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Abstract: Terpenes are diverse specialized metabolites naturally found within plants and have impor-
tant roles in inter-species communication, adaptation and interaction with the environment. Their
industrial applications span a broad range, including fragrances, flavors, cosmetics, natural colorants
to agrochemicals and therapeutics, yet formal chemical synthesis is economically challenging due to
structural complexities. Engineering terpene biosynthesis could represent an alternative in microbial
biotechnological workhorses, such as Saccharomyces cerevisiae or Escherichi coli, utilizing sugars or
complex media as feedstocks. Host species that metabolize renewable and affordable carbon sources
may offer unique sustainable biotechnological alternatives. Methylotrophs are bacteria with the ca-
pacity to utilize one-carbon feedstocks, such as methanol or formate. They colonize the phyllosphere
(above-ground area) of plants, and many accumulate abundant carotenoid pigments. Methylotrophs
have the capacity to take up and use a subset of the rare earth elements known as lanthanides.
These metals can enhance one-carbon (methylotrophic) metabolism. Here, we investigated whether
manipulating the metabolism enables and enhances terpene production. A carotenoid-deficient
mutant potentially liberates carbon, which may contribute to bioproduct accumulation. To test this
hypothesis, terpene-producing bacterial strains regulated by two distinct promoters were generated.
Wildtype Methylobacterium extorquens, ∆Meta1_3665, a methylotrophic mutant lacking the carotenoid
pathway, and an E. coli strain were transformed with an exogenous terpene pathway and grown
both in the presence and absence of lanthanides. The extraction, and the comparison of analytical
profiles, provided evidence that engineered cultured M. extorquens under control of a native, in-
ducible methylotrophic promoter can yield the sesquiterpene patchoulol when supplemented with
lanthanide. In contrast, using a moderate-strength constitutive promoter failed to give production.
We demonstrated colonization of the phyllosphere with the engineered strains, supporting the future
engineering of selected species of the plant microbiome and with promising implications for the
synthetic biology of small molecules.

Keywords: metabolism; terpenes; patchoulol; casbene; methylotrophs; inducible expression; lanthanide

1. Introduction

Plants produce specialized metabolites including a broad spectrum of terpenoids that
are significant in defense mechanisms, communication and adaptation [1]. Terpenoids also
represent industrially relevant bioproducts with a wide range of existing and potentially
future renewable applications, including perfumes, pharmaceuticals and food supple-
ments [2]. Typical terpene biosynthetic pathways proceed via the universal 5-carbon pre-
cursors isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), formed in
plants by the cytosolic mevalonate (MVA) and plastidial methylerythritol phosphate (MEP)
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pathways, with the latter route also found in bacteria. IDP and DMADP are condensed into
acyclic isoprene diphosphates of varying lengths in multiples of 5-carbons. Subsequently,
terpene synthases can cyclize the intermediates into complex scaffolds with the characteris-
tic monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20) or carotenes/tetraterpenes
(C40), as examples. The extraction of terpenes from their native species for industrial
applications poses environmental and economic issues with harvesting, limitations in the
amount and purification from mixtures of related but unwanted products [3]. Economically
viable chemical synthesis is challenging due to its structural complexity [4]. For these rea-
sons, the bioengineering of terpene production through biotechnology is rising in interest
for its sustainable production [5–7].

The early intermediate pathways are crucial for terpene synthesis and may enable
the rewiring of non-plant organisms to host exogenous terpene production. In microbial
hosts, the levels of intermediates have been increased through the installation of strong
native pathways and engineered alternative routes, as well as the removal or suppression
of competing pathways, including sterols/triterpenes (C30) or carotenoids [8–11]. However,
these manipulations may require multiple plasmids to supply the terpene synthase and
upregulate the precursors and can represent a burden on the system [12]. These challenges,
coupled with the need for glucose or complex feedstocks, raise an opportunity for terpene
production in genetically tractable organisms with unique carbon metabolism abilities,
such as Methylobacterium extorquens AM1 [13].

