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Abstract 

Densely packed nanomagnet arrays are intensely investigated as the basis of 

spintronic devices as well as for understanding the fundamental physics of the 

magnetic spins in confined structures. As nanomagnet devices reduce their 

dimensions to the nanometer scale, their behavior is critically modified by numerous 

factors such as the finite size, shape, interfacial effects, fabrication defects, and 

interelement coupling. Among them, this thesis specifically addresses two factors 

controlling the interelement coupling. 

First, we discuss dipolar coupling between nanomagnets with a novel dynamic 

separation approach. By probing densely packed arrays of nickel elliptic disks and 

distinguishing signals in the frequency domain, individual subgroups of nanomagnets 

are characterized beyond the diffraction-limited spatial resolution. The technique is 

applied to nanomagnet arrays consisting of nickel elliptic disks with different 

orientations. Supplemented with micromagnetic simulations, the effect of the dipolar 

coupling on a specific nanomagnet subgroup is identified. The second part 

investigates the magnetization dynamics magnetoelastically coupled with surface 

acoustic waves (SAWs). In nanopatterned periodic arrays, magnetization precession 

and SAWs are simultaneously excited by a pump laser pulse. We show for the first 

time that the magnetization response is indeed coupled to the SAWs in nanomagnet 

arrays and the spin wave spectra are distinctly altered from the unperturbed ones, 

showing pinning and enhancement of the magnetization precession at the SAW 

frequencies. Taking the magnetoelastic effect into account, a newly developed 
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simulation procedure demonstrates excellent reproduction of the measurements. 

Extension modules for OOMMF micromagnetic simulation framework have been 

developed to offer general magnetoelastic modeling capability and are now publically 

available. Utilizing these experimental and modeling techniques, we present a novel 

experimental method for characterizing the damping parameter of nanostructured 

magnets. The linewidth of the pinning of the magnetization precession is directly 

connected with the Gilbert magnetization damping parameter and is utilized as an 

accurate measure for its experimental estimation, avoiding usual issues associated 

with the time-domain analysis. The new method enables accurate characterization of 

the damping parameter of nanopatterned magnets, governing important spintronic 

device characteristics such as threshold current density in spin transfer torque 

magnetic random access memories and transition jitter in heat-assisted magnetic 

recording. 
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1. Introduction 

1.1 Spintronics for information technologies 

Fabrication capability on the dimension of nanometers, comparable to the spin 

diffusion length in nonmagnetic metals [1,2], enabled use of electron spins in addition 

to the electronic charges in handling information. In contrast to the conventional 

magnetic devices where the spins are manipulated and probed with induction coils, 

spintronic devices utilize quantum-mechanical effect and achieve higher energy 

efficiency and signal to noise ratio (SNR). The field of study on such devices is 

termed spintronics and has been intensely studied with its main interest in recording 

applications, magnetic sensing, and communication as will be discussed below. 

The early phase of spintronics research was fueled by the interest in hard disk 

drives (HDDs). In particular, research gained momentum after development of giant 

magnetic resistance (GMR) in 1980s, pushing the limit of the magnetic field detection 

in the HDD read head [3,4]. A spin valve structure exhibits distinct resistance 

depending on the relative orientation of the spin configuration (parallel or 

antiparallel) in the pinned and free layers. As depicted in Fig. 1.1, the parallel and 

antiparallel configurations differently scatter the conduction electrons depending on 

their spins. In the parallel configuration (Fig. 1.1a), the spin-up electrons can travel 

through the spin valve virtually without scattering and provide low resistance. In the 

antiparallel configuration (Fig. 1.1b), both spin-up and spin-down electrons are 
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scattered and the spin valve exhibits high resistance. After the discovery of GMR, 

several other breakthroughs have enabled continued growth in the areal recording 

density in HDDs. Tunneling magnetic resistance (TMR) further improved the 

detection SNR [5,6]. As depicted in Fig. 1.2, TMR is found in a magnetic tunneling 

junction (MTJ) structure, having a tunnel barrier instead of the nonmagnetic metal 

layer in GMR. Electrons with a certain spin state can tunnel through the barrier only 

when there are available states corresponding to the same spin in the other 

ferromagnetic layer. In the parallel configuration (Fig. 1.2a), the majority spin 

electrons can tunnel to the majority spin states in the second layer and the MTJ 

exhibit large conductance. In the antiparallel configuration (Fig. 1.2b), however, the 

mismatch of the available spin states in the two layers results in large resistance. The 

magnetic recording media also have undergone a major technical transition for higher 

areal recording density; conventional longitudinal recording configuration was 

replaced by perpendicular magnetic recording (PMR) in early 2000s [7]. As 

illustrated in Fig. 1.3a, PMR is achieved with a single-pole write head and a soft 

underlayer (SUL), which forms a mirror image of the pole and completes the 

magnetic circuit. Comparing to the fringe field in longitudinal recording, this enables 

larger writing field for switching the recording bits with larger coercivity. PMR has 

achieved smaller recording bits and has replaced the longitudinal recording in HDDs 

[7–10]. As a result of these compound improvements, the recording density of HDDs 

increased exponentially at an average rate of ~40%/year since 1980s until early 2000s 

[11]. Having a fabrication advantage of not requiring nanopatterning in lateral 
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dimensions (a flat planar film of thin granular magnetic layers), HDDs dominated 

information storage for several decades, followed by the advancement of the Gbit/in2 

NAND flash memories in recent years [12].  

 

 

Fig. 1.1. Schematic diagram of giant magnetoresistance (GMR). Two ferromagnetic 

layers (F1, F2) are separated by a thin nonmagnetic metal layer. (a) Parallel and (b) 

antiparallel configurations. Conduction electrons with different spin states undergo 

different levels of scattering, resulting in large change in resistance. 

 

 

Fig. 1.2. Schematic diagram of a magnetic tunneling junction (MTJ). A reference 

layer (RL) and a free layer (FL) are separated by a tunneling barrier (TB). (a) Parallel 

and (b) antiparallel states. Conduction electrons can tunnel between the FL and RL 
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only when there are available states in the other layer corresponding to the same spin 

state. Mismatch of these states leads to large resistance. 

 

 

Fig. 1.3. (a) Schematic diagram of longitudinal (left) and perpendicular (right) 

magnetic recording (PMR). In PMR, a soft underlayer (SUL) can be seen as a mirror 

image of the single-pole write head, completing the magnetic circuit. (b) Scanning 

electron micrograph of a CoCrPt granular PMR medium. Taken from [7]. 

 

The growing trend of the HDD recording density is facing a fundamental limit 

in thermal stability called the superparamagnetic limit. A recording bit in HDD media 

is formed with multiple magnetic grains (Fig. 1.3b) each of which is saturated in one 

direction. In order to form sufficiently smooth recording bits, the grain size needs to 

be much smaller than the size of the recording bits [7]. As the average grain diameter 

reduces to 6-7 nm [7,9], the thermal fluctuation becomes significant. The 

characteristic time for thermal spin flipping τ at the temperature T is governed by the 

Neel-Arrhenius law [13,14] 
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where K is the anisotropy constant, V is the average grain volume, kB is the 

Boltzmann constant, and 1/τA is the attempt frequency, typically in the order of 109 to 

1012 s-1 [13,15,16]. To achieve stable storage for 100 years (τ = 3.15×109 s), KV/kBT > 

40–50 is desired. τ undergoes a very steep change around a grain diameter of a few 

nanometers, limiting further decrease in the recording bit size. Available magnetic 

field from a HDD write head limits K, which governs the coercivity of the recording 

media. To extend this limit, two basic concepts have been actively 

investigated—increasing the grain volume V or the anisotropy energy K.  

The first approach takes the form of bit patterned media (BPM) (Fig. 1.4) 

[9,10,17–19]. By patterning the recording medium into a densely packed array of 

single-domain nanomagnets, and by using thicker nanomagnets, the grain volume V 

can be increased to the size of the single recording bit. This approach, however, 

abandons the advantage of the HDD media of not requiring nanoscale fabrication in 

lateral dimensions and is subject to the fabrication difficulties, rather poor yield, large 

switching field distribution [18], as well as a demand for a high-speed error correction 

scheme in case the read/write head “misses” a nanomagnet [9]. In the context of the 

advanced HDD technologies, the focus of studies has shifted toward the second 

approach with higher anisotropy material and structures, implemented with energy 

assisting to overcome a large switching energy barrier. Among such approaches, 

heat-assisted magnetic recording (HAMR) is most promising and widely studied 
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[9,20–25]. In this approach, the recording media are constructed with materials of 

high coercivity (e.g., FePt with L10 phase or Co/Pt and Co/Pd multilayers and 

superlattices), easily exceeding 50 kOe with the grain diameter below 5 nm. In order 

to overcome the switching energy barrier, embedded laser light is delivered to the 

narrowly confined region through a plasmonic waveguide to heat the medium up 

close to the Currie temperature, lowering the coercivity field of the grains.  

 

 

Fig. 1.4. (a) Scanning electron micrograph of Co/Pd multilayer nanomagnet dots, 

deposited on pre-patterned SiOx posts. The array pitch is 20 nm, corresponding to an 

areal density of 1.9 Tbit/in2. (b, c) Sequential mangetic force micrography images 

taken at remanence after applying switching fields at 13.55 and 13.60 kOe, 

respectively. Dark spots indicate individual bits that remained unswitched. The black 

arrows point to three bits that flipped their state due to the increase in the switching 

field by 50 Oe. Taken from [10]. 

 

Advancement of basic spintronic components has led to incarnation of new 

recording technologies. Magnetic random access memories (MRAMs) have acquired 



 7 

a broad interest in practical recording application due to the scalability, nonvolatility, 

high switching speed (< 20 ns), and virtually unlimited write endurance (>1016 write 

cycles), ideal for replacing the dynamic random access memories (DRAMs) for the 

computer main memory [26–29]. An MRAM cell consists of an MTJ (Fig. 1.2). The 

information is stored as the magnetization direction of its free layer, which is flipped 

with the magnetic field from writing striplines. With a CMOS transistor connected in 

series to the MTJ, the free layer spin orientation is obtained with the TMR. The first 

demonstration of MRAMs was formed with an amorphous aluminum oxide barrier. A 

crystalline MgO (001) barrier was shown to achieve much larger TMR ratio and has 

been used in newer MRAM designs [30–36]. 

In contrast to passive spintronic effects, such as GMR and TMR, active effect 

of the spin-polarized current on the spin has enabled efficient spin manipulation. The 

spin transfer torque (STT) is a transfer of angular momentum from a spin-polarized 

current to the spins in the ferromagnets [37,38] and can switch the spin orientation 

[34,39–41]. It is combined with the MTJ structure as an STT-MRAM device. To flip 

the free layer magnetization in this design, a sufficiently large current is simply 

applied through the MTJ stack. It eliminates the need for writing transmission lines 

and reduces the device footprint by an order of magnitude down to ~2 F2, where F is 

the lithographic minimum feature size [42]. The required power for switching an MTJ 

also scales down with decreasing device size, as opposed to the exponential increase 

in the conventional MRAM design with writing field application [27]. Therefore, low 
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switching current density Jc0 is a key parameter in development of STT-MRAMs. For 

a perpendicular MTJ [15], 

Jc0 =
1
η
2αe


MStHK  (1.1.2) 

is directly proportional to the Gilbert damping parameter α, which will be defined in 

section 2.2. CoFeB has an advantage of low damping and is now the main material 

for future MRAM designs, typically achieving Jc0 in the order of 106 A/cm2 

[15,33,34,43].  

The STT effect is also utilized in racetrack memories (RTMs) for moving the 

magnetic domains across permalloy nanowires [44]. Their concept is sketched in Fig. 

1.5. Magnetic domains are switched with the field from a fixed write head. Instead of 

moving the write head structure as in HDDs, the RTM moves the magnetic domains 

with spin-polarized current. The bit length (spacing between consequent domain 

walls) is controlled by pinning sites fabricated along the nanowire. The speed and 

repeatability of domain wall motion are studied intensely for realization of RTMs. 

RTMs involve rather large magnetic domains for information storage and do not 

appear particularly advantageous in high recording density. The major significance of 

this structure is that it is probably the closest candidate for the three dimensional 

recording, which would easily increase the recording capacity by a factor of many 

orders of magnitude by extending the recording structure in the z direction. 
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Fig. 1.5. Two configurations proposed for racetrack memories (RTMs). Pulsed 

spin-polarized current is applied at the left end of the nanowires to move the domain 

walls. (A) Vertical configuration would provide high storage density by storing 

information as domain wall positions in U-shaped nanowires. (B) Horizontal 

configuration is easier to fabricate for experiments. Taken from [44]. 

 

Apart from recording applications, STT is also being investigated as a 

potential source of GHz oscillation [45,46] for communication, microwave-assisted 

magnetic recording (MAMR) applications, and for RF signal detection [47]. By 

applying a DC voltage across a MTJ structure and balancing the STT and damping in 

the free layer, a steady spin precession at the ferromagnetic resonance (FMR) 

frequency can be excited. The AC power can be extracted with a GMR sensor. Other 

microwave oscillators (e.g., monolithic microwave ICs) involve integrated circuitry 

with resonators, mixers, amplifiers, and filters and have low efficiency. The STT 
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oscillator can be achieved with a single MTJ and can be incorporated with 

conventional LSI fabrication. 

Recently, an unprecedented spin-switching phenomenon called the all-optical 

switching (AOS) was demonstrated in rare-earth–transition-metal ferrimagnet alloys 

[48–58] and in synthetic ferrimagnets [59,60]. When the sample is irradiated with a 

single laser pulse with circular polarization, the net magnetization of the ferrimagnet 

switches its direction without any external field. The exact mechanism of the 

switching still remains controversial but it is typically understood as a combination of 

the heating close to the Currie temperature and the inverse Faraday effect, acting on 

two ferrimagnet sublattices with different magnetic moments [50]. Under a narrow 

window of laser fluence, it is also reported that mere heating with no net magnetic 

angular momentum (linearly polarized light) can switch the net magnetization as well 

[51]. Conventional micromagnetics fails to model this phenomenon involving rapid 

temperature increase and the reduction of net magnetization. Atomistic modeling of 

such material structures predicted the spin dynamics with different relaxation time 

scale for the two sublattices that are strongly coupled to each other. This reproduced 

the purely thermal switching as well [51,61,62]. Atomistic modeling is only 

applicable to bulk and relatively small structures. Several groups have extended 

micromagnetics to include temperature-dependent magnetization magnitude and two 

sublattices but a full-fledged modeling of micrometer-scale structures has not been 

reported. AOS typically involves a laser spot of 30–150 µm in diameter and is not 

immediately applicable for nanoscale recording bits. While AOS in micro- and 
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nanopatterned GdFeCo was demonstrated [53,54,58], it is not clear what exact 

condition is required for AOS, especially with nonuniform condition in patterned 

elements. Therefore, investigation and modeling of the AOS on nanopatterned 

structures or with near field laser excitation is of great interest. 

1.2 Magnetization dynamics in nanopatterned magnets 

In the context of the development of magnetic recording technologies, we are 

particularly interested in the magnetization dynamics of nanostructured magnets. The 

dynamics of nanostructures is engineered through size, shape, coupling with other 

layers, mechanical stress, and material composition. They have been widely studied 

as a basis of spintronic devices, as well as a platform to understand fundamental 

physics in material science. As the development of modern information technology 

demands smaller recording bits on a nanometer scale and faster operation in the GHz 

range, it is becoming ever more critical to understand the spin dynamics of 

nanostructured magnets. 

The finite size and shape of nanomagnets cause the spin behavior to deviate 

distinctly from that of the bulk and planar films. On studies of soft magnets (e.g., 

permalloy) patterned on a micro- and nanometer scale, the finite size leads to a 

nonuniform distribution of the magnetization in individual magnets and generates a 

nonuniform demagnetization field. In addition to shifting the FMR frequency, 

multiple spin wave eigenmodes are present [63–69]. The large change in effective 

field tends to be confined close to the device edges and gives rise to the edge mode, a 

spin wave eigenmode whose power is confined close to the nanomagnet edges. 
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Numerous confined spin wave modes appear and complicate the magnetization 

dynamics. These modes are heavily dependent on the magnet shape, size, and aspect 

ratio (lateral size/thickness). When multiple spin wave modes with overlapping 

spectra are excited, dephasing of these modes makes the net oscillation decay faster 

than the intrinsic damping [70–73]. 

Damage and defects induced in nanopatterning, such as implantation of 

impurities, disordered lattice structures, edge and interface roughness can also lead to 

a significant modification of spin dynamics [74–78]. It is difficult to model the exact 

origin and nature of the localized damage and is usually treated as a 

phenomenological modification of macroscopic material parameters. Modeling of 

local variation of such parameters is often worked out by guess, for example, by 

reducing the total anisotropy constant in small edge regions. Nevertheless, this 

approach often predicts noticeable change in device characteristics with edge damage 

of just a few nanometers [76–78]. 

In thin, small nanomagnets with large anisotropy that is of interest for 

memory applications, the exchange interaction prefers excitation of a single coherent 

precession mode. The large anisotropy energy required for thermal stability often 

dominates the magnetization dynamics and the relative importance of magnet shape 

becomes less significant. In this regime, fabrication damage and defects play a large 

role in determining the magnetization dynamics [77]. 

When the nanomagnets are closely packed in an array with small separations, 

interelement coupling induces crosstalk between the recording bits. In nanomagnet 
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arrays, the dipolar field from the neighboring elements changes both static and 

dynamic properties of the whole array. When the nanomagnets are placed in a 

magnetostatic environment that is modified by the stray dipole field from neighboring 

elements, they can have different ground state of the magnetizations, leading to 

distinctly different precession frequencies [79–81] and switching field distributions 

[82–84]. Dynamic dipolar coupling also excites a number of collective spin wave 

modes for the entire array structure [85–87], splitting and broadening the mode 

spectra via energy transfer to the neighboring elements at the FMR frequency. This 

can alter the switching characteristic of each nanomagnet too [88].  

In dynamic measurements on nanomagnet arrays, the spatial resolution of the 

measurement techniques poses an important issue. Typically, the signal of such 

measurements is an averaged response of many nanomagnets within the detection 

region including deviations of each nanomagnet. It is difficult to retrieve the covert 

dynamics of individual nanomagnets. For example, due to the deviation in shape, 

size, and localized defects, each nanomagnet is expected to have a slightly different 

FMR frequency. This broadens the mode spectra and may cover the splitting of 

different spin wave modes within each nanomagnet or cause an apparent increase in 

the damping rate [85]. In order to probe the dynamics of individual nanomagnets, 

measurements on isolated single magnets are often desired to complement the array 

measurement [71,89–95]. Alternatively, detection of a single nanomagnet within a 

densely packed array with high spatial resolution is required. Both approaches 

typically suffer lower signal to noise ratio (SNR). In chapter 4, we will discuss the 
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dynamic separation approach to probe individual nanomagnets within densely packed 

arrays beyond the diffraction limit. 

