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Abstract

Oncogenesis is driven by germline, environmental and stochastic factors. It is unknown how these 

interact to produce the molecular phenotypes of tumours. We therefore quantified the influence of 

germline polymorphisms on the somatic epigenome of 589 localized prostate tumours. 

Predisposition risk loci influence a tumour’s epigenome, uncovering a mechanism for cancer 

susceptibility. We identify and validate 1,178 loci associated with altered methylation in tumour 

but not non-malignant tissue. These tumour methylation quantitative trait loci (tumour meQTLs) 

influence chromatin structure and RNA and protein abundance. One prominent tumour meQTL is 

associated with AKT1 expression and is predictive of relapse after definitive local therapy in both 

discovery and validation cohorts. These data reveal intricate crosstalk between the germline and 

the epigenome of primary tumours, which may help identify germline biomarkers of aggressive 

disease to aid patient triage and optimize use of more invasive or expensive diagnostic assays.

Cancer is defined by a set of deregulated cellular processes, termed hallmarks1, which 

ultimately arise from genomic and epigenomic aberrations2,3. There are three sources for 

these aberrations: environmental (e.g. DNA-damaging xenobiotics), stochastic (e.g. 
replication-associated mutations) and genetic (e.g. inherited predisposition 

polymorphisms)4. Genome-wide association studies (GWAS) have revealed hundreds of 

Houlahan et al. Page 2

Nat Med. Author manuscript; available in PMC 2020 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



germline variants associated with elevated risk of cancer diagnosis5-7. Further, some highly-

penetrant polymorphisms in tumour suppressor genes including RB1, APC, BRCA1 and 

BRCA2 induce unique mutational phenotypes, including epigenomic dysregulation8-10.

Epigenetic aberrations associated with chemical modification of DNA provide additional 

modes of tumour-specific regulation11. Tumours can hijack epigenetic regulatory systems to 

silence tumour suppressors12,13 and large-scale rewiring of DNA methylation is common in 

many cancer types14. Susceptibility loci are enriched at regulatory regions15,16 and these loci 

can modulate the tumour epigenome17. For example, prostate tumours arising in men with 

deleterious germline BRCA2 mutations show a genome-wide reduction in methylation 

relative to sporadic tumours, which may account for their increased aggressivity18.

These data suggest that common germline polymorphisms may influence development of 

aggressive prostate tumours. GWAS have failed to identify loci robustly associated with 

prostate cancer survival19, perhaps due to insufficiently large cohort sizes. Because single 

nucleotide polymorphisms (SNPs) can confer susceptibility by modulating DNA 

methylation17, we reasoned that interrogating the more direct link between germline and 

methylation would yield associations with larger effect sizes than germline-survival 

analyses. As already observed in neuroscience20, germline-methylation analyses might 

overcome the limitations of small cohorts and identify loci otherwise not selected at 

genome-wide significance levels. Prognostic germline loci would be attractive minimally-

invasive biomarkers to aid early clinical stratification of indolent vs. aggressive disease, and 

provide prior probabilities to maximize utility of more expensive fluid, tissue or radiologic 

assays.

We focus on prostate cancer, the second most common malignancy in men21, with few 

known risk factors22,23 and large molecular and clinical heterogeneity24,25. We compare 

germline whole-genomes and tumour methylomes of 589 patients with localized prostate 

cancer (ndiscovery=241 and nvalidation=348) and identify 7,590 validated cis-methylation 

quantitative trait loci (meQTLs), i.e. germline loci associated with altered methylation 

levels. Germline variants are not unique to the tumour, therefore we introduce a novel class 

of functional variants: tumour meQTLs. These are loci associated with altered methylation 

in tumour but not in non-malignant tissue (i.e. larger effect in tumour vs. reference tissue). 

We identify and validate 1,178 tumour meQTLs, and show that 17 of these demonstrate 

tumour-specific RNA or protein abundance changes (termed tumour meQTL-eQTLs). 

Tumour meQTLs are enriched at tumour-specific regulatory regions in prostate cell lines and 

primary tumours, and preferentially target sites of chromatin looping. Some tumour 

meQTLs target known prognostic cancer driver genes, including TCERG1L and AKT1. 

Indeed, the tumour meQTL targeting AKT1 is predictive of aggressive disease in both our 

discovery cohort (HR=2.85; P=5.8x10−3) and a validation cohort of 101 clinically matched 

samples (HR=2.2; P=1.7x10−2). Taken together, these data highlight how germline 

genotypes can modulate the tumour epigenome to contribute to the tumourigenesis of 

aggressive prostate cancers. This phenomenon may apply to other tumour types, providing a 

strategy to create robust, minimally-invasive biomarkers for early-detection of aggressive 

disease.
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Results

Prostate cancer susceptibility loci associated with tumour methylation dysregulation

We assembled 241 patients with treatment-naïve prostate cancer that had germline whole-

genome sequencing and methylation profiling by array, including 80 new genomes and 161 

from the literature25,26. All patients had organ-confined clinically intermediate-risk disease 

and were treated by image-guided radiotherapy or surgery. Median clinical follow-up was 

8.76 years. Identity-by-state clustering did not show population stratification (Extended Data 

1a). Supplementary Table 1 summarizes this discovery cohort.

We sought to quantify polymorphisms that module specific epigenetic features of tumour 

evolution, termed tumour meQTLs to distinguish them from meQTLs which exert effects in 

normal epithelial tissue. First, we validated previous work17 showing evidence for the 

association of germline risk loci with tumour methylome alterations. We validated 3/5 of 

these meQTLs (P<0.01; see Methods; rs10934853:cg08044714, rs17021918:cg07677047, 

rs339331:cg12892004; Extended Data 2a-e; Supplementary Table 2).

Next, we comprehensively analysed 160 validated germline susceptibility loci associated 

with prostate cancer incidence that account for 34.4% of familial risk15,25,27-32 (analysis 1a; 

Figure 1a; Supplementary Table 2). Each risk locus was tested for methylation associations 

methylome-wide, identifying 79 meQTLs covering 30 loci and 77 probes (P<7x10−10 

Bonferroni-adjusted threshold; Spearman’s correlation; Figure 1b; Supplementary Table 2). 

Of these, 75/79 associations were in cis: the risk locus was located proximal to the 

methylated site (median distance 11.5±37.7 kbp; Extended Data 2f). There were four trans 
associations: rs2238776 (chromosome 22) associated with cg11491381 (AVP; chromosome 

20), rs4976790 (chromosome 5) associated with cg05952543 and cg20792895 (MKRN3; 

chromosome 15) and rs7295014 (chromosome 12) associated with cg26860994 (SND1; 

chromosome 7). None of the risk variants within chromosome 8q24, a well characterized 

locus proven to be a major contributor to prostate cancer risk, were identified as meQTLs33.

To validate these candidate meQTLs, we evaluated 348 cases from The Cancer Genome 

Atlas (TCGA) with tumour methylation data along with germline SNP array and whole 

exome sequencing of blood samples (WXS; analysis 2; Figure 1a)34. Following a stringent 

QC and imputation process (Extended Data 1b), we estimated our SNP detection accuracy in 

this validation cohort to be 98.8% (Extended Data 1c-e). After imputation, 69/79 risk loci 

meQTLs were genotyped in the validation cohort and 55/69 validated (23 loci and 55 

methylation probes; FDR<0.05; Spearman’s correlation; Figure 1c; Supplementary Table 2). 

Three trans associations, rs2238776-cg11491381, rs4976790-cg05952543 and rs4976790-

cg20792895, replicated in this independent validation dataset (FDR<2.22x10−2; Spearman’s 

∣ρ∣>0.13; Supplementary Table 2). Thus, 14% of known prostate cancer risk loci may 

influence risk by modulating tumour methylation.