Methylotrophs are bacteria unique in their ability to utilize one-carbon compounds
including low-cost feedstocks such as methanol or formate. They colonize a spectrum of
environments but are exceptionally abundant in the phyllosphere (above-ground area of
plants), where they utilize methanol released by cell wall catabolism [14]. Many methy-
lotrophs accumulate carotenoids, giving the microbes a visibly pink hue. Methylotrophs
are unique in their uptake and use of rare earth elements known as lanthanides. These
metals can alter and enhance one-carbon (methylotrophic) metabolism. M. extorquens
AM1 modulates the production of different methanol dehydrogenase (MDH) enzymes
(XoxF- and ExaF) depending on the concentration of lanthanides present in the media,
allowing a robust metabolic flexibility with the changing of substrate concentrations [15].
Additionally, lanthanides visually intensify the color of cultured isolates and have proven
to be essential for growth with some species [16]. Using the MEP pathway, methylotrophs
generate abundant terpene precursors for carotenoid synthesis. A previous study isolated
the carotenoid-deficient strain CM502, which lacked proposed diapolycopene oxidase
activity (META1_3665, GenBank accession AY331188.1) [17]. It is possible that in CM502,
the pool of precursors may be liberated and accessible by exogenous pathways. A methy-
lotrophic strain with intact native carotenoid biosynthesis has also been engineered with an
exogenous terpene pathway, yet with low resulting yields [13]. The impact of lanthanides
on the carbon flow through the carotenoid pathway has not been investigated and presents
an additional opportunity to test for enhanced terpene accumulation.

Here, we focused on two terpene products, patchoulol (C15 sesquiterpene) and casbene
(C20 diterpene). Patchoulol is a sesquiterpene alcohol relevant in the perfume and cosmetic
industry and known for its earthy aroma. It is naturally formed by cyclization of farnesyl
diphosphate (FDP) catalyzed by a sesquiterpene synthase and is the main component (30–
40%) of patchouli oil extracted from the Pogostemon cablin plant [1,18,19]. Industrialization
of the compound has increased its demand, with prices ranging from $30–$200 per kg [2].
The range in price can be accounted for by the limitations and biological variation in
cultured plants. Casbene is a diterpene with antimicrobial effects, formed through a one-
step cyclization of geranylgeranyl diphosphate (GGDP) [20]. Casbene synthase, DgTPS1,
is natively found in the Daphne genkwa plant [21]. The scaffold can be further modified to
afford important precursors in drug discovery [22].

The CM502 mutant arrests the carotenoid route, potentially liberating carbon for the
biosynthesis of novel products. It was reported, after metabolic modifications, that CM502
synthesized more of the sesquiterpenoid target α-humulene than the wildtype strain [13].
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The introduction of the patchoulol synthase under a native promoter may take advantage
of the FDP pool. However, there may be an increase of the products that follow, such as
GGDP, allowing for the generation of the diterpene casbene. Given there are two potential
metabolite branch points, methylotrophic expression may have the opportunity to increase
production, lower cost, and reduce the environmental impacts of terpene synthesis.

This study aims to increase the knowledge of terpene engineering specifically within
the native and mutant background of M. extorquens AM1. To test if lanthanides can be used
to increase terpene synthesis in methylotrophs, we supplemented engineered and cultured
strains with the rare earth metal LaCl3. To investigate if the engineered strains retain the
capacity to colonize plants and persist in the phyllosphere, we recovered M. extorquens
from leaves four days after inoculation.