Coupling of the magnetization dynamics with mechanical vibration also has a 

non-negligible role. Periodically patterned nanostructures have mechanical 

eigenmodes in the GHz range and can strongly alter the magnetization dynamics via 

magnetoelastic coupling. This greatly complicates the measurements of array 

structures. We have developed a measurement and analysis technique to model the 

magnetoelastically coupled dynamics in nanopatterned structures. Chapter 5 gives 

more detailed descriptions of the theories and analysis methods, followed by several 

chapters demonstrating such phenomena in TR-MOKE experiments and numerical 

simulations. 

1.3 Problem statement and chapters 

Among the factors affecting nanomagnet dynamics presented in the last 

section, this thesis specifically discusses two problems. First, we will discuss the 

dynamic separation approach to probe distinct groups of nanomagnets within densely 

packed arrays beyond the spatial resolution of diffraction-limited optics. The second 

part of the thesis investigates the magnetoelastic coupling with surface acoustic 

waves strongly altering the magnetization behavior. This thesis is organized as 

follows. 

Chapter 2 introduces the theory of magnetization dynamics. With a brief 

description of Hamiltonian terms of a spin system, it is mainly discussed using the 

micromagnetic model to describe nanometer-scale structured magnets. An example of 



 15 

a small-angle precession mode (Kittel mode) is presented. This chapter ends with 

concepts of numerical analysis within the framework of micromagnetics. 

Chapter 3 describes the measurement principles and techniques. 

Magneto-optic effects as the probe of magnetization will be introduced in a 

semiclassical Lorentzian model and will be related to the dielectric tensor of 

magnetically ordered materials. General remarks of time-resolved magneto-optic 

measurement techniques and the actual setup description will be given as well as a 

brief description of the analysis techniques used to interpret the experimental data. 

In Chapter 4, we present the dynamic separation approach applied on nickel 

elliptic disks. This chapter investigates the dipolar coupling of nickel nanomagnets 

and resolves the magnetization dynamics in individual groups of nanomagnets, 

oriented in different directions. Supplemented with micromagnetic simulations, the 

dipolar coupling within densely packed arrays is characterized. 

Chapter 5 presents the magnetoelastic effect in densely packed nanomagnet 

arrays. The dynamics of nanomagnet spins are strongly coupled to the surface 

acoustic waves simultaneously excited with the pump laser pulse. In this chapter, the 

basic theory of magnetoelastically coupled system is introduced. A numerical 

simulation procedure to model such systems with a complex structure was developed 

and will be discussed. 

Chapter 6 presents the first demonstration of strong magnetoelastic coupling 

in nanostructured magnets. The behavior of the magnetization precession turned out 

to be drastically different from the pure magnetic response. The modeling procedure 
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introduced in Chapter 5 is applied to interpret the observed dynamics, yielding 

excellent agreement. 

In Chapter 7, using the knowledge of the magnetoelastically coupled 

dynamics attained in previous chapters, we propose a novel experimental method to 

characterize the damping parameter of nanopatterned magnets. The method is utilized 

for characterizing TbFe, nickel, and cobalt nanomagnet arrays. Its validity is 

corroborated with a theory, simulations, and comparison with another experimental 

method. 

Chapter 8 summarizes findings presented in the preceding chapters. It closes 

the thesis by discussing their significance and future prospects. 
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2. Magnetization dynamics 

This chapter will review theories concerning the magnetization dynamics. The 

magnetization is first presented as an electron spin localized at atomic sites and the 

Heisenberg exchange is introduced as a practical model to explain the ferromagnetic 

ordering. For analysis of magnetization dynamics on a 100-nm length scale, 

micromagnetics is introduced as an approximation. The Landau-Lifshitz (LL) and 

Landau-Lifshitz-Gilbert equations are presented as the governing equations of the 

magnetization motion within this framework, along with a representative solution of 

the small angle precession. Finally, concepts and challenges of numerical simulation 

approaches are discussed at the end of the chapter. 

2.1 Energy terms in Heisenberg Hamiltonian 

Magnetization in a material is modeled as a net magnetic dipole moment per 

unit volume, originating from the angular momentum of the electron. In a classical 

model, this is viewed as a loop current of an electron with the mass m and charge e (< 

0) traveling at the speed of v along a circular trajectory of radius a. The loop current 

of I = ev (2πa)  gives the magnetic dipole moment 

µ = πa2 I =
e av
2

 (2.1.1) 

at the center of the loop. (2.1.1) is related to the angular momentum of the electron 

Γ =mav  as 
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µ =
e
2m

Γ . (2.1.2) 

In a quantum-mechanical view, the angular momentum is discretized with the 

separation   and is expressed with an azimuthal quantum number l as 

Γ l = l(l +1) . (2.1.3) 

Substituting (2.1.3) in (2.1.2), the Bohr magneton µB is defined as the coefficient for 

obtaining the magnetic moment of an electron. 

µ =
e 
2m

l(l +1) = µB l(l +1) . (2.1.4) 

Under an external magnetic field, the z component (parallel to the external field) of 

the orbital angular momentum is quantized into 2l+1 values and expressed as 

µz =
e 
2m

ml = µBml  (2.1.5) 

with the magnetic quantum number ml, taking an integer value between −l  to +l . In 

addition to the orbital angular momentum, the electron spin contributes to the 

magnetic moment. The spin angular momentum Γ s =  s(s+1)  is expressed with 

the spin quantum number s, taking a value of s = ±1 2  and contributes to the spin 

magnetic moment 

µ s =
e 
m

s(s+1) = 2µB s(s+1) . (2.1.6) 

When more than one electrons occupy the incomplete shell, the orbital and 

spin angular momenta Γ l,i and Γ s,i of the ith electron are vectorially added and result 
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in the net orbital and spin angular momenta ΓL and ΓS. They are expressed by the 

quantum numbers 

L = ml,i

i
∑ , S = si

i
∑ , (2.1.7) 

replacing l and s in the previous discussion. ml,i and si are the magnetic and spin 

quantum numbers for the ith electron in the incomplete shell and are determined by 

the following Hund’s rules: 

(1) si are decided by maximizing S in accordance with the Pauli exclusion 

principle. 

(2) ml,i are decided by maximizing L in accordance with rule (1). 

(3) The total angular moment quantum number J is determined as  

J =
L − S (for a shell less than half occupied)

L + S (for a shell more than half occupied)

"
#
$

%$
. (2.1.8) 

The net magnetic moment is obtained as  

µ =
gµB


Γ = gµB J(J +1)  (2.1.9) 

with the Landé g-factor 

g =1+ J(J +1)+ S(S +1)− L(L +1)
2J(J +1)

. (2.1.10) 

The g-factor represents the relative contribution of the orbital and spin angular 

momenta to the net magnetic moment. For example, it takes a value of g = 1 and 2 for 

a purely orbital and purely spin contribution, respectively. For the free atoms or ions 

of 3d and 4f metals, the values of L, S, and J are calculated with the Hund’s rules and 
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are shown in the top row of Fig. 2.1. Note, however, that in 3d transition metal ions in 

a solid, the orbital angular momentum is quenched and L is small. Because the 

electric field in the lattice turns the plane of the orbits into crystallographic directions, 

the 3d orbital angular momentum ΓL,z average to zero [96 p. 35,97 p. 74,98 pp. 386–

390]. As seen in the bottom row of Fig. 2.1, the magnetic moments measured in 3d 

metals closely follow the theoretical calculation µ = 2µB S(S +1) , assuming only the 

spin angular momentum. In 4f metals, on the other hand, the 4f electrons are closer to 

the nucleus than those of the 5s and 5p electrons. They are effectively screened from 

the effect of the electric field in the lattice and contribute to the net magnetic moment, 

making Eq. (2.1.9) a good model. 

 

 

Fig. 2.1. (Top) The quantum numbers S, L, and J for free 3d and 4f atoms. Taken 

from [98]. 
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Eq. (2.1.9) is also a generalized form of (2.1.2) with the net angular 

momentum Γ. The ratio of the magnetic dipole moment µ and Γ is defined as the 

gyromagnetic ratio 

γ =
g e
2m

. (2.1.11) 

As will be discussed in section 2.2, this appears as a coefficient determining the 

torque on the magnetization vector and thus the frequency of its precession motion. 

The origin of ferromagnetic and antiferromagnetic ordering is addressed with 

the Heisenberg model. In this model, the magnetic moments are spins localized at 

atomic sites. The problem of many electrons with the Coulomb potential energy due 

to the electron-electron and electron-nuclei interactions is treated with the 

Hartree-Fock approximation, following a discussion in [96 pp. 36–44]. It utilizes the 

mean field theory, assuming that effect of other conduction electrons are modeled as a 

single averaged effect. It thus reduces a many-body problem to a single-body 

problem. Suppose that when each electron is separated from each other, the electron 

is described with an eigenfunction 

ϕk (ρ1) , (2.1.12) 

where ρ1 is the spatial and spin coordinate of the electron 1. When the electrons are 

brought closer, the wave function of the whole electron system is approximated by a 

Slater determinant, expressed as the linear superposition of the products of (2.1.12) as 

[98 pp. 190–195] 

ψ =
det[ϕk ]

N!
, (2.1.13) 



 22 

where the numerator is defined as 

det[ϕk ]=
ϕ1(ρ1)  ϕ1(ρN )
 

ϕN (ρ1)  ϕN (ρN )
. (2.1.14) 

(2.1.13) obeys the Pauli exclusion principle that requires the wave function to be 

antisymmetric with respect to interchanging two electrons. Interchanging of any two 

electrons corresponds to interchanging the two column positions in the right hand side 

of (2.1.14) and leads to reversal of the sign of ψ. It follows that ψ = 0 when ρ i = ρ j 

with i ≠ j , in accordance with the Pauli exclusion principle, prohibiting two electrons 

to share the identical quantum state. 

The Hamiltonian has the form of 

H = Hi

i
∑ +

1
2

e2

riji≠ j
∑ +Hc , (2.1.15) 

where 

Hi = −

2me

∇i
2 +Vi  (2.1.16) 

is the standard Hamiltonian operating on the ith electron with the Coulomb potential 

Vi created by the ion cores. The second summation in (2.1.15) is the Coulomb 

potential energy due to an electron–electron interaction, and the last term is the 

Hamiltonian operating on the ion cores. With the definition of the wave function ψ  

in (2.1.13) and this Hamiltonian (2.1.15), the energy of the system is calculated as 

E = ψ*
Hψ dτ1 dτ 2dτ N∫  



 23 

=
1
N!

det[ϕ !k
* ]H det[ϕk ]dτ1 dτ 2dτ N∫ . (2.1.17) 

Since each term in (2.1.15) is linear and operates only on ith and jth electrons, 

(2.1.17) can be expanded as  

E = Ei
i=1

N

∑ +
1
2

Eij
i, j=1,i≠ j

N

∑ +Ec , (2.1.18) 

where the indices i, j denote the numbers determined by the quantum states of the ith 

and jth electrons. The second summation in (2.1.18) describes the interaction between 

pairs of the electrons. This purely electrostatic effect can also be expressed as a spin–

spin interaction if the exchange interaction 

Heff = − Ji, jSi ⋅Sj
i≠ j
∑  (2.1.19) 

is added to the Hamiltonian [99 pp. 51–58], where Si,j are the spin vectors along the 

magnetic moment with the magnitude of S and Ji,j is the exchange integral 

Ji, j = 2 ϕi
*(r1)ϕ j

*(r2 )
e2

ri − rj
ϕi (r2 )ϕ j (r1)dr1 dr2∫ . (2.1.20) 

(2.1.19) is the well-known Heisenberg exchange interaction. These terms, as 

discussed above, are derived as a correction of the Coulomb potential, taking the 

Pauli exclusion principle into account. The definition of the sign of Ji,j differs in 

literatures but in the definition of (2.1.20), positive Ji,j prefers Si and Sj to be parallel 

and causes ferromagnetic ordering. Conversely, negative Ji,j results in antiparallel 

ordering of neighboring spins, as seen in antiferromagnets and ferrimagnets. 
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The summation in (2.1.19) is, strictly speaking, applied to all pairs of spins in 

the system. The exchange integral Ji,j is a strong function of the distance between the 

spins and often only nearest neighbors are considered. 

2.2 Micromagnetics and Landau-Lifshitz-Gilbert equation 

The quantum-mechanical model in the previous section describes the spins at 

the atomic sites. However, calculation of spins with this approach is frequently too 

burdensome and unnecessary. Also, it is sometimes difficult to obtain all the material 

parameters required for description of the whole system. For these reasons, an 

alternative approach is generally exerted for studying the magnetization dynamics in 

nanoscale structures. This approach is generally known as micromagnetics and 

assumes a continuity of magnetization in the material. Despite its name, magnetic 

quantities, such as magnetization and the energy densities discussed in the previous 

section, are treated as continuous functions of position and thus assume macroscopic 

values. For the rest of this thesis, we will be analyzing the magnetization dynamics 

under this approach. 

The equation of motion in micromagnetics was first proposed by Landau and 

Lifshitz as [100] 

∂M
∂t

= −γM ×Heff −
γλ
MS

2
M × (M ×Heff ) , (2.2.1)  

where Heff is the effective field that will be defined shortly, γ  is the gyromagnetic 

ratio defined in (2.1.11), and λ  is a dissipation parameter. Gilbert modified (2.2.1) 

[101,102] into the form known today as the Landau-Lifshitz-Gilbert (LLG) equation 
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∂M
∂t

= −γM ×Heff +
α
MS
M ×

∂M
∂t

 (2.2.2)  

by replacing γM ×Heff  in the second term of (2.2.1) by ∂M ∂t  and introducing a 

dimensionless Gilbert damping parameter α. The two equations are identical when 

the parameters in (2.2.1) are replaced as 

γ→
γ

1+α 2
 and λ→ αMS

1+α 2
, (2.2.3)  

Typically in a bulk of 3d transition metal, α is on the order of 10-3–10-2 and the 

relative difference of γ in (2.2.1) and (2.2.2) is less than a percent. A larger damping 

parameter on the order of 10-1 can be found in alloys or in multilayer structures [103–

106] and the difference may be noticeable. Motion of the magnetization is depicted in 

Fig. 2.2. The first terms in (2.2.1) and (2.2.2) describe the torque on M. When no loss 

is assumed for the system, M continues its precession around the equilibrium axis. 

The second term describes the loss of the system, which behaves like friction. Both 

(2.2.1) and (2.2.2) ensures that M retains a constant magnitude and only changes its 

orientation. This can be shown by taking the dot product of the both sides of (2.2.1) 

and (2.2.2) with M, obtaining 

∂ M 2

∂t
= 0 . (2.2.4)  
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Fig. 2.2. Magnetization precession described with the LLG equation. 

 

In the micromagnetic model, magnetization dynamics are affected by various 

energy terms. In addition to the Zeeman energy (contribution of the externally applied 

field) 

UZ = −µ0M ⋅Happ , (2.2.5) 

anisotropy, exchange, and demagnetization terms are typically considered. In Chapter 

5, we will also introduce the magnetoelastic energy terms. All the terms in the Gibbs 

free energy density contribute to the effective field Heff in the LL equation (2.2.1) and 

LLG equation (2.2.2). In the same manner as the virtual work principle in kinetics, 

this is derived using the variational derivative 

Heff = −
1
µ0

δU
δM

≡ −
1
µ0

∂U
∂M

+
∂
∂xi

∂U
∂M ∂xi( )

$

%
&
&

'

(
)
)i

∑ . (2.2.6)  

Below, we will discuss the most common micromagnetic energy terms and their 

contribution to Heff. 

2.2.1 Exchange energy in micromagnetics 
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As seen in Eq. (2.1.19), the exchange energy among spins can be expressed as 

the inner product of neighboring spin vectors. For a small angle, the inner product in 

(2.1.19) is approximated as 

Si ⋅Sj ≈ S2 cosφij ≈ − φij
2
≈ − mi −m j

2 , (2.2.7)  

where m is the unit vector parallel to the magnetization direction. Within the 

approximation of micromagnetics, m is defined not only at atomistic sites but for all 

space. It can be replaced with its Taylor expansion to the first order 

mi −m j = (si ⋅∇)m , where si is the position vector pointing from the lattice point i to 

j. The exchange energy then becomes 

EEX = JS2 (si ⋅∇)m[ ]2
si
∑

i
∑ . (2.2.8)  

By changing the summation over i to an integral 

UEX = AEX (∇mx )2 + (∇my )2 + (∇mz )2"# $%  (2.2.9)  

with the exchange constant (or the exchange stiffness constant) 

AEX =
JS2

a
c , (2.2.10)  

where c = 1,2, and 4 for simple cubic, bcc and fcc crystals, respectively and 

AEX =
2 2JS2

a
 (2.2.11)  

for close-packed hexagonal crystals. Substituting (2.2.9) into (2.2.6), the exchange 

contribution to Heff is 

HEX =
2AEX
µ0MS

∇2m . (2.2.12)  
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2.2.2 Anisotropy 

Ferromagnetic and ferrimagnetic materials typically favor magnetization in 

particular directions that reduce the total energy density. This originates, for example, 

from crystallographic structure, mechanical stress, and the interfacial effects. These 

effects are of local nature and to be distinguished from the demagnetization energy, 

also known as the shape anisotropy, determined by the macroscopic shape and 

magnetization of the sample as will be discussed below. Here, we treat it only 

phenomenologically. The most common forms of the anisotropy are uniaxial and 

cubic anisotropy. In the former case, the anisotropy energy density is 

phenomenologically modeled as the even power series of the sinusoidal functions of 

the magnetization angle, where odd numbers are ruled out due to azimuthal 

symmetry. In most cases, only the lowest order term is necessary and the uniaxial 

anisotropy is expressed as 

UU = −K1 cos2θ = K1(m ⋅e)2 , (2.2.13)  

where θ is the angle of the magnetization direction with respect to the anisotropy axis. 

The uniaxial anisotropy is also expressed with the unit vector along the symmetry 

axis e, in more general cases. In some cases, the second coefficient K2 with cos4θ 

term is also used. A positive K1 value means that the magnetization along the 

anisotropy axis is energetically favorable and it is called the easy axis. When K1 < 0, e 

is the hard axis (the easy plane is perpendicular to e). From Eq. (2.2.13), the uniaxial 

anisotropy energy contributes to the effective field as 
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HU =
2K1
µ0MS

(m ⋅e)e = HK(m ⋅e)e , (2.2.14)  

where HK ≡ 2K1 (µ0MS)  is called the anisotropy field. It is sometimes used to 

specify the anisotropy in place of K1. 