We quantified the enrichment of validated meQTLs in transcription factor binding sites or 

chromatin marks defined in four prostate cancer cell lines, LNCaP, PC3, 22Rv1 and VCaP, 

and one prostate epithelial cell line, RWPE-1 using ChIP-Seq data (see Methods; 

Supplementary Table 3). Risk meQTLs were enriched at active regulatory regions, including 
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H3K27ac and H3K4me3 modifications indicative of active promoters, in all cell lines 

(FDR<0.05; permutation test n=105; Extended Data 2g-k). We confirmed the enrichment of 

risk meQTLs at regulatory regions in 94 primary prostate samples35. Ten out of 23 loci 

overlapped at least one of AR, H3K27ac, H3K4me3 or H3K27me3 sites in at least one 

patient (P=1.51x10−3; permutation test n=105; Extended Data 2l). There was allele specific 

H3K27ac modification at rs1983891 (β=0.72, P=0.05; logistic regression; Supplementary 

Table 4). Validated meQTL methylation targets were enriched in CpG islands on 

chromosomes 5 and 6 (OR>2.3; FDR≤8.43x10−3; Fisher’s Exact Test; Supplementary Table 

4). To distinguish tumour meQTLs from meQTLs (loci that affect methylation in prostate 

epithelial tissue), we considered 47 tumour-adjacent prostate samples from TCGA (analysis 

3; Figure 1a). Each tumour-adjacent sample, henceforth referred to as reference, was 

confirmed to be morphologically normal by pathology review, and had no detectable 

prostate cancer mutations34. Of these 55 validated meQTLs, 52 were evaluated in reference 

tissue and 14 were tumour-specific (defined as FDR>0.05 in reference tissue and FDR<0.05 

in matched tumour tissue (n=47); Spearman’s correlation; Supplementary Table 2). Only 

3/14 tumour meQTLs were proximal to a gene (within 1,500bp) and none were significantly 

associated with mRNA changes (FDR<0.05; Spearman’s correlation; Supplementary Table 

2). Finally, we identified meQTLs missed in the discovery cohort by conducting meQTL 

discovery in the TCGA cohort. We discovered 165 meQTLs (32 loci and 144 probes) in 

TCGA of which 32 novel meQTLs validated in the discovery cohort (18 loci and 30 probes; 

FDR<0.05; Spearman’s correlation; Supplementary Table 2). These results expand our 

understanding of the role of risk loci in modulating tumour methylation and suggest that we 

are likely underestimating the extent of this modulation.

Germline variants associate with prognostic methylation levels

Upon validating risk loci tumour meQTLs, we discovered novel loci candidates by 

identifying tumour meQTLs genome-wide associated with tumour aggressivity. Germline 

loci that could delineate indolent from aggressive disease would provide a minimally 

invasive, early-detection biomarker filling a important clinical gap. We selected 58 

methylation probes based on their association with biochemical relapse defined by 

increasing PSA levels following primary treatment; a trigger of salvage therapy and, when 

occurring within 18 months of primary treatment, a surrogate for prostate-cancer specific 

mortality36 (Extended Data 1f; Extended Data 3a; Supplementary Table 5). We identified 

candidate loci genome-wide for each of the 58 prognostic methylation probes (analysis 1b; 

Figure 1a) and discovered 292 meQTLs targeting 28% of these probes (16/58), covering 223 

distinct loci (P<5x10−8; Spearman’s correlation; Figure 2a). For each of these loci, the 

presence of one or more alternative alleles was associated with significant changes in 

methylation.

The TCGA dataset34 was used to validate these prognostic meQTLs, providing genotype 

information for 151/292 loci (analysis 2; Figure 1a). Of these, 113/151 meQTLs validated, 

representing seven cis-haplotypes covering six methylation probes (FDR<0.05; Figure 2b; 

Supplementary Table 6). These included 35 loci associated with methylation of cg25104397 

(FDR≤4.92x10−2; Spearman’s ∣ρ∣=0.11-0.25), 17 with cg23247968 (FDR≤1.24x10−3; 

∣ρ∣=0.18-0.25) and six with cg25223634 (FDR≤2.02x10−2; ∣ρ∣=0.13-0.20; Supplementary 
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Table 6). These three probes are located within 41 bp on chromosome 10, within an open sea 

region of C10orf26. Their methylation was highly correlated and six loci were associated 

with all three sites (Extended Data 3b-c). We used paired tumour/reference samples to 

determine if these meQTLs were tumour-specific (i.e. FDRtumour<0.05 & FDRreference>0.05; 

Spearman’s correlation; analysis 3; Figure 1a) and identified 38 tumour meQTLs 

(FDRreference>0.25), all of which target methylation at two sites, cg18360873 and 

cg03943081 (Supplementary Table 6). These methylation probes are located 5’ and 3’, 

respectively, of Transcription Elongation Regulator 1 Like (TCERG1L), an epigenetic driver 

event in prostate cancer26.

Given the prognostic value of the methylation sites targeted by these meQTLs, we evaluated 

the prognostic value of the loci themselves. As seen earlier, not all risk meQTLs were 

tumour specific, suggesting meQTLs that have a role in reference tissue are also biologically 

important. Therefore, we considered tag SNPs for all seven haplotypes involved in validated 

meQTLs. Two cis-meQTLs were predictive of biochemical recurrence (HR=0.554 & 0.180; 

P=2.92x10−2 & 1.73x10−2; CoxPH model; Figure 2c-e) and one, rs10829963, showed the 

same survival trend in an independent cohort26,27,37,38 of 101 clinically-matched patients 

(HR=0.70; P=0.13; Figure 2f). The validation cohort was insufficiently powered to test 

rs11871473 (nBB=11; 1–β=0.44). Taken together, these results suggest that the germline 

may shape tumour aggressivity via tumour methylation dysregulation.

The landscape of cis-tumour meQTLs

All validated tumour meQTLs were in cis associations (i.e. the loci were within 59,151 bp of 

the methylation site). To quantify cis-tumour meQTL frequency in prostate cancer, we 

systematically evaluated loci within a 10 kbp window around each of the 434,504 

methylation probes (analysis 1c; Figure 1a). We identified 169,562 loci associated with the 

methylation status of 3.3% of all CpGs quantified (14,287 distinct probes; P<3x10−9 

representing 1.5x107 independent tests; Spearman’s correlation; Figure 3a). These 

associations are not driven by variants affecting the hybridization of probes on the 

methylation array (Extended Data 1g-h).

We validated the locus with the lowest p-value for each probe, provided it was genotyped on 

the TCGA platform (12,650 loci; analysis 2; Figure 1a; Supplementary Table 7) and 

7,590/12,650 (60%) cis-meQTLs validated in this independent cohort (FDR<0.05; 

Spearman’s correlation; Figure 3b). Of the 7,590 validated meQTLs, 7,380 had genotype 

and methylation data for the 47 reference prostate samples34 (analysis 3; Figure 1a). A third 

(1,178/7,380) were consistent with tumour meQTLs, meaning they had associations in 

tumour tissue (FDRtumour<0.05 in matched tumour samples) but not reference prostate 

epithelial (FDRreference≥0.05) or had opposite effects in tumour and reference tissue (234 

meQTLs; sign(ρtumour)≠sign(ρreference); Figure 3b; Extended Data 4a). Almost half 

(546/1,178) of these tumour meQTLs were differentially methylated between tumour and 

reference tissue, suggesting at least a subset of tumour meQTLs target dysregulated 

methylation sites (Extended Data 4b). These probes were enriched for open seas in 

intergenic regions on chromosome 6 (OR>1.07; FDR≤3.10x10−2; Fisher’s Exact Test; 

Supplementary Table 8). By contrast, CpG islands in promoter regions on chromosome X 
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were significantly depleted of validated associations (OR<0.86, FDR≤2.19x10−3, Fisher’s 

Exact Test; Supplementary Table 8). The depletion on chromosome X may result from less 

accurate imputation on this chromosome (Extended Data 1e).

Tumour meQTLs target active regulatory regions and sites of chromatin looping

To determine whether tumour meQTLs influence transcription regulation, we quantified the 

enrichment of tumour meQTLs at regulatory regions in four prostate cancer cell lines 

(LNCaP, PC3, VCaP and 22Rv1) and one prostate epithelial cell line (RWPE-1) 

(Supplementary Table 3). Tumour meQTLs were enriched at AR and CTCF bindings sites in 

LNCaP as well as active enhancers and promoters, as seen by enrichment at H3K27ac, 

H3K4me1 and H3K4me3 marks (FDR<1x10−26; permutation test n=105; Figure 3d). 

