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1Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
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ABSTRACT

A measurement of a primordial non-Gaussianity (PNG) signal through late- or early-Universe probes

has the potential to transform our understanding of the physics of the primordial Universe. While large-

scale structure observables in principle contain vital information, interpreting these measurements is

challenging due to poorly understood astrophysical effects. Luckily, N -body simulations, such as

the AbacusPNG set presented in this study, consisting of 9 boxes, each of size Lbox = 2 Gpc/h

and particle mass of 1.01 × 1010 M⊙/h, provide a viable path forward. As validation, we find good

agreement between the simulations and our expectations from one-loop perturbation theory (PT) and

the ‘separate universe’ method for the matter bispectrum, matter power spectrum and the halo bias

parameter associated with PNG, bϕ. As a science application, we investigate the link between halo

assembly bias and bϕ for halo properties known to play a vital role in accurately predicting galaxy

clustering: concentration, shear (environment), and accretion rate. We find a strong response for

all three parameters, suggesting that the connection between bϕ and the assembly history of halos

needs to be taken into account by future PNG analyses. We further perform the first study of the

bϕ parameter from fits to early DESI data of the luminous red galaxy (LRG) and quasi-stellar object

(QSO) samples and comment on the effect on fNL constraints for the allowed galaxy-halo models (note

that σ[fNL] ∝ σ[bϕ]
bϕ

). We find that the error on fNL is 21, 6, 22 for the LRGs at z = 0.5 and z = 0.8

and QSOs at z = 1.4, respectively, suggesting that a thorough understanding of galaxy assembly bias

is warranted so as to perform robust high-precision analysis of local-type PNG with future surveys.

Keywords: Cosmology — Simulations — Galaxy-halo connection — Primordial non-Gaussianity

1. INTRODUCTION

The investigation of the nature of primordial den-

sity fluctuations has long been a cornerstone of modern

cosmology. Among the many tantalizing prospects of

understanding these fluctuations, finding non-Gaussian

features imprinted on them during the earliest moments

after the Big Bang would allow us to put to the test the

most widely accepted paradigms about the primordial

Universe and illuminate the physics of the high-energy

regime (Bartolo et al. 2004).

The study of primordial non-Gaussianity (PNG) en-

compasses a diverse array of observational avenues rang-

ing from early- to late-Universe probes, seeking to dis-

cern subtle deviations from Gaussian statistics in the

∗ boryanah@berkeley.edu

structures of our Universe. Particularly interesting for

galaxy surveys is the detection and characterization of

the so-called ‘local-type PNG’, as this type of PNG links

the small-scale with the large-scale galaxy density dis-

tribution. A number of analyses have tried to constrain

the parameter characterizing the PNG amplitude, fNL,

both in the cosmic microwave background (CMB) (Ko-

matsu et al. 2005) and in the large-scale structure (Dalal

et al. 2008).

The simplest single-field models of inflation pre-

dict vanishing fNL Creminelli et al. (2011); Tanaka &

Urakawa (2011); Baldauf et al. (2011); de Putter et al.

(2015), and hence, any detection of a non-zero sig-

nal would impact our understanding of the mechanism

that generated the seeds of structure formation. The

current best constraints on local PNG come from the

analysis of the CMB by the Planck satellite, finding
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fNL = −0.9 ± 5.1 (1σ) Planck Collaboration et al.

(2020). The tightest near-future constraints from large-

scale structure surveys are theoretically predicted to

reach σ(fNL) ≈ 1, as the 3D distribution of galaxies

from future surveys contains more Fourier modes than

the 2D CMBmap (Sailer et al. 2021; Ferraro et al. 2022),

contaminated by foregrounds and Silk-damping on small

angular scales. While theoretically these improvements

are significant, there are still difficulties associated with

interpreting the observed signal. In particular, to un-

cover these subtle non-Gaussian imprints, we need to

disentangle astrophysical and non-linear evolution ef-

fects from the features of the primordial Universe.

Summary statistics such as higher-order correlation

functions, are particularly sensitive to all PNG shapes

and provide a powerful venue for conducting tests on

our cosmological observables. In the case of local PNG,

there is a strong response even in the galaxy two-point

correlation function through the scale-dependent bias.

Thus, this feature, which is absent in the matter field,

allows us to discern the imprints of local PNG by anal-

izing the galaxy power spectrum on large scales. Sev-

eral attempts to measure the scale-dependent bias using

quasars from spectroscopic galaxy surveys have already

been made, and projections for near-future experiments

have forecast tighter constraints than future CMB ob-

servations. However, challenges persist in translating

PNG detections into specific primordial bispectrum am-

plitudes, which is crucial for validating or ruling out

single-field inflationary models (Barreira 2022; Matar-

rese et al. 2021).

In recent years, the utilization of state-of-the-art nu-

merical simulations, both hydrodynamical and N -body,

has revolutionized our ability to explore the complex

interplay between primordial physics and large-scale

structure. These simulations provide an invaluable lab-

oratory for studying the link between galaxy formation

and primordial physics, which is crucial for disentangling

the amplitude of PNG, parameterized by fNL, from the

galaxy bias response to long-wavelength fluctuations,

parameterized by bϕ, which are otherwise degenerate in

standard scale-dependent bias analyses.

Hydrodynamical simulations provide us with a full set

of realistic galaxy properties, including galaxy colors,

black hole mass, and stellar mass. Because they are very

computationally expensive, the amount of volume that

can be simulated is typically quite limited (≲1Gpc3).

However, in recent years, the technique of ‘separate Uni-

verses’ has been employed to understand the response of

small-scale galaxy physics to long-wavelength fluctua-

tions, rendering the volume limitation a lesser issue (see

e.g., Barreira et al. 2020). Nonetheless, relying on a sin-

gle implementation of the physical model can also be

problematic and bias our understanding of the relation-

ship between local PNG and galaxy formation. On the

other hand, N -body simulations typically have a much

larger volume, but since they lack galaxy physics, one

needs to use heuristic methods to paint galaxy proper-

ties on them. Luckily, recently there has been signifi-

cant progress in developing high-fidelity models and ap-

plying them to large-volume N -body simulations (e.g.,

Hadzhiyska et al. 2020; Xu et al. 2021; Yuan et al. 2022;

Contreras et al. 2023).

In this work, we present a new set of N -body simula-

tions run with the Abacus code (Garrison et al. 2021a)

that incorporates local-type PNG, in conjunction with

the latest galaxy-halo models applied in the analysis of

current cosmological spectroscopic surveys (Yuan et al.

2023) to study the connection between scale-dependent

bias, bϕ, and the intrinsic properties of galaxies and ha-

los. In particular, In Section 3 we validate the power

spectrum and bispectrum against the one-loop pertur-

bation theory (PT) prediction (Cabass et al. 2022) to

ensure that the theoretical prediction matches the sim-

ulations on large scales. In Section 4, we then study the

response of bϕ to relevant halo properties for galaxy for-

mation such as environment and concentration. Finally,

in Section 5, we characterize the value of bϕ for faith-

ful representations of the large-scale experiment DESI

and make simple Fisher forecasts for the prospects of

detecting fNL through scale-dependent bias of the DESI

galaxy tracers. We summarize our findings in Section 6.

2. SIMULATIONS

2.1. Description

AbacusPNG consists of 10 simulations: five varia-

tions of fNL with two realizations each. The key param-

eters of the simulations are summarized in Tables 1 &

2. In brief, the simulations span fNL = {-100, -30, 0, 30,
100} with 40963 particles in boxes of 2h−1 Gpc, yielding

a particle mass of 1× 1010h−1M⊙.

The AbacusPNG simulations are effectively an ex-

tension of the AbacusSummit simulations1 (Maksi-

mova et al. 2021). They share the same scheme for

cosmologies and phases (c000, ph000, etc) so that the

two sets can be meaningfully compared. The parame-

ters controlling the numeric accuracy of the solution are

the same; likewise, the output data model is the same,

including cleaned CompaSO halo catalogs (Hadzhiyska

et al. 2021; Bose et al. 2022)), light cones, power spec-

tra, merger trees, and particle subsamples. This shared

1 abacussummit.readthedocs.io/

abacussummit.readthedocs.io/
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data model means that the abacusutils interface2 can be

used to interact with both sets of simulations.

Despite their similarities, the base mass resolution

of AbacusPNG is 4.8× coarser than that of Aba-

cusSummit, which is 2.1 × 109 h−1 M⊙. And Aba-

cusSummit, while containing several variations in

particle mass, does not include the particular Aba-

cusPNG resolution. Therefore, AbacusPNG in-

cludes two vanilla (non-PNG) ΛCDM simulations,

Abacus pngbase c000 ph{000,001}, that can be com-

pared to AbacusSummit to isolate the effects of mass

resolution from the effects of PNG.

The low mass resolution (compared to AbacusSum-

mit) is by design, as we expect most information on

PNG in DESI to come from LRGs and QSOs (see Sec-

tion 2.5.1 in DESI Collaboration et al. 2016),which have

higher host halo mass than ELGs, for which Abacus-

Summit’s resolution was optimized. Therefore, at fixed

computational budget, we prioritized more realizations

and greater volume rather than greater resolution. This

is also why the final redshift is 0.3, as the great ma-

jority of DESI-targeted LRGs and QSOs are at higher

redshifts.

A very similar version of Abacus was used to runAba-

cusPNG asAbacusSummit, except for minor improve-

ments to accuracy of the near-field force (better numer-

ical stability in the accumulation of partial forces); im-

provements to the numerical stability of the on-the-fly

2LPT scheme (more accurate representation of displace-

ments); and various performance optimizations for Perl-

mutter. Abacus was run with the same parameters con-

trolling the numerical accuracy (in particular, multipole

order and time step parameter) asAbacusSummit, and

therefore the limits on accuracy and convergence placed

by Garrison et al. (2021a) and Maksimova et al. (2021)

can be conservatively applied to AbacusPNG, too.

