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Abstract

Changes in temperature and carbon dioxide during glacial cycles recorded in the

Antarctic ice cores are tightly coupled. However, this relationship does not hold

for interglacials. While climate cooled towards the end of both the past (Eemian)

and  present  (Holocene)  interglacials,  CO2 remained  stable  during  the Eemian

while  rising  in  the  Holocene.  We  identify  and  review  twelve  biogeochemical

mechanisms of  terrestrial  (vegetation dynamics and CO2 fertilization,  landuse,

wildfire,  accumulation  of  peat,  changes  in  permafrost  carbon,  volcanic

outgassing) and marine origin  (changes in sea surface temperature, carbonate

compensation to deglaciation and terrestrial biosphere regrowth, shallow-water

carbonate sedimentation, changes in soft tissue pump, and CH4 hydrates), which

potentially may have contributed to the CO2 dynamics during interglacials but

which remain not well quantified. We use three Earth System Models (ESMs) of

intermediate  complexity  to  compare  effects  of  selected  mechanisms  on  the

interglacial CO2 and 13CO2 changes, focusing on those with substantial potential

impact: namely carbonate sedimentation in shallow waters, peat growth, and (in

the case of the Holocene) human landuse. A set of specified carbon cycle forcings

could qualitatively explain atmospheric CO2 dynamics from 8 ka BP to the pre-

industrial. However, when applied to Eemian boundary conditions from 126 to

115  ka  BP,  the  same  set  of  forcings  led  to  disagreement  with  the  observed

direction of CO2 changes after 122 ka BP. This failure to simulate late-Eemian CO2

dynamics could be a result  of  the imposed forcings such as prescribed CaCO3

accumulation and/or an incorrect response of simulated terrestrial carbon to the

surface cooling at the end of the interglacial. These experiments also reveal that

key  natural  processes  of  interglacial  CO2 dynamics  –  shallow  water  CaCO3

accumulation, peat and permafrost carbon dynamics - are not well represented in

the  current  ESMs.  Global-scale  modeling  of  these  long-term  carbon  cycle

components started only in the last decade, and uncertainty in parameterization

of  these  mechanisms  is  a  main  limitation  in  the  successful  modeling  of

interglacial CO2 dynamics. 
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1. Introduction 

A  number  of  uncertainties  complicate  future  projections  of  atmospheric  CO2

concentration and climate change  (Ciais et  al.,  2013).  In conjunction with the

development of mechanistic models of the climate system and carbon cycle, the

starting point to addressing these uncertainties is to understand the relationship

between surface temperatures and atmospheric CO2 concentrations in the warm

intervals of the recent past. The tight coupling between Antarctic temperature

and CO2 during glacial  cycles has been known since pioneering studies of  the

Antarctic ice cores (Barnola et al., 1987; Neftel et al., 1982). Recent studies reveal

past CO2 dynamics during the present  (Indermühle et al.,  1999; Monnin et al.,

2004) and past interglacial  periods  (Schneider et al.,  2013) with much higher

precision  and  accuracy.  These  analyses  demonstrate  that  during  the  present

interglacial (Holocene), atmospheric CO2 increased by about 20 ppm from 7 ka

BP to before the onset of the industrial era (Fig. 1). In the past interglacial period

(Eemian),  CO2 varied  around  the  level  of  about  270-280  ppm  without  any

significant trend from 126 to 115 ka BP (Fig. 1). Since temperature in Antarctica

decreased towards the end of both periods, the temperature - CO2  relationship

common  for  the  glacial  cycles  (Petit  et  al.,  1999;  van  Nes  et  al.,  2015) and,

especially,  deglaciations  (Parrenin  et  al.,  2013) is  not  valid  for  these  two

interglacials. 

Here,  we  address  the  difference  in  the  interglacial  CO2 dynamics  using  two

approaches. First, we provide a review of proxy data and mechanisms of carbon

cycle changes during the Holocene and Eemian. In section 2, we summarize the

current state of knowledge with regards to CO2 variability during interglacials,

reviewing  the  various  possible  carbon  cycle  mechanisms  that  can  affect

atmospheric  CO2.  This  overview is  followed  by a  summary  of  available  proxy

constraints on these processes. In the second part of the paper, we present model

setup (section 3) and results (section 4) from factorial simulations using three

Earth  System  Models  of  Intermediate  Complexity  (EMIC).  For  this  model

intercomparison, we focus on time periods starting thousands of years after the

terminations  in  order  to  minimize  the  memory  effects  of  carbon  cycle
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reorganization during deglaciation. For the Holocene, we chose the period from 8

ka BP, when interglacial climate conditions were well established, to 0.5 ka BP

excluding the fossil fuel effect on the carbon cycle. For the Eemian, we analyze the

period from 126 to 115 ka BP which corresponds to the Marine Isotopic Stage 5e

(Tzedakis et al.,  2012). Finally, we summarize how the CO2 and  13CO2 ice core

records during both 8-0.5 and 126-115 ka BP periods can be quantified based on

the previous research and results of our model intercomparison.

2. An overview of proxy data and mechanisms of interglacial CO2 change

2.1 Insights from the ice core 13CO2 records 

Discrimination  of  the  heavy  13C  isotope  during  photosynthesis  affects  land-

atmosphere carbon fluxes and modifies the  13C/12C ratio of  atmospheric  13CO2

(e.g.,  Lloyd  and  Farquhar,  1994).  An  increase  (decrease)  in  organic  carbon

storage on land leads to higher (lower)  13C/12C ratios in the atmosphere. Stable

carbon isotope records from the ice cores,  expressed as a  deviation from the

Vienna PeeDee Belemnite (VPDB) reference value in permil (‰), 13CO2, could be

used to attribute changes in CO2  to different sources. Indermühle et al.  (1999)

used newly available  13CO2 data  at  that  time to  conduct  the  first  attempt  to

constrain the sources responsible for  the growing CO2 trend in the Holocene.

These authors reconstructed the Holocene CO2 evolution in detail, but had to rely

on low temporal resolution measurements of 13CO2 with larger uncertainty than

achieved in recent approaches.  They deconvolved the budget equations of CO2

and  13CO2 for the unknown oceanic and terrestrial  carbon sources and sinks

while invoking processes such as changes in land carbon storage, changes in Sea

Surface  Temperatures  (SST)  and  changes  in  the  calcium  carbonate  cycle  to

explain their records. This pioneering work started a search for comprehensive,

process-based explanations of Holocene CO2 forcings. 

Elsig  et  al.  (2009) presented a new high-precision and high-resolution  13CO2

record (Fig. 1) that provided for the first time a reliable and strong top-down
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constraint  on  the  Holocene  CO2 changes.  These  authors  repeated  the

deconvolution  of  the  CO2 and  13CO2 records and  suggested  that  the  20 ppm

increase of atmospheric CO2 and the small decrease in  13CO2 of about 0.05‰

during the late Holocene are mainly  be explained by contributions from pre-

Holocene  memory  effects,  such  as  carbonate  compensation  of  earlier  land-

biosphere uptake, and coral reef formation, with only a minor contribution from

a small decrease in the land-biosphere carbon inventory. In quantitative terms,

their deconvolution of the CO2 and 13CO2 records yields a land carbon uptake of

ca. 60 GtC from 7 to 5 ka BP, followed by a cumulative land carbon release of

36±37  GtC  thereafter.  This  assessment  is  supported  by  process-based

atmosphere-ocean  modelling  in  combination  with  marine  sediment  data

performed  by  Menviel  and  Joos  (2012).  They  implemented  the  13C-based

atmosphere-land flux, together with observation-based reconstruction of shallow

water carbonate deposition  (Vecsei and Berger,  2004) in the Bern3D dynamic

ocean-sediment model. They demonstrate that simulated atmospheric CO2 and

13CO2,  as  well  as  the  spatio-temporal  evolution  of  13C  of  dissolved  organic

carbon  (DIC)  and  carbonate  ion  concentrations  in  the  deep  ocean  are  fully

consistent with the Holocene ice and marine sediment records. 

Schneider et al. (2013) presented a high-resolution CO2 and 13CO2 record for the

Eemian that revealed several important differences between the Holocene and

the Eemian dynamics of  13CO2.  As Lourantou et al.  (2010) who published the

13CO2  record during the onset of the Eemian, Schneider et al. (2013) found that

the Eemian  13CO2 was by 0.2-0.3‰ lower than during the Holocene (Fig.  1).

They suggested that one possibility to explain the generally lower atmospheric

13CO2 during the Eemian could be that less carbon was stored in the terrestrial

biosphere. Hypothetically, this difference could be explained by carbon storage

changes in permafrost, although there is no process-based model simulation yet

which would support such a difference. Another possibility to explain this 13CO2

difference  is  a  drift  in  the  total  13C  inventory  on  100  ka  timescales  due  to

imbalances in the input of 13C by weathering, volcanic outgassing and the loss of
13C  by  burial  of  organic  carbon  and  calcium  carbonate  (Roth  et  al.,  2014;
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Schneider et al., 2013; Tschumi et al., 2011). Secondly, they found that 13CO2 was

not stable but experienced a rise and fall by 0.2‰ during the period of 122 to

116 ka. Schneider et al. (2013) argued that this fluctuation is partly explained by

warmer SSTs at that time, thereby changing the fractionation during air/sea gas

exchange, resulting in higher atmospheric 13C values.  Presumably, the difference

between  Holocene  and  Eemian  in  the  CO2 and  13CO2 dynamics  could  be

explained by a difference in the forcings during these periods (orbital forcing,

landuse  forcing  in  the  Holocene)  and  the  memory  effects  associated  with

biogeochemical changes preceding the interglacials. 

