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ABSTRACT OF THE DISSERTATION
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and Its Application to Antarctica and Mars
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Professor Caroline Beghein, Chair

The study of seismic surface waves provides important constraints on the Earth interior and

potentially other celestial objects. In this thesis, we present a novel hierarchical transdimen-

sional Bayesian approach to extract phase velocity dispersion and shear-wave velocity (VS)

models from a single seismogram. Monte Carlo Markov Chains (MCMC) seek an ensemble

of one dimensional (1-D) VS models between a seismic source and a receiver that can ex-

plain the observed waveform. The models obtained are used to represent the posterior VS

distribution of the 1-D path, which can then be used to invert for three dimensional (3-D)

models. An advantage of our approach is that it can also fit unknown data noise, which

reduces the risk of overfitting the data in the seismic inversion problem. A 3-D azimuthally

anisotropic VS model is obtained by applying the proposed method to Antarctica. The re-

sults show distinct patterns between East Antarctica and West Antarctica in both isotropic

and anisotropic terms. We also demonstrate the feasibility to apply our method to Mars

using the Mars Structure Service (MSS) blind test data and our own synthetic data, which

included realistic noise levels based on the noise recorded by InSight.
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CHAPTER 1

Introduction

Surface wave data are widely used in seismic tomography, mainly due to their good signal-

to-noise ratio (SNR) and better depth resolution than body waves. The dispersion of surface

waves describes the relationship between their frequencies and phase or group velocities. Such

variations of surface wave velocities are due to the fact that surface waves at different periods

sample the Earth structure at different depths, with longer period data being more sensitive

to deeper structure than shorter period data. Surface wave dispersion primarily constrains

the path-averaged shear-wave velocity structure between a station and a seismic event. The

effects of other factors, such as P-wave speed and density, are almost negligible compared

to the effect of shear-wave velocity. On Earth, fundamental mode surface waves, with their

usually high SNR, are the most commonly used types of surface waves in seismic tomography.

Measurements at intermediate periods (between ∼30 s and 200 s) can resolve structure

down to 200-300 km. Higher mode surface waves carry unique, independent constraints on

structure at greater depths than commonly used fundamental modes, and thus enhance the

vertical resolution of surface wave tomographic models in the deep upper mantle, transition

zone, and uppermost lower mantle. However, most surface wave tomography studies are still

limited to fundamental mode surface waves to which traditional measurement techniques

can only be readily applied. Measuring higher modes is more complicated, mainly due to

the fact that their group velocities overlap significantly in a broad frequency range and thus

they do not appear as a clear wave train on the seismogram.

In this thesis, I focus on the development of a waveform fitting method that extracts the
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one-dimensional (1-D) path-average structural information of planets from both fundamental

and higher modes Rayleigh waves, and then discuss two applications based on this method.

For the waveform fitting, we take advantage of a hierarchical transdimensional Bayesian ap-

proach [Bodin and Sambridge, 2009; Bodin et al., 2012], which efficiently and parsimoniously

samples the model space. The generated Monte Carlo Markov Chains (MCMC) save an en-

semble of shear-wave velocity (VS) and associated phase velocity models, and thus enables

us to quantitatively assess the uncertainties of each of the model parameters. Those path-

average results can be combined to generate 2-D phase velocity maps and 3-D VS models for

the study areas.

In Chapter 2, I present the waveform fitting method based on a transdimensional MCMC

approach. This part is based on Xu and Beghein [2019] and is the theoretical background of

our research.

Chapter 3 presents a 3-D anisotropic VS model of Antarctica obtained using our method.

Chapter 4 discusses the possibility of measuring higher modes on Mars or other planetary

bodies using our method.

Chapter 5 concludes this thesis.
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CHAPTER 2

Methodology

In this chapter, we explain the waveform fitting method we used to measure surface wave

dispersion and to obtain 1-D path-averaged profiles for Rayleigh waves, and discuss the tests

we did for validation purpose.

2.1 Overview of Previous Higher Modes Surface Wave Studies

The measurement of higher modes surface waves is challenging in that their group velocities

overlap significantly in a broad frequency range. Consequently, the direct measurement

methods that work for fundamental mode surface waves cannot be applied to higher modes

due to the difficulties in separating different modes. Only in very specific and rare cases has

it been possible to isolate and measure the dispersion of the first higher mode Rayleigh wave

using single mode dispersion methods [Crampin, 1964; Roult and Romanowicz, 1984].

One way to take advantage of the information contained in higher-mode surface waves

is to retrieve velocity structure directly, without extracting dispersion curves first. Most of

these techniques involve determining path-averaged shear-wave velocity structure for multi-

ple station-receiver pairs and combining them to obtain three-dimensional (3-D) models of

Earth’s internal structure. Cara and Lévêque [1987] determined path-averaged VS models

from a single seismogram using mode branch cross-correlation functions [Lerner-Lam and

Jordan, 1983] as secondary observables. This method, which was designed to minimize the

dependence on the starting model, was later automated and combined with a regionalization
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scheme [Montagner and Nataf, 1986] to model 3-D velocities [Debayle, 1999] and anisotropy

[Maggi et al., 2006]. Nolet Nolet [1990] developed a two-step non-linear Partitioned Wave-

form Inversion (PWI) technique that was automated by Lebedev and Nolet [2003]. Using

synthetic seismogram calculations, the PWI finds along-path velocity models that fit recorded

waveforms and inverts the velocity models obtained for all paths to constrain 3-D structure.

citetLi1995,Li1996 were also able to obtain the averaged structure along the great circle be-

tween the source and receiver using a waveform modeling technique that included non-linear

asymptotic coupling theory and coupling across different branches.

Despite the difficulty, several attempts have been made to separate higher modes. Some

methods operate in the frequency-wavenumber (ω−k) domain and use seismic arrays [Nolet,

1975; Cara, 1973, 1978, 1979]. While this kind of direct measurement is fast to implement,

there are a few limitations: (i) the method can only be applied in regions with dense arrays

and thus cannot be applied at the global scale, (ii) it requires the usage of linear regional

seismic arrays approximately aligned with the epicenter, which reduces the geographical

ray coverage, and (iii) variations within an array cannot be assessed [Laske and Widmer-

Schnidrig, 2015].

Another method, based on mode branch stripping, was developed by van Heijst and

Woodhouse [1997a]. The principle behind this technique is that the signals of overtone

branches can be isolated by fitting the cross-correlation function of a single mode using

mode branch cross-correlation functions. However, while this method does not rely on arrays

and thus can be used in global tomography, it does not work well with epicentral distances

shorter than 30◦ [van Heijst and Woodhouse, 1999a] since individual higher modes cannot

be separated from others in a seismogram when the path is too short. Additionally, it

might be difficult to separate one single mode from observed seismograms when that mode

is contaminated by interference from other modes.

Other researchers have utilized waveform fitting techniques to extract higher-mode dis-

persion. Stutzmann and Montagner [1993] and Montagner et al. [1994] developed a wave-
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form fitting technique to invert phase velocity dispersion and velocity structure at depth

in successive steps. Beucler et al. [2003] proposed a roller-coaster technique, in which the

phase velocity perturbation is obtained by fitting the synthetic seismogram to the real data.

Yoshizawa and Kennett [2002, 2004] and Yoshizawa and Ekström [2010] used the Neighbor-

hood Algorithm [Sambridge, 1999a] to search the model space for multimode dispersion in

a nonlinear waveform inversion. Visser et al. [2007] developed a method similar to that of

Yoshizawa and Kennett [2002] to estimate multimode dispersion curves for global tomogra-

phy, though they were additionally able to obtain quantitative uncertainties on the phase

speed measurements by performing a Bayesian appraisal of the models sampled [Sambridge,

1999b]. Uncertainties were determined from the whole ensemble of dispersion models ob-

tained instead of taking the standard deviation of the 1,000 best models as in Yoshizawa

and Kennett [2002].

In our study, we developed a waveform modeling method using a reversible jump Markov

Chain Monte Carlo (rj-MCMC) inversion [Bodin and Sambridge, 2009] to extract higher

mode dispersion curves and their uncertainties at periods between 50 s and 200 s. Like

the methods of Yoshizawa and Kennett [2002], Yoshizawa and Ekström [2010], and Visser

et al. [2007]; Visser [2008], our technique has the advantage of sampling the model space

instead of choosing one model among many possible solutions with a strong regularization

scheme. It therefore provides more reliable posterior model uncertainties than regularized

inversions. Additionally, contrary to those previous studies in which the authors adopted a

fixed dimension model space chosen a priori, the rj-MCMC sampler offers a way to treat the

dimension of the model space as variable. In addition, because we use a Hierarchical Bayes

approach, data noise parameters are treated as unknowns in the inversion, which accounts

for the part of the signal that we are not able to explain with our forward theory and the

chosen parametrization. This allows the model to explain the data without overfitting them.
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2.2 1-D Waveform Modeling

Our goal is to measure phase velocity dispersion for fundamental and higher mode Rayleigh

waves using waveform modeling. To do this, we seek a large number of path-averaged 1-

D shear-velocity models that can fit the filtered waveform, and the resulting models are

employed to calculate dispersion curves. These path-specific 1-D models represent the aver-

age fundamental and higher-mode dispersion curves for the chosen source-receiver path as

in Yoshizawa and Kennett [2002], Yoshizawa and Ekström [2010], and Visser et al. [2007];

Visser [2008]. Our method thus requires a fast forward modeling method to compute syn-

thetic seismic waveforms.

A synthetic seismogram (s) can be calculated by summation of normal modes (m) of

amplitude Am in the frequency domain (ω) for a 1-D model as follows (e.g. Dahlen and

Tromp [2021]):

s(ω) =
∑
m

Am(ω)exp[iω∆/cm(ω)] (2.1)

where cm(ω) is the phase velocity of the mode m at angular frequency ω and ∆ is the epicen-

tral distance. The relationship between seismograms and their corresponding velocity model

is thus highly non-linear. A fully non-linear approach, which does not require any partial

derivatives with respect to model parameters or any strong constraints on parametrization,

is therefore desirable to perform waveform inversion.

FORTRAN code Mineos [Masters et al., 2011] can be used to compute synthetic seis-

mograms for a reference 1-D model of Earth’s interior by normal mode summation. The

advantage of such formulation is that it builds a direct connection between seismic wave-

forms and phase velocities. However, the calculation of normal mode eigenfunctions and

eigenfrequencies for a given mantle model is very time-consuming and thus we cannot use

the fully non-linear formulation that is Eq. 2.1 at each iteration of a MCMC scheme. We

decided instead to linearize the forward modeling problem in order to overcome the compu-

tational speed limitation. As in Yoshizawa and Kennett [2002], we obtained a first synthetic

6



seismogram for a reference model using fully non-linear calculations (Eq. 2.1). We then used

perturbation theory to update the seismogram for other models generated at each iteration

of the Markov Chain. For a small perturbation, the change in mode eigenfrequency can be

calculated assuming unperturbed eigenfunctions:

δln(ω) =

∫ a

0

(
δα

α
(r)Kα(r, ω) +

δβ

β
(r)Kβ(r, ω) +

δρ

ρ
(r)K

′

ρ(r, ω))dr +
∑
d

δd[Kd(ω)]+− (2.2)

where δln(ω) = δω/ω, a is the radius of the Earth, and α, β, ρ and d are P-wave velocity,

S-wave velocity, density, and radius of discontinuities, respectively. Kα, Kβ, K
′
ρ and Kd are

the Fréchet derivatives, which relate the change in wave velocities, density, and depth of

discontinuity from the reference model to changes in the eigenfrequencies. The Fréchet

derivatives can be calculated for each mode using the eigenfunctions determined for the

reference model [Woodhouse, 1980].

In principle, all parameters could be included as free parameters in inversions. Never-

theless, strong trade-offs can affect them, and only shear-wave perturbations are generally

well resolved (e.g., Montagner and Nataf [1986]; Meier et al. [2009]). Previous endeavors

to invert for δVP , δVS, δρ, δd, and/or anisotropic parameters in Earth’s mantle have been

done, either with regularized inversions (e.g., Panning and Romanowicz [2006]) or model

space search techniques (e.g., Beghein and Trampert [2006]; Beghein [2010]). The resulting

VS models do not generally depend on the inclusion of the other unknowns in the inversions,

but the less well-resolved parameters have large uncertainties and are dependent on the prior

information introduced [Beghein, 2010]. In addition, a larger number of free parameters in

a model space search significantly increases the convergence time and adds to the compu-

tational costs. We therefore decided to scale δVP and δρ to δVS using relations derived for

Earth: δ lnVP = mαδ lnVS and δ ln ρ = mρδ lnVS. For the P-wave speed scaling, we used

a linearly varying scaling relation, with mα = 0.8 at Earth surface and nα = 0.565 at 800

km depth. For the density scaling, we set mρ to 0.3 [Anderson et al., 1968]. These choices

do not typically affect the VS models in Earth applications so we do not expect it to play

an important role here either. Correctly accounting for the Moho depth has been shown
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to be important as it can have strong non-linear effects on waveform modeling and phase

velocity calculations [Montagner and Jobert, 1988]. We decided to account for deviations

from Preliminary Reference Earth Model (PREM) [Dziewonski and Anderson, 1981] in Moho

depth by adopting a reference model that includes crustal constraints from model CRUST1.0

[Laske et al., 2013], averaged over the length of the chosen path, and calculating the corre-

sponding shear-wave sensitivity kernels. The updated frequency can then be converted into

phase velocity for a normal mode of angular order l using [Jeans, 1923; Dahlen and Tromp,

2021]:

c(ω∗) =
ω∗a

l + 0.5
(2.3)

where ω∗ is the updated eigenfrequency for the mode considered. In Figure 2.1, we compare

synthetic seismograms calculated using the the normal mode summation without lineariza-

tion (Eq. 2.1) and the linearized method based on perturbation theory described above

(Eq. 2.2). The results show that the phase velocity information from the linearized pertur-

bation method and the non-linear formulation match well, especially in the period range we

are interested in (50 s-200 s).

2.3 Selection of Frequency-Time Windows

The rj-MCMC method described below performs a guided Monte Carlo sampling of the

model space using the values of the misfit between the real and the synthetic seismograms.

The data and the synthetics are compared in different time and frequency windows, which are

chosen such that they include the fundamental and several higher modes. We used different

time and frequency windows to compare the fundamental and higher mode waveforms. We

employed group velocities to choose the beginning and the end of the time windows for

the fundamental mode and we employed S- or SS-wave arrival times and group velocities to

choose the higher mode time window as in Lebedev and Nolet [2003]. For epicentral distance

shorter than 35◦ the higher mode window start time is set just before the arrival of the S
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Figure 2.1: Comparison between synthetic seismograms calculated with normal mode sum-

mation using Mineos without linearization (blue) and with our linearized method (red) in

three different period ranges: 100 s-200 s (top), 50 s-100 s (middle), and 30 s-50 s (bottom).

The shear-velocity model used to compute the seismograms is shown in Figure 2.3.
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Figure 2.2: An example of our automatic time window selection for a path across North

America. The waveform is for the observed data. The station, HRV, is located in northeast-

ern America. The event was in Chiapas, Mexico and occurred on 6 July, 2007. The time

window in the upper panel is window 1 as defined in Table 2.1. The time window on the

right side of the lower panel is for the fundamental mode (window 2) and the time window

on the left of the lower panel is the higher modes window (window 3).

wave train. For epicentral distance between 35◦ and 70◦ the start time is just after the S

and before the SS wave train. Group velocities can be picked manually by inspection of the

waveform or using a frequency-time analysis [Dziewonski et al., 1969]. Those windows are

summarized in Table 2.1. An example of time window selection on real data is shown in

Fig 2.2 for an event in Chiapas, Mexico and station HRV in north eastern America.

Because the amplitude of the synthetic seismograms depends on the scalar moments of

the event, and because inaccurate scalar moments in catalogues might cause an increase in

the data misfit, we implemented an energy equalization method [Lebedev et al., 2005] before

calculating the misfit between observed and synthetic seismograms (defined in section 2.4).

The aim is to equalize the energy of the synthetic with that of the data by multiplying the
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Table 2.1: Selection of frequency-time windows. The first and second window indices corre-

spond to the fundamental mode and the third window is for higher modes. The start and

end times for the fundamental mode are determined by the group velocities U indicated in

the table and the event epicentral distance ∆. For the higher modes, the beginning of the

time window is determined by the S- or SS-wave arrival times. The end of the window is

determined by ∆/U .

Window index Frequency(mHz) Start End

1 5-10 U = 4.45 km/s U = 2.95 km/s

2 10-20 U = 4.30 km/s U = 3.20 km/s

3 10-20 S or SS U = 4.30 km/s

amplitude of the synthetics by the following constant:

f eq =

√√√√∑t=t2
t=t1

d2(t)∑t=t2
t=t1

s2(t)
(2.4)

where d(t) and s(t) are the observed and synthetic seismograms, respectively, filtered in the

frequency range considered (5mHz - 20mHz). t1 indicates the beginning of the overtone time

window (window 3 defined in Table 2.1) and t2 is the end of the first fundamental mode time

window (window 1 in Table 2.1).

2.4 Bayesian Inference

In a Bayesian formulation, model parameters are described by probability density functions

(PDFs), which effectively indicate the uncertainty associated with these parameters. The

aim of a Bayesian inference is to quantify the a posteriori probability distribution of all

model parameters given some prior information and the data. Bayes’ theorem [Bayes and

Price, 1763] gives the posterior as:

p(m|dobs) ∝ p(dobs|m)p(m) (2.5)
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where A|B means A given (or conditional on) B, i.e. the probability of having A when B

is fixed. m is the vector of model parameters and dobs is the observed data. The term

p(dobs|m) is called likelihood function, which shows the probability of observing data dobs

given a particular model m. The a priori probability of model, p(m), contains what we

assume about the model m before having the observed data. Accordingly, the posterior

distribution represents the probability of the model, given the observed data. The parts of

the model space that are more frequently required by the data than others manifest with

greater posterior probability, and hence are more likely to reflect properties of the Earth

[Backus, 1988].

The likelihood function p(dobs|m) describes the probability of data given the current

model. In this study, we compared the waveform fit in three different frequency-time win-

dows, and we assumed the data noise in each window follows a multivariate normal distribu-

tion with zero mean and covariance matrix Cdi , where i is the window index. The likelihood

term for each frequency-time window is thus written in this form:

pi(di|m) =
1√

(2π)n|Cdi|
× exp[−Φi(m)

2
] (2.6)

where di is the data in window i, Φi(m) is the function describing the distance between real

data and synthetics predicted by the current model. The general expression for Φi(m)

considering correlated noise is [Bodin et al., 2012]:

Φi(m) = (G(m)− di)
TC−1

di
(G(m)− di) (2.7)

where d represents the measured data vector and G(m) is for the synthetic data predicted

by model m.