In addition to the crystallographic directions, anisotropy energy terms may 

arise from interfaces and surfaces, due to the broken symmetry at the surfaces and 

modification of the wave function near the interfaces of two different materials. 

Phenomenologically, the energy density is often expressed in the form of Eq. (2.2.13) 

and the same mathematical treatment can be applied as the “effective” uniaxial 

anisotropy.  

For cubic crystals, the symmetry about interchanging x, y, and z axes requires 

even powers of the magnetization. Since the lowest term mx
2 +my

2 +mz
2 =1  is a 

constant, the cubic anisotropy energy density is expanded as 

UC = K1(my
2mz

2 +mz
2mx

2 +mx
2my

2 )+K2mx
2my

2mz
2 . (2.2.15)  

For K1 > 0 (e.g., Fe), (100) directions are the easy axes, while for K1 < 0 (e.g., Ni), the 

easy axes are along (111). Again, K2 is often unnecessary and omitted. 

2.2.3 Demagnetization 

When a magnetic body is magnetized, an uncompensated dipole moment 

appears. This is seen as a virtual “magnetic charge” which generates an additional 

field inside and outside the magnetic body. This field, because it reduces the total 

local field inside a magnet, is called the demagnetization field HD. It is convenient to 

obtain the scalar magnetostatic potential ΦD as a solution of 
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∇2ΦD =∇⋅M  (2.2.16) 

with the boundary conditions 

ΦD,in −ΦD,out = 0, ∂ΦD,in

∂n
−
∂ΦD,out

∂n
=M ⋅n , (2.2.17) 

where n is the unit vector along the outward surface normal. HD is obtained as 

HD = −∇ΦD . (2.2.18) 

Eq. (2.2.16) can be understood as a Poisson equation with the volumetric and surface 

magnetic charges ρ = −∇⋅M  and σ = n ⋅M , artificially defined point charges 

originating from uncompensated magnetic moments. The solution for (2.2.16) is 

given by the integral of the Green function G(r, !r ) =1 (4π r − !r ) , as 

ΦD =
1
4π

−
"∇ ⋅M( "r )
r − "r

d "V
V
∫ +

n ⋅M( "r )
r − "r

d "S
S
∫

&

'
((

)

*
++ , (2.2.19)  

resulting in 

HD(r) = −∇ΦD(r) =
1
4π

−
(r − #r )ρ( #r )
r − #r 3 d #V

V
∫ −

(r − #r )σ ( #r )
r − #r 3 d #S

S
∫

%

&
'
'

(

)
*
*

. (2.2.20)  

In the simple case of uniformly saturated magnets, the demagnetization field 

can be expressed with a single demagnetization tensor 

N  as 

HD = −

NM . (2.2.21)  


N  is solely determined by the macroscopic shape of the magnet. This condition 

holds either at sufficiently large external fields where the nonuniformity of the 

magnetization is negligible or in an ellipsoid. Infinite rods and films fall in the second 

category as its extremes. When the Cartesian coordinate is defined along the major 
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axes of the ellipsoids, 

N  is further reduced to a diagonal matrix. Table 2.1 shows 

elements of 

N  in some representative cases. 

 

Shape Nx Ny Nz 

Sphere (a = b = c) 1 3  1 3  1 3  

Prolate ellipsoid (a = b, c > a) [107] 
1− Nz

2
 1− Nz

2
 1

p2
1
2ξ
ln 1+ξ
1−ξ
"

#
$

%

&
'−1

(

)
*

+

,
-  

Inifinite thin film (a = b = ∞, c = +0) 0 0 1 

Infinite cylinder (a = b = +0, c = ∞) 1 2  1 2  0  

Table 2.1. Demagnetization factors for representative ellipsoids whose surface is 

defined by x a( )2 + y b( )2 + z c( )2 =1 . p ≡ c a , ξ ≡ p2 −1 p . Numbers are in the 

SI unit system. In CGS unit, the values of Nx, Ny, and Nz must be multiplied by 4π. 

 

Once the demagnetization field HD is evaluated, either by Eq. (2.2.19)–

(2.2.20) for a general case or by (2.2.21) for a uniformly saturated magnet, the 

demagnetization contribution to the free energy density can be evaluated as 

UD = −
1
2
µ0M ⋅HD , (2.2.22) 

where the factor of one half is necessary to avoid double counting of the interaction 

between two dipoles. 

In nanostructured devices, the shape frequently deviates from an ellipsoid and 

nonuniform demagnetization needs to be evaluated numerically. Unlike the local 
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functions seen in exchange (2.2.12) and anisotropy (2.2.14) fields, the long range 

nature of Eq. (2.2.20) makes its evaluation challenging. More details will be 

discussed in section 2.3. 

2.2.4 Kittel mode 

As a representative example depicting magnetization precession, we will 

derive the ferromagnetic resonance mode in an infinite film. The discussion was 

derived and generalized in [108 pp. 35–37]. We assume a small Gilbert damping 

parameter α. The LLG equation (2.2.2) ensures the conservation of M and the 

equation of motion is replaced by two variables in spherical coordinates as 

∂θ
∂t

= −
γ

µ0MS sinθ
∂U
∂ϕ

−
αγ
µ0MS

∂U
∂θ

  

∂ϕ
∂t

=
γ

µ0MS sinθ
∂U
∂θ

−
αγ

µ0MS sin2θ
∂U
∂ϕ

, (2.2.23)  

where θ and ϕ are the polar and azimuthal angles of M, respectively. First, the 

equilibrium direction θ0 and ϕ0 are obtained by solving 

∂U
∂θ

"

#
$

%

&
'
θ=θ0 ,ϕ=ϕ0

= 0, ∂U
∂ϕ

"

#
$

%

&
'
θ=θ0 ,ϕ=ϕ0

= 0 . (2.2.24)  

By substituting the uniaxial anisotropy energy UU = K1 sin2θ  (2.2.13), 

demagnetization energy UD = µ0MS
2 cos2θ 4  (2.2.21), and the Zeeman energy 

UZ = −µ0MHapp cosθ cosθH + sinθ sinθH cos(ϕ −ϕH )[ ] , (2.2.25)  

(2.2.24) becomes a transcendent equation 
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K1 −
µ0MS

2

2
"

#
$

%

&
'sin2θ0 −µ0MSHapp sin(θH −θ0 ) = 0 , (2.2.26) 

where θH specifies the direction of the external field Happ. The equilibrium 

magnetization direction θ0 is obtained as a numerical solution of (2.2.26). 

Substituting small deviation of the magnetization angles θ =θ0 +δθ exp(iωt)  and 

ϕ =ϕ0 +δϕ exp(iωt)  into (2.2.23), 

iω + γ
µ0MS sinθ0

Uθϕ +
αγ
µ0MS

Uθθ

!

"
#

$

%
&δθ +

γ
µ0MS sinθ0

Uϕϕ +
αγ
µ0MS

Uθϕ

!

"
#

$

%
&δϕ = 0  

iω − γ
µ0MS sinθ0

Uθϕ +
αγ

µ0MS sin2θ0
Uϕϕ

"

#
$

%

&
'δϕ

 

−
γ

µ0MS sinθ0
Uθθ −

αγ
µ0MS sin2θ0

Uθϕ

"

#
$

%

&
'δθ = 0 , (2.2.27) 

where 

Uθθ =
∂2U
∂θ 2
"

#
$

%

&
'
θ=θ0 ,ϕ=ϕ0

= 2 K1 −
µ0MS

2

2
"

#
$

%

&
'cos2θ0 +µ0MSHapp cos θH −θ0( )  

Uθϕ =
∂2U
∂θ∂ϕ

"

#
$

%

&
'
θ=θ0 ,ϕ=ϕ0

= 0
 

Uϕϕ =
∂2U
∂ϕ 2

"

#
$

%

&
'
θ=θ0 ,ϕ=ϕ0

= µ0MSHapp sinθ0 sinθH . (2.2.28) 

For Eq. (2.2.27) to have a nontrivial solution, the determinant of the coefficients must 

be 0 (compatibility condition). With α = 0, this condition yields the ferromagnetic 

resonance frequency 
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ω0 =
γ

µ0MS sinθ0
UθθUϕϕ −Uθϕ

2  

= γ H1H2 , (2.2.29) 

where 

H1 = Happ cos(θ0 −θH )+
2K1
µ0MS

−MS
"

#
$

%

&
'cos2θ0  

H2 = Happ cos(θ0 −θH )+
2K1
µ0MS

−MS
"

#
$

%

&
'cos2θ0 . (2.2.30) 

Eq. (2.2.29) is used to model the ferromagnetic resonance (Kittel mode) frequency in 

unpatterned films. When Happ is applied perpendicular or parallel to the film (θ0 = θH 

= 0 or θ0 = θH = 2π) H1 and H2 become identical and the precession frequency 

linearly depends on Happ with the proportional constant of γ. When the field is canted, 

Eq. (2.2.26) and (2.2.29) need to be numerically evaluated. In Chapter 4, a fit of 

observed frequency with (2.2.29) is used to obtain the material parameters such as γ, 

MS, and K1. 

2.3 Numerical techniques for magnetic modeling 

The micromagnetic analysis was first applied to limited geometries (e.g., 

ellipsoids, where the demagnetization field is uniform in the body). With the 

development of the easily available computational resources and numerical 

techniques in 1980s, magnetic simulations have become a widely used tool for 

studying the behaviors of micro- and nanoscale magnetic structures [109–118].  
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In most numerical micromagnetic simulations today, the finite-difference time 

domain (FDTD) method is utilized for time integration of the LL equation (2.2.3). 

The simulated body is spatially discretized either with the finite difference method 

(FDM) or the finite element method (FEM). The effective field Heff (2.2.6) is 

evaluated for each time step, taking into account Zeeman, exchange, anisotropy, and 

demagnetization field. The magnetization evolution after a small time step is 

evaluated with a Runge-Kutta method (e.g., Euler method or another higher-order 

member in the family of Runge-Kutta methods). The Zeeman, exchange, and 

anisotropy fields are locally defined and can easily be evaluated with standard FDM 

or FEM. The demagnetization field, due to its long-range character, is the most 

computationally intense part of micromagnetic simulations. Various numerical 

methods have been developed. Here, we review the concepts of two most commonly 

used techniques for evaluation of HD in the FDM and FEM. 

For the finite difference space discretization, as used for OOMMF [119] and 

MuMax3 [120], the simulated body is split into cuboid cells. The distribution of M is 

approximated by an aggregate of magnetic moments with the magnitude of µ i = MV 

at the center of each cell, where V is the volume of each cuboid. The demagnetization 

field HD,i at the center of the cell i is given by the summation of the dipole fields from 

the other cells j ≠ i  as 

HD,i =
1

µ0 4π
3rij (µ j ⋅ rij )

rij5
+
µi

rij3
"

#
$

%

&
'

j≠i
∑ . (2.3.1)  

This can be rewritten as  
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HD,i
α =

1
µ0 4π

Wij
αβµ j

β

j≠i
∑

β

∑  (2.3.2)  

with the interaction matrices Wij
αβ , where α, β = x, y, z. Wij

αβ  is determined solely 

by the geometry and has only to be evaluated once. Direct evaluation of (2.3.1) 

suffers the complexity of O (N 2 ) , where N is the number of the cells. Eq. (2.3.2) is 

in the form of discrete convolution and can be efficiently evaluated with the Fast 

Fourier transform (FFT) and multiplication in the k-space [113–116]. The final HD,i is 

obtained with the inverse FFT. The FFT and inverse FFT limit the complexity of the 

total process, reducing it to O (N logN ) . The efficient evaluation of HD is the 

advantage of the FDM and is part of the reason it was popular in the micromagnetic 

community, despite its apparent disadvantages of regular meshing and step-wise 

edges. 

For the FEM approach, the simulation structure typically is discretized with a 

tetrahedron mesh. The partial differential equation is transformed into a series of 

linear algebraic equations with the Galerkin method [112]. The scalar magnetic 

potential ΦD is first obtained as a solution of the Poisson equation (2.2.16) and HD is 

evaluated with (2.2.18). With the boundary conditions (2.2.17), evaluation of ΦD 

requires meshing of the space outside the magnet of interest, typically with ~5 times 

as large dimension [117]. The hybrid finite element/boundary element (FE/ME) 

method [118] eliminates the need to model a large outer space and is commonly used 

today by FE micromagnetic simulators, such as Magpar [121] and NMag [122]. It 

splits the magnetic scalar potential into two parts ΦD =ΦD1 +ΦD2  where ΦD1 obeys 
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the Poisson equation (2.2.16) inside the magnet and is defined 0 outside with the 

Neumann boundary condition. ΦD2 is taken to make the whole potential ΦD to meet 

the boundary condition (2.2.17). Now ΦD1 can be evaluated with the standard FEM 

without meshing the space outside the magnet and ΦD2 is directly evaluated from ΦD1 

with the boundary method 

ΦD2(r) =
1
4π

ΦD2( !r )(r − !r )
r − !rS

∫ d !r . (2.3.3) 

On the boundary nodes, ΦD2 = BΦD1  is calculated with a N ×N  dense matrix B, 

where N is the number of boundary nodes. The memory requirement for B scales 

quadratically with N, hence biquadratically with the size of the simulated structure. 

Especially with thin film structures frequently encountered in micromagnetics, B 

often limits the simulation size. Recently, hierarchical matrices were used to 

compress B into a set of sparse matrices with a given approximation error [123,124], 

alleviating this disadvantage over the FDM. 
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3. Measurement methods 

In this chapter, we will review the principles and measurement/analysis 

techniques of the magnetization detection with optical method. First, the origin of the 

light-spin interaction—magneto-optic effect is introduced in Lorentz and 

electromagnetic models. The magneto-optic effect is then combined with 

synchronized magnetization excitation to achieve the time resolution. The actual 

time-resolved magneto-optic Kerr effect microscopy system utilized for the study in 

this paper is described in section 3.3. Lastly, some analysis tools for interpreting the 

experimental result are briefly described at the end of this chapter. 

3.1 Magneto-optic effect 

As light travels through or gets reflected from a material under a magnetic 

field or with magnetic order, its polarization changes its direction and the ellipticity. 

The phenomenon is generally termed as the magneto-optic effects and has been used 

as a probe of spin orientation in materials. This section describes the two most 

common types of such effects—the Faraday effect and the magneto-optic Kerr effect 

(MOKE). In these cases, the polarization of the incident light is altered by the 

presence of the magnetization or the magnetic field, as the light goes through the 

material (Faraday effect) or gets reflected upon (MOKE). Another type of 

magneto-optic effects (the Cotton-Mouton effect or Voigt effect) is not covered here, 

as it has much smaller effect comparing to MOKE and is less frequently used for 

magnetization detection. 
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The first demonstration of the magneto-optic effect was reported by M. 

Faraday in 1846 [125]. As depicted in Fig. 3.1, when a linearly polarized light travels 

through a transparent material with a nonzero Verdet constant V under the presence of 

a magnetic field, the transmitted light undergoes rotation in the polarization angle and 

originally linear polarization becomes elliptic. The effect was named after its 

discoverer as the Faraday effect and is sometimes called the magnetic circular 

dichroism as well. To characterize the strength of this effect, the Faraday rotation θF  

is defined as the change in light polarization angle after having traveled through the 

medium. Conventionally, its sign is defines as in Fig. 3.1. In a right-hand coordinate 

system with a light wave vector k and a magnetic flux density B along the z direction, 

a positive θF corresponds to an increase in the azimuthal angle of the polarization 

direction. The polarization of the transmitted light becomes elliptic and the Faraday 

ellipticity ηF  is defined as the ratio of the major and minor polarization amplitude. 

The Faraday rotation θF and Faraday ellipticity ηF is combined as the complex 

Faraday rotation 

θF =θF − iηF . (3.1.1) 

Experimentally, the complex Faraday rotation was found to be proportional to 

the length d of the medium and the magnitude of the externally applied magnetic field 

as 

θF =VBd cosα , (3.1.2) 

where α is the angle between B and the direction of light propagation. The Verdet 

constant V is a material-specific coefficient depending on the wavelength. In a 
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magnetically ordered material, it depends on the magnetization rather than the 

external field. Any dichroism effects unrelated to magnetic properties also lead to 

rotation of the transmitted light. The Faraday effect, however, has a unique 

nonreciprocal character: the rotation direction is a function of both the magnetic field 

and the light propagation direction. When the light goes through a Faraday medium, 

gets reflected, and travels through the same medium in the opposite direction, the 

light polarization experiences further rotation, whereas in other normal circular 

dichroism, the light polarization gets reversed to its original state. 

 

 

Fig. 3.1. Sketch of the Faraday rotation. With the magnetic flux densty B and wave 

vector k along the z direction, the positive Faraday rotation θF is defined as in the 

figure. The Faraday ellipticity is neglected in this sketch. 

 

Similar polarization change is observed upon reflection off a magnetized 

material and the effect is called the magneto-optic Kerr effect (MOKE). This should 

not be confused with the electro-optic Kerr effect (or simply the Kerr effect) which 

describes the nonlinear dependence of the refractive index on the electric field. 

Similar to the complex Faraday rotation, the Kerr rotation θK  and the Kerr ellipticity 
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ηK  are defined as the change in light polarization direction and the ellipticity. The 

two can be expressed as a complex Kerr rotation  

θK =θK − iηK . (3.1.3) 

Fig. 3.2 depicts representative experimental geometries, defined by the 

magnetization direction in regard to the sample surface and the plane of incidence. 

Magnetization perpendicular to the sample surface (Fig. 3.2a) is called the polar 

configuration. When the magnetization is parallel to the surface and the plane of 

incidence (Fig. 3.2b), it is called the longitudinal MOKE and when the magnetization 

is parallel to the surface but perpendicular to the plane of incidence (Fig. 3.2c), it is 

called the transverse MOKE. The observed Kerr rotation depends on the experimental 

geometry. For example, when the incident angle is small, the polar MOKE is linear in 

M while the longitudinal MOKE is quadratic in M [126 pp.480–481]. The transverse 

MOKE exhibits no Kerr rotation but Kerr ellipticity. When the magnetization is 

oriented along an intermediate direction among these configurations, the polarization 

of the reflected light exhibits the mixture of polar, longitudinal, and transverse 

MOKE. 

Phenomenologically, both in the Faraday effect and MOKE, the modulation of 

the light polarization is understood as the differential dielectric constant for 

right-hand circularly polarized (RCP) and left-hand circularly polarized (LCP) light. 