2.2 Overview of mechanisms governing interglacial CO2 dynamics

The most recent interglacial period, the Holocene, is much better covered by the

observational  data  than  the  earlier  interglacial  periods.  For  this  reason,  a

majority  of  process-based  modelling  studies  on  interglacial  carbon  cycle

encompass the Holocene (Brovkin et al., 2002; Brovkin et al., 2008; Foley, 1994;

Joos et al., 2004; Kaplan et al., 2002; Kleinen et al., 2010; Menviel and Joos, 2012;

Olofsson and Hickler, 2008; Ridgwell et al., 2003; Roth and Joos, 2012; Schurgers

et al., 2006; Spahni et al., 2013; Stocker et al., 2011; Strassmann et al., 2008). Due

to this wealth of previous research,  our overview also strongly focuses on the

Holocene.  Most  of  the  Holocene  mechanisms,  except  for  forcings  linked  to

anthropogenic  activity,  are  natural  processes  that  should  be  active  during  all

other  interglacial  periods  as  well.  The  confidence  in  significance  of  these

mechanisms  during  interglacials  is  quite  different.  Some  of  processes  are

quantified in experiments done with several models, and are clearly supported

by  geological  evidence,  while  some  mechanisms  are  hypothetical  with

insignificant  understanding or  poor  quantitative  support.  We categorize  well-

understood  mechanisms  into  terrestrial  and  marine  processes,  and  overview

processes with large gaps in knowledge afterwards.

2.2.1 Terrestrial mechanisms

2.2.1.1 Natural vegetation dynamics due to climate change and CO2 fertilization
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While the  13C of benthic foraminifera and the 18O of atmospheric oxygen could

be used as indirect proxies to constrain carbon transfer between the terrestrial

biosphere and the ocean during glacial cycles (Ciais et al., 2012), no direct proxy

exists for the past amount of carbon stored in terrestrial ecosystems. However,

pollen-based  reconstructions  of  terrestrial  vegetation  cover  reveal  changes  in

plant composition over the Holocene with up to decadal scale precision. During

the Holocene climatic optimum, approximately 6000 years ago, the treeline in the

high northern latitudes shifted northwards by several hundred kilometers in Asia

and  North  America,  and  vegetation  cover  strongly  increased  in  the  northern

subtropics  from  North  Africa  to  the  deserts  in  China  (Prentice  et  al.,  2000;

Williams, 2003). The desertification of North Africa between 6 and 3 ka BP and

the retreat of  boreal forests from the Arctic coasts during the last 6000 years

should have been accompanied by a substantial decrease in vegetation and soil

carbon storage.  Modeling studies  by  Foley  (1994)  ,  Brovkin  et  al.  (2002)  ,  and

Schurgers et al. (2006)   suggested that, indeed, carbon emissions of the order of

several dozens to a hundred GtC could have been released to the atmosphere in

the last 7000 years. However,  Kaplan et al. (2002)   and  Joos et al. (2004)   found

that land acted as a carbon sink during this period. The difference between these

modeling studies is explained by different climate forcings used by the ecosystem

models and different model sensitivities to changes in climate and atmospheric

CO2.  All  models  included  a  CO2 fertilization  mechanism,  which  leads  to  an

increase  in  terrestrial  carbon  storage  with  growing  CO2 (e.g.  Cramer  et  al.

(2001)  ). 
The physiological mechanisms and effects of increasing atmospheric CO2, i.e. an

increase of net photosynthesis and water-use efficiency, are well understood at

the leaf level and considered in current models (Ainsworth and Rogers, 2007; De

Kauwe et al., 2014). However, various mechanisms, such as nutrient constraints,

leading to a sink limitation of photosynthesis may attenuate this response at the

plant and ecosystem scale (e.g.,Reich et al., 2014). Whether or not an attenuation

of the leaf-level effect occurs strongly depends on the magnitude and time-scale

of  the  CO2  perturbation,  for  instance  as  at  the  centennial  time-scale,  minor

changes in the ecosystem nitrogen budget may alleviate nitrogen constraints on

CO2 fertilisation (Walker et al., 2015). Notwithstanding strong effects of nutrient
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constraints on plant production (Zaehle, 2013), there is limited understanding on

how nutrient constraints would affect the terrestrial carbon balance at millenia

time-scale.

The amplitude of the carbon storage increase depends on the CO2 sensitivity of

the particular vegetation model and on the amplitude of the CO2 increase in the

model  simulation  (CO2 could  be  prescribed  or  interactively  simulated  by  the

model). Moreover, many ecosystems are not only limited by CO2, but by nutrient

availability.  All  of  these  early  modeling  studies  were  focused  on  changes  in

carbon storage in biomass and mineral soils,  while neglecting changes in land

carbon  due  to  anthropogenic  landuse  and  changes  in  organic  soils  including

peatlands and frozen soils. Their main conclusion is that natural vegetation and

soil dynamics responding to physical climate changes lead to a CO2 source over

the past 7 ka, while CO2 fertilization leads to a land carbon sink, thus preventing

land from being a net CO2 source over this period. Eemian simulations with an

interactive  carbon  cycle  were  performed  by  Schurgers  et  al.  (2006)  .  In  their

experiments, CO2 concentrations increased by about 15 ppm between 128 to 115

ka due to a land source of about 300 GtC in response to a global cooling and the

southward retreat of boreal forests. 

2.2.1.2 Anthropogenic landuse and land cover change
After publication of the Holocene CO2 record by Indermühle et al. (1999), another

hypothesis  regarding  the  atmospheric  CO2 increase  in  the  Holocene  received

prominent attention.  Ruddiman (2003)   argued that the increase in CO2 during

the  last  8000  years  of  the  Holocene  is  unique  if  one  compares  it  with  CO 2

dynamics  in  the  previous  interglacials.  He  suggested  that  the  anomalous  CO2

growth was caused by anthropogenic landuse beginning as early as 8000 years

ago.  The early human imprint  on the atmospheric composition would also be

found  in  atmospheric  methane  resulting  from  agricultural  activities  (rice

cultivation,  ruminants,  wood  burning).  While  there  is  no  doubt  that  humans

started to clear the land for early agriculture, the timing of the CO 2 increase, with

by far the most dominant rise occurring from 7 to 5 ka BP, does not fit population

dynamics  and  the  evolution  of  agricultural  expansion.  Numerous  modeling

studies  (Brovkin  et  al.,  2004;  Joos  et  al.,  2004;  Olofsson  and  Hickler,  2008;

Pongratz  et  al.,  2009;  Stocker  et  al.,  2011;  Strassmann et  al.,  2008) based  on
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population and landuse scenarios such as HYDE  (Goldewijk et al., 2011) found

that an effect of landuse emissions on atmospheric CO2 before 1850 is not larger

than a few ppm. Only one modeling study by Kaplan et al. (2011)   based on large

area-per-capita usage by early societies and large soil carbon depletion after land

conversion  suggested  that  cumulative  carbon  emissions  resulting  from

anthropogenic land clearance before 3 ka BP caused an atmospheric CO2 increase

of 7 ppm.  Ruddiman  (2013) used the Neolithic modeling study by Wirtz and

Lemmen  (2003) to  support  the  hypothesis  of  early  Holocene  landuse,  but

modeling  of  human  population  dynamics  remains  to  be  highly  uncertain.  In

addition, the Holocene trend of atmospheric methane measured in ice cores –

which is also an important byproduct of fire activity (mostly in the smoldering

phase)  –  combined with the rather  constant  13CH4 signal  over  the  last  4000

years (Sowers, 2010) also does not favor a scenario with a substantial change in

fire CH4 emissions caused by human activities. Such changes related to humans

and landuse are apparent only during the last 2000 years (Sapart et al., 2012).

The  most  important  data  constraint  on  the  early  anthropogenic  hypothesis

comes from the carbon isotopes in atmospheric CO2, as landuse-related carbon

emissions  should  have  caused  a  negative  13CO2 signal,  which  is  significantly

larger  than the signal  suggested by analysis  of  the  13CO2 record  (Elsig et  al.,

2009; Schmitt et al.,  2012). It is more plausible to assume that landuse played

some role  in  the  CO2 increase during the last  millennium  (e.g.,  Bauska et  al.,

2015), but cannot explain the whole CO2 growth from 7 to 1 ka. A large spread in

the amplitude of landuse emissions is one of the major sources of uncertainties

in  simulations  of  CO2 dynamics  during  the  Holocene.  The  high-end  emission

scenarios  such  as  the  one  by  Kaplan  et  al.  (2011)   require  large  areas  of

conversion from forests to open landscapes, which cannot be left unnoticed in

the pollen records. {Fuller, 2011 #1872}The most reliable approach to constrain

the landuse emissions is to use pollen records to reconstruct  changes in tree

cover (Williams, 2003) and landuse (Fyfe et al., 2015; Gaillard et al., 2010) during

the  Holocene.  Until  such  a  large–scale,  time-resolved  synthesis  is  available,

carbon cycle modelers are forced to test different land-use scenarios to address

uncertainties in population-based estimates in historical landuse (Stocker et al.,

2011). 
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2.2.1.3 Fire activity 

Fires  are  a  major  component  of  vegetation  and  landuse  change,  where  fire

activity  includes  both  anthropogenic  and  natural  aspects.  Humans  have

conducted large-scale land clearance using fires for millennia with the goal of

opening land for agriculture, or using fire as a hunting tool (Bowman et al., 2009;

Power et al.,  2013). The timing and spatial  extent of such human-induced fire

activity varies by region. Temperate zones in Southern Europe and East Asia were

among the first areas to be subject to anthropogenic deforestation (Kaplan et al.,

2009;  Yang et  al.,  2013),  with  major  burning beginning in  the  mid-Holocene,

where  native  forests  never  recovered  but  remained  primarily  agricultural  or

urban  land.  Climate  is  another  main  driver  of  fire  activity.  With  increased

temperature, fire activity generally escalates, affecting carbon fluxes (Bowman et

al.,  2009;  Flannigan  et  al.,  2009).  Drier  conditions  also  result  in  greater  fire

activity,  but  only  up  to  the  point  in  which  the  arid  conditions  still  provide

sufficient amount of biomass to burn  (Marlon et al., 2012). Charcoal syntheses

from primarily temperate regions demonstrate that over the past 21,000 years

(Power et al., 2008) and over the Holocene (Marlon et al., 2013) climate has been

the major driver of fire activity. Modelling studies (Bruecher et al., 2014; Kloster

et al., 2015) also suggest that the fire trend in the Holocene is mainly driven by

trends  in  aridity  and  changes  in  fuel  storage  due  to  productivity  changes.