2. Materials and Methods
2.1. Strains, Media, and Growth Conditions

MP minimal salts, CoCl2, succinic acid, methanol, and chloramphenicol were pur-
chased from Sigma (Sigma Aldrich, St. Louis, MO, USA), Streptomycin, LB, and TB were
purchased from VWR (VWR International, LLC, Radnor, PA, USA). M. extorquens AM1
wildtype and mutant CM502 were used in the study [17] and grown on MP minimal salts
agar plates (1.5% w/v) with a CoCl2 concentration of 2.0 µM and 30 mM succinic acid as
a carbon source [23]. For liquid growth, MP minimal salts media with 2.0 µM CoCl2 and
125 mM methanol as a carbon source was used [23]. Cultures were incubated at 28.5 ◦C
with the shaking of liquid cultures at 175 rpm. For methylotrophic engineered strains,
12.5 µM CoCl2 was used in MP media with the antibiotic tetracycline hydrochloride (Sigma
Aldrich, St. Louis, MO, USA) for selection in a final concentration of 10 µg/mL. The E. coli
expression system required tetracycline and streptomycin with a final concentration of
50 µg/mL and chloramphenicol, with a final concentration of 34 µg/mL in the two-plasmid
system and 17 µg/mL in the three-plasmid system. E. coli strains were grown on LB plates
(1.5% w/v) for solid media. Liquid cultures were in LB or TB media with appropriate
antibiotics. All cultures were wrapped in tin foil or kept in the dark to prevent tetracycline
degradation.

2.2. Plasmid Generation and Electroporation

Plasmids were generated through PCR amplification and In-Fusion® (Takara Bio
USA, Inc., Ann Arbor, MI, USA) cloning. All primers and plasmids used in this study
can be found in Tables 1 and 2, respectively. A modified Tac promoter mTac [24,25] was
chosen for expression in both E. coli and methylotrophs to enable a comparison of the
impact of lanthanides on carotenoid production. pAP5 [26] was used as a backbone
and amplified with primers 1 and 2 to generate a vector for gene and promoter insertion.
Patchoulol synthase PcPatS (accession number: AY508730) [27] was amplified using primers
3 and 4. The mTac promoter was synthesized and amplified with primers 5 and 6. When
appropriate, overhangs complementary to the gene or backbone next to the insertion
site were generated on primers for In-Fusion® HD Cloning Plus (Takara Bio) cloning, and
plasmids were transformed into Stellar Competent Cells (Takara Bio). In the pAP5 backbone,
the PcPatS gene was inserted with the mTac promoter, resulting in the pAH1 vector (Table 2).
Appropriate constructs were selected on LB plus tetracycline hydrochloride plates and
confirmed by PCR and through Sanger sequencing (Psomagen, Rockville, MD, USA).

To investigate the production by a native, lanthanide-inducible promoter, the gene
encoding the patchoulol synthase was inserted into a pES503, a plasmid containing the
xox1 methylotrophic promoter [26], to generate pAH2 (Table 2). Analogously, the gene
encoding casbene synthase DgTPS1 (accession number: MZ485349.1) [21] was amplified
using the 9 and 10 primers, resulting in pAH3 (Table 2). A construct containing instead
the mTac promoter was generated by using primers 11 and 10, resulting in pAH4 with
casbene synthase (Table 2). Constructs were verified by Sanger sequencing. For the E. coli
expression system, previously established plasmids for increasing the precursors needed,
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pIRS and pGG, were utilized [21,28]. An overview of the MEP pathway and vectors is
given in Figure 1.

Table 1. Oligonucleotides used in the study.