Enrichment at regulatory regions was replicated in PC-3, VCaP, 22Rv1 and RWPE-1 cell 

lines (Extended Data 4c-f). Tumour meQTLs were more strongly enriched at the repressive 

chromatin mark H3K27me3 in the epithelial cell line, RWPE-1 (FDR<1x10−26; Extended 

Data 4c), than the cancer cell lines PC3 (FDR=0.36; Extended Data 4d) or LNCaP 

(FDR=0.006; Figure 4d), suggesting a subset of these sites may activate during 

tumourigenesis. To confirm this enrichment at active regulatory regions, we considered 

H3K27ac, H3K27me3, H3K4me3 and AR ChIP-Seq data from 94 primary prostate cancer 

samples35 (analysis 4; Figure 1a). Tumour meQTLs were significantly enriched at H3K27ac 

and H3K4me3 sites in all primary samples and at AR binding sites in 84% of samples 

(FDR<0.05; permutation test n=105; Extended Data 4g). To identify specific tumour 

meQTLs modulating chromatin structure, we tested for allele-specific AR binding and 

H3K27ac, H3K27me3 and H3K4me3 histone modifications (i.e. ChIP-QTLs) in primary 

prostate cancer samples35 (analysis 4; Figure 1a). We discovered 30 tumour meQTL-ChIP-

QTLs, 23 unique loci, targeting one of the four marks (FDR<0.05; H3K27ac=22, 

H3K27me3=2, AR=2 & H3K4me3=4; logistic regression; Figure 3c). The variant 

rs2043087 is located within ALDH1A2, a prostate cancer tumour suppressor39, and is 

associated with increased H3K27ac (β=1.27; FDR=6.04x10−3) but decreased AR binding 

(β=−1.49; FDR=9.00x10−3).

We further characterized a high-confidence subset of 59 tumour meQTLs associated with 

biochemical recurrence (P<0.05; CoxPH model; Supplementary Table 7). To support the 

tumour-specific role of tumour meQTLs in modulating protein-DNA interactions, we 

identified sites of allelic imbalance in transcription factor binding and histone modification 

genome-wide in paired tumour and reference samples. Sites of allelic imbalance reflect loci 

with high regulatory potential. Specifically, we discovered sites of allelic imbalance in 

tumour and reference samples for FOXA1, HOXB13, H3K27ac, H3K4me3 and H3K4me2. 

We observed a strong enrichment of tumour meQTLs at H3K27ac, H3K4me3, HOXB13 and 

H3K4me2 sites in tumour (FDR<0.01; permutation test n=105) but not reference samples 

(FDR>0.19), supporting their tumour-specific role (Figure 3e; Extended Data 4h; 

Supplementary Table 7). Next, we explored the impact of tumour meQTLs on chromatin 

structure, specifically RAD21 and RNA polymerase II (RNA Pol-II) chromatin loops in 

LNCaP, DU145, VCaP and RWEP-1 cell lines (analysis 6; Figure 3a). Fourteen tumour 

meQTLs overlapped with RNA Pol-II peaks in at least one cell line, most (12/14) were 

involved in chromatin looping (Extended Data 4i; Supplementary Table 7). Eleven 
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overlapped with RAD21 binding sites and 9/11 were involved in chromatin loops. Seven 

overlapped with RNA Pol-II and RAD21 sites suggesting these tumour meQTLs are 

targeting active enhancer-promoter interactions. These results show tumour meQTLs 

preferentially target cis-regulatory elements in a tumour-specific manner. Tumour meQTL 

mechanisms are likely myriad, including disrupting AR binding (rs1784692 or rs2043087), 

deregulating RNA Pol-II looping (rs3747623 or rs1867529) and others not recognized in this 

first study.

Tumour meQTLs drive aggressive gene expression program

DNA methylation can directly dysregulate transcription, thus we quantified tumour meQTLs 

modulation of the transcriptome (microarray profiling) of 203 patients in the discovery 

cohort. We focused on validated tumour meQTLs with methylation sites proximal to a gene 

(within 1,500 bp; 628 associations; analysis 7; Figure 1a). We identified 68 tumour meQTLs 

associated with mRNA abundance in the discovery cohort (termed tumour meQTL-eQTLs; 

FDR<0.05, Spearman’s ∣ρ∣=0.20-0.55), of which 45 also associated with mRNA abundances 

in the TCGA validation cohort (analysis 8; FDR<0.05, ∣ρ∣=0.11-0.75; Figure 3b; 

Supplementary Table 7). Utilizing RAD21 and RNA Pol-II ChIA-PET profiling of prostate 

cancer cell lines, we identified additional targets for 17 tumour meQTLs (distance between 

locus and target: 0-148.5 Mbp; median=13.9 Mbp) and four were significantly associated 

with mRNA abundance of five transcripts (Extended Data 4j). We discovered a significant 

association between a tumour meQTL-eQTL targeting MINCR, a MYC-induced long non-

coding RNA that has been implicated in Burkitt Lymphoma and Gallbladder cancer40,41. 

Only three of these eQTLs could be tested in TCGA and 2/3 validated, one was previously 

reported15 (rs2456274:FAM57A and rs1225741:ELOVL2; FDR<0.05; Extended Data 4j). 

We confirmed 17/43 tumour meQTL-eQTLs were tumour-specific at the RNA level using 

prostate epithelial eQTL statistics from Genotype-Tissue Expression (GTEx) project42 

(FDR>0.05; Figure 3b; Table 1; Supplementary Table 7). These 17 were not enriched in any 

specific pathway, however 6/10 genes involved in these tumour meQTL-eQTLs were 

differentially abundant in tumour vs. reference tissue (FDR<0.05; Extended Data 4k).

As an exploratory analysis, we tested if the ten genes in these 17 tumour meQTL-eQTLs 

were dysregulated at the protein level (analysis 10; Figure 1a). We exploited a dataset of 70 

tumours with mass spectrometric quantitation of protein abundances38. Only 3/10 transcripts 

had their protein abundances quantified, and the small sample-size led to very low statistical 

power (1–β<0.39). Nevertheless, Vacuolar Protein Sorting-Associated Protein 53 Homolog 

(VPS53) was a strong tumour meQTL (P=6.95×10−12; ρ=−0.42) that associated with both 

RNA (FDR=8.22x10−3; ρ=−0.25) and more modestly protein abundances (P=4.27x10−2, ρ=

−0.24; Extended Data 4l-m). This tumour meQTL-eQTL-pQTL is of particular interest 

because rs2456274 is in linkage disequilibrium (LD) with the risk locus rs684232 (D’=1; 

P=1.29x10−2; ρ=−0.30; Figure 3f) which has been reported as an eQTL for VPS5315. Thus, 

tumour meQTLs discovery recapitulated a known risk loci, confirming the value of this 

approach in identifying novel susceptibility loci.
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Tumour meQTL associated with TCERG1L regulation

To further characterize novel loci of interest, we focused on tumour meQTLs targeting 

prognostic methylation sites within and 5’ to TCERG1L (i.e. identified in analysis 1b; 

Figure 1a). TCERG1L was previously identified as a strong epigenetic driver of aggressive 

prostate cancer (HR=2.90; 95% CI: 1.30-6.30; P=0.007; n=130)26 and its paralog, TCERG1, 

is recurrently mutated in prostate cancer43. Further, TCERG1L promoter hyper-methylation 

has been reported in colorectal cancer44,45. In the discovery cohort, methylation of 

TCERG1L was strongly associated with a 15-locus region on chromosome 10q26.3 adjacent 

to and inside of its gene body (P<4.35x10−9; Spearman’s ∣ρ∣=0.42-0.58; Figure 4a). These 

loci were in strong LD and were associated with both the 5’ and 3’ probes even when 

correcting for tumour cellularity (Extended Data 5a-b). The haplotype had opposite effects 

on the 5’ and 3’ probe – i.e. the alternative allele was associated with decreased methylation 

of the 5’ probe but increased methylation at the 3’ probe (Extended Data 5a). Concordantly, 

methylation at these two probes was anti-correlated and had opposing effects on patient 

outcome (Extended Data 5c-e). The TCERG1L meQTL was confirmed to be tumour specific 

at the 3’ and 5’ probes (FDRreference>0.14; Spearman’s ∣ρ∣=0.08-0.27; permutation P=0.11, 

see Methods; Figure 4b; Extended Data 5f).