Antarctic ice core records reveal that fire activity closely correlates with climate

over the past 2000 years until industrial period (Ferretti et al., 2005; Wang et al.,

2010). Multiple proxies in Greenland ice cores provide a more comprehensive

picture. Climate has a main influence on boreal fire activity over the past 2000

years, with peak fire activity coincident with major Central Asian droughts in the

1600s AD (Zennaro et al., 2014), while the biomass burning maximum in Europe

about 2500 years ago may be due to anthropogenic land clearance (Zennaro et

al., 2015). 

2.2.1.4 Peat accumulation

During the last termination and after the onset of  the Holocene about 11,700

years ago, large areas with relatively flat terrain in northern Eurasia and North
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America became moist and warm during the summer, enabling the development

of peatlands.  14C-based reconstructions of peat basal ages in the boreal regions

revealed  a  peak  in  the  initiation  of  peatlands  during  11  to  9  ka,  and  boreal

peatland  formation  continued  throughout  the  entire  Holocene  (Loisel  et  al.,

2014;  MacDonald  et  al.,  2006;  Yu  et  al.,  2010b).  Currently  existing  northern

peatlands have accumulated 230 to 550 GtC over the past 15 ka ((Yu, 2012) and

references therein), with the most recent estimate of 436 GtC (Loisel et al., 2014),

while tropical and southern hemisphere peatlands accumulated about 50 and 15

GtC, respectively (Yu et al., 2010b). However, part of the newly accumulated peat

should be compensated by widespread drying of existing peatlands or peatlands

submerged under sea water on ocean shelves  (Dommain et al., 2014) from the

last  glacial  and  the  time  immediately  thereafter.  While  the  accumulation  on

presently  existing  peatlands is  supported  by  modeling  results  (Kleinen  et  al.,

2012; Spahni et al., 2013), there is yet a lack of studies that address the temporal

balance between carbon loss from disappearing peatlands and carbon gain on

establishing peatlands. Loisel et al. (2014)   find the highest carbon accumulation

rates in boreal peatlands during 11 to 7 ka BP, and an overall slowdown of peat

accumulation  rate  during  the  mid-  and  late  Holocene,  with  minimum  values

during 3 to 1.5 ka BP. While quantifying a net effect of peatlands on atmospheric

CO2 is  challenging,  we  can  hypothesize  that  the  carbon  uptake  by  boreal

peatlands likely contributed to the early Holocene CO2 decrease. This uptake is

also an important driver for the land carbon uptake of ~290 GtC between 11 and

5 ka BP inferred from the deconvolution of the CO2 and 13CO2 ice core data (Elsig

et al.,  2009).  The continued accumulation of boreal peat after 5 ka BP should

have  led  to  a  decrease  in  atmospheric  CO2,  and  a  corresponding  increase  in

atmospheric 13CO2 in the Holocene, which is the opposite of the observed small

negative trend (Fig. 1,a). Consequently, the peat sink over the past 5 ka has to be

compensated by another source of isotopically light CO2. A carbon uptake by peat

buildup during the Holocene cannot bring the atmospheric ice core observations

and  the  early  anthropogenic  hypothesis  by  Ruddiman  (2003,  2013) in

agreement.  A  peat  buildup  simultaneous  to  landuse-induced  carbon  release

could  stabilize  the  13CO2 values  over  the  last  7000  years,  but  then  landuse

cannot  cause  the  atmospheric  CO2 increase  over  the  same  time  period.  In
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addition,  the  timing and  evolution  of  peat  build  up  does  not  agree  with  CO2

emissions from landuse, as peat build-up is very linear and steady over the entire

Holocene (Kleinen et al., 2012; Loisel et al., 2014; Spahni et al., 2013), while an

increase in landuse emissions over the past 7 ka cannot be linear due to non-

linear population growth.

All  considered  terrestrial  processes  affect  carbon  storage  on  land  that  has

negative 13C signature (ca. -25‰ for C3-photosynthesis plants). Uptake/ release

of terrestrial carbon leads to increase/decrease in atmospheric 13CO2.

2.2.2 Marine mechanisms

2.2.2.1 Changes in SSTs 

Increasing  temperature  of  surface  waters  leads  to  CO2 outgassing  and

consequently an increase in atmospheric CO2. In equilibrium, the dependency of

atmospheric CO2 on SST due to CO2 solubility (Henry’s law) leads to atmospheric

CO2 sensitivity to uniform temperature change of about 9-10 ppm/°C (Archer et

al., 2004). Indermühle et al. (1999)   considered proxy data on increasing tropical

SSTs  as  a  global  signal  and  proposed  an  increase  in  SSTs  as  an  important

mechanism of CO2 growth during the Holocene. However, tropical warming in the

course of the Holocene was accompanied by a SST decrease in the North Atlantic

(Kim et al., 2004; Marchal et al., 2002). Because Atlantic deep waters are formed

in the northern high latitudes, the surface cooling in this region should have a

disproportionally  stronger  effect  on  the  carbon  transfer  to  the  ocean  in

comparison with the effect of SST changes in low latitudes. Modeling studies by

Brovkin et al. (2002)   and Menviel and Joos (2012)   found almost no CO2 effect in

response to the small increase in global SSTs during the last 7 ka. Direct forcing of

biogeochemistry models with SSTs reconstructed by  Kim et al. (2004)   led to a

small  decrease  in  atmospheric  CO2 (Brovkin  et  al.,  2008).  In  line  with  these

studies, Goodwin et al. (2011)   estimated the effect of simulated SSTs from 8 ka to

the pre-industrial as a drop of CO2 of only 0.1 to 1.1 ppm. In summary, the effect

of changes in SSTs on atmospheric CO2 during the Holocene is likely to be small,

and on the order of a few ppm (Schmitt et al., 2012). 
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2.2.2.2  Carbonate  compensation  due  to  deglaciation  and  terrestrial  biosphere

growth

Carbonate compensation mechanism (Broecker et al., 1999) is a response of the

ocean  carbonate  chemistry  to  changes  in  boundary  conditions,  such  as

atmospheric CO2 concentration or oceanic circulation. Large-scale reorganization

of ocean circulation and the carbon cycle during the last deglaciation likely led to

the release of large amounts of CO2 from the ocean. After CO2 release,  bottom

waters  should  become  less  acidic  and  lead  to  a  preserved  spike  in  CaCO3 in

marine  sediments,  which,  indeed,  is  prominent  in  marine  cores  during

deglaciations  (Broecker  et  al.,  1999;  Farrell  and  Prell,  1989).  Carbonate

compensation  due  to  this  re-organization  -  a  process  of  restoring  a  balance

between terrestrial weathering and carbonate sedimentation in the ocean - has a

long timescale of 5 to 7 thousand years. During this period, alkalinity removal

due to carbonate sedimentation in the deep ocean is higher than alkalinity input

due to weathering. This disbalance between input and removal leads to reduction

in total ocean alkalinity and additional release of CO2 to atmosphere since less

alkane water contains less DIC. Because of the millennial time scale of carbonate

compensation, the carbonate system was in disequilibrium at the beginning of

the Holocene, and this should also have a small elevating effect on atmospheric

CO2 during  the  Holocene.  This  disequilibrium  effect  could  be  quantified  in  a

transient  simulation  using  a  climate-carbon  cycle  model  during  deglaciation

(Brovkin et al., 2012; Menviel and Joos, 2012; Menviel et al., 2012), but it is also

superimposed  by  the  following  two  processes  that  affect  marine  carbonate

chemistry during interglacials. 

Marine carbonate chemistry  responds to the  uptake of  several  hundred Gt  of

carbon by  terrestrial  ecosystems during the early  Holocene and  the previous

glacial  termination (~18 to 11 ka BP).  The land carbon uptake led to a small

decrease  of  CO2 by  ca.  5  ppm  from  11  to  8  thousand  years  ago  (Fig.  1).  In

response to this carbon uptake and atmospheric CO2 drop, oceans should become

less  acidic  and  carbonate  sedimentation  should  increase,  leading  to  reduced

alkalinity  and  CO2 release  to  the  atmosphere  as  discussed  in  the  previous
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paragraph (Broecker et al., 1999; Broecker et al., 2001). For the period from 7 to

0 ka BP, this effect is estimated as about 5 ppm to compensate for early Holocene

land uptake and between 0 and 5 ppm in response to land uptake over the glacial

termination (before 11 ka BP) (Joos et al., 2004; Menviel and Joos, 2012).

2.2.2.3 Enhanced shallow-water carbonate sedimentation

Increased shallow-water carbonate sedimentation could have been a dominant

contributor to the CO2 growth during the Holocene. During deglaciations, when

tropical  shelves  are  flooded,  corals  and  other  calcifying  organisms  start  to

accumulate large amounts of CaCO3 in tropical and subtropical shallow waters.

Estimated  excessive  global  CaCO3 accumulation  rates  in  shallow  waters  vary

between 2.9 (0.03) (Vecsei and Berger, 2004) and 12 (0.14) Tmol/yr (GtC/yr) at

present  (Milliman,  1993;  Opdyke  and  Walker,  1992).  Because  total  CaCO3

sedimentation in equilibrium is limited by the weathering flux, more burial on

shelves  leads  to  less  burial  in  the  deep  sea.  This  redistribution  of  carbonate

sedimentation leads to a reduction in total alkalinity on global scale, which leads

to  a  release  of  CO2 to  the  atmosphere  (see  previous  section).  Brovkin  et  al.