The output redshifts of various data products are as

follows:

• CompaSO halo catalogs (29 redshifts): 8.0, 5.0,

3.0, 2.75, 2.5, 2.25, 2.0, 1.85, 1.7, 1.625, 1.55,

1.475, 1.4, 1.325, 1.25, 1.175, 1.1, 1.025, 0.95,

0.875, 0.8, 0.725, 0.65, 0.575, 0.5, 0.45, 0.4, 0.35,

0.3

• Particle subsamples, 3% and 7% sets (10 red-

shifts): 3.0, 2.5, 2.0, 1.7, 1.4, 1.1, 0.8, 0.5, 0.4,

0.3

• Full outputs, “Partial” list (7 redshifts): 3.0, 2.5,

2.0, 1.4, 0.8, 0.5, 0.3

2 https://github.com/abacusorg/abacusutils

• Full outputs, “Full” list (10 redshifts): 3.0, 2.5,

2.0, 1.7, 1.4, 1.1, 0.8, 0.5, 0.4, 0.3

• Light cones: shells are output at every time

step, approximately 800 epochs with 3 “observers”

(same configuration as AbacusSummit)

The ph000 simulations use the “Full” list of full outputs,

and ph001 uses the “Partial” list.

2.2. PNG implementation

Local-type PNG is parameterized in terms of the pri-

mordial gravitational potential during matter domina-

tion, ϕ(x), and the parameter fNL, which quantifies

the amount of non-Gaussianity, via Komatsu & Spergel

(2001):

ϕ(x) = ϕG(x) + fNL

[
ϕG(x)

2 −
〈
ϕG(x)

2
〉]

, (1)

where ϕG is a Gaussian random field.

To generate initial conditions with local-type PNG,

we follow the steps outlined below:

• From the input power spectrum, we obtain a real-

ization of the Gaussian primordial potential field,

ϕG(k).

• We execute an inverse fast Fourier transform

(FFT) to convert the field to real space, then

square it and subtract the mean: ϕG(x)
2 −

⟨ϕG(x)
2⟩.

• Finally, we normalize it by the desired amplitude

of local-type PNG, fNL, add it back to ϕ(x), and

execute a forward FFT to generate ϕ(k).

The resulting field becomes the potential source term

used when running the initial conditions generator. This

procedure is implemented in the zeldovich-PLT code3

(Garrison et al. 2016).

In detail, to obtain the primordial potential from the

input power spectrum in the first step, the code accepts

the spectral index of the primordial power spectrum.

The transfer function is inferred by assuming T (k) = 1

on large scales. This has the benefit of not requiring a

separate input file, and suffices for our setup where this

assumption holds true.

These initial conditions are generated at zinit = 99

using an identical procedure to AbacusSummit. The

3 https://github.com/abacusorg/zeldovich-PLT

https://github.com/abacusorg/abacusutils
https://github.com/abacusorg/zeldovich-PLT
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Table 1. AbacusPNG Parameter Variations

Name fNL Phase Full Outputsa Comment

Abacus pngbase c000 0 ph000 Full Vanilla ΛCDM at pngbase mass resolution

Abacus pngbase c{300..303} {30, -30, 100, -100} ph000 Full fNL variations, otherwise c000 cosmology

Abacus pngbase c000 0 ph001 Partial Second realization, fewer full particle outputs

Abacus pngbase c{300..303} {30, -30, 100, -100} ph001 Partial Second realization, fewer full particle outputs

a“Full Outputs” refers to the set of output epochs for which complete particle snapshots are stored (as opposed to subsamples).
See Section 2 for details.
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Figure 1. Validation of the effect of local-type PNG on the matter bispectrum at the initial conditions, zIC = 99. We show the
derivative of the power spectrum with respect to local-type fNL as computed from the AbacusPNG c302 ph000 simulation as well
as from theory using the tree-level approximation (see Eq. 6). We see that they are in very good agreement with each other for
all three triangle configurations considered in this study: equilateral (k1 = k2 = k3), squeezed (k1 = k2 = k, k3 = 3kF), folded
(k1 = k2 = k, k3 = 2k)). The squeezed limit yields the strongest response to local-type PNG (across all k-modes) and thus has
the smallest error bars. For k ≳ 0.15, we see a deviation from theory, which we attribute to mild non-linearities we find in the
simulation power spectrum on these scales, compared with linear theory. The noise in the theory curve is due to the fact it is
computed on a grid so as to match the noise of the measurement.

Table 2. Common simulation parameters for the Aba-
cusPNG set of simulations.

Parameter Value Comment

N 40963 Number of particles

L 2000 h−1 Mpc Box size

zinit 99 Initial redshift

zfinal 0.3 Final redshift

ϵ 12.2 h−1 kpc Proper softening length,
Plummer-equivalent

ηacc 0.25 Time step parameter,
acceleration-based

Mp 1× 1010 h−1 M⊙ Particle mass

initial power spectrum is that of CDM and baryons at

z = 1, backscaled to zinit using the linear growth factor

including a non-clustering neutrino approximation. We

account for the deleterious effects of particle discrete-

ness on the small-scale growth by applying the Particle

Linear Theory rescaling of Garrison et al. (2016), with a

target redshift of z = 12. The Second-order Lagrangian

Perturbation Theory (2LPT) method from that same

work is applied here, via direct evaluation of the forces

in the first two Abacus time steps.

2.3. Deployment of Abacus on Perlmutter

The following subsection is a brief report on some

technical challenges and successes in running Aba-

cusPNG on Perlmutter, including discussion of perfor-

mance. It can be safely skipped by readers only inter-

ested in the scientific aspects of this work.
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AbacusPNG is the first set of Abacus simulations

run on NERSC’s Perlmutter4, an HPE Cray Shasta sys-

tem. The simulations were run on Perlmutter’s GPU

nodes using DESI’s compute allocation. Each simula-

tion used 32 GPU nodes, each with 4 × NVIDIA A100

(PCIe 4.0) GPU; 1 × AMD EPYC 7763 (1 socket, 64

cores); 256 GB DDR4 RAM; and 4 × HPE Slingshot

11 NICs. We used the Cray GNU programming envi-

ronment with Cray FFTW and Cray MPICH (not us-

ing any GPU-aware features or GPU-GPU communica-

tion), and CUDA 11. We will highlight some technical

and performance aspects of AbacusPNG here but re-

fer the reader to our more detailed reports in Garrison

et al. (2019) and Maksimova et al. (2021) for context on

Abacus internals.

As in AbacusSummit, we used a 1D toroidal “slab”

parallelization scheme to distribute particles across

nodes. While Abacus is now capable of 2D domain

decompositions, the main benefit of 2D for Abacus is

to enable larger simulations where domain width per

node would otherwise become too narrow. This was not

required for these simulations, so we employed the 1D

strategy, which has lower communication and synchro-

nization overheads.

Abacus performed well on Perlmutter, despite far less

tuning effort being devoted to it than for AbacusSum-

mit. Each simulation took about 13 hours of wall clock

time—about 425 node-hours. Each simulation’s com-

pute rate began around 50 M particle / sec per node

at zinit (singlestep and convolution combined) and

actually maintained that rate until the final redshift of

0.3 (about 800 time steps). This rate can be compared

with 70 M particle / sec per node on Summit at the ini-

tial time, which decreased to 45 M at late times. Fairly

substantial Perlmutter overheads in launching each time

step as a separate executable invocation degraded this

performance to a mean of 36 M particle / sec. The over-

heads arose from variable performance of the NERSC file

systems and Slurm job scheduler; the slowdowns were

bursty and time-correlated, probably due to load on the

system from unrelated jobs. Future upgrades to Aba-

cus will avoid these overheads by running multiple time

steps within a single executable invocation.

The fact that the simulations did not slow down as

the particles evolved to a clustered state means that the

time in the near-field computation did not exceed that

of the far-field even in the simulations’ most clustered

state. Indeed, at the initial time the GPU overlapped

50% of the CPU work, while at the final time it only

4 https://www.nersc.gov/systems/perlmutter/

overlapped 75%. The near-field work increased by 1.9×,

but the GPU performance also increased by about 1.3×
(such an efficiency increase, albeit larger, was seen in

AbacusSummit as well).

Having anticipated that, compared to AbacusSum-

mit, AbacusPNG’s lower mass resolution, higher ter-

minal redshift, and Perlmutter’s large GPU-to-CPU

compute ratio would result in less near-field work, we

opted for a low cells-per-dimension (CPD) value of 875,

shifting work from the far-field (CPU) to the near-field

(GPU). At 102 particles-per-cell, this is about 50% more

particles per cell and 2.3× more near-field work in the

initial, unclustered state than AbacusSummit. Yet the

1.9× growth in the near-field work was so mild that we

probably could have achieved a faster time-to-solution

with an even lower CPD. This mildness is attributable

to the relatively large near-field/far-field transition ra-

dius in this configuration—about 5 h−1 Mpc. Above the

halo scale, the growth in the integrated 3D correlation

function (that is, the growth in total number of pairs)

falls off quite rapidly.

Finally, one technical hurdle to running on Perlmut-

ter was an issue in restoring checkpoints to nodes using

the shared memory scheme of Garrison et al. (2021b).