The RCP and LCP light experience different reflection, absorption, and refractive 

indices, depending on the magnetization of the material or the magnetic field. Any 

light polarization is decomposed as a summation of RCP and LCP components that 
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experience different rate of reflection, absorption, and retardation. The reflected or 

transmitted light is expressed as the summation of the two polarizations, having 

experienced different modulation, and exhibits the change in polarization angle and 

ellipticity. 

In section 3.1.1, we will discuss a semiclassical explanation of the origin of 

such effect using a Lorentz model. In section 3.1.2, the magneto-optic effect is related 

to the off-diagonal elements of the dielectric tensor of the material. 

 

 

Fig. 3.2. Magneto-optic Kerr geometries. 

 

3.1.1 Lorentz model of complex dielectric tensor 

A semiclassical model of light dispersion in the presence of magnetic field 

was developed by H. A. Lorentz [127]. This gives a qualitative explanation of the 

origin of magneto-optic effects, namely the off-diagonal elements in the dielectric 

tensor depending on the magnetic field. Following discussion in [126 pp. 481–486], 

the atomistic Lorentz oscillator model of dispersion under a magnetic field is 

reviewed below. In the Lorentz model, an electron is modeled as a classical mass 
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point obeying Hooke’s law in a quadratic potential well around an atom site. The 

electron experiences the electrostatic and Lorentz forces with the damping term γ r . 

With sinusoidal electric field E of the light and a constant magnetic field B along the 

z axis, the equation of motion reads 

r +γ r +ω0
2r = e

m

E exp i(ωt − kz)( )+ωc

r × êz , (3.1.4) 

where e is the electron charge, m is the free electron mass, ω0 =κ m  is the 

mechanical resonant frequency, ωc = eB mc  is the cyclotron frequency, and êi  for 

i = x, y, z is unit vectors along the Cartesian axes. Since e < 0, the sign of ωc is 

negative in this definition. Here, the light is propagating along the z axis and the 

electric field is in the xy plane. 

As the right hand side of (3.1.4) shows, the driving force to the system is only 

in xy plane and Ex and Ey are coupled to each other. The stationary solution can be 

conveniently expressed with the basis of circularly polarization 

ê± =
1
2
(êx ± iêy )  (3.1.5) 

and one can solve for the two circularly polarized planar waves propagating along z. 

The + and – in the subscript correspond to the RCP and LCP light. Assuming the 

solution in the form of 

r± =
r0±ê± = A±


E±  (3.1.6) 

with the complex oscillation amplitude A± , and 

E± = E0± exp i(ωt − kz)( ) ê± . By 

substituting (3.1.6) into (3.1.4), 
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A±

E0±(−ω 2 + iγω +ω0

2 ) = e
m

E0±ê± ± iωωc A±


E0±ê± × êz . (3.1.7) 

Solving for the oscillation amplitude, 

A± =
e

m(ω0
2 −ω 2 ±ωωc + iγω)

. (3.1.8) 

The macroscopic polarization is obtained with the atomic concentration of the 

electrons per unit volume N as 

P± = α±


E± = Ne

r± = Ne A±

E± , (3.1.9) 

where α±  is the polarizability of the electron for each helicity. This gives the 

dielectric constant (in CGS unit) 

ε± = !ε± + i!!ε± =1+ 4π α± =1+
4πNe2

m
1

ω0
2 −ω 2 ±ωωc + iωγ

 (3.1.10) 

whose real and imaginary parts lead to the refraction and absorption. Comparing 

(3.1.10) to the standard results in the absence of the magnetic field, the resonant 

frequency ω0 has been shifted by a quantity depending on the magnetic field B. The 

shift in resonant frequency ω0±  satisfies 

ω0
2 −ω0±

2 ±ω0±ωc = 0  (3.1.11) 

and is obtained as 

ω0± −ω0 = ±
1
2
ωc = ±ωL , (3.1.12) 

where an approximation ω0
2 −ω0±

2 ≈ 2ω0±(ω0± −ω0 )  has been applied. ωL is the 

Larmor frequency. Since ωc = eB mc  has a negative sign with e < 0, Eq. (3.1.12) 

leads to a relation 
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ω0+ <ω0 <ω0− . (3.1.13) 

Therefore, when ω0+ −ω0− <<ω0 , the shape of the energy dispersion of the index of 

refraction does not change its form but simply shift along the ω  axis by ωc . 

Hence, in the region of normal dispersion ∂n ∂ω > 0 , 

n+(ω)> n−(ω) . (3.1.14) 

As a light travels through this medium, the RCP light is more retarded than the LCP 

light, leading to the positive Faraday rotation (θF > 0 ). 

3.1.2 Macroscopic dielectric tensors 

As demonstrated in the previous section, the shift in the resonance frequency 

induced by the magnetic field causes circular dichroism in optical properties. In this 

section, we relate this circular dichroism to the off-diagonal elements in the dielectric 

tensor and will show that it describes the magneto-optic effects. 

We assume that the incident light is propagating along the z axis. The 

dielectric tensor of the material has the off-diagonal component 

ε =
ε11 ε12 0
ε21 ε22 0
0 0 ε33

!

"

#
#
#

$

%

&
&
&

, (3.1.15) 

assuming the intrinsic property in x and y direction. As discussed in section 3.1.1, it is 

convenient to handle the problem in another basis of right- and left-hand circular 

polarization. With the transformation matrix  
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T = 1
2

1 1 0
i −i 0
0 0 2

"

#

$
$
$

%

&

'
'
'
, T −1 =

1
2

1 −i 0
1 i 0
0 0 2

"

#

$
$
$

%

&

'
'
'

, (3.1.16) 

the problem can be transformed from the Cartesian basis to the circularly polarization 

as 

ε =T ε±T−1 , (3.1.17) 

where 

ε± =
ε+ 0 0
0 ε− 0
0 0 ε33

"

#

$
$
$

%

&

'
'
'

. (3.1.18) 

By substituting (3.1.16) and (3.1.18) to (3.1.17), the components of (3.1.15) becomes 

ε11 =
1
2
( ε+ + ε− ) , (3.1.19) 

ε21 = i( ε+ − ε− ) = − ε12 . (3.1.20) 

Therefore, the dielectric tensor has the form of 

ε =
ε11 ε12 0
− ε12 ε11 0
0 0 ε33

"

#

$
$
$

%

&

'
'
'

 (3.1.21) 

and can be expressed with only three components ε11 , ε33 , and ε12 . It further 

reduces to ε33 = ε11  in an isotropic medium as in a frequently encountered situation. 

Similarly, the index of refraction in a magnetized medium or in a magnetic 

field becomes a tensor with non-zero off-diagonal element.  
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n =
n11 n12 0
− n12 n11 0
0 0 n33

"

#

$
$
$

%

&

'
'
'
 or n± =

n+ 0 0
0 n− 0
0 0 n33

"

#

$
$
$

%

&

'
'
'

, (3.1.22) 

where 

n±2 = ε11 ± iε12  (3.1.23) 

and 

n11 =
1
2
( n+ + n− )  

n12 = −i( n+ − n− ) . (3.1.24) 

When the RCP and LCP light goes through the medium or gets reflected from 

the interface, the polarization of the reflected or transmitted light is expressed by 

Snell’s law with the refractive index n+ and n-, as in the normal incidence 

r± =
n± −1
n± +1

. (3.1.25). 

After traveling through a medium of thickness d, the amplitude of RCP and LCP light 

becomes modulated. The total transmitted light is the sum of these two components. 

The complex Faraday rotation is 

θF =θF − iηF =
ωd
2c
( n+ − n− ) . (3.1.26) 

The complex Kerr rotation of the reflected light is obtained with a similar 

treatment. The complex reflection coefficient is expressed in a phasor expression 

r± = r± exp(iφ± )  and the polar Kerr rotation and the ellipticity are given as 

θK = −
φ+ −φ−
2
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tanηK = −
r+ − r−
r+ + r−

. (3.1.27) 

For small Kerr rotation θK <<1,  φK <<1 , 

θK ≈ i
r+ − r−
r+ + r−

≈ i n+2 − n−2

2 n11( n112 −1)
. (3.1.28) 

When the above condition θK , φK <<1  does not hold, the exact solution of (3.1.27) 

can be obtained as a solution of the transcendent equation [126 p. 485] 

sin(2θK )cos(2ηK )
1+ cos(2θK )sin(2ηK )

− i sin(2ηK )
1+ cos(2θK )sin(2ηK )

= i r+ − r−
r+ + r−

. (3.1.29) 

In experiments, these effects are phenomenologically quantified with the 

magneto-optic coefficient q defined as 

ε = n112
1 iq 0
−iq 1 0
0 0 1

"

#

$
$
$$

%

&

'
'
''

. (3.1.30) 

q can be experimentally found. For representative ferromagnet such as nickel and 

iron, from the MOKE contrast, q is in the order of 10-2 [128]. The above derivation 

assumed normal incidence of light and the magnetization or the external magnetic 

field perpendicular to the sample surface. For an arbitrary magnetization orientation 

and incidence angle, the dielectric tensor is derived as [129] 

ε = n112
1 iqcosθ −iqsinϕ cosθ

−iqcosθ 1 iqcosϕ sinθ
iqsinϕ cosθ −iqcosϕ sinθ 1

"

#

$
$
$$

%

&

'
'
''

, (3.1.31) 



 49 

where θ and ϕ are the polar and azimuthal angles of the magnetization M, 

respectively, with the z direction defined as the normal direction of the plane surface. 

3.2 Principles of time-resolved magneto-optic Kerr effect 

3.2.1 Magnetization perturbation schemes 

For dynamic measurement of magnetization evolution, the MOKE 

measurement principles described in the previous section are combined with 

synchronized excitation and detection. Generally, in dynamic MOKE measurement, 

the spin system is excited and its subsequent evolution, governed by LLG equation 

(2.2.2) is probed at some time delay. Multiple excitation schemes have been 

developed. Pulsed or modulated magnetic field application, laser heating, 

spin-selective excitation with polarized light, and elastic strain pulses will be 

discussed below. 

The first excitation scheme is typically implemented with a coplanar 

waveguide (CPW) and a photoconductive switch (PCS) [65,130–135]. Fig. 3.3 shows 

a representative schematic of such experimental design. The sample magnets are 

fabricated directly on or by the CPW and its magnetization is perturbed by the pulsed 

field generated by flowing a pulsed current through the CPW. The pump laser pulse is 

focused on the PCS and excites conduction electrons in the PCS substrate, creating a 

current surge through the impedance-matched CPW.  

 



 50 

 

Fig. 3.3. A schematic diagram of pulse field application using a photoconductive 

switch. A pump pulse is focused on a photoconductive switch, creating a current 

surge through the transmission line. The transient magnetic field perturbs the 

magnetization and free precession motion is probed with a time-delayed probe beam. 

Taken from [130]. 

 

The second scheme is less restricted in sample preparation and will be mainly 

utilized for the experimental work in this thesis. A femtosecond laser pulse is focused 

on a magnetic sample and excites a part of the conduction electrons by several 

electron volts on a subpicosecond time scale. The excited “hot electrons” are then 

thermalized and coupled with the lattice and spin system in sub- to tens of picosecond 

time scale. Beaurepaire et al [136] first reported the ultrafast demagnetization in 

nickel using 60 fs laser pulses and it has been a field of intense study. Due to the 

highly nonequilibrium state during this process, the exact mechanism of 
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magnetization perturbation has still been an active debate [137–141]. Beaurepaire et 

al, however, successfully modeled the process with a phenomenological 

three-temperature model. This is now commonly used for interpreting TR-MOKE 

measurements.  

The three-temperature model assumes three different heat baths—electron, 

lattice, and spin systems. Each heat bath has specific heat and is coupled with each 

other with a given coupling coefficient gij. The laser pulse excites the electron system 

and the energy of the hot electron gets redistributed to the other two systems. The 

model is expressed with a set of three coupled rate equations 

Ce Te( )∂Te
∂t

=
∂
∂t

κ
∂Te
∂z

"

#
$

%

&
'+
1
ζ
S t( )e

−
z
ζ − gel Te −Tl( )− ges Te −Ts( )  

Cl Tl( )∂Tl
∂t

= −gel Tl −Te( )− gls Tl −Ts( )  

Cs Ts( )∂Ts
∂t

= −ges Ts −Te( )− gls Ts −Tl( ) , (3.2.1) 

where Ci is the specific heat, gij is the coupling coefficients, κ is the electron heat 

conductance, and the indices i, j = e, l, s denote electron, lattice, and spin systems. 

The heat transfer in space is only modeled in the electron system. The second term in 

the first equation in (3.2.1) is the absorbed energy density per unit time induced by 

the laser pump pulse. S(t) is the absorbed pump pulse fluence per unit time and 

ζ = λ / 4πk  is the skin depth of the excitation laser pulse. For nickel and cobalt, for 

example, it is 13.5 and 10.6 nm, respectively, at the wavelength of 400 nm [142]. 
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Fig. 3.4 shows an example of numerical calculation. (3.2.1) was numerically 

integrated with the explicit Euler method using the parameters listed in Table 3.1. The 

pump laser pulse with a Gaussian shape has the peak fluence of 1.7 mJ/cm2 and the 

full width half maximum (FWHM) of 200 fs. The electron temperature rises with a 

femtosecond time scale and the energy is subsequently redistributed to the other two 

subsystems. After 20 ps, the three temperatures have approximately identical values 

and the thermal energy in the system can be described with a single rate equation of 

the heat dissipation. This process evolves with two different time scales. First, the 

rapid excitation and thermalization of the hot electrons happen in the first picosecond 

[136]. The hot electrons thermalize with the other two heat baths in the subsequent 

picosecond time scale. The elevated lattice and spin temperatures go back to the 

original level in much slower time scale of tens or hundreds of picosecond in 

transition metals, and of tens of nanosecond in rare earth metals, which has more 

localized 4f electrons and exhibits smaller heat conductance κ.  
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Fig. 3.4. An example of the three temperature modeling obtained with numerical time 

integration of (3.2.1). Heating in a 30 nm nickel film was simulated with the 

parameters listed in Table 3.1 and the peak pump fluence of 1.75 mJ/cm2 with the 

FWHM of 200 fs. The plot shows the temperature of the three subsystems at the 

center of the nickel layer. 

 

Parameters Values 

Pump fluence F (mJ cm-2) 1.70 

Pump pulse duration full width half maximum (fs) 200 

Complex refractive index n  1.61+2.36i 

Electron thermal conductivity κ (W m-1 K-1) 91 [142] 

Electron heat capacity per unit volume Ce (J m-3 K-1) gTe 

g (J m-3 K-2) 6×103 [136] 

Lattice heat capacity per unit volume Cl (J m-3 K-1) 2.2×106 [136] 

Spin heat capacity per unit volume Cs (J m-3 K-1) m1 1−Ts TC( )0.1 +m2  
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m1 (J m-3 K-1) −2.15×106  [143] 

m2 (J m-3 K-1) 2.38×106  [143] 

Currie temperature TC (K) 631 

Coupling coefficients [136]  

gsl (W m-3 K-1) 0.3×1017  

ges (W m-3 K-1) 5.6×1017  

gel (W m-3 K-1) 7.0×1017  

 Table 3.1. Parameters for three-temperature simulation in a nickel elliptic disk. 

 

After the subpicosecond demagnetization, the spin system in TR-MOKE 

experiments experience a deterministic perturbation of the magnetization direction. 

This is usually attributed to the effective field pulse with ~150 ps pulse width 

originating from the temperature dependence of the material parameters, most 

commonly the crystalline/interfacial anisotropy. The effective field pulse can be 

modeled using a result of three-temperature model analysis and assumed T 

dependence of the parameters. It can also be approximated as a Gaussian field pulse 

with appropriate pulse width around 150 ps [66]. In typical simulation analysis where 

the small-angle precession frequency and damping is the primary interest, the exact 

shape and magnitude of the excitation field only has a limited effect on the final 

results. 

Apart from the thermal excitation described in the previous paragraphs, 

nonthermal excitation with circularly polarized pump light is possible via the inverse 
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Faraday effect (IFE). Typically, in transition metals, the inverse Faraday effect is 

found very small (e.g., <0.01% contribution in nickel films) and the thermal effect 

dominates [139]. In transparent garnet films, however, the inverse Faraday effect can 

dominate the excitation process [144,145]. In [144], the phase and amplitude of the 

excited precession depended on the polarization of the pump pulses (Fig. 3.5). This 

result is attributed to a strong transient magnetic field due to the inverse Faraday 

effect. The authors estimated this effective field from the amplitude of the observed 

precession; for a transient power density of 1011 W/cm2, the transient effective field 

due to the IFE was estimated to be ~0.6 T for the 100 fs pump pulse duration. 

The effect was also demonstrated in a rare-earth–transition-metal ferrimagnet 

alloy too [146]. By measuring a GdFeCo film demagnetized into multiple domains, 

they cancelled the thermally-excited precession of differently magnetized domains, 

which are out of phase. The inverse Faraday effect, on the other hand, excites the 

coherent precession in all domains, contributing to the spatially averaged net signal. 
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Fig. 3.5. Magnetization perturbation with inverse Faraday effect in a 7.5-µm-thick 

garnet (Lu1.69Y0.65Bi0.66Fe3.85Ga1.15O12) film with circularly polarized pump pulses. 

With 1011 W/cm2 transient pump power density, the field induced with the inverse 

Faraday effect for the 100 fs pulse duration was estimated to be ~0.6 T from the 

observed precession amplitude. Taken from [144]. 

 

Recently, several groups demonstrated magnetization excitation by means of 

elastic strain. Through the magnetoelastic coupling of (Mn,Ga)As [147–150], they 

demonstrated that the magnetization precession can be excited by sending an acoustic 

pulse, generated with a laser pulse focused at a metallic layer separated from the 

ferromagnetic samples (Fig. 3.6). A few years later, magnetization excitation with 
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similar scheme was demonstrated in a 200-nm-thick polycrystalline nickel film as 

well [151]. 

 

 

Fig. 3.6. (a) Pump-probe scheme with the pump pulse hitting the back of the 

substrate. An elastic pulse travels across the GaAs substrate and hits the (Ga,Mn)As 

film on the front side and excites the magnetization precession via magnetoelastic 

effect. (b) Observed MOKE rotation. For 0 to ~100 ps, the presence of the elastic 

strain in (Ga,Mn)As film modulates the reflected light intensity. After the strain pulse 

has left (>~150 ps), a clear oscillation due to the magnetization precession is 

observed. Taken from [147]. 

 

In our study, too, the magnetoelastic coupling was shown to play an essential 

role in magnetization excitation and evolution in patterned nanomagnets. The 

excitation laser pulse excites mechanical vibration modes of the nanostructure 

simultaneously with the magnetization precession. The two distinct oscillation 
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phenomena were found strongly coupled together. Detailed descriptions of the 

magnetoelastic effect and the measurements are given in Chapter 5 through 7. 

