0.6 0.8 1.0
English KG

30

32

34

36

38

40

42

Hi
ts

@
10

SG-KGE
KEnS
CG_MuAlign

Figure 6.3: Hits@10 with respect to different sampling ratio of seed alignment pairs.

We next study the effect of seed alignment number as depicted in Figure 6.3. Firstly, we can observe

that SS-AGA consistently outperforms other multilingual models on varying alignment ratios. Secondly,

for low-resources KGs such as Japanese and Greek KGs, we can observe a sharp performance drop when

decreasing the alignment ratio compared with those popular KGs such as English KG. This indicates

that the knowledge transfer among different KGs is especially beneficial for those low-resources KGs,

as popular KGs already contain relatively rich knowledge. However, such transfer process is heavily

dependent on the seed alignment, which yields the necessity of new alignment generation process.

95

6.4.7 Case Study

To interpret the knowledge transfer across different KGs, we visualize the normalized average attention

weight for each KG w.r.t. the attention score computed in Eq. (6.2) from different KG sources. We can

see that for those popular KGs, they will receive the highest attention score from themselves such as

English and French KGs. Although Japanese KG is low-resource, from the main results table 6.2, we can

see that the gap improvement brought by multilingual methods is relatively small compared to another

low-resource Greek KG. This indicates that Japanese KG may contain more reliable facts to facilitate

missing triple predictions. However, for Greek KG, we can observe that the attention weights from other

languages take the majority, which means that the performance boost in Greek KG is largely attributed to

the efficient knowledge transfer from other KG sources.

Ta
rg
et

KG

Support KG

Figure 6.4: Average attention weight learned in DBP-5L.

96

6.5 Related Work

6.5.1 Monolingual KG Embeddings

Knowledge graph embeddings [BUG13, SDN19, Con18] achieve the state-of-the-art performance for

KGC, which learn the latent low-dimensional representations of entities and relations. They mea-

sure triple plausibility based on varying score functions such as translation-based TransE [BUG13],

TransH [WZF14b]; rotation-based RotatE [SDN19] and language-model-based KG-BERT [YML20]. Re-

cently, GNN-based methods [LCH19, ZZZ20, JHH20] have been proposed to capture node neighborhood

information for the KGC tasks. GNN is a class of neural networks that operate on graph-structured data

by passing local messages [KW17, VCC18, XHL19, BDB19, HSW20b, HSW21b, WHL21a]. Specifi-

cally, they use GNN as an encoder to generate contextualized representation of entities by passing local

messages [KW17, VCC18, XHL19, BDB19, HSW20b, HSW21b]. Then, existing score functions are

employed to generate triple scores which outperform the aforementioned methods that treat each triple

independently only with the scoring function.

6.5.2 Multilingual KG Embeddings

Multilingual KG embeddings are extensions of monolingual KG embeddings that consider knowledge

transfer across KGs with the use of limited seed alignment [SZH20, SJC21]. Earlier work proposes

different ways to reconcile KG embeddings for the entity alignment (EA) task: MTransE [CTY17]

learns a transformation matrix between pairs of KGs. MuGNN [CLL19] reconciles structural differences

via rule grounding. CG-MuA utilizes collective aggregation of confident neighborhood [ZWS20]. Others

incorporate attribute information such as entity text [ZSH19, CTC18]. To tackle the sparsity of seed

alignment, BootEA [SHZ18] iteratively proposes new aligned pairs via bootstrapping. [ZXL17] utilizes

parameter sharing to improve alignment performance. While they focus on the EA task rather than the

MKGC task that we tackle here, such techniques can be leveraged to conduct knowledge transfer among

KGs. Recently, [CCF20] propose an ensemble-based approach for the MKGC task. In this paper, we view

alignment as a new edge type and employ a relation-aware GNN to get the contextualized representation

of entities. As such, the influence of the aligned entities is captured by the learnable attention weight,

instead of assuming each alignment pair to have the same impact. We also propose a self-supervised

learning task to propose new alignment pairs during each training epoch to overcome the sparsity issue of

97

seed alignment pairs.

6.6 Discussion and Conclusion

In this paper, we propose SS-AGA for multilingual knowledge graph completion (MKGC). It addresses

the knowledge inconsistency issue by fusing all KGs and utilizing a GNN encoder to learn entity

embeddings with learnable attention weights that differs the influence from multiple alignment sources.

It features a new pair generation conducted in a self-supervised learning manner to tackle the limited seed

alignment issue. Extensive results on two real-world datasets including a newly-created E-commerce

dataset verified the effectiveness of SS-AGA. Our current approach may fail to fully exploit the benefit

of entity and relation texts. In the future, we plan to study more effective ways to combine text data

with graph data for better model performance. We are also interested in studying MKGC where there

no alignment pairs are given, which is a very practical setting and our current model is not able to deal

with.

98

Part III

GraphODE for Causal Decision-Making

99

CHAPTER 7

CAG-ODE: Coupled GraphODE

Real-world multi-agent systems are often dynamic and continuous, where the agents co-evolve and

undergo changes in their trajectories and interactions over time. For example, the COVID-19 transmission

in the U.S. can be viewed as a multi-agent system, where states act as agents and daily population

movements between them are interactions. Estimating the counterfactual outcomes in such systems

enables accurate future predictions and effective decision-making, such as formulating COVID-19

policies. However, existing methods fail to model the continuous dynamic effects of treatments on the

outcome, especially when multiple treatments (e.g., "stay-at-home" and "get-vaccine" policies) are applied

simultaneously. To tackle this challenge, we propose Causal Graph Ordinary Differential Equations

(CAG-ODE), a novel model that captures the continuous interaction among agents using a Graph Neural

Network (GNN) as the ODE function. The key innovation of our model is to learn time-dependent

representations of treatments and incorporate them into the ODE function, enabling precise predictions of

potential outcomes. To mitigate confounding bias, we further propose two domain adversarial learning-

based objectives, which enable our model to learn balanced continuous representations that are not

affected by treatments or interference. Experiments on two datasets (i.e., COVID-19 and tumor growth)

demonstrate the superior performance of our proposed model. 1

7.1 Introduction

Many real-world multi-agent systems are dynamic and continuous, where agents (nodes) interact and

exhibit complex behaviors over time. This results in time-evolving node trajectories and dynamic

interaction edges. An example is the spread of COVID-19 in the U.S., where states act as agents and daily

migration patterns across states form interaction edges [HSW21c, MDH22]. Estimating the counterfactual

outcomes over time in such systems are crucial for various applications, such as formulating effective

1Our code implementation can be found at https://github.com/Jun-Kai-Zhang/CAG-ODE.git.

100

https://github.com/Jun-Kai-Zhang/CAG-ODE.git

policies and designing medical treatment plans [SIB22, BAJ20a, BV21]. This can achieve more accurate

predictions than non-causal methods by considering the influence of biased confounders. Confounders are

variables that have influences on treatments and outcomes. For example, the health status of the residents

in each state (confounders) can impact their level of adherence to the state’s policies (treatments), which

can influence future confirmed cases/deaths (outcomes). Non-causal methods only learn the statistical

associations between treatments and outcomes from observational data, which can have non-uniform

treatment distributions across confounder values, potentially leading to incorrect predictions such as

taking vaccines can increase the number of confirmed cases for each state. Furthermore, causal inference

for multi-agent dynamical systems enables effective decision-making by addressing causal questions

such as "What if we remove a policy at a specific time" or "What if we change the order of different

policies". Therefore, it serves as a promising tool for policymakers.

Traditionally, the standard approach for causal inference over time is randomized controlled trials

(RCTs) [CSB81], which can be very costly to obtain and can raise some ethical problems [SIB22,

BAJ20a]. Thus, researchers have turned to using observational data and employed methods like linear

regression [RHB00], recurrent neural networks (RNNs) [Lim18, BAJ20b], and Transformers [MFF22]

to estimate counterfactual outcomes with time dependencies. However, causal inference for multi-agent

dynamical systems presents unique challenges.

One is that most existing methods [SIB22, BAJ20a] assume that nodes are independent, meaning

their trajectories are determined solely by their own treatments. Some [JHL23c] considers the influence

of neighboring nodes but only assumes static interactions among them, which fails to capture situations

such as daily population travel patterns between states in the context of COVID-19.

In casual terms, influences of neighboring nodes can be categorized into two parts: 1.) time-dependent

neighborhood confounding, where a node’s treatment and outcome may be confounded by the covariates

of its neighbors. For example, if cases in neighboring states rise (covariate), a state may implement a

vaccine policy (treatment) that affects future confirmed cases/deaths (outcome). 2.) time-dependent

interference, where the outcome of a node can be influenced by the treatments of its neighbors. For

example, a state may have reduced future cases/deaths (outcome) if neighboring states have implemented

a vaccine policy (covariates), as higher vaccination rates within the population flow network give stronger

protection. As the interaction edges evolve along with node trajectories, the challenges lie in predicting

the neighbors of each node (edges) and then addressing the time-dependent neighborhood confounding

101

and interference issues.

Another challenge is that current methods lack the ability to capture the continuous and dynamic

effects of multiple treatments on such systems. For instance, the impact of a "stay-at-home" policy may

be most significant during its initial implementation, and when a "get-vaccine" policy is subsequently

introduced, the combined effect of these policies can result in a different outcome. Existing studies often

focus on a single treatment [JHL23c, SIB22] or simply append fixed multi-hot treatment representations

when a node receives them. These fixed treatment representations fail to differentiate the influences of

the same treatment administered at different times.

To tackle these challenges, we propose a novel causal inference framework: the Causal Graph

Ordinary Differential Equations (CAG-ODE) to estimate the continuous counterfactual outcome of a

multi-agent dynamical system in the presence of multiple treatments and time-varying confounding and

interference. Building upon the recent success of graph ordinary differential equations (ODE) in capturing

the continuous interaction among agents [HSW21c, LWH23, HSW20b, HZG24], our key innovation

is to learn time-dependent representations of simultaneous treatments and incorporate them into the

ODE function to accurately account for their casual effects on the system. As nodes and edges are

jointly evolving, we utilize two coupled treatment-induced ODE functions to account for their respective

dynamics. To mitigate confounding bias, we further design two adversarial learning losses, which enable

our model to learn balanced continuous trajectory representations unaffected by treatments or interference.

Experiments on both real and simulated datasets demonstrate the effectiveness of our proposed model.

The primary contributions of this paper can be summarized as follows:

• We propose CAG-ODE to estimate continuous counterfactual outcomes in multi-agent systems

with evolving interaction edges and multiple treatments.

• CAG-ODE features a novel treatment fusing module that can capture the dynamic effects of

treatment over time and the combined effect of multiple treatments.

• Our method achieves the state-of-art results in counterfactual estimation across varying systems,

and can serve as a promising tool for policymakers.

102

7.2 Preliminaries and Related Work

Graph Neural Networks (GNNs). Graph Neural Networks (GNNs) are a class of neural networks

that operate on graph-structured data by passing local messages [KW17, VCC18, XHL19]. They have

been extensively employed in various applications such as node classification, link prediction, and

recommendation systems [HWH23, HLJ22]. GNNs have shown to be efficient for approximating pair-

wise node interactions and achieved accurate predictions for multi-agent dynamical systems [KFW18a,

SGP20b]. The majority of existing studies propose discrete GNN-based simulators where they take the

node features at time t as input to predict the node features at time t+1. To further capture the long-term

temporal dependency for predicting future trajectories, some work utilizes recurrent neural networks such

as RNN, LSTM, or self-attention mechanism to make predictions at time t +1 based on the historical

trajectory sequence [HHN19, SWG20b, HDW20b]. However, they restrict themselves to learning a

one-step state transition function. Therefore, when we successively apply these one-step simulators

to previous predictions in order to generate the rollout trajectories, error accumulates and impairs the

prediction accuracy, especially for long-range prediction.