Primer Description Target Gene

1-pAP5.for CGTTCCTGACAACGAGCCTCCTT pAP5 linearization
2-pAP5.rev GCAGGCATGCAAGCTTGGCGTAA pAP5 linearization

3-mtac.pats.lin.rev GAAGATCTGAATTCGAGATGGAGTTGTATGCCCAAAG Patchoulol synthase
4-Pats.pAP5.rev GCCAAGCTTGCATGCCTGCTTAATATGGAACAGGGTGAAGGTACAACTGC Patchoulol synthase
5-mTac.pAP5.for GAGGCTCGTTGTCAGGAACGAAGAAATCTGAAATGAGCTGTTGACAATTA mTac promoter
6-mTac.pAP5.rev CTCGAATTCAGATCTTCGGG mTac promoter
7-XoxF.pAP5.for CGAATTCACTGGCCGTCGTTTTACA pES503 linearization
8-Pats.xoxf.for AACGACGGCCAGTGAATTCGATGGAGTTGTATGCCCAAAGT Patchoulol synthase

9-DgTPS1.pAP5.for CCCGAAGATCTGAATTCGAGATGGCTGCTGCTGTGTCCGAGTT Casbene synthase
10-DgTPS1.pAP5.rev CGCCAAGCTTGCATGCCTGCTCATCGGTTATAAGGAATTGGGTGGACGAA Casbene synthase
11-DgTPS1.xoxf.for AACGACGGCCAGTGAATTCGATGGCTGCTGCTGTGTCCGAGTT Casbene synthase
12-venus.check.for CGAGTCAGTGAGCGAGGAA Sequencing check
13-venus.check.rev CTACTTCACTGTTGGGGCCG Sequencing check

Table 2. Plasmids and strains used in the study.

Strain or Plasmid Relevant Trait(s) Source

pAP5 pCM62 promoterless venus Skovran et al. [26]
pES503 pAP5 with pxox1 Sonntag et al. [16]
pAH1 pAP5 ∆venus_pmTac_PcPatS This study, derived from pAP5, Skovran et al. [26]
pAH2 pES503 ∆venus_pxox1_PcPatS This study, derived from Sonntag et al. [16]
pAH3 pES503 ∆venus_pxox1_DgTPS1 This study, derived from Sonntag et al. [16]
pAH4 pAP5 ∆venus_pmTac_DgTPS1 This study, derived from Sonntag et al. [16]
pIRS DXS, DXR, IDI Morrone et al. [12]
pGG pACYCDUet with rAgGGPS Cyr et al. [28]

E. coli_pIRS_pGG_pAH1
(strain) E. coli with pmTac_PcPatS This study, derived from Morrone et al. and Cyr et al. [12,28]

E. coli_pIRS_pGG_pAH4
(strain) E. coli with pmTac_DgTPS1 This study

AM1_pES503
(strain) M. extorquens AM1 with pxox1_venus This study

AM1_pAH1
(strain) M. extorquens AM1 with pmTac_PcPatS This study

CM502_pAH1
(strain) M. extorquens CM502 with pmTac_PcPatS This study

AM1_pAH2
(strain) M. extorquens AM1 with pxox1_PcPatS This study

CM502_pAH2
(strain) M. extorquens CM502 with pxox1_PcPatS This study

AM1_pAH3
(strain) M. extorquens AM1 with pxox1_DgTPS1 This study

CM502_pAH3
(strain) M. extorquens CM502 with pxox1_DgTPS1 This study

AM1_pAH4
(strain) M. extorquens AM1 with pmTac_DgTPS1 This study

CM502_pAH4
(strain) M. extorquens CM502 with pmTac_DgTPS1 This study

PcPatS: Patchoulol synthase; DgTPS1: Casbene synthase.