For better manipulation of the spin systems, excitation with multiple field 

pulses has been investigated. Any of the magnetization perturbation schemes 

discussed above can be implemented with two or more excitation pulses. For 

example, see [132] for the magnetic field pulse with a CPW, [145] for the inverse 

Faraday effect in a garnet film, [152] for the magnetoelastic coupling in 

polycrystalline nickel. The thermal excitation with a pulse laser was also found to 

achieve similar effect in nickel films in our work. When the second excitation pulse 

of an appropriate power is delivered with the π phase delay of the precession period, 

it stops the magnetization precession. When the second pulse is delivered in phase, on 

the contrary, it can selectively enhance a particular oscillation mode with a given 

frequency. The delay between the two excitation pulses is determined by the 

precessional frequency of the mode of interest. This may be inconvenient when the 

precession is highly damped or when you try to suppress more than one frequency 

components. By using three or more pump pulses, it has been demonstrated that you 

have more leeway in adjusting the delay between pulses [152]. 

3.2.2 Probing magnetization dynamics 

After the perturbation of spin system discussed in the previous section, the 

evolution of the magnetization is probed with a probe laser pulse, which is delivered 

to the sample with a controlled time delay t from the magnetization perturbation. 

Upon reflection from the sample, the polarization of the probe beam is changed via 
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magneto-optic effects and is converted to the laser power using a set of polarization 

optics. By controlling the delay t and recording the polarization, the magnetization 

evolution is obtained as a function of time t after excitation. Following the discussion 

in [153], this section reviews several experimental configurations to monitor the 

magnetization evolution using the magneto-optic Kerr effect. 

The polarization of the reflected beam is analyzed with a second polarizer. 

Three widely used configurations are known for analyzing the polarization of the 

probe beam after transmission or reflection from the sample. Crossed polarizers, 

balanced photodetectors (BPD), and photoelastic modulator (PEM) will be discussed 

in the following part. Here, the probe light has linear polarization defined by going 

through a polarizer oriented at an angle αP. The light intensity at each part of the 

experimental setup is analyzed with the Jones vector  

E = ES
EP

!
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sinαP

cosαP
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$

%
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and the Jones matrix for the polarization change upon reflection from the sample 

S = rS −rS θK
rS θK rP
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%

&

'
'

, (3.2.3) 

where θK =θK − iηK  is the complex Kerr rotation for s-polarized light in the limit of 

θK <<1 . rs and rp are the reflection coefficients for s- and p-polarized light, 

respectively. 

The simplest of the three detection configurations is the crossed polarizer 

configuration, where the second polarizer (analyzer) is oriented at approximately 90° 
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from the transmitting axis of the first polarizer. With the polarizer angle αP = π 2  

and a small analyzer angle from the rejection direction αA <<1 , the intensity of the 

probe after the analyzer is expressed as 

I
Iin

=
sinαA

cosαA

!

"
##

$

%
&&

T

S sinαP

cosαP
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&&

2

= R αA
2 + 2αAθK +ε 2( ) , (3.2.4) 

where R is the reflectivity of the sample. The second term in the right hand side of 

(3.2.4) is proportional to the Kerr rotation angle θK. From (3.2.4), the dynamic part of 

the signal is  

ΔI(t)
Iin

= 2R0αAΔθK(t)+αA
2ΔR(t) . (3.2.5) 

As (3.2.5) shows, the signal is also modulated by the change in the reflectivity and 

this configuration does not separate the nonmagnetic signal ΔR(t)  from the 

magnetic signal. As will be discussed in Chapter 5, this is not desirable in the 

measurements of patterned arrays, where the separation of magnetic and nonmagnetic 

signal becomes critical. One can increase the MOKE signal by making αA bigger, 

however, the photodetector suffers larger noise from increased background 

photocurrent. As a result, the signal to noise ratio (SNR) is typically optimized by 

rotating the analyzer by 3°-7° from the rejection orientation [154]. 

The other two configurations, in principle, are able to completely separate the 

nonmagnetic contribution from the TR-MOKE signal. The balanced photodetectors 

utilize two photodiode and a polarizing beamsplitter, oriented along approximately 

45° from the transmission axis of the first polarizer, as sketched in Fig. 3.7. The angle 
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of the polarizing beamsplitter is adjusted to balance the intensity of the two split 

beams. The polarization of the probe beam is analyzed by subtracting the signal of the 

two detectors. This can be done either by subtracting the photocurrent of the two 

detectors before amplification or by amplifying each photocurrent first with a 

transimpedance amplifier and subtracting the voltage with an op-amp circuit. The 

subtraction of the photocurrent before any amplification has the lowest additive noise. 

The subtraction of signals has additional advantage in SNR due to the cancellation of 

the common mode noise at the two detectors, especially with a somewhat noisy light 

source. The transimpedance amplifier circuitry has an advantage of providing the 

separate photodetector signals and simultaneously enabling another operation. With 

the s-polarized probe beam (polarizer angle αP = 0), the difference signal is 
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= R cos2αA − sin2αA( ) θK2 +ηK22 −1( )+ 4sinαA cosαAθK() *+

. (3.2.6) 

The difference signal of the two photodiodes (3.2.6) is balanced when  

2sinαA cosαA

cos2αA − sin2αA
= tan(2αA ) =

1−θK2 −ηK2

2θK
≈
1
2θK

, (3.2.7) 

or for αA ≈ 45° . Using αA = 45°  yields a dynamic response of 

ΔI(t)
Iin

= 2R0ΔθK(t)+ 2θK0ΔR(t) , (3.2.8) 

which still has a nonmagnetic contribution proportional to ΔR(t). Complete separation 

of the nonmagnetic signal can be achieved when the condition (3.2.7) is met, where 
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the signal of the two detectors are exactly balanced. The total signal becomes 

I(t) Iin = 2R(t)(θK(t)−θK0 )  and, in the limit of small Kerr rotation, 

ΔI(t)
Iin

= 2R0ΔθK(t) . (3.2.9) 

The sum of the signals can also be obtained. It simply shows the change in the 

reflectivity ΔR(t). This provides a convenient way of monitoring both of magnetic 

and nonmagnetic signals at the same time. 

 

 

Fig. 3.7. The balanced photodetector configuration for detecting the magnetic 

(difference) signal θK(t) and nonmagnetic (sum) reflectivity R(t). Wollaston prism 

(analyzer) oriented at the analyzer angler αA ≈ π 4  splits the probe beam into 

orthogonal polarizations. The photocurrent from the two photodiodes (PDs) are 

converted to voltage and the difference and the sum of the voltage signal is obtained 

using a set of operational amplifiers. 

 

An alternative method of completely separating the nonmagnetic contribution 

from the signal is modulating the polarization of the probe beam. This is achieved 
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with a photoelastic modulator (PEM), placed before the sample with its modulation 

axis 45° from the transmission axis of the first polarizer. The PEM stretches and 

compresses along the modulation axis at 20-200 kHz (typically at 50 kHz) and 

modulates the relative retardation of the two linearly polarized light, along and 

perpendicular to the modulation axis. When the modulation axis is aligned 45° from 

the light polarization with a proper modulation depth, the polarization of the 

transmitted light becomes RCP and LCP repeatedly, as depicted in Fig. 3.8. With 

smaller modulation depth, the polarization of the transmitted light remains elliptic. 

 

 

Fig. 3.8. Polarization modulation with a PEM. The transducer stretches and 

compresses the PEM crystal at 20–200 kHz, modulating the retardation of light 

polarized along the modulation axis. Depending on the depth of modulation A0, the 

transmitted light becomes elliptically or circularly polarized. 

 

 Various configurations with the PEM [153] are used but we present one 

common setup here. When the modulation axis of the PEM is aligned along the s 

polarization direction, the incident probe beam is modulated with the Jones matrix 
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where A( !t ) = A0 cos(Ω !t ) . A0 is the depth of modulation and !t  is the time for PEM 

modulation. The polarizer transmission axis is set to αP =αM +π 4 = π 4 . The 

reflected beam is analyzed with an analyzer with αA ≈ 0  (transmitting s polarized 

light) and the power at the detector is characterized as 
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within the first order of αA  and θ . By expanding cos[A0 cos(Ω !t )]  and 

cos[A0 cos(Ω !t )]  in (3.2.11) with spherical harmonics cos(nΩ !t ) , AC component at 

the harmonics of Ω  are obtained carrying various information. The amplitude of the 

three lowest harmonics (n = 0, 1, and 2) is obtained as 

Idc
Iin

= R 1
2
+ J0 (A0 )θ

!

"#
$

%&
≈
R
2

 (3.2.12a) 

IΩ
Iin

= −J1(A0 )RηK  (3.2.12b) 

I2Ω
Iin

= J2 (A0 )R(θK − "ρ αA ) , (3.2.12c) 

where Jn(A0) is the nth order Bessel function. The second term in (3.2.12a) can be 

eliminated by choosing A0 = 2.405. In the weak perturbation limit, the dynamic signal 

becomes 
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ΔIΩ (t)
Idc

= −2J1(A0 ) ΔηK(t)+
ΔR(t)
R0

ηK0
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 (3.2.13a) 

ΔI2Ω (t)
Idc

= 2J2 (A0 ) ΔθK(t)+
ΔR(t)
R0

θK0 −C0 (t)αA( )
#

$%
&

'(
, (3.2.13b) 

where C0 (t) = !ρ0 + Δ !ρ (t) ΔR(t)( )R0 . As (3.2.13) shows, the ellipticity ηK at time t 

appears as an oscillating component at Ω  and the polarization angle θK is reflected 

in 2Ω  component. The lock-in amplification at these frequencies extracts the 

dynamic MOKE signal. 

In order to achieve larger SNR, double-modulation configuration is typically 

used. As depicted in Fig. 3.9, a second lock-in amplifier is used with the chopped 

pump beam as the reference frequency. Comparing to the mechanical chopping in 

other excitation schemes (~ 1 kHz), somewhat fast PEM modulation (~ 50 kHz) 

requires sufficiently large photodetector bandwidth. This is not a challenging 

requirement with a transimpedance amplifier but a naïve current-voltage conversion 

with a small resistor may suffer low SNR. The need for the second lock-in amplifier 

limits the time constant of the first lock-in amplifier to be below 1 (2π fchopper ) . The 

balance between the large mechanical noise at low chopping frequency and the 

required noise rejection at the first stage determines fchopper.  
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Fig. 3.9. Double-modulation configuration for TR-MOKE with a PEM. The first 

lock-in amplifier picks up either Ω  or 2Ω  component. The pump is chopped at 

somewhat slow rate of ~100 Hz for the second-stage lock-in amplification. Taken 

from [153]. 

 

3.3 TR-MOKE setup 

The evolution of magnetization in femto- and picosecond time scale is 

monitored with the time-resolved magneto-optic Kerr effect (TR-MOKE) setup. Fig. 

3.10 shows a general schematic of the setup. Ultrafast laser pulses from a Ti:sapphire 

laser (Coherent MIRA 900, center wavelength: 800 nm, repetition rate: 76 MHz, 

FWHM: 150 fs) is split into the pump and the probe beams. The pump beam is 

converted to half the wavelength (400 nm) with a second harmonic generator 

(Coherent SHG) and a color filter to remove any residual 800 nm light with the 

extinction rate of ~10-5. This enables a good separation of the pump and probe beams 

with a color filter before photodetectors and enables the use of high numerical 
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aperture objective lens ( 60×  objective with the NA of 0.85) with both beams 

coaxially aligned and guided to the sample with normal incidence. A single pump 

pulse typically conveys 13 pJ of energy to the sample and is focused down to the 1/e2 

diameter of 1–10 µm. The probe beam has smaller energy and is combined with the 

pump beam after going through an optical delay stage. Two delay stages (PI M-531 

and Newport M-IMS400PP) are placed in the probe beam path in series (Fig. 3.10 

shows only one conceptual delay stage). They move a total scan length of 60 cm and 

control the delay time between pump and probe pulses up to 4 ns with the precision of 

±20  fs. The reflected beams from the sample is collected with the same objective 

lens and guided to the balanced photodetectors. The color filter eliminates the pump 

beam from the detection arm and the probe beam polarization is analyzed with 

balanced photodetectors. A polarizing beamsplitter cube (PBSC) or a Wollaston 

prism is used to split the probe light components with different polarizations. Due to 

the etalon fringe of the parallel faces of cubic prisms, the PBSC has poorer noise 

characteristic. Replacing it with a Wollaston prism reduced the noise density by 6 dB 

at 1 kHz. The photocurrent from silicon photodiodes is immediately amplified with 

an embedded op-amp circuit (OPT101) in order to avoid picking the noise from 

environment (e.g., magnetic field and vibration). This converts the small photocurrent 

into voltage signal with the DC gain of 2×105  V/A and enables using somewhat 

long (~20 cm) cables for more convenient detector mounting. The amplified voltage 

signal is subtracted from each other with a home-built op-amp circuit. This circuit 

also outputs the sum signal of the detectors simultaneously. This enables the 
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measurements of the magnetic (difference channel) and nonmagnetic (sum channel) 

measurement at the same time, as will be used in Chapter 6 and 7. In addition to the 

sensitivity to light polarization, the difference channel enjoys the suppression of the 

common mode noise and achieves greater SNR than the sum channel. With typical 

probe power, the difference signal has the noise density of 0.6-0.9 µV/ Hz  (2–3 dB 

above the shot noise) at 1 kHz. The sum signal has larger noise density of ~5 

µV/ Hz . 

 

 

Fig. 3.10. Schematic of all-optical TR-MOKE system. Ultrafast laser pulses are split 

into the pump (400 nm) and probe (800 nm) beams and focused on the sample with a 

60×  objective. Reflected probe beam is analyzed with the balanced photodetectors 

and lock-in amplifiers.  
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The sample is mounted on a commercial Witec microscope system modified 

for magnetic field application and drawing in external laser beams. An embedded 

bright-field optical microscope and a CCD camera capture the surface images as well 

as the probe beam spot. The focus of the beams is adjusted by changing the height of 

the objective assembly controlled with a stepper motor. The stage is actuated with a 

3-axis piezoelectric scanner and enables precise control of the sample position with 

~10 nm precision. This enables measurements of single nanometer scale magnets. 

Even though it is typically not well resolved in the optical microscope, one can find 

them by monitoring the reflected probe power as you move the stage. 

With the automation of the focal position and the sample positioning, knife 

edge measurements of the pump and probe spot size achieves higher precision than a 

previously used manual procedure. A beam is focused at a sharp edge of sample and 

the edge position is scanned with the sample stage. The reflected light is collected 

with an embedded multimode fiber and a photomultiplier tube. The reflected power is 

modeled as an integration of a two-dimensional Gaussian peak, resulting in an error 

function [155] 

PN(x) =
1
2
1+ erf x − x0

w
"

#
$

%

&
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(

)
*

+

,
- , (3.3.1) 

where w is the 1/e2 beam radius. Fig. 3.11a shows an example of the knife edge 

measurements taken at an edge of a 30-nm-thick nickel film deposited on an AR 

coated silicon (λ  = 800 nm) substrate. From the fit, the 1/e2 spot radius w and beam 

position x0 are determined as a function of the objective height, as shown in Fig. 
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3.11b. Cleaved silicon edges work well, having a clear contrast of the reflected beam 

power. A deposited micron-scale structure with straight edges also works and 

frequently is more convenient since they can be found close to the sample structure of 

interest. When the contrast of the reflectivity from the deposited structure and the 

substrate is small, this hampers the measurement precision.  

 

 

Fig. 3.11. Knife edge measurements of the pump and probe beam, taken at an edge of 

30 nm nickel film deposited on an AR coated silicon substrate (λ  = 800 nm). (a) 

Representative probe beam power measured as a function of the edge position, taken 

at the objective height of –6, +2, and +10 µm. Scanned in x direction. (b) 1/e2 beam 

diameter estimated with (3.3.1). The horizontal axis is the height of the objective, 

relative to the focal point of the CCD image. TR-MOKE measurements are usually 

carried out at the objective height close to 0 um. If desired, the focus of each beam 

can further be adjusted separately by changing the beam diversion before entering the 

objective. 
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The external field is applied using a pair of permanent NdFeB magnets. Two 

magnets with 1 2× ""1  cylinder are paired antiparallel and placed below the sample 

stage. The stray field from the cylinder bases forms a semi loop as depicted in Fig. 

3.12a and field with arbitrary magnitude and direction in the xz plane can be obtained 

by adjusting the magnet position. The magnets are placed on a 3-axis stepper motor. 

The sample mount has an opening to allow the approach of the magnets up to the 

backside of the sample. Unlike the well-defined field in a gap between electromagnet 

poles, the field obtained with the NdFeB magnets suffers more uncertainty. However, 

it has a great advantage in flexible field orientation and smallness. The front end of 

the sample is completely untrammeled and any optical beam path configuration can 

be implemented. 

To obtain accurate field values with the NdFeB magnets, somewhat elaborate 

field calibration is necessary. A millimeter scale Hall probe was mounted in the 

sample stage and recorded the x component of the magnetic field at various magnet 

positions. The Hall probe was then rotated by 90° and recorded the z component as a 

function of magnet position. The active Hall sensor device is embedded in a plastic 

plate and the magnet position is accordingly offset with the probe design. The 

obtained field vector was then interpolated as in Fig. 3.12b and a numerical inverse 

function is obtained. Taking a desired field value and direction, this function returns 

the position where the magnet pair should be placed. An in-house AutoIt script [156], 

Magnet Positioner, controls the 3-axis stage via Witec microscope controller software 

and moves the magnets to the target position. 



 72 

 

 

Fig. 3.12. (a) Schematic of field application with a pair of cylindrical NdFeB 

magnets. (b) Interpolated Hx and Hz measured at magnet position of (x,z). The origin 

(0,0) is defined as the center of the two magnet faces at the height of the sample’s 

front surface. 