Graph Ordinary Differential Equations for Continuous Multi-agent Dynamical Systems. The

dynamics of a multi-agent system can be captured by a series of nonlinear first-order ordinary differential

equations (ODEs) [RCD19b, HSW20b, HSW23b, LYH23], which describe how the states of N dependent

variables co-evolve over continuous time: żt
i :=

dzt
i

dt
= g (zt

1, z
t
2 · · · zt

N). Here zt
i ∈ Rd denotes the state

variable for agent i at timestamp t and g denotes the ODE function that drives the system to move forward.

Given the initial states z0
1 , · · · z0

N for all agents and the ODE function g, a numerical ODE solver such as

Runge-Kutta [MSH19] can be used to evaluate zT
i at any desired time T using Eqn (7.1):

zT
i = z0

i +

∫ T

t=0

g
(
zt
1, z

t
2 · · · zt

N

)
dt. (7.1)

To model the interactions among agents, recent studies [HSW20b, HSW21c, ZW20, PMP19a] propose

using a GNN as the ODE function g which is learned from observational data. Such GraphODE

framework follows an encoder-processor-decoder architecture. The encoder computes latent initial states

for all agents based on historical observations. The GNN-based ODE function then predicts the latent

trajectories starting from the learned initial states. Finally, a decoder extracts the predicted dynamic

features. To regularize the generated trajectories, GraphODE frameworks often adopt a variational

autoencoder (VAE) structure [KW14], where the encoder samples initial states from approximated

103

posterior distributions. GraphODEs are promising in making long-range predictions and can handle

irregularly-sampled observations effectively [HSW20b, ZW20].

Causal Inference Over Time. Time-dependent causal inference methods mainly differ in how

they deal with confounding. They differ from traditional statistical time series analysis [KFW18b,

ZY23, BLZ22] which we do not discuss in this paper. Traditionally, many statistical tools that are

applied, such as marginal structural models (MSMs) [RHB00] utilize the inverse probability of treat-

ment weighting (IPTW). Recently, representation learning-based balancing approaches are proposed,

which learn representations that are not predictable of the treatments to ensure unbiased outcome pre-

diction [BAJ20b, MFF22]. However, one major limitation is that they are discrete methods, which can

offer poor performance on continuous systems such as the spread of COVID-19. There are a series of

works [SIB22, BAJ20a, GSP20, DGH22] that estimate the continuous counterfactual outcomes through

neural ODEs or neural controlled differential equations (CDEs). Despite their success, they assume that

nodes are independent of each other, regardless of their interactions. One recent work [JHL23c] proposed

to parameterize the ODE function with a GNN for multi-agent settings. However, this model cannot

handle evolving graph structures and the effect of multiple treatments.

7.3 Problem Definition

We consider a dynamical system of N agents as an evolving interaction graph Gt = {V , E t}, where nodes

V = {v1, v2, · · · , vN} are agents and E t are the weighted edges among them, denoting agents’ dynamic

interaction that changes over time. Each node is associated with time-varying causal characteristics,

which we introduce in the following along with the casual inference framework.

We follow the longitudinal causal inference setting for predicting future potential outcomes as

in [Rub78]. We denote the observational data at timestamp t as (Xt,Wt,At,Yt), where Xt ∈ RN×d1

represents the time-varying covariates (e.g., the health status of residents) of N agents. Wt ∈ RN×N

represents the weighted adjacency matrix, whose element wi→j ∈ R is the weight of the directed edge that

points from node i to node j and may be asymmetric. At ∈ {0, 1}N×K are time-dependent treatments,

where At
kj = 1 denotes the kth treatment assigned to node i at timestamp t, and K is the number of

heterogeneous treatments. Yt ∈ RN×d2 is the time-dependent outcome, such as the number of confirmed

cases in each state, which can be part of Xt. The historical observations up to time t is represented as

Ht =
{
X

t
,W

t
,A

t
,Y

t
}

, where X
t
,W

t
,A

t
,Y

t
contain all Xt− ,Wt− ,At− ,Yt− (t− ≤ t). We aim to

104

predict the unbiased potential outcomes E
(
Yt+

(
At+ = a

)
|Ht
)

under any treatment assignment a2. Here,

a is the dynamic treatment trajectory (e.g. sequences of state policies). As only one of the potential

outcome trajectories is observed for each treatment assignment, we refer to the unobserved potential

outcomes as counterfactuals [BAJ20b, SIB22].

To make potential outcomes identifiable from observational data, we follow three standard assump-

tions [BAJ20b, SIB22, JHL23c] below:

Assumption 1: Consistency. The potential outcome is equal to the observed factual outcome if

At = at: Yt+(At = at) = Yt+ .

Assumption 2: Overlap. At any time point t+, there is some positive probability of treatment

assignment regardless of the historical observation: 0 < P (At+ = a | Ht) < 1, ∀Ht, t < t+.

The last assumption defines unconfoundedness (strong ignorability) in dynamical systems. We first

define the interference effects caused by neighbors’ treatments of node i as Gt
i =

∑
j∈Ni

1
|Ni|A

t
j ∈ RK ,

which is the proportion of treated nodes in node i’s neighbors for each treatment type. We refer to Gt
i

as interference summary, which assumes that a node is only influenced by treatments of its immediate

neighbors as in previous studies [JHL23c, MWY22, JS22].

Assumption 3: Strong Ignorability for Multi-Agent Dynamical Systems. Given the historical

observations, the potential outcome trajectory is independent of the treatments and interference summary:

Yt+(At = a) ⊥ At+ ,Gt+ | Ht, ∀a, t.

It ensures that it is sufficient to only condition on the historical observations and graph sequences up

to t to block all backdoor paths so as to estimate the potential outcome in the future. With these three

assumptions, the potential outcome trajectory can be identified as:

E
(
Yt+(At = a) | Ht

)
= E

(
Yt+ | At+ ,Gt+ ,Ht

)
.

This enables us to estimate the potential outcomes by training a machine learning model using ob-

servational data, and to use the same model to predict counterfactual outcomes given new treatment

trajectories.

2The potential outcome can also be formalized using do operation [Pea09]

105

Treatments
Treatment

Fusing
1
2

K

…
…

Zt = Z0 + ∫
t

τ=0
GNN(Zτ, Aτ, Wτ)dτ

Wτ = fedge(Zτ)

Treatment Induced Coupled GraphODE

PredictionObservation

Treatments

Latent Representation

Encoder Decoder

Agents

Factual Outcome

Counterfactual Outcome L = L⟨Y⟩ + λ ⋅ L⟨W⟩ + α ⋅ L⟨A⟩ + β ⋅ L⟨G⟩ + γ ⋅ LKLTraining Loss:

Figure 7.1: Overall Framework of CAG-ODE. The encoder first computes the latent initial states. Then

the treatment-induced coupled ODE functions predict the continuous trajectories over time. Treatment

representations learned through the fusing module are incorporated into the ODE functions to enable

counterfactual prediction. Finally, the decoder outputs the predicted dynamics. Treatment and interference

balancing losses are designed to ensure unbiased counterfactual predictions.

106

7.4 The Proposed Model: CAG-ODE

In this section, we present Causal Graph ODE (CAG-ODE) to predict continuous counterfactual out-

comes for multi-agent dynamical systems with evolving interaction edges and dynamic multi-treatment

effects. Following the framework of GraphODEs [HSW20b, HSW21c, JHL23c, ZW20, PMP19a], CAG-

ODE adopts the encoder-ODE generative model-decoder architecture as in [HSW21b] to capture the

continuous interaction among agents. As nodes and edges are jointly evolving, we utilize two coupled

ODE functions [HSW21c] for the evolution of nodes and edges respectively. Contrary to GraphODEs,

CAG-ODE can perform causal reasoning by injecting treatment effects into the ODE functions, which

we call treatment-induced coupled graph ODE. The multi-treatment effects are captured by a novel

treatment fusing module that assigns temporal weights to the treatments using an attention mechanism. As

time-dependent confounders can result in a biased distribution of treatment assignments and imbalanced

interferences due to the evolving graph structure, CAG-ODE utilizes two adversarial learning losses to

ensure unbiased estimations of counterfactual outcomes. The overall framework is depicted in Figure 7.1.

We now discuss each module in detail.

7.4.1 Spatial-Temporal Initial State Encoder

The encoder of CAG-ODE infers the posterior distributions from the historical observations and then

samples the latent initial states from them. It follows the architecture described in [HSW21c]. As

the evolution of different nodes is mutually influenced, we calculate the initial states for all nodes

simultaneously considering their interactions over time. The initial states of edges are derived from the

initial states of nodes.

Dynamic Node Representation Learning. We construct a graph to represent the spatial-temporal

structure of multi-agent dynamical systems, with each node corresponding to an agent’s observation at a

particular timestamp. There are two types of edges: spatial edges at the same timestamp and temporal

edges across different timestamps. The spatial edges are formed according to the adjacency matrices,

denoted as wi(t)→j(t). For the temporal edges, we only consider edges from an agent’s own previous

observations to later observations, denoted as wi(t)→i(t′), where t′ = t+ 1.

The latent representations of observations are learned from this spatial-temporal graph through an

107

attention mechanism approach. The propagation among L GNN layers is depicted in Equation(7.2).

hl
i(t′) = hl

i(t′) + σ

 ∑
j(t)∈Ni(t′)

elj(t)→i(t′) ×Wvĥ
l−1
j(t)

 ,

elj(t)→i(t′) = wj(t)→i(t′) × αl
j(t)→i(t′),

αl
j(t)→i(t′) =

(
Wkĥ

l−1
j(t)

)T (
Wqh

l−1
i(t′)

)
· 1√

d
, (7.2)

ĥl−1
j(t) = hl−1

j(t) + TE (t− t′) ,

TE(∆t)2i = sin

(
∆t

100002i/d

)
,TE(∆t)2i+1 = cos

(
∆t

100002i/d

)
.

Here, hl
i(t) represents the agent i at time t from layer l. The attention score elj(t)→i(t′) is defined as the

product of edge weights wj(t)→i(t′) and affinity score αl
j(t)→i(t′), which is computed using the representa-

tions of the sender and receiver nodes. Additionally, we incorporate temporal embedding, denoted as TE,

into the sender node’s representation to establish temporal distinction. Then, the final representation is

obtained from the L layer as hi(t) = hL
i(t).

Sequence Representation Learning. Then, we employ self-attention to compute the sequence

representation of observed temporal information for each node, where ĥi(t) = hi(t) + TE(t).

ui =
1

N

T∑
t=1

(aT
i ĥi(t)ĥi(t)),ai = tanh

((
1

N

T∑
t=1

ĥi(t)

)
Wa

)
. (7.3)

Finally, the mean and variance of the posterior distribution is obtained through a neural network fddist

from the sequence representation ui.

z0
i ∼ qϕ(z

0
i |H0) = N (µz0i

, σ2
z0
i
), µz0

i
, σz0

i
= fdist(ui).

Next, the latent initial state for an edge is given by z0
i→j = fedge([z

0
i , z

0
j]), where fedge is parameterized

by a neural network and [,] is concatenation operation.