The restore process simply consisted of copying files

from Perlmutter Scratch to local storage using Python’s

shutil package, but such copies would hang with high

frequency. The root cause was found to be an issue with

the implementation of the sendfile Linux syscall in the

Lustre filesystem used by Perlmutter Scratch. sendfile

is designed for high-performance, in-kernel copies, and

issues with it on network filesystems are not uncom-

mon. We identified the issue during the Perlmutter

acceptance testing period and reported it to NERSC,

along with the workaround for shutil, which is to set

shutil. USE CP SENDFILE = False.

3. VALIDATION

In this section, we test the output of theAbacusPNG

simulations against expectations of the matter and halo

field distributions, using theoretical predictions from PT

and heuristic methods such as the ‘separate universe’

approach.

3.1. Matter field

To validate the simulated matter field, we examine two

summary statistics: the matter power spectrum and the

matter bispectrum.

3.1.1. Bispectrum

We start our investigation with the three-point statis-

tic, the matter bispectrum, which we compare against

https://www.nersc.gov/systems/perlmutter/
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the tree-level prediction at the initial redshift of the

simulation (zIC = 99), when the Universe was matter-

dominated. We note that at such high redshifts the

tree-level prediction should perform well down to small

scales. As the Universe becomes more non-linear, the

tree-level approximation starts to break down, and one

needs to employ a higher-order perturbative expansion

(see e.g., Cabass et al. 2022).

The matter bispectrum is defined as

⟨δm(k1)δm(k2)δm(k3)⟩ =
(2π)3δ(3)(k1 + k2 + k3)B(k1,k2,k3). (2)

We estimate it using the pylians3 package, which is

based on the implementation of Foreman et al. (2020),

and use linear bins between 0 and kmax = 0.4 h/Mpc,

of width 2kF, where kF is the fundamental mode, kF ≡
2π/Lbox, and Lbox is the box size of the simulation.

While there are other theoretically motivated shapes

that are interesting to consider, here we restrict our

analysis only to the local-type PNG (see e.g. Chen

2010; Achúcarro et al. 2022, for reviews of PNG). In

that case, we can express the primordial bispectrum,

Bϕ(k1, k2, k3), as

Bϕ(k1, k2, k3) =2fNLPϕ(k1)Pϕ(k2) + 2 perm. (3)

where Pϕ(k) is the primordial power spectrum and fNL is

the amplitude of non-Gaussianity, associated with this

shape. Taking into account the relationship between

matter density and the primordial (Bardeen) potential:

δm(k, z) = M(k, z)ϕ(k), (4)

where

M(k, z) =
2

3

k2Tm(k)

ΩmH2
0

D(z), (5)

Tm is the matter transfer function, D is the growth rate

normalized to be equal to the scale factor, a, during

matter domination (i.e., CMB convention), Ωm is the

fractional matter density parameter today, and H0 is

the Hubble expansion rate today, one can convert the

primordial bispectrum into the matter bispectrum via

B(k1, k2, k3) = Bϕ(k1, k2, k3)M(k1, z)M(k2, z)M(k3, z).

(6)

Local-type PNG is a powerful probe of inflation. In

single-field slow-roll inflationary models, the amplitude

of the bispectrum is ≪ O(η, ϵ), where ϵ and η are the

slow-roll parameters Maldacena (2003); Creminelli &

Zaldarriaga (2004). Measuring a large signature of local-

type PNG would thus rule out slow-roll, single-field in-

flation. Observable levels of local-type PNG are pre-

dicted by a number of multi-field inflationary models,

such as the curvaton and modulated reheating models

(Lyth & Wands 2002; Dvali et al. 2004), as well as by

some non-inflationary models (Lehners 2010).

In comparing simulations with theory, we confine our

study to the bispectrum derivative rather than the full

bispectrum, so as to isolate only the non-Gaussian con-

tribution to the full bispectrum. In particular, we com-

pute

∂B(k1,k2,k3)
∂fNL

= 2(Pϕ(k1)Pϕ(k2) + 2 perm.)

M(k1, z)M(k2, z)M(k3, z). (7)

We note that there are several subtleties in this calcula-

tion. To reduce the noise associated with the conversion

from B to Bϕ, we obtain the Bardeen potential by divid-

ing the matter density field δm(k) by M(k, z) evaluated

on the 3D Fourier grid. In addition, when calculating

the theoretical prediction for the bispectrum derivative,

we first evaluate the power spectrum Pϕ(k) on the 3D

grid, then take the product of the power spectra, and fi-

nally average over the triangle configurations of interest

that satisfy the Dirac delta condition, δ(3)(k1+k2+k3).

This is necessary, as the theoretical measurements calls

for evaluating the average of the product rather than

the product of two average quantities, i.e., ⟨ab⟩ ≠ ⟨a⟩⟨b⟩.
We find that not accounting for this effect leads to 10%

differences between theory and simulations when pre-

dicting small-angle triangle shapes such as the squeezed

limit bispectrum.

In Fig. 1, we show three different shapes for the local-

type PNG matter bispectrum derivative at zIC = 99,

calculated by finite-differencing the AbacusPNG sim-

ulation AbacusPNG c302 ph000 (fNL = 100). We find

very agreement between theory using the tree-level ap-

proximation (see Eq. 6) and simulations within 5% for

all three triangle configurations considered in this study:

equilateral (k1 = k2 = k3), squeezed (k1 = k2 = k,

k3 = 3kF, folded (k1 = k2 = k, k3 = 2k)). The agree-

ment is best for the equilateral case for which grid ef-

fects play the smallest role. In the case of local-type

PNG, this is also the shape that contributes the least

to the total information. On the other hand, we found

that both the squeezed and folded shapes are affected by

grid effects (see previous paragraph). Nonetheless, we

find satisfactory agreement for both shapes. In fact, we

have separately conducted a test against 2LPTPNG’s im-

plementation of local-type PNG and have found better

agreement between the two codes than with the tree-

level expression. As expected, the squeezed limit yields

the strongest response to local-type PNG (across all k-

modes). For k ≳ 0.15, we see a deviation from theory,

which we attribute to mild non-linearities we find in the
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Figure 2. Validation of the effect of local-type PNG on the
matter power spectrum at z = 0.5. We show the derivative
of the power spectrum with respect to fNL as computed from
the AbacusPNG c302 ph000 simulation as well as from theory,
using 1-loop EFT (see Eq. 12). We notice that local-type
PNG has a very weak effect on the matter power spectrum
– ∼0.01% at k ≈ 0.2h/Mpc The effect on large scales is
negligible, whereas on small scales it grows exponentially.
As expected, the agreement between theory and simulation
is very good on large scales and starts to break down on non-
linear scales k ≳ 0.15h/Mpc, where non-linearities start to
become relevant.

simulation power spectrum on these scales, compared

with the linear theory output

3.1.2. Power spectrum

Next, we consider the matter power spectrum, which

is defined as

⟨δm(k)δm
∗(k′)⟩ = (2π)3δ(3)(k− k′)Pmm(k). (8)

To compute the power spectrum in the AbacusPNG

simulations for the LRGs (QSOs), we use the

abacusutils code with linear bins of width 0.05 h/Mpc,

from 0 to kmax = 0.4 (0.32) h/Mpc.

Since at the tree-level, the PNG contribution to the

matter power vanishes (we will later see that in the case

of galaxy tracers, that is not the case), we need to go to

higher order in order to obtain a theoretical prediction

for the matter power spectrum. In particular, we adopt

the 1-loop PT expression from Cabass et al. (2022), as

follows:

P (k) = PG(k) + fNLP12(k), (9)

where PG is the standard Gaussian contribution to the

power spectrum, and the PNG contribution can be cal-

culated by solving the integral:

P12(k) = 2

∫
d3q

(2π)3
F2(q,k− q)B(k, q, |k− q|) (10)

where B is the matter power spectrum (see Eq. 6) and

F2 is the standard perturbation theory (SPT) kernel de-

fined as:

F2(k1,k2)=
5
7 + 2

7
(k1·k2)

2

k2
1k

2
2

+ 1
2
k1·k2

k1k2

(
k1

k2
+ k2

k1

)
. (11)

We are only interested in the derivative with respect to

fNL, which becomes:

∂P (k)

∂fNL
= 2

∫
d3q

(2π)3
F2(q,k− q)B(k, q, |k− q|) (12)

To obtain the derivative, we perform Vegas Monte Carlo

integration using PyCUBA from the PyMultiNest pack-

age5.

Our results at z = 0.5 are shown in Fig. 2. We see

that the theory prediction of the derivative matches the

simulation result very well until k ≈ 0.1 h/Mpc, after

which the 1-loop approximation starts to break down.

As can be seen from the figure, the signature on the

matter power spectrum is extremely small (≪0.1%) for

all relevant scales (k ≲ 0.5 h/Mpc). This can be ex-

plained by the fact that unlike the bispectrum, fNL does

not contribute at the tree-level, so one has to go to 1-

loop to see an effect. On the scales where theory and

simulations approximately agree, k ≈ 0.2 h/Mpc, the

fractional change due to PNG, ∂ lnPmm/∂fNL becomes

0.0001. We attribute the remaining difference between

the two to higher-order contributions. From the figure,

we also see that the effect on large scales is negligible,

whereas on small scales it grows exponentially. As ex-

pected, the agreement between theory and simulation is

very good on large scales and starts to break down on

non-linear scales k ≳ 0.15h/Mpc.