For simplicity, we assumed Gaussian and uncorrelated noise, in which case the covariance

matrix is diagonal. Then the equation above becomes:

Φi(m) = Mi(m)/σ2
i (2.8)
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where σi is the standard deviation of the Gaussian uncorrelated noise in the i-th frequency-

time window, i.e., the diagonal element of the covariance matrix, and Mi is defined by:

Mi(m) =

Li∑
j=1

(dji − f eqs
j
i )

2 (2.9)

where Li is the length of the selected time window, di is the observed data, si is the synthetics

calculated for model m, and f eq is the energy equalization factor defined in Eq. 2.4. The

expression for the likelihood becomes:

p(di|m) =
1

(
√

2πσi)n
× exp[−Mi(m)

2σ2
i

] (2.10)

The total likelihood function is then the product of the likelihood functions of three frequency-

time windows:

p(dobs|m) = p(d1|m)p(d2|m)p(d3|m) (2.11)

As shown in Eq. 2.6, the level of noise accounts for theoretical errors, that is, the part

of the signal that we are not able to explain with the forward theory and with the chosen

parametrization, which is a simplified and discretized representation of reality. Unlike tra-

ditional inversion methods in which the noise level is fixed at a presumed level, we use a

Hierarchical Bayesian approach, treating noise parameters σ1, σ2, σ3 as unknowns in the

inversion. These noise parameters therefore determine the width of the Gaussian likelihood

function and the relative weight given to different frequency-time windows during the inver-

sion. The diagonal element σi is given by a uniform prior distribution, which is explored

during the Monte Carlo search. An advantage of this approach is that the weights of the

different frequency-time windows are constrained by the data, thereby avoiding an arbitrary

choice of noise levels by the user and the risk of overfitting the data. In addition, windows

with better waveform fit will naturally have higher weights since the relative weight between

different windows is controlled by the data error levels σ1, σ2, σ3.

Following Bodin et al. [2012], a uniform prior distribution with relatively wide bounds

is adopted here so that the final model will be dominated by the data rather than by prior
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information. When only independent parameters are considered, the prior probability dis-

tribution can be written as the product of three terms:

p(m) = p(c,v|k)p(k)p(h), (2.12)

where c,v are vectors containing the depth and velocity of each interpolation point, p(k) is

the prior on the number of layers, and p(h) is the prior on noise hyper-parameters. Details

of the derivation for the expression of p(m) can be found in Bodin et al. [2012]. Here, we

only show the expression for velocity priors at the ith interpolation point vi:

p(v|k) =


1

∆v
if Vmin ≤ vi ≤ Vmax

0 otherwise,

(2.13)

where Vmax and Vmin are the upper and lower bounds of velocity, and ∆v is equal to (Vmax−

Vmin). Any velocity that falls outside this pre-defined boundaries leads to a null prior. For

our study, we chose ∆v = 10% of the velocity in the reference model at a given depth.

2.5 The rj-MCMC method

The goal of the rj-MCMC method is to generate an ensemble of Earth models distributed

according to a target distribution. In our case, we want to find the 1-D shear velocity models

that best fit the waveform data to represent the dispersion of multiple modes along a specific

source-receiver path.

Most inversion schemes adopt a fixed dimension model space. However, we do not know

the complexity of the VS profile, i.e. the dimension of the model space, a priori. One poten-

tial drawback of fixing the depth parametrization is that different seismograms may require

different number of model parameters to improve the fit and the results could potentially

depend on the chosen prior parametrization. Here, we adopted a transdimensional Bayesian

inversion, which consists in a sampling-based algorithm that include the number of parame-

ters in the set of unknowns and hence the constraints added on the uncertain parametrization
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or uncertain data errors can be released. The transdimensional approach lets the data them-

selves constrain the allowable model complexity instead of having the user choose a model

parametrization (e.g., number of layers, or cells) a priori. It is well-known, however, that

increasing the complexity of the model parametrization often results in better data fit and

introduces parameter trade-offs. One difficulty in inverse problems is to determine which

parameters are well resolved and how much complexity is really needed by the data. To

avoid this problem, the rj-MCMC sampler, first proposed by Geyer and Møller [1994], is

designed to find a parsimonious solution [Malinverno, 2002], i.e. it naturally discourages

high dimensional (many layers) models and the least complex explanation or model for an

observation is preferred to avoid over-fitting the data.

The rj-MCMC method has been explained in detail in Bodin and Sambridge [2009] and

Bodin et al. [2012]. Our method is based on theirs except that we used a different depth

parametrization. The nodes in the two different parametrizations have, nevertheless, a sim-

ilar meaning and the derivations are similar to theirs. The main difference comes from the

way the velocity models are constructed. In Bodin et al. [2012], each Voronoi nucleus de-

fines its nearest neighbor region as one layer, which has the same velocity as the nucleus

within it. By contrast, in our model the shear-wave velocity perturbation at a given depth

is interpolated from its two nearby nodes.

In the rj-MCMC method, every new model is generated by iteratively perturbing the last

one according to some chosen proposal distribution. There are five types of perturbation

based on the parametrization we chose:

• Change the velocity of one interpolation point;

• Birth: create a new interpolation point;

• Death: remove one interpolation point at random;

• Move: Randomly pick one interpolation point and move it to a new depth;
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• Change the noise level;

Here we have employed a slightly different model proposal for Birth than Bodin et al. [2012]

due to the different parametrization used here. The other proposals are the same. For the

birth step, we added a new interpolation point at depth c
′

k+1, and then assigned a new

velocity perturbation value v
′

k+1 to this new node. This is drawn from a Gaussian proposal

probability density:

q(v
′

k+1|v∗) =
1

θbirth
√

2π
exp

{
−

(v
′

k+1 − v∗)2

2θ2
birth

}
(2.14)

where v∗ is the current velocity perturbation value at the depth c
′

k+1 where birth takes place.

The value of v∗ can be calculated by a simple interpolation between its two nearest nodes.

The standard deviation θbirth of the Gaussian distribution is a parameter to be chosen.

We refer the reader to Bodin et al. [2012] for the proposal distributions of other types of

perturbation.

New models generated from those perturbations are then randomly accepted or rejected

according to the acceptance ratio. In order to converge to the target distribution p(m|dobs),

the acceptance probability from the current model m to the proposed model m
′
, α(m

′|m),

has to meet the following requirement:

α(m
′|m) = min

[
1,
p(m

′
)

p(m)
· p(dobs|m

′
)

p(dobs|m)
· q(m|m

′
)

q(m′ |m)
· |J|

]
, (2.15)

where the matrix J is the Jacobian of the transformation from m to m
′
.

The derivations of acceptance probability in rj-MCMC method were given by Bodin et al.

[2012], Appendix C. Here we will only describe the ideas briefly and show the equations that

differ from theirs. For moves without change of dimension, both the Jacobian term and

the ratio of proposal distributions are 1 and the reader can find the same results as Bodin

et al. [2012] by inserting Eqs. 2.10 and 2.12 into Eq. 2.15. For the birth and death steps

which involve a change of dimension, it can be shown that the Jacobian term is equal to 1.

However, due to the different birth proposal distribution we selected, the expression for the
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acceptance term for the birth and death steps are different from Bodin et al. [2012]. For the

birth step:

α(m
′ |m) = min

[
1,
θbirth
√

2π

∆v
· exp

{
(v

′

k+1 − v∗)2

2θ2
birth

}
· p(dobs|m

′
)

p(dobs|m)

]
, (2.16)

The meaning of v
′

k+1 and v∗ is the same as in (2.14). For the death step:

α(m
′ |m) = min

[
1,

∆v

θbirth
√

2π
· exp

{
−

(v
′
j − v

′
i)

2

2θ2
birth

}
· p(dobs|m

′
)

p(dobs|m)

]
, (2.17)

where vi is the velocity of the i-th interpolation point to be removed at depth ci and v∗ is

the velocity at depth ci in the new structure after the removal of the i-th node.

If the newly proposed model is rejected, then the last model is retained for another

iteration. The Markov chain is generated via hundreds of thousands of iterations. The first

part of the chain (called the burn-in period) is discarded, after which the random walk is

assumed to be stationary and starts to sample the model space according to the posterior

distribution p(m|dobs). If the algorithm is run long enough, these samples should then

provide a good approximation of the structure of Earth as constrained by the data.

This ensemble solution contains many models with variable parametrization, and each VS

model in the ensemble corresponds to one dispersion relationship. The expected dispersion

is the weighted average through the posterior distribution sampled by the rj-MCMC algo-

rithm. One can use this average to choose one dispersion curve with proper uncertainties

for interpretation purpose.

2.6 MCMC Sampling Steps and Parametrization

In this study, we seek a 1-D depth-dependent isotropic shear velocity model to represent the

dispersion of multiple modes between a chosen source and receiver. The isotropic nature of

the model is assumed mainly for computational reason, but it is a reasonable assumption

as demonstrated by Visser [2008] who showed that the differences in the phase velocities
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Figure 2.3: Example of model parametrization. The red squares denote the points at which

the velocity model is perturbed. The complete dVS profile is obtained by linear interpolation

between those points.

calculated assuming isotropy or anisotropy are small. The VS profile is described by a

variable number k of interpolation points (Figure 2.3). The vertical position of these points

defines the depths at which VS is perturbed and the horizontal position of these points

correspond to the amount VS is perturbed relative to a reference model using the velocity

prior described by Eq. 2.13. We adopted the rj-MCMC algorithm [Bodin and Sambridge,

2009] to explore the model space and sample the distribution of model parameters informed

by the data. The procedure of our waveform inversion can be summarized as follows:

1. Choose path-specific reference 1-D shear velocity model

2. Calculate normal mode eigenfrequencies for the reference model using Mineos, and

compute a reference synthetic seismogram using normal-mode summation (Eq. 2.1);
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3. Generate a path-specific 1-D shear velocity model by perturbing the reference model

according to the proposal distribution of the rj-MCMC scheme;

4. Compute the synthetic seismogram predicted by the 1-D model using Eq. 2.2;

5. Calculate the misfit between synthetic and observed waveforms in each window using

the L2 norm;

6. Randomly accept or reject the proposed model according to the acceptance ratio;

7. If the model is accepted, calculate and save the phase velocities predicted by the model

using Eq. 2.3 and generate a new VS model by perturbing the accepted model according

to the proposal distribution. If the model is rejected, generate a new VS model by

perturbing the previously accepted model according to the proposal distribution;

8. Repeat steps (4) to (7) to generate the Markov chains;

9. Gather all the saved phase velocities and Vs profiles to determine the distribution of

dispersion curves obtained at each period/frequency and the distribution of Vs at each

depth;

10. Calculate the mean and standard deviation of these distributions to obtain measured

1-D profiles and their uncertainties.

2.7 Reliability Analysis

In principle, with the proposed method we are able to obtain the phase velocities for any

mode at any period since they are calculated from the ensemble of VS models obtained.

However, in practice, only some modes at certain periods can be reliably constrained by a

single seismogram. It is thus important to estimate the reliability of the measurements in each

frequency band for different modes. Here, we adopted a procedure similar to Yoshizawa and
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Kennett [2002] and Yoshizawa and Ekström [2010] based on the Frequency-Time Analysis

method [Dziewonski et al., 1969].

Let us first define the waveform fit f(ω, t):

f(ω, t) = exp

[
−S

mis(ω, t)

Ssyn(ω, t)

]
(2.18)

where Smis(ω, t) represents the spectrogram of the difference between real data and the

inverted synthetics. Ssyn(ω, t) is the spectrogram of the whole synthetic waveform. Similarly,

the relative power of the jth mode pj(ω, t) is defined as:

pj(ω, t) = exp

[
−
Sres
j (ω, t)

Ssyn
j (ω, t)

]
(2.19)

where Ssyn
j (ω, t) is the spectrogram of the jth mode waveform, and Sres

j (ω, t) is the spectro-

gram of the residual seismogram calculated as the difference between the full synthetic and

the jth mode waveform. In practice, both the frequency ω and time t are discrete, so the

spectrograms can be expressed in matrix form. For example, the element in the kth row and

lth column of the spectrogram matrix represents the amplitude of S(ωk, tl), where ωk is the

discretized frequency and tl is the center of the lth time window used in the frequency-time

domain analysis.

The waveform fit f measures the difference between the synthetic and real data in the

frequency-time domain. It is designed such that f(ω, t) = 1 at all frequencies and times

when the synthetic seismograms are identical to the observed data, and f decreases when

the waveform fit becomes worse. The relative power pj, which measures the relative power

of the jth mode, is designed in a similar way so that pj(ω, t) = 1 at all frequencies and time

when the jth mode in the seismogram is completely dominant and there is no contribution

from other modes, and pj decreases as the contribution from the jth mode becomes smaller.

For the reliability analysis, we want to consider the overall waveform fit and the relative

weight of one single mode at the same time because both factors indicate how well the phase

velocities at certain frequencies are constrained by the data. That is, the measurement of
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the jth mode becomes more reliable if the waveform fit is better, or if the relative weight of

the jth mode increases. Following this criteria, we define the reliability parameter as:

rj(ω) =
∑
l

pklj f
kl (2.20)

where p and f are defined in Eqs. 2.18 and 2.19. To get the reliability parameter of the

jth mode rj(ω), we first multiply the waveform fit by the relative weight of the jth mode

in the F-T domain, and then integrate the resulting matrix with respect to time. In this

way, the rj(ω) is a function of frequency and can be regarded as an indicator of reliability at

frequency ω for the jth mode. Examples of the reliability analysis are shown in the following

sections.

2.8 Synthetic Test

We first present a synthetic test to demonstrate that our method can recover an input shear-

wave velocity model well (Figures 2.4 and 2.5). A shear-wave velocity profile generated by

perturbing the PREM model was used to calculate a synthetic seismogram. Figure 2.4(B)

displays the input perturbation dVS(r)/VS(r). It is characterized by +3% anomaly relative

to PREM at 200 km depth and -2% at 600 km depth. The synthetic seismogram (Figure 2.6),

representing the velocity of the ground motion, was calculated for a great circle path between

the Banda Sea and Beijing, which corresponds to a distance of 5,347 km. We used the

fundamental mode and the first ten overtones to calculate the synthetics and to invert the

synthetic data. The event source parameters were taken from the GCMT catalog [Dziewonski

et al., 1981; Ekström et al., 2012] and are shown in Table 2.2. Only the vertical component

is considered for the waveform fitting. We generated correlated noise by bandpass-filtering a

sequence of uncorrelated Gaussian (white) noise, and then added the correlated noise to the

synthetic seismogram. This way, the filtered noise sequence is correlated and data points

in the sequence are no longer independent. The noise level was set at 10% of the average

amplitude of the waveform contained in the third time window as defined in Table 2.1, which
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Table 2.2: Source parameters from GCMT Catalog. Event 200503021042A was used for the

synthetic test. 200910151211A was for the western Australia path and 201004172315A for

the eastern Australia path.

ID lat(◦) lon(◦) depths(km) M0(dyne-cm) strike,dip,rake

200503021042A -6.54 129.99 196.1 5.73e+26 41,88,55

200910151211A -3.04 139.45 105.1 1.34e+25 296,83,145

201004172315A -6.82 147.30 62.9 2.19e+25 268,50,91

includes higher modes and excludes the fundamental mode.

The inversion of the synthetic waveform data was performed using eight Markov chains

starting from different random models, with the length of each chain fixed at 120,000 iter-

ations. To guarantee the convergence of the inversion when sampling the posterior distri-

bution, the first 60,000 iterations in each chain were marked as ’burn-in’ and we removed

them from the ensemble of sampled models. The ensemble of dVS/VS solutions represented

by a color density plot is displayed in Figure 2.4(A). The brighter color means the algorithm

spent more time in that region, and therefore it corresponds to a more likely VS structure

at that particular depth. The mean output model calculated from the ensemble of solutions

(Figure 2.4(B)), which can be regarded as the expectation of the ”true model”, is close to the

input model. Figure 2.5(A) displays the posterior distribution of the number of parameters

used by the algorithm during the inversion and demonstrates the parsimony of the trans-

dimensional framework: although we can almost always fit the data better by introducing

more parameters, the rj-MCMC method tends to prevent overfitting the data and prefer

models of smaller dimensions. In this case the result shows there is a higher probability

that the data can be explained by less than eight depth nodes. Figure 2.5(B) represents

the posterior data noise level and shows that fitting the first time window required less data

noise than the other two time windows.

A comparison between the input and output seismograms is shown in Figure 2.6, which
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Figure 2.4: (A) Color density plot representing the ensemble of solutions obtained by inver-

sion of the synthetic seismogram that was calculated with the input model shown in (B);

The posterior mean model resulting from this distribution of solutions is also displayed in

(B)
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Figure 2.5: (A) Posterior distribution for the number of parameters in the synthetic test

of Figure 2.4; (B) Posterior distribution for the data noise level for each of the three time

windows considered.

shows that the predicted waveform resulting from our inversion fits the input data much

better than the waveform predicted by PREM. The misfit between the inverted waveform

and the input data is represented in Figure 2.7 both in the time domain and the F-T domain.

The fundamental mode and first overtone phase velocity dispersion was calculated and

compared with the dispersion relationship predicted by the true model (Figure 2.8). The

standard deviation of our measurements at each period were calculated from the ensemble

of dispersion curves obtained. We see that the true dispersion curve is within the 95%

likelihood contour of our inversion results at all periods.

We further applied the reliability analysis described in the previous section to our syn-

thetic test. The relative weight of the first overtone is used as an example to demonstrate

the method (Figure 2.9). The spectrogram of misfit in Figure 2.7 and the spectrograms of

relative weights (like in Figure 2.9) were multiplied using Eq. 2.20 and summed along the

time domain to obtain the reliability parameters as a function of frequency for each mode
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Figure 2.6: Comparison between input synthetic waveform and the waveform predicted by

PREM (top) and by the mean model resulting from our inversion (bottom). The seismo-

grams shown here represent the velocity of the ground motion. The input seismogram was

calculated for the true model shown in Figure 2.4. Two frequency bands, as indicated in

table 2.1, are considered separately. The waveforms match is much improved after inversion.
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Figure 2.7: (A) Comparison between the output and input synthetic data in the time domain

filtered in the 50s-200s period range; (B): Spectrogram of the waveform fit f(ω, t), as defined

in equation 2.18. The regions with warmer colors correspond to better waveform fit in the

F-T domain.
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Figure 2.8: Inverted fundamental mode (A) and first overtone (B) phase velocity dispersion

and uncertainties (blue) compared to the dispersion curve calculated for the true model (red).

The uncertainties shown here correspond to 2σ obtained from the posterior distribution.
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Figure 2.9: (A) Synthetic waveform of the first overtone calculated from the inverted 1-D

V s profile and filtered in the 50s-200s period range; (B): Spectrogram P1(ω, t) of the relative

weight of the first overtone in the synthetic test, as defined in equation 2.19. The regions

with warmer colors in the figure represent larger weights in the F-T domain.