To further interrogate the TCERG1L tumour meQTL, we assessed the methylation profile of 

90 probes spanning TCERG1L. Methylation of 64/90 probes was significantly associated 

with the tag SNP, rs4074033 (Figure 4c; Supplementary Table 9), and 25/90 were associated 

with biochemical relapse (FDR<0.05; Cox PH model), expanding TCERG1L-methylation 

from an epigenetic driver26 to a tumour meQTL driver.

Additionally, tumour meQTLs in TCERG1L correlated with mRNA abundance: the non-

reference allele was dominantly associated with increased TCERG1L mRNA in our 

discovery cohort and the TCGA validation cohort (P=2.67x10−8 & 4.53x10−26, respectively, 

Mann-Whitney; effect size=−0.38 & −2.87; Figures 4d-e). While rs4074033 was identified 

as a tumour-specific meQTL, it was significantly associated with TCERG1L mRNA 

abundance in reference tissue, an association also observed in GTEx42 (Extended Data 5g). 

Out of genotype, tumour methylation and tumour mRNA abundance, tumour methylation 

was the strongest prognostic measure (HR=1.68; 95% CI=1.01-2.78; P=0.05; Extended Data 

5h), concordant with the literature26, suggesting tumourigenic dysregulation is targeted at 

methylation. Methylation is also significantly associated with Gleason Score in the 

discovery and validation cohorts (FCdiscovery=0.61; Pdiscovery=2.67x10−4; FCvalidation=0.87; 

Pvalidation=1.14x10−2; Mann-Whitney; Figure 4f; Extended Data 5i).

Next, we evaluated the effect of TCERG1L germline-dependent tumour methylation on 

chromatin organization, specifically H3K27ac modifications46. In agreement with the 

mRNA abundance data, three SNPs within the haplotype (rs12776477, rs4384309, 

rs4074033) were located within 100 bp of an H3K27ac peak, and the alternative allele 

dominantly increased the peak score (medianAA-medianAB+BB=−111, Mann-Whitney; 

P=7.60 x 10−3; Figure 4g; Extended Data 5j). As further confirmation, H3K27ac 

modification was negatively correlated with 5’ methylation of the gene (Spearman’s ρ=

−0.60, P=2.65x10−4; Extended Data 5k) and was replicated in an independent cohort35 

(β=1.82; P=7.65x10−3; logistic regression). The alternative allele was significantly 
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associated with decreased H3K27me3 (β=−1.72; P=3.40x10−4) and increased H3K4me3 

(β=1.66; P=7.51x10−4) modifications (Figure 3c). Finally, across eight cell lines, only cell 

lines with at least one alternative allele showed CTCF binding (Extended Data 5l). In VCaP 

prostate cancer cells, which are heterozygous at rs4074033, the alternative allele was 

preferentially bound by CTCF and preferentially subject to H3K27ac modification (Figure 

4h). The two alleles of rs4074033 differ by an A-C transversion, with the C allele harbouring 

a CpG not present in the A allele. This CpG is methylated in LNCaP cell lines (Figure 4i). 

This methylation is consistent with differential CTCF binding, which is associated with 

altered poly(ADP-ribose) polymerase 1 (PARP1) activity and subsequently DNA 

(cystosine-5)-methyltransferase 1 (DNMT1) activity47. Taken together, these data show that 

germline loci in TCERG1L may influence the methylation and chromatin organization of the 

gene via CTCF binding in a tumour-specific manner supporting reports of TCERG1L as an 

epigenetic driver of aggressive prostate cancer26.

Tumour meQTL associated with AKT1 regulation

Next, we screened other driver genes that account for prostate cancer aggression and 

observed a similar link between germline loci, tumour methylation and histone organization 

for AKT1, which with MYCN is sufficient to transform prostate epithelial cells into 

adenocarcinomas48 and is associated with elevated risk of prostate cancer incidence49-51. We 

discovered an association between a 30-loci haplotype both 5’ and spanning into the 

oncogene AKT1 on chromosome 14 and a methylation probe within a CpG island in the 

gene body (cg18664856; Figure 5a). The alternative allele additively decreased the 

methylation of this probe, quantified using the tag SNP rs2494734 (Spearman’s ρ=−0.57, 

P=2.59x10−22; Figure 5b). The meQTL was robust to correction for tumour cellularity, 

validated in the TCGA cohort and was tumour specific (Spearman’s ρtumour=−0.39, 

FDRtumour=0.015, ρreference=−0.31, FDRreference=0.054; permutation P=0.06; see Methods; 

Extended Data 6a-c; Supplementary Table 7). Furthermore, the alternative allele dominantly 

associated with increased H3K27ac modification46 (effect size=−35, P=0.164, Mann-

Whitney; Figure 5c) and H3K27ac modification was negatively correlated with cg18664856 

methylation (Spearman’s ρ=−0.39, P=2.76x10−2; Extended Data 6d-e). Because methylation 

of cg18664856 was also negatively correlated with AKT1 mRNA abundance (Spearman’s 

ρ=−0.38, P=1.54x10−5; Extended Data 6f), we checked the effect of rs2494734 genotype on 

ATK1 mRNA abundance. Consistently, the alternative allele was additively associated with 

increased AKT1 mRNA abundance (Spearman’s ρ=0.27; P=1.01x10−4; Mann-Whitney; 

Figure 5d). This effect was validated in the TCGA cohort (Spearman’s ρtumour=0.17, 

Ptumour=1.74x10−3; Extended Data 6g). While no association was seen in the TCGA 

reference tissue (ρreference=−0.06, Preference=0.68; Extended Data 6h), this eQTL was 

reported in GTEx42 with a p-value above the genome-wide significance level 

(P>1.62x10−10; Supplementary Table 7).

Finally, given the robust literature on AKT1’s oncogenic functions and therapeutic value52, 

we tested the effect of rs2494734 genotype on survival. The alternative allele was 

dominantly associated with increased risk of relapse (HR=2.85; 1.35-5.99 95% confidence 

intervals; P=5.80x10−3; CoxPH model; Figure 5e) and was validated in an independent 

cohort of 101 patients26,27,37,38 (HR=2.2; 1.2-4.0 95% confidence intervals; P=0.017; Figure 
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5f). These findings highlight another example of the interplay between germline haplotypes 

and tumour methylation, regulating downstream gene expression and impacting the clinical 

behaviour of prostate cancer.

Discussion

Tumour meQTLs occur when a germline locus influences the epigenetic profile of a tumour, 

but not its predecessor non-malignant cells. The resulting regulatory effects can ripple 

through the central dogma, facilitating interactions between the germline and the somatic 

tissue leading to tumourigenesis decades after birth. While specific driver mutations can be 

driven by environmental or replicative factors, they arise in the context of the germline 

genome that biases towards or against them4. Understanding this interaction can help 

identify determinants of disease susceptibility and aggressivity; particularly important in 

prostate cancer where current clinical factors do not fully predict the interpatient 

heterogeneity in tumour behaviour and treatment response. As first presented by Heyn et al.
17 and confirmed here, some GWAS loci modulate risk via dysregulation of DNA 

methylation. Measuring this direct effect of germline on methylation generates large effect 

sizes, overcoming power limitations of small cohorts. We validate this aspect of germline 

modulators of tumour methylation by re-identifying the rs684232 haplotype, a previously 

reported risk loci17. Further, we identify novel loci predictive of aggressive disease, 

including loci targeting prostate cancer driver events like TCERG1L26 and AKT148-51. 

Interestingly, not all risk meQTLs were tumour-specific. MeQTLs detected in reference 

tissue may facilitate tumour initiation, i.e. modulating pre-neoplastic methylation, while, 

tumour meQTLs may facilitate tumour progression, i.e. modulating oncogenic methylation.

The mechanisms by which germline loci affect tumour methylation are largely unknown, 

and are likely many. First, the most direct would be a SNP breaking a methylated CpG 

dinucleotide; in our data this accounted for only 0.1% of tumour meQTLs. Second, SNPs 

can influence CTCF binding, supported by their enrichment and allele specific-binding at 

these sites (Figure 3d & 4h). Changes in CTCF binding can impact local methylation by 

modulating PARP1 activity, and subsequently DNMT1 activity47. Third, SNPs can create or 

destroy DNA motifs that alter protein binding affinities, thereby promoting or antagonizing 

methylation53. Finally, tumour meQTLs may represent a secondary effect of the germline 

modulating processes that co-occur with methylation changes, e.g. chromatin modifications.