3.2. Halo field

The distribution of halos and galaxies is a potent

probe of local-type PNG via the scale-dependent bias

feature in the power spectrum (e.g., Dalal et al. 2008;

McDonald 2008; Assassi et al. 2015a,b). In particular,

in the presence of PNG, the galaxy/halo bias expansion

becomes

δh(x, z) = b1(z)δm(x, z) + bϕ(z)fNLϕ(x) + ϵ(x), (13)

where δh(x, z) = nh(x, z)/n̄h(z)−1 with nh as the local

number density of galaxies/halos. Similarly to the mat-

ter power spectrum, which we defined in Section 3.1, we

can define the galaxy/halo power spectrum as:

⟨δh(k)δh(k′)⟩ = (2π)3δ(3)(k− k′)Phh(k) (14)

5 https://github.com/JohannesBuchner/PyMultiNest

https://github.com/JohannesBuchner/PyMultiNest
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Figure 3. Comparison between bϕ obtained from the Aba-
cusPNG set by fitting the power spectrum ratio (see Eq. 26)
and bϕ obtained from the Separate Universe approach by us-
ing a pair of the AbacusSummit suite of simulations (see
Eq. 23). We note that the PNG result is obtained by
fitting the ratio separately for AbacusPNG c302 ph000 and
AbacusPNG c302 ph001 (with their respective fNL = 0 sim-
ulations) and then averaging the two values of bϕ. We also
show in blue the curve coming from the modified univer-
sality relation (see Eq. 17). We see that the halos in the
Separate Universe approach are in perfect agreement with
the modified universality relation. On the other hand, the
AbacusPNG curve is substantially more noisy, as despite
the fact that we have canceled most of the cosmic variance,
the power spectrum ratio retains some intrinsic noise.

To lowest order, we can express it as:

Phh(k, z)= b21Pmm(k, z) + 2b1bϕfNLPmϕ(k, z)

+ b2ϕf
2
NLPϕϕ(k) + Pϵϵ(k)

=

[
b1 +

bϕfNL

M(k, z)

]2
Pmm(k, z) + Pϵϵ, (15)

where M is defined in Eq. 5, Pmϕ denotes the cross-

power spectrum between the primordial potential and

the matter field, and Pϵϵ is the noise power spectrum,

which we can assume to be scale-independent. Note that

the cross-power term is smaller than the auto-term for

k → 0. We can see this by noticing that on large scales

(k ≲ 0.01 h/Mpc), the presence of PNG induces scale-

dependent corrections ∝ b1bϕfNL/k
2 and ∝ b2ϕf

2
NL/k

4

relative to Pmm. As we push down to larger and larger

scales, the k−4 dominates the scale-dependent signal

(the transfer function is approximately equal to 1 on

these scales). However, the amplitude of this effect is

determined by the product bϕfNL, rendering searches

for PNG using the scale-dependent bias critically de-

pendent on our ability to determine the bias parameter,

bϕ.

The bias parameter, bϕ, can be estimated assuming

universality of the halo mass function as Slosar et al.

(2008); Matarrese & Verde (2008); Afshordi & Tol-

ley (2008); Valageas (2010); Matsubara (2012); Ferraro

et al. (2013); Scoccimarro et al. (2012); Biagetti et al.

(2017):

bϕ(z) = 2δc (b1(z)− 1) , (16)

where δc = 1.686 is the threshold overdensity for spher-

ical collapse. Note that this is the value one obtains

from linearly extrapolating to z = 0. When comparing

this relation to N -body simulations, recent works have

found that the universality relation provides a good ap-

proximation for b1 ≲ 1.5, but overpredicts the numer-

ical results for larger biases (Grossi et al. 2009; Des-

jacques et al. 2009; Pillepich et al. 2010; Reid et al. 2010;

Hamaus et al. 2011; Scoccimarro et al. 2012; Wagner &

Verde 2012; Baldauf et al. 2016; Biagetti et al. 2017). We

note that this relation also depends on the definition of

halo mass definition. A commonly adopted modification

takes the following form:

bϕ(z) = 2c δc (b1(z)− p) , (17)

with c ≈ 0.9 and p = 1, 1.6, where the latter value is

adopted for quasars, as they are believed to be ‘recently

accreted’ Slosar et al. (2008), whereas the former value is

typically adopted for magnitude-limited and red galaxy

samples.

This bϕ(b1) relation is employed when placing con-

straints and making forecasts on local-type fNL from

the galaxy power spectrum Slosar et al. (2008); Xia et al.

(2011); Ross et al. (2013); Giannantonio et al. (2014);
Leistedt et al. (2014); Giannantonio & Percival (2014);

Ho et al. (2015); Castorina et al. (2019); Carbone et al.

(2008); Giannantonio et al. (2012); Doré et al. (2014);

Alvarez et al. (2014); Raccanelli et al. (2015); Alonso &

Ferreira (2015); Camera et al. (2015); de Putter & Doré

(2017); Raccanelli et al. (2017). Since the two quantities

are degenerate in the galaxy power spectrum, it is evi-

dent that uncertainties on our theoretical modeling of bϕ
translate directly into uncertainties on our fNL measure-

ments. Later in this paper, we explore how the bϕ(b1)

relation changes for halos selected by different intrinsic

property and also for galaxies targeted by the ongoing

cosmological survey DESI.

3.3. Separate Universe approach

In this section, we describe the separate universe tech-

nique, which allows us to predict the galaxy bias, b1, and
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the local-type PNG-induced bias, bϕ, by invoking the

equivalence between the response of galaxy formation

to long-wavelength perturbations and the response of

galaxy formation to changes in the background cosmol-

ogy. Assuming that the physics of galaxy formation acts

on much smaller scales relative to the size of the long-

wavelength perturbations, these long-wavelength per-

turbations act as a modified background to the process

of galaxy formation on small scales (this is known as the

‘peak-background split’ argument; see e.g., Kaiser 1984;

Bardeen et al. 1986). In other words, the formation of

halos and galaxies at fixed cosmology in some region

of space embedded in a long-wavelength fluctuation, is

equivalent to the formation of galaxies and halos in a

modified cosmology at cosmic mean. This constitutes

the separate universe argument.

For measuring the linear bias b1, the modified cosmol-

ogy needs to have a different background matter density,

whereas for measuring bϕ, the modified cosmology needs

to have a different amplitude of the primordial scalar

power spectrum, As, or equivalently, the amplitude of

the linear power spectrum on the scale of 8Mpc/h. In

this study, we obtain the linear bias, b1, without the use

of the separate universe technique, by fitting b1 and A

in the power spectrum ratio:

Pgm(k)

Pmm(k)
= b1 +Ak2, (18)

as we include the lowest-order non-linear bias, which is

proportional to k2. We can similarly obtain the bias

from the ratio of the auto-power spectrum and find that

the two methods are generally in agreement within 3%.

Throughout the paper, we opt to quote the value of b1
coming from the cross-power spectrum, as it does not

contain a shot noise contribution, which if disregarded

could bias our estimate of the bias.

In the presence of local-type PNG, the amplitude of

the small-scale primordial power spectrum, Pϕϕ, gets

modulated by a long-wavelength perturbation of the pri-

mordial gravitational potential, ϕ(x), which impacts the

formation of structure at the scale of the small-scale per-

turbations. In other words, local-type PNG induces a

non-vanishing bispectrum in ϕ(x), which peaks in the so-

called ‘squeezed limit’. In the squeezed limit, two of the

three legs have large values in Fourier space (i.e., short-

scale), whereas the third leg has a small value of k (i.e.,

large-scale). Physically, this means that there is a large

coupling between the long-wavelength perturbations of

the primordial potential, ϕ(x), with the power spectrum

of two short-scale modes, kshort. In other words, the pri-

mordial power spectrum at some point in space, x, can

be written as:

Pϕϕ(kshort, z|x) = Pϕϕ(kshort, z)
[
1 + 4fNLϕ(x)

]
. (19)

Thus, galaxies embedded in a long-wavelength pertur-

bation ‘see’ locally only a spatially uniform change to

the variance of the fluctuations. They form as though

in a separate universe with a modified amplitude of the

primordial fluctuations Dalal et al. (2008); Slosar et al.

(2008)

Ãs = As [1 + δAs] , with δAs = 4fNLϕL, (20)

where ϕL is to be treated as a constant locally and de-

notes the amplitude of the long-wavelength potential

perturbation.

Mathematically, the PNG-induced bias, bϕ, is defined

as

bϕ ≡ d lnnh(z)

dfNLϕ
, (21)

which using Eq. 20, can be expressed as:

bϕ = 4
d lnnh(z)

dδAs
= 2

d lnnh(z)

dδσ8
(22)

Thus, we can evaluate bϕ in a separate universe with a

different value of As (σ8). In practice, when working

with cosmological simulations, this amounts to generat-

ing simulations with the same initial seed as the fiducial

box, but with an input power spectrum file multiplied

by
[
1 + δσ2

8

]
.

In this work, we employ the ‘Linear deriva-

tive’ AbacusSummit boxes, base c112 ph000 and

base c113 ph000, which have the same initial seed as

the fiducial simulation base c000 ph000, but a differ-

ent value of σ8: namely, σhigh
8 = 1.02× σfid

8 and σlow
8 =

0.98× σfid
8 , respectively.

We estimate bϕ in the separate universe approach as

bϕ(z) =
bhighϕ (z) + blowϕ (z)

2
, (23)

where

bhighϕ (z) =
2

δσhigh
8

[nhigh
h (z)

nfid
h (z)

− 1
]
, (24)

blowϕ (z) =
2

δσlow
8

[nlow
h (z)

nfid
h (z)

− 1
]
. (25)

where nfid
h (z), nhigh

h (z) and nlow
h (z) is the number den-

sity of halos (galaxies) in the fiducial, high- and low-σ8

simulations at some redshift z. Note that in this work,

we are interested in studying the bias bϕ in different bins

of halo properties (mass, concnetration). Thus, as long

as we hold fixed the mass/concentration/etc. cuts fixed

for all three simulations, we can estimate bϕ in each bin

of some (or more than one) halo property.
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3.4. Comparing AbacusPNG to separate universe

As a validation of the halo catalogs of the Aba-

cusPNG simulation set, we compare the inferred bϕ
using the separate universe approach to bϕ obtained by

fitting the scale-dependent bias in the halo power spec-

trum. This is complementary to validating the matter

field through the bispectrum and power spectrum, as

it allows us to test whether the local-type PNG imple-

mented into the simulation correctly couples the long

wavelength mode with the short scales on which halo

and galaxy formation takes place, resulting in a scale-

dependent bias.