 

3.4 Analysis method 

The recorded signal from the TR-MOKE is analyzed to extract the precession 

frequency and the effective damping coefficient α . The decaying background of the 

signal should be subtracted by fitting the signal with a spline curve. When a spline 

curve is used to model the background decay, care should be taken not to induce 

artificial oscillation, especially with a small signal and large background. Fig. 3.13a 

and b shows typical signal and background subtraction, measured on a 30-nm-thick 

polycrystalline nickel film. From the data, we extract the frequency of the 

magnetization precession and damping parameter α . 
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3.4.1 FFT 

To analyze the background-subtracted signal of TR-MOKE, Fast Fourier 

transform (FFT) is implemented with Matlab. The raw data is interpolated and 

resampled to make the total length of 2n with a constant interval. Hamming or 

Blackman window function is applied in order to mitigate the side lobes in Fourier 

spectra at the expense of slightly compromised frequency resolution. Our typical 

TR-MOKE scan is 800–2500 ps long and the frequency resolution of the Fourier 

spectra becomes 0.4–1.3 GHz [157 pp. 555–559]. A series of zeros is padded at the 

end of the data [157 pp. 583–588], making the total length 2n+m. In our setup, m = 2–3 

is selected to make the total length of the data equivalent to 6–8 ns. Imperfect 

background subtraction gives rise to slow transition of signal, which results in the low 

frequency component (as seen in Fig. 3.13c). By repeating the measurements and 

analysis with various applied field Happ, field-dependent spin wave spectra are 

obtained. As shown in Fig. 3.13d, the film signal typically shows a clean single 

frequency peak. From nanomagnets, the precession frequency may show more 

complex spectra, reflecting the edge modes or surface acoustic waves, as will be 

discussed in Chapter 5. When multiple peaks are close to each other, eyeballing of the 

peak frequency may be spurious and we fit the peaks with a Gaussian shape using 

least square method. This is especially important to eliminate the arbitrariness when 

multiple peaks are partially overlapping to each other. 
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Fig. 3.13. Exemplary TR-MOKE signal from a 30 nm polycrystalline nickel film. (a) 

Evoluation of lock-in raw signals of difference (magnetic) and sum (nonmagnetic) 

channels. (b) Background-corrected difference signal and (c) its Fourier spectrum. (d) 

Fourier spectra of the difference signal measured at various field Happ applied at 30° 

from the surface normal. 

 

3.4.2 Damping analysis with digital filtering 

Unlike in FMR measurements where linewidth is proportional to the decay 

constant of the oscillation, the linewidth of TR-MOKE peak is often determined by 

the length of the signal. This is because the FMR is essentially a time-invariant 

measurement with energy constantly pumped into the system, while TR-MOKE is a 

time-domain measurement with pulsed excitation. In order to extract the damping 

parameter, therefore, we directly analyze the transition of the oscillation amplitude in 

time domain, as demonstrated in various studies [71,104,105,133,158–160]. 
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The background-subtracted signal can be fitted with a damped harmonic 

oscillation 

x(t) = A0 exp(−γt)cos(ωt +φ) , (3.4.1) 

where γ =1 τ  is the decay constant and ω is the angular frequency of the 

precession. An effective Gilbert damping parameter α  can then be obtained by 

solving [104,161] 

1
τ
=

αγ
2(1+α 2 )

(H1 +H2 )  (3.4.2a) 

ω =
γ

1+α 2
H1H2 , (3.4.2b) 

where H1 and H2 are defined as in Eq. (2.2.30). At a sufficiently high field where the 

precession frequency is dominated with the Zeeman term (i.e., when H1 ≈ H2 ), this 

is simplified as 

α ≈
1
ωτ

. (3.4.3) 

Note two points here—the effective damping parameter and the presence of 

multiple peaks in signal. First, the damping in TR-MOKE signal is also affected by 

the inhomogeneity of in the sample, namely, the deviation of the material parameters 

in each position, presence of grains and physical defects, and the nonuniform 

excitation by the Gaussian pump beam. These factors lead to increase in the decay 

constant γ apparent in a TR-MOKE signal and results in larger estimate of α , 

especially at a small field. The intrinsic Gilbert damping can be obtained as a limit in 

high external field [71,104,162–164]. At high field, the magnetization dynamics is 
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dominated by the Zeeman energy term, reducing the relative effects of the 

inhomogeneity. In this field range, direct fitting of the damped oscillation signal 

reports comparable α  values with the FMR measurements [161,165]. 

Fitting with Eq. (3.4.1) can only be applied reliably when the signal shows a 

clean damped oscillation with a single frequency component and low noise. 

Unavoidable noise in the real measurement prevents the reliable fitting with two or 

more frequency components. To circumvent this problem, we apply a digital filter on 

the signal and extract an oscillation with a single frequency peak. The Butterworth 

bandpass filter with phase compensation is applied to the signal. Typically, 3 dB 

bandpass width of 0.5–8 GHz is used with phase compensation. In order to maintain 

the shape of the damped oscillation, phase change in each frequency component must 

be compensated. This can be achieved by applying digital filtering twice to the signal, 

first in the forward direction and second in the backward direction [157]. The 

operation is provided as filtfilt() function in Matlab. Digital filtering unavoidably 

induces artifacts at the beginning and the end of the signal, showing rapid rise at the 

beginning and decay at the end of the filtered signal. The beginning and the end of the 

filtered signal must be trimmed and only the middle part should be fitted with Eq. 

(3.4.1). Fig. 3.14 shows an example of damping analysis with digital filtering applied 

on a TR-MOKE signal from a CoFeB film. The bandpass filter rejects the noise 

except for the passband and the resulting oscillation becomes much clearer. Note that, 

however, when the signal has large additive noise, the presence of the noise results in 

the fluctuation of the analysis results. 
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To test the reliability of the above procedure, the analysis has been repeated 

on an artificially generated signal with Gaussian noise with variance σ 2 . With the 

signal-to-noise ratio defined as 

SNR = A0
2

2σ 2
 or 10 log A0

2

2σ 2

!

"
#

$

%
& (dB)  (3.4.4) 

with the amplitude of damped oscillation A0 defined in (3.4.1). The resulting αeff  

value is distributed across the predicted one. With SNR = 3 (4.8 dB), the relative error 

of damping estimate distributes around the zero with the standard deviation of 0.08. 

Therefore, for analysis of experimental data with relatively low SNR, it is vital to 

repeat the measurement various times and obtain the trend of the αeff . 

 

 

Fig. 3.14. Example of damping fit with digital filtering. The sample is a CoFeB/MgO 

multilayer stack designed for STT-MRAM application. In (a), a first-order 

Butterworth filter with the 3 dB passband width of 0.7 GHz centered at 18.3 GHz has 

been applied with the phase compensation. The filtered time trace has been truncated 

to exclude the artifacts from digital filtering showing supurious changes in oscillation 
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amplitude at the beginning and the end of the data. (b) Absolute Fourier amplitude of 

the raw and filtered traces.  
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4. Dynamic separation with nanomagnet orientation 

In this chapter, we will present the dynamic separation technique applied on 

arrays of nickel nanomagnets, containing two subarrays of elliptic disks with 

orthogonal orientations. Even though the spatial resolution of the measurement is 

nowhere near the nanomagnet dimensions, the distinct dynamic behaviors of the two 

subgroups of nanomagnets, determined by the orientation of the elliptic disks with 

respect to the external field, enables separating magneto-optic signal of one subgroup 

from the other. The effect of the neighboring elements in a particular nanomagnet 

subgroup is quantified as a function of the array pitch. With micromagnetic modeling 

of the sample structure, the change in dynamic behavior is explained with the 

magnetostatic environment each subgroup of nanomagnets is placed in. 

4.1 Introduction 

Various dynamic measurement techniques have been demonstrated to measure 

the array magnetization characteristics in wide range of samples. In many of these 

studies, however, the signal is an ensemble average of many nanomagnets within the 

detected area. For example, vector-FMR has a micrometer-scale spatial resolution 

limited by the dipole field profile from the coplanar waveguides [166]. For optical 

techniques such as TR-MOKE and BLS, this is typically limited by the diffraction 

limit. While the ensemble signal conveys statistic information about the average 

properties and the irregularity of the individual elements, such as size, shape, 
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composition, and crystalline order, it is generally difficult or impossible to 

decompose the magnetization dynamics of the individual nanomagnet.  

A common approach for solving this issue is measurements of a single 

isolated nanomagnets without the presence of neighboring elements. This provides 

the insight into the intrinsic response of individual magnets and predicts the collective 

behavior of the similarly fabricated elements in arrays. Various challenges arise. The 

signal to noise ratio typically reduces drastically due to the reduced size of the 

sample, both in optical techniques, such as TR-MOKE and BLS, and in electrical 

techniques, such as FMR and VSM. Optimization in sample geometry [89,167, 168] 

is necessary in order to probe small nanomagnets.  

Scanning probe microscopy-based techniques is a great way to obtain static 

properties of nanomagnets with high spatial resolution, limited only by the tip radius 

of the probes. High-resolution MFM with field application (simultaneous or 

sequential with MFM scans) have been widely used for static characterization of 

nanostructured magnets [83].  

The near-field scanning optical microscopy (NSOM) with fiber probes or 

solid state pyramid probes have been demonstrated in conjunction with static MOKE 

measurements too [89,169–171]. With proper choice of the near-field aperture that 

conserves light polarization, the magnetic domains with opposite magnetization 

directions were observed with the spatial resolution limited only by the near-field 

aperture size, typically with diameter of 30–150 nm (for the pyramid probes). The 

SNR is severely limited by the low throughput of the near-field apertures, typically in 
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the order of 10-6, and has prohibited the TR-MOKE measurements with near-field 

optics so far. BLS was demonstrated on a permalloy micromagnet on a CPW in 

conjunction with NSOM [69].  

In this Chapter, we discuss the newly developed dynamic separation technique 

to probe the individual groups of nanomagnets within densely packed arrays. In this 

measurement technique, the sample nanomagnet array is composed of two or more 

types of elements with distinct properties, such as size, shape, orientation, or material, 

as illustrated in Fig. 4.1. The entire array is measured with TR-MOKE using 

diffraction limited optics. Although the reflected probe beam shows the polarization 

change due to many nanomagnets, the distinct nature of individual elements results in 

the precessional oscillation at different frequencies. With the discrete Fourier 

transform, one can separate the signal from the individual groups of magnets from 

each other. 
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Fig. 4.1. Principle of dynamic separation. The sample arrays consist of two or more 

types of nanomagnets. Examples of dynamic separation with (a) size, (b) orientation, 

and (c) material along with a representative TR-MOKE time traces (middle column) 

and the corresponding Fourier spectra (right column). (a) and (b) shows experimental 

data measrued on nickel nanomagnet arrays, while (c) shows a micromagnetic 

simulation results calculated with iron and nickel parameters. 

 

The first demonstration using separation by size was reported in [81]; a 

150-nm-thick nickel nanomagnet disk with 150 nm diameter was placed within an 

array of 500 nm disks and measured with the TR-MOKE with ~ 1 µm probe spot size 

(Fig. 4.2). The small nickel disk was saturated under the external field between 2.5 

and 5.0 kOe, while the larger 500 nm disks were in the vortex state. The TR-MOKE 

signal showed two frequency peaks clearly separated from each other, demonstrating 
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the concept of dynamic separation (Fig. 4.2c–e). The frequency difference between 

the magnetization precession in the smaller 150 nm disk and the vortex core vibration 

in the 500 nm disks was more than 7 GHz for the entire field range and was greater 

than the line width of the mode peaks. The effect of the dipole field from the 

neighbors was quantified with a simpler configuration fabricated with the FIB. A 

structure of one 150 nm disk between two 500 nm disks were measured with 

TR-MOKE and the precession frequency of the center 150 nm disk was probed as a 

function of the edge-to-edge separation. The precession frequency changed by ~5 

GHz in the measurements with 100 and 200 nm edge-to-edge separation. This was 

attributed to the difference of ~300 Oe in dipole field from the neighboring 500 nm 

disks, calculated in a micromagnetic model. 

 

 

Fig. 4.2. Demonstration of dynamic separation by size. (a) SEM image of a sample 

array of 150-nm-thick nickel disks. A 150 nm disk was embedded in an array of 500 

nm elements. The dashed circle represents the size of the probe spot. (b) Simulated z 
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component of the magnetization in a ground state, showing the single-domain and 

vortex states of the small and large nickel disks. (c–d) TR-MOKE time traces and 

Fourier spectra measured with various configurations represented by the skecthes on 

the left side. Taken from [81].  

 

In this chapter, the dynamic separation is extended to the orientation of 

identically shaped nickel nanomagnets with respect to the applied external field. The 

major findings have been reported in [172]. Unlike in the previous case, the sample 

arrays consist of the elements with identical shapes, as in more realistic situations, but 

are oriented in two orthogonal directions.  

4.2 Samples and experimental details 

The sample arrays of nickel elliptic disks were fabricated at the Molecular 

Foundry with the electron beam lithography, electron beam evaporation, and liftoff 

process on an AR coated silicon substrate. Fig. 4.3 shows the SEM images of the 

fabricated nanomagnets. The major and minor axes are 150 and 85 nm, respectively, 

as measured with the SEM. Two different configurations of nanomagnet arrays are 

considered as shown in Fig. 4.3. The first type (Fig. 4.3a) has uniformly oriented 

elliptic disks and is called the array with “uniform” orientation. The other (Fig. 4.3b) 

has two subsets of elliptic disks with alternating major axis orientation and is called 

“alternating” arrays. We define the orientation of the elliptic disks by the angle ϕ 

between their major axis and the in-plane component Hip of the applied field Happ. 

Thus, the first type, when Hip is either parallel or perpendicular to the major axis of 
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the elliptic disks, is referred to as the “parallel” or “perpendicular” configuration, 

respectively. Arrays with various center-to-center pitches p were fabricated. For the 

uniform orientation, p = 212 or 282 nm, whereas the arrays with alternating disks 

have p = 145, 212, and 282 nm. The smallest p of 145 nm is only plausible in the 

alternating configuration. During fabrication, care should be taken to ensure that the 

elements with different orientations have identical shapes. 

 

 

Fig. 4.3. Scanning electron micrographs of 30-nm-thick nickel elliptic disks with (a) 

uniform and (b) alternating orientation. Pitch p = 282 nm. 

 

The magnetization dynamics in the elliptic disks were measured with the 

TR-MOKE setup described in section 3.3. The pump and probe pulses are focused 

onto spots with 1/e2 diameter of 10.2 µm and 5.7 µm, respectively, covering more 

than 300 elliptic disks within the effective probe beam diameter for the largest pitch p 

= 282 nm. 

Micromagnetic simulations with OOMMF were implement for further 

interpretation of the experimental results. The disk arrays were modeled with cell size 
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smaller than 5×5×5 nm3. The unit simulation cell consists of either a single elliptic 

disk for arrays of uniform orientation or of 2×2 nanomagnets for the alternating 

arrays (Fig. 4.4 shows examples). Periodic boundary conditions are utilized for 

accounting for the interelement dipolar coupling, characteristic to densely packed 

nanomagnet arrays. The saturation magnetization MS = 341 kA/m and the Landé g 

factor g = 2.21 are obtained by fitting the precession frequency measured on a 

simultaneously deposited bare nickel film with Kittel equation (2.2.29) and used 

without further adjustment for the following analysis throughout this thesis. The 

somewhat low value of MS comparing to common literature value (~485 kA/m at 300 

K [173]) is attributed to the uncertainty in Happ in the setup and oxidization of nickel 

[174]. After initializing the magnetization state under the static external field Happ, a 

small field pulse with the magnitude of 2 Oe and duration of 0.5 ps is applied for 

exciting the magnetization precession. The subsequent precessional motion is 

simulated with OOMMF for 2 ns and the z component of the magnetization evolution 

is analyzed in the same way as the experimental data. 

4.3 Results and discussion 

Representative results after background correction are presented in Fig. 4.4. 

At Happ = 2.0 kOe (Hip = 1.0 kOe) applied at θH = 30° from the surface normal, the 

parallel (Fig. 4.4a) and perpendicular (Fig. 4.4b) elliptic disks revealed distinctly 

different precession frequencies at 6.6 and 3.5 GHz, respectively. The frequency 

discrepancy is explained with the different demagnetization field HD in the elliptic 

disks for the two configurations. Fig. 4.4 shows the x component of HD simulated in 
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the elliptic disks and surrounding space calculated at Happ = 2.0 kOe. At the center of 

the elliptic disks, HD,x was found to differ by ~340 Oe. The simulated HD 

distributions show flexuous fringes at the ellipse edges, especially around the 

circumference crossing their minor axis. These fringes come from the step-wise 

change in the cuboid simulation meshes. In about 10 nm, however, HD distribution 

becomes smooth and does not affect the simulated magnetization or the dipole 

coupling to the neighboring elements. In the alternating array (Fig. 4.4c), two clearly 

separated peaks are observed at similar frequencies. The simulated equilibrium state 

(Fig. 4.4) shows that HD,x distribution within elliptic disks with different orientations 

is qualitatively unchanged from the arrays with uniform orientation at p = 212 nm. 

The two Fourier peaks are attributed to the precession in two sublattices of elliptic 

disks with the orthogonal orientations. This demonstrates resolving the magnetization 

response from identically shaped nickel elliptic disks beyond the diffraction limit by 

means of dynamic separation. 
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Fig. 4.4. (a–c) Representative TR-MOKE data from the nickel elliptic disks after 

background correction, measured at Happ = 2.0 kOe at θH = 30ª from the surface 

normal (in-plance component Hip = 1.0 kOe). In the sketches on the left side, the 

arrows represent the direction of Hip. (right) x component of simulated 

demagnetization field HD in the ground state at Happ = 2.0 kOe (Hip = 1.0 kOe). 

 

To ensure the robustness of the measurements against error in field direction, 

we rotated the field orientation in xy plane between ϕ = 0°–90° and measured the 

uniformly oriented array with p = 212 nm. The obtained precession frequency is 

plotted against ϕ in Fig. 4.5. It remained unchanged within 0.1 GHz for a relatively 

large range of ϕ = 0°–15° and for ϕ = 75°–90°. The slight error in sample alignment, 

therefore, does not affect the results. 

 

 

Fig. 4.5. The precession frequency measured on a uniformly ordered array with p = 

212 nm as a function of the in-plance field direction ϕ. Happ = 2.75 kOe applied at θH 

= 30° from the surface normal. 
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The TR-MOKE responses measured at various Happ were converted to Fourier 

spectra and are presented in Fig. 4.6. Each spectrum has been normalized for better 

visualization of the mode frequency. The uniformly oriented elliptic disks parallel 

(Fig. 4.6a) and perpendicular (Fig. 4.6b) to Hip show clear Happ dependence of the 

well-defined single peak over the wide field range. The observed frequencies were 

reproduced well with the micromagnetic simulations, shown with the dashed lines. 

The alternating array, on the other hand, exhibits two precession frequencies, 

attributed to the two subarrays of elliptic disks parallel and perpendicular to Hip (Fig. 

4.6c). The frequency peak positions from Fig. 4.6a and Fig. 4.6b were obtained with 

Gaussian peak fit and are also shown in Fig. 4.6c with open squares and crosses, 

respectively. By rotating the field in the xy plane to ϕ = 45°, the two alternating 

subarrays become oriented to the same angle with respect to the applied field, 

resulting in degeneracy of the precession frequencies (Fig. 4.6d). In Fig. 4.6d, the 

open circles show the frequency peak positions from Fig. 4.6c, measured on the same 

array with the nondegenerate condition ϕ = 0°. This verifies that the nanomagnets in 

the two subarrays are identically shaped. The entire array can be addressed 

correctively as in standard array measurements if desired.  