(2002)  , Ridgwell et al. (2003)  , Kleinen et al. (2010)  , and Menviel and Joos (2012)  

found this mechanism to be a strong contributor to the atmospheric CO2 growth

during the Holocene.

Marine processes discussed in the section 2.2 do not have significant impact on

atmospheric 13CO2. Changes in SSTs influence isotopic fractionation of CO2 at the

ocean  surface  (Marchal  et  al.,  1998),  however,  the  effect  is  small  because  of

geographical pattern of SST changes  (Brovkin et al., 2002). Fluxes of carbonate

and weathering have  13C isotopic  signature close  to  zero and,  therefore,  have

almost no influence on the oceanic 13C and atmospheric 13CO2.

2.2.3 Processes with large gaps in knowledge

2.2.3.1 Permafrost carbon changes

Recently, the attention of carbon cycle modelers turned towards organic matter

stored in permafrost soils. Permafrost and peatlands are not mutually exclusive

14

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

14



terms as parts of peatland areas are also permafrost areas. Large-scale syntheses

by  Tarnocai et al.  (2009)   and  Hugelius et al.  (2014)   revealed that the current

storage  of  carbon  in  frozen  soils,  including  deltaic  alluvium  and  Yedoma

sediments,  is  of  the  order  of  1300 GtC.  This  carbon was mainly  accumulated

during the glacial period in regions free of ice sheets. For instance Ciais et al.

(2012) estimated that 2300 GtC were stored as inert carbon pool during the LGM.

In the ice-rich land complexes in the Arctic, carbon storage reaches densities of

several  hundred  kgCm-2.  During  deglaciation,  when  the  total  permafrost  area

nearly  halved  (Saito  et  al.,  2013),  part  of  the  permafrost  carbon  would  have

decomposed quickly  and affect  both atmospheric  CO2 and  13CO2 (see section

2.1). Nonetheless, processes of thermal erosion and thermokarst formation are

continuing in the Holocene, as well as the development of new permafrost. The

balance of these processes on large scales is difficult to estimate, but modeling

studies  suggest  that  the  accumulation  of  carbon  in  newly  formed  permafrost

areas prevails over decay in the late Holocene  (Crichton et al.,  2014), although

processes of thermokarst formation and thermal erosion are not yet included in

these models. Walter Antony et al. (2014) used observational evidence to suggest

that thermokarst lakes turned from carbon sources to sinks during the Holocene.

The buildup of permafrost carbon is unlikely to continue in the future due to

anthropogenic climate change. 

2.2.3.2 Enhanced volcanic outgassing 

On  geological  time  scales,  the  burial  of  organic  carbon  and  CaCO3 in  marine

sediments is compensated by volcanic CO2 outgassing. Present-day estimates of

subaerial  emissions are in the range of 0.02-0.15 GtC/yr  (Burton et al.,  2013;

Gerlach,  2011).  Roth  and  Joos  (2012)   concluded  that  enhanced  volcanic  CO2

emission in response to disintegration of ice sheets proposed by Huybers and

Langmuir (2009) possibly contributes to the CO2 rise during deglaciation, but not

during the late Holocene. On considered timescales, volcanic CO2 emissions have

almost no influence on atmospheric  13CO2 since their  13C isotopic signature is

close to zero.

2.2.3.3 Reduction in storages of marine CH4 hydrates 
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One of the least known processes is the response of methane hydrates in marine

sediments  on  continental  slopes  and  on  the Arctic  shelves.  The sensitivity  of

marine hydrate storage to an increase in the bottom temperature depends on the

value  of  the  critical  bubble  fraction  enabling  gas  escape  from  the  sediment

column. This release is estimated to be about 30 to 500 GtC in response to 3°C

warming (Archer et al., 2009). Most of this methane will be oxidized in the water

column and will only reach the atmosphere as carbon dioxide (Reeburgh, 2007).

Because propagation of the heat signal through the sediments has a time scale of

several thousand years, the warming of shallow and intermediate waters during

the deglaciation could have led to an additional source of isotopically light carbon

(ca.  -50  to  -60‰)  which  contributed  to  the  decrease  in  atmospheric  13CO2

during the course of the Holocene. The scale of this effect is difficult to estimate

with  current  methane  hydrate  models.  A  destabilization  of  metastable  CH4

hydrates  in  sub-sea  permafrost  in  response  to  the  shelf  flooding  might  be

responsible for present-day elevated CH4 concentrations in the Laptev Sea region

(Shakhova  et  al.,  2014).  Hydrogen  isotopic  measurements  on  atmospheric

methane  in  ice  cores  did  not  support  clathrate  destabilization  during  rapid

warming events in Marine Isotope Stage (MIS) 3 (Bock et al., 2010) or during the

last  deglaciation  (Sowers,  2006).  These  ice-core  reconstructions  do  not

contradict a possible impact of CH4 hydrates on atmospheric CO2, as most of the

methane emitted at the seabed is oxidized in the water column (Reeburgh, 2007).

2.2.3.4 Reduction in the ocean soft tissue pump 

Reduction in  the ocean soft  tissue pump corresponds by definition  (Volk and

Hoffert,  1985) to  a  less  efficient  utilization  of  surface  nutrients  and  a

corresponding decrease in the export of  biological material  out of  the surface

layer,  leading to  higher  pCO2 in  the  surface  ocean,  and  as  a  result,  to  higher

atmospheric CO2 and lower atmospheric 13CO2.  Although there is no evidence of

large-scale changes in the ocean soft issue pump in the Holocene, Goodwin et al.

(2011)   used marine 13CDIC data to demonstrate that the role of this mechanism in

the CO2 increase during the last 8 ka could be significant. 
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2.3 Proxy constraints on interglacial carbon cycling 

Beyond  the  high  quality  atmospheric  measurements  from  Antarctic  ice  cores

(Fig.  1),  there  are  other,  less  direct  proxies,  which  help  to  understand  the

mechanisms behind interglacial CO2 changes. Terrestrial pollen records represent

valuable geological archives describing changes in the distribution of vegetation

cover during glacial-interglacial transitions and interglacials. These records can

be used for model-data comparisons in terms of dynamics of forests and bare

ground during interglacials  (Kleinen et al.,  2011), while their interpretation in

terms of changes of carbon storages is more qualitative than quantitative. For the

Holocene, these records show that the northern tree line was in a more northerly

position at  6 ka BP both in Eurasia and North America  (Prentice et al.,  2000;

Williams, 2003). Similarly, changes are visible for the forest-steppe boundary in

Eurasia  (Kleinen et al.,  2011) and the Sahel-Sahara boundary, where the Sahel

area expanded northwards at  6 ka BP  (Prentice et  al.,  2000;  Shanahan et  al.,

2015). For previous interglacials, terrestrial pollen archives are less informative

since areas in the high northern latitudes, where changes took place during the

Holocene,  were  severely  affected  by  glaciation,  eradicating  any  evidence  that

might  have  been  used  to  reconstruct  vegetation  for  previous  interglacials.

Nonetheless,  evidence  from  ice–free  areas  like  Lake  El’gygytgyn  in  eastern

Siberia indicates tree cover changes similar to the Holocene, where a northerly

movement  of  trees  in  the  early  interglacial  followed  a  change  to  tundra

conditions (Tarasov et al., 2013).

Lake  sediment  charcoal  records  provide  evidence  of  past  fire  activity  and

associated CO2 emissions. Charcoal primarily comes from organic matter (wood,

grass)  exposed  to  high  temperatures.  These  temperatures  drive  off  volatile

elements and leave a carbon residue that can be transported tens of kilometres

from  the  source  and  deposited  in  lake,  marine  and  peat  sediments.  Physical

counting  of  charcoal  particles  and  their  chemical  analysis  provide  detailed

records of fire activity in vast areas.  The Global Charcoal Database (GCD) is a

global syntheses effort  (Power et al., 2008) that enables examining broad-scale

patterns  in  paleo-fire  activity  since  LGM  (21.000  BP).  Several  Holocene  data

17

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

17



studies  focus on  the climatic  controls  of  fire  (e.g.,  Marlon et  al.,  2013) or  on

model-data comparisons (Bruecher et al., 2014) to understand natural wild fire

in  the  past.  Global  fire  activity  increased  over  the  Holocene,  but  the  driving

factors differ  among regions and may offset  each other  (Kloster  et  al.,  2015).

Charcoal  data  sets  are  reported  in  Z-scores  which  are  very  useful  for

reconstructing temporal and spatial trends in fire activity, but not applicable for

quantitative  reconstructions  of  burned  area,  carbon  emissions  by  fire,  or  the

original burned fuel. Due to the harmonization process to obtain a global trend

(Power  et  al.,  2008),  an  increase  in  reported  Z-scores  could  be  related  to  a

decrease in burned area. Therefore, comparisons on regional or local scales are

more meaningful. 

Deep-sea  carbonate  sediments  provide  another  useful  archive  for  evaluating

mechanisms of  interglacial  CO2 changes.  Over  the course of  the Holocene,  the

data show a decrease in carbonate ion concentrations in the deep Pacific (Yu et

al.,  2010a) where the dissolution of  the deep sea carbonate sediments in the

Pacific continues through the Holocene (Anderson et al., 2008). The dissolution

of  deep sea sediments could be a response to the redistribution of  carbonate

sedimentation from the deep sea to shallow seas,  to the CO2 release from the

terrestrial biosphere, or the re-partitioning of sinks within the ocean in response

to large-scale changes in ocean circulation (Chikamoto et al.,  2008). Therefore,

the dissolution cannot verify whether the source of carbon to the atmosphere has

marine  or  terrestrial  origin.  Goodwin  et  al.  (2011)   used  a  theoretical  model

framework  to  demonstrate  that  changes  in  SSTs  do  not  impose  a  strong

constraint on the sources of carbon for the atmospheric CO2 increase during the

Holocene. They argued that the inclusion of marine 13CDIC data, in addition to the

combination of carbonate ion concentration and atmospheric 13CO2, reduces the

uncertainty in the reconstruction of CO2 sources during the Holocene. 