In particular, to obtain bϕ in the AbacusPNG sim-

ulations, we perform fits to the ratio between the halo

power spectrum with fNL ̸= 0 and the halo power spec-

trum with fNL = 0 for pairs of simulations with the

same initial seed. That way, the cosmic variance and

noise associated with the halo field cancel, and the re-

sulting ratio yields an accurate estimate of bϕ. The ratio

used in the fitting of bϕ is the following:

P fNL=100
hh (k)

P fNL=0
hh (k)

=

[
b1 +

bϕfNL

M(k,z)

b1

]2
, (26)

We note that although this is not a feasible way of mea-

suring bϕ that could be adopted in observations, it is use-

ful nonetheless for the purpose of testing our simulation

outputs. Here, we employ the AbacusPNG c302 ph000

(fNL = 100) and the AbacusPNG c000 ph000 (fNL = 0)

boxes. We split the halos into 12 logarithmic mass bins

ranging between 1012 and 1014.4 M⊙/h with the last bin

encompassing all halos above 1014.4 M⊙/h. We simul-

taneously fit b1 and bϕ from this ratio. In contrast, for

the separate universe method, we obtain b1 from Eq. 18

and bϕ from Eq. 23.

We show this comparison in Fig. 3 by fitting the power

spectrum ratio (see Eq. 26) with AbacusPNG and bϕ
obtained from the Separate Universe approach by using

a pair of the AbacusSummit suite of simulations (see

Eq. 23). We note that the PNG result is obtained by fit-

ting the ratio separately for AbacusPNG c302 ph000 and

AbacusPNG c302 ph001 (with their respective fNL = 0

simulations) and then averaging the two values of bϕ.

Since we only have two realizations, we would not ben-

efit from including the fNL = 30 case. The halos are

split into 12 logarithmic mass bins ranging from 1012 to

1014.4 M⊙/h, and the biases are computed for each bin.

We also show in blue the curve coming from the modi-

fied universality relation (see Eq. 17). We see that the

halos in the Separate Universe approach are in perfect

agreement with the modified universality relation. On

the other hand, the AbacusPNG curve is substantially

more noisy, as despite the fact that we have canceled

most of the cosmic variance, the power spectrum ratio

retains some intrinsic noise. Some of that noise is due

to higher-order contributions, which we have ignored in

the ratio (such as the coupling between δh and ϕ via

the bϕ, δ parameter, see Barreira 2020, for details), and

some of it is due to poor statistics, which affects the

high mass end, where we need to compute the power

spectrum for ∼100s of halos.

4. HALOS

In this section, we study the relationship between the

PNG-induced bias, bϕ, and halo assembly bias proper-

ties beyond its mass (linear bias). Halo assembly bias

is defined as the response of the two-point clustering of

halos to the values of intrinsic halo properties at fixed

halo mass. We find this a relevant and interesting ques-

tion to study, as recent works show that halo assembly

bias can affect the selection of galaxies in modern sur-

veys (see e.g., Mao et al. 2018). Seeing how strong of

a dependence on halo assembly bias we find in Aba-

cusPNG and AbacusSummit would give us insight

into the importance of developing models for bϕ that

take into account dependencies beyond linear bias (b1),

or interchangeably, halo mass (Mh).

4.1. Assembly bias properties

We first start by introducing some of the most ubiq-

uitously studied halo assembly bias properties: concen-

tration, shear (environment), and accretion rate.

4.1.1. Concentration

The link between halo concentration and accretion

history has been studied extensively in the literature

(Navarro et al. 1997; Wechsler et al. 2002; Ludlow et al.

2014, 2016). It has been shown that recent merger ac-

tivity induces dramatic changes in halo concentrations,

and that these responses linger over a period of several

dynamical times, corresponding to many Gyr (see, e.g.,

Wang et al. 2020). Relevant to assembly bias studies is

the fact that halo concentration has a bearing on both

the halo occupation distribution and the halo clustering

(e.g., Bullock et al. 2001; Ludlow et al. 2014; Diemer &

Kravtsov 2015; Dutton & Macciò 2014; Mao et al. 2018).

In this work, we adopt the following proxy for the

concentration of each halo:

c = r90/r25, (27)

following the recommendation of Hadzhiyska et al.

(2022), where r90 and r25 are defined as the radii, within

which 90% and 25% of the halo particles are contained

inside a sphere centered on the halo center. For more
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details on the halo finder and virial mass definition,

we refer the reader to Bryan & Norman (1998) and

Hadzhiyska et al. (2022).

4.1.2. Shear

Our procedure for obtaining the adaptive halo shear

(“shear,” for short) manipulates the smoothed particle

density field into the shear field (see e.g., Hadzhiyska

et al. 2023). Namely, to calculate the local “shear”

around a halo, we first compute a dimensionless version

of the tidal tensor, defined as:

Tij ≡ ∂2ϕR/∂xi∂xj , (28)

where ϕR is the dimensionless potential field calculated

using Poisson’s equation: ∇2ϕR = −ρR/ρ̄ (the subscript

R corresponds to the choice of smoothing scale). We

then calculate the tidal shear q2R via:

q2R ≡ 1

2

[
(λ2 − λ1)

2 + (λ3 − λ1)
2 + (λ3 − λ2)

2
]
, (29)

where λi are the eigenvalues of Tij . Physically, the

“shear” at some particular point in space measures the

amount of anisotropic pulling due to gravity at a given

point in space.

4.1.3. Accretion rate

Previous studies of local-type PNG have surmised that

the bϕ parameter is sensitive to the accretion rate of

a halo, as the coupling of long- and short-wavelength

perturbations is sensitive to the formation epoch of ha-

los/galaxies. In this study, we define the accretion rate

as follows:

Γdyn(t) =
∆ log(M)

∆ log(a)
=

log[M(t)]− log[M(t− tdyn)]

log[a(t)]− log[a(t− tdyn)]
,

(30)

where M ≡ M200m (mass within 200 times the mean

density of the Universe) and the subscript “dyn” refers

to the dynamical time, defined as:

tdyn(z) ≡ tcross(z) =
2R∆

v∆
= 23/2tH(z)

(
ρ∆(z)

ρc(z)

)−1/2

,

(31)

where tH(z) ≡ 1/H(z) is the Hubble time.

4.2. Response to PNG

In Fig. 4, we show the response of the primordial

bias parameter bϕ to the halo assembly bias properties:

concentration (see Eq. 27), accretion rate (see Eq. 30)

and shear (see Eq. 29). The dashed curves come from

the AbacusPNG set of simulations, whereas the solid

curves come from the Separate Universe pair of simu-

lations, which uses the original AbacusSummit suite.

The halos are split into 12 mass bins and then each bin

is further split into 3 bins of equal sizes (33%, 66% per-

centile) based on the secondary property being consid-

ered (low, mid, high). Here, for all mass bins, we report

the pairs [bhigh1 , bhighϕ /bmid
ϕ ] in blue and [blow1 , blowϕ /bmid

ϕ ]

in red.

We note several interesting features.

The Separate Universe and AbacusPNG curves are

in good agreement with each other, though as noted be-

fore (see Fig. 3), the fitting method yields much noisier

results. We note that some of the differences between

the two may be due to resolution effects (which might

impact the lowest- and highest-halo masses).

For all three properties, the low-mass (low-bias) bins

exhibit the largest variations in their values of bϕ. In the

case of concentration and accretion rate, the response

of bϕ to the halo property is evidently much stronger

compared with the response of b1. This is crucial for

modeling scale-dependent bias, as it suggests that if

a given galaxy sample preferentially occupies low- or

high-concentration (accretion rate) halos, then that may

not reflect on the inference from the two-halo clustering

(which is largely insensitive to these properties), but it

will affect PNG analysis. This indicates we should aim

to perform careful small-scale analysis in order to con-

strain the galaxy-halo connection.

We further notice that the concentration response is

stronger than that of the accretion rate, and that the

trend is reversed between the two, which makes sense,

as actively accreting objects have lower concentration

(have more spread out substructure). On the other

hand, for the case of shear, for which high-shear cor-

responds to high bϕ, we find very different behavior: to

see a change in bϕ, one needs to vary the linear bias sig-

nificantly at fixed halo mass. This is possible if we find

that environment is indeed an important factor to con-

sider for improving mass-only galaxy population models

and resolving lensing-clustering tensions such as ‘Lens-

ing is low’ (e.g., Yuan et al. 2021; Hadzhiyska et al. 2021;

Chaves-Montero et al. 2023).