7.4.2 Treatment Fusing

To conduct causal inference with CAG-ODE, we propose to inject the dynamic effects of multiple

treatments into the ODE function. Treatments can have time-varying effects in multi-agent dynamical

systems and they can occur simultaneously, resulting in a combined effect. To model such complex

behaviors, we propose a novel treatment fusing module that assigns temporal weights to multiple

108

treatments through an attention mechanism. The temporal weight of treatment at timestamp t is dependent

on both the start time of each treatment and the occurrence of other treatments as shown in Eqn (7.4).

Let ek ∈ RK be the one-hot representation of treatment k. We first add it with the temporal encoding

TE[HSW21c, VSP17] to account for the time elapsed since the start of the treatment t′. Here At
ik ∈ {0, 1}

is an indicator showing whether treatment k would be applied to agent i at timestamp t. Therefore the

computed treatment representation ôt
ik becomes zero when At

ik = 0, to ensure computational efficiency.

A contraction matrix Wq is then used to transform this sparse representation into a more compact form.

ôt
ik = At

ikek + TE (t− t′)1[At
ik = 1], ot

ik = Wqô
t
ik,

TE(∆t)2i = sin
(
∆t/M2i/d

)
,

TE(∆t)2i+1 = cos
(
∆t/M2i/d

)
,M = 10000.

(7.4)

To account for the combined effect of simultaneous treatments, we compute the combined treatment

representation as a weighted sum of all in-effect treatments at timestamp t (Eqn 7.5). We first compute

an attention vector mt
i as the tanh-transformed average of all the treatment representations, ôt

ij . Each

treatment’s weight is derived from the dot product of its representation and mt
i, thereby integrating each

treatment’s influence into ot
i.

ot
i =

1

K

∑
k

(
mt

i
⊤
ôt
ikô

t
ik

)
,mt

i = tanh

((
1

K

∑
k

ot
ik

)
Wm

)
. (7.5)

The fusing operation has a time complexity of O(K) if having K treatments and therefore is able to scale

up to larger systems.

7.4.3 Treatment-Induced GraphODE

We use two coupled ODEs to predict the latent trajectories for nodes and edges respectively, accounting

for their co-evolution [HSW21c]. We incorporate the learned treatment representations into the ODEs

to enable counterfactual predictions in the future. Specifically, the co-evolution of nodes and edges is

depicted in Eqn 7.6. The co-evolution depends on all historical information implicitly as Zt embeds the

trajectories up to time t. W̃t
A = D−1Wt

A is the normalized adjacency matrix and D is the diagonal degree

matrix defined as Dii =
∑

j W
t
Aij . fe, fself, fedge2value are all implemented as Multi-Layer Perceptrons

(MLPs). To incorporate the treatment effect into the function, we use a linear transformation W to merge

the latent states of nodes Zt and the treatment representation Ot. In this way, the latent trajectories of

109

agents are affected not only by their own past trajectories and treatments but also by the trajectories and

treatments of their interacting agents.

dZt

dt
= σ

(
W̃t

AW[Zt,Ot]
)
− Zt + Z0,

dzt
i→j

dt
= fe

([
zt
i , z

t
j

])
+ fself

(
zt
i→j

)
,

Wt
Aij = fedge2value

(
zt
i→j

)
, W̃t

A = D−1Wt
A.

(7.6)

7.4.4 Outcome Prediction

Given the treatment representations, the ODE functions, the latent initial states for nodes and edges, and

the latent trajectories for all agents can be determined using any black-box ODE solver. Finally, we

compute the predicted trajectories for each agent and their interactions based on the decoding likelihoods

in Eqn (7.7), where fdecN and fdecE are node and edge decoding functions respectively. They output the

means of the normal distributions p(yt
i |zt

i) and p(wt
i→j|zt

i), which we treat as the predicted values from

our model.

yt
i ∼ p(yt

i |zt
i) = fdecN(z

t
i), w

t
i→j ∼ p(wt

i→j|zt
i) = fdecE(z

t
i). (7.7)

We implemented all of our decoders using two-layer fully connected neural networks. The node feature

decoder’s input dimension matches the latent state dimension d, while the output dimension is one,

reflecting our outcome of interest. The edge decoder’s input dimension is 2d and the output dimension is

1. The treatment decoder also has an input dimension equal to the latent state’s dimension d. However, its

output dimension matches the number of distinct treatments, predicting the probability of each treatment

being chosen. Lastly, the interference decoder’s input dimension is the sum of the latent state dimension

and the treatment embedding dimension, i.e. 2d. Its output dimension mirrors the number of treatment

options. For all decoders, the latent hidden dimension is half of their respective input dimensions.

We calculate the reconstruction loss of model predictions for nodes Ŷ t
i and edges ŵt

i→j as:

L⟨Y ⟩ =
1

N

1

T

∑
t

∥Yt − Ŷt∥22, L⟨W ⟩ =
1

N2

1

T

∑
t

∥Wt
A − Ŵt

A∥2F .

7.4.5 Domain Adversarial Learning

In observational data, treatment assignments are not randomized but are biased based on time-varying

confounder values. This can lead to increased variance and bias in counterfactual estimation [SIB22]. In

110

multi-agent dynamical systems, unbalanced interference from neighboring agents further exacerbates

this effect and alters the state of each agent. To obtain an unbiased counterfactual prediction, we

need to ensure that the distribution of latent representation trajectories is invariant to treatments and

interference [JHL23c]. This guarantees that the treatments cannot be inferred from the latent trajectory

representations and that the interference is not predictable when the treatment is combined with the latent

representation.

To achieve this, we incorporate two adversarial learning losses into the optimization objective function

and use gradient reversal layers for the implementation.

Treatment Balancing The treatment combinations Ât can be predicted using a decoder from the

latent state zt
i . Formally, Ât

i· = ΦA(r(z
t
i)), where ΦA is a neural network attempting to recover treatments

from the latent state zt
i , and the gradient reversal layer, denoted by r, reverses the sign of gradient during

back-propagation. The treatment balancing can be expressed as the maximization of the following loss

term through the construction of min-max games:

L⟨A⟩ = − 1

N

1

T

1

K

N∑
i=1

T∑
t=1

K∑
k=1

∑
j∈{0,1}

1[(At
ik = j)] log(Φj,k

A (r(zt
i))),

where Φj,k
A represents the logits of dA(·) for predicting j on k-th treatment. Note that we achieve treatment

balancing by letting the latent representations zt
i not be predictable for each individual treatment. This

is because the representation of multiple treatments is essentially a linear combination of individual

treatments. If each individual treatment is not predictable based on zt
i , then it is also impossible to use

such representation to predict when multiple treatments occur together.

Interference Balancing Similar to treatment balancing, the interference prediction can be represented

as Ĝt
i = ΦG(r([Z

t
i , A

t
i])), where dG denotes a neural network designed to estimate interference. As

interference is a continuous variable, we employ continuous domain adversarial training to accomplish

interference balancing. By incorporating a gradient reversal layer, interference balancing can be achieved

by minimizing the following loss term:

L⟨G⟩ =
1

N

1

T

1

K

N∑
i=1

T∑
t=1

∥ΦG(r([z
t
i ,o

t
i]))−Gt

i∥22.

Overall Loss The overall training objective is defined as the weighted summation of node recon-

struction loss, edge reconstruction loss, treatment balancing loss, and interference balancing loss. Since

111

Table 7.1: Root Mean Square Error (RMSE) for factual outcome evaluation across prediction lengths (the

duration for which predictions are made). For the COVID-19 dataset, we report the mean and standard

deviation accuracy with multiple runs.

Dataset Covid-19 Tumor Growth

Prediction Length 7-days 14-days 21-days 14-days 21-days 28-days

CG-ODE 4063 ± 68 4454 ± 100 4659 ± 63 18.37 21.00 24.58

TE-CDE 7999 ± 212 7470 ± 289 6832 ± 243 55.45 55.38 71.23

COVID-POLICY 4008 ± 44 4128 ± 60 3963 ± 59 20.07 25.93 29.29

CAG-ODE 3710 ± 29 3925 ± 44 3933 ± 40 10.91 10.82 14.84

w/o L⟨G⟩ 3800 ± 60 3987 ± 40 3990 ± 49 15.57 16.28 16.62

w/o L⟨A⟩ 3840 ± 35 4100 ± 53 4069 ± 49 17.90 14.69 20.19

w/o L⟨G⟩ ,L⟨A⟩ 3793 ± 23 4089 ± 79 3953 ± 38 17.28 16.72 24.36

w/o attention 3867 ± 61 3958 ± 31 4256 ± 55 18.91 17.55 34.45

we follow the VAE framework, we also incorporate a KL divergence loss to add regularization towards

the sampled initial states, which is defined as: LKL = KL
[∏N

i=1 qϕ (z
0
i | H0) ∥p (Z0)

]
. Therefore, the

overall training loss is formalized as:

L = L⟨Y ⟩ + λL⟨W ⟩ + αL⟨A⟩ + βL⟨G⟩ + γLKL.

7.5 Experiments

7.5.1 Experiment Setup

7.5.1.1 Datasets and Experiment Configuration

We evaluate the performance of our model using two datasets: 1.) The COVID-19 dataset, which captures

the daily COVID-19 trends of U.S. states from April.12.2020 to Dec.31.2020. The daily population flows

among states are represented as dynamic edges. Treatments are state-level COVID-19 policies. We ask

the model to predict the daily confirmed cases in each state. 2.) The Tumor Growth simulation dataset

[GPG17], which describes the tumor growth dynamics in different regions of patients, where they may

receive differing treatments. We aim to predict the tumor volumes in each region. Additional details

about the datasets can be found in the Appendix.

112

We predict trajectory rollouts across varying lengths and use Root Mean Square Error (RMSE) as

the evaluation metric. Specifically, we train our model in a sequence-to-sequence setting where we split

the trajectory of each training sample into two parts [t1, tK] and [tK+1, tT]. We condition the model on

the first part of observations and predict the second part. To fully utilize the data points within each

trajectory, we generate training and validation samples by splitting each trajectory into several chunks

using a sliding window. Details can be found in the Appendix.

7.5.1.2 Baselines and Model Variants

We conduct a comparative analysis of our model with three baseline models: one non-causal continuous

multi-agent baseline CG-ODE [HSW21c], and two causal models: TE-CDE [SIB22] and COVID-

POLICY [MDH22]. TE-CDE [SIB22] is a causal model that employs continuous-time differential

equations to capture temporal event dependencies. COVID-Policy [MDH22] is another causal model

designed specifically for assessing the impact of public health policies on COVID-19 outcomes. To

further analyze the performance of our model, we also compare variants of our model. Each variant

excludes a specific component to assess its individual impact on performance. The variants include

models without treatment balancing, interference balancing, both components or the attention module.

7.5.1.3 Training Details

We employ the AdamW optimizer, as proposed in the study by Loshchilov et al. [LH], to train our

model. The initial learning rate is set at η = 0.005, and the batch size is set as 8 to accommodate memory

constraints.

The Graph Neural Network (GNN) used for the encoder has a singular layer with a hidden dimension

of 64. Similarly, the GNN that parameterizes the ODE function is also comprised of a single layer. The

dimension of the latent state is set at 20, and the dimension for the embedded treatments is 5. We assign a

weight of 10 for both the treatment balancing term α and the interference balancing term β. Additionally,

the weight designated for the edge reconstruction error λ is set at 0.5.