3. Methods

3.1 Models 
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Our overall  approach is to utilize three established Earth system models that

differ in two key characteristics – the representation of ocean circulation (and

hence  marine  carbon  cycling)  and  the  representation  of  terrestrial  carbon

storage dynamics and vegetation,  hence giving us some measure of the model

uncertainty. We emphasize that we do not include all major driving factors in our

simulations as well as legacy fluxes from changes prior to the starting point of

our simulations for simplicity and comparability among models. Thus, we cannot

expect that model results will agree with proxy data. The model descriptions are

summarized first, followed by our experimental design.

3.1.1 Bern-3D model 

The Bern3D-LPJ climate–carbon-cycle model (hereafter Bern3D) is an EMIC that

includes an energy and moisture balance atmosphere and sea ice model (Ritz et

al., 2011), a 3-D dynamic ocean  (Muller et al.,  2006), a marine biogeochemical

cycle with prognostic formulations for marine export production  (Parekh et al.,

2008; Tschumi et al., 2008), an ocean sediment model to simulate redissolution

and burial flux for opal, calcium carbonate, and organic matter  (Tschumi et al.,

2011), and the LPJ dynamic global vegetation model (Joos et al., 2004; Sitch et al.,

2003; Stocker et al., 2011). Weathering and volcanic fluxes are kept constant. The

model is used with a resolution of 36x36 grid cells in the horizontal domain  and

32 layers within the ocean. The LPJ model was used here on a spatial resolution

of 3.75° (longitude) by 2.5° (latitude) in a simplified model setup (Stocker et al.,

2011) without  recently  developed  modules  for  wetlands  and  peatland  area

(Stocker et al., 2014b) and peat carbon dynamics (Spahni et al., 2013) since here

we use prescribed peat accumulation scenarios.  An earlier version of LPJ,  not

including nitrogen dynamics has been shown to  lead to realistic estimates of

growth responses to CO2 fertilization (Hickler et al., 2008). The climate model re-

maps  monthly  temperature  and  precipitation  anomalies  relative  to  a

preindustrial  climate.  These  anomalies  are  passed  to  LPJ  once  per  year  and

applied to a modern Climatic Research Unit (CRU) climatology (New et al., 2000)

in  the  LPJ  model.  Carbon  isotopes  are  simulated  interactively  in  all  model

components with fractionation factors depending on environmental conditions.
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3.1.2 CLIMBA 

CLIMBA  (Bruecher et al.,  2014) consists of the EMIC CLIMBER-2 (CLIMate and

BiosphERe)  (Ganopolski  et  al.,  2001;  Petoukhov  et  al.,  2000) and  JSBACH

(Brovkin et al., 2009; Raddatz et al., 2007; Reick et al., 2013; Schneck et al., 2013),

which  is  the  land  component  of  MPI-ESM  (Giorgetta  et  al.,  2013).  While

CLIMBER-2  simulates  the  atmosphere  and  land  processes  at  roughly  51°

(longitude) by 10° (latitude), the JSBACH model runs on higher spatial resolution

(3.75° longitude  by  3.75° latitude)  including  a  daily  cycle  to  better  resolve

heterogeneous land processes. Similar to the Bern3D model, JSBACH is driven by

climate  anomalies  from  CLIMBER-2  including  temperature,  precipitation,

radiation balance, and atmospheric CO2 concentration and feeds back changes in

the land carbon to CLIMBER-2 as a flux to the atmosphere. CLIMBER-2 includes a

conventional oceanic biogeochemistry model (Brovkin et al., 2002) and a deep-

sea carbonate sediment model (Archer, 1996), as well as a module for long-term

processes  of  weathering  and  volcanic  outgassing.  Weathering  fluxes  scale  to

runoff  from  the  land  surface  grid  cells,  with  separate  carbonate  and  silicate

lithological  classes  (Brovkin et  al.,  2012).  Consequently,  weathering fluxes are

different for the Eemian and Holocene conditions due to differences in runoff

(Brovkin et al., 2012). Volcanic emissions of CO2 are assumed to be constant at

0.07 GtC/yr (Gerlach, 2011). 

2.1.3 GENIE 

The version of GENIE (Grid Enabled Integrated Earth System model) EMIC used

here is a coupled ocean carbon cycle - climate model. The climate component is

based on the fast climate model of Edwards and Marsh (2005)  , which includes a

reduced physics 3-D ocean circulation model coupled to a 2-D energy-moisture

balance model of the atmosphere and a thermodynamic sea-ice model. The ocean

carbon cycle model includes a representation of the preservation and burial of

calcium  carbonate  in  deep  sea  sediments  (Ridgwell  and  Hargreaves,  2007;

Ridgwell  et  al.,  2007).  In  addition,  a  weathering module calculates  the  solute

supply to the coastal ocean resulting from the weathering on land of exposed

rock  surfaces  and  soil  minerals  (Colbourn  et  al.,  2013).  The  land  carbon

component is not included. 
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3.2 Simulations setup 

To investigate the effect of several forcings on atmospheric CO2, we first ran a set

of simulations for both Holocene and Eemian periods (Table 1). The simulation

Holo_All was used with a standard setup of forcings to simulate Holocene climate

and carbon dynamics from 8 to 0.5 ka. The orbital forcing is after Berger and

Loutre (1991); the shallow water sedimentation is 4.88 Tmol CaCO3/yr from 8 to

6 ka BP and 3.35 Tmol CaCO3/yr from 6 to 0 ka BP in accordance with Vecsei and

Berger (2004); the landuse emissions follow the HYDE dataset (Goldewijk et al.,

2011;  Stocker  et  al.,  2011).  The  simulations  were  repeated  using  the  same

forcings  as  in  Holo_All  with  the  following  changes:  without  orbital  forcing

(Holo_noO);  with  peat  accumulation  of  25  GtC/ka  (Holo_P);  without  landuse

emissions (Holo_noL); with Kaplan et al. (2011)   areal landuse scenario but using

the Bern3D model to simulate the landuse emissions (Holo_Kc); with carbonate

accumulation scenario by Opdyke and Walker (1992)   of 12Tmol CaCO3/yr from 8

to  0  ka  BP  (Holo_12T).  Secondly,  the  same  simulations,  but  without  landuse

scenarios, were conducted for the Eemian period from 126 to 115 ka (Eem_All,

Eem_noO, Eem_P, Eem_12T). 

The initial spinup of the carbon cycle models was performed with the following

boundary  conditions:  atmospheric  CO2 concentration  in  the  initial  setup  was

equal to 260 and 276 ppm and atmospheric 13CO2 to -6.4 and -6.7‰ for 8 ka and

126 ka BP, respectively. The 13C discrimination of accumulated peat and landuse

emissions was taken as 18‰ assuming the C3-type photosynthesis. In terms of

13C,  peat  carbon  is  depleted  due  to  fractionation  processes  involved  in

Sphagnum moss  production  (Loisel  et  al.,  2009).  All  models  calculated

atmospheric CO2 concentration interactively: simulated changes in atmospheric

CO2 led  to  changes  in  marine  and  terrestrial  carbon  uptakes  (including  CO2

fertilization),  as  well  as  climatic  changes.  Atmospheric  13CO2 was  calculated

interactively  by  Bern3D  and  GENIE.  The  JSBACH  model  in  CLIMBA  does  not

include an interactive 13C cycle, therefore the atmospheric 13CO2 was calculated

diagnostically by using simulated JSBACH fluxes and assuming the average  13C
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discrimination of land carbon to be 15‰.  The carbonate accumulation in the

deep  sea  followed  each  model  approach  to  simulate  equilibrium  carbonate

sedimentation. For example, CLIMBA simulated carbonate sedimentation in the

pre-Holocene  equilibrium  simulation  by  redistributed  the  carbonate  from

shallow  water  to  the  deep  ocean  assuming  that  coral  sedimentation  in  pre-

Holocene conditions was 2 Tmol/yr  (Kleypas,  1997) as done by Kleinen et al.

(2015).  At  the  beginning  of  interglacial  simulations,  an  additional  carbonate

accumulation  -  in  accordance  with  either  Vecsei  and  Berger  (2004) or  12

Tmol/yr  scenarios  -  was added to  the  sedimentation  level  of  2  Tmol/yr.  The

Bern3D and CLIMBA models have an interactive land carbon cycle, while GENIE

includes only the marine carbon cycle. Land-sea mask was fixed to pre-industrial

conditions and have not changed during simulations. Changes in forcings of N2O

and CH4 were not accounted for. 

We  address  the  role  of  terrestrial  carbon  mechanisms  (landuse,  peat),  and

shallow-water CaCO3 sedimentation by changing the scale of these forcings or by

switching  them  off  in  the  model  runs.  Natural  vegetation  dynamics,  CO2

fertilization, and wildfire were interactive in Bern3D and CLIMBA. SSTs changes

were  addressed  using  GENIE  simulations.  We  did  not  consider  the  delayed

responses  of  carbonate  compensation  to  deglaciation  and  terrestrial  carbon

changes in the early Holocene as they require non-stationary initial conditions.

The  role  of  permafrost  carbon,  volcanic  outgassing  and  methane  hydrates

remains poorly  quantified up to  now and therefore are  not  addressed in  our

simulations.