(Figure 2.10). In order to automate the process, we arbitrarily define the threshold values

at 10 for the fundamental mode and 2 for higher modes. For each mode, only periods with

reliability parameters larger than the threshold will be kept. As is shown in the synthetic test

results, the fundamental mode and the first overtone have high reliability at all periods. The

second overtone is also above the threshold at most periods but the third and fourth higher

modes only have a short range of reliable results. The fifth overtone cannot be determined

reliably in the synthetic test, likely because it was not excited well at those frequencies by

the employed seismic source.

Further synthetic tests were performed to verify whether our method is valid for un-

correlated noise (Fig. 2.11), and for fixed depth nodes, i.e. when the transdimensionality

aspect of the software is turned off (Fig. 2.12). This transdimensionality test showed that
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Figure 2.10: Reliability parameters as a function of frequency for the fundamental mode

(n=0) and the first five overtones in the synthetic test. The thresholds we defined for each

mode are denoted by the red dashed lines. Only periods at which the reliability parameters

are above the threshold are kept as reliable inversion results.
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for a parametrization with fixed number of parameters, similar to what was implemented by

others [Yoshizawa and Kennett, 2002, 2004; Visser et al., 2007; Visser, 2008; Yoshizawa and

Ekström, 2010], we can obtain phase velocity measurements with error bars that include the

predictions of the input model, i.e. the “true” data. However, the mean phase velocities

deviate from the true values, highlighting the importance of reporting proper uncertainties

with the measurements. We also see that the mean phase velocities do not reproduce the

input data as well as when the number of parameters is allowed to vary in the inversion.

This is visible when comparing Figures 2.11 and 2.12. This is also true for the mean velocity

model, which is not as close to the input model as the mean model of Figure 2.11. It should

be noted, however, that when the dimension of the model is fixed, smooth parametrizations

such as B-splines are more commonly employed [Yoshizawa and Kennett, 2002, 2004; Visser

et al., 2007; Visser, 2008; Yoshizawa and Ekström, 2010], since they can more easily represent

smooth 1-D velocity variations with a limited number of nodes. In addition, we note that

the computational time when the transdimensionality is turned on was not very different

from when it was turned off.

We additionally tested the effect of the data noise level by underestimating it (Fig. 2.13)

and overestimating it (Fig. 2.14) compared to the input data. These figures demonstrate

that the prior data noise level can have large influence on the inverted phase velocities as

well as their estimated uncertainties: when the noise level is underestimated, the posterior

uncertainties on the estimated phase velocities become smaller but the input data are not well

represented by those uncertainties as they lie outside (or close to) two standard deviations.

When the noise level is overestimated, however, the uncertainties on the phase velocities are

much larger but the mean is close to the input data. We therefore argue that overestimating

the noise level leads to more reliable measurements, albeit with larger uncertainties, and

reduces the possibility of overfitting the data.
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Figure 2.11: (A) VS posterior distribution for a synthetic test with uncorrelated noise. Both

noise levels and model dimensions are variable during the inversion. The red line in panel

(B) is the true model. The grey curve is the mean of the distribution of panel (A). Panel (C)

represents the inverted fundamental mode (top) and first overtone (bottom) phase velocity

dispersion curves and uncertainties (blue) compared to the dispersion curve calculated for

the true model (red). The uncertainties shown here correspond to two standard deviation

obtained from the posterior distribution.
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Figure 2.12: VS posterior distribution (A) for the a synthetic test with uncorrelated noise and

fixed depth parametrization. We fixed the number of depth nodes to nine and we fixed their

depths at 5 km, 20 km, 80 km, 140 km, 210 km, 310 km, 430 km, 550 km and 690 km. Only

the noise level and amplitude of dVS/VS are allowed to vary during the inversion. The red

line in panel (B) is the true model and the grey curve is the mean of the distribution of panel

(A). Panel (C) represents the inverted fundamental mode (top) and first overtone (bottom)

phase velocity dispersion curves and uncertainties (blue) compared to the dispersion curve

calculated for the true model (red). The uncertainties shown here correspond to two standard

deviation obtained from the posterior distribution.
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Figure 2.13: (A) VS posterior distribution for the a synthetic test with fixed, uncorrelated

and underestimated noise and fixed depth parametrization. The transdismentionality of the

algorithm was turned off and the depths of the nodes were the same as in Fig. 2.12. We

assumed the fixed noise level was underestimated in the inversion by a factor 100 compared

to the synthetic input data noise level. Only the amplitude of dVS/VS was allowed to vary

during the inversion. The red line in panel (B) is the true model and the grey curve is the

mean of the distribution of panel (A). Panel (C) represents the inverted fundamental mode

(top) and first overtone (bottom) phase velocity dispersion curves and uncertainties (blue)

compared to the dispersion curve calculated for the true model (red). The uncertainties

shown here correspond to two standard deviation obtained from the posterior distribution.

33



Figure 2.14: (A) VS posterior distribution for the a synthetic test with fixed, uncorrelated

and overestimated noise and fixed depth parametrization. The transdismentionality of the

algorithm was turned off and the depths of the nodes were the same as in Fig. 2.12. We

assumed the fixed noise level was overestimated in the inversion by a factor 10 compared

to the synthetic input data noise level. Only the amplitude of dVS/VS was allowed to vary

during the inversion. The red line in panel (B) is the true model and the grey curve is the

mean of the distribution of panel (A). Panel (C) represents the inverted fundamental mode

(top) and first overtone (bottom) phase velocity dispersion curves and uncertainties (blue)

compared to the dispersion curve calculated for the true model (red). The uncertainties

shown here correspond to two standard deviation obtained from the posterior distribution.
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2.9 Real Data Test

In this section we present the phase velocity inversion results for two paths across western and

eastern Australia. Figure 2.15 shows the locations of the events and stations. Both selected

events have depths larger than 50 km. The source parameters of the two events are listed

in Table 2.2. The epicentral distance for the western path is 4,036 km, and for the eastern

path is 4,012 km. Although a non-linear inversion method is used here to calculate phase

velocities from the S-wave velocity models, it can still be preferable to use a reference model

that is as close as possible to the true structure of the region studied. This is mainly because

our method to calculate the synthetic seismograms is not fully non-linear for computational

reasons (see discussions in previous sections). The forward modeling part of the algorithm

was linearized, and we search for model parameters dVS/VS between -5% and 5% around a

reference model in order to reduce errors caused by the linearization. Here, we adopted the

3-D shear-velocity model of Debayle et al. [2016]. We averaged the VS profiles extracted from

the reference model along each station-event pair, and used this average as a reference model

for the specific 1-D path considered. The prior data noise level was a uniform distribution

between 1 and 500 nm/s for each time window.

The posterior distribution of dVS/VS models for the western Australia path is shown in

Figure 2.16, followed by the number of parameters and data noise distributions (Figure 2.17),

the waveform fit (Figure 2.18), the reliability analysis (Figure 2.19), and the estimated

phase velocity dispersion curves (Figure 2.20). The inverted dVS/VS structure (Figure 2.16)

displays a modest positive deviation from the reference model between 50 km and 200 km

depth as well as below 400 km depth. The uppermost positive anomaly is consistent with

a thick lithosphere as expected in a cratonic area. The number of velocity parameters

required by the data is around four, which demonstrates the parsimony of the algorithm,

and the posterior data noise distributions have relatively narrow Gaussian distributions with

a standard deviation much lower than the assumed prior noise level. Overall, the fundamental
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Figure 2.15: Locations of events (stars) and stations (triangles) used for the real data test.

The yellow lines show the great circle paths from sources to receivers for western and eastern

Australia.

mode in the first window (5-10 mHz) is the lowest, followed by the higher modes window.

The synthetic waveform calculated from the mean velocity model fits the real data well

(Figure 2.18), and we see that phase velocities for the fundamental mode has reliability

parameters larger than the predefined threshold, 10, at all periods considered (Figure 2.19).

For the first overtone, the reliable measurements are in the period range 92 s-200 s, with

the threshold set at 2. Similarly, the second overtone phase velocities were estimated to be

reliable in the period range 58 s-148 s. The reliability parameters of the third overtones is

between 60 s-88 s. Finally, a small portion (50 s-57 s) of the fourth overtone was found to

be reliable.

For the eastern Australia path, we repeated the procedure described above. The results

are shown in Figs. 2.21-2.25. We see a strong positive VS anomaly compared to the reference

model at about 60 km depth and a negative VS anomaly at 120-220 km depth. Our solution

can be interpreted as a thin lithosphere (about 100 km thick) with slightly positive velocity
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Figure 2.16: (A) Posterior distribution of relative velocity perturbations with respect to

Debayle et al. [2016] for the western Australia path; (B) Resulting mean dVS/VS model
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Figure 2.17: (A) Posterior distribution of the number of velocity parameters for the western

Australia path; (B) Posterior data error distribution for each of the three time windows.

Note the different scales on the horizontal axes.

anomalies and a low velocity layer that may coincide with the asthenosphere (Fig. 2.26(B)),

consistent with Phanerozoic geological features and with previous studies [Yoshizawa and

Kennett, 2015]. It should also be noted, however, that our VS solutions are not directly

comparable with 3-D models, but rather can be regarded as a 1-D approximation of the real

Earth structure along the selected path. Figure 2.22 shows that the number of parameters

required to fit the data is between four and eight and the data noise level is clearly the lowest

for the fundamental mode filtered between 5 mHz and 10 mHz (window 1). Overall the noise

level is much higher for the eastern Australia path than for the western Australia path.

With Figure 2.24, we show that the fundamental mode and the first four overtones can

be reliably retrieved: the fundamental mode has high reliability at 50 s-150 s. The first and

second overtones have large reliability at longer periods (60 s-200 s, 54 s-200 s). The reliable

periods for third and fourth overtones are 50 s-83 s and 50 s-61 s, respectively. Measurements

for the modes and periods estimated reliable are shown in Fig. 2.25. This figure also displays
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Figure 2.18: The same as Figure 2.7 but for the western Australia path. (A) Real data and

synthetic seismogram filtered in the 50 s-200 s period range and calculated using the inverted

mean model of Figure 2.16; (B) F-T analysis of the misfit as defined in equation 2.18.
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Figure 2.19: Reliability parameters for the western Australia path. See Figure 2.10 for

details.

phase velocities measured using S40RTS [Ritsema et al., 2011] as a reference instead of the

Debayle et al. [2016] model to test the dependence of our method upon the reference model.

The results show no significant dependence on the reference model. The reliability tests were

not strongly affected by the reference model either (not shown here).

The mean absolute VS model were also plotted for paths and compared to PREM (Fig-

ure 2.26(A)). This figure shows a clear difference between the eastern and western paths in

the top 200 km, beyond which the two velocity profiles become more similar.

In this study we used the centroid moment tensor from the GCMT catalog. We ac-

knowledge, however, that for some paths dispersion measurements performed using wave-

form modeling at single stations can be affected by uncertainties in source parameters. While

quality control can be applied to filter out unreliable earthquake sources by comparing source

parameters from different earthquakes in the same region or by comparing different source
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Figure 2.20: Measured phase velocities anomalies for the western Australia path and the

modes and periods that were estimated to be reliable (Fig. 2.19). The measurements were

converted from perturbations with respect to the average version of the 3-D reference model

into perturbations with respect to PREM. Uncertainties correspond to 2σ.
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Figure 2.24: Reliabiliy test for the eastern Australia path. See Fig. 2.10 for details

catalogues, joint inversions of structure and source parameters are preferable [Valentine and

Trampert, 2012]. A future implementation of our technique (see Chapter 4) will include

source parameter among the unknowns in order account for possible errors in the source

parameters.

2.10 Summary

We applied the rj-MCMC technique to the non-linear problem of measuring fundamental and

higher mode Rayleigh wave phase velocity dispersion using waveform modeling. The use of

higher mode surface waves in depth inversions of seismic velocities and anisotropy is very

valuable as it increases the vertical resolution of tomographic models in the upper mantle

and transition zone. The forward problem consisted in calculating synthetic seismograms by

normal mode summation using computer program Mineos and a linearized approximation

to the calculation of normal mode eigenfrequencies. The rj-MCMC method enabled us to
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Figure 2.25: Reliable measured phase velocities expressed as perturbations with respect to

PREM for the eastern Australia path and the modes and periods that were estimated to be

reliable (Fig. 2.24). The red curve represents measurements performed using the model of

Debayle et al. [2016] as a reference model. The blue curve are measurements performed using

model S40RTS of Ritsema et al. [2011] as reference. The phase velocities were converted

from perturbations with respect to the 3-D reference model into perturbations with respect

to PREM. Uncertainties correspond to 2σ.
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find a distribution of 1-D shear velocity models that best fit the waveform and represent

the dispersion of multiple modes along a specific source-receiver path. An advantage of this

technique is that the algorithm can decide how much data noise is needed to fit the data

without overfitting them. The posterior noise distributions can then be used as an indicator

of the quality of the waveform fit within each frequency-time window. The data noise was

thus treated as an unknown and different noise levels were applied to the different time

windows considered. The resulting distribution of velocity models was used to calculate a

posterior distribution of dispersion curves, from which a mean and standard deviation were

obtained for different modes. A reliability analysis was then performed following Yoshizawa

and Kennett [2002] to assess which higher modes were reliably separated.

With synthetic tests, we showed that the newly developed method presented here can

extract the first four overtones and the fundamental mode at most periods between 50 and

200s, but that the third and fourth overtones can only be measured reliably at relatively

short periods and in a narrower period band (50 s-100 s for n=3 and 50 s-60 s for n=4). Mea-

surements performed for real data along two paths sampling western and eastern Australia

showed similar results: the fundamental mode and first two overtones were measured reliably

over most frequencies considered, and the third and fourth overtones could be extracted and

their dispersion measured over a narrower frequency band and for shorter periods. We also

demonstrated that the measured phase velocities do not strongly depend on the reference

model used to calculate the initial seismogram.

While computationally intensive, the technique presented here has several advantages.

It allows the user to sample the model space without requiring any explicit regularization

other than specifying the bounds of the model space explored. In addition, because it is

transdimensional and parsimonious, it can include data noise and the number of parameters

among the unknowns without overfitting the data. It therefore lets the data themselves

control the complexity of the solution. The reliability of mode separation can be assessed

and quantitative uncertainties on the dispersion curves of each mode can be readily obtained.
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This provides useful information on the data to seismologists who use these measurements

to model three-dimensional seismic velocity and anisotropy. Our technique can also be easily

adapted to include source parameters among the unknowns and perform joint inversions of

model structure and source parameters to account for the effect of source uncertainties on the

measured phase velocities. We also note that the phase velocities are not the only products

of this technique. One could also envision using the resulting path-averaged velocity models

and uncertainties and combine them to obtain a three-dimensional velocity model. Example

of such applications will be shown in the following Antarctica Chapter.
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CHAPTER 3

Antarctica

3.1 Introduction

The Antarctica plate can be divided into two distinct regions (Fig. 3.1): East Antarctica

(EANT), which is believed to be a Precambrian craton separated from the supercontinent

Gondwanaland, and West Antarctica (WANT), which is made up of a number of microplates

dating back to the Jurassic [Dalziel, 1992; Anderson, 1999]. Between EANT and WANT, the

Transantarctic Mountains (TAMs) extend from Northern Victoria Land to the Weddell Sea.

The Gamburtsev Subglacial Mountains (GSM), located in the center of EANT, are part of

a subglacial mountain range that is not well understood due to poor data access. The lack

of direct geological samples, for instance, makes it difficult to determine the age and origin

of the GSM [Shen et al., 2018]. In WANT, lies the West Antarctic Rift system (WARS),

a striking geological feature that experienced extension during most of the Cenozoic [e.g.

Granot et al., 2010]. The thermal anomaly caused by this extension is likely still present

in the WANT asthenosphere [An et al., 2015a]. WANT is also characterized by the Marie

Byrd Land (MBL), which is associated with volcanism that might have resulted from the

rifting, but that may also reflect the signature of mantle plumes [e.g. Sieminski et al., 2003;

Accardo et al., 2014; Emry et al., 2015].

Early surface wave dispersion data analyses over Antarctica [e.g. Press and Gilbert, 1959;

Evison et al., 1960; Kovach and Press, 1961] showed that EANT is characterized by phase

velocities that are usually representative of stable continents and a relatively deep Moho
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Figure 3.1: Topographic map of Antarctica. The bathymetry and topography of Antarctica

and surrounding areas are based on model SRTM15+ [Tozer et al., 2019]. Abbreviations:

AP = Antarctica Peninsula; DML = Dronning Maud Land; EMW = Ellsworth Whitmore

Mountains; GSM = Gamburtsev Subglacial Mountains; LG = Lambert Graben; MBL =

Marie Byrd Land; WARS = West Antarctic rift system.
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of about 35 km depth, whereas WANT displays lower phase velocities and a thinner crust

of about 25 km. Later studies [Dewart and Toksöz, 1965] found a slightly thicker crust in

EANT of about 42 km, consistent with more recent receiver function results that show an

average Moho of ∼40 km in the central EANT region and ∼55 km underneath the GSM

[Hansen et al., 2009, 2010]. Roult et al. [1994] presented the first tomographic model of

Antarctica and found a structure characterized by fast seismic velocities down to depths of

about 250 km under EANT and low velocities under the ridges surrounding the Antarctic

continent and under the TAMs. More recent global tomography studies [Ritsema and van

Heijst, 2000b] as well as higher resolution regional seismic investigations of the region [Danesi

and Morelli, 2001; Ritzwoller et al., 2001], have confirmed that the upper mantle beneath

the EANT Craton is associated with high-velocity anomalies and a thick continental root

of about 200 km, whereas WANT is characterized with relatively low velocities. In the first

study using both fundamental and higher mode Rayleigh waves, Sieminski et al. [2003] also

mapped a relatively slow structure that extends into the mantle transition zone beneath the

western Ross Sea and might indicate the presence of a mantle plume.

These early continental-scale tomographic studies were, however, restricted by the limited

number of seismic stations available. Seismic network coverage in Antarctica has increased

significantly in the past two decades, enabling seismic imaging of higher resolution thanks

to a much denser seismic raypath coverage. Recent fundamental mode phase [Heeszel et al.,

2013] and group [An et al., 2015b] velocity surface wave studies show consistent results for

EANT: the Gamburtsev Subglacial Mountains (GSM) is underlaid by a thick crust (∼60

km) and a seismically fast cratonic lithosphere reaching deeper than 200 km. Recently,

Lloyd et al. [2020] performed the first full-waveform adjoint tomography study of Antarctica

and estimated the depth of the craton to be between 250 km and 350 km. A number of

recent regional seismic tomographic results have also shown relatively low seismic velocities

under MBL extending through the upper mantle and possibly into the mantle transition zone

[Hansen et al., 2014; Lloyd et al., 2015; Heeszel et al., 2016; Lloyd et al., 2020]. In contrast,
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Emry et al. [2015] detected a local thinning of the transition zone, which may indicate high

mantle temperatures, beneath neighboring areas of MBL rather than right below MBL.