7.5.2 Performance Evaluation

We evaluate the performance of our model, CAG-ODE, as well as the baselines using Root Mean Square

Error (RMSE) across different prediction lengths. The results are shown in Table 7.1 and Table 7.2,

reporting the factual and counterfactual outcomes respectively. As the COVID-19 is a real-world dataset

113

that does not have counterfactual outcomes, we evaluate only the Tumor Growth dataset in Table 7.2. To

ensure consistent comparison, we align the prediction periods of all models with weekly intervals on

the COVID-19 dataset, similar to the statistical baselines derived from their official weekly submissions

to the CDC, as done in [HSW21c]. To assess the accuracy of short-term and long-term predictions, the

prediction lengths for the COVID-19 and Tumor Growth datasets are set to 7, 14, 21 days and 14, 21, and

28 days, respectively. We include longer-range predictions on the Tumor-Growth dataset in the Appendix.

Factual Outcome Predictions. Table 7.1 shows that our model, CAG-ODE, consistently outperforms

the baseline models across all prediction lengths for both datasets. This underscores the effectiveness

of our model in capturing the dynamic interactions among objects, especially over longer time periods.

Comparing our model with TE-CDE, we observe a performance gap that highlights the benefits of

incorporating interference balancing and spatial correlation in the model. Additionally, our model

outperforms the COVID-POLICY model, indicating its broader generalizability across different types

of data due to modeling dynamic interactions. Furthermore, our model exhibits proficiency in both

short-term and long-term predictions. For instance, it achieves promising results for 21-day predictions

on the COVID-19 dataset and 28-day predictions on the Tumor Growth simulation dataset. The analysis

of our model variants further emphasizes the importance of each component in the model. Particularly,

the model variant excluding the attention module has the weakest performance, indicating the significance

of our time-embedding attention module in effectively representing the treatment.

Counterfactual Outcome Predictions. In the context of a multi-agent dynamical system, the

total number of possible treatments for all nodes is O(K × 2N), making it infeasible to enumerate all

treatment combinations. To assess the robustness of each model to counterfactual treatment scenarios,

we perform an experiment where we randomly flip a certain percentage of observed treatments. In

Table 7.2, we evaluate the performance when 25%, 50%, and 75% of all observed treatments in each

experiment are randomly flipped. The purpose of this experiment is to examine the robustness of the

models to counterfactual treatment scenarios, and since CG-ODE does not incorporate causal modeling,

it is excluded from this experiment. CAG-ODE outperforms others by a wide margin across all settings.

These findings collectively demonstrate the superiority of our proposed model, CAG-ODE, in capturing

the dynamics of multi-agent systems and making accurate predictions across different time horizons. We

additionally include the visualization of the learned balanced latent representations in Section 7.5.4.

114

Table 7.2: Root Mean Square Error (RMSE) for counterfactual Outcome evaluation on the Tumor Growth

dataset with treatment flipping ratio. Treatment F.R. (Treatment Flipping Ratio) represents the ratio of

treatments that are flipped.

Prediction Length 14-days 21-days 28-days

Treatment F.R. 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

TE-CDE 95.61 103.2 100.8 98.65 103.0 97.93 118.3 124.0 121.4

COVID-POLICY 21.32 22.37 23.31 26.63 26.83 27.00 32.01 32.16 32.21

CAG-ODE 17.23 16.98 16.96 18.64 18.84 18.85 19.91 19.88 19.87

w/o L⟨G⟩ 20.62 20.53 20.51 19.70 19.60 19.55 21.10 21.41 21.38

w/o L⟨A⟩ 22.17 22.35 22.35 20.19 20.10 20.09 20.83 21.14 21.15

w/o L⟨G⟩, L⟨A⟩ 19.78 19.75 19.71 19.34 19.29 19.27 21.31 21.40 21.34

w/o attention 19.09 18.37 18.13 22.16 21.78 21.65 27.70 27.44 27.38

7.5.3 Case Study about COVID-19 Policies

We conduct a case study to show the impact of different treatments, e.g., COVID-19 related policies, on

the COVID-19 dataset as shown in Figure 7.2. Specifically, we consider four different policy intervention

methods and report the resulting average changes in the number of daily confirmed cases across all states

in the U.S.

(a) Remove partial states’

policy.

(b) Change policy start

date.

(c) Remove policy across

states.

(d) Change relative time

of policies.
Figure 7.2: Case Study for changing different policies on the COVID-19 dataset.

First, we focus on the removal of policies in three states that have the highest number of announced

policies during the time frame of the COVID-19 dataset. By masking out these policies, we observe an

increase in the average number of confirmed cases across states in the future. This increase is attributed

to both in-state disease spread and population flow to other states. The removal of policies exacerbates

115

the spread of COVID-19 over an extended period, as shown in Figure 7.2(a), indicating that our model

captures the dynamic interference resulting from agents’ interactions.

We then explore the effect of changing the starting time of a specific policy for all states. We changed

the "No Public Gatherings" policy starting time for each state to be 15 days earlier, 15 and 30 days later

respectively. As shown in Figure 7.2(b) when announcing the policy earlier, we observe a decrease in

the average number of daily confirmed cases in the future, while announcing the policy later leads to an

increase. This intuitive outcome highlights the capability of our model to capture the causal relationships

between policy interventions and COVID-19 spread.

Next, we analyze the impact of the top three most frequent policies across all states by removing them

separately. As shown in Figure 7.2(c), the "Public Gatherings" policy has the largest effect in reducing

the spread of COVID-19, even though the most frequent policy is "Emergency Funds". This demonstrates

the potential of our model in assisting policymakers to identify the relative importance of each policy

over time.

（a) ”State-of-Emergency”
w/o. Treatment Balancing

（b) ”State-of-Emergency”
with Treatment Balancing

（c) ”No-Public-Gathering”
w/o. Treatment Balancing

（d) ” No-Public-Gathering”
with Treatment Balancing

(a)

"State-of-Emergency"

w/o. Treatment

Balancing.

（a) ”State-of-Emergency”
w/o. Treatment Balancing

（b) ”State-of-Emergency”
with Treatment Balancing

（c) ”No-Public-Gathering”
w/o. Treatment Balancing

（d) ” No-Public-Gathering”
with Treatment Balancing

(b)

"State-of-Emergency"

with Treatment

Balancing.

（a) ”State-of-Emergency”
w/o. Treatment Balancing

（b) ”State-of-Emergency”
with Treatment Balancing

（c) ”No-Public-Gathering”
w/o. Treatment Balancing

（d) ” No-Public-Gathering”
with Treatment Balancing

(c)

"No-Public-Gathering"

w/o. Treatment

Balancing.

（a) ”State-of-Emergency”
w/o. Treatment Balancing

（b) ”State-of-Emergency”
with Treatment Balancing

（c) ”No-Public-Gathering”
w/o. Treatment Balancing

（d) ” No-Public-Gathering”
with Treatment Balancing

(d)

"No-Public-Gathering"

with Treatment

Balancing.
Figure 7.3: Treatment Balancing Visualization on the COVID-19 Dataset.

Finally, we study the effects of different orders in policy announcements, specifically focusing on

the simultaneous or closely timed announcements of "No Public Gatherings" and "No Traveler from

Outside States" policies. We change the announcement dates for the two policies in each state to mimic

three scenarios shown in Figure 7.2 (d). We found that initializing the announcement of "No Public

Gatherings" early generally contributes to a reduction in the spread of COVID-19 compared with "No

Traveler from Outside States". We further analyzed the daily population flow during the given time frame

and found that the majority of population flows are within the same states, indicating that residents of

each state pose a high risk of virus transmission compared to people from other states. These insights

116

suggest prioritizing the earlier announcement of the "No Public Gatherings" policy over the "No Traveler

from Outside States" policy can better mitigate the spread of COVID-19.

These case study results demonstrate the effectiveness of our model CAG-ODE in capturing the

complex interactions between treatments, disease spread, and population flow, providing valuable insights

for policymakers in making informed decisions.

7.5.4 Visualization of Learned Balanced Representations

To further understand the effect of treatment balancing loss in CAG-ODE, we visualize the 2-D T-SNE

projections of the latent representations of nodes on the COVID-19 dataset, i.e. zt
i as shown in Figure 7.3.

Specifically, we visualize the latent node representations under two different treatments: "State-of-

Emergency" and "No-Public-Gathering". Under each treatment (policy), we use different colors to denote

whether a node receives such treatment (treated) or not (control). As shown in Figure 7.3(a) and (c), the

distributions of the learned representations are more distinguishable between the two groups, compared

with Figure 7.3(b) and (d) which have the treatment balancing loss. This indicates that CAG-ODE indeed

learns balanced latent representations by employing the treatment balancing loss.

7.6 Conclusion

In this paper, we introduce the causal graph ODE (CAG-ODE) as a model for estimating continuous

counterfactual outcomes in multi-agent-dynamical systems with evolving interaction edges and dynamic

multi-treatment effects. Our model builds upon existing GraphODEs and incorporates causal reasoning

for multi-agent dynamical systems. We propose a novel treatment fusing module that captures the

dynamic effects of multiple treatments occurring simultaneously. Through extensive experiments on both

the real-world and the simulated datasets, we demonstrate the superior performance of our model across

various prediction settings, validating its effectiveness. Furthermore, we leverage our model to analyze

policy effects analysis on the COVID-19 dataset, providing valuable insights for policymakers.

7.7 Discussion and Future Directions

My research lies at the interdisciplinary crossroads, and I have been fortunate to collaborate with people

from different backgrounds, covering material science, physics, biomedical engineering, and healthcare,

which provides a basis for my future work. I aim to build an intelligent “AI Assistant for Scientists"

117

that is able to facilitate scientific discovery across disciplines. Such procedure can be staged into 1.)

experimental design, 2.) data analysis [WFD23]. I propose the following directions in line with the three

stages.

Cost-Efficient Experimental Design: Experiment-in-the-Loop Neural Simulator Training. Neu-

ral simulators are trained on observational data generated by ground-truth simulators. The acquisition

of such data can be expensive, especially when demanding high precision at time scales in the order

of milliseconds (10−3) or even nanoseconds (10−9). In various scenarios, adjusting experiment designs

dynamically becomes essential to optimize costs. For instance, in drug discovery, the extended validation

period for a new drug necessitates costly testing and human analysis. In quantum physics, selecting the

most effective approach for a complex experiment can be counterintuitive. Hence, optimizing experi-

ment design stands as a pivotal challenge in advancing scientific discovery. To address this, I propose

integrating experiment designs into the neural simulator’s training loop. Considering training a neural

simulator that can be generalized across different time scales, by utilizing intermediate outputs, such

as prediction accuracy from neural networks, one can refine subsequent experiment designs, such as

increasing the time precision scale (high-fidelity simulations) or opting for a lower precision (low-fidelity

simulations) in ground-truth simulators for generating new data. The newly generated data will be

employed to train the neural networks, with iterative generation guided by the model’s performance. One

potential approach involves employing reinforcement learning, allowing for iterative experiment design

and receiving feedback in the process.

Unveiling Symbolic Knowledge from Scientific Data. Unraveling dynamic formulas from data lies

at the core of scientific development, grounded in closed-form symbolic expressions that encapsulate laws

and principles discovered by humans. These concise expressions distill insights from observational data,

serving as adaptable tools in addressing related problems and fostering the generation of new knowledge.