Competent cells of both AM1 and CM502 were generated using a previously reported
method [29]. Overnight cultures of both strains were started from plates and used to
inoculate 50 mL flasks of MP media with methanol. The following day, cultures were
transferred into sterile 50 mL falcon tubes and centrifuged at 4000× g for 15 min at 4 ◦C.
The media was discarded and chilled sterile ddH2O was used to resuspend the pellet.
Another round of centrifugation and wash was performed. After the final spin, the pellet
was resuspended in 1 mL 10% glycerol, aliquoted to 50 µL, flash-frozen in liquid nitrogen
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and stored at −80 ◦C. E. coli electrocompetent cells were generated using a previously
published method [30].
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Electroporation was adapted from [29]. Briefly, competent cells in 50 µL aliquots
were thawed on ice and 1–2 µL plasmid was added to the suspension and transferred
to a chilled cuvette. The mixture was left on ice for 10 min before electroporation in an
Eppendorf Electroporator 2510 (USA Scientific, Inc.—BioCT, Ocala, FL, USA) with a set
voltage of 2500 V for methylotrophic cells and 1800 V for E. coli cells. Immediately following
electroporation, 1 mL of NB media (methylotrophs) or 1 mL SOC media (E. coli) was added
to the cuvette. Cultures were transferred to a microcentrifuge tube and then placed in a
28.5 ◦C incubator at 175 rpm for 20–24 h for methylotrophs. For E. coli strains, the tubes
were placed in a 37 ◦C, 500 rpm shaker for 1–2 h. Following incubation, cells were added
to their respective plates with appropriate antibiotics. Colonies were confirmed through
PCR with the primers specific to the insert. All strains generated throughout the study are
detailed in Table 2.

2.3. Terpene Production and Extraction

A total of 4–5 colonies were inoculated in 3 mL MP with methanol (125 mM) and
grown at 28.5 ◦C with shaking (175 rpm). After 3–4 days, the starter culture was used to
inoculate a 50 mL culture in a 250 mL Erlenmeyer flask. Cultures were left to grow for 16 h
or until an OD600 of 0.3–0.6 was reached. For the pAH1- and pAH4-containing strains, half
of the cultures were given LaCl3 (2 µM) and all were returned to the shaker for 48 h. For
strains possessing pAH2 and pAH3, the 50 mL cultures were induced by adding LaCl3 and
returned to the shaker for 48 h. Overnight cultures of the E. coli strains were started from
frozen glycerol stocks in 5 mL LB plus antibiotics and grown in a 37 ◦C, 200 rpm shaker.
The next morning, 50 mL of TB plus antibiotics were inoculated with 1 mL of culture and
returned to the shaker for 4–6 h. Once cultures reached an OD600 of 0.5–0.6, induction was
performed by adding 40 mM sodium pyruvate, 2 mM MgCl2 and 1 mM IPTG. Cultures
were incubated in a 20 ◦C, 200 rpm shaker for 48 h.

Cultures were collected and ~20 mL hexane with 1 ng/µL Eicosene as internal standard
was added. Cells were then sonicated using the bulk tip on a Misonix S4000 Ultrasonic
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Liquid Processor (Misonix, Inc., Farmingdale, NY, USA) with the following parameters:
60 amps, 100 s run, 10 s on and 5 s off. After sonication, 5 mL of 100% EtOH was added,
and the flasks were then placed on a slow shaker at room temperature for 2 h. The top
hexane layer was transferred to a glass tube and samples were reduced under a nitrogen
stream to roughly 1.5 mL and transferred to a mass spectrometry glass vial.

The lanthanide-dependent patchoulol formation was determined in triplicate, com-
paring growth with and without lanthanides and by using 100 mL cultures of M. extorquens
strains AM1/pAH2 or CM502/pAH2 harboring PcPatS that were grown to an OD600 of
0.3–0.6 at 175 rpm shaking speed. Lanthanide (2 µM LaCl3) was provided for the plus
lanthanide condition and a 20 mL dodecane overlay was added to all cultures, with further
incubation at 30 ◦C for 3 days. The dodecane layer was removed and measured directly on
gas chromatography with mass spectrometry (GC-MS) to detect patchoulol peaks.