Seismic anisotropy, which is the directional dependence of seismic wave velocity, offers

a more complete description of Earth’s elastic structure than isotropic velocities alone and

can be used to constrain patterns of deformation in the mantle or crust [e.g. Becker et al.,

2003; Yao et al., 2008; Karato et al., 2008; Volk et al., 2021]. Mantle seismic anisotropy

can be detected using different types of observations such as shear-wave splitting [e.g. Silver

and Chan, 1988; Long and van der Hilst, 2005], surface wave dispersion at the regional and

global scales [e.g. Anderson, 1962; Montagner and Nataf, 1986; Ekström and Dziewonski,

1998; Trampert and van Heijst, 2002; Trampert and Woodhouse, 2003], free oscillation fre-

quencies [Beghein and Trampert, 2006; Beghein et al., 2008; Moulik and Ekström, 2014], and

anisotropic receiver function analyses [Ford et al., 2016]. Seismic anisotropy can manifest

itself in different ways in seismic observations: (1) Transverse isotropy, in which case the

elastic medium has one axis of symmetry. It is referred to as radial anisotropy if this axis is

in the radial direction; (2) Azimuthal anisotropy, which describes the dependence of seismic

wave speeds on the propagation azimuth. The shape-preferred orientation (SPO), sometimes

called thin periodic layering, of isotropic structures with contrasting elastic properties, and

the lattice-preferred orientation (LPO) of the crystallographic axes of elastically anisotropic

minerals, are two different mechanisms that can yield observations of seismic anisotropy.

LPO of olivine is the generally accepted explanation for observations of seismic anisotropy

in the upper ∼250 km of the mantle as it has highly anisotropic crystals (about 18% shear-

wave anisotropy) and is thought to be the dominant material at those depths [Karato and

Wu, 1993]. In addition, most olivine deformation fabrics tend to align the fast axes of indi-

vidual olivine crystals in the direction of shear. In the case of horizontal mantle flow induced

by a vertical velocity gradient, the rule of thumb is thus that the fast direction for seismic

waves reflects the flow direction. Observations of seismic anisotropy with axes aligned with

present-day plate motion in region of low seismic velocities are therefore often interpreted
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as the signature of current mantle flow in the asthenosphere [e.g. Gung et al., 2003; Marone

et al., 2007; Beghein et al., 2014]. In the mantle lithosphere, it has been interpreted as the

signature of fossil- or paleo-directions of deformation [e.g. Silver, 1996; Smith et al., 2004;

Lebedev et al., 2008]. Seismic anisotropy has also been detected at greater depths, including

in the mantle transition zone [e.g. Fouch and Fischer, 1996; Trampert and van Heijst, 2002;

Visser, 2008; Yuan and Beghein, 2013; Auer et al., 2014; Yuan and Beghein, 2014; Huang

et al., 2019] , top of the lower mantle [e.g. Lynner and Long, 2015; Ferreira et al., 2019], and

in the lowermost mantle [e.g. Panning and Romanowicz, 2006; Lynner et al., 2014].

Roult et al. [1994] were the first to publish azimuthally anisotropic phase velocity maps

for Antarctica by inverting dispersion curves obtained for fundamental mode Rayleigh waves

in the period range 60 s to 300 s. They found that oceanic areas are associated with stronger

azimuthal anisotropy than continents, but that the TAMs have relatively large anisotropy

within the Antarctica continent. The fast directions of propagation in the oceans were

found to be orthogonal to most of the ridges and to align with the direction of plate motion.

However, the raypath coverage was very limited due to the small number of stations available,

with only ∼400 paths covering the southern hemisphere. Sieminski et al. [2003] included

azimuthal anisotropy in their fundamental and higher mode Rayleigh wave inversion, and

found the presence of azimuthal anisotropy to be significant in the upper 200 km underneath

the Antarctica continent, with maximum amplitudes at 100 km depth. Ritzwoller et al.

[2001] studied radial anisotropy in the region and reported an average of ∼4 % anisotropy

for Antarctica and surrounding areas, with slightly stronger amplitudes in WANT than in

EANT. Additionally, O’Donnell et al. [2019] imaged WANT with ambient noise tomography

in the period range 8 s to 25 s and detected VSH > VSV in the crust across the region. The

peak amplitude was observed in the Ellsworth–Whitmore Mountains (EWM). Lloyd et al.

[2020] also included radial anisotropy in their ANT-20 model, but they did not interpret

the anisotropic structure retrieved due to the imbalance in sensitivity of VSV and VSH , and

instead focused on the Voigt average wavespeed.
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A number of shear-wave splitting studies have also investigated the anisotropic proper-

ties of Antarctica [e.g. Pondrelli and Azzara, 1998; Barruol and Hoffmann, 1999; Müller,

2001; Bayer et al., 2007; Reading and Heintz, 2008; Barklage et al., 2009]. With the new

seismometers deployed for the POLENET/ANET project, Accardo et al. [2014] calculated

and summarized results on azimuthal anisotropy for Antarctica from shear-wave splitting

methods. They found that the fast axis directions for shear-waves do not align with the

Absolute Plate Motion (APM), which may indicate that the uppermost mantle is subject to

other secondary convection mechanism other than plate motion. They also found a radial

pattern of fast axis direction around the MBL, which was interpreted as flow associated with

a mantle plume head.

However, while shear-wave splitting analyses have good lateral resolution, they lack ver-

tical resolution because measurements result from near-vertical paths and thus reflect the

integrated effect of anisotropic structures encountered along the path. Surface waves provide

constraints on seismic anisotropy with a much greater vertical resolution than body waves,

though with a more limited lateral resolution of a few hundreds of kilometers at best. In

this study, we took advantage of the increased number of available stations in Antarctica

since the last higher mode study of the region [Sieminski et al., 2003] and we obtained a

new azimuthally anisotropic VSV model by jointly inverting fundamental and higher mode

Rayleigh waveforms. The depth range of our model is 60 - 600 km, and azimuthal anisotropy

was found to be significant only for depth above 300 km.

3.2 Data Selection

The seismic data coverage in Antarctica was boosted significantly by the deployment of recent

temporary seismic networks, such as GAMSEIS [Wiens and Nyblade, 2007a], POLENET

[Wiens and Nyblade, 2007b], TAMNNET [Hansen, 2012] and UKANET [Alex Brisbourne,

2016]. In this study, we considered all permanent and temporary seismic stations south of
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-40 degrees latitude and collected data recorded between 2005 and 2020. Because the lateral

resolution of the models is limited by the wavelength of the data, having measurements at

nearby stations would not improve resolution. The minimum interstation distance was thus

set at 75 km so that only one station from very dense arrays is used. We obtained the

event source parameters from the GCMT catalog [Dziewonski et al., 1981; Ekström et al.,

2012], and considered all events falling between -20 degrees to -90 degrees latitude and with

moment magnitudes between 5.5 Mw and 7.0 Mw. The magnitude thresholds are chosen

to avoid small magnitude earthquakes with low signal-to-noise ratio (SNR), as well as to

avoid large magnitude earthquakes that cannot be approximated by the single point source

assumption in waveform modeling. The station-event pairs were then selected based on the

following criteria: 1) The epicentral distance should be between 30 degrees and 75 degrees.

The lower bound guarantees that the higher mode waveforms separate adequately from the

fundamental mode. We also avoided paths with long epicentral distances as they are more

likely to be contaminated by scattering effects [Lebedev et al., 2005]; 2) The SNR of the

recorded waveform should be higher than 10 for the 10-20 mHz frequency band, and higher

than 5 for the 5-10 mHz frequency band. This criteria helped filter out records contaminated

by noise. The lower frequency band had a lower threshold because it usually carries weaker

energy compared to the higher frequency band; 3) At least 45% of the great circle paths

had to fall within the Arctic Circle in order to ensure good constraints on the Antarctica

Continent. The selected 578 events and 164 stations are shown in Fig. 3.2.

3.3 Method

The technique employed in this study was originally designed to measure event-to-station

phase velocity dispersion curves using waveform-fitting one-dimensional (1-D) velocity mod-

els sampled with a reversible-jump Markov Chain Monte Carlo (MCMC) approach [Xu and

Beghein, 2019; Xu et al., 2021]. Dispersion curves obtained for a study area can then be
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Figure 3.2: Maps of selected event locations (red circles) and stations (blue triangles). The

background bathymetry and topography of Antarctica and surrounding areas are based on

model SRTM15+ [Tozer et al., 2019].
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jointly inverted to obtain phase velocity maps, which in turn can be inverted to obtain 3-D

velocity and anisotropy models. This multi-step approach is commonly used in seismology

and has the advantage of providing phase velocity maps, which is a compact way to represent

the measurements and can be combined with other datasets for depth inversions. However,

every time an inversion is performed, some form of prior information is introduced, either

directly or indirectly via regularization, and it affects the solution. Here, we chose instead

to use the path-averaged 1-D velocity models that result from the model space search used

in our waveform fitting technique, and combine them to directly obtain a 3-D azimuthally

anisotropic model of the upper mantle. The advantage is that it reduces the number of inver-

sion steps and therefore the number of times user-specified prior information is introduced

into the solution.

In this chapter, we briefly summarize our waveform fitting technique and explain the

method used to perform the 3-D depth inversions as well as the construction of phase velocity

maps. We then present and interpret both the resulting phase velocity maps and the 3-D

anisotropy and velocity models.

3.3.1 MCMC Inversion Scheme and Waveform Fitting

In this section, we briefly summarize the framework of our inversion method and emphasize

the improvements we made compared to the original paper. For more details, we refer the

reader to Chapter 2.

We used a rj-MCMC method to obtain an ensemble of 1-D models that fit seismic wave-

forms in multiple frequency-time windows and that represent the dispersion of surface waves

along the source-receiver path [Xu and Beghein, 2019; Xu et al., 2021]. One major advantage

of model space search methods such as the rj-MCMC is that they enable direct uncertainty

estimation of all model parameters. Another advantage of the trans-dimensional rj-MCMC

algorithm is that it does not require a fixed model space dimension. Instead, it is designed

to search for the optimal model space dimension during the sampling and discourages high
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dimensional models to avoid overfitting issues [Malinverno, 2002]. In addition, unknown

data noise can be part of the unknowns, reducing the risk of mapping noise into the models.

Details about the implementation of rj-MCMC algorithm in our method have been summa-

rized in our previous work [Xu and Beghein, 2019; Xu et al., 2021] and in Chapter 2 of this

thesis. In this study, we sampled 480,000 models and used an ensemble of 1,600 models after

burn-in period for each event-station pair. We used software package Mineos [Masters et al.,

2011] to calculate synthetic seismograms for each model generated by the MCMC model

space search and compared these synthetics with the recorded waveforms.

Synthetic seismograms can be calculated by normal mode summation [Dahlen, 1968]:

s(ω) =
∑
m

Am(ω) exp [iω∆/cm(ω)] (3.1)

where ω is the angular frequency of a mode m, cm(ω) is its phase velocity, ∆ is the epicentral

distance, and Am is the amplitude of the mode. While the calculation of one seismogram

using this formulation is not particularly slow, the rj-MCMC sampling requires solving the

forward problem hundreds of thousands of times for each path, which becomes very time-

consuming when calculating normal mode eigenfunctions and eigenfrequencies at each itera-

tion of the MCMC scheme. Instead, we chose to linearize the forward modeling by assuming

that the perturbation relative to the reference model is small. Under this assumption, the

perturbed eigenfrequencies δω can be calculated as:

δ ln(ω) =

∫ a

0

(δ lnVS(r)KVS(r, ω)+δ lnVP (r)KVP (r, ω)+δ ln ρ(r)Kρ(r, ω))dr+
∑
d

δd[Kd(ω)]+−

(3.2)

where δ ln(ω) = δω/ω, a is the radius of the planet, and VP , VS, ρ and d are P-wave velocity,

S-wave velocity, density, and radius of discontinuities, respectively. KVP , KVS , Kρ and Kd

are the Fréchet derivatives [Woodhouse, 1980]. Here, shear-wave velocities were allowed to

be perturbed by [−5%,+5%] relative to the reference model. Unlike the methods presented

in Chapter 2, which only considered the VS term, here we also include the effects of VP

and ρ in the waveform simulation. The change in VP and ρ are scaled to the change in
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VS because VP and ρ only have secondary effects on the waveforms. For this, we followed

the empirical scaling relationship from Yoshizawa and Ekström [2010]: VP is scaled by a

relationship that varies linearly with depth, with dlnVP
dlnVS

= 0.8 at the surface and dlnVP
dlnVS

= 0.3

at the core-mantle boundary, and ρ is scaled using a constant relationship, dlnρ
dlnVS

= 0.3, at

all depths. Due to the intermediate-to-long period nature of the surface wave data analyzed

here (50 s - 200 s), we do not expect to be able to resolve crustal structure independently

from the mantle. We thus did not include perturbations in the depth of the crust-mantle

boundary in our inversion scheme and used the Moho depths from CRUST1.0 [Laske et al.,

2013] in our reference model.

The synthetic and the recorded waveforms were compared in multiple frequency-time

windows (the selection criteria are summarized in Table 2.1) and the total misfit function

was given by:

Misfit(m) =
M∑
j=0

∑Nj

i=0(dj,i − sj,i)2∑Nj

i=0 d
2
j,i

(3.3)

where d and s denotes the recorded waveform and synthetic waveform, respectively. M is

the number of frequency-time windows and N is the respective number of data points within

each window. The normalization factor in the denominator guarantees that the misfits are

independent of the absolute amplitudes of earthquakes and are used here for easier quality

control.

Our waveform inversion requires good 1-D reference models in order for the MCMC

sampling algorithm to converge within a reasonable amount of time, to reduce the errors

introduced by the linearization of the forward modeling, and avoid cycle skipping. For

each event-station pair, we thus calculated path-averaged reference models using CRUST1.0

[Laske et al., 2013] and 3-D global model 3D2018 08Sv [Debayle et al., 2016]. We saved the

posterior distributions for both the along-path depth-dependent shear-wave velocities and

the Rayleigh wave phase velocities, which allowed us to estimate the uncertainties on the 1-D

VSV profiles at different depths and the uncertainties on the phase velocity maps at different

periods. Below, we present the phase velocity maps obtained as well as our 3-D velocity and

59



azimuthal anisotropy models.

3.3.2 Phase Velocity Maps and Inversion of 1-D Path-Averaged Models

Our trans-dimensional waveform fitting technique enables us to measure path-averaged phase

velocity dispersion for fundamental and higher mode surface waves. In addition, a byproduct

of this method consists in shear-wave velocity profiles between pairs of stations and events.

We used the least squares (LSQR) method of Paige and Saunders [1982], as in Deschamps

et al. [2008], to invert the path-averaged phase velocity measurements and obtain anisotropic

phase velocity maps, and to invert the 1-D path-averaged velocity models and obtain a 3-D

azimuthally anisotropic velocity model as explained below.

At each depth, the path-averaged slowness along great circle path l, βl(z), can be seen

as the integral of the local slowness along the great circle path:

1

βl(z)
=

1

d

∫
l

1

β(z, l)
dl, (3.4)

where z is the depth, l is the great circle path connecting the station and the event, and d

denotes the epicentral distance along the great circle path. In a slightly anisotropic medium,

the azimuthal variation of SV-wave propagating horizontally with velocity βv(z,Ψ) can be

expressed as:

βv(z,Ψ) = βv0(z) + A1(z)cos(2Ψ) + A2(z)sin(2Ψ) +B1(z)cos(4Ψ) +B2(z)sin(4Ψ) (3.5)

where Ψ denotes the azimuth. Provided good path coverage, the path-averaged velocities

can be inverted to constrain the isotropic velocities βv0 and their anisotropic coefficients A1,

A2, B1, and B2. A similar expression can be derived for surface wave phase velocities, c, at

period ω:

c(ω,Ψ) = c0(ω) + c1(ω)cos(2Ψ) + c2(ω)sin(2Ψ) + c3(ω)cos(4Ψ) + c4(ω)sin(4Ψ) (3.6)

Both inverse problems can be written as:

d = Gm (3.7)
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where m represents the model parameters (βv0, A1, A2, B1, B2) in Eqn. 3.5 or C0 - C4 in

Eqn. 3.6, d is the data, and G is a linear operator approximating the relationships between

the data and the model parameters.

For shear-wave velocities, the amplitudes of anisotropy, Λ, and the fast directions of

anisotropy, Θ, are given by:

Λ2Ψ(z) =
√
A1(z)2 + A2(z)2 (3.8)

Λ4Ψ(z) =
√
B1(z)2 +B2(z)2 (3.9)

Θ2Ψ(z) =
1

2
arctan

(
A2(z)

A1(z)

)
(3.10)

Θ4Ψ(z) =
1

4
arctan

(
B2(z)

B1(z)

)
(3.11)

Similarly, the equations for phase velocities are given by:

Λ2Ψ(ω) =
√
c1(ω)2 + c2(ω)2 (3.12)

Λ4Ψ(ω) =
√
c3(ω)2 + c4(ω)2 (3.13)

Θ2Ψ(ω) =
1

2
arctan

(
c2(ω)

c1(ω)

)
(3.14)

Θ4Ψ(ω) =
1

4
arctan

(
c4(ω)

c3(ω)

)
(3.15)

The study area was parameterized by a 2-D triangular grid at each depth for the βv(z,Ψ)

inversions and at each period for the c(ω,Ψ) inversions. We manually tuned the grid spacing

and set it at 300 km. The spatial distribution of the 2-D triangular grid for the study area

is displayed in Fig. 3.3.

Regularization was introduced to solve the ill-posed geophysical problem and to avoid

overfitting. Separate damping parameters are introduced for the isotropic terms, the 2Ψ

terms, and the 4Ψ terms. For each of these terms, we used the L-curve method [Hansen,

1998] to select the optimal damping values. The L-curve describes the relationship between

explained variances and the damping value. The preferred damping value is then chosen at
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Figure 3.3: Ray-path coverage (red curves) and the 2-D triangular grid (black circles) used

in the VS modeling.
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the ”elbow” of the L-curve, which represents a good trade-off between variance reduction and

model complexity. Different depths or periods are treated independently, and for each one of

them, we start selecting the damping of the isotropic term. After the optimal regularization

is selected for the isotropic term, we proceed with the 2Ψ terms, and finally the 4Ψ terms.

Example of damping selection will be shown in the Result section. The significance of the

2Ψ and 4Ψ terms are determined via F-test and will be discussed in the Results section as

well.