While neural networks excel in accurate predictions for dynamical systems, their black-box nature hinders

interpretability and generalization across diverse systems. Symbolic regression, a supervised machine

learning technique, constructs analytic functions inspired by neural networks. However, most fundamental

formulas in sciences are described by differential equations such as Newton’s Law of Motion, making

GraphODE a perfect choice for extracting dynamical formulas from data in contrast with discrete models.

In the future, I plan to develop novel methods to extract dynamical formulas learned by GraphODE,

which can serve as a precise summary of the knowledge learned from data in the last stage. I am also

118

interested in studying the relationships among formulas extracted from different systems, and seeking

new insights from them in a manner akin to human learning processes.

Broader Applications via Dynamical System Modeling. Finally, I plan to explore broader appli-

cations in real-world contexts that can be modeled as dynamical systems. An interesting example is to

investigate the optimization of neural network training by adopting a dynamical system perspective, where

neurons are treated as nodes, and weights between neurons as edges. By modeling the training process

through the lens of dynamical systems, the aim is to accelerate and enhance the efficiency of neural

network training and model selection. I am also interested in extending ODEs to stochastic differential

equations (SDE) and partial differential equations (PDE). The former naturally captures the stochastic

nature of dynamical systems such as Brownian motion, whereas the latter is well-suited to capture the

continuity in both space and time aspects such as mesh simulations and fluid dynamics. Finally, I intend to

integrate external knowledge and signals into GraphODE for more precise and robust/reliable reasoning

when faced with limited observational data, spanning from multi-modal learning (e.g. visions, languages)

to knowledge graphs. By incorporating these additional dimensions, the model can provide a more

comprehensive and accurate representation of complex real-world system dynamics.

Embarking on these research directions, my goal is to push the boundaries of the limits of symbolic

deep learning in scientific discovery. This pursuit aims not only to enhance the precision of predictions

and reasoning but also to unearth novel insights and unveil untapped potentials within dynamic relational

data.

119

Bibliography

[AKW08] J. Awrejcewicz, G. Kudra, and G. Wasilewski. “Chaotic zones in triple pendulum dynamics

observed experimentally and numerically.” Applied Mechanics and Materials, pp. 1–17,

2008.

[BAJ20a] Ioana Bica, Ahmed M Alaa, James Jordon, and Mihaela van der Schaar. “Estimating

counterfactual treatment outcomes over time through adversarially balanced representations.”

International Conference on Learning Representations, 2020.

[BAJ20b] Ioana Bica, Ahmed M. Alaa, James Jordon, and Mihaela van der Schaar. “Estimating

counterfactual treatment outcomes over time through adversarially balanced representations.”

In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,

Ethiopia, April 26-30, 2020, 2020.

[BB00] Cx K Batchelor and GK Batchelor. An introduction to fluid dynamics. Cambridge university

press, 2000.

[BBH19] Maximilian Behr, Peter Benner, and Jan Heiland. “Solution formulas for differential Sylvester

and Lyapunov equations.” In Calcolo, 2019.

[BDB19] Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. “SimGNN: A

Neural Network Approach to Fast Graph Similarity Computation.” In WSDM’19, 2019.

[BEP08] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. “Freebase: A

Collaboratively Created Graph Database for Structuring Human Knowledge.” In Proceedings

of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD

’08, p. 1247–1250, 2008.

[BK19] Austin Benson and Jon Kleinberg. “Link prediction in networks with core-fringe data.” In

The Web Conference (WWW), pp. 94–104, 2019.

[BLZ22] Guangji Bai, Chen Ling, and Liang Zhao. “Temporal Domain Generalization with Drift-

Aware Dynamic Neural Networks.” arXiv preprint arXiv:2205.10664, 2022.

120

[BNM20a] Fabien Baradel, Natalia Neverova, Julien Mille, Greg Mori, and Christian Wolf. “CoPhy:

Counterfactual Learning of Physical Dynamics.” In ICLR, 2020.

[BNM20b] Fabien Baradel, Natalia Neverova, Julien Mille, Greg Mori, and Christian Wolf. “CoPhy:

Counterfactual Learning of Physical Dynamics.” In ICLR, 2020.

[BPL16] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and koray

kavukcuoglu. “Interaction Networks for Learning about Objects, Relations and Physics.” In

Advances in Neural Information Processing Systems 29, pp. 4502–4510. 2016.

[BUG13] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Oksana

Yakhnenko. “Translating Embeddings for Modeling Multi-Relational Data.” In Proceedings

of the 26th International Conference on Neural Information Processing Systems - Volume 2,

p. 2787–2795, 2013.

[BV21] Alexis Bellot and Mihaela Van Der Schaar. “Policy analysis using synthetic controls in

continuous-time.” In International Conference on Machine Learning, pp. 759–768. PMLR,

2021.

[CCF20] Xuelu Chen, Muhao Chen, Changjun Fan, Ankith Uppunda, Yizhou Sun, and Carlo Zaniolo.

“Multilingual Knowledge Graph Completion via Ensemble Knowledge Transfer.” In Pro-

ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:

Findings, pp. 3227–3238, 2020.

[CGH20] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho. “Lagrangian

neural networks.” arXiv preprint arXiv:2003.04630, 2020.

[CGL19] Y. Cao, X. Gao, and R. Li. “A liquid plug moving in an annular pipe–Heat transfer analysis.”

International Journal of Heat and Mass Transfer, 139:1065–1076, 2019.

[CJL21] Yixin Cao, Xiang Ji, Xin Lv, Juanzi Li, Yonggang Wen, and Hanwang Zhang. “Are Missing

Links Predictable? An Inferential Benchmark for Knowledge Graph Completion.” In

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics

and the 11th International Joint Conference on Natural Language Processing (Volume 1:

Long Papers), pp. 6855–6865, Online, 2021.

121

[CL18] Y. Cao and R. Li. “A liquid plug moving in an annular pipe—Flow analysis.” Physics of

Fluids, 30(9), 2018.

[CLL19] Yixin Cao, Zhiyuan Liu, Chengjiang Li, Zhiyuan Liu, Juanzi Li, and Tat-Seng Chua. “Multi-

Channel Graph Neural Network for Entity Alignment.” In ACL, 2019.

[CLR18] Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Herve

J´egou. “Word translation without parallel data.” In In International Conference on Learning

Representations, 2018.

[CMH18] B. Chang, L. Meng, E. Haber, L. Ruthotto, D. Begert, and E. Holtham. “Reversible

architectures for arbitrarily deep residual neural networks.” In Proceedings of the AAAI

conference on artificial intelligence, volume 32, 2018.

[CMU03] CMU. “Carnegie-Mellon Motion Capture Database.” 2003.

[Con18] “Convolutional 2D Knowledge Graph Embeddings.” In Proceedings of the 32th AAAI

Conference on Artificial Intelligence, pp. 1811–1818, 2018.

[CPC18] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan. Liu. “Re-

current Neural Networks for Multivariate Time Series with Missing Values.” In Scientific

Reports, p. 6085, 2018.

[CPK21] Serina Chang, Emma Pierson, Pang Wei Koh, Jaline Gerardin, Beth Redbird, David Grusky,

and Jure Leskovec. “Mobility network models of COVID-19 explain inequities and inform

reopening.” In Nature, 2021.

[CRB18a] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. “Neural

Ordinary Differential Equations.” In Advances in Neural Information Processing Systems

31, pp. 6571–6583. 2018.

[CRB18b] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. “Neural Ordinary Differential

Equations.” In Advances in Neural Information Processing Systems, 2018.

[CSB81] Thomas C Chalmers, Harry Smith Jr, Bradley Blackburn, Bernard Silverman, Biruta

Schroeder, Dinah Reitman, and Alexander Ambroz. “A method for assessing the qual-

ity of a randomized control trial.” Controlled clinical trials, 2(1):31–49, 1981.

122

[CSB20] Miles Cranmer, Alvaro Sanchez-Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranme, David

Spergel, and Shirley Ho. “Discovering Symbolic Models from Deep Learning with Inductive

Biases.” In Neurips’20, 2020.

[CTC18] Muhao Chen, Yingtao Tian, Kai-Wei Chang, Steven Skiena, and Zaniolo Carlo. “Co-training

embeddings of knowledge graphs and entity descriptions for cross-lingual entity alignment.”

In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI),

pp. 3998–4004, 2018.

[CTY17] Muhao Chen, Yingtao Tian, Mohan Yang, and Carlo Zaniolo. “Multilingual Knowledge

Graph Embeddings for Cross-lingual Knowledge Alignment.” In Proceedings of the 26th

International Joint Conference on Artificial Intelligence (IJCAI), 2017.

[CUT16] Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. “A Compo-

sitional Object-Based Approach to Learning Physical Dynamics.” ICLR, 2016.

[CWL18] Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. “BRITS: Bidirectional

Recurrent Imputation for Time Series.” In Advances in Neural Information Processing

Systems 31, pp. 6775–6785. 2018.

[DCL19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding.” In Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

[DDG20] Ensheng Dong, Hongru Du, and Lauren Gardner. “An interactive web-based dashboard to

track COVID-19 in real time.” In The Lancet Infectious Diseases, 2020.

[DGH22] Edward De Brouwer, Javier Gonzalez, and Stephanie Hyland. “Predicting the impact of

treatments over time with uncertainty aware neural differential equations.” In International

Conference on Artificial Intelligence and Statistics, pp. 4705–4722. PMLR, 2022.

[End03] D. F. M. Endre Süli. An Introduction to Numerical Analysis. Cambridge University Press,

2003.

123

[GBG21] Johannes Gasteiger, Florian Becker, and Stephan Günnemann. “Gemnet: Universal direc-

tional graph neural networks for molecules.” Advances in Neural Information Processing

Systems, 34:6790–6802, 2021.

[GC19] L. Gong and Q. Cheng. “Exploiting Edge Features for Graph Neural Networks.” In 2019

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9203–9211,

2019.

[GDY19] S. Greydanus, M. Dzamba, and J. Yosinski. “Hamiltonian neural networks.” Advances in

Neural Information Processing Systems, 2019.

[GG22] Nicholas Gao and Stephan Günnemann. “Ab-Initio Potential Energy Surfaces by Pairing

GNNs with Neural Wave Functions.” In International Conference on Learning Representa-

tions, 2022.

[GPG17] Changran Geng, Harald Paganetti, and Clemens Grassberger. “Prediction of treatment

response for combined chemo-and radiation therapy for non-small cell lung cancer patients

using a bio-mathematical model.” Scientific reports, 7(1):13542, 2017.

[GSG17] Yupeng Gu, Yizhou Sun, and Jianxi Gao. “The Co-Evolution Model for Social Network

Evolving and Opinion Migration.” In KDD’17, 2017.

[GSP20] Daehoon Gwak, Gyuhyeon Sim, Michael Poli, Stefano Massaroli, Jaegul Choo, and Edward

Choi. “Neural ordinary differential equations for intervention modeling.” arXiv preprint

arXiv:2010.08304, 2020.

[GVK22] Jayesh Gupta, Sai Vemprala, and Ashish Kapoor. “Learning Modular Simulations for

Homogeneous Systems.” Advances in Neural Information Processing Systems (Neurips),

35:14852–14864, 2022.

[GZL22] Jiayan Guo, Peiyan Zhang, Chaozhuo Li, Xing Xie, Yan Zhang, and Sunghun Kim. “Evo-

lutionary preference learning via graph nested gru ode for session-based recommendation.”

In Proceedings of the 31st ACM International Conference on Information & Knowledge

Management (CIKM), pp. 624–634, 2022.