The cohort analyzed here was modest in size relative to contemporary GWAS studies (n=589 

patients), yet we identified and validated 7,590 meQTLs and 1,178 tumour-specific 

meQTLs, suggesting they are very widespread in prostate cancer. The tumour meQTLs 

reported represent tag loci and require fine mapping to determine the casual loci. 

Additionally, cell type composition can play a role in meQTL identification as different cell 

types can have different methylation profiles54. For example, loci modulating the tumour 

microenvironment might alter measured methylation unrelated to methylation in cancer 

cells. Our approach focused on cis associations – loci proximal to the methylation site – due 

to their strong signal. We also detected trans tumour meQTLs, despite being under-powered 

to explore these. Larger cohorts are needed to quantify the trans influences of the germline 
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on the tumour epigenome, and suggest an even larger landscape of germline aberrations 

influence the tumour epigenome and gene-expression.

These data reveal a novel mechanism through which the germline genome influences the 

somatic landscape of a tumour. These germline-somatic interactions can be exploited to 

identify prognostic germline loci that might be minimally-invasive biomarkers to aid triage 

of patients to more expensive tissue- or radiology-based assays. These data support further 

exhaustive study of germline-somatic interactions in prostate and other tumour types.

Methods

Discovery patient cohort

All patients had pathologically confirmed prostate cancer and were hormone naive at the 

time of therapy. All patients were treated with either image-guided radiotherapy (IGRT) or 

radical prostatectomy (surgery). Single ultrasound-guided needle biopsies were obtained for 

the IGRT cohort prior to the start of therapy, as previously described26. Fresh-frozen radical 

prostatectomy specimens were obtained from the University Health Network (UHN) 

Pathology BioBank or from the Genito-Urinary BioBank of the Centre Hospitalier 

Universitaire de Quebec – Université Laval (CHUQ). In accordance with local Research 

Ethics Board (REB) and International Cancer Genome Consortium (ICGC) guidelines, 

whole blood and informed consent was collected at the time of clinical follow-up. 

Previously collected tumour tissue was utilized based on UHN REB approved study 

protocols (UHN 06-0822-CE, UHN 11-0024-CE, CHUQ 2012-913:H12-03-192). Two 

genitourinary (GU) pathologists (TvdK, BT) independently evaluated scanned H&E-stained 

slides to confirm Gleason score and tumour cellularity for all tumour specimens. Clinical T 

category was reported using standard National Comprehensive Cancer Network (NCCN) 

criteria (https://www.tri-kobe.org/nccn/guideline/urological/english/prostate.pdf). Serum 

prostate specific antigen (PSA) was reported based on the reading at the time of diagnosis, 

measured in ng/mL. The discovery cohort consisted of samples from 161 cases previously 

characterized26,27 along with 80 new cases collected and processed in the same manner. 

These additional 80 cases were chosen to match the clinical features of the original 130– i.e. 
similar age, Gleason score, tumour stage, proportion of biochemical recurrences (BCR) and 

time to BCR. For IGRT patients, BCR was defined as the rise in PSA concentration of at 

least 2.0 ng/mL above the nadir. The nadir refers to the stable PSA level that follows a slight 

rise directly after radiotherapy. For surgery patients, BCR was defined as two consecutive 

post-surgery PSA measurements over 0.2 ng/mL or triggered salvage therapy.

Sample-processing

At UHN, selected prostate samples were cut into 60 x 10 μm sections, with an H&E-stained 

4 μm section every 10 cuts. H&E-stained sections were marked by a GU pathologist (TvdK, 

BT) to indicate areas suitable for macro-dissection (i.e. >70% tumour cellularity). Manual 

macro-dissection was performed using sterile scalpel blades, and DNA was obtained by 

phenol:chloroform extraction, as previously reported26. DNA was extracted from whole 

blood using an ArchivePure DNA Blood Kit (5 PRIME, Inc., Gaithersburg, MD) at the 

Applied Molecular Profiling Laboratory at the Princess Margaret Cancer Centre. At CHU de 
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Québec, the size of the prostate tissues from the biobank has allowed an easier, yet very 

efficient procedure for sampling prior to DNA extraction. After histology, quality control 

was processed the same way as described above and surface of tumoural glands considered 

large enough, two cores of 1 mm diameter were taken from the tumoural zone using a sterile 

biopsy punch (Miltex). Tissues were immediately disrupted in ATL buffer using Minilys 

homogeneizer (Bertin Technologies, Montigny, France). DNA was finally extracted from the 

lysate using QIAmp DNA mini kit (Qiagen, Hilden, Germany). The same kit was used to 

generate DNA extractions on blood samples from this site. All DNA samples were 

quantified using a Qubit 2.0 Fluorometer (Life Technologies, Burlington, ON) and assessed 

for purity using a Nanodrop ND-1000 spectrophotometer.

Methylation array data generation

Methylation microarray data generation were carried out as previously described26. Briefly, 

Illumina Infinium HumanMethylation 450k BeadChip kits were used to assess global 

methylation, using 500 ng of input genomic DNA at the McGill University and Genome 

Quebec Innovation Centre (Montreal, QC). All samples were processed from fresh frozen 

prostate cancer tissue.

Methylation array data analysis

Methylation microarray data was processed in the R statistical environment (v.3.2.3) as 

outlined elsewhere55. Briefly, raw methylation intensity levels were pre-processed using 

Dasen56 and filtered according to detectability above background noise, non-CpG 

methylation and cross hybridization using the DMRcate package (v1.6.53). Chromosome 

location, probe position and gene symbol were annotated using the 

IlluminaHumanMethylation450kanno.ilmn12.hg19 package (v0.6.0).

Whole-genome sequencing

WGS was conducted as previously reported26. Briefly, sequencing libraries were prepared 

using 50 ng gDNA and enzymatic reagents from KAPA Library Preparation Kits (KAPA 

Biosystems, Woburn, MA USA Cat#KK8201) according to protocols as described for end 

repair, A-tailing, and adapter ligation57. Sequencing was carried out using HiSeq 2000 

platform (Illumina Inc.) and samples were sequenced to a minimum coverage depth of 30x 

and a median coverage of 44.2x ± 4.7x (standard deviation).

mRNA Microarray Generation

Total RNA was extracted from alternating adjacent sections, using the mirVana miRNA 

Isolation Kit (Life Technologies), according to the manufacturer’s instructions, as described 

previously26. In total, three batches were profiled at two locations. For batch 1 samples, 150 

ng total RNA was assayed on the Affymetrix Human Gene 2.0 ST array (HuGene 2.0 ST) at 

The Centre for Applied Genomics (The Hospital for Sick Children, Ontario, Canada). For 

samples in batches 2 and 3, 100 ng total RNA was assayed on the Affymetrix Human 

Transcriptome Array 2.0 (HTA 2.0) and HuGene 2.0 ST, respectively, at the London 

Regional Genomics Centre (Robarts Research Institute, London, Ontario, Canada).
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Whole-genome sequencing data analysis

Raw sequencing reads were aligned to the human reference genome, GRCh37, using BWA-

mem (v0.7.12+)58 at the lane level (Supplementary Table 1). Picard (v1.92) merged these 

lane-level BAMs from the same library and marked duplicates. Picard was also used to 

merge library level BAMs from the same sample without marking duplicates. Local 

realignment and base quality recalibration was completed on tumour/normal pairs together 

with the Genome Analysis Toolkit (GATK v3.4.0+) (Supplementary Table 1)59. Normal 

samples were extracted, headers corrected (Samtools v0.1.9)60, and files indexed (Picard 

v1.92) into individual sample-level BAMs.

mRNA abundance analysis

Raw mRNA data was downloaded from GSE107299 and pre-processed under R (v3.2.5). 

Background correction, normalization algorithms and annotation were implemented in the 

oligo (v1.34.2) package from the BioConductor (v3.2) open-source project. The Robust 

multichip average algorithm was applied to the raw intensity data61. Probes were mapped to 

Entrez gene ID using custom CDF files (v20) for HTA 2.0 and HuGene 2.0 ST array from 

http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/

CDF_download.asp. The sva package (v3.18.0) was used to correct for batch effects 

between different arrays. mRNA abundance levels from HuGene 2.0 ST and HTA 2.0 were 

combined into one dataset based on Entrez Gene IDs. The mRNA abundance levels were 

averaged amongst duplicated Entrez Gene IDs. Entrez gene IDs were then converted into 

gene symbols and chromosome locations based on the human reference genome GRCh37 

from UCSC table browser (download date: 02/08/2016).