3.4 Results

3.4.1 1-D Path-Averaged Profiles

We ran MCMC samplings on all paths selected based on the criteria described in Section

3.2. Quality control was done by inspecting the converged noise levels in each of the time-

frequency windows of Table 3.1. In this study, the maximum acceptable noise levels for

windows 1, 2, and 3 are set at 0.3, 0.3, and 0.6, respectively. These thresholds were manually

selected to balance dense path coverage and good individual path fitting, and only paths that

satisfy all these conditions were kept. About 2,000 paths passed our rigorous quality control

and the resulting ray-path coverage is shown in Fig. 3.4. For each of the selected paths,

we calculated the standard deviations of the VSV models at different depths and used these

standard deviations to approximate the uncertainties at each path and depth. The inverse

of the uncertainty estimates were then used as the path weights in the second inversion.

Fig. 3.5 shows the distribution of VSV uncertainties at different depths. In general, the

uncertainties increase with depth due to poorer resolution of our dataset at greater depths.

For instance, most paths have uncertainties smaller than 40 m/s at 60 km and 150 km

but at 600 km, the majority of the uncertainties falls in bins larger than 50 m/s. Shen

et al. [2018] reported a standard deviation of 50 - 65 m/s from their Bayesian inversion

on fundamental surface waves and receiver functions, which is roughly consistent with our
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Table 3.1: Selection of frequency-time windows. The first and second window indices cor-

respond to the fundamental mode and the third window is for higher modes. The first and

third windows share the same start time, which is determined by the S- or SS- wave arrival

times. All other start/end times are determined by ∆/U , where ∆ is the event epicentral

distance and the values of the group velocities U are indicated in the table.

Window index Frequency(mHz) Start End

1 5-10 S or SS U = 2.95 km/s

2 10-20 U = 4.30 km/s U = 3.20 km/s

3 10-20 S or SS U = 4.30 km/s

path-specific uncertainties above 250 km. It should be noted, however, that our estimated

standard deviations represent the uncertainties introduced in the waveform fitting step, while

the results of Shen et al. [2018] consider both the data noises and depth trade-off in surface

wave inversion. In order to further propagate the path-specific uncertainties into the second

inversion, we used the inverse of the standard deviations as path weights. Paths with smaller

uncertainties with be assigned a higher weight when inverted into a 3-D VSV model.

3.4.2 Significance of the Anisotropy

As shown in Fig 3.6, the variance reduction increases as more parameters are included in

the inversion. However, some of the parameters may not necessarily be constrained by the

data. In order to test if the anisotropic terms in this study are statistically significant, we

adopted the method of Trampert and Woodhouse [2003]. We defined a reduced χ2 as:

χ2 =
1

N −M
(d−Gm)C−1

d (d−Gm) (3.16)

where N is the number of data points and M is the trace of the resolution matrix R. d is

the data vector, m is the model vector and G is matrix describing the relationships between

the data and the model parameters. Cd is the data covariance matrix. The resolution
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Figure 3.5: The distribution of path-specific VSV standard deviations at different depths. All

paths shown in Fig. 3.4 are included to estimate the distribution and the standard deviation

for each path is calculated from the ensemble of VSV models sampled in the MCMC step.
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matrix cannot be directly estimated from the LSQR method. Alternatively, Trampert and

Woodhouse [2003] suggested to calculate the resolution matrix by inverting each column of

matrix G:

Rj = LGj (3.17)

where L represents the LSQR operator, Rj is the j-th column of the resolution matrix.

Fig. 3.7 shows one example of reduced χ2 at depth 150 km as a function of the trace of res-

olution matrix. The reduced χ2 decreases as the trace of R (which represents the number of

indepedent parameters and thus the model complexity) increases. We then performed stan-

dard F-tests [Menke, 2018] between the preferred models selected with the L-curve method

and determined if the misfit reductions are significant at each depth. In such comparisons,

the null hypothesis is that the simpler model and the more complicated model are equiva-

lent at explaining the dataset. The F-test calculates the confidence level at which the null

hypothesis can be rejected (the model with more parameters are better). Here we set the

confidence level threshold at 85%, and found that the misfit reduction between the isotropic

(0Ψ) inversions and 0Ψ + 2Ψ inversions are only significant at depth shallower than 300 km,

while the reduction between 0Ψ + 2Ψ inversions and 0Ψ + 2Ψ +4Ψ inversions are not signif-

icant except at a depth of 60 km. Details of the F-test analysis can be found in Table 3.2.

Considering these results, we believe the presence of the 2Ψ azimuthal anisotropy is required

to explain the data in the upper mantle and our study focus on the discussion of the 2Ψ

anisotropy in the upper 300 km and we do not discuss the 4Ψ terms.

3.4.3 Isotropic Model

The isotropic part of our azimuthally anisotropic 3-D model is displayed in Fig. 3.8. Because

the lowest period surface wave data we measured in this study is 50 s, we do not expect the 3-

D model to constrain the crust independently from the mantle, and thus we only present the

VSV model starting at 60 km depth. The dichotomy between EANT and WANT dominates

the variations in VSV at depths down to 100 km, and the positive anomalies in EANT are
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iso
2Ψ
4Ψ

Figure 3.6: An example of damping parameter selection based on the L-curve method. The

L-curves illustrate the trade-offs between the variance reduction (y-axis) and the amount of

damping added (x-axis). The optimal damping parameters are selected as the elbow points

(orange triangles) of the curves. We first searched for the damping parameters of isotropic

terms, and then based on the selected damping parameters for isotropic terms, we further

searched for the 2Ψ terms, and finally the 4Ψ terms.
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iso
iso + 2Ψ 
iso + 2Ψ + 4Ψ  

Figure 3.7: An example of reduced χ2 as a function of the trace of resolution matrix R for

inversions of Vs at depth 150 km. The blue curve is for cases where only the isotropic terms

are included in the inversion. Different values of the trace of resolution matrix were obtained

by applying different levels of damping. The preferred model selected by the L-curve method

is marked as red star. The orange curve represents the inversion with both isotropic and

2Ψ anisotropic terms, and the damping parameters for the isotropic terms were fixed at the

preferred values. The green curve is further based on the orange curve, with isotropic, 2Ψ

and 4Ψ terms all included in the inversion. The red triangle and red square correspond to

the preferred models in the isotropic + 2Ψ and isotropic + 2Ψ + 4Ψ inversions, respectively.
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Table 3.2: Significance of 2Ψ and 4Ψ terms at different depths from F-test analysis. A

lower probability means that the model with more parameters has significantly lower misfits

compared to the model with fewer parameters, and thus those extra parameters are needed

to explain the data.

Depth P(0Ψ + 2Ψ == 0Ψ) P(0Ψ + 2Ψ + 4Ψ == 0Ψ + 2Ψ)

60 km 0.23% 6.62%

150 km 4.40% 37.50%

200 km 2.98% 35.41%

250 km 12.56% 39.50%

350 km 15.19% 30.09%

450 km 19.67% 44.74%

600 km 34.21% 25.54%

visible down to 200 km depth, which indicate the distinct seismic patterns underneath the

cratonic EANT and the extensional WARS. The largest amplitude anomalies range from

+7% relative to PREM model underneath EANT, to about -5% below WANT. Such strong

anomalies start to diminish below 200 km. Around the mantle transition zone, velocity

anomalies are generally within +/- 2%.

As is shown in Fig. 3.5, the uncertainties in the path-specific measurements increases

with depth, but the amplitudes of the velocity anomalies decrease with depth. For example,

the mean uncertainty at 600 km is ∼75 m/s (∼1.3%). Thus most of the VSV variations

shown at 600 km, which are below 2%, are likely not constrained by the data. We therefore

refrain from interpreting the anomalies in the transition zone in our models due to the limited

resolution at these depths. On the contrary, depths shallower than 300 km have stronger

variations and smaller uncertainties, and patterns shown at these depths can be interpreted

with more confidence.

Vertical slices of three transects are shown in Fig. 3.9. Overall, the fast VS anomalies
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Figure 3.8: Isotropic part of our 3-D VSV model at different depths. Velocity perturbations

are calculated relative to PREM.
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underneath EANT is consistent with observations from Lebedev et al. [2009], who found a

global average of 5 - 6% positive VS anomalies at 100 - 150 km depth in cratonic lithospheres.

Similar to Lloyd et al. [2020], we also observe a varying depth extent of the fast velocity

anomalies underneath the interior of EANT (Figs. 3.8 and 3.9): central EANT is underlain

by thicker fast anomalies compared to the EANT coastal region. However, the depth range

of fast anomalies in our model is roughly 200 - 300 km, which is shallower than the 250 -

350 km estimated by Lloyd et al. [2020]. Heeszel et al. [2013] observed a peak positive VS

anomaly of ∼ 7 % beneath GSM at 150 km depth with Rayleigh wave tomography, which

is consistent with our results. Comparing to other Archean cratons, the peak VS anomalies

under GSM are similar to the tomography results for the Archean Kaapvaal craton, the VS

anomalies of which are reported to be ∼6 % larger than PREM at 150 km [e.g. Ritsema and

van Heijst, 2000a; Chevrot and Zhao, 2007]. Tomography results for North American craton

also show positive VS anomalies at similar amplitudes (∼ 6 %) [e.g. Yuan et al., 2014]. The

amplitudes of positive anomalies beneath GSM in our model are weaker compared to another

Archean craton, the Yilgarn craton (west Australia), as the surface wave tomography results

for Australia show positive anomalies > 8 % compared to PREM between 100 - 150 km

[e.g. Yoshizawa, 2014]. The coastal area of EANT has a relatively thinner fast seismic lid

extending down to 100 - 150 km (Figs. 3.8 and 3.9). From Fig. 3.9, we observe both the

thickest craton and fastest velocity under the GSM, which is consistent with results from

Heeszel et al. [2013] and Lloyd et al. [2020].

WANT features negative anomalies down to 200 km depth, beneath MBL and along the

Amundsen Sea coast to the AP (Antarctica Peninsula). In Lloyd et al. [2020], a negative

anomaly extending into the transition zone is identified in that area and is associated with

a potential mantle plume. While we also observe negative velocity anomalies underneath

the MBL between 300 - 400 km depth (Fig. 3.9 (a) and (c)), these anomalies extend over a

wide area, larger than expected for a plume, making it difficult to determine whether this

is related to a plume. We note, however, that the long wavelength of higher mode surface
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Figure 3.9: Vertical slices of the 3-D model. VSV structure along transects A-A’(a), B-B’(b)
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waves (∼ 500 km) limits the horizontal resolution of the 3-D model at such depths, and our

synthetic isotropic tests (see below) also show that the model resolution is barely sufficient

to constrain a 1000 km wide negative anomaly. Our model is thus unlikely to be able to

constrain a thin mantle plume.

3.4.4 Azimuthal Anisotropy

Fig. 3.10 displays the horizontal distributions of the 2Ψ terms at depths ranging from 75 km

to 285 km. Stronger azimuthal anisotropy can be observed in the interior of Antarctica as

well as in WL at depths between 100 km and 200 km. The amplitudes of anisotropy start

to decrease below 225 km and the anisotropy becomes weak at multiple locations in and

around Antarctica starting at 285 km. This is consistent with our F-test results showing

that the 2Ψ terms are not significant below 300 km. In oceanic areas, fast directions are

roughly parallel to the extension direction of the Pacific-Antarctic Ridge at 75km, which

agrees with the phase velocity maps of Roult et al. [1994] and is consistent with alignment

of olivine in active mantle flow. However, due to the limited azimuthal coverage of the

surrounding oceanic areas, we focus on the interpretation of the azimuthal anisotropy on

the Antarctic continent. Abrupt changes in fast directions can be observed in all 4 depth

slices between EANT and WANT. For EANT, the fast directions of anisotropy at 75 km

show a bi-modal distribution, with the top half dominated by SW-NE and the bottom half

by SE-NW. At deeper depths, SE-NW becomes the dominant fast direction, especially in

the interior of EANT. Coastal areas tend to present different fast directions compared to

the interior. The weak amplitudes of azimuthal anisotropy in Enderby-Kemp Land (EKL)

and Lambert Graben (LG) are likely to caused by poorer ray-path coverage in these regions

(Fig. 3.4. For WANT, we see that the fast direction near the Amundsen Sea changes from

NE - SW to NW - SE from 75 km to 150 km, and then changes back to NE - SW below

200 km. Such changes are likely to associate with the lithosphere-asthenosphere boundary,

as we explain in the Discussion section. We also point out that the edges of EANT, especially
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the NE corner, do not have good azimuthal ray-path coverage due to the lack of stations.

So the azimuthal anisotropy results for these areas are likely less reliable compared to the

majority of WANT and the center of EANT.

3.4.5 Synthetic Tests

We implemented synthetic tests in order to evaluate the quality of the data coverage and the

trade-offs between isotropic and anisotropic model parameters. Fig 3.11 shows example tests

at 150 km depth for an isotropic checkerboard test, a test for an anisotropic inversion with

an isotropic true model, and an anisotropic inversion with anisotropic true model. The true

model of the isotropic checkerboard test has a strong positive anomaly at the South Pole

with a radius of 10◦ (∼1000 km). In other areas, the checkerboard anomalies correspond

to 8◦ (latitude) by 36◦ (longitude) cells. The cell size varies with latitude and the size of

the negative anomaly at MBL is about 900 km × 1000 km. In the isotropic checkerboard

test, the positive and negative anomalies south of -70 degrees can be resolved, though some

smoothing effects are visible toward the east. The resolution in the surrounding oceans is

not as good as on the continent because of the reduced ray path coverage. The anisotropic

inversion of an isotropic model shows that the isotropic input model is well recovered and

that a very small ( < 0.2%) amount of anisotropy is found in the output model over more

than 75% of the study region, meaning that most of the anisotropic signal found at that

depth is constrained by the data. Some moderate artifacts are observed at the transition

between the positive anomalies in the East and the negative anomalies in the West, with the

anisotropy amplitude as much as 0.6%, but it is still very small compared to the anisotropy

amplitudes found in the 3-D models resulting from the real data inversions. The recovered

amplitude and fast directions are consistent with the input model in most of the Antarctica

continent. Inconsistencies can, however, be found in some areas of the surrounding oceans

where the azimuthal coverage is not ideal. We also note that the isotropic terms in the

second and third tests are recovered well compared to the true models, and the amplitudes
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Figure 3.10: 2Ψ anisotropy at different depths (black bars). The background color represents

the isotropic part of the model. Directions of black bars represent the fast directions and the

length of black bars are proportional to the amplitude of the anisotropy.The purple arrows

represent the APMs based on NUVEL-1A with no-net rotation reference frames [Gripp and

Gordon, 2002]. The red line at bottom represents the Pacific-Antarctic Ridge.
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of the isotropic terms are barely affected by the introduction of the azimuthal anisotropy.

3.4.6 Phase Velocity Maps

In this section, we briefly show the resulting 2-D phase velocity maps obtained. Future work

may leverage these phase velocity results by combining them with higher frequency surface

wave measurements from ambient noise method or inter-station measurement method, in

order to have good constraints for the upper 50 km structure. It is also possible to jointly

invert these phase velocity maps with other types of seismic data, such as body waves or

receiver functions, to resolve the ambiguities from separate inversions and obtain a more

complete picture of Antarctica.

We considered a number of periods for each surface wave mode and the results for each

mode and period are filtered using the reliability analysis described in Chapter 2. Only modes

and periods with sufficient ray-path coverage were considered for 2-D phase velocity map

inversion. The F-test results using a confidence level of 85 % to determine the significance

of additional 2Ψ terms are shown in Table.3.3.

Fig. 3.12 displays examples of the azimuthally anisotropic phase velocity maps for fun-

damental and higher modes. The dichotomy pattern between WANT and EANT shown in

the VSV model is also present in the phase velocity maps, especially for fundamental modes

and the second overtone at a period of 100s, which are sensitive to the upper 200 km. EANT

is associated with fast anomalies while WANT has consistent slow anomalies around MBL,

which may indicate a deep source of thermal anomalies around that area. Amplitudes of

anisotropy are stronger for fundamental modes than for higher modes. Since fundamental

modes are sensitive to shallower structure, this indicates weaker anisotropy at greater depths.

This is consistent with our 3-D VS results and with Sieminski et al. [2003] who determined

azimuthal anisotropy to be significant in the upper 200 - 250 km. In addition, fundamental

modes show stronger anisotropy in the surrounding oceanic areas, agreeing with the results

of Roult et al. [1994]. Fast directions are orthogonal to the Pacific-Antarctica Ridge for
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Figure 3.11: Synthetic tests at 150 km depth. Isotropic checkerboard test (top): (A) is the

input VSV model and (B) is the recovered isotropic model. The middle panels are for an

anisotropic inversion with an isotropic input model (C). The recovered output model with

2Ψ terms included in the inversion is shown in (D). The bottom panels are for an anisotropic

resolution test. (E) is the input model and (F) is the recovered model. The length of black

bars represents the amplitudes of the anisotropy.
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Table 3.3: Significance of 2Ψ terms in the phase velocity map modeling for different modes

and periods using a F-test analysis. A lower probability means that the model with more

parameters has significantly lower misfits compared to the model with fewer parameters, and

thus those extra parameters, i.e. anisotropy, are needed to explain the data.

n Period (s) P(iso + 2Ψ == iso) P(iso + 2Ψ + 4Ψ == iso + 2Ψ)

0 51 0.00% 0.00%

0 62 0.00% 0.00%

0 89 0.00% 0.00%

0 115 0.00% 0.00%

0 151 0.04% 0.00%

0 176 0.61% 0.00%

1 173 10.65% 0.52%

2 99 0.62% 1.90%

2 150 0.04% 0.00%

3 69 1.81% 0.00%

3 88 5.16% 0.06%

4 51 6.42% 0.46%

4 62 0.51% 0.00%
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fundamental mode. Within the Antarctic continent, the overall fast directions of azimuthal

anisotropy are generally consistent with the anisotropic results for our 3-D model, including

the dominant NE-SW fast directions in WANT and a sudden change of fast directions from

WANT to EANT.

While phase velocity maps are useful, because surface wave phase velocities are sensitive

to overlapping depth ranges, interpreting the fast directions directly from those maps is not

straightforward. We thus focus the interpretation on the 3-D model instead.

3.5 Discussion

Following Bartzsch et al. [2011], we approximated the LAB depth as the middle of the

interval over which VSV decreases in our isotropic model. Fig. 3.13 shows our calculated

LAB depth for the Antarctic plate. We see that the WANT and EANT have very different

LAB depths with ∼80 km for WANT and ∼180 km for EANT, consistent with the different

tectonic natures of the two regions. The estimated WANT LAB depth is in agreement with

the 70 - 100 km range obtained by Heeszel et al. [2016]. Comparing our results to An

et al. [2015a] who defined the LAB as the shallowest position with a temperature crossing

the 1330◦ adiabat, we find that the LAB depth for the center of EANT is lower in our

results (∼190 km compared to ∼225 km in theirs). The difference is likely to be caused by

the different definitions of the LAB as well as the difference in surface wave measurement

techniques.