124

[HCY19] Junheng Hao, Muhao Chen, Wenchao Yu, Yizhou Sun, and Wei Wang. “Universal Repre-

sentation Learning of Knowledge Bases by Jointly Embedding Instances and Ontological

Concepts.” In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-

edge Discovery & Data Mining, p. 1709–1719, 2019.

[HDW20a] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. “Light-

gcn: Simplifying and powering graph convolution network for recommendation.” In Pro-

ceedings of the International ACM SIGIR Conference on Research and Development in

Information Retrieval, pp. 639–648, 2020.

[HDW20b] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. “Heterogeneous Graph Trans-

former.” In Proceedings of the 2020 World Wide Web Conference, 2020.

[Het00] H. W Hethcote. “The mathematics of infectious diseases.” In SIAM review. 2000.

[HFL18] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,

Adam Trischler, and Yoshua Bengio. “Learning deep representations by mutual information

estimation and maximization.” arXiv preprint arXiv:1808.06670, 2018.

[HHN19] Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield, Mingyuan

Zhou, and Xiaoning Qian. “Variational Graph Recurrent Neural Networks.” In Advances in

Neural Information Processing Systems 32, pp. 10701–10711. 2019.

[HHZ24] Zijie Huang, Jeehyun Hwang, Junkai Zhang, Jinwoo Baik, Weitong Zhang, Quanquan Gu,

Dominik Wodarz, Yizhou Sun, and Wei Wang. “Causal Graph ODE: Continuous Treatment

Effect Modeling in Multi-agent Dynamical Systems.” In The Web Conference (WWW), 2024.

[HLJ22] Zijie Huang, Zheng Li, Haoming Jiang, Tianyu Cao, Hanqing Lu, Bing Yin, Karthik

Subbian, Yizhou Sun, and Wei Wang. “Multilingual Knowledge Graph Completion with

Self-Supervised Adaptive Graph Alignment.” In Annual Meeting of the Association for

Computational Linguistics (ACL), 2022.

[HSW20a] Zijie Huang, Yizhou Sun, and Wei Wang. “Learning Continuous System Dynamics from

Irregularly-Sampled Partial Observations.” In Advances in Neural Information Processing

Systems (Neurips), 2020.

125

[HSW20b] Zijie Huang, Yizhou Sun, and Wei Wang. “Learning Continuous System Dynamics from

Irregularly-Sampled Partial Observations.” In Neurips’20, 2020.

[HSW21a] Z. Huang, Y. Sun, and W. Wang. “Coupled Graph ODE for Learning Interacting System

Dynamics.” In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery

and Data Mining, 2021.

[HSW21b] Zijie Huang, Yizhou Sun, and Wei Wang. “Coupled Graph ODE for Learning Interacting

System Dynamics.” In Proceedings of the 27th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining (KDD), 2021.

[HSW21c] Zijie Huang, Yizhou Sun, and Wei Wang. “Coupled graph ode for learning interacting

system dynamics.” In The 27th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (SIGKDD), 2021.

[HSW23a] Zijie Huang, Yizhou Sun, and Wei Wang. “Generalizing Graph ODE for Learning Com-

plex System Dynamics across Environments.” In Proceedings of the 29th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining (KDD), p. 798–809, 2023.

[HSW23b] Zijie Huang, Yizhou Sun, and Wei Wang. “Generalizing graph ode for learning complex sys-

tem dynamics across environments.” In Proceedings of the 29th ACM SIGKDD Conference

on Knowledge Discovery and Data Mining, pp. 798–809, 2023.

[HWH23] Zijie Huang, Daheng Wang, Binxuan Huang, Chenwei Zhang, Jingbo Shang, Yan Liang,

Zhengyang Wang, Xian Li, Christos Faloutsos, Yizhou Sun, and Wei Wang. “Concept2Box:

Joint Geometric Embeddings for Learning Two-View Knowledge Graphs.” In Findings of

the Association for Computational Linguistics: ACL 2023, pp. 10105–10118. Association

for Computational Linguistics, 2023.

[HYH20] I. Huh, E. Yang, S. J. Hwang, and J. Shin. “Time-Reversal Symmetric ODE Network.” In

Advances in Neural Information Processing Systems, 2020.

[HYH23] Kaiqiao Han, Yi Yang, Zijie Huang, Yang Yang, Lifang He, Liang Zhan, Yizhou Sun, Wei

Wang, and Carl Yang. “BrainODE: Dynamic Brain Network Analysis via Graph-Aided

Neural Ordinary Differential Equations.” in submission, 2023.

126

[HZG24] Zijie Huang, Wanjia Zhao, Jingdong Gao, Ziniu Hu, Xiao Luo, Yadi Cao, Yizhou Sun,

and Wei Wang. “TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical

Systems.”, 2024.

[HZGrd] Zijie Huang, Wanjia Zhao, Jingdong Gao, Ziniu Hu, Xiao Luo, Yadi Cao, Yuanzhou Chen,

Yizhou Sun, and Wei Wang. “TANGO: Time-Reversal Latent GraphODE for Multi-Agent

Dynamical Systems.” In The Symbiosis of Deep Learning and Differential Equations III,

Neurips, 2023. Best Paper Award.

[HZR15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning for

Image Recognition.” arXiv preprint arXiv:1512.03385, 2015.

[JHH20] Amin Javari, Zhankui He, Zijie Huang, Raj Jeetu, and Kevin Chen-Chuan Chang. “Weakly

Supervised Attention for Hashtag Recommendation Using Graph Data.” In Proceedings of

The Web Conference 2020, WWW ’20, 2020.

[JHL23a] Song Jiang, Zijie Huang, Xiao Luo, and Yizhou Sun. “CF-GODE: Continuous-Time Causal

Inference for Multi-Agent Dynamical Systems.” In Proceedings of the 29th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining (KDD), 2023.

[JHL23b] Song Jiang, Zijie Huang, Xiao Luo, and Yizhou Sun. “CF-GODE: Continuous-Time Causal

Inference for Multi-Agent Dynamical Systems.” In Proceedings of the 29th ACM SIGKDD

Conference on Knowledge Discovery & Data Mining, 2023.

[JHL23c] Song Jiang, Zijie Huang, Xiao Luo, and Yizhou Sun. “CF-GODE: Continuous-Time Causal

Inference for Multi-Agent Dynamical Systems.” In 29th SIGKDD Conference on Knowledge

Discovery and Data Mining, 2023.

[Jon24] John Edward Jones. “On the determination of molecular fields.—I. From the variation of the

viscosity of a gas with temperature.” Proceedings of the Royal Society of London. Series A,

Containing Papers of a Mathematical and Physical Character, 106(738):441–462, 1924.

[JS22] Song Jiang and Yizhou Sun. “Estimating Causal Effects on Networked Observational Data

via Representation Learning.” In Proceedings of the 31st ACM International Conference on

Information & Knowledge Management, pp. 852–861, 2022.

127

[jur19] “A Sneak Peek at 19 Science Simulations for the Summit Supercomputer in 2019.”, 2019.

[KFW18a] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. “Neural

Relational Inference for Interacting Systems.” arXiv preprint arXiv:1802.04687, 2018.

[KFW18b] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. “Neural

Relational Inference for Interacting Systems.” arXiv preprint arXiv:1802.04687, 2018.

[KK13] S. Kim and S. J. Karrila. Microhydrodynamics: principles and selected applications. Courier

Corporation, 2013.

[KTK19] Georgia Koppe, Hazem Toutounji, Peter Kirsch, Stefanie Lis, and Daniel Durstewitz. “Identi-

fying nonlinear dynamical systems via generative recurrent neural networks with applications

to fMRI.” PLoS computational biology, 15(8):e1007263, 2019.

[KW14] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes.” In ICLR, 2014.

[KW17] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Convolu-

tional Networks.” In ICLR’17, 2017.

[Lab19] The Oak Ridge National Laboratory. “A Sneak Peek at 19 Science Simulations for the

Summit Supercomputer.”, 2019.

[LCH19] Chengjiang Li, Yixin Cao, Lei Hou, Jiaxin Shi, Juanzi Li, and Tat-Seng Chua. “Semi-

supervised Entity Alignment via Joint Knowledge Embedding Model and Cross-graph

Model.” In Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), pp. 2723–2732, 2019.

[lDH17] Jundong li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu. “Attributed Network

Embedding for Learning in a Dynamic Environment.” In CIKM’17, 2017.

[LH] Ilya Loshchilov and Frank Hutter. “Decoupled Weight Decay Regularization.” In Interna-

tional Conference on Learning Representations.

128

[LHS23] Han Liu, Zijie Huang, Samuel S. Schoenholz, Ekin D. Cubuk, Morten M. Smedskjaer,

Yizhou Sun, Wei Wang, and Mathieu Bauchy. “Learning molecular dynamics: predicting

the dynamics of glasses by a machine learning simulator.” In Material Horizons, 2023.

[LIJ15] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N

Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, and Soren Auer. “Db-

pedia–a large-scale, multilingual knowledge base extracted from wikipedia.” In Semantic

Web, pp. 167–195, 2015.

[Lim18] Bryan Lim. “Forecasting treatment responses over time using recurrent marginal structural

networks.” advances in neural information processing systems, 31, 2018.

[LKB19] J. Liu, A. Kumar, J. Ba, J. Kiros, and K. Swersky. “Graph normalizing flows.” Advances in

Neural Information Processing Systems, 32, 2019.

[LLC22] Yupu Lu, Shijie Lin, Guanqi Chen, and Jia Pan. “ModLaNets: Learning Generalisable

Dynamics via Modularity and Physical Inductive Bias.” In Kamalika Chaudhuri, Stefanie

Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of

the 39th International Conference on Machine Learning, volume 162 of Proceedings of

Machine Learning Research, pp. 14384–14397. PMLR, 17–23 Jul 2022.

[LNV21] Justin Lovelace, Denis Newman-Griffis, Shikhar Vashishth, Jill Fain Lehman, and Carolyn

Rosé. “Robust Knowledge Graph Completion with Stacked Convolutions and a Student

Re-Ranking Network.” In Proceedings of the 59th Annual Meeting of the Association for

Computational Linguistics and the 11th International Joint Conference on Natural Language

Processing (Volume 1: Long Papers), pp. 1016–1029, 2021.

[LPZ02] Harvard Lomax, Thomas H Pulliam, David W Zingg, and TA Kowalewski. “Fundamentals

of computational fluid dynamics.” Appl. Mech. Rev., 55(4):B61–B61, 2002.

[LR98] Jeroen SW Lamb and John AG Roberts. “Time-reversal symmetry in dynamical systems: a

survey.” Physica D: Nonlinear Phenomena, pp. 1–39, 1998.

[LSD21] Bill Yuchen Lin, Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Xiang Ren, and William

Cohen. “Differentiable Open-Ended Commonsense Reasoning.” In Proceedings of the 2021

129

Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pp. 4611–4625, 2021.

[LSW23] Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato,

Ferran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose,

Stephan Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir

Mohamed, and Peter Battaglia. “Learning skillful medium-range global weather forecasting.”

Science, 382(6677):1416–1421, 2023.

[LWH23] Xiao Luo, Haixin Wang, Zijie Huang, Huiyu Jiang, Abhijeet Sadashiv Gangan, Song Jiang,

and Yizhou Sun. “CARE: Modeling Interacting Dynamics Under Temporal Environmen-

tal Variation.” In Thirty-seventh Conference on Neural Information Processing Systems

(Neurips), 2023.