4. Model results and discussion

4.1 Changes in CO2 and 13CO2

Comparison  of  simulated  CO2 dynamics  in  the  Holo-All  and  the  Eem-All

experiments with ice core data is shown in Fig. 2,a and Fig. 2,b for the Holocene

and  Eemian,  respectively.  For  the  Holocene,  all  three  models  simulate  CO2

changes  close  to  the  data  during  the  period  of  8  to  6  ka  BP,  but  afterwards
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simulate a smaller rate of CO2 increase than in the data. By 0.5 ka BP, the Bern3D

model is at the highest level of 274 ppm, while the CLIMBA and GENIE models

simulate CO2 concentration of ca. 270 ppm, explaining half of the 20 ppm changes

reconstructed for the period from 8 to 0.5 ka BP.  For the Eemian period,  the

simulated CO2 concentration is close to the observed record from 126 to 121 ka

BP for all models,  but it departs afterwards with higher CO2 levels than those

shown  in  the  reconstructed  data.  CO2 simulated  by  the  GENIE  model  slowly

approaches stabilization level after 121 ka BP, while Bern3D and CLIMBA models

simulate strong increases in CO2 until 117 ka BP and levels off afterwards. This

strong difference between models is due to absent terrestrial fluxes in the GENIE

model, as the two other models simulate a strong decrease in terrestrial carbon

storage after 122 ka BP that leads to an increase in atmospheric CO2. 

The 13CO2 simulated by the Bern3D and CLIMBA models mainly reflect changes

in terrestrial carbon. During the Holocene, both models show a small increase by

0.05‰ at the beginning of the simulations and then an almost constant level of

13CO2 with  a  small  offset  between  them  due  to  a  difference  in  the  initial

conditions (Fig. 2,c). For the Eemian, the GENIE model simulates a small overall

trend  in  atmospheric  13CO2,  reflecting  the  absence  of  terrestrial  biosphere

changes in this model. No model, in combination with the imposed forcing and

spin-up procedure, is able to explain the increase and drop in 13CO2 between 122

and 116 ka BP as seen in the reconstructed data.  Direct interpretation of this

upward excursion of 0.2‰ would require an increased land or marine biological

uptake of several hundred GtC, which is opposite to the expected results of the

current generation of terrestrial carbon cycle models. As noted above, our model

spin-up and protocol by design do not consider all relevant mechanisms, e.g. peat

and  permafrost  carbon  dynamics,  as  interactive  components.  We  also  used

equilibrium initial conditions, therefore neglecting longer-term imbalances in the

carbon cycle and carbonate system during the preceding terminations. Therefore,

we do not expect that the model simulations will fit observations. 

4.2 Changes in biomass, mineral soil carbon, and tree cover
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The effects of climatic and CO2 forcings on terrestrial carbon storages in Bern3D

and CLIMBA in the Holo-All and the Eem-All is shown in Figs. 3-7. The Bern3D

model simulates a carbon storage that is 20 GtC higher at 8 ka BP than at 0.5 ka

BP (Fig. 3,a). Most of this carbon is accumulated in the northern high latitudes in

response  to  temperature  increases  in  these  regions,  in  line  with  the  orbital

forcing changes. Because of lower CO2 levels at 8 ka, the changes in storage in

temperate  latitudes  are  negative.  CLIMBA  does  show  small  increases  in

terrestrial carbon storage in northern Siberia and Alaska, but overall the model

has  ca.  75  GtC  less  terrestrial  carbon  at  8  ka  than  at  0.5  ka  (Fig.  3,c).  This

difference is due to a weak effect of the climate anomalies (Fig. 5,a) on carbon

and due to a strong CO2 fertilization effect in the model. For the Eemian, however,

both models show more agreement in the changes in carbon storage on land (Fig.

3,b,d). Both CLIMBA and Bern3D simulate 120-130 GtC more carbon at 126 ka

than at 115 ka BP, with most of this carbon accumulated in the high northern

latitudes in response to climate change. 

The response of annual land air surface temperature to the Holocene forcing is

slightly different between the models. There is a minor temperature increase by

0.2°C in the Bern3D model (Fig. 4,a), while the temperature in the CLIMBA model

decreases by 0.2°C (Fig. 5,a) from 8 to 0.5 ka BP. This increase in the Bern3D

model is a result of superimposed drivers of increasing CO2 and cooling in the

northern  high  latitudes  due  to  orbital  forcing  changes.  Reconstructions  by

Marcott et al.  (2013) show a decrease by about 0.6-0.8°C in global annual mean

temperature  from  8  to  0.5  ka,  however,  such  significant  cooling  trend  is  not

supported by models  (Lohmann et al., 2013). During the past interglacial, both

models reveal a decreasing trend in global temperature by ca. 1.5°C (Fig. 4,b and

Fig. 5,b), despite the modeled increase in the atmospheric CO2 by almost 30 ppm.

The latitudinal pattern of warming at 126 ka BP is very similar in both models.

The warming is pronounced in both northern and southern hemispheres, and is

especially strong for latitudes north of 30°N.

The temporal evolution of the terrestrial biomass response to changes in climate

and CO2 differs among the models. In the Bern3D model, the total biomass (green
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carbon) increases in the Holocene (Fig. 4,c), while during the Eemian the biomass

first increases and then subsequently decreases (Fig. 4,d). In the CLIMBA model,

total terrestrial biomass does not change much during both periods (Fig. 5,c,d),

as biomass decrease in the high latitudes is compensated by its increase in the

tropical regions, in line with changes in the orbital forcing.  Both models show

similar latitudinal patterns in the soil carbon changes during both interglacials.

The main increase in the mineral soil carbon at 8 and 126 ka BP occurs in the

latitudes north of 60°N (Fig. 4,e,f; Fig. 5,e,f). Soil carbon storages decrease during

the Holocene by 40 GtC in the Bern3D model (Fig. 4,e), while increasing by 70

GtC in the CLIMBA model (Fig. 5,e). In the Eemian, the maximum carbon storage

in biomass and mineral soil carbon occurs at 122 ka BP in both models (Fig. 4,f

and 5,f). Afterwards, both soil and biomass carbon storages quickly decrease in

both the Bern3D and CLIMBA models. This contributes to the CO2 growth during

the period (Fig. 2,b) and is reflected in a strong decreasing signal in atmospheric

13CO2 (Fig. 2,d). 

A latitudinal difference in woody cover distribution between the two interglacial

periods is shown in Fig. 6. For 8 ka BP, both models have slightly higher woody

(tree) cover than for present. The strongest increase in the tree cover is located

in the high northern latitudes, in line with changes in terrestrial biomass. After 8

ka BP, the total woody cover decreases with time by about 300 and 100 Mha in

the Bern3D  and  CLIMBA models,  respectively.  During  the Eemian period,  the

Bern3D model shows a maximum in total woody area at 124 ka BP (Fig. 6,b),

about 2 thousand years earlier than a maximum in soil and biomass carbon (Fig.

4,d,f).  The CLIMBA model  simulates  continuous decrease  in  the  woody  cover

during the Eemian (Fig.  7,d),  which is  not  connected to  the maximum in the

terrestrial  carbon storage at  ca.  122 ka BP (Fig.  5,b,d).  Summarizing the land

biomass  and  mineral  soil  carbon  response,  the  two  models  with  terrestrial

carbon  components  have  similar  patterns  of  response to  the  orbital  and  CO2

changes. The magnitude of change differs mainly because of mineral soil carbon

response. The change in atmospheric CO2 concentration measured in ice cores

during the Eemian is not reproduced in either of the models under the chosen

simulation protocol.
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4.3 Factorial experiments 

4.3.1 Response to the enhanced shallow-water CaCO3 sedimentation 

To test the model response to shallow-water CaCO3 sedimentation, we replaced

the Holocene scenario of CaCO3 sedimentation by Vecsei and Berger (2004)   with

the estimate of  Opdyke and Walker (1992)   of enhanced CaCO3 sedimentation.c

The Bern3D model is most reactive to the forcing: CO2 increases by 30 and 41

ppm during the Holocene and the Eemian experiments, respectively (Table 2, Fig.

8).  Since  the  Eemian  simulation  is  40%  longer,  the  stronger  effect  of  CaCO3

sedimentation  is  not  surprising.  The response of  the  CLIMBA model  is  much

smaller (8 and 11 ppm, respectively) due to differences in the marine carbonate

chemistry  and the land carbon uptake (with higher  CO2 levels,  the  terrestrial

carbon uptake increases,  drawing the CO2 down).  The GENIE model shows an

intermediate response (20 and 21 ppm, respectively), however, this increase in

CO2 would likely be smaller if  the model also accounted for terrestrial  carbon

uptake. 

The high CaCO3 accumulation  in  the  12 Tmol/yr  in  the Holo_12T experiment

could easily explain the scale of the CO2 increase in the Holocene in all models.

However,  if  we  account  for  the  same  scenario  of  CaCO3 accumulation  in  the

Eemian, the resulting simulated CO2 increase in the Eem_12T experiments would

exceed  the  already  high  CO2 increase  in  the  Eem_All  simulations.  These

simulations  therefore  indicate  variability  among  the  models  in  terms  of

responses to CaCO3 accumulation in the surface ocean. Global models of  coral

reef accumulation  (Kleypas,  1997) are still  very simplistic (Jones et al.,  2015),

and are not  included in the Earth System models.  This lack of  shallow-water

carbonate accumulation modules is a current gap in the model development for

millennial-scale simulations.

Because  13C of  marine carbonates is  close to zero,  the increase in carbonate

sedimentation  does  not  have  a  direct  effect  on  13CO2.  However,  there  is  an

indirect effect on 13CO2  through changes in the atmospheric CO2 concentration.
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All models show an increase in 13CO2 in the range between 0.07‰ for GENIE in

both simulations and 0.18‰  for the Bern3D model for the Eemian experiment

(Table  2).  For  Bern3D and  CLIMBA  models,  this  increase  is  explained  by  the

terrestrial carbon increase due to CO2 fertilization effect. 