5. DESI GALAXIES

In this section, we explore realistic samples of DESI-

like galaxies for the two tracers most relevant for PNG:

luminous red galaxies (LRGs) and quasi-stellar objects

(QSOs). Specifically, using halo occupation distribution

(HOD) fits to early data from DESI, we investigate how

bϕ responds to various extensions of the standard HOD

parametrization, which are allowed by the data. We

then propagate the uncertainty of measuring bϕ into an

uncertainty on fNL by making simple Fisher forecasts on
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Figure 4. Response of the primordial bias parameter bϕ to the halo assembly bias properties: concentration (see Eq. 27),
accretion rate (see Eq. 30) and shear (see Eq. 29). The dashed curves come from the AbacusPNG set of simulations, whereas
the solid curves come from the Separate Universe pair of simulations, which uses the original AbacusSummit suite. The halos
are split into 12 mass bins and then each bin is further split into 3 bins of equal sizes (33%, 66% percentile) based on the
secondary property being considered (low, mid, high). Here, for all mass bins, we report the pairs [bhigh1 , bhighϕ /bmid

ϕ ] in blue

and [blow1 , blowϕ /bmid
ϕ ] in red. The Separate Universe and AbacusPNG curves are in good agreement with each other. For all

three properties, the low-mass (low-bias) bins exhibit the largest variations in their values of bϕ. If a given galaxy sample
preferentially occupies low- or high-concentration (accretion rate) halos, then that may not reflect on the inference from the
two-halo clustering, but it will affect PNG analysis. The concentration response is stronger than that of the accretion rate, and
that the trend is reversed between the two, which makes sense, as actively accreting objects have lower concentration (have
more spread out substructure). We note that a different definition of accretion rate might yield a stronger response. To see a
change in bϕ for shear, one needs to vary the linear bias significantly at fixed halo mass.

Tracer LRG LRG QSO

Redshift 0.4 < z < 0.6 0.6 < z < 0.8 0.8 < z < 2.1

logMcut 12.79+0.15
−0.07 12.64+0.17

−0.05 12.2+0.6
−0.1

logM1 13.88+0.11
−0.11 13.71+0.07

−0.07 14.7+0.6
−0.6

σ 0.21+0.11
−0.10 0.09+0.09

−0.05 0.12+0.28
−0.06

α 1.07+0.13
−0.16 1.18+0.08

−0.13 0.8+0.4
−0.2

κ 1.4+0.6
−0.5 0.6+0.4

−0.2 0.6+0.8
−0.2

αc 0.33+0.05
−0.07 0.19+0.06

−0.09 1.54+0.17
−0.08

αs 0.80+0.07
−0.07 0.95+0.07

−0.06 0.6+0.6
−0.3

Table 3. Marginalized posteriors of the HOD parameters
from fits to measurements of the clustering, ξ(rp, rπ), of
DESI LRGs and QSOs in the DESI 1% survey, performed
in Yuan et al. (2023). For our fiducial galaxy catalogs, we
adopt the best fit values of these fits at redshifts z = 0.5,
z = 0.8, and z = 1.4 for the three samples shown here,
adopting the same vanilla HOD model of AbacusHOD, and
the same set of simulations, which ensures consistency of the
halo mass and HOD parameter definitions. In addition, we
explore extensions to the vanilla HOD model in the form of
concentration and environment dependence. The error bars
show 1σ uncertainties. Units of mass are given in h−1M⊙.

the combination of bϕfNL and report the marginalized

constraints on fNL for the two tracers.

5.1. HOD of DESI galaxies

Here, we summarize the HOD model used to fit the

LRG and QSO clustering with DESI 1% data (see Yuan

et al. 2023). These are the parameter values we adopt

when creating our synthetic LRG and QSO catalogs. We

note that we apply this HOD model (with and without

extensions) to both the Separate Universe as well as the

AbacusPNG simulations in order to estimate bϕ and

derive constraints on the combination bϕfNL.

DESI targets LRGs at z ≲ 1, as they are bright galax-

ies with a prominent break at 4000Å in their spectra,

which allows them to be selected relatively easily in the

data. In addition, they are highly biased tracers, which

makes their BAO feature more prominent compared

with other galaxy types. The DESI LRG sample has a

fairly constant number density between 0.4 < z < 0.8 of

approximately 5× 10−4[Mpc/h]−3. QSOs (quasars), on

the other hand, are the tracer choice for studying large-

scale structures at high redshifts due to their extremely

high luminosities. Their number density is roughly con-

stant between 0.8 < z < 2.1, at 2× 10−5[Mpc/h]−3.

The vanilla HOD model for the two samples is given

by the standard formalism of Zheng et al. (2005):

n̄cent(M) =
fic
2
erfc

[
log10(Mcut/M)√

2σ

]
, (32)

n̄sat(M) =

[
M − κMcut

M1

]α
(33)
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where we note that the LRG satellite occupations equa-

tion has a modification in the form of multiplication

by n̄cent(M). Mcut determines the minimum mass of a

halo to host a central galaxy, M1 sets the pivot scale

of the power law of satellite occupation, σ controls the

steepness of the transition from 0 to 1 in the number of

central galaxies, α is the power law index on the num-

ber of satellite galaxies, κMcut gives the minimum halo

mass to host a satellite galaxy, fic, which is a downsam-

pling factor controlling the overall number density of the

mock galaxies.

In the vanilla model, the velocity of the central galaxy

is taken as the average velocity of the so-called “L2”

subhalo (see Hadzhiyska et al. 2022). For the satel-

lite galaxies, the velocities are inherited from random

halo particles. The analysis of Yuan et al. (2023) also

includes velocity bias, which is necessary for modeling

redshift-space clustering on small scales (e.g. Guo et al.

2015; Yuan et al. 2022). In the AbacusHOD model, it

is parametrized as:

• αvel,c modulates the peculiar velocity of the central

galaxy relative to the halo center along the line-

of-sight (LOS):

vcent,z = vL2,z + αvel,cδv(σLoS), (34)

where vL2,z denotes the LOS component of the

central subhalo velocity, δv(σLoS) denotes the

Gaussian scatter, and αvel,c is the central veloc-

ity bias parameter.

• αvel,s modulates how the satellite galaxy peculiar

velocity deviates from that of its host particle:

vsat,z = vL2,z + αvel,s(vp,z − vL2,z), (35)

where vp,z denotes the line-of-sight component of

particle velocity, and αvel,s is the satellite velocity

bias parameter.

In Table 3, we show the marginalized posteriors of

the HOD parameters from fits to measurements of the

clustering, ξ(rp, rπ), of DESI LRGs and QSOs in the

DESI 1% survey, performed in Yuan et al. (2023). The

error bars show 1σ uncertainties. Units of mass are given

in h−1M⊙. For our fiducial galaxy catalogs, we adopt

the best fit values of these fits at redshifts z = 0.5, z =

0.8, and z = 1.4 for the three samples shown here, using

the AbacusSummit boxes to ensure consistency of the

halo mass and HOD parameter definitions.

5.2. Galaxy assembly bias extensions to the model

In this analysis, we study the effect of allowing phys-

ically motivated extensions on the inferred bϕ from the

Separate Universe approach. This section summarizes

the assembly bias extensions allowed in the AbacusHOD

model (see Yuan et al. (2022) for more details):

• Acent or Asat are the concentration-based sec-

ondary bias parameters for centrals and satel-

lites, respectively. Acent,sat = 0 indicate no

concentration-based secondary bias. Positive val-

ues of A indicate a preference for lower concentra-

tion halos, and vice versa, at fixed halo mass. The

concentration definition adopted here is equivalent

to the one in Section 4.

• Bcent or Bsat are the environment-based secondary

bias parameters for centrals and satellites, respec-

tively. The environment is defined as the mass

density within a renv = 5Mpc/h tophat of the halo

center, excluding the halo itself, which we note dif-

fers from the ‘shear’ parameter we define in Sec-

tion 4.1. Nonetheless, we check that qualitatively

these two environment parameters yield very simi-

lar results, and we choose this parametrization for

consistency with the DESI analysis. Bcent,sat =

0 indicate no environment-based secondary bias.

Positive values of B indicate a preference for halos

in less dense environments, and vice versa, at fixed

halo mass.

In this study, we are interested in exploring how the

parameter bϕ changes, as we include assembly bias ex-

tensions to the vanilla HOD model. In particular, we

follow the procedure outlined below:

We first adopt the best-fit values from the ξ(rp, rπ)

to the DESI 1% data (see Table 3), we construct our

fiducial samples of LRGs at z = 0.5 and z = 0.8, and

QSOs at z = 1.4.

We then create mock catalogs in a grid centered

on the fiducial parameter values. In particular, at each

grid point, we vary the two mass parameters logMcut

and logM1 by ±0.5, which roughly control the ampli-

tude of the 2-halo and the transitioning between the 1-

and 2-halo regimes, as well as the central galaxy concen-

tration and assembly bias parameters Acent and Bcent by

±0.3. These ranges correspond to the prior choices on

these parameters in Yuan et al. (2023). For each param-

eter, we explore 5 linearly spaced values in the specified

ranges (corresponding to a step size of 0.25 in the mass

parameters and 0.15 in the assembly bias parameters).

We use mock covariance matrices generated from the

1800 small AbacusSummit boxes for our three samples

(see Yuan et al. 2023) by measuring the redshift-space

2D correlation function, ξ(rp, rπ), which can be obtained
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via the Landy & Szalay (1993) estimator:

ξ(rp, rπ) =
DD − 2DR+RR

RR
, (36)

where rp and rπ are transverse and LOS separations

in comoving units, respectively, whereas DD, DR, and

RR are the normalized data-data, data-random, and

random-random pair counts in each bin of (rp, rπ). In

principle, ξ(rp, rπ) captures the full information con-

tent of the two-point clustering and can thus yield

stronger constraints on the galaxy-halo connection Yuan

et al. (2022) compared with projected statistics such as

wp(rp), which wash out the LOS information. Here,

we measure ξ(rp, rπ) in 14 logarithmically spaced bins

between log rp,min = −0.83 and log rp,max = 1.5 in

the transverse direction and rπ,max = 32 Mpc/h with

∆rπ = 4 Mpc/h in the LOS direction. Thus, provided

no other cuts are made (e.g., to ensure non-singularity

of the covariance matrix), the number of degrees of free-

dom (d.o.f.) is ∼112 (note that we lose 4 d.o.f. due

to the parameters being varied). We rescale the small-

box (0.53 [Gpc/h]3) covariance matrices by a factor of

20, 30, and 200 for the three samples, respectively, to

roughly reflect the volume of DESI Y5 for these trac-

ers. We estimate that the intrinsic uncertainty of the

HOD model in constraining the galaxy-halo connection

is roughly compensated by the effective volume ratio of

DESI Y5, and leave the discussion of HOD model un-

certainties for future work.