In general, global-scale surface wave azimuthal anisotropy models show a good corre-

lation between the fast seismic direction and APM models at depths associated with the

asthenosphere in regions with a simple tectonic history such as oceanic plates. However,

for regions with a complicated tectonic history, the correlation is quite low [Debayle and

Ricard, 2013]. Accardo et al. [2014] summarized a number of SKS splitting measurement

work for Antarctica and pointed out that both hotspot (HS) and no-net rotation (NNR)
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Figure 3.12: Horizontal cross sections of the 2Ψ anisotropic terms (black bars) for phase

velocities at selected modes and periods.. Directions of black bars represent the fast directions

and the length of black bars are proportional to the anisotropic strengths.
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absolute reference frames are highly inconsistent with most of the observed splitting results

in Antarctica. They concluded that anisotropic fabric does not broadly result from shear

associated with the motion of the Antarctic lithosphere over the mantle, due to the rela-

tively slow motion speed of the Antarctica plate. In Fig. 3.10, we plotted the APMs based on

NUVEL-1A with the no-net rotation (NNR) reference frame in addition to the fast directions

of azimuthal anisotropy. The NUVEL-1A with hotspot (HS) reference frame has a pattern

similar to that of the NNR model, so here we focus on the comparison with the NNR APMs

only.

Fast directions of azimuthal anisotropy vary with depth below WANT. At regions around

MBL and EWM, the fast directions are dominantly SW - NE at depths shallower than

100 km, which is nearly perpendicular to the APM. At 150 km, which corresponds to the

asthenosphere based on our estimated LAB depth (Fig. 3.13), we observe fast directions

which are almost perpendicular to those at 75 km depth and tend to align with the APMs.

This indicates that the fast direction between 100 - 150 km may correspond to present-

day mantle flow within the asthenosphere, whereas the azimuthal anisotropy at shallower

depth mainly reflects extensive Cenozoic extension including the final pulse of western WARS

rifting in the Miocene [Accardo et al., 2014].

For EANT, the fast directions start to align well with the APMs from 100 km down to

at least 225 km. This depth range appears to be shallow compared to the estimated LAB

depth of the EANT Craton (160 - 190 km from Fig. 3.13) and therefore this alignment is

unlikely related to present-day mantle flow as one might be tempted to infer. Shen et al.

[2018] detected a robust negative VS anomaly from ∼50 to ∼110 km beneath GSM, which

they interpreted as compositional variability related to past orogenic processes. Heeszel

et al. [2013] also reported lower phase velocities at periods < 50 s beneath GSM compared

to other regions of Archean and Proterozoic ages. Similar relatively slow anomalies beneath

EANT can also be observed from our isotropic model. By analyzing the fast directions of

azimuthal anisotropy with depth, Yuan and Romanowicz [2010] found a second layer on top
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of the thermal layer in the lithosphere of North American craton, which they also related

to compositional origins. The change of fast directions we found at depths much shallower

than the LAB could be an indicator of a second layer in EANT craton. According to both

the isotropic and anisotropic terms of our model, the interior of EANT shows contrasting

patterns above and below ∼ 100 km. While the anisotropy in the upper 100 km likely

reflects the signature of past deformation into the continental lithosphere, the change of fast

direction at 100 km may indicate the existence of a second layer within the thick cratonic

lithosphere, possibly of compositional origin similarly to what has been observed for the

North American craton [e.g. Yuan and Romanowicz, 2010; Abt et al., 2010].

In an attempt to compare our results with shear-wave splitting studies, we followed

Montagner et al. [2000] and used our 3-D azimuthally anisotropic model to predict the

SKS delay times δt and fast directions Ψ under the assumption of weak anisotropy with a

horizontal axis of symmetry:

δt =

√
(

∫ R

0

Gs

VsL
dr)2 + (

∫ R

0

Gc

VsL
dr)2 (3.18)

and

tan2Ψ =

∫ R
0

Gs

VsL
dr∫ R

0
Gc

VsL
dr

(3.19)

where VS and L are the shear-wave velocity and Love parameter from the isotropic model,

respectively, and Gc and Gs are the 2Ψ anisotropic parameters that determine shear-wave

anisotropy. L, Gc and Gs can be expressed by the elastic tensor Cij:

L =
1

2
(C44 + C55), (3.20)

Gc =
1

2
(C55 − C44), (3.21)

Gs = −C45. (3.22)

and these anisotropic parameters can be linked to shear-wave velocity and its azimuthal

84



variation according to Montagner et al. [2000]:

ρV 2
SI

= L+Gccos2Ψ +Gssin2Ψ, (3.23)

ρV 2
SII

= L−Gccos2Ψ−Gssin2Ψ. (3.24)

Our predictions are compared to previous SKS splitting measurements in Antarctica

[Müller, 2001; Bayer et al., 2007; Reading and Heintz, 2008; Barklage et al., 2009; Hernandez

et al., 2009; Accardo et al., 2014]. We only plotted available SKS measurements with good

quality from previous work in Fig. 3.14. It is worth noting the SKS measurement results at

a couple of locations differ among different studies and that large variations are sometimes

found within the same study [e.g. Müller, 2001; Reading and Heintz, 2008], which indicates

quite large uncertainties in both SKS delay times and fast directions.

Overall, our predicted splitting time amplitudes roughly agree with observations. For

WANT, including EWM, WARS and MBL, the dominant fast direction is SW - NE, for

both predictions and SKS measurements, which may indicate strong and uniform anisotropy

within the upper mantle in these areas. However, the fast directions at about 150 km in

our results tend to align with the APM and disagree with this dominant fast direction,

which should relate to the effects of plate motion on the top of asthenosphere. At AP, the

predicted fast directions are sub-parallel to the observed fast directions. The two stations

located at DML also show good agreement with our predictions. The red circle and red bar

located in GSM represent the overall splitting directions and study area from Hernandez

et al. [2009]. Since the observations are perpendicular to our predictions, we argue that

the difference might result from the lack of resolution of the shallower structure in our 3-D

model. From the 3-D anisotropic model (Fig. 3.10), the fast directions in GSM are rotating

anti-clockwise, from SSW - NNE to SSE - NNW from 75 km to 150 km. The fast directions

at depths between 60 km and 100 km in our model match the SKS observations in GSM much

better than the integrated results, which implies that the splitting results better reflect the

anisotropy existing at depths shallower than 100 km. The SSE - NNW fast direction below
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the bars are proportional to the SKS splitting delayed time while the directions represent
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150 km actually corresponds to the APM directions of EANT (Fig. 3.10). At TAMs, the

observed fast directions are mainly perpendicular to the trend of TAMs, but our predictions

show fast directions changing from SW - NE in WANT to SSE - NNW in EANT, which

could be explained by the smoothing damping effects we added in the second step inversion.

The observed fast directions are parallel to the plate margins at multiple locations,

whereas our predictions are generally normal to the edges. According to Accardo et al.

[2014], there is a mix of normal and parallel results on EANT margins, which may indicate

the complexity of asthenospheric flow around the craton. Also, due to the limited horizontal

resolution of surface wave tomography, our results are unlikely to capture such sharp changes

in fast directions.

In summary, our SKS splitting predictions based on the 3-D anisotropic model show good

agreement with station-wise observations. Differences in fast directions are likely owing to

the lack of shallow sources of anisotropy, such as the ice and crustal layers beneath a given

station.

3.6 Conclusion

In this chapter, we applied the transdimensional inversion method we proposed in Chap-

ter 2 for multi-mode surface waves to the Antarctica Continent, and presented a new 3-D

azimuthally anisotropic shear-wave velocity model for Antarctica. We additionally obtained

a new set of phase velocity maps for fundamental mode and higher modes up to n = 4,

which could be inverted in future work together with other types of seismic observations,

including body waves, receiver functions, group velocity dispersions, and phase velocity dis-

persions from ambient noise method. 1-D path-averaged VS profiles were first estimated

from the waveforms of both fundamental and higher-mode surface waves in the period range

50 - 200 s. Those 1-D path-averaged results were then inverted to get a 3-D VS model with

both isotropic and anisotropic terms. By taking advantage of the recently deployed seismic
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arrays, we were able to obtain better ray-path coverage compared to earlier higher-mode

studies of Antarctica. In this model, the isotropic terms are constrained between 60 km and

600 km, whereas the 2Ψ anisotropic terms are only significant above 300 km according to

our F-tests. It provides valuable information to constrain the distinct WANT and EANT.

Major observations in this work include the following:

1. EANT and WANT have distinct VS anomalies in the upper mantle: the cratonic EANT

has strong positive VS anomalies down to 150 - 250 km, with the fast layer thinner in

the coastal regions than in the interior of EANT. In contrast, WANT features negative

anomalies down to about 200 km.

2. Based on the isotropic 3-D VS, we estimated the LAB depth to be ∼190 km for EANT,

and ∼80 km for WANT.

3. In WARS, the fast axes of azimuthal anisotropy change from perpendicular to the

APM to parallel to the APM from 75 km to 150 km, which indicates the influence

of plate motion on structure near LAB depth. Other regions in WANT, including

EWM and AP, start to show good alignment with the APM at much greater depths

(225 km). This reflects either a poor azimuthal resolution in those regions, or the fast

axes are dominated by other secondary mantle flows rather than the plate motion,

as the amplitudes of plate motion in Antarctica are relatively weak. The integrated

azimuthal anisotropy distribution also agrees well with SKS-splitting results at most

stations across WANT.

4. In EANT, the fast axes start to align well with APM at about 100 km, which is quite

shallow compared to the deep LAB depth of the craton. So the change of fast axes

takes place in the lithosphere rather than around the LAB, which may indicate the

existence of a second layer within the lithosphere of the EANT craton.

The current results also have the following limitations which might be resolved by

future work:
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(a) The current model does not resolve the upper 60 km due to the relatively large

periods of the seismic observations used in the inversion. By including higher-

frequency surface wave measurements from ambient noise methods or inter-station

methods, we could better resolve the shallower structure, and thus obtain a more

complete picture of structure under Antarctica.

(b) The current method is based on single-station measurements, and most paths

used in this study cover both the Antarctica continent as well as the surrounding

oceans. The model doesn’t have good resolution in oceanic areas due to limited

raypath coverage, and this may affect the resolution of the continent as well due to

smearing of the model. Our current solution is to add a modest amount of norm

damping in the inversion so that oceanic areas with low path coverage remain

close to the reference model. A more sophisticated method would be needed to

better separate the anomalies from the oceans and the Antarctica continent, e.g.

by fixing the model grids in oceans according to other published 3-D regional VS

models.
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CHAPTER 4

Mars (InSight)

4.1 Introduction

One of the objectives of the InSight mission is to constrain Mars interior structure. Previ-

ous missions to Mars have focused on the surface characteristics of the planet by examining

features like canyons, volcanoes, and rocks. However, to better understand the early forma-

tion and evolution of Mars, we need to obtain constraints on its internal structure. Several

Mars seismological models have been proposed over the years based on the estimated bulk

density and moment of inertia of Mars, as well as geochemical and equation of state data

(e.g. Sohl and Spohn [1997], Gudkova and Zharkov [2004], Nimmo and Faul [2013]). There

are, unfortunately, large uncertainties associated with these indirect methods and our prior

knowledge of the Martian interior is still limited. Seismology remains the most direct and

efficient way to probe the interior of a planet.

InSight landed in Elysium Planitia on 26 November 2018 and the SEIS (Seismic Ex-

periment for Interior Structure) instruments were successfully deployed a few weeks later.

These consist in a Very Broad Band (VBB) seismometer and a short period sensor to record

Marsquakes and meteoric impacts. The VBB is an ultra-sensitive very broad band 3 axis

oblique seismometer, which transforms the ground motion into analog electrical signals

[Lognonné et al., 2019]. The VBB can record signals from quakes to meteoric impacts,

and thus provide valuable constraints on Mars interior structure.

Generally, earthquakes with magnitude between 5 and 7 are preferred for seismic in-

90



versions based on waveform fitting, since smaller earthquakes suffer from low signal-to-noise

ratio (SNR), while larger ones may have complicated focal mechanism and thus can no longer

be approximated as point sources. Mars is not as geologically active as the Earth, so the

number of Marsquakes with intermediate to large magnitudes is likely limited. This has

been verified by the InSight SEIS data collected so far: most of the marsquakes detected

during the first year of operation of SEIS have moment magnitude between 3 and 4 [Giardini

et al., 2020]. Besides the limitation of the number of large enough events, other complica-

tions result from the fact that InSight only has one seismic station. Surface wave inversion

techniques and receiver function analyses become thus natural choices to obtain models of

Mars interior. While the first constraints on the properties of the shallow upper crust using

InSight data and receiver functions were recently published [Lognonné et al., 2020], surface

waves have not been detected yet. However, if they were to be observed in the future, dis-

persion measurements of fundamental and higher mode surface waves would provide depth

constraints on the planet’s internal structure, which was expected to be a primary means of

constraining velocity structure by the Mars Structure Service (MSS) [Panning et al., 2017],

and demonstrated by the MSS blind test [Drilleau et al., 2020]. In addition, the method

presented in this chapter to measure dispersion data, and the modifications we brought to

our original code to allow for less well-constrained reference models and source parameters,

are extremely important for any planetary seismology application, including the likely future

missions on the moon and on Titan (Dragonfly), as well as the ones that have been proposed

for other bodies like Europa, Enceladus, from balloons on Venus, and even possibly on the

surface of Mercury.

Surface wave dispersion data primarily constrain the path-averaged shear velocity struc-

ture between a station and a seismic event, with longer period data more sensitive to deeper

structure. On Earth, fundamental mode surface waves, with their usually high SNR, are

the most commonly used types of surface waves. For Earth applications, measurements at

intermediate periods (between ∼30 s and 200 s) can resolve structure down to 200-300 km.
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Figure 4.1: Sensitivity kernels ∂ ln c/∂Vs at different periods for fundamental mode surface

waves (left), the first overtone (middle), and the second overtone (right) at periods between

5s and 200s. They were calculated using software package Mineos [Masters et al., 2011]. The

model of Zheng et al. [2015] with no low velocity zone was used as reference.

Higher mode surface waves are less commonly used, but they carry unique, independent

constraints on structure at greater depths. Higher modes (n > 0) surface waves are sensitive

to deeper structure than fundamental modes at the same periods and can thus enhance the

vertical resolution of surface wave tomographic models in the deep mantle. Examples of

multiple-mode surface wave sensitivities calculated with software package Mineos [Masters

et al., 2011] are shown in Fig. 4.1. For these partial derivative calculations, we used one of

the Zheng et al. [2015] martian models as reference. More specifically, we chose the model

that does not have a low velocity zone (LVZ), hereafter referred to as their noLVZ model.

Higher modes dispersion is undoubtedly more challenging to measure than fundamental

mode surface waves due to their lower SNR and to the fact that the group velocities of differ-
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ent modes overlap significantly in a broad frequency range. They usually do not appear as

a clear wave train on the seismogram, and thus are difficult to separate. Methods developed

to measure higher mode surface waves on Earth can be categorized into two groups: One

group directly invert waveforms to get shear-wave velocity structure (e.g., Cara and Lévêque

[1987], Nolet [1990], Lebedev and Nolet [2003], Li and Romanowicz [1995], Li and Romanow-

icz [1996]), and the second group measures higher mode phase velocity dispersion curves that

are then inverted for structure [Cara, 1978; Nolet, 1975; van Heijst and Woodhouse, 1997b,

1999b; Beucler et al., 2003].

The method presented here was modified from that of Xu and Beghein [2019], which itself

was inspired by the techniques of Yoshizawa and Kennett [2002] and Visser et al. [2007]. The

idea is to perturb the path-averaged 1-D shear velocity profile to fit the data in a nonlinear

waveform inversion and calculate the corresponding phase velocities at different periods.

Our method takes advantage of the flexibility of the reversible jump Markov Chain Monte

Carlo (rj-MCMC) approach [Bodin and Sambridge, 2009] to perform a thorough yet efficient

sampling of the shear-wave velocity model space to fit the filtered multi-mode waveform.

The posterior distributions of shear-wave velocity models and corresponding phase velocity

dispersion curves can be estimated from the ensemble of VS models sampled. We adapted

our method to Mars and present it in this chapter. We first provide information regarding

the rj-MCMC method and how we apply it to our problem. We then discuss in detail

the modifications brought to the original method to deal with complications pertaining

to InSight, including the lack of a good reference model and the large errors in source

parameters. Finally, we present applications of our technique using a blind InSight dataset

distributed to the MSS team [van Driel et al., 2019; Drilleau et al., 2020] as well as another

synthetic dataset we created and to which we added realistic noise based on real recordings

by the VBB.
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4.2 Method

The method presented here is a waveform fitting technique based on the work of Xu and

Beghein [2019], which was originally developed for Earth applications and was modified here

to adapt to Mars. Details of the original method are also described in Chapter 2. The

primary goal is to find models of Mars interior that fit the observed long-period waveforms.

Our technique adopted the rj-MCMC method of Bodin and Sambridge [2009] and Bodin et al.

[2012] to perform an efficient transdimensional model space search and to seek all possible

path-averaged 1-D VS models that can fit the filtered waveform. Our method additionally

enables us to use these models to measure the dispersion of fundamental and higher mode

surface waves. We will be able to use these dispersion curves in future work in combination

with other data sets, thereby improving the resolution of the initial path-averaged interior

models.

In this section we briefly summarized the framework of our original inversion method,

which was described in Xu and Beghein [2019] in details, and emphasize the improvements

we made to adapt it to studying Mars.

4.2.1 Waveform Modeling

Synthetic seismograms can be calculated by normal mode summation (See equation 3.1).

Similar to what we did for Earth applications in previous chapters, we linearized the calcula-

tion of eigenfrequencies for Mars in order to accelerate the forward modeling computations.

For the P-wave speed scaling, we used a linearly varying scaling relation, with mα = 0.8,

and for the density scaling, we set mρ to 0.3 [Anderson et al., 1968]. These choices do not

typically affect the VS models in Earth applications so we do not expect it to play an impor-

tant role here either. The shear-wave velocity is allowed to change by [−10%,+10%] relative

to the reference model. While the depth of mantle discontinuities has been shown to not

be resolved by surface wave data [Meier et al., 2009], the crust thickness has been shown to
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have strong nonlinear effects on waveform modeling and phase velocity calculations [Mon-

tagner and Jobert, 1988]. We thus included perturbations in the depth of the crust-mantle

boundary in our inversion scheme and allowed it to vary by 5 km around the Moho depth

in the reference model.

An important point to make here is that we need a good reference model for these

assumptions of small perturbations to be valid. This may generally be an achievable goal

for Earth since we have very good reference and 3-D models of its interior. However, we

do not currently have a good reference model for Mars, which is one of the reasons for the

InSight mission. In an attempt to circumvent this issue and to get better model uncertainty

estimates than can be obtained with our linearized approach, we test different mantle models

with different starting Moho depths and perform the model space search multiple times. This

is not an ideal scenario but, as explained above, it is one with more reasonable computational

costs. As the mission continues and models of Mars interior become available, these issues

will become less important.