4.3.2 Response to the peat accumulation 

The response to the peat forcing is similar among the models. In response to the

accumulation of 25 GtC/ka, the models simulate a decrease in atmospheric CO2

from 7 to 10 ppm for the Holocene and from 11 to 17 ppm for the Eemian period

(Table 2, Fig. 8). Atmospheric  13CO2 increases by 0.06-0.12  ‰ as peat carbon

has an isotopic signature close to C3 plants and its accumulation leads to higher

13CO2 values. The response of the land biosphere counteracts the CO2 decrease

via the CO2 fertilization mechanism where terrestrial carbon is released to the

atmosphere leading to higher CO2 and lower  13CO2. This combination explains

the smaller  response of  CLIMBA relative  to  the  Bern3D model  as  CLIMBA in

general has a rather high CO2 fertilization effect. 

As  the  peat  accumulation  forcing,  we  choose  a  moderate  peat  accumulation

scenario with 200 Gt carbon uptake over the last 8,000 years..The estimate by Yu

(2012)   suggests almost two times higher accumulation in peat, while modeling

study by Kleinen et al.  (2015) resulted in less peat accumulation (ca. 300 GtC)

over  the same period.  High peat forcings are possible to accommodate in the

model framework, but it should then be counteracted by a strong forcing in CO2

release due to other mechanisms. Let us note that the CO2 release due to land use

(Ruddiman, 2013) unlikely was a source of CO2 for the high peat accumulation

scenario in the early Holocene due to different timing and evolution of peat and

landuse forcings (see section 2.2.1.4).  One of possible contributors could be a

carbonate compensation to the pre-Holocene changes in carbon cycle (section

2.2.2.2) not considered in our experimental setup.  

4.3.3 Response to the landuse emissions during the Holocene 
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The CO2 and 13CO2 response strongly depends on the landuse scenario. From 8 to

0.5  ka  BP,  total  accumulated  landuse  emissions  are  26  and  167  GtC  for  the

Holo_All and Holo_Kc scenarios, respectively. Relative to the Holo_noL simulation,

the  Holo_Kc  leads  to  an  increase  in  atmospheric  CO2 by  7  to  11  ppm  and  a

decrease in atmospheric  13CO2 by 0.08 to 0.11‰ (Table 2). The effect of this

scenario on CO2 and  13CO2 is almost exactly opposite to the effect of the peat

accumulation scenario due to a similar amount of carbon released or taken from

the atmosphere by 0.5 ka BP. The main difference is in the timing of CO2 change.

While the peat accumulation is prescribed to increase linearly with time, more

than half of the landuse emissions are emitted during the period after 2 ka BP,

substantially later than the CO2 increase in the ice core data. For comparison with

the Holo_Kc scenario, the HYDE scenario does not elevate the atmospheric CO2 at

0.5 ka BP by more than 1-2 ppm in all models because of a very small amount of

carbon released to the atmosphere. 

In our simulations, changes in landuse and land cover result in an increase of

atmospheric CO2 in the range of 1 to 11 ppm in the period between 8 and 0.5 ka

BP. It is difficult to judge the plausibility of these changes, as all applied scenarios

are based on the hypothesis of human population development and not on an

objective  reconstruction  of  land  cover  change.  The  reconstruction  of  landuse

changes  via  changes  in  pollen  assemblages  is  a  promising  approach,  but  the

current  state  of  data  synthesis  still  requires  many  years  in  order  to  have  a

reliable quantitative estimate of global  tree cover changes over the last  8,000

years. Furthermore, changes in soil carbon as well as permafrost carbon storage

would still remain unaccounted for. There is no doubt that anthropogenic and

land  cover  changes  have  contributed  to  the  changes  in  the  atmospheric  CO2

during the Holocene,  but it  is  more likely that  this effect  only became visible

during the last 3000 years. 

4.3.4 Response to the SST changes 

We used simulations Holo_noO and Eem_noO without orbital forcing performed

with the GENIE model to reveal the effect of SST changes. The GENIE model does

not include terrestrial  carbon cycle,  therefore a difference in atmospheric CO2
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and  13CO2 between  simulations  with-  and  without  orbital  forcing  could  be

attributed to changes in SSTs for the Holocene and Eemian (Table 2).  For the

Holocene,  the  GENIE  model  does  not  reveal  significant  changes,  in  line  with

previous model studies (section 2.xxx). For the period from 126 to 115 ka BP, CO2

and  13CO2 slightly  increase  by  4  ppm  and  0.03‰,  respectively,  due  to  SST

changes (Table 2) .

4.4 Summary of interglacial carbon cycle processes

A summary of effects of interglacial carbon cycle processes on atmospheric CO2

and  13CO2 is presented in Fig.  8. Black (gray) dots indicate process-attributed

changes found in this (previous) study, while averaged increase (decrease) in all

studies is presented by red (blue) bars. For the ice core data, averaged changes

over  the analyzed interval  are presented by yellow bars,  and black dots with

whiskers indicate the ±1 uncertainty interval (Fig. 1). Processes are subdivided

into marine (SSTs, coral reef and carbonate compensation) and terrestrial (CO2

fertilization,  biome  shifts  and  wildfires,  peat  accumulation  and  landuse)

mechanisms following the experimental setup. Changes in SSTs have small effects

on the carbon cycle (0-5 ppm) during both interglacials (black dots indicate the

GENIE  model  results).  Coral  reefs  and  carbonate  compensation  contribute

strongly  to  the CO2 increase during both interglacials  (8-41 ppm),  while  peat

accumulation leads to a strong decrease in CO2 (7-17 ppm). The CO2 fertilization

and  biome  shifts  mechanisms  operate  differently  during  the  Holocene  and

Eemian. While the natural vegetation is a sink for carbon due to increasing CO2

during the Holocene leading to atmospheric CO2 decrease by up to 10 ppm, the

land biosphere is a source of carbon due to biome shifts in response to climate

change during the Eemian (5-7 ppm increase in  CO2).  Landuse is  a  source of

carbon to the atmosphere at the end of the Holocene (7-11 ppm). 

Changes  in  terrestrial  carbon  storages  due  to  CO2 fertilization  and  peat

accumulation are mirrored in the left and right parts of Fig. 8: when land takes

carbon, atmospheric CO2 decreases (blue bar) while  13CO2 increases (red bar),
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and  vice  versa.  The  coral  reef  and  carbonate  compensation  mechanisms

significantly  change atmospheric  CO2,  but  their  direct  effect  on  13CO2 is  very

small because the 13C signature of CaCO3 fluxes is close to zero. However, there is

an  indirect  effect  in  our  experimental  setup  as  land  takes  carbon  due  to

fertilization effect of coral-induced CO2 flux. This effect leads to an increase in

atmospheric  13CO2 in  the  enhanced  CaCO3 sedimentation  experiments  in  the

models (Table 2). To avoid a wrong impression that coral reef accumulation could

significantly influence 13CO2, we do not show color bars for coral reef effects on

13CO2. For the CO2 fertilization effect on 13CO2 for the Holocene, we take existing

studies on CO2 and transform them to  13CO2  using sensitivity of the Holocene

experiments with peatlands (-0.008‰/ppm). For the CO2 fertilization effect on

13CO2  during the Eemian,  we take the difference between 126 and 115 ka in

terrestrial carbon storages in the Eem_all experiment in Bern3D and CLIMBA and

use a  sensitivity  of  Eemian experiments  with peatlands (-0.007‰/ppm).  For

landuse effect on 13CO2 in the Holocene, we use the model results from Table 2. 

Ideally, if models were able to capture all important carbon cycle processes and

these processes were independent from each other, the sum of blue and red bars

on the Fig. 8 should be equal to the ice core data represented by yellow bars for

each particular  period for  each variable.  This linear  approach underestimates

non-linear  interactions  between carbon cycle  processes,  but  it  is  useful  for  a

visual  comparison  of  significance  and  direction  of  changes  due  to  particular

mechanism and for illustrating the point whether all  relevant components are

accounted for.  This linear approach is approximately correct for the Holocene

changes in CO2, but not valid for the Eemian as CO2 sources (sum of red bars) are

higher than the CO2 sinks (blue bar). As discussed above, this difference could be

due to overestimation of the coral reef accumulation or due to a wrong terrestrial

biosphere response to the cooling at the end of the Eemian. For the  13C budget,

models project increases in  13CO2 during both the Holocene and Eemian while

data  show  no  change.  Although  modeled  13CO2 increase  is  within  the  1-

uncertainty envelope of measurements, it is possible that models miss a source of

light  carbon  to  the  atmosphere  towards  the  end  of  the  Holocene  and

30

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

30



overestimate release of biospheric carbon to the atmosphere during the 2nd part

of the Eemian. 

5. Conclusions

By applying exactly the same set of forcings to the Holocene and Eemian period,

we compare the significance of the responsible processes on the carbon cycle

during  these  two  interglacials.  We  are  able  to  qualitatively  (and  not  yet

quantitatively) explain CO2 and  13CO2 dynamics for the Holocene as a result of

several  counteracting  mechanisms:  CaCO3 accumulation  in  shallow  waters,

changes in natural terrestrial  carbon, and anthropogenic landuse emissions in

the later part of the Holocene. However, when we use the same set of forcings

(excluding  landuse)  for  the  Eemian  period,  the  direction  of  changes  in

atmospheric  CO2 concentration  after  121  ka  BP  is  the  opposite  of  the

reconstructed changes. This discrepancy could be explained by rather unrealistic

assumptions about the carbon cycle forcings in the Eemian, or by the inability of

terrestrial carbon models to simulate proper responses to the cooling during the

end of interglacial periods. 