We compute ξ(rp, rπ) for the 54 = 625 grid points

and using the computed mock covariance matrices, cal-

culate the ‘distance’ of each sample from the ‘true’

ξfid(rp, rπ) corresponding to the fiducial HOD sample

defined in Table 3:

∆χ2 = (ξ − ξfid)TC−1(ξ − ξfid). (37)

Finally, we select all samples from the 625-point

grid, which have ∆χ2 ≤ d.o.f., which corresponds to

roughly 1σ deviations from the fiducial sample cluster-

ing, and calculate bϕ for each, adopting the Separate

Universe approach. In Fig. 5, we show a scatter plot

of bϕ and mean halo mass for all three samples for the

points that pass the ∆χ2 ≤ d.o.f. criterion. The mean

and fiducial values are shown as a cross and larger circle,

respectively. We also show the universality relation with

c = 0.8 (see Eq. 17) for each sample. Intriguingly, the

galaxy samples seem to prefer a lower value of c than in

the case of the halos (cf. c = 0.9). We see that the sam-

ples that satisfy the condition of ∆χ2 ≤ d.o.f. follow

a thin slanted contour on the bϕ-M̄halo plane. We at-

tribute this to the fact that the mean halo mass (which

is a proxy of linear bias) is relatively well constrained

compared with bϕ. A closer look at the surviving HOD

samples tells us that most of the scatter in bϕ is due

to variations in the concentration parameter, Acent. In-

deed, as seen in Fig. 4, concentration has a stronger

impact on bϕ than on the linear bias. It is also rather

poorly constrained compared with the mass parameters

due to its subtle effect on the clustering. The fiducial,

mean and standard deviation for the LRGs at z = 0.5,

z = 0.8, and QSOs at z = 1.4 is

{bfidϕ , bmean
ϕ , ∆bϕ/2, bstdϕ } = (38)

{2.64, 2.55, 0.29, 0.13} (for LRG, z = 0.5)

{3.34, 3.25, 0.19, 0.11} (for LRG, z = 0.8)

{3.87, 3.72, 0.19, 0.10} (for QSO, z = 1.4)

This corresponds to an uncertainty of 11%, 6%, and

5%, respectively. We additionally note that if we were

able to pinpoint the mass of the tracers, the uncertainty

on bϕ would decrease noticeably. While it is difficult to

disentangle assembly bias and halo mass from clustering

data alone, including weak lensing constraints on the

galaxy-halo link would substantially help us to break

HOD parameter degeneracies, allowing us to put much

tighter constraints on bϕ.

Note: We expect most of the assembly bias signal

to be contained in the central galaxy population (see

e.g., Hadzhiyska et al. 2023). We leave the full anal-

ysis that includes running chains with all HOD exten-

sions for later work. We note that future data releases

of the clustering of DESI LRGs and QSOs will feature

much smaller error bars, which will also improve our

constraints on the galaxy-halo connection and on the

assembly bias of these samples.

5.3. Fisher formalism

Here, we provide a short revision of the Fisher formal-

ism (Tegmark et al. 1997). For a given data vector, D,

and a vector of parameters, θ = {θα} with α denoting

the index of each parameter, we can define the Fisher

matrix as:

Fαβ =

〈
∂ logL(D|θ)

∂θα

∂ logL(D|θ)
∂θβ

〉
, (39)

where L(D|θ) is the likelihood. This Fisher matrix can

then be used to obtain a minimum estimate of the er-

ror on each of our parameters θα (Aitken & Silverstone

1942):

σ[θα] =
√

(F−1)αα, (40)

where σ[·] defines the error on our parameter of inter-

est. Thus, the inverse of the Fisher information lets

us infer the maximum information that we can obtain
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Figure 5. Scatter plot of bϕ and mean halo mass for the
three samples of interest to this study: LRGs at z = 0.5
(red) and z = 0.8 (blue), and QSOs at z = 1.4 (green), which
satisfy the condition ∆χ2 ≤ d.o.f.. We show the mean and
fiducial values for each sample with a cross and large circle,
respectively, as well as the universality relation (dashed) with
c = 0.8 (see Eq. 17; note that a lower value of c is found for
the galaxies compared with the halos, c = 0.9). We see that
the samples follow a thin slanted contour on the bϕ-M̄halo

plane. We attribute this to the fact that the mean halo mass
(which is a proxy of linear bias) is relatively well constrained
compared with bϕ. The standard deviation of bϕ for the three
samples is roughly 11%, 6% and 5%, respectively.

about each of our theory parameters, given some ob-

served data. We note that σ[θα] = F
−1/2
αα yields the

non-marginalized error on the parameter θα.

In this work, we are interested in the halo and galaxy

power spectrum. Assuming that their likelihoods are
Gaussian distributed, which works particularly well for

the power spectrum on the large scales we are interested

in6, we can express the log-likelihood as:

logL(D|θ) =
− 1

2

∑
ij

(
P (ki)− P̄ (ki)

)
C−1
ij

(
P (kj)− P̄ (kj)

)
, (41)

where i and j sum over all measurement bins, P denotes

the theory power spectrum, P̄ is the observed power

spectrum, and C is the covariance matrix.

Assuming that the covariance matrix is independent

of the parameters, θα, we can further simplify the Fisher

6 We also note that to get an estimate of the information content,
this approximation is good enough.

matrix expression as:

Fαβ =
∂P̄ (ki)

∂θα
C−1
ij

∂P̄ (kj)

∂θβ
. (42)

Thus, we only require the derivative of our summary

statistic with respect to the parameters and its covari-

ance to assess its information content. We note that in

our case the covariance matrix does depend on the cos-

mological parameters, but neglecting this dependence

gives a better approximation for the true information

content Carron (2013).

5.4. Constraints on bϕfNL

In this study, we are interested in assessing the in-

formation content of the scale-dependent bias and con-

straining fNL by robustly marginalizing over bϕ.

To compute the Fisher matrix, we need a covari-

ance matrix of the power spectrum. Here, we use an

analytically calculated auto-power spectrum covariance

matrices (Alves & DESI Collaboration 2024) specifi-

cally tailored to the DESI LRG and QSO tracers at

z = 0.4− 0.6 and z = 1.1− 1.4, respectively. We obtain

the cross-power spectrum covariance matrix by adopt-

ing the Gaussian approximation, which should hold on

large scales, and rescaling the matrix to match the Y5

volume for each tracer in each redshift range. As valida-

tion, we compute the derivatives in two different ways:

numerically (by taking finite differences) and analyti-

cally (by assuming linear theory) and find that they are

in excellent agreement on large scales. We can obtain

the numerical derivative with respect to bϕfNL as:

∂P̄ (ki)

∂[bϕfNL]
≈

P̄ (ki)|[bϕfNL]=100b∗ϕ
− P̄ (ki)|[bϕfNL]=−100b∗ϕ

2δ[bϕfNL]
,

(43)

where δ[bϕfNL] = 100b∗ϕ for the simulations used in this

Section, AbacusPNG c30{2,3} ph000. The values of b∗ϕ
we adopt for the three samples (LRGs at z = 0.5, z =

0.8, and QSOs at z = 1.4) are as follows: 2.64, 3.34, 3.87.

We compute the Fisher matrix both with and without

redshift space distortions, but find that including this

effect has negligible impact on the fNL constraints, as

most of the information comes from large scales, which

are unaffected by redshift space distortions. In redshift

space, we employ the Legendre multipole expansion of

the power spectrum, Pℓ = 0, 2, 4.

We also perform direct fits to the simulation measure-

ments. For the auto-power spectrum, we vary the com-

bination bϕfNL, the linear bias b1, and the shotnoise pa-

rameter a, whereas for the cross-power spectrum case,

we vary only bϕfNL and b1.

Pgg(k)=

[
b1 +

bϕfNL

M(k, z)

]2
Pmm(k) +

1

n̄g
(1 + a)
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Pgm(k)=

[
b1 +

bϕfNL

M(k, z)

]
Pmm(k), (44)

where n̄g is the mean number density of the galaxy sam-

ple and M(k, z) is defined in Eq. 5. The linear the-

ory approximation adopted here starts to break down

beyond k ≳ 0.15 h/Mpc. Indeed, in that regime, we

find that the inferred values of bϕfNL start to substan-

tially deviate from the simulation ‘truth.’ We note that

while the cross-power spectrum, Pgm(k), is not directly

observable, we can access the galaxy-matter projected

clustering via joint probes with weak lensing surveys

and the CMB map.

We present our constraints on bϕfNL in Fig. 6. The

solid line is obtained via a direct fit (using curvefit)

to the linear theory model in redshift space, Pℓ=0,2,4,

whereas the dashed line is obtained via the Fisher ap-

proximation (non-marginalized). We see that for the gg

case, the agreement between Fisher and the direct fit is

very good, though for small values of kmax, there is a

larger gap between the two. We attribute this to the

larger noise in the fit, as there are much fewer modes

available, and the PNG component is degenerate with

the linear bias. For the gm case, the agreement is poorer,

which we attribute to the approximation adopted for

the cross-power spectrum covariance matrix. As we

increase kmax, the constraints on bϕfNL improve only

marginally, since the small-scale power spectrum is neg-

ligibly affected by the presence of local-type PNG. The

constraints for the three tracers from the auto-power

spectra are:

σ[bϕfNL] = 25, 20, 18, (45)

respectively.