Identification of germline SNPs

GATK (v3.4.0+) (Supplementary Table 1) was used to call germline SNPs by first running 

HaplotypeCaller on the realigned and recalibrated tumour/normal pair (Supplementary Table 

1). Next, VariantRecalibrator and ApplyRecalibration were applied to ensure high quality 

calls. GATK best-practices filters were applied to the resulting VCFs. We only considered 

biallelic SNPs in this analysis and 98.54% of autosomal SNPs (4,894,225/4,966,931) had all 

three genotypes.

Candidate risk meQTL replication

We conducted a candidate meQTL analysis to replicate the 8 prostate meQTLs reported in 

Hyen et al.17. Associations were tested using Spearman’s correlation. Spearman’s 

correlation tested the additivity of the alternative allele – i.e. the correlation between 

methylation and the genotype coded 0 (homozygous reference), 2 (heterozygous) and 3 

(homozygous alternative). We considered a significant threshold of P<0.01 (Bonferroni-

adjustment). Three of the 8 meQTLs could not be tested in this cohort as the probes were 

filtered out during methylation processing (cg20129853, cg13762704, cg02340056; 

Supplementary Table 2).
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Risk loci associations

A list of 160 germline polymorphisms associated with prostate cancer risk was cultivated 

from the literature15,25,27-32. SNPs from these studies were chosen if they were associated 

with the risk of prostate cancer or prognosis of prostate cancer patients. Associations were 

tested using Spearman’s correlation. Spearman’s correlation tested the additivity of the 

alternative allele – i.e. the correlation between the event and the genotype coded 0 

(homozygous reference), 2 (heterozygous) and 3 (homozygous alternative). Significant 

associations were defined as false discovery rates less than 0.05. We chose Spearman’s 

correlation to avoid violating distributional assumptions made in linear models given that 

methylation data does not follow traditional distributions. Additionally, we selected 

Spearman’s correlation over the previously reported multivariate random forest selection 

frequency method17 given the subsequent genome-wide and methylome-wide approaches in 

this work (see “Discovery genome wide association studies” and “Discovery cis germline-

methylation associations” methods sections). This approach was too computationally 

intensive to apply to the 1x107 independent tests conducted in the following sections so for 

consistency we applied Spearman’s correlation for all associations. However, we did 

implement the multivariate random forest selection frequency method17 to confirm a subset 

of our high confidence hits (see Validation of germline-methylation associations).

Survival analysis

Survival analysis was conducted in the R statistical environment (v3.3.1). Where the 

assumption of proportional hazards applied, a Cox proportional hazards model was 

implemented testing the association between methylation – median dichotomized m-value – 

with biochemical recurrence, as defined previously26. Probes with p-value < 1x10−4 were 

carried forward to the analysis. For survival analysis of TCERG1L methylation levels, cutp 

from the survMisc (v.0.4.5) package was used to determine a dichotomization threshold to 

replicate thresholds used in previous work28. Survival associations were validated in an 

independent cohort of 101 clinically-matched primary samples26,27,37,38.

Discovery prognostic germline-methylation associations

Genome wide associations were tested for all 58 prognostic methylation probes. Germline 

SNPs were filtered based on a minimum allele frequency (MAF > 0.1) and Hardy-Weinberg 

equilibrium violation (P > 1x10−8). Associations between the remaining SNPs and the 58 

prognostic methylation probes were evaluated using the R-plugin feature of the plink 

software (v1.07) to implement a Spearman’s correlation test62. Spearman’s correlation 

tested the additivity of the alternative allele (i.e. the correlation between the event and the 

genotype coded 0 (homozygous reference), 2 (heterozygous) and 3 (homozygous 

alternative)). Manhattan plots were generated to visualize the results for each SNP. QQ plots 

were generated to assess bias in the model fit. A stringent Bonferroni adjustment was 

applied to correct for multiple hypothesis testing, therefore, SNPs with P < 5x10−8 were 

considered significantly associated. LD was calculated and visualized using Haploview 

(v4.2)63. Pairwise LD was quantified using D’ and haplotypes defined according to Gabriel 

et al64.
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Discovery cis germline-methylation associations

All methylation probes were tested for cis germline-methylation associations by looking at 

SNPs that were in a +/− 10 kbp window around the probe. Associations were tested using 

Spearman’s correlation, as outline earlier, and power was tested using a one-way ANOVA, 

as outlined above. Associations were deemed significant for p-values < 3x10−9 as this 

represented the Bonferroni threshold (1.5x107 independent tests).

TCGA validation cohort

The TCGA PRAD data was used as a validation cohort34. Concordance between SNP6 

microarray (SNP6) genotypes and whole exome sequencing (WXS) of blood sample calls 

was evaluated and only samples with >80% concordance were retained (348 samples; 

excluded 3 samples for concordance < 80%: TCGA-HC-7738, TCGA-EJ-7312, TCGA-

EJ-5505). Genotypes were imputed using the Sanger Imputation Service – pre-phasing using 

Shapeit265, imputation using PBWT66 and the Haplotype Reference Consortium (release 

1.1) panel67. The accuracy of the imputed genotypes was evaluated against WXS blood 

sample calls. A median accuracy of 0.988 was estimated. Genotypes were imputed a second 

time using combined SNP6 and WXS calls and the same imputation pipeline as described 

above. In the event that SNP6 and WXS disagreed on the genotype at a particular position, 

the WXS call was used. A final list of 40,405,505 SNPs were then available for validation 

studies.

Validation of germline-methylation associations

Associated SNPs from the discovery cohort (P < 5x10−8 from genome-wide analysis and p-

value < 4x10−9 from the cis germline-methylation analysis) were tested in the imputed 

TCGA cohort using the same Spearman’s correlation method outlined above. False 

discovery adjustment was applied to the remaining SNPs and associations were considered 

to validate if FDR < 0.05 and the directionality of the Spearman’s ρ was consistent in the 

discovery and validation cohorts. We implemented the multivariate random forest selection 

frequency method from Hyen et al.17 for 59 high confidence tumour meQTLs and found all 

59 had q-value = 0, calculated as proportion of null models with random forest selection 

frequency (RFSF) > fit model as described in Hyen et al17, supporting the validity of our 

approach (Supplementary Table 7).

Tumour-specific germline-methylation associations

Tumour-specific germline methylation associations were determined using the TCGA 

tumour and reference methylomes34. Similar to the discovery phase, associations were tested 

using a Spearman’s correlation test. Associations were considered tumour specific if the 

FDR < 0.05 in the tumour while FDR ≥ 0.05 in the reference in a subset of samples with 

both tumour and reference methylation profiling (n=47). Tumour specificity was further 

confirmed for the two stated examples, TCERG1L and AKT1, via a permutation test. The 

normal Spearman’s ρ was compared to a distribution of tumour Spearman’s ρ based on 

1,000,000 random subsets of 47 tumour samples. P-values were calculated based on the 

number of iterations where the normal ∣ρ∣ was larger than the tumour ∣ρ∣. To identify 

differentially methylated regions (DMRs) between tumour and normal tissue, raw intensity 

Houlahan et al. Page 16

Nat Med. Author manuscript; available in PMC 2020 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



values were re-normalized together using Dasen56 and DMRs were identified using the R 

package DMRcate (v1.12.1) with default parameters.

ChIP-Seq data analysis

A subset of 34 samples in the discovery cohort had H3K27ac ChIP-Seq profiling as 

previously described46. Peak bed files and raw FASTQs for H3K27ac (n = 92), H3K27me3 

(n=76), AR (n=88) and H3K4me3 (n=56) were downloaded for an independent cohort from 

the Gene Expression Omnibus (GSE120738)35. Tumour meQTLs overlapping each target 

were identified using the downloaded bed files. Here we considered all SNPs within the 

same haplotype as the tag tumour meQTL. The raw FASTQ files were aligned using bwa 

(v.0.7.15) and the aligned BAM files from each target were merged for each patient (i.e. 
H3K27ac, H3K27me3, H3K4me3 and AR BAMs from the same patient were merged). 