2.4. GC-FID/GC-MS Analysis

GC-FID analysis was performed using an Agilent 7890A system (Agilent Technologies,
Santa Clara, CA, USA) equipped with a 19091S-433 (30 m × 250 µM × 0.25 µM) column
and chromatography with the following parameters: helium carrier, rates: 40 ◦C for 1 min,
40 ◦C/min hold for 2 min at 200 ◦C, 20 ◦C/min to 250 ◦C, 15 ◦C/min to 280 ◦C, 40 ◦C/min
hold at 320 ◦C for 3 min, splitless: 250 ◦C, with an injection volume of 1 µL. The patchoulol
synthase hexane samples were compared to a patchouli oil standard and the E. coli/pAH1
samples. Comparison of the controls and standard showed the retention time of patchoulol
at 7.73 min. For the casbene samples, a previously collected plant extract and the E. coli
samples were used as controls. The retention time for casbene was determined at 9.35 min.
To further confirm the patchoulol and casbene peaks, representative samples were run on
an Agilent A GC-MS instrument with a 30 m VF-5 column and the following parameters:
helium carrier, rates: 40 ◦C hold for 1 min, 40 ◦C/min hold 200 ◦C for 4.5 min, 20 ◦C/min
to 240 ◦C, 10 ◦C/min to 280 ◦C, 40 ◦C/min hold 320 ◦C for 3 min, splitless: 275 ◦C and
injection volume of 1 µL. Statistical analysis of the GC-FID data was conducted through a
one-way ANOVA test of the product to internal standard peak ratios.

2.5. Competition Experiments

Nicotiana benthamiana plants were grown for four weeks in Sure-mix soil (Michigan
Grower Products, Inc., Galesburg, MI, USA) in a growth room under controlled conditions
with a 16-hour day cycle at 24 ◦C and an 8-hour night cycle at 17 ◦C. Methylotrophic cultures
of CM502, AM1/pES503, CM502/pAH1, CM502/pAH2, CM502/pAH3, CM502/pAH4
were started in 3 mL MP media with methanol and tetracycline when appropriate. After
4 days, 500 mL of MP media with methanol (125 mM), 2 µM LaCl3 and tetracycline
were inoculated with 1.5–2 mL of the starter cultures and were returned to the shaker for
2 days. Cultures were combined and pelleted by centrifugation at 4000× g for 15 min
at 4 ◦C. After two washing steps, the final pellet was resuspended in ddH2O at half the
initial volume, and the OD600 of each sample was determined. For coculture inoculation,
resuspended cells were mixed in a 1:1 ratio at an OD600 of 1 each. Plants in replicates of
three were either left unmanipulated or inoculated with CM502 alone, AM1/pES503 alone,
AM1/pES503:CM502/pAH1, AM1/pES503:CM502/pAH2, AM1/pES503:CM502/pAH3
or AM1/pES503:CM502/pAH4. For this, plants were inverted, and the leaves were dipped
into the bacterial cultures until all were fully coated. After inoculation, plants were returned
to the growth room for 4 days. Bacteria were re-isolated using two medium-sized leaves
from each plant. Three 12 mm leaf disks were placed in a sterile 50 mL falcon tube, and
50 mL 100 mM phosphate buffer was added. Tubes were shaken at 22 ◦C at 120 rpm for
10 min. A total of 100 µL of buffer for the single strain inoculations and 60 µL of buffer for
the double strain inoculation plants was plated on MP agar with methanol and LaCl3 and
MP agar with methanol, LaCl3 and tetracycline. Plates were covered in tin foil and allowed
to grow in the incubator for 5 days before counting CFUs for both pink and white colonies
in the presence and absence of tetracycline.
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3. Results and Discussion