The upper and lower branches in the alternating array (Fig. 4.6c) represent the 

subarrays of elliptic disks oriented parallel and perpendicular to Hip, respectively, and 

have similar frequencies observed in the uniformly arranged arrays (Fig. 4.6a and 

4.6b). The precession frequencies in the alternating array (Fig. 4.6c) are 
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approximately 0.4 and 0.5 GHz higher than the corresponding mode frequencies 

measured in the uniform array (Fig. 4.6a and Fig. 4.6b), respectively. Qualitatively, 

this does not contradict the assumption that an elliptic disk in the alternating array and 

its counterpart in the uniformly oriented array experience different magnetostatic 

environment, predominantly determined by the orientation of its nearest neighbors. 

The micromagnetic simulations (dashed lines) show good overall agreement with the 

measured spectra. Small discrepancy between the measurements and simulations are 

attributed to uncertainty and variations of the nanomagnets’ shape and size.  

 

 

Fig. 4.6. Normalized Fourier spectra measured in nickel elliptic disk arrays with p = 

212 nm. Fourier spectra in each pannel is normalized so that the highest peak has the 

value of 1. In the insets, the red arrow indicates the direction of Hip, the in-plane 

component of Happ. 

 

To quantify the influence of the neighboring elements on the magnetization 

dynamics in nanomagnet subarrays, we repeated the measurements on a series of 

arrays with alternating orientation as a function of the center-to-center pitch p. The 
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resulting time traces were converted to Fourier spectra and are shown in Fig. 4.7 for p 

= 145, 212, and 282 nm. Each array show two frequency peaks corresponding to the 

precession of the two subarrays with parallel and perpendicular orientation.  

 

 

Fig. 4.7. Normalized Fourier spectra of the array of alternating orientation with 

various pitches p = (a) 145, (b) 212, and (c) 282 nm. Open squares and crosses 

represent the precession frequencies observed in the uniform array for p = 212 nm 

with ϕ = 0° and 90°, which have been shown to stay approximately constant for p > 

165 nm in the measurements and in micromagnetic simulations. (d) Magnetization 

precession frequencies in the sublattice with perpendicular orientation in alternating 

arrays. Symbols are experimental values at various applied fields Happ = 1.50–2.50 

kOe (in-plane component Hip = 0.75–1.25 kOe), and the dotted lines show the 

simulated precession frequencies. 

 

In the alternating array with the largest pitch p = 282 nm, the precession 

frequencies of the two subarrays are in good agreement with the micromagnetic 

simulations (dashed line). These frequencies are also close to their counterparts in the 
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uniformly oriented arrays. For p = 212 and 282 nm, the uniformly ordered arrays 

showed very similar precession frequencies and the values from p = 212 nm array are 

plotted in Fig. 4.7 with open squares and crosses. As the elliptic disks get closer to the 

neighboring elements with smaller p, the lower branch of the frequency peaks 

(subarray of elliptic disks perpendicular to Hip) increase monotonically, as seen in 

Fig. 4.7a–c.  

This frequency shift is plotted in Fig. 4.7d along with the simulated precession 

frequency of the perpendicular subarray with various pitch p for Happ = 1.5–2.5 kOe 

(Hip = 0.75–1.25 kOe). The simulations reproduced monotonically increasing 

precession frequency with smaller p due to the magnetostatic field from the 

neighboring nanomagnets, with similar shift for all applied field in both 

measurements and simulations. The shift is caused by the increased stray field from 

the neighbors. With the equilibrium magnetization distribution, the dipole field from 

the neighbors is 70 and 260 Oe for p = 212 and 145 nm, respectively. The simulations 

were performed for smaller and larger pitches. For p above ~190 nm, the 

magnetostatic correction to the precession frequency drops below 0.2 GHz in the 

simulations and becomes effectively negligible. On the other end, the frequency shift 

is expected to be above 1 GHz only at the pitch below ~140 nm. This corresponds to 

the separation of only a few nanometers and implausible to fabricate. 

The experimental data exhibit a slightly larger frequency shift than the 

simulations, as observed in typical nanomagnet measurements [81]. We attribute this 

to the irregularity of shape, size, grain structure, and compositions of the actual 
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sample. The deviation from the ideal shape modeled in the simulations leads to 

nonuniform material parameters [76] and can cause significant changes in 

macroscopically observed magnetization dynamics. 

While the dipole coupling with the neighboring nanomagnets resulted in the 

frequency shift, it turned out much smaller than the previous report with the nickel 

disks with two different sizes [81]. This is due to the reduced stray field from the thin 

(30 nm) nanomagnets unlike the thick (150 nm) magnets used in the previous study. 

In the alternating array with p = 282 nm, the precession frequency shows 

pinning at ~9 GHz. We attribute this to the magnetoelastic coupling to surface 

acoustic waves and will discuss in more detail in Chapter 5. 

4.4 Summary 

We have demonstrated the dynamic separation method that resolves two 

different subarrays of nickel elliptic disks beyond the diffraction limit, depending on 

their orientation. Due to the different magnetostatic environment each nanomagnet is 

placed in, different subgroups of nanomagnets undergo magnetization precession at 

different frequencies. These precession modes are clearly separated in frequency 

domain and one can obtain the magnetization dynamics in each subgroup from a 

single corrective measurement. The effect of the neighboring elements was quantified 

by changing the array pitch p. Small but clear frequency shift was observed as a 

function of the element separation. The micromagnetic simulations reproduced the 

experimentally observed behaviors and showed the dipole field distribution explains 

the frequency shift in the arrays of nickel elliptic disks with alternating orientations. 
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Comparing to the first demonstration of dynamic separation by size [81], the 

work here handles more realistic array structure with all the elements with the 

identical shapes. Further work is proposed to handle the identically shaped elements 

with identical orientation but with different material parameters. While 

micromagnetic simulations of such structures predict sufficiently large frequency 

separation, this approach faces a fabrication challenge of embedding nanomagnets 

made of different materials in dense patterns. The realization of this experiment 

would yield the insights on the dipolar interelement coupling in practical device 

structures. 

  



 95 

5. Magnetization dynamics coupled with surface 

acoustic waves 

In this chapter, we will review the elastic oscillation modes excited in periodic 

nanostructures and its influence on the magnetization dynamics through the 

magnetoelastic coupling. Various examples of elastic mode excitation schemes and 

their effect on the magnetization responses will be discussed. We will introduce the 

magnetoelastic energy terms to expand the micromagnetics. At the end of the chapter, 

a simulation procedure for modeling the magnetoelastically coupled dynamics in 

nanomagnet arrays will be proposed. The theories and modeling techniques presented 

in this chapter will be utilized for analysis in Chapters 6 and 7, where we prove that 

the magnetoelastic coupling can dominate the magnetization dynamics in nanomagnet 

arrays and demonstrate applications of the effect for characterization and 

optimization. 

5.1 Background 

In TR-MOKE and similar pump-probe measurements, it has been repeatedly 

demonstrated that surface acoustic waves (SAWs) are generated by the optical pump 

pulses [175–178]. The excited SAWs modulate the reflectivity and are observed as 

strong oscillations in the TR-MOKE signal, often concealing the magnetization 

precession. Although the elastic modes can be coupled to the magnetization dynamics 

via the magnetoelastic effect, the interplay between phononic and magnetic modes 

generated in a nanostructured array had not been investigated. It was unclear whether 



 96 

the observed SAW oscillations are a mere measurement shortcoming or indeed a 

magnetic response dominated by the magnetoelastic coupling. It is critical to answer 

this question in order to understand the experimental observations and to characterize 

nanomagnet responses with similar experimental setups. As a preparation for the 

quantitative investigation, the following sections review preceding studies on the 

relevant topics. 

5.1.1 Magnetoelastic coupling and recent demonstrations in films 

Several groups recently reported the experimental investigation of the effect 

of acoustic waves on the magnetization dynamics in planar films of ferromagnetic 

metals and semiconductors [147–152,179–186]. These studies demonstrated that the 

magnetoelastic coupling can be prominent enough to trigger magnetization 

precessions and even switch the magnetization direction. An example is shown in Fig. 

5.1. A pump laser pulse is focused on an aluminum film on the back of a GaAs 

substrate. The rapid heating of the aluminum film generates the strain pulse, 

propagating through the substrate and reaching a (Ga,Mn)As film deposited on the 

front side. A probe laser is guided to the front side and records the magnetization 

precession of the (Ga,Mn)As film, superimposed with the reflectivity change due to 

the strain pulse. The strain pulse reaches and gets reflected from the front (Ga,Mn)As 

film at the time of 0–100 ps. After the strain pulse is reflected (after ~150 ps), a clear 

magnetization precession is observed with varying frequency with the applied field. 

Similar measurements were also conducted on a polycrystalline nickel film [151]. 
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Fig. 5.1. (a) Schematic of pump-probe experiments with strain pulses. (b, c) 

Evolution of the Kerr rotation angle induced by the strain pulses. The vertical arrow 

indicates the time when the strain pulse leaves the (Ga,Mn)As layer. Inset: the Kerr 

rotation when the pump pulse was focused directly to the opposite of the probe pulse 

(thin red line) and displaced by 100 µm (thick blue line). Taken from [147]. 

 

Another configuration involves the surface acoustic waves (SAWs) generated 

with interdigitated transducers (IDTs) fabricated on piezoelectric substrate. An 

example is depicted in Fig. 5.2. An IDT is a set of comb-shaped metal strip lines 

fabricated on a piezoelectric substrate (typically LiNbO3) with typical finger width on 

a micrometer scale. An RF voltage is applied between the two electrodes. This 

generates an electric field between the fingers and deforms the piezoelectric substrate 

with spatial periodicity, launching SAWs propagating perpendicularly to the IDT 

fingers. The fundamental SAW frequency is determined by the SAW velocity in the 
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substrate and the period of the IDT, typically in the sub-GHz range. Higher-order 

SAWs up to ~20th order [183] can also be excited by applying RF voltage at the 

frequencies of odd harmonics. Magnetic samples are fabricated to the side of the IDT 

and the SAW travels across the sample, exhibiting absorption of the acoustic energy 

peaked at the ferromagnetic resonance frequency. In [183] (Fig. 5.2), Weiler et al 

used another IDT on the other side of the nickel film to capture the transmitted SAW 

power and convert it to AC voltage. This technique provides stationary behavior of 

the magnetoelastic coupling. Typically, the dimension of the IDT (~ µm) limits the 

wavelength and the frequency of the SAWs generated to the low gigahertz range. 

 

 

Fig. 5.2. (I) Interdigitated transducers on LiNbO3 substrate and the nickel film 

fabricated for the elastically-driven ferromagnetic resonance experiments. The close 

up on the right illustrates the displacement and the strain in the nickel thin film. (II) 

Evolution of the SAW transmission detected with the second IDT as a function of the 
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magnitude and orientation of the external magnetic field. Columns (c) and (d) show 

the simulated SAW power density. Taken from [183]. 

 

5.1.2 SAW generation in arrays with a laser pulse 

In addition to the IDTs described in the previous section, SAWs can also be 

generated with rapid heating with pulsed lasers. When a laser pulse is focused on a 

substrate surface, rapid thermal expansion of the structure launches strain waves. 

Similarly to the studies reviewed in section 5.1.1, a part of the energy goes to the bulk 

shockwave modes (mostly bulk longitudinal wave), propagating into the substrate. 

Additionally, another part is coupled to the pseudo surface acoustic wave modes (e.g., 

Rayleigh and surface skimming longitudinal waves). The wave propagation can be 

easily monitored with optical imaging or pump-probe spectroscopy and gives 

information on the sound velocity in the material. This method has thus been used as 

an acoustic characterization technique. Fig. 5.3 shows a demonstration of the surface 

acoustic waves generated in a gold film. A pump pulse of 150 fs pulse width is 

focused on a spot diameter ~ 2 µm on the gold film. The excited SAWs are monitored 

with a probe laser pulse with 830 nm center wavelength. Usually, in reflection 

configuration, the probe beam is most sensitive to the out-of-plane component of the 

displacement and does not detect the shear strain component effectively. In [187], 

Saito et al shined the probe beam from the backside and enhanced the sensitivity via 

much larger photoelastic effect on the light transmitted through the glass substrate. 

Fig. 5.3 clearly shows two concentric circles at the delay time of 11.7 ns. The inner 
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and outer circle represents the Rayleigh wave (RW) and the surface skimming 

longitudinal wave (SSLW), respectively. As will be discussed in section 6.2, this 

observation is essential in understanding the SAW spectra in our array structures.  

 

 

Fig. 5.3. Schematic diagram of the pump-probe experimental setup for SAW imaging 

through the photoelastic effect of the glass substrate. (b) Images of the optical 

intensity change at a pump-probe delay time of 11.7 ns, taken with various 

polarization configuration. The image area is 140 µm × 140 µm. The outer and inner 

rings represent the SSLW and the RW, respectively. Taken from [187]. 

 

The wavenumber and the frequency of the SAWs excited with this method are 

determined by the acoustic properties of the substrate. The typical SAW wavelength 

is in micrometers and the frequency is in the megahertz range. SAWs with much 

smaller wavelength in the gigahertz range can be excited by pulsed laser illumination 

on a periodic metallic structure. When the pump laser pulse irradiates an array or 
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grating of metallic elements, the absorbed laser energy causes impulsive thermal 

expansion of the nanoelements and induces elastic strain in the substrate, spatially 

modulated by the periodicity of the structure. This launches the SAWs propagating 

along the surface of the substrate. The SAWs propagate in all lateral directions and 

form standing waves, whose wavenumbers correspond to the reciprocal lattice points 

of the array geometry. When we neglect the mass loading from the metallic element, 

the fundamental SAW has the wavelength equal to the array pitch p and the frequency 

is determined as 

f0 =
v
p

, (5.1.1) 

where v is the SAW velocity. In one-dimensional arrays (gratings), there exist 

harmonic modes with frequencies 2f0, 3f0, and so on. In two-dimensional arrays, each 

of the standing SAW modes can be denoted with the indices (hk) on the basis of the 

primitive reciprocal lattice vectors of the array geometry. In a square array with an 

array pitch p, the SAWs have the frequency 

fhk = h2 + k2 v
p

. (5.1.2) 

For example, the SAWs with the lowest indices (01), (11), (02), and (12) modes (and 

their degenerated modes) have the frequencies f0 , 2 f0 , 2 f0 , and 5 f0 . 

Experimental demonstration of laser-excited elastic waves with periodic 

structures was already utilized in 1990s on one-dimensional gratings as well as 

two-dimensional arrays of nonmagnetic metallic nanoelements [188]. Lin et al shined 

a picosecond pulsed laser on gold gratings and disk arrays with 400–800 nm pitches, 
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fabricated on a SiO2 substrate. In addition to the oscillations due to optical 

interference with the reflection from propagating elastic wave front, they found a 

mechanical mode independent of the probe beam incidence angle. They attributed this 

to the normal vibrational mode of the individual gold elements and not to the 

propagating SAWs. Even though they were aware of the mode frequency obeying Eq. 

(5.1.1), they found the perturbation analysis used for predicting RW inappropriate 

with the large mass loading of gold elements on light SiO2 substrate and found the 

normal mode frequency comparable to that of the RW (the element dimension was 

kept proportional to the pitch).  

Later, similar studies with better-controlled parameters have been carried out 

(e.g., [175–177]). In [176], for example, arrays of aluminum nanoelements with 

various sizes and pitches were studied with pump-probe spectroscopy. As 

summarized in Fig. 5.4, they found two families of vibrational modes (Type I and 

Type II). The Type I mode had large damping and little dependency on the array pitch 

while the frequency of Type II modes was inversely proportional to the pitch as Eq. 

(5.1.2). They attribute the Type I to the localized vibration of individual elements and 

the Type II to the RWs, propagating in various directions in two-dimensional arrays. 

In Fig. 5.4b, the SAW frequencies linearly trends with 1/p at low wavenumber but 

deviates from linearity at a large wavenumber. In the cases with small mass loading, 

Eq. (5.1.2) gives a good approximation of the SAW frequencies [175,177].  
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Fig. 5.4. (a) Schematic of SAW generation with ultrafast laser pump pulse in 

aluminum array nanostructure. (b) Frequency of mechanical modes obtained from 

aluminum array with d = 200 nm. Taken from [176]. 

 

With the development of numerical methods and greater computational 

power, more detailed analyses of nonuniform structures were made (e.g., [177]). With 

the finite element analysis of the mechanical eigenmodes, Giannetti et al 

demonstrated that the vibration of the free individual elements has much smaller 

eigenfrequencies than the observed frequency peaks, corroborating the excitation of 

the SAWs. The deviation of the frequencies from Eq. (5.1.2) was also computed by 

several groups. First, the perturbation theory with simplified geometry was used for 

modeling the change in SAW velocity [177,178,189]. Later, finite element analysis 

on the mechanical eigenvalue problem was carried out and revealed deviation of the 

spatial waveforms and frequencies [190,191]. Fig. 5.5 presents an example of nickel 

strips with p = 1 µm from [190], showing cos-like and sin-like SAW modes with 



 104 

slightly different frequencies, as well as the frequency shift in sub-gigahertz range 

due to the mass loading. 

 

 

Fig. 5.5. (I) Various displacement eigenmodes simulated for nickel strips with the 

pitch p = 1 µm. (II) Frequency shift from the unperturbed SAW. Taken from [190]. 

 

As reported in [187], the Rayleigh waves (RWs) and the surface-skimming 

longitudinal wave (SSLW) are the two representative modes generated with pulsed 

laser illumination. The former has longitudinal and vertical shear components while 

the latter is dominated by the longitudinal component and has larger velocity. Strictly 

speaking, the SSLW, also known as the critically refracted longitudinal wave, is a 

bulk longitudinal wave mode that travels within an effective depth underneath the 
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surface [192]. Furthermore, both of them, in the presence of the surface perturbation, 

are also coupled to the bulk modes propagating into the substrate and dissipate 

energy, unlike the nondissipative surface eigenmodes that will be discussed in section 

5.2.2. Nevertheless, when the element is relatively small and light, this additional 

energy dissipation is small and we loosely refer to them as the SAWs in this thesis. 