Using the merged BAM files, patients were genotyped at overlapping sites of interest using 

GATK (v3.4.0+) HaplotypeCaller. Differential binding analysis was conducted using logistic 

regression to quantify the contribution of genotype on binding variation. We considered the 

loci significant if FDR < 0.05. For each tumour meQTL we tested all SNPs within the 

tumour meQTL haplotype reporting the SNP with the minimum p-value. ChIP-Seq data for 

LNCaP, PC3, 22Rv1, VCaP and RWPE-1 cell lines was downloaded from the sources 

outlined in Supplementary Table 346,68-80.

Regulatory region enrichment analysis

To detect whether these probes are enriched in certain chromosomes, genomic locations and 

CpG classes, Fisher’s Exact test followed by multiple test correction (FDR) were applied. 

Methylation promoter region (transcription start site (TSS) 200, TSS1500 and 5’UTR), gene 

body (1st Exon and gene body, 3’UTR) and intergenic region were defined as previously 

described81. Enrichment at transcription factor binding sites and regulatory elements was 

conducted with previously published ChIP-Seq data from primary tumours35 and LNCaP, 

PC3, 22Rv1, VCaP and RWPE-1 cell lines46,68-80 (Supplementary Table 3). If multiple 

target:treatment pairs existed the median number of overlapping SNPs was used. Enrichment 

was quantified using a permutation test that randomly sampled 23 SNPs when interrogating 

risk loci meQTLs and 1,031 SNPs when interrogating cis tumour meQTLs genome-wide 

from a list of observed SNPs in our cohort. P-values were calculated as the number of null 

iterations with equal to or more SNPs overlapping ChIP-Seq peaks than tumour meQTLs 

divided by the total number of iterations (105). P-values were FDR-adjusted to account for 

multiple hypothesis testing. For novel cis tumour meQTLs, we considered the full haplotype 

of the tag SNPs, i.e. the tumour meQTLs or randomly sampled SNPs, and considered the 

haplotype overlapping if at least one SNP within the haplotype overlapped with the ChIP-

Seq peaks.

Allele-imbalance ChIP-Seq analysis

Prostate tissue was collected from 48 patients with localized primary prostate 

adenocarcinoma. Each patient yielded a sample of the adenocarcinoma and a sample from 

surrounding non-malignant prostate tissue. We performed ChIP-Seq for H3k27ac (N=48), 

H3k4me2 (N=6), H3k4me3 (N=4), FOXA1 (N=10), and HOXB13 (N=9) on these samples, 

as well as germline SNP genotyping from blood. Germline variants were phased and 
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imputed to the Haplotype Reference Consortium panel67. Mapping and aligning was 

performed using bwa58; allele-specific reads were processed according to the WASP 
pipeline82 to remove mapping bias; peaks were identified using the MACS2 software83. 

Allele-specific read counts were generated by the GATK ASEReadCounter59. We tested for 

allele-specific signal using a haplotype beta-binomial test that accounts for read over-

dispersion. Beta-binomial over-dispersion parameters were estimated for each individual/

experiment from the aligned allele-specific counts and were found to be consistently low 

(<0.01). For each peak and individual, haplotype-specific read counts were merged across all 

heterozygous read-carrying sites in the peak for a single measure of allele specificity. Every 

SNP within 100 kbp of the peak center and containing at least one heterozygous individual 

was then tested for allelic imbalance. All heterozygous individuals were tested together 

under the expectation of a consistent allele-specific effect. Each test was performed once for 

samples from normal, tumour, or both, as well as a test for difference in imbalance between 

tumour and normal. Finally, peaks were considered “imbalanced” in each of these four test 

categories if any of the variants tested for that peak exhibited allele-specific signal at a 5% 

FDR.

Overlap between SNP and peak anchor regions

The accession numbers for RAD21 ChIA-PET data from LNCaP and DU145 cells, from 

ENCODE, are ENCLB189DLP and ENCLB678KEV, respectively. ChIA-PET2 was utilized 

to process the raw data and obtain the intra-chromosomal interactions84. Peaks with 

interactions represent a subgroup of the total peaks identified from the ChIA-PET data. We 

employed intersectBed (bedtools) to overlap the coordinates of SNP sites and peak regions. 

Overlap analysis of SNPs with total peaks or interaction peaks are summarized in 

Supplementary Table 7.

Prediction of potential target of risk loci

Peak anchors that overlapped with loci regions were acquired. Genes located in the paired 

peak anchors were predicted as potential targets of these risk loci.

Pathway enrichment

Genes harbouring tumour meQTL-eQTLs were processed using g:Profiler85 (v. 

r1741_e90_eg37; significance set at FDR; output set to generic enrichment map; GO, 

KEGG and REACTOME databases; background set to all annotated genes; minimum 

number of genes per pathway was set to 2).

Germline-RNA (eQTL) and germline-protein (pQTL) associations

Germline-RNA associations were tested for tumour meQTLs. These associations were first 

interrogated in the discovery cohort using a Spearman’s correlation test (N = 203) and then 

validated in the TCGA PRAD-RNA-Seq cohort34. For stringency, only tumour-specific 

eQTLs that were not observed as GTEx prostate epithelial eQTLs42 were retained. Tumour-

specific associations were defined as FDR > 0.05 from published GTEx results where FDR 

was applied over the candidate list of eQTLs (n=87). Germline-protein associations were 
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identified in an exploratory analysis of 70 primary prostate cancers38 using Spearman’s 

correlation test.

CTCF mechanism

VCaP CTCF and H3K27ac ChIP-Seq and WGS BAM files were downloaded from 

ENCODE. Whole genome bisulfite sequencing FASTQ files were downloaded from GEO 

(accession GSE86832) for three replicates. FASTQ files were aligned using Bismark86 

(v0.15.0) with one mismatch allowed in a seed alignment.

Data visualization

Visualizations were generated in the R statistical environment (v3.3.1) with the lattice 

(v0.24-30), latticeExtra (v0.6-28) and BPG (v5.6.23) packages87. Haplotypes were 

visualized using Haploview (v4.2)63.

Data Availability

Methylation data are available in the Gene Expression Omnibus under accession GSE84043. 

Raw sequencing data are available in the European Genome-phenome Archive under 

accession EGAS00001000900 (https://www.ebi.ac.uk/ega/studies/EGAS00001000900). 

Processed variant calls are available through the ICGC Data Portal under the project PRAD-

CA (https://dcc.icgc.org/projects/PRAD-CA). TCGA WGS/WXS data are available at 

Genomic Data Commons Data Portal (https://gdc-portal.nci.nih.gov/projects/TCGA-PRAD). 

Primary samples ChIP-Seq data was retrieved from Gene Expression Omnibus under 

accession GSE120738. Cell line data sources are outlined in Supplementary Table 3. 

Detailed information on experimental design can be found in the included Life Sciences 

Reporting Summary.

Extended Data
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Extended Data Figure 1. 
Data analysis and quality controls.
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Extended Data Figure 2. 
Characterizing risk meQTLs.
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Extended Data Figure 3. 
Characterizing meQTLs targeting prognostic methylation sites.
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Extended Data Figure 4. 
Characterizing tumor meQTLs.

Houlahan et al. Page 23

Nat Med. Author manuscript; available in PMC 2020 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 5. 
Characterizing TCERG1L tumor meQTLs.
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Extended Data Figure 6. 
Characterizing AKT1 tumor meQTLs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 –. Prostate cancer susceptibility loci associated with tumour methylation dysregulation
a) Schematic of datasets and workflow. The boxes along the left and their corresponding 

colours indicate the dataset used at each step. b) Thirty risk loci (x-axis) were associated 

with 77 methylation probes (y-axis). Dot size represents Spearman’s ρ magnitude while 

colour indicates directionality. Background shading represents FDR. Covariate along the top 

represents the chromosome of each SNP, while the covariate along the right indicates the 

chromosome of each methylation site. Red ID indicates SNP is involved in a trans meQTL. 

c) Comparison of Spearman’s ρ in discovery and validation cohorts for 23 risk loci 
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significantly associated (FDR < 0.05) with 55 methylation probes in the validation cohort. 