Patchoulol synthase under a constitutive promoter fails to produce patchoulol

The pAH1 vector (encoding PcPatS under the constitutive promoter mTac) was elec-
troporated into strain AM1, CM502, and grown until the exponential phase. At this point,
LaCl3 was added to half of the methylotrophic cultures. After 48 h of expression, the
cultures were harvested. For the E. coli controls, the patchoulol synthase was cloned in pET-
28b(+) (EMD Millipore, Burlington, MA, USA) and transformed into chemically competent
OverExpressTM C41(DE3) cells (Lucigen, Middleton, WI, USA). Expression was performed
as described previously [31]. The extractions of patchoulol with hexane were obtained from
each culture and run on a GC-FID instrument. No patchoulol was detected in any sample. It
is possible that the strength of the mTac promoter is insufficient for an efficient production of
patchoulol that is above the detection limit of our instrument. This is consistent with mTac
being only a moderate-strength promoter in both methylotrophic and E. coli systems [32].
It was recently suggested that the engineering of microbial terpenoid biosynthesis requires
strong promoters to induce a metabolic pull toward the target product, regardless of the
use of native, synthetic or inducible promoters [33]. The same study indicates an inherent
benefit from overexpression of potential rate-limiting enzymes to increase the supply of the
five-carbon precursors or the isoprenyl diphosphate synthase affording the direct precursor
farnesyl diphosphate with synergistic effects of deploying multiple genes [33].

Native methylotrophic promoter successfully produces patchoulol

To test an alternative promoter, a second construct with a native, lanthanide-inducible
methylotrophic promoter was generated, pAH2. The same experimental procedures were
conducted, except all the cultures were given LaCl3 to induce the promoter. Analysis
of the extracts showed the system was producing patchoulol. In comparison to baseline
methylotroph samples and standard control, the patchoulol peak at retention time 7.73 min
was found in all the AM1/pAH2 and CM502/pAH2 samples (Figure 2). This demonstrates
that the system can produce patchoulol and is further evidence M. extorquens is capable
of sesquiterpene synthesis. The analysis of the product and the internal standard peak in
each sample were conducted and used for calculating the relative yield (Figure 3). This
analysis showed, under these conditions, no significant difference between the relative
product collected from the AM1/pAH2 and CM502/pAH2 samples. The lack of difference
between the pink and colorless cells may be attributed to the low levels of product and
may indicate a bottleneck in the pathway. Additionally, it indicates the natural MEP
precursors within the CM502 mutant are not generating an increased pool. As discussed
above, overexpression of multiple genes upstream of the terpene synthase may provide a
future strategy to increase the carbon flux toward patchoulol [33].

Impact of the lanthanide switch on production of patchoulol

Inducible systems are highly attractive in metabolic engineering. To further charac-
terize the use of the xox1 promoter as a lanthanide switch, we tested whether patchoulol
biosynthesis in M. extorquens is induced by the presence of LaCl3. Both AM1/pAH2 and
CM502/pAH2 were tested for patchoulol production with or without the addition of LaCl3
(2 µM) (Figure 4). In both strains, patchoulol is only seen in the presence of LaCl3, indi-
cating induction of PcPatS gene expression by the xox1 promoter. This supports the xox1
promoter acting as a lanthanide switch that enables inducible expression of biosynthetic
pathways. Future studies could further characterize this lanthanide switch, investigating
the sensitivity to different LaCl3 concentrations. Similarly, future investigation into the xox1
switch in both AM1 and CM502 may quantitatively elucidate the terpenoid biosynthetic ca-
pacity of each strain. In the experiments presented here, both strains may still be limited by
PcPatS production, and future improvements to PcPatS expression with xox1 (for example,
higher LaCl3 concentrations) may enable greater patchoulol production. Here, it is clear
that patchoulol production in M. extorquens is induced by the addition of LaCl3 when using
the xox1 promoter, and there is an opportunity to further improve this system in the future.
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peak retention time of patchoulol was determined at 7.73 min and is present in all three samples at
varying intensities.
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Figure 3. Relative patchoulol yields from the native promoter. The relative yield of patchoulol for
each sample (open circle) from the two methylotrophic strains is plotted along with the mean (blue
circle). A one-way ANOVA test was conducted, and no statistical significance between the two
sample sets was found.