Ice-core records of atmospheric 13CO2 show very similar values at 8 and 0.5 ka

BP and at 126 and 115 ka BP (Figs. 1, 8). Mechanisms of marine 13C fractionation

(Broecker  and  McGee,  2013) such  as  changes  in  fractionation  at  the  ocean-

atmosphere  boundary  and  marine  photosynthesis  are  included  in  our

simulations, yet they do not affect atmospheric  13CO2 in the Holocene. SSTs in

convective areas in polar regions with strong exchange between the surface and

the deep ocean remain unchanged throughout these time periods. The change in

the marine biological pump  (Goodwin et al.,  2011) could shift the atmospheric

13CO2, but there is no clear support for such a change in the marine proxies for

biological productivity. Therefore, the main interpretation of atmospheric 13CO2

is linked to changes in the terrestrial biosphere, particularly in storage in mineral

soils, peat, and permafrost carbon. Let us note that the mechanisms responsible
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for the 0.3‰ offset in atmospheric 13CO2 between Holocene and Eemian (Fig. 1)

could not be identified with our experimental setup.

Terrestrial models used in this study show similar patterns of land carbon and

vegetation changes during both the Holocene and Eemian. The main changes in

terrestrial carbon storage occur in the northern high latitudes. The amplitude of

changes is much stronger in the Eemian than in the Holocene. This difference is

in  general  agreement  with  available  pollen  records.  However,  the  current

generation  of  land  carbon  models  does  not  incorporate  processes  of  carbon

accumulation and decay in anaerobic and permafrost environments, although, for

the latter, specific permafrost modules adapted to EMICs may soon be available

(Crichton et al., 2014). In response to the onset of cooling in the high northern

latitudes in the Eemian, models simulate a southward retreat of boreal forests (in

line  with  the  data)  and  a  loss  of  carbon  from  these  regions.  The  latter  is

unrealistic  if  one  accounts  for  the  ability  of  the  permafrost  environment  to

accumulate soil carbon in frozen form for many millennia. Global models of the

permafrost carbon and peat dynamics were recently developed (e.g.,Spahni et al.,

2013; Stocker et al., 2014b), as the ESM ability to simulate the carbon dynamics

in high latitudes is important not only for the past but also for the future (Schuur

et al., 2013). 

Simulations in this study assumed constant accumulation of  CaCO3 in shallow

waters.  This  assumption  is  a  strong  simplification  because  coral  productivity

depends on many factors including changes in temperature, nutrients, and sea

level.  The models currently used for coral  reef  growth on a global  scale  (e.g.,

Kleypas, 1997) are developed as steady-state approximations. Accounting for the

transient dynamics of coral reef growth will change the model results and lead to

a more plausible effect on atmospheric CO2, in particular, towards the end of the

Eemian. The development of reliable models of coral reef growth will improve

the  ability  of  ESMs  to  simulate  long-term  dynamics  of  marine  carbonate

chemistry during warm intervals. 
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Because  the  peak  in  landuse  emissions  is  shifted  towards  the  end  of  the

Holocene, the landuse forcing does not help in explaining the CO2 growth prior to

2-3 ka BP. Nonetheless, a large spread in the amplitude of landuse emissions is

one of the major sources of uncertainties in simulations of CO2 dynamics during

the Holocene. The high-end emission scenarios such as by  Kaplan et al. (2011)  

require large areas of conversion from forests to open landscapes, which should

also be present in the pollen records. Therefore, there is a need in large-scale

reconstruction  of  landuse  and  land  cover  changes  based  on  the  dynamics  of

pollen assemblage  (Fyfe et  al.,  2015;  Gaillard et  al.,  2010).  Charcoal  synthesis

data is another useful archive for reconstructing the scale of landuse changes. A

simplified version of wildfire activity is included in the JSBACH model (Bruecher

et al.,  2014),  but it  does not show a strong trend in burned areas during the

Holocene or Eemian. 

In this study, we performed experiments with a limited number of carbon cycle

forcings. While some processes, such as changes in the marine biological pump

and sea surface temperatures,  are explicitly included in the simulations,  some

mechanisms remain completely untouched. In particular, numerical approaches

to model global volcanic CO2 emissions and methane hydrate storages are still in

their infancy. The current uncertainties associated with these processes may be

reduced using isotopic constraints but the level of confidence in the role of these

forcings will remain low until we better understand their long-term dynamics.

Another limitation of our experiments was an assumption of equilibrium initial

conditions.  Therefore,  we  neglected  memory  (legacy)  effects  arising  from

changes  over  previous  terminations.  These  non-equilibrium  effects  could  be

studied in long-term transient simulations of deglaciations or complete glacial

cycles, which are still beyond computational abilities of most of ESMs. 

Last but not least, the models used in this study are rather simple in comparison

with state-of-the-art ESMs, but these models provide a prototype for long-term

experiments  with  more  comprehensive  models  and  demonstrate  the  main

uncertainties  in  the  of  CO2 forcings  during  interglacials.  Model  deficiencies

identified here will stimulate model development useful not only for simulating
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past  climates,  but  also  for  more  reliable  projections  of  future  carbon  cycle

changes and climate dynamics. 
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Figure captions

Figure 1. Atmospheric CO2 concentration, ppm (top) and 13CO2, ‰ (bottom) 

during the current (left) and the previous (right) interglacial as reconstructed 

from Antarctic ice cores. For the Holocene, CO2 data are from Monnin et al. (2001,

2004) and (Schmitt et al., 2012) plotted on top of a 1 -error envelope using a 

Monte-Carlo approach with a cut-off period of 500 years; δ13CO2 are the data as 

shown in (Schmitt et al., 2012) along the 1-error envelope (cut-off 2000 years). 

For the Eemian, CO2 data are from (Lourantou et al., 2010; Schneider et al., 2013) 

plotted on top of a 1-error envelope and cut-off of 800 years, and δ13CO2 data 

are from (Schneider et al., 2013) with a cut-off period of 3000 years. 

Figure 2. Simulated dynamics of atmospheric CO2 concentration, ppm (top) and 

13CO2, ‰ (bottom) during the current (left) and the previous (right) interglacial 

in Holo_All and Eem_All, respectively, against ice core data reported in Fig. 1. 

Figure 3. Maps of changes in the total land carbon storage for the Holocene 

between 8 and 0.5 ka BP (left) and for the Eemian between 126 and 115 ka BP 

(right) in Holo_All and Eem_All, respectively. Bern3D model (top) and CLIMBA 

(bottom). 

Figure 4. Hofmöller diagrams for changes in soil carbon (kgCm-2), biomass carbon

(kgCm-2) and annual mean land surface temperature (K) for the Holocene period 

(a,c,e) and the Eemian (b,d,f), simulated by the Bern3D model in simulations 

Holo_All and Eem_All, respectively. The reference period is the last 500 yrs of the 

simulation.

Figure 5. The same as Fig. 4 but for the CLIMBA model. 

Figure 6. Difference in the total terrestrial carbon storage (kgCm-2) between 126 

ka and 8 ka BP simulated by the Bern3D (top) and the CLIMBA (bottom) models.
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Figure 7. Hofmöller diagrams for changes in the woody cover area (Mha) for the 

Holocene (left) and the Eemian (right), simulated by the Bern3D (top) and the 

CLIMBA (bottom) models in Holo_All and Eem_All, respectively. The reference 

period is the last 500 yrs of the simulation.

Figure 8. Relative contributions of different processes to changes in atmospheric 

CO2 concentration, ppm (left) and 13CO2, ‰ (bottom) during the Holocene (left) 

and the Eemian (right). Grey dots are for previous studies while black dots and 

uncertainty ranges are for the given study. After Fig. 6.5 in Ciais et al. (2013) 

modified from Kohfeld and Ridgwell (2009).
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Table 1. Simulation setup

Simulation Orbital 
forcing

CaCO3 
accumulation

Landuse Peat

Holocene (8 to 0.5 ka BP)
Holo_All Yes V&B1 HYDE2 No
Holo_Peat Yes V&B HYDE Yes
Holo_12T Yes O3 HYDE No
Holo_Kc Yes V&B Kc4 No
Holo_noL Yes V&B No No
Holo_noO No V&B HYDE No

Eemian (126 to 115 ka BP)
Eem_All Yes V&B No No
Eem_noO No V&B No No
Eem_Peat Yes V&B No Yes
Eem_12T Yes O No No

1 (Vecsei and Berger, 2004)
2 (Goldewijk et al., 2001)
3 (Opdyke and Walker, 1992) 
4 Emissions from the Bern3D model driven by Kaplan et al. (2011) landuse 
scenario
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Table 2. Simulated CO2 and 13CO2 changes during interglacials 

Factor (simulation difference) Model
Bern-3D CLIMBA GENIE

Holocene (8-0.5 ka)
SSTs (Holo_All – Holo_noO)  - - 0 / 0.01
CaCO3 sedimentation (Holo_12T– Holo_All) 30 / 0.145 8 / 0.14 20 / 0.07
Peat accumulation (Holo_P – Holo_All) -10 / 0.09 -7 / 0.06 -10 / 0.11
Landuse (Holo_Kc – Holo_noL) 11 / -0.09 7 / -0.08 10 / -0.11

Eemian (126-115 ka)
SSTs (Eem_All – Eem_noO)  - - 4 / 0.03
CaCO3 sedimentation (Eem_12T – Eem_All) 41 / 0.18 11 /0.08 21 / 0.07
CO2 fertilization, biome shifts & wildfires6 7 / -0.06 6 / -0.05 -
Peat accumulation (Eem_P – Eem_All) -17 / 0.12 -13 / 0.1 -11 / 0.11

5 CO2 changes in ppm / 13CO2 changes in ‰
6 Based on land carbon changes in Eem_All 
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