[LWZ19a] Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B Tenenbaum, Antonio Torralba, and Russ

Tedrake. “Propagation Networks for Model-Based Control Under Partial Observation.” In

ICRA, 2019.

[LWZ19b] Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B Tenenbaum, Antonio Torralba, and Russ

Tedrake. “Propagation Networks for Model-Based Control Under Partial Observation.” In

ICRA, 2019.

[LWZ19c] Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B Tenenbaum, Antonio Torralba, and Russ

Tedrake. “Propagation networks for model-based control under partial observation.” In 2019

International Conference on Robotics and Automation (ICRA), pp. 1205–1211. IEEE, 2019.

[LXM22] C. Li, F. Xia, R. Martín-Martín, M. Lingelbach, S. Srivastava, B. Shen, K. E. Vainio,

C. Gokmen, G. Dharan, T. Jain, A. Kurenkov, K. Liu, H. Gweon, J. Wu, L. Fei-Fei, and

S. Savarese. “iGibson 2.0: Object-Centric Simulation for Robot Learning of Everyday

Household Tasks.” In Proceedings of the 5th Conference on Robot Learning, 2022.

[LYH23] Xiao Luo, Jingyang Yuan, Zijie Huang, Huiyu Jiang, Yifang Qin, Wei Ju, Ming Zhang, and

Yizhou Sun. “HOPE: High-Order Graph ODE for Modeling Interacting Dynamics.” In

Proceedings of the 40th International Conference on Machine Learning (ICML), ICML’23,

2023.

130

[LYL21] Zongwei Liang, Junan Yang, Hui Liu, and Keju Huang. “A Semantic Filter Based on

Relations for Knowledge Graph Completion.” In Proceedings of the 2021 Conference on

Empirical Methods in Natural Language Processing, pp. 7920–7929, 2021.

[LZS23] Han Liu, Huang Zijie, Samuel S Schoenholz, Ekin D Cubuk, Morten M Smedskjaer, Yizhou

Sun, Wei Wang, and Mathieu Bauchy. “Learning molecular dynamics: predicting the

dynamics of glasses by a machine learning simulator.” Materials Horizons, 10(9):3416–

3428, 2023.

[MDH22] Jing Ma, Yushun Dong, Zheng Huang, Daniel Mietchen, and Jundong Li. “Assessing the

Causal Impact of COVID-19 Related Policies on Outbreak Dynamics: A Case Study in the

US.” In Proceedings of the ACM Web Conference 2022, WWW ’22, p. 2678–2686, 2022.

[MFF22] Valentyn Melnychuk, Dennis Frauen, and Stefan Feuerriegel. “Causal Transformer for

Estimating Counterfactual Outcomes.” In International Conference on Machine Learning,

ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of

Machine Learning Research, pp. 15293–15329. PMLR, 2022.

[MMD16] F Mokalled, L Mangani, and M Darwish. “The Finite Volume Method on Computational

Fluid Dynamics.”, 2016.

[MSH19] Schober Michael, Särkkä Simo, and Philipp Hennig. “A probabilistic model for the numerical

solution of initial value problems.” In Statistics and Computing, pp. 99–122. 2019.

[MWY22] Jing Ma, Mengting Wan, Longqi Yang, Jundong Li, Brent Hecht, and Jaime Teevan. “Learn-

ing causal effects on hypergraphs.” In Proceedings of the 28th ACM SIGKDD Conference

on Knowledge Discovery and Data Mining, pp. 1202–1212, 2022.

[NQ22] Ruiqi Ni and Ahmed H Qureshi. “Ntfields: Neural time fields for physics-informed robot

motion planning.” arXiv preprint arXiv:2210.00120, 2022.

[PCL21] Xutan Peng, Guanyi Chen, Chenghua Lin, and Mark Stevenson. “Highly Efficient Knowl-

edge Graph Embedding Learning with Orthogonal Procrustes Analysis.” In Proceedings of

the 2021 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, pp. 2364–2375, 2021.

131

[Pea09] Judea Pearl. Causality. Cambridge university press, 2009.

[PFS20] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. “Learning

mesh-based simulation with graph networks.” arXiv preprint arXiv:2010.03409, 2020.

[PFS21] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. Battaglia. “Learning Mesh-Based

Simulation with Graph Networks.” In International Conference on Learning Representations,

2021.

[PMP19a] M. Poli, S. Massaroli, J. Park, A. Yamashita, H. Asama, and J. Park. “Graph neural ordinary

differential equations.” arXiv preprint arXiv:1911.07532, 2019.

[PMP19b] Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and

Jinkyoo Park. “Graph Neural Ordinary Differential Equations.” arXiv, 2019.

[Poz01] C. Pozrikidis. “Interfacial dynamics for Stokes flow.” Journal of Computational Physics,

169(2):250–301, 2001.

[QZD20] Liang Qu, Huaisheng Zhu, Qiqi Duan, and Yuhui Shi. “Continuous-time link prediction via

temporal dependent graph neural network.” In The Web Conference (WWW), pp. 3026–3032,

2020.

[RCD19a] Y. Rubanova, R. T. Chen, and D. K. Duvenaud. “Latent ordinary differential equations for

irregularly-sampled time series.” In Advances in Neural Information Processing Systems,

2019.

[RCD19b] Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. “Latent Ordinary Differen-

tial Equations for Irregularly-Sampled Time Series.” In Advances in Neural Information

Processing Systems 32, pp. 5320–5330. 2019.

[RHB00] James M Robins, Miguel Angel Hernan, and Babette Brumback. “Marginal structural models

and causal inference in epidemiology.”, 2000.

[RPK19] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics-informed neural networks: A deep

learning framework for solving forward and inverse problems involving nonlinear partial

differential equations.” Journal of Computational physics, 378:686–707, 2019.

132

[Rub78] Donald B Rubin. “Bayesian inference for causal effects: The role of randomization.” The

Annals of statistics, pp. 34–58, 1978.

[SBC19] A. Sanchez-Gonzalez, V. Bapst, K. Cranmer, and P. Battaglia. “Hamiltonian Graph Networks

with ODE Integrators.” In Advances in Neural Information Processing Systems, 2019.

[SC15] Sprott and Julien Clinton. “Symmetric time-reversible flows with a strange attractor.” Inter-

national Journal of Bifurcation and Chaos, 25(05):1550078, 2015.

[SDN19] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. “RotatE: Knowledge Graph

Embedding by Relational Rotation in Complex Space.” In International Conference on

Learning Representations, 2019.

[SGP20a] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. W. Battaglia.

“Learning to Simulate Complex Physics with Graph Networks.” In Proceedings of the 37th

International Conference on Machine Learning, 2020.

[SGP20b] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and

Peter W. Battaglia. “Learning to Simulate Complex Physics with Graph Networks.” In

Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18

July 2020, Virtual Event, pp. 8459–8468, 2020.

[SGW92] T. Shinbrot, C. Grebogi, J. Wisdom, and J. A. Yorke. “Chaos in a double pendulum.”

American Journal of Physics, (6):491–499, 1992.

[SHZ18] Zequn Sun, Wei Hu, Qingheng Zhang, and Yuzhong Qu. “Bootstrapping Entity Align-

ment with Knowledge Graph Embedding.” In Proceedings of the 27th International Joint

Conference on Artificial Intelligence (IJCAI), p. 4396–4402, 2018.

[SIB22] Nabeel Seedat, Fergus Imrie, Alexis Bellot, Zhaozhi Qian, and Mihaela van der Schaar.

“Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differ-

ential Equations.” In International Conference on Machine Learning, pp. 19497–19521.

PMLR, 2022.

[SJ97] Hochreiter Sepp and Schmidhuber Jürgen. “Long Short-term Memory.” Neural computation,

1997.

133

[SJC21] Harkanwar Singh, Prachi Jain, Soumen Chakrabarti, et al. “Multilingual Knowledge Graph

Completion with Joint Relation and Entity Alignment.” arXiv preprint arXiv:2104.08804,

2021.

[SLX21] Chence Shi, Shitong Luo, Minkai Xu, and Jian Tang. “Learning gradient fields for molecular

conformation generation.” In International Conference on Machine Learning, pp. 9558–9568.

PMLR, 2021.

[SPA00] R.J. Spiteri, D.K. Pai, and U.M. Ascher. “Programming and control of robots by means

of differential algebraic inequalities.” IEEE Transactions on Robotics and Automation,

16(2):135–145, 2000.

[SRB17] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter

Battaglia, and Timothy Lillicrap. “A simple neural network module for relational reasoning.”

In Advances in Neural Information Processing Systems 30, pp. 4967–4976. 2017.

[SsF16] Sainbayar Sukhbaatar, arthur szlam, and Rob Fergus. “Learning Multiagent Communication

with Backpropagation.” In Advances in Neural Information Processing Systems 29, pp.

2244–2252. 2016.

[SSO20] Eduardo Hugo Sanchez, Mathieu Serrurier, and Mathias Ortner. “Learning disentangled

representations via mutual information estimation.” In Computer Vision–ECCV 2020: 16th

European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII 16, pp.

205–221. Springer, 2020.

[SWG20a] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. “DySAT: Deep Neural

Representation Learning on Dynamic Graphs via Self-Attention Networks.” In Proceedings

of the 13th International Conference on Web Search and Data Mining, pp. 519–527, 2020.

[SWG20b] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. “DySAT: Deep Neural

Representation Learning on Dynamic Graphs via Self-Attention Networks.” In WSDM’20,

2020.

[SZH20] Zequn Sun, Qingheng Zhang, Wei Hu, Chengming Wang, Muhao Chen, Farahnaz Akrami,

134

and Chengkai Li. “A Benchmarking Study of Embedding-Based Entity Alignment for

Knowledge Graphs.” Proc. VLDB Endow., p. 2326–2340, July 2020.

[tM20] IHME COVID-19 health service utilization forecasting team and Christopher JL Murray.

“Forecasting COVID-19 impact on hospital bed-days, ICU-days, ventilator-days and deaths

by US state in the next 4 months.” In medRxiv preprint :2020.03.27.20043752. 2020.

[Tol38] E. C. Tolman. “The Determiners of Behavior at a Choice Point.” Psychological Review,

45(1):1–41, 1938.

[TYS20] Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Charu Aggarwal, Prasenjit Mitra, and Suhang

Wang. “Joint Modeling of Local and Global Temporal Dynamics for Multivariate Time

Series Forecasting with Missing Values.” In AAAI. 2020.

[VCC18] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and

Yoshua Bengio. “Graph Attention Networks.” ICLR’18, 2018.

[VSP17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Ł ukasz Kaiser, and Illia Polosukhin. “Attention is All you Need.” In Advances in Neural

Information Processing Systems 30, pp. 5998–6008. 2017.

[VWT22] R. Valperga, K. Webster, D. Turaev, V. Klein, and J. Lamb. “Learning Reversible Sym-

plectic Dynamics.” In Proceedings of The 4th Annual Learning for Dynamics and Control

Conference, 2022.

[WFD23] Hanchen Wang, Tianfan Fu, Yuanqi Du, and et.al. “Scientific discovery in the age of artificial

intelligence.” In Nature, 2023.

[WHL21a] Ruijie Wang, Zijie Huang, Shengzhong Liu, Huajie Shao, Dongxin Liu, Jinyang Li, Tianshi

Wang, Dachun Sun, Shuochao Yao, and Tarek Abdelzaher. “DyDiff-VAE: A Dynamic

Variational Framework for Information Diffusion Prediction.” In SIGIR’21, 2021.