4.2.2 Source Parameter and Cycle Skipping Considerations

The phase velocity at angular frequency ω for a seismogram recorded at time t and distance

x from an earthquake is given by:

c(ω) =
ωx

ωt+ Φi(ω) + 2nπ − Φ(ω)
(4.1)

where Φi includes the initial phase at the earthquake and any phase shift introduced by

the seismometer and Φ(ω) is the total phase of the seismogram, which can be obtained by

Fourier transform of the time-series. The 2nπ term reflects the periodicity of the complex

exponential that describes the displacement produced by a plane wave.

Phase velocity measurements and synthetic waveform calculations on a single-station

therefore require accurate knowledge of the event locations and focal mechanism. In Earth

studies, these source parameters are generally determined prior to the inversion for structure
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and the GCMT catalog [Dziewonski et al., 1981; Ekström et al., 2012] is a common choice in

long-period waveform modeling (e.g., Yoshizawa and Kennett [2002]; Visser [2008]). How-

ever, even on Earth where multiple receivers are usually employed to constrain the earthquake

source parameters, these parameters have non-zero uncertainties and can be biased by the

choice of the reference Earth model used to obtained them.

Ideally, one should recalculate source parameters jointly with structure during the inver-

sion to constrain the interior model more reliably [Valentine and Woodhouse, 2010]. This

is not often done in practice but in the case of the InSight mission this may be a crucial

part of the inversion since we only have one seismometer and no good reference model yet.

The source parameters constrained by the Mars Quake Service (MQS) team of the InSight

mission are thus expected to have even larger uncertainties than for quakes happening on

Earth and propagating these uncertainties will be an important step in our search for Mars

interior models. We thus modified our original code [Xu and Beghein, 2019] to include source

parameters in the rj-MCMC sampling scheme, allowing us to vary them around the values

reported by the MQS team and thereby enabling the propagation of source errors into the

velocity models.

Because of the 2π ambiguity in Eq. 4.1, care must be taken when inverting single seis-

mograms for phase velocities. Cycle skipping can happen when the reference model deviates

too much from the true model. To avoid this, one often tries to ”lock” the 2nπ term in the

correct phase at the longest periods (100 s to 150 s), and assumes the dispersion curve is

smooth and continuous to extrapolate to the correct number of cycles at shorter periods.

This helps infer short period phase velocities without ambiguity. This locking is usually done

by choosing good reference model (e.g., Visser [2008]) or by adding extra constraints from

the envelopes of the filtered seismogram [Yoshizawa and Ekström, 2010]. Here, because we

do not have a good 3-D reference Mars model yet, we opted to test two methods: in one we

simultaneously invert the waveform and the envelope as in Yoshizawa and Ekström [2010]

and in the other we invert both waveform and group velocity dispersion curve. Group ve-
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locities can be measured with other techniques and serve as independent constraints on the

sought-after 1-D average structure. By including information from group velocities, we nar-

row down the range of VS profiles. In this project, we compare the results between inversions

including envelopes and group velocity data.

4.2.3 Misfit Function

When calculating a misfit from multiple types of data (in this case waveform and envelope

or waveform and group velocities), it is important to determine the proper weights for each

of the data sets. In this study, we adopted a L2 norm and the misfit of each data type was

normalized by the sum of squares of the data. The normalization operation guarantee that

the amplitudes of different types of misfits are comparable.

For the joint waveform and envelope inversion, the misfit function is thus:

Misfit(m) =

∑N
i=0(wp,i − wd,i)2∑N

i=0w
2
d,i

+

∑M
i=0(ep,i − ed,i)2∑M

i=0 e
2
d,i

(4.2)

where w and e denotes the waveform and the envelope, respectively, and N and M are their

respective number of data points. The subscripts p and d represent predicted (synthetic)

and observed values, respectively.

For the joint waveform and group velocity data inversion the misfit function is defined

as:

Misfit(m) =

∑N
i=0(wp,i − wd,i)2∑N

i=0w
2
d,i

+

∑M
i=0(Up,i − Ud,i)2∑M

i=0 U
2
d,i

(4.3)

where M is now the number of group velocity measurements, and Up and Ud denotes the

predicted and measured group velocities, respectively. The group velocity dispersion mea-

surements we used in this study were presented in Drilleau et al. [2020]. They were measured

using a method based on probability density functions and described in Panning et al. [2015].
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4.2.4 Bayesian Inference

We solve the inverse problem in a Bayesian framework, where model parameters are described

by probability density functions (PDFs). The posteriori probability distributions of model

parameters describe the uncertainties associated with these parameters. The posterior is

given by Bayes’ theorem:

p(m|dobs) ∝ p(dobs|m)p(m) (4.4)

where A|B means A given (or conditional on) B, i.e. the probability of having A when B

is fixed. m is the vector of model parameters and dobs is the observed data. p(dobs|m) is

the likelihood function, which shows the probability of observing data dobs given a particular

model m. The a priori probability of model, p(m), contains what we assume about the model

m before having the observed data. In this study, we adopted a similar prior distribution,

p(m), as in our previous work [Xu and Beghein, 2019]: model parameters are assumed

to have uniform prior distributions with relatively wide bounds so that the final posterior

distribution is dominated by the data.

The likelihood function p(dobs|m) describes the probability of data given the current

model. As is described in Xu and Beghein [2019], if we assume the data noise in the waveform

follows a multivariate normal distribution with zero mean and covariance matrix Cd, then

the likelihood term can be expressed in this form:

pi(di|m) =
1√

(2π)n|Cdi |
× exp

[
−Φi(m)

2

]
(4.5)

where i is the index for different frequency-time windows. Φi(m) is the function describing

the distance between the real data and the synthetics predicted by the current model. As

in Xu and Beghein [2019], we assumed the Gaussian noise to be uncorrelated, in which case

the covariance matrix Cd becomes diagonal. The Φ(m) term is then simplified to:

Φi(m) = Mi(m)/σ2
i (4.6)

where Mi is the L2 norm between data and synthetics predicted by current model. σi is the

standard deviation of the Gaussian uncorrelated noise in the ith frequency-time window.
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In this study, the misfit function describes the errors between different types of observed

data and values predicted by models. For the misfit function, we assumed equal relative

variance as a percent of amplitude for all inverted parameters. We also decided to assign

the same adaptive noise levels to the two data types to guarantee that our Hierarchical

Bayesian inversion won’t favor one data type over the other too. The standard deviation of

the Gaussian uncorrelated noise accounts for both the primary misfit of the waveform fitting

and the secondary misfit of the envelope or group velocity fitting. Here we use a different

notation, σ∗
i instead of σi, to denote the normalized overall standard deviation of the noise.

With all these assumptions, the updated likelihood function is given by:

pi(di|m) =
1√

(2π)n(σ∗
i )

2n
× exp

[
−Misfiti(m)

2σ∗
i

2

]
(4.7)

As is shown in Chapter 2, the overall standard deviations are considered as unknowns in the

Hierarchical Bayesian inversion, rather than being fixed at a presumed level as in traditional

inversion methods. This allows us to invert for the unknown noise level in addition to the

targeted parameters and reduces the risk of mapping noise into the models.

4.2.5 rj-MCMC Inversion Scheme

Details of the rj-MCMC method for Earth were discussed in Chapter 2. For Mars application,

two additional types of parameters are included as free parameters during the sampling:

depth of the crust-mantle boundary, and the source parameters. In our new inversion scheme

for Mars, there are seven types of perturbations of the current hyperparameters in order to

get the next iteration:

1. Change the velocity of one interpolation point;

2. Change the depth of the crust-mantle boundary;

3. Change the source parameters (focal depth, strike, slip and dip);
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4. Birth: create a new interpolation point;

5. Death: remove one interpolation point at random;

6. Move: Randomly pick one interpolation point and move it to a new depth;

7. Change the noise level;

During the Birth step, we add a new interpolation point at a certain depth, so that the

model complexity around that depth increases to account for more complicated structure.

During the Death step, we randomly remove one interpolation point to make the model

representation more efficient at depths without large Vs anomalies. The Markov Chain is

generated for hundreds of thousands of iterations. The first part of the Markov Chain, or

burn-in period, is discarded, after which the random walk is assumed to be stationary and

it begins the sampling of the model space according to the posterior distribution. Here, we

used 180,000 as the burn-in length, followed by 60,000 samplings for each Markov Chain.

4.3 Tests and Results

In this section, we present different tests to illustrate our method and determine how well it

can recover an input model. One of the tests performed made use of a blind data set [van

Driel et al., 2019] that was distributed to the MSS team to validate multiple methodologies

proposed to estimate Marsquake locations and 1-D Martian structures between source and

receiver [Drilleau et al., 2020]. Other tests were conducted using our own synthetic data sets

because the MSS blind data did not display any higher modes in the frequencies for which

our method is reliable, as explained below.
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4.3.1 Blind Test

4.3.1.1 Blind Test Data and Reference Model Search

The synthetic data set that was distributed to the MSS and MQS teams was generated using

a 3-D crust model overlaying a 1-D base model from the Moho discontinuity to the core and

synthetic noise was added to the waveform. All parameters of the Martian model and the

Marsquake were unknown during the blind test period. The MQS team first calculated

a reference focal depth of 36 km using the arrival time of the pP phase and an assumed

crustal velocity of 5 km/s. They then determined the posterior distributions for focal depth

and focal mechanism parameters [Böse et al., 2017; Drilleau et al., 2020] using the method

of Stähler and Sigloch [2016]. In this project, we employed the mean and width of these

distributions as prior values for the source parameters in our waveform modeling.

We used the vertical component of the blind data set with the goal of measuring Rayleigh

wave dispersion. The raw data were filtered in different frequency bands, but no clear signals

of higher mode Rayleigh wave were visible. The fundamental mode Rayleigh waves were,

however, clearly visible at periods between 25 s and 50 s (Fig. 4.2). This absence of clear

surface waves at long period ( > 50 s) is consistent with true Martian noise levels [Banerdt

et al., 2020]. If the real VBB noise level is larger at long periods than at shorter periods,

surface waves on Mars are generally going to be more difficult to measure at periods > 50 s

since their signal-to-noise ratio is expected to be lower than at shorter periods.

The first step in our procedure was to find a suitable reference model to calculate the

waveform. We thus calculated waveforms using Mineos for several published 1-D Mars

interior models (e.g., Zheng et al. [2015], Sohl and Spohn [1997]) using the source parameters

determined by the MQS team. The estimated Marsquake location, depth, magnitude as well

as origin time we employed are listed in Table 4.1. We found that the seismogram calculated

using model noLVZ (no Low Velocity Zone) from Zheng et al. [2015] resembled the filtered

blind waveform the best, apart from a time-shift of about 300 s (Fig. 4.2). We then performed
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Table 4.1: Comparison between MQS-estimated and true source parameters.

Event parameters Computed origin True origin

Origin time (UTC) 2019-01-03 15:00:53.0 2019-01-03 15:00:30.0

Lat(◦) 26.0 S 26.443 S

Lon(◦) 53.0 E 50.920 E

Depth (km) 38.4 38.4

Magnitude MsM=3.7 (Mw=4.2) Mw=4.46

a rough grid search to change both the VS profile and the depth of the crust-mantle boundary

to time-shift the synthetic waveform closer to the blind test waveform. It should be noted

that the model considered for the blind test was comparable to those included in Smrekar

et al. [2019], which did not include either the Sohl and Spohn [1997] model or the Zheng

et al. [2015] models, making this test of our method more realistic.

4.3.2 Waveform Modeling: Effects of the Source Parameters

Because the uncertainties in the estimated source parameters by a single-station method can

be large and underestimated, we included the focal mechanism as free parameters during

our MCMC sampling. This helps avoid the propagation of errors in the the quake source

into the interior model. We let the focal mechanism parameters and the source depth vary

using prior uniform distributions with ranges roughly matching the MQS error estimates.

The source latitude, longitude and origin time were kept fixed due to the strong trade-

offs between source location and travel time. The magnitude was also kept constant and

equal to the MQS estimate. The amplitude mismatch between the MSS blind test data and

the predicted waveforms were corrected by energy equalization rather than including source

magnitude simultaneously in the MCMC sampling, as the latter may result in the instability

of the MCMC algorithm as explained in Xu and Beghein [2019]. Details about the source

priors are given in Table 4.2.
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Figure 4.2: Comparison of the MSS blind test waveform (A) and synthetic waveforms pre-

dicted by three different reference models: (B) model LVZ by Zheng et al. [2015], which

included a low velocity zone; (C) model noLVZ by Zheng et al. [2015] without Low Velocity

Zone; (D) Sohl and Spohn [1997]’s model A. All traces were bandpass-filtered between 25 s

and 50 s.
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Figure 4.3: Inversion results with fixed source parameters (left) and free source parameters

(right). The gray dashed line represents the reference model used for MCMC sampling and

partial derivative calculations. The red line is the 1-D base model used to compute the blind

test data. The gray shaded area is for the maximum and minimum VS and Moho depth

along the source-receiver path based on the 3-D crust model used to generate the blind test

data. The color scale represents the likelihood of a given model parameter.
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Table 4.2: Prior (uniform) distributions of source parameters used for the rj-MCMC sam-

pling.

Focal mechanism parameters Prior range

Strike(◦) 85 - 135

Slip(◦) 40 - 60

Rake(◦) 50 - 100

Depth(km) 36.4 - 40.4

50 52 544846
Moho depth (km) Moho depth (km)

50 52 544846
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Figure 4.4: Posterior distributions of Moho depth in the fixed-source test (left) and in the

free-source test (right). The dark blue dashed lines represent the Moho depth in the 1-D

base model used to generate the MSS blind test data. The light blue dotted line represents

one of the best fitting values.

105



Figs. 4.3 and 4.4 compare results of inversions performed using fixed source parameters

and inversions in which the focal mechanism and focal depth were allowed to vary as ex-

plained above. Waveform envelopes were used as constraints to avoid cycle skipping. The

fixed source values employed were the mean values shown in Table 4.2. The reference model

used for both tests was the modified model of Zheng et al. [2015] as previously described and

is represented by the dashed grey line. The color scale in Fig. 4.3 represents the likelihood

of a given VS model parameter. Because the model used to generate the blind test data

contained a 3-D crustal model, there is a range of VS values and Moho depths along the

source-receiver great circle path in addition to the base 1-D model that is shown in red.

This range is represented by the shaded area. Fig. 4.4 shows that both the free-source test

and fixed-source test favor a shallower Moho than the true value in the 1-D base model. The

fixed-source test also shows a bi-modal distribution for the Moho depth, with the highest

peak at about 46 km. This bi-modal pattern does not exist in the free-source test, which

likely reflects the existence of trade-offs between source parameters, Moho depth, and Vs.

Fig. 4.5 shows how the misfit change with the iteration number in both tests. On average,

the two ensembles of models have similar misfits. Statistical F-tests [Bevington et al., 1993]

were performed on a number of “best” models selected in each ensemble to determine to which

the level of confidence the difference between model misfits is significant. They revealed that

the two sets of inversions explain the data equivalently well. We would like to point out,

however, that although the free-source inversion results do not necessarily fit the data better

than to the fixed-source inversion, the former is still preferred to avoid mapping errors in

the source into the velocity models since the source parameters were determined by a single

station.

Fig. 4.6 represents the source parameter posterior distributions obtained in the free source

inversion in comparison to the true values used to generate the MSS blind data. Since the

source is a double couple, the two complimentary planes calculated from the true source

moment tensor are also plotted for comparison. We found that our posterior distribution for
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Figure 4.5: Waveform fitting misfits as a function of iteration number for free source MCMC

sampling (top) v.s. fixed source MCMC sampling (bottom).

the strike includes and peaks near one of the two solutions calculated from the true source.

Both possible values for the true dip are, however, outside the search range estimated based

on the MQS results. The posteriors for the slip and focal depth both show a relatively uniform

pattern, which include but do not prefer the true values. But the posterior distribution of

the strike fits well if we regard the plane 2 as the true plane. The reader should be reminded

that our method should, of course, not be considered as a way to jointly constrain the source

parameters as well as the Martian structure. The source parameters were included to reduce

the mapping of errors in the quake focal mechanism and depth into the velocity models.

4.3.3 Effects of Reference Crustal Thickness

The Moho depth in a Martian model can have significant influence on the synthetic wave-

forms, so we allowed it to vary in ± 5 km relative to the reference model using a linearized

perturbation method as shown in Equation 3.2. However, this search range was still too
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Figure 4.6: Posterior distributions of strike, dip, slip, and focal depth (red shaded area) for

the inversion with free source parameters shown in the right panel of Fig. 4.3. The prior

distributions used for each of those parameters are represented by the shaded grey areas. The

true values used to generate the MSS blind test data are shown by the dark blue dashed lines,

including the strike, dip and slip for both planes calculated from the true source moment

tensor. The best fitting parameters obtained by the MCMC sampling are indicated by the

dotted line.
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limited to cover a wide enough set of possible Moho depths due to our yet poor prior knowl-

edge of Martian interior. Consequently, we ran our inversions multiple times, using different

reference models with different Moho depths. To generate these new reference models, we

changed the crustal thickness of the Zheng et al. [2015] model and proceeded as explained in

section 4.3.1.1: we adjusted the reference VS in order to roughly match the synthetics with

the observed blind test surface waves. In Fig. 4.7, we compare the results for model space

searches done with a 50 km and a 75 km reference Moho depth. Note that while the 50 km

reference Moho falls within the range of Moho depths along the source-receiver path that

were used to calculate the blind test seismograms, the reference model with a 75 km Moho

depth is outside of that range. Here, waveform envelopes were used as constraints to avoid

cycle skipping.

An example of best fitting waveforms is shown in Fig. 4.8. We found that, on average,

the inversions with a reference Moho depth at 50 km have a slightly lower misfit than the

one with the Moho depth at 75 km. This may seem promising since the range of true Moho

depth along the path did include 50 km and not 75 km depth. However, the difference in

misfits did not appear to be significant and we could not simply exclude the second inversion

due to its slightly higher misfit values. This is to be expected as fundamental mode surface

waves alone cannot uniquely constrain both Moho depth and velocity due to the existence

of trade-offs. By comparing the VS posterior distribution to the true values used to generate

the blind data, we found that the inversions with reference Moho depth at 50 km recover

the true 1-D base model better. Not only does it find posterior Moho values closer to the

true values, but we also see that starting from a Moho depth that is outside of the range

of true values yields a set of VS models that could be misinterpreted as constraining a high

velocity lid if care is not taken. These observations highlight how important it will be to

obtain prior, independent constraints on crustal structure (e.g. from receiver functions) in

order for surface waveform inversions provide reliable velocity models.
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Figure 4.7: Ensemble of models resulting from inversions with waveform envelopes and

starting models of different crustal thickness: 50 km (left) and 75 km(right). The color scale

and different curves are described in Fig. 4.3.
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Figure 4.8: Best fitting waveforms for the test with Moho depth at 50 km

4.3.4 Effect of Envelopes and Group Velocities

Because the envelope fit can be strongly affected by the noise level, we also tested whether

the inclusion of group velocity measurements instead of the envelope affects or improves the

results. The misfit function in this case is given by Equation 4.3. We found that the VS

profiles (Fig. 4.9) do not strongly differ from those of Fig. 4.7, but the range of allowable VS

models is slightly larger with the group velocities than with the envelope.