Assessing the methylotrophic engineering of diterpenes

A diterpene pathway using the mTac promoter was generated in the AM1 strain
to test the availability of the later C20 terpene precursor, GGDP. To our understanding,
there is no report of diterpene production within M. extorquens AM1. The gene encoding
casbene synthase was cloned under the xox1 promoter, and no casbene was detected in the
methylotrophic samples (2 µM LaCl3). The lack of product is potentially influenced by the
availability of the GGDP precursor. Insufficient carbon flow through the pathway to GGDP
or enzyme activity of GGDP synthase may be contributing factors.

Methylotrophic and E. coli strains harboring the pAH4 constructs with the mTac promoter
were generated to test diterpene synthase expression. The resulting chromatograms from
the E. coli and standard hexane samples (Supplemental Figure S1) show the E. coli control is
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producing both the terpene precursor at retention time 9.035 min (1) and the final diterpene
product, casbene, at retention time 9.35 min (2). The methylotrophic samples showed no
detectable casbene, possibly due to moderate expression by the constitutive promoter.
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Methylotrophic engineered strains can compete for colonization in the phyllosphere

M. extorquens is a known colonizer of the phyllosphere and metabolizes the methanol
released from plant catabolism of pectin. The success of engineering a methylotrophic
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sesquiterpene system provides the opportunity for creating a production platform on plant
leaf surfaces. To determine if the engineered strain can compete with other methylotrophic
strains for colonization, a competition experiment in the phyllosphere was conducted.
The engineered strain was mixed with a control strain and used to inoculate plant leaves.
Strains were re-isolated by selecting with methanol and LaCl3. The resulting plates of
the recovered strains show a difference between the CM502/pAH2 and CM502/pAH3
conditions (Figure 5). Specifically, the CM502/pAH2 strain was recovered in low num-
bers compared to the control AM1/pES503 strain. In contrast, for the CM502/pAH3
strain, the recovered bacteria show a far higher proportion of white colonies, indicating
it out-competed the AM1/pES503 control strain. The differences in recovery are possibly
associated with the burden of terpene production. However, all engineered strains were
recovered. A current established system for terpene expression within plant leaves uses
transient infection through agrobacterium [31]. A combination of this expression system
and the methylotrophic expression on the leaf surface holds the potential for increasing
terpene products generated from one individual plant.
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Figure 5. Recovered bacteria exhibit differences in phenotype. The phyllosphere competition pro-
duces a clear color difference in the bacterial cells recovered from the leaf surface. The CM502/pAH2
strain is found in low numbers (left). The CM502/pAH3 strain dominates the pink control strain
AM1/pES503 (right). Scale bar, 1 cm.

4. Conclusions

This study adds further evidence that the methylotrophic strain of M. extorquens AM1
has a native, albeit low, capability for production of the C15 sesquiterpene patchoulol. In
contrast, the C20 diterpene product casbene failed to accumulate at detectable levels, which
could indicate limiting availability of the precursor, geranylgeranyl diphosphate. Here, we
emphasize engineering of M. extorquens using a lanthanide-dependent native promoter.
This promoter is a unique addition to the growing number of highly specific inducible
systems, critical for synthetic biology applications. Comparison of a carotene-free strain
with the wildtype strain did not result in a higher yield, indicating that the limitation
may reside either in the recombinant heterologous activity of the terpene synthase or
the endogenous precursor pathway and lack of C5 precursor building block availability.
Lastly, the strains generated were inoculated in the phyllosphere and shown to colonize the
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model plant Nicotiana benthamiana in sufficient capacity to be recovered from leaves under
competitive conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms12030500/s1, Supplemental Figure S1: GC-FID
confirmation of casbene production. Extracts from E. coli and M. extorquens casbene sample chro-
matograms are compared to a positive sample. The E. coli samples from the constitutive promoter
when compared to a casbene standard (2) show success of the system at retention time of 9.35 minutes.
(1) Geranylgeraniol, product of unspecific phosphatase activity from geranylgeranyl diphosphate.
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