5.5. Constraints on fNL

Taking into account our findings from Section 5.2 on

the uncertainty of bϕ, we can now translate the uncer-

tainty on the combination bϕfNL into an uncertainty on

fNL, as follows:

σ[fNL] = fNL

((
σ[bϕ]

bϕ

)2

+

(
σ[bϕfNL]

bϕfNL

)2

− 2
σ[bϕfNL]

bϕfNL

)1/2

.

(46)

Assuming that bϕ and fNL have negligible covariance, we

can simplify the equation above by ignoring the cross-

term, σ[bϕfNL] ≈ 0. Substituting the standard deviation

and fiducial values of bϕ for the three samples from Sec-

tion 5.2 and the σ[bϕfNL] from the Fisher analysis, we

obtain the following constraints on fNL from the galaxy

auto-power spectrum:

σ[fNL] = 15, 8, 7. (47)
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Figure 6. Constraints on the combination bϕfNL as a func-
tion of scale (kmax) for the galaxy auto- (gg, upper panel)
and cross- (gm, lower panel) power spectrum for the LRGs at
z = 0.5 (red) and z = 0.8 (blue) and QSOs at z = 1.4 (green).
The solid line is obtained via a direct fit (curvefit) to the
linear theory model in redshift space, Pℓ=0,2,4, whereas the
dashed line is obtained via the Fisher approximation (non-
marginalized). We see that for the gg case, the agreement
between Fisher and the direct fit is very good, though for
small values of kmax, for which there are very few modes
available for the fit, there is a larger gap between the two.
For the gm case, the agreement is poorer, which we attribute
to the approximation adopted for the cross-power spectrum
covariance matrix. As we increase kmax, the constraints on
bϕfNL improve only marginally, since the small-scale power
spectrum is not affected by the presence of local-type PNG.
The constraints for the three tracers from the auto-power
spectra are σ[bϕfNL] = 25, 20, 18, respectively.



17

These are also shown in Fig. 7, where we see the con-

straints as a function of scale (kmax). The best con-

straints are obtained from the QSOs at z = 1.4, as ex-

pected, as quasars have the largest volume and largest

value of bϕ. The LRGs at z = 0.8 yield very compa-

rable constraints, as their bϕ is relatively high and well

constrained. In the figure, we also display the fractional

error, σ[·]/[·], of the combination bϕfNL and just fNL

using Eq. 46 and the constraints on bϕ from Section 5.2.

For the LRGs at z = 0.8 and the QSOs, the fractional

error on fNL compared with that on bϕfNL is a factor of

1.5 worse due to the large uncertainty on the astrophys-

ical parameter, bϕ. For the LRGs at z = 0.5, the two

curves differ by almost a factor of 2, as bϕ is poorly con-

strained for that sample (see Fig. 5). This finding hints

that more investigation into the complex link between

galaxy formation and local-type PNG is warranted. In

order to place σ[fNL] ∼ 1 constraints on this model of

the primordial Universe, we need to not only make pre-

cise measurements on large-scales using spectroscopic or

weak lensing surveys of large volumes, but also substan-

tially improve our constraints on the galaxy-halo con-

nection and thus, bϕ.

6. SUMMARY AND CONCLUSIONS

Observations of the CMB have revolutionized our un-

derstanding of the primordial Universe, demonstrating

that primordial fluctuations were nearly homogeneous

and isotropic with an almost scale-invariant power spec-

trum. To explain these observations, a number of early

Universe theories such as inflationary and ekpyrotic

models have been proposed. In order to discriminate

between these models, we need to attain definitive evi-

dence of their predicted byproducts such as signatures

of primordial gravitational waves in the B-mode po-

larization of the CMB and primordial non-Gaussianity

(PNG) (Lehners 2010; Martin 2016; Meerburg et al.

2019). PNG is an invaluable probe, as it can reveal infor-

mation about the field content, dynamics, and strength

of interactions in the early Universe. While measure-

ments of the CMB have placed tight constraints on the

presence of PNG, large-scale structure probes are po-

tentially even more powerful, as they can access a larger

number of Fourier modes corresponding to the volume

covered by the survey.

In the next few years, large-scale structure experi-

ments such as DESI and Roman will catalogue the 3D

positions of tens of millions of galaxies, mapping an un-

precedentedly large volume of space. Extracting sub-

percent comparisons between survey observations and

cosmological predictions of PNG requires high-precision

mock data and robust theoretical models. Although
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Figure 7. Upper panel: constraints on fNL as a function of
scale (kmax) for the galaxy auto-power spectrum of the LRGs
at z = 0.5 (red) and z = 0.8 (blue) and QSOs at z = 1.4
(green). We see that the best constraints are obtained from
the LRGs at z = 0.8, which have a larger volume. While the
QSOs had poorer constraints on bϕfNL compared with the
other two tracers, we see that they yield comparable σ[fNL]
to the LRGs at z = 0.5, as bϕ is highest for that sample. We
quote the minimum error on fNL after taking into account the
uncertainty of bϕ for each of the three samples as σ[fNL] =
15, 8, 7, respectively. Lower panel: Fractional error, defined
as σ[·]/[·], of the combination bϕfNL (dotted line) and just
fNL using Eq. 46 and the cosntraints on bϕ from Section 5.2.
For the LRGs at z = 0.8 and the QSOs, the fractional error
on fNL compared with that on bϕfNL worsens by about a
factor of 1.5 due to the large uncertainty on the astrophysical
parameter, bϕ, and by 2 for the LRGs at z = 0.5. This shows
that it is of great importance to understand the galaxy-halo
connection of the DESI samples in order to reduce both the
uncertainty and the bias on the inferred value of fNL.
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approximate methods are capable of generating sam-

ple data, cosmological N -body simulations are a cen-

tral tool for making accurate forecasts for the non-linear

regime of gravitational structure formation. Moreover,

extracting PNG constraints from large-scale structure is

challenging due to complex observational effects (such

as survey depth, mask, fiber collisions), modeling of

the summary statistics, and disentangling astrophysi-

cal from primordial physics effects. Understanding the

relation between PNG and late-time observables is the

main objective of the AbacusPNG set of N -body sim-

ulations, presented in this work.

Here, we present a new set of simulations, Aba-

cusPNG, which was run with the extremely fast and

accurate Abacus code (Garrison et al. 2021a), modified

to possess a non-Gaussian primordial gravitational po-

tential. The aim of this work is to aid current and next

generation of surveys in constraining local-type PNG

from large-scale structure and to validate the simulation

methods for future larger simulation suites with Abacus.

First, we have introduced the AbacusPNG set in Sec-

tion 2. Next, we have validated its initial conditions

by studying the matter bispectrum and comparing it

against the tree-level prediction (see Fig. 1). In addi-

tion, we have compared the matter power spectrum at

late times with the one-loop theoretical prediction, find-

ing good agreement on the relevant scales (see Fig. 2).

Finally, we have tested that the bϕ we compute from the

PNG simulations is in agreement with the value of the

parameter inferred using the ‘separate universe’ tech-

nique on the original linear-derivative AbacusSummit

boxes (see Fig. 3). We also quote, the slope of the uni-

versality relation for the Abacus catalogs as c ≈ 0.85

(see Eq. 17).

As a science case, we focus on the halo and galaxy

fields in Section 4 and Section 5, respectively. First,

we study the halo response to different assembly bias

properties, which have been associated with the galaxy

samples of modern surveys such as BOSS and DESI

(see Wechsler & Tinker 2018, for a review). We find

(see Fig. 4) a strong response to all three parameters we

study: concentration, shear and accretion rate, suggest-

ing that there are additional non-negligible dependencies

of bϕ on galaxy and halo properties besides halo mass

(linear bias).

In Section 5.2, we present the first study of the pa-

rameter bϕ estimated from realistic galaxy samples ob-

tained from fits to the DESI data (Yuan et al. 2023).

In particular, focussing on the two most relevant trac-

ers, LRGs and QSOs, we study the value of bϕ for slight

variations of the main and extended (i.e., pertaining to

assembly bias) HOD parameters that are still allowed

by the data (see Fig. 5). We find that the uncertainty

on bϕ is 11%, 6%, 5% for LRGs at z = 0.5 and z = 0.8

and QSOs at z = 1.4, respectively. We then translate

these values of bϕ into constraints on fNL from a sim-

ple Fisher analysis using linear theory. We find that the

inferred error of fNL, once we take into account the un-

certainty in bϕ, becomes 15, 8, 7 for the three tracers,

respectively (see Fig. 7), which is about a factor of 1.5-2

worse compared with the case in which bϕ is known to a

high precision. This suggests that understanding the re-

sponse of galaxy formation to local-type PNG as well as

the assembly bias properties of a given galaxy tracer is

essential if we wish to perform unbiased, high-precision

measurements of local-type PNG. For future work, we

leave the exploration of the connection between observ-

able galaxy properties and bϕ via hydrodynamical and

N -body simulations, which would allow us to construct

multi-tracer samples and thus greatly enhance our con-

straints on fNL.

While we are a long way away from uncovering the

subtle interplay between the physics of the primordial

Universe and the observed large-scale properties of the

Universe, our hope is that the AbacusPNG simulations

presented in this study will aid us in this journey and

provide us with some of the missing pieces needed to

unravel the elusive link between fundamental cosmology

and astrophysics.
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