[WHL21b] Ruijie Wang, Zijie Huang, Shengzhong Liu, Huajie Shao, Dongxin Liu, Jinyang Li, Tianshi

Wang, Dachun Sun, Shuochao Yao, and Tarek Abdelzaher. “DyDiff-VAE: A Dynamic

135

Variational Framework for Information Diffusion Prediction.” In Proceedings of the 44th In-

ternational ACM SIGIR Conference on Research and Development in Information Retrieval,

SIGIR ’21, p. 163–172, 2021.

[WHW19] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. “Neural graph

collaborative filtering.” In Proceedings of the international ACM SIGIR conference on

Research and development in Information Retrieval, pp. 165–174, 2019.

[WKM20] R. Wang, K. Kashinath, M. Mustafa, A. Albert, and R. Yu. “Towards physics-informed

deep learning for turbulent flow prediction.” In Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2020.

[WPZ20] Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. “Unsupervised

domain adaptive graph convolutional networks.” In The Web Conference (WWW), pp.

1457–1467, 2020.

[WTD20] Spencer Woody, Mauricio Tec, Maytal Dahan, Kelly Gaither, Michael Lachmann, Spencer J.

Fox, Lauren Ancel Meyers, and James Scott. “Projections for first-wave COVID-19 deaths

across the U.S. using social-distancing measures derived from mobile phones.” 2020.

[WWM22] S. Wen, H. Wang, and D. Metaxas. “Social ODE: Multi-agent Trajectory Forecasting with

Neural Ordinary Differential Equations.” In European Conference on Computer Vision,

2022.

[WWW20] Haiwen Wang, Ruijie Wang, Chuan Wen, Shuhao Li, Yuting Jia, Weinan Zhang, and

Xinbing Wang. “Author Name Disambiguation on Heterogeneous Information Network with

Adversarial Representation Learning.” In AAAI ’20, 2020.

[WXW20] Qinxia Wang, Shanghong Xie, Yuanjia Wang, and Zeng Donglin. “Survival-Convolution

Models for Predicting COVID-19 Cases and Assessing Effects of Mitigation Strategies.” In

Frontiers in Public Health. 2020.

[WYW18] Ruijie Wang, Yuchen Yan, Jialu Wang, Yuting Jia, Ye Zhang, Weinan Zhang, and Xinbing

Wang. “AceKG: A Large-Scale Knowledge Graph for Academic Data Mining.” In CIKM

’18, 2018.

136

[WZF14a] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. “Knowledge Graph Embedding

by Translating on Hyperplanes.” In Proceedings of the Twenty-Eighth AAAI Conference on

Artificial Intelligence, p. 1112–1119, 2014.

[WZF14b] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. “Knowledge Graph Embedding

by Translating on Hyperplanes.” Proceedings of the 28th AAAI Conference on Artificial

Intelligence, 28, 2014.

[XHL19] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. “How Powerful are Graph

Neural Networks?” In ICLR’19, 2019.

[XJH24] Fred Xu, Song Jiang, Zijie Huang, Xiao Luo, Shichang Zhang, Yuanzhou Chen, and

Yizhou Sun. “FUSE: Measure-Theoretic Compact Fuzzy Set Representation for Taxonomy

Expansion.” In The 62nd Annual Meeting of the Association for Computational Linguistics,

2024.

[XQT20] Louis-Pascal Xhonneux, Meng Qu, and Jian Tang. “Continuous Graph Neural Networks.”

In ICML’20, 2020.

[XW23] Yucheng Xing and Xin Wang. “HDG-ODE: A Hierarchical Continuous-Time Model for

Human Pose Forecasting.” In Proceedings of the IEEE/CVF International Conference on

Computer Vision (ICCV), pp. 14700–14712, 2023.

[XZK21] Jingwen Xu, Jing Zhang, Xirui Ke, Yuxiao Dong, Hong Chen, Cuiping Li, and Yongbin

Liu. “P-INT: A Path-based Interaction Model for Few-shot Knowledge Graph Completion.”

In Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 385–394,

2021.

[YHL19] Cagatay Yildiz, Markus Heinonen, and Harri Lahdesmaki. “ODE2VAE: Deep generative

second order ODEs with Bayesian neural networks.” In Advances in Neural Information

Processing Systems 32, pp. 13412–13421. 2019.

[YKR22] Çağatay Yıldız, Melih Kandemir, and Barbara Rakitsch. “Learning interacting dynamical

systems with latent Gaussian process ODEs.” Advances in Neural Information Processing

Systems (Neurips), 35:9188–9200, 2022.

137

[YML20] Liang Yao, Chengsheng Mao, and Yuan Luo. “KG-BERT: BERT for Knowledge Graph

Completion.” Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence,

2020.

[YRB21] Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. “QA-

GNN: Reasoning with Language Models and Knowledge Graphs for Question Answering.”

In North American Chapter of the Association for Computational Linguistics (NAACL),

2021.

[YWG20] Chaoqi Yang, Ruijie Wang, Fangwei Gao, Dachun Sun, Jiawei Tang, and Tarek Abdelzaher.

“Analyzing the Design Space of Re-opening Policies and COVID-19 Outcomes in the US.”,

2020.

[YYH15a] Bishan Yang, Wen tau Yih, Xiaodong He, Jianfeng Gao, , and Li Deng. “Embedding entities

and relations for learning and inference in knowledge bases.” In Proceedings of the 3th

International Conference on Learning Representations (ICLR), 2015.

[YYH15b] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. “Embedding entities

and relations for learning and inference in knowledge bases.” In International Conference

on Learning Representations (ICLR), 2015.

[ZGY16] L. Zhu, D. Guo, J. Yin, G. V. Steeg, and A. Galstyan. “Scalable Temporal Latent Space Infer-

ence for Link Prediction in Dynamic Social Networks.” IEEE Transactions on Knowledge

and Data Engineering, 28(10):2765–2777, 2016.

[ZSH19] Qingheng Zhang, Zequn Sun, Wei Hu, Muhao Chen, Lingbing Guo, and Yuzhong Qu.

“Multi-view Knowledge Graph Embedding for Entity Alignment.” In Proceedings of the

28th International Joint Conference on Artificial Intelligence (IJCAI), pp. 5429–5435, 2019.

[ZW20] C. Zang and F. Wang. “Neural dynamics on complex networks.” In Proceedings of the 26th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2020.

[ZWH23] Huang Zijie, Daheng Wang, Binxuan Huang, Chenwei Zhang, Jingbo Shang, Yan Liang,

Zhengyang Wang, Xian Li, Christos Faloutsos, Yizhou Sun, and Wei Wang. “Concept2Box:

138

Joint Geometric Embeddings for Learning Two-View Knowledge Graphs.” In Findings of

the Association for Computational Linguistics (ACL), pp. 10105–10118, 2023.

[ZWS20] Qi Zhu, Hao Wei, Bunyamin Sisman, Da Zheng, Christos Faloutsos, Xin Luna Dong, and

Jiawei Han. “Collective Multi-Type Entity Alignment Between Knowledge Graphs.” In

Proceedings of The Web Conference 2020, 2020.

[ZWX20] Difan Zou, Lingxiao Wang, Pan Xu, Jinghui Chen, Weitong Zhang, and Quanquan Gu.

“Epidemic Model Guided Machine Learning for COVID-19 Forecasts in the United States.”

In medRxiv preprint :2020.05.24.20111989. 2020.

[ZXL17] Hao Zhu, Ruobing Xie, Zhiyuan Liu, and Maosong Sun. “Iterative Entity Alignment via

Joint Knowledge Embeddings.” In Proceedings of the 26th International Joint Conference

on Artificial Intelligence (IJCAI), p. 4258–4264, 2017.

[ZY23] Yunhao Zhang and Junchi Yan. “Crossformer: Transformer Utilizing Cross-Dimension

Dependency for Multivariate Time Series Forecasting.” In International Conference on

Learning Representations, 2023.

[ZZL21] Wei Zhu, Haitian Zheng, Haofu Liao, Weijian Li, and Jiebo Luo. “Learning bias-invariant

representation by cross-sample mutual information minimization.” In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pp. 15002–15012, 2021.

[ZZW21] Tianxiang Zhao, Xiang Zhang, and Suhang Wang. “Graphsmote: Imbalanced node classi-

fication on graphs with graph neural networks.” In Proceedings of the ACM International

Conference on Web Search and Data Mining, pp. 833–841, 2021.

[ZZZ20] Zhao Zhang, Fuzhen Zhuang, Hengshu Zhu, Zhiping Shi, Hui Xiong, and Qing He. “Rela-

tional Graph Neural Network with Hierarchical Attention for Knowledge Graph Completion.”

Proceedings of the AAAI Conference on Artificial Intelligence, pp. 9612–9619, 2020.

139

	Introduction
	Motivation
	Research Overview
	Research Contributions

	LG-ODE: Learning Continuous System Dynamics from Irregularly-Sampled Partial Observations
	Introduction
	Problem Formulation and Preliminaries
	Related Work
	Method
	Encoder
	Generative model and decoder
	Training

	Experiments
	Datasets
	Baselines and Model Variants
	Results on Interpolation Task
	Results on Extrapolation Task

	Discussion and Conclusion

	I Injecting Data-Inspired Inductive Bias
	CG-ODE: Coupled Graph ODE for Learning Interacting System Dynamics
	Introduction
	Problem Formulation
	Related Work and Preliminaries
	Model
	Encoder for Initial States
	ODE Generative Model and Decoder
	Training

	Experiments
	Experiment Setup
	Baselines
	Performance Evaluation
	Case Studies

	Conclusion

	TREAT: Physics-Informed Regularization for Domain-Agnostic Dynamical System Modeling
	Introduction
	Preliminaries and Related Work
	NeuralODE for Dynamical Systems
	Time-Reversal Symmetry (TRS)

	Method: TREAT
	Time-Reversal Symmetry Loss and Training
	Theoretical Analysis of Time-Reversal Symmetry Loss

	Experiments
	Main Results
	Ablation and Sensitivity Analysis
	Visualizations

	Conclusions

	II Towards Generalizable GraphODEs
	GG-ODE: Generalizing Graph ODE for Learning Complex System Dynamics across Environments
	Introduction
	Problem Definition
	Preliminaries and Related Work
	Method
	Initial State Encoder
	Environment Encoder
	ODE Generative Model and Decoder
	Training

	Experiments
	Experiment Setup
	Baselines
	Performance Evaluation
	Case Study

	Conclusion

	SS-AGA: Multilingual Knowledge Graph Completion with Self-Supervised Adaptive Graph Alignment
	Introduction
	Preliminaries
	Knowledge Graph Completion
	KG Embedding Models

	Method
	Relation-aware MKG Embedding
	Self-supervised New Pair Generation
	Training

	Experiments
	Dataset
	Evaluation Protocol
	Baselines
	Main Results
	Ablation Study
	Impact of Seed Alignment
	Case Study

	Related Work
	Monolingual KG Embeddings
	Multilingual KG Embeddings

	Discussion and Conclusion

	III GraphODE for Causal Decision-Making
	CAG-ODE: Coupled GraphODE
	Introduction
	Preliminaries and Related Work
	Problem Definition
	The Proposed Model: CAG-ODE
	Spatial-Temporal Initial State Encoder
	Treatment Fusing
	Treatment-Induced GraphODE
	Outcome Prediction
	Domain Adversarial Learning

	Experiments
	Experiment Setup
	Performance Evaluation
	Case Study about COVID-19 Policies
	Visualization of Learned Balanced Representations

	Conclusion
	Discussion and Future Directions