Diagonal dotted line represents the y=x line.
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Figure 2 –. Germline variants associate with prognostic methylation levels
a) Summary of 223 significant SNPs (x-axis) for each prognostic methylation probe (y-

axis). Black indicates that a SNP is significantly associated (p-value < 5x10−8) with 

methylation levels at that probe. b) Comparison of Spearman’s ρ in discovery and validation 

cohorts for 75 SNPs that were significantly associated (FDR < 0.05) with six methylation 

probes in the validation cohort. Diagonal dotted line represents the y=x line. c) Two cis-

meQTLs were prognostic. Dots and error bars represent hazard ratios and 95% confidence 

intervals, respectively, for the tag SNP from each of the seven haplotypes. Dotted line 

indicates HR = 1 and grey background shading indicates P ≤ 0.05. d) The homozygous 
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alternative genotype of a haplotype on chromosome 17, associated with methylation of 

ATP2A3, gives a survival advantage. Hazard ratio and p-value from CoxPH model. e) A 

haplotype on chromosome 10, associated with methylation of TCERG1L, is co-dominantly 

associated with BCR. f) Co-dominant association with BCR replicated at rs10829963 in 

independent cohort (n=101).
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Figure 3 –. The landscape of cis tumour meQTLs
a) Identification of cis tumour meQTLs methylome-wide (P<3x10−9; Bonferroni 

adjustment). Each point represents a SNP, ordered by chromosome along x-axis. Y-axis 

gives p-value from Spearman’s correlation. Representative boxplots, showing methylation 

(y-axis) discretized by genotype (x-axis), for three germline-methylation associations. 

Boxplot represents median, 0.25 and 0.75 quantiles with whiskers at 1.5x interquartile range. 

Blue points refer to methylation values and number of samples with each genotype is given 

in brackets. b) Table shows number of meQTLs tested and statistically significant 

(FDR<0.05 based on Spearman’s correlation) at each stage. c) Tumour meQTLs 

demonstrated allele specific AR binding or histone modification (n=30; 23 unique SNPs). 

Circle size and colour represents magnitude and sign of coefficient from logistic regression 

model (i.e. red indicates alternate allele associated with increased binding and blue 

decreased binding). Background shading represents FDR. X-axis labels show tag tumour 

meQTL-ChIP-QTL and SNP ID in brackets indicate the ChIP-QTL SNP in the case that the 

ChIP-QTL SNP is not the tag SNP. d) Tumour meQTLs were enriched at transcription factor 

binding sites and active regulatory elements in LNCaP cells. Y-axis shows number of tumour 

meQTLs that overlap each target/treatment pair. Background shading indicates FDR<0.05 

from permutation analysis (n=105 permutations). Red X represents expected number of 
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overlapping loci by chance. e) Tumour meQTLs were interrogated for overlap with sites of 

allelic imbalance at FOXA1, H3K27ac, H3K4me3, HOXB13 and H3K4me2 peaks in 

tumour and reference tissue. Y-axis shows number of tumour meQTLs that overlap each 

target. Background shading indicates FDR<0.05 from permutation analysis (n=105 

permutations). The bottom covariate indicates sites of allelic imbalance in tumour or 

reference tissue. Red X represents expected number of overlapping loci by chance. f) The 

tumour meQTL-eQTL-pQTL identified in this analysis is in LD with the risk locus, 

rs684232, which is also a pQTL for VPS53. Boxplot represents median, 0.25 and 0.75 

quantiles with whiskers at 1.5x interquartile range and red points refer to protein abundance 

values. The number of samples with each genotype is given in brackets.
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Figure 4 –. Tumour meQTL associated with TCERG1L regulation
a) Haplotype on chromosome 10 strongly associated with methylation probes at both 5’ and 

3’ ends of TCERG1L. Manhattan plot presents p-values (y-axis; Spearman’s correlation) for 

association of each SNP, x-axis ordered by chromosome, with methylation at both 5’ 

(cg03943081) and 3’ (cg18360873) ends of TCERG1L. The grey line represents the 

Bonferroni adjustment. All associated SNPs are in strong LD. LD plot shows pairwise D’ 

values between all associated SNPs where a solid red square indicates a D’ value of 1. b) 
TCERG1L meQTLs were tumour-specific. Dot size reflects the magnitude and dot colour 

reflects the directionality of Spearman’s ρ between genotype and methylation at probes 5’ 
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and 3’ of TCERG1L. The background shading indicates the FDR. c) Genotype at rs4074033 

was associated with methylation levels of 64/90 probes spanning TCERG1L. Bottom forest 

plot shows Spearman’s correlation and 95% CI for association of each methylation probe (x-

axis) and genotype at rs4074033. Horizontal line represents ρ=0. Top forest plot shows HR 

and 95% CI for association of methylation probes with BCR using a CoxPH model. 

Horizontal line represents HR = 1. Grey shading in both plots indicates significant 

association (FDR<0.05). d-e) The alternative (B) allele exhibits a dominant effect resulting 

in increased mRNA abundance of TCERG1L in both the discovery (d) and the validation 

cohort (e). Boxplot represents median, 0.25 and 0.75 quantiles with whiskers at 1.5x 

interquartile range and purple points refer to mRNA abundance values. The number of 

samples with each genotype is given in brackets. Difference in abundance levels was 

quantified using Spearman’s correlation. f) Methylation 5’ of TCERG1L (cg03943081) is 

significantly associated with Gleason Score in the discovery cohort. Effect quantified by 

Mann-Whitney and effect size is fold change. Blue points refer to methylation levels. g) The 

alternative allele showed increased H3K27ac modification in the discovery cohort. Effect 

quantified using Mann-Whitney test (AA vs. AB+BB) and effect size represents differences 

in medians. Green points refer to H3K27ac peak signal. h) The alternative allele at 

rs4074033 preferentially shows H3K27ac modification and is preferentially bound by CTCF. 

The VCaP cell line is heterozygous at rs4074033 (i.e. genotype: AC). The y-axis shows the 

number of reads with each allele at rs4074033 from CTCF and H3K27c ChIP-Seq and WGS 

data. i) The alternative allele at rs4074033 is methylated in LNCaP cell lines (genotype: 

CC). Y-axis shows number of reads with the methylated C allele vs. the unmethylated T 

allele (from WGBS).
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Figure 5 –. Tumour meQTL associated with AKT1 regulation
a) Haplotype on chromosome 14 strongly associated with methylation of a probe within the 

gene body of AKT1. Manhattan plot represents p-values from Spearman’s correlation as 

outlined previously. b) The alternative allele is associated with decreased methylation of 

cg18774856, effect quantified by Spearman’s correlation. Boxplot represents median, 0.25 

and 0.75 quantiles with whiskers at 1.5x interquartile range and blue points refer to 

methylation values. The number of samples with each genotype is given in brackets. c) The 

alternative allele showed increased H3K27ac modification in this region, effect quantified by 

Mann-Whitney test (AA vs. AB+BB) and effect size gives difference in medians. Green 
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points refer to H3K27ac ChIP-Seq signal. d) The alternative allele was associated with 

increased mRNA abundance of AKT1, effect quantified by Spearman’s correlation. Purple 

points refer to mRNA abundance. e) The presence of the alternative allele confers a survival 

disadvantage as presented in Kaplan-Meier plot with time along the x-axis in years and 

estimated proportion of individuals without biochemical recurrence event on y-axis. The 

hazard ratio from a CoxPH model is also presented along with the number of individuals 

without an event in each group at each time point along the bottom. f) Alternative allele at 

rs2456274 is dominantly associated with rapid biochemical recurrence in an independent 

cohort (n=101).
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Table 1:

Significant tumour meQTL-eQTLs

SNP Methylation Probe Gene

rs1225741 cg13351621 SYCP2L

rs16934152 cg13558087 POLR1E

rs2456274 cg08881796 VPS53

rs2570972 cg08367326 AMIGO1

rs3761188 cg09328228 PABPC1L

rs3761188 cg15588266 PABPC1L

rs3764509 cg14963724 CNDP2

rs3807032 cg24330456 RNF39

rs3807033 cg05563515 RNF39

rs3807033 cg17322683 RNF39

rs3807033 cg23793213 RNF39

rs3849767 cg18264728 DAB2

rs4147470 cg03997398 ABLIM3

rs4147470 cg04669407 ABLIM3

rs9261309 cg13918754 RNF39

rs9261309 cg20249327 RNF39

rs9295763 cg20249327 ELOVL2
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