Similar to Fig. 4.7, the mean misfit was slightly lower with the reference model that

has a 50 km thick crust than with the 75 km thick thrust. But, again, the difference

in average misfits was not significant, so neither of these two tests can exclude one crustal

thickness. By comparing the inversion results with independent group velocity measurements

included versus the inversion results with waveform envelopes in the previous section, we

found these two strategies yield similar VS posteriors. This is to be expected as the envelopes

of waveforms mainly provide group velocity constraints on the VS models, though group

velocities may be preferable since the envelope can be affected by noise more strongly.
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We also obtained the posterior distributions of phase velocities from the ensembles of

models for each test. The predictions for the 4 tests with free source parameters and for the

true 1D base model are shown in Fig. 4.10. Note, however, that the phase velocities calculated

from the 1-D base model should not, however, be treated as the true phase velocities since

the 3-D crust effects on surface wave dispersion were not taken into account. Our inverted

phase velocities are lower than the phase velocities of the 1-D base model. However, for

tests with reference Moho depth at 50 km, the 2σ error bars contain the 1-D base model,

while for tests with reference Moho depth at 75 km, their error bars barely contain the phase

velocities predicted by the 1-D base model. Overall we found that the models that were

obtained with a reference model whose Moho depth was included in the range of true Moho

depths predict phase velocities that are closer to the 1-D base model predictions.

4.4 Additional Synthetic Test with Realistic Martian Noise

Since higher mode surface waves were not visible in the blind test waveforms, we created our

own synthetic data set to test our method on a waveform with higher modes. We selected

the noLVZ model of Zheng et al. [2015] to generate the synthetic waveform data due to

its similarity to the MSS blind test 1-D base model. We calculated the vertical component

synthetic waveforms with Mineos. Only the fundamental mode and the first 3 overtones

were included for the purpose of this test.

In addition, we should point out that the forward modeling method used to generate the

synthetic test data was the same as the forward modeling in the inversion, and a 1-D model

was used to generate the synthetic data. This makes this synthetic test less challenging

than the MSS blind test, for which the data were generated with a 3-D crust and a different

algorithm than the one used for our forward modeling.

In order to generate data noise that represents a realistic overall noise level on Mars, we

obtained noise amplitude information from the PPSD (Fig. 4.11). The phase information for
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Figure 4.11: Probabilistic power spectral density (PPSD) measured during the “quiet” time

(less windy) on Mars (18:00 – 23:00 LMST) in July 2019. The dashed lines mark the 10th

and 90th percentiles. The PPSD was calculated using the method of McNamara and Buland

[2004].

different periods were assigned randomly between [0, 2π]. Realistic Martian noise waveforms

were calculated by inverse Fourier Transform of the amplitude and phase information, and

were superimposed to the synthetic waveforms calculated by Mineos.

One way to generate waveforms with higher mode amplitudes larger than the ambient

noise is by increasing the magnitude of the Marsquake. However, the likelihood to have a

Marsquake larger than the quake used in the blind test is not high based on the observations

we have from SEIS so far. Instead, we set the magnitude of the synthetic source at the same

value as for the blind test (Mw = 4.46), and tweaked other parameters to find a scenario

where the higher modes waveform is clear in the time domain and separates well from the
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Figure 4.12: Vertical component waveform calculated using Zheng et al. [2015]’s model

noLVZ and filtered at 25 s - 50 s. Realistic Martian noise was added to the synthetic

waveform (thick black line)

.

fundamental mode. With these considerations in mind, we chose a focal depth of 40 km and

an epicentral distance of 50 degrees.

The filtered synthetic data is shown in Figure 4.12. It was bandpass-filtered in the 25 s –

50 s period range and higher modes wave trains are visible between 650 s and 850 s, although

the signal to noise ratio is on the low side. The goal of this synthetic test is to see whether

our method can still resolve the higher modes and use them to constrain structure under a

relatively realistic best-case scenario on Mars.

4.4.1 Results and Reliability Analysis

The procedures to invert this synthetic waveform is the same as for the blind test as described

in details in the previous section. The reference model was created by randomly perturbing
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the true model at a few depth nodes. We used waveform envelopes to avoid cycle skipping

issues. Moho depth and source parameters were allowed to vary together with the velocity

profile and the posterior noise level. The posterior VS distribution is shown in Figure 4.13.

We found that we can recover the true model well at most depths down to 400 km. The

Markov Chains clearly converged toward the true model. We also noted that the posterior

model distribution is narrower than for the blind test, likely due to the fact that the blind

data set was generated with a 3-D model and ours was obtained with a 1-D model instead.

The posterior distribution of phase velocities for the multi-mode surface waves can be

calculated using the posterior distribution of models. In theory, one can calculate an infinite

number of modes from these models. However, in practice, not all of them will be resolved

as higher modes tend to have weaker energies and low SNR in addition to overlapping in the

time domain. A reliability analysis was thus performed to determine in which modes and at

which periods the phase velocities were reliably measured with our technique. In practice,

for each mode, we would only keep the measurements at periods with reliability scores higher

than a defined threshold. Our reliability test considers the waveform fit and the intensities

of each single mode in the time-frequency domain. Further details on this reliability analysis

can be found in Xu and Beghein [2019]

The results of our reliability analysis for the fundamental mode and the first 3 overtones

are given in Fig. 4.14. We found that the fundamental mode is reliably measured at all

periods considered, which is identical to what is found for Earth since they have larger

SNR and separate well from the higher modes. We also found, similar to Earth, that the

higher modes are reliably measured at the shortest periods (<35 s in this case). Considering

the sensitivity kernels for these first few higher modes (Fig. 4.1), this means that the data

employed are sensitive to structure down to 300-400 km depth. In Fig. 4.15, we plotted

the dispersion curves for the reliably measured modes in addition to the dispersion curves

predicted by the true model. The measurements are displayed with two standard deviations.

We found that in all cases, the dispersion values for the true model are included within the
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wave (n = 0) and the first 3 overtones (n = 1, 2, 3) with two standard deviations as error bars.

The dispersion curves from the 1-D true model (dashed curve) were plotted for comparison.

2σ uncertainties estimated with our method.

In Fig. 4.16, we showed the posterior distributions of the source parameters and Moho

depth. Even though the initial model is relatively close to the true model, especially in

terms of the Moho depth, we cannot reliably use the posterior distributions of the source

parameters as direct estimations of the true source. We interpret this as the outcome of

strong source-structure trade-offs in this inversion problem.

Before concluding, we should remind the reader that our results do strongly depend on

having a good reference model. Further analysis of the resolvability of Mars structure with

higher modes under different conditions will be performed in a later study.
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Figure 4.16: Similar as Fig. 4.6 but is for the synthetic test. (Red) The posterior distributions

of strike, dip, slip, focal depth as well as Moho depth. The prior distributions used for each of

those parameters are represented by the shaded grey areas. The true values used to generate

the synthetic waveform are shown by the blue dashed lines.
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4.5 Conclusions

In this chapter, we presented a method to invert multi-mode surface-wave waveforms and

measure dispersion curves based on a single station-event pair. While surface waves have not

yet been observed with InSight, this method and the modifications we brought to the original

technique will be important for all future seismological exploration of other planetary bodies.

We showed the feasibility of our method using the MSS blind data set in the first example,

and our own synthetic data in a second example. We modified our original algorithm to help

account for the large uncertainties in the source parameters as well as the lack of a good

Martian reference model. Source parameters were included in the inversion together with

the parameters describing the velocity profile in order to reduce the risk of mapping errors

in the source into the models. We also added constraints from the waveform envelope to

prevent cycle skipping. We showed tests for different reference models and we also compared

the use of group velocities instead of envelopes.

Because the higher modes were not visible on the blind data, only the fundamental mode

Rayleigh waves were inverted. We found that including the waveform envelope or group

velocities did not affect the results strongly and both are good choices to prevent cycle

skipping. Neither method was able to determine which reference model led to the recovery

of the input 1-D base model as strong trade-offs between Moho depth and velocity structure

exist. As long as the reference model has a Moho depth that is not too far from the true

value, our method could find a suite of velocity models that included the true model and

could measure phase velocities such that their error bars included the predictions from the

true 1-D model. However, the inversions with reference Moho depths that were off the true

value yielded apparent features in the VS models that could be erroneously interpreted if

care is not taken. This highlights how essential it will be of having good prior constraints

on the Moho depth before inverting surface-wave waveforms to constrain velocity structure

on Mars.
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In our second example, we applied the same method to synthetic data showing higher

modes in the period range 25s - 50s and that included realistic Martian noise levels. The

higher mode wave trains in our test waveform was visible in the time domain, but very

noisy. Nevertheless, by including higher modes in the inversion we were able to recover the

VS structure well down to 400 km depth at true average Martian noise level, despite the low

SNR in the synthetic waveform. We further obtained the phase velocity dispersion curves

for multiple modes and implemented a reliability analysis to assess which were confidently

measured. Phase velocities at periods with high reliability scores generally fit the true

phase velocities well. This demonstrates the feasibility of our method on higher modes

measurements, though we want to stress the importance of having a good reference interior

model to obtain reliable interior models with our waveform modeling approach.
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CHAPTER 5

Summary and Conclusion

In this work, we proposed a novel transdimensional MCMC approach to invert for 1-D

path-averaged structure and the corresponding dispersion curves with both fundamental

and higher modes Rayleigh waves. A conventional surface wave inversion typically includes

three stages [e.g. Yoshizawa and Kennett, 2002; Visser, 2008]: obtaining phase velocity

measurements, combining them into phase velocity maps and finally an inversion to obtain

a 3-D shear velocity model. Since our method can constrain posterior distributions of 1-D

VS models between station and source directly, we employed a two-stage approach instead:

after obtaining 1-D path-averaged VS profiles, we combined and inverted them to obtain a

3-D VS model. One major advantage of the two-stage approach is that it requires one fewer

linearized inversion and thus suffers less from the information loss and the bias-variance

trade-offs during the inversions from the raw data to the final 3-D model.

In Chapter 2, we introduced the rj-MCMC technique to solve the nonlinear problem

of measuring fundamental and higher mode Rayleigh wave phase velocity dispersion using

waveform modeling. The posterior distribution of the 1-D VS profiles can also be obtained

in the MCMC sampling step. The use of higher mode surface waves in seismic tomography

is very valuable as it increases the vertical resolution of tomographic models in the upper

mantle and transition zone. The synthetic seismograms are generated with a linearized

approximation in order to achieve faster computational convergence. The amplitudes of

perturbation relative to the reference model are thus somewhat limited to reduce the errors

introduced by such approximations. The rj-MCMC method used here has the following
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advantages over linearized inversion techniques:

1. It offers a more comprehensive description of the model space by providing an ensemble

of solutions which represent the posterior distributions of model parameters. The

common non-uniqueness issue of the inverse problem can be better handled this way.

2. It also offers a convenient way to accurately assess the uncertainties of each model

parameter. The uncertainty information is important when we use the 1-D profiles in

latter stages of the inversion, and when we interpret the results.

3. The algorithm can decide how much data noise is needed to fit the data without

overfitting them. The posterior noise distributions can also be used as an indicator of

the quality of the waveform fit within each frequency-time window.

In the case of phase velocity measurements, we also propose a reliability analysis following

Yoshizawa and Kennett [2002] to assess which higher modes were reliably separated. The

effectiveness of our method was demonstrated with both a synthetic test and real data tests.

In Chapter 3, we applied the proposed method to Antarctica and obtained a 3-D az-

imuthally anisotropic VS model together with multi-mode phase velocity maps. Those phase

velocity maps can be used as the input for the third step of the aforementioned three-stage

surface wave tomography. It is also possible to combine the phase velocity maps with other

types of seismic observations, such as receiver functions or ambient noise measurements, to

better constrain the shallower depths. The inversion of phase velocity maps will be discussed

in future work. In this work we focused on the interpretation of the 3-D VS model. Major

conclusions from this 3-D anisotropic VS model for Antarctica include:

1. The 2Ψ anisotropy terms are determined to be significant only in the upper 300 km.

2. EANT is associated with positive VS anomalies in the upper 150 - 250 km, while WANT

is underlain by negative VS anomalies in the upper ∼200 km. Both observations are

consistent with previous regional studies in Antarctica.
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3. The integrated azimuthal anisotropy results from the 3-D model show good agreement

with SKS splitting results in WANT. While the SKS splitting results don’t match

the APMs in WANT, around MBL we observe good alignments between fast axes of

azimuthal anisotropy and APMs in our 3-D model at depths near LAB.

4. The fast axes in EANT start to align well with APM at about 100 km, which is rather

shallow compared to the deep LAB depth of the craton. We argue that the change

of fast axes takes place in the lithosphere rather than around the LAB, which may

indicate the existence of a second layer in the lithosphere of the EANT craton.

In Chapter 4, we further discussed the feasibility of applying the proposed method to

Mars, by taking advantage of the newly available seismic data on Mars from the Insight

Mission. We first discussed the challenges stemming from using a single station to charac-

terize both structure and the source and from the absence of a Mars reference model. We

then updated our MCMC sampling algorithm by: (1) including source parameters as free

parameters, (2) including the crust-mantle boundary as another free parameter, (3) increas-

ing the VS searching range to [-10%, +10%] relative to the reference model, and (4) adding

constraints from the waveform envelope or group velocities to prevent cycle skipping. These

changes were made in order to better account for the large uncertainties in the source param-

eters and Mars structure. Because surface waves have not yet been observed with InSight,

we instead tested our method with two different synthetic dataset. For the first test we used

the Mars Structure Service blind test data, for which higher modes were not visible. We thus

only inverted the fundamental mode Rayleigh waves. We found strong trade-offs between

the Moho depth and the velocity structure: if the reference Moho depth is far away from the

true value, our method may still fit the data well, but then the resulting 1-D VS profiles and

the dispersion measurements will be off the true values. In the second test, we generated our

own synthetic data with both fundamental mode and higher modes visible, and then added

noises to the synthetic data by using the realistic noise levels collected from Mars. Although

the higher modes segments are very noisy, we were still able to recover the VS structure well
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down to 400 km. Phase velocities at periods with high reliability scores generally fit the true

phase velocities well, especially after we considered the estimated uncertainties from MCMC

sampling. The tests we made with Mars will also be important for all future seismological

exploration of other planetary bodies.
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Lognonné, P., Banerdt, W. B., Giardini, D., Pike, W. T., Christensen, U., Laudet, P.,

de Raucourt, S., Zweifel, P., Calcutt, S., Bierwirth, M., Hurst, K. J., Ijpelaan, F., Umland,

J. W., Llorca-Cejudo, R., Larson, S. A., Garcia, R. F., Kedar, S., Knapmeyer-Endrun,

B., Mimoun, D., Mocquet, A., Panning, M. P., Weber, R. C., Sylvestre-Baron, A., Pont,

G., Verdier, N., Kerjean, L., Facto, L. J., Gharakanian, V., Feldman, J. E., Hoffman,

T. L., Klein, D. B., Klein, K., Onufer, N. P., Paredes-Garcia, J., Petkov, M. P., Willis,

J. R., Smrekar, S. E., Drilleau, M., Gabsi, T., Nebut, T., Robert, O., Tillier, S., Moreau,

C., Parise, M., Aveni, G., Ben Charef, S., Bennour, Y., Camus, T., Dandonneau, P. A.,

Desfoux, C., Lecomte, B., Pot, O., Revuz, P., Mance, D., tenPierick, J., Bowles, N. E.,

138



Charalambous, C., Delahunty, A. K., Hurley, J., Irshad, R., Liu, H., Mukherjee, A. G.,

Standley, I. M., Stott, A. E., Temple, J., Warren, T., Eberhardt, M., Kramer, A., Kühne,

W., Miettinen, E.-P., Monecke, M., Aicardi, C., André, M., Baroukh, J., Borrien, A.,
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I., Fayon, L., Ferraioli, L., Johnson, C. L., Gagnepain-Beyneix, J., Golombek, M., Khan,

A., Kawamura, T., Kenda, B., Labrot, P., Murdoch, N., Pardo, C., Perrin, C., Pou, L.,

Sauron, A., Savoie, D., Stähler, S., Stutzmann, E., Teanby, N. A., Tromp, J., van Driel,

M., Wieczorek, M., Widmer-Schnidrig, R., and Wookey, J. (2019). SEIS: Insight’s Seismic

Experiment for Internal Structure of Mars. Space Science Reviews, 215(1).

Long, M. D. and van der Hilst, R. D. (2005). Upper mantle anisotropy beneath Japan from

shear wave splitting. Physics of the Earth and Planetary Interiors, 151(3-4):206–222.

Lynner, C. and Long, M. D. (2015). Heterogeneous seismic anisotropy in the transition

zone and uppermost lower mantle: evidence from South America, Izu-Bonin and Japan.

Geophysical Journal of the Royal Astronomical Society, 201(3):1545 – 1552.

139



Lynner, C., Lynner, C., and Long, M. D. (2014). Lowermost mantle anisotropy and defor-

mation along the boundary of the African LLSVP. Geophysical Research Letters, 41:3447–

3454.

Maggi, A., Debayle, E., Priestley, K., and Barruol, G. (2006). Azimuthal anisotropy of the

pacific region. Earth and Planetary Science Letters, 250(1-2):53–71.

Malinverno, A. (2002). Parsimonious Bayesian Markov Chain Monte Carlo inversion in a

nonlinear geophysical problem. Geophysical Journal of the Royal Astronomical Society,

151(3):675–688.

Marone, F., Gung, Y., and Romanowicz, B. (2007). Three-dimensional radial anisotropic

structure of the North American upper mantle from inversion of surface waveform data.

Geophysical Journal of the Royal Astronomical Society, 171(1):206 – 222.

Masters, G., Woodhouse, J., and Freeman, G. (2011). Mineos v1.0.2 [software].

McNamara, D. E. and Buland, R. P. (2004). Ambient Noise Levels in the Continental United

States. Bulletin of the Seismological Society of America, 94(4):1517–1527.

Meier, U., Trampert, J., and Curtis, A. (2009). Global variations of temperature and water

content in the mantle transition zone from higher mode surface waves. Earth and Planetary

Science Letters, 282(1–4):91 – 101.

Menke, W. (2018). Geophysical data analysis: Discrete inverse theory. Academic press.

Montagner, J.-P., Griot-Pommera, D.-A., and Lavé, J. (2000). How to relate body wave and
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