5.2 Theories of linear elasticity 

5.2.1 System of linear elasticity 

Following the presentation of [108 pp. 311–314], we review a system of linear 

elasticity in this section. The elastic motion of a solid, like the assumption of 

micromagnetics, is treated as a continuous displacement vector u(r) = r – r0 of the 

point r relative to its original position r0. The elastic strain and stress matrices are 

defined as 

εij =
1
2
∂ui
∂x j

+
∂uj
∂xi

"

#
$

%

&
' , (5.2.1) 

where the indices i, j correspond to the Cartesian axes. For small displacement, 

Hooke’s law 

σ pq = cpqlmεlm
m=1

3

∑
l=1

3

∑  (5.2.2) 

holds, where σij is the Cauchy stress tensor. For an elastically isotropic medium, the 

system can be characterized with two independent moduli cpppp ≡ c11  and cppqq ≡ c12 , 

determining the third modulus as cpqpq ≡ c44 = (c11 − c12 ) 2 .  
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The system is also characterized with a different set of material parameters as 

σ ij = δij λΔ ⋅u−
3EαL

1− 2ν
ΔTl

$

%
&

'

(
)+ 2µεij , (5.2.3) 

where E is the Young’s modulus, ν is the Poisson ratio, αL ≡ (1 L)(∂L ∂Tl )  is the 

linear thermal expansion coefficient, λ and µ are the Lamé parameters  

µ =
E

2(1+ν )
, λ =

Eν
(1+ν )(1− 2ν )

. (5.2.4) 

In (5.2.3), the thermal expansion due to the increase in lattice temperature ΔTl is also 

included. The equation of motion of an elastic structure is expressed as 

ρ
∂2ui
∂t2

=
∂σ ji

∂x jj=1

3

∑ , (5.2.5) 

where ρ is the density of the material. 

5.2.2 Elastic waves near solid surfaces 

In the studies of seismology, various families of elastic waves were found to 

propagate near the surfaces of a solid. In addition to the primary (longitudinal) and 

secondary (transverse) plane waves, several types of steady elastic waves that are 

propagating along the free surface and attenuating rapidly along the depth of the half 

volume were shown to exist. The most common type of such waves is called the 

Rayleigh wave (RW) [193] and its displacement field is depicted in Fig. 5.6. The 

particle trajectories near the surface are ellipses with the major axis normal to the 

surface and the minor axis along the propagation direction. The displacement in the x 

direction is retarded by π/2 compared with the z direction. At the depth of about one 
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fifth of the wavelength, its x displacement becomes 0 and changes the rotation 

direction of the elliptic motion. This is an eigenmode of the system, so in the absence 

of frictional energy dissipation, the RW energy is perfectly confined near the free 

boundary. 

 

 

Fig. 5.6. Rayleigh surface wave particle displacement model. Taken from [194]. 

 

The Love wave is another example of surface acoustic waves and involves the 

motion of particles within the surface plane and perpendicular to the wave 

propagation. At an interface between two different solids, the linear elastic system 

supports the Stoneley wave. In a thin layer of finite thickness at a surface of half 

volume, Lamb waves also exist. They all are confined at the interfaces of the solid 

and exist as nondissipative eigenmodes. The detailed waveforms and dispersion law 

are found elsewhere [195].  

As will be discussed later in Chapter 6, laser-generated RWs and SSLW with 

various propagation directions turned out to reproduce the observed oscillations very 

well in our TR-MOKE measurements in nanostructured metallic arrays.  
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5.3 Magnetoelastic effect 

5.3.1 Magnetoelastic energy 

The magnetoelastic effect was first known as magnetostriction in a narrow 

sense; a magnetically ordered material exhibits spontaneous strain caused by the 

magnetization [196]. The effect is characterized by the fractional change in length 

observed at the magnetization saturation, called the saturation magnetostriction λS . 

For crystals, it is anisotropic and characterized along various crystalline axes (e.g., 

λ100 and λ111 for cubic crystals). In a classical sense, the phenomenon can be 

understood as the deformation of the electron orbits in an effort to reduce the Zeeman 

energy density. With nonzero spin-orbit coupling, the change in the electron spin 

direction causes reorientation of the orbits, resulting in the reorientation of the 

crystalline axes. If the crystalline axes were fully rotated by 90º, this would cause an 

unrealistically large strain in the order of 10-1. Realistically, magnetostriction is 

typically in the order of 10-5 [197 p. 21]. In typical 3d transition metals, small 

spin-orbit coupling causes reorientation of the crystalline axes by only a small angle. 

This energy term also leads to the reconfiguration of the magnetization under stress, 

called the inverse magnetostriction. 

To unify these effects and model a magnetoelastic system, the Gibbs energy 

density is extended to include the magnetoelastic contribution. It is 

phenomenologically expressed as 

UMEL =
B1
MS

2
Mp

2εpp
p
∑ +

B2
MS

2
MpMqεpq

q≠p
∑

p
∑
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where Mi are the magnetization component along axes xi, and B1, B2, A1, A2 are the 

magnetoelastic constants [108 p. 315]. The latter two terms with A1 and A2 are 

determined by the spatial derivative of the magnetization and called the exchange 

terms. In most of the empirical studies previously reported, these terms are neglected 

and only the first two terms with B1 and B2 are considered [150,151,183,184,198–

202]. As will be discussed in section 5.4, the exchange terms do turn out negligible in 

our case.  

The magnetoelastic coefficients are related to the magnetostriction. In cubic 

crystals, the fractional elongation at the magnetization saturation along <100> and 

<111> directions is  

δl
l

!

"
#

$

%
&
100

≡ λ100 = −
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c11 − c12
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l
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111

≡ λ111 = −
1
3
B2
c44

, (5.3.2) 

where c11, c12, and c44 are the moduli of elasticity for a cubic system, as described in 

section 5.2.1. In polycrystals, the bulk magnetostriction constant is obtained by a 

vector average of the randomly oriented axes as [97 pp. 343–357] 

λpoly =
2
5
λ100 +

3
5
λ111 . (5.3.3) 
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In elastically isotropic media, including the polycrystals with sufficiently small 

grains, B1 and B2 become identical and can be related to the saturation 

magnetostriction λS  and the shear modulus G as 

B1 = B2 = −3λSG . (5.3.4) 

For hexagonal crystals, four magnetostriction constants λA through λD as 

defined in [196] are required for anisotropic parameterization. The macroscopic 

magnetostriction of polycrystals were derived by Birss as [203] 

λpoly =
4
15
λA −

1
3
λB −

1
3
λC +

4
5
λD . (5.3.5) 

In magnetoelastic modeling, two approaches have been proposed; the coupled 

equations of motion for the magnetoelastic systems and the effective field approach. 

The former is a rigorous expansion of elasticity and micromagnetics to include UMEL 

but, due to its mathematical complexity, has only been applied to cases with simple 

configurations, e.g. a saturated isotropic bulk material with the magnetization and 

wave propagation in the film plane and parallel to each other. The latter, on the other 

hand, calculates the effective field in micromagnetics with UMEL but neglects its 

influence on the elastic system, making it much simpler in computation. Since it 

neglects the energy transfer from the magnetization system to the elastic system, this 

approach may not be applicable in some cases. As will be discussed in the following 

sections, our work mostly uses the second approach but we first describe both in more 

details. 

5.3.2 Magnetoelastically coupled system 
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In the first approach, the system is described with coupled equations of 

motion for elasticity and micromagnetics. The system has 6 components (ux, uy, uz, 

Mx, My, Mz). In the following, we will derive a linearized equation of motion for small 

amplitude oscillation around an equilibrium.  

Each of these two systems is now extended to include the contribution of the 

magnetoelastic energy density UMEL in Eq. (5.3.1). In the elasticity, it appears as the 

Cauchy stress contribution -dUMEL/dx. In micromagnetics, it is an effective field 

contribution –dUMEL/dM. Here, let us assume an elastically isotropic material and no 

energy dissipation. By substituting the additional energy terms (5.3.1) into (2.2.2) and 

(5.2.5) and leaving up to the first order of u and M, we obtain the coupled equations 

of motion 
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 (5.3.6)
 

where the third component of the magnetization My has been omitted since it can be 

obtained via the conservation of the magnetization magnitude M =MS . 

To obtain the dispersion of small amplitude magnetoelastic modes, the 

coupled equations of motion (5.3.6) are linearized. Here, as a simple example, we 

assume that the material is saturated along the z axis and the wave vector is parallel to 

the magnetization. We assume the solution of the form 

Mp =M0 p exp i(ωt − k ⋅ r)( )  

up = u0 p exp i(ωt − k ⋅ r)( )  (5.3.7) 

for p = x, y, z and substitute them into (5.3.6). Five coupled linear algebraic equations 

result. Maintaining up to the first order terms in M and u, (5.3.6) is linearized as 

iωMx +γ (H0 +Dk2 )My − iγkB2uy = 0  

iωMy +γ (H0 +Dk2 )Mx + iγkB2ux = 0  

(ω 2ρ − k2c44 )ux − ik
B2
MS

Mx = 0  

(ω 2ρ − k2c44 )uy − ik
B2
MS

My = 0  

(ω 2ρ − k2c44 )uzx = 0  (5.3.8) 

Here, the subscript 0 has been omitted from the complex amplitudes Mi and ui. Note 

that uz is decoupled from the rest of the equations and represents a purely elastic 
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longitudinal wave mode. The other four equations are coupled. Turning the variables 

to a circularly polarized system M± =Mx ± iMy  and u± = ux ± iuy , representing the 

right-hand and left-hand circularly polarized waves, the equations become two linear 

equations  

A±
M±

u±

!

"
#
#

$

%
&
&
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iω  iωm γkzB2

−i kzB2
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%
&
&
= 0 , (5.3.9) 

where ωm = γ (H +Dk2 )  is the frequency of the unperturbed spin wave and 

ωel = c44 ρ k  is the frequency of the unperturbed transverse elastic wave. In order 

for the above equation to have a single set of solutions, the determinant of the 

coefficients must vanish (self-consistency condition). From this condition, the 

dispersion relation is obtained as 

detA± = ρ(ω ωm )(ω 2 −ωel
2 ) γB2k

2

MS
= 0 . (5.3.10) 

The dispersion curve (5.3.10) calculated with nickel parameters under the field of 2.5 

kOe is shown in Fig. 5.7. The three magnetoelastically coupled modes are shown. 

Due to the directionality of the torque on the magnetization (the first term in (2.2.1) 

and (2.2.2)), the right-hand and left-hand circularly polarized magnetoelastic waves 

exhibit qualitatively different behaviors. Apart from the crossover point at 

k ≈1.8×105  cm-1, they closely follow the unperturbed spin and elastic modes, whose 

frequencies are proportional to k2 and k, respectively. 
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Fig. 5.7. Dispersion curves of the magnetoelastic modes calculated with Eq. (5.3.10) 

for the applied field H = 2.5 kOe. 

 

This is a rigorous extension of elastic and micromagnetic theories and can 

correctly predict the coupling phenomena between elasticity and magnetism, 

including the mode repulsion and the phase change at the crossover points. However, 

this approach involves complex mathematical formulae that can be analytically 

solved only in several simple configurations. Particularly, solving the consistency 

condition for the dispersion curve quickly becomes overcomplicated with nonuniform 

strain waves or with arbitrary magnetization direction. Therefore, the analysis of the 

RWs, which inevitably consist of multiple components of displacement, can only 

approximately be addressed in simple structures, such as films, and with various 

simplifying assumptions. Ref [183], for example, needed to introduce a “filling 

factor”, which served as a fitting parameter to bring the calculation close to the 
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experimental results and assume an arbitrarily conjectured wave form to emulate the 

RWs. Of course, it is possible to build a numerical simulation framework to solve the 

coupled equation directly, with time integration of Eq. (5.3.6). However, due to the 

nonlocal characteristic of demagnetization field calculation, this necessitates 

fundamental modification of known genetic FEM or micromagnetic simulation 

frameworks and it has not been reported. In addition, the coupled equations approach 

would compute the elastic motion every time the simulation is done, while the 

effective field approach, as will be discussed in the next section, calculates the elastic 

motion only once and repeatedly use it in the following magnetization simulations. 

An alternative would be to solve Eq. (5.3.8) or its equivalent derived for different 

configurations of M and k as an eigenvalue problem. As reported for purely magnetic 

problems [204,205], this may turn out an efficient computation method to simulate 

the magnetoelastically coupled dynamics in nanostructures. 

5.3.3 Effective field approach 

The second approach is to obtain the effective field due to the magnetoelastic 

contribution and include it in the standard micromagnetic calculations. It neglects the 

influence of the magnetization on the elastic system (sometimes called “backaction”) 

but has an important advantage; it has simple implementation and, under the 

restriction of small precession amplitude, we do not even need to modify the existing 

micromagnetic simulation framework. 

The magnetoelastic contribution HMEL to the effective magnetic field Heff is 

obtained via the variational derivative 
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The summation in Eq. (5.3.11) is nonzero only with the presence of the exchange 

terms (A1 and A2 terms) in (5.3.1). When they can be neglected, only the first term in 

(5.3.11) needs to be evaluated, leading to an HMEL expression as 
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. (5.3.12) 

The magnetization evolution can be calculated with a standard micromagnetic 

simulation with (5.3.12) as an additional effective field contribution. If the precession 

amplitude is small, HMEL can be calculated beforehand with a static M, obtained at 

the equilibrium magnetization distribution. The micromagnetic simulation can be 

carried out by reading the previously computed HMEL and no modification to the 

micromagnetic simulation is necessary. Alternatively, HMEL can be evaluated at each 

simulation step. More details in simulation implementation are given in section 5.4. 

The simplification of neglecting the backaction has successfully been used to 

analyze the magnetoelastic dynamics in nickel films [183,184]. In our observations, 

as will be discussed in Chapter 6, it is also justified by the fact that the nonmagnetic 

signal shows no observable change at the crossover points, where the coupling 

between the magnetic and elastic systems becomes the strongest. 
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5.4 Magnetoelastic simulation procedure 

In order to elucidate the magnetoelastic dynamics in arbitrary structures and 

configurations, we developed a multistep simulation procedure. First, heating of the 

nanomagnet is modeled with the three-temperature model [136] and computed with 

finite element method (FEM), as illustrated in section 3.2.1. Second, the subsequent 

elastic motion due to the thermal expansion is computed with time integration of Eq. 

(5.2.5). The effective field due to the magnetoelastic energy is then calculated with 

Eq. (5.3.12) and added in the micromagnetic simulation using OOMMF 

micromagnetic simulator. Once the material parameters are known, this procedure 

quantitatively predicts the magnetoelastic effect. Below, each step and its limits are 

discussed in more detail. 

The first step is determining the temperature rise in the nanomagnet after 

irradiation by the pump pulse, using the three-temperature model introduced in 

section 3.2.1. The absorbed pump energy density per unit time Pabs(r,t) is obtained by 

calculating the reflection and absorption of the pump with the complex refractive 

index n = n+ ik . When the absorbing layer is sufficiently thicker than the optical 

absorption depth ζ = λ 4πk , the absorbed power density is modeled as 

Pabs (z, t) =
1
ζ
S t( )e

−
z
ζ = (1− R) 1

ζ
Sin (t)e

−
z
ζ , (5.4.1) 

where R = ( n−1) ( n+1)  is the reflectivity of the metal calculated with Snell’s law. 

For the 30-nm-thick nickel ellipses with n =1.61+ 2.36i  at λ = 400 nm, the optical 

absorption depth is ζ  = 13.5 nm and this gives a reasonable approximation of the 
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absorbed pump power. However, samples often have multiple layers, including the 

AR coating, seed layer, and capping layer and care should be taken to justify this 

simple approach. For example, if the AR coating layer under the nanomagnet is 

transparent at the pump wavelength, it may get reflected at the bottom of the AR 

coating and alter the distribution of the absorbed pump fluence across the magnetic 

layer. This can be accurately addressed with the transfer matrix method described 

elsewhere [167]. In the case of the 30-nm-thick nickel ellipses with a 110 nm hafnium 

oxide AR coating, this effect turned out to be relatively small (less than 10%) and it is 

ignored here.  

The rate equations (3.2.1) are discretized in space with a tetrahedral finite 

element mesh and the time evolution is addressed by the explicit Euler method. A 

time step of 0.1 ps was chosen by checking the consistency of simulation results with 

various time steps. The resulting temperature evolution in a nickel elliptic disk is 

shown in Fig. 5.8 for the peak fluence of F = 0.78 mJ/cm2 and 200 fs FWHM 

duration of the Gaussian pump pulse. The temperature evolution turned out virtually 

constant across the lateral direction within the magnet. Therefore, as a measure to 

reduce the computational time, we further simplified the time evolution of the lattice 

temperature by fitting it at the top, middle, and bottom of the nanomagnet with 

equations 

Tl,center = A1 1− exp(−t A2 )( )+Tl,0

 Tl,top = Tl,center + A3 1− exp(−t A4 )( )exp(−t A5 )  

Tl,bototm = Tl,center + A6 1− exp(−t A7 )( )exp(−t A8 ) , (5.4.2) 
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where Tl,i are the lattice temperature obtained at the top, center, and bottom of the 

nickel elliptic disk and Ai are the fitting parameters. Table 5.1 shows representative 

fitting parameters Ai for nickel and cobalt elliptic disks with F = 0.78 mJ/cm2. The 

resulted fitting curves for nickel are also shown in Fig. 5.8. In the subsequent elastic 

simulation, the vertical distribution of Tl is approximated by linear interpolation of 

(5.4.2). The lattice temperature Tl is also found proportional to the peak pump 

fluence, eliminating need for further simulations in case different pump fluence is 

used. This is done primarily for eliminating the need for simulating the temperature 

evolution at every step of the following elastic simulation. If higher accuracy in Tl 

with complex spatial distribution is needed, it can be modified in a way that the 

temperature simulation records the distribution of Tl at a fixed time step and the 

following elastic simulation reads those results and interpolates them in order to 

approximate the Tl distribution. 
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Fig. 5.8. Lattice temperature evolution simulated in a nickel elliptic disk with the 

pump fluence of F = 0.78 mJ/cm2 and 200 fs FWHM pulse duration. The solid lines 

are the fit with Eq. (5.4.2) with the fitting parameters listed in Table 5.1. 

 

 A1 (K) A2 (ps) A3 (K) A4 (ps) A5 (ps) A6 (K) A7 (ps) A8 (ps) 

Nickel 25.5 1.31 14.8 0.924 5.97 -17.7 1.41 6.36 

Cobalt 61.5 0.327 36.5 0.200 7.15 -32.1 0.254 8.08 

Table 5.1. Fitting parameters for approximating the lattice temperature using Eq. 

(5.4.2). Pump fluence of F = 0.78 mJ/cm2 and 200 fs FWHM pulse duration is 

assumed. 

 

Subsequently, excitation of SAWs is simulated using the finite element 

method. The thermal expansion is included in the equation of motion of linear 

elasticity (5.2.5) and the time evolution of the displacement is simulated with the 

explicit Euler method, with time discretization Δt  and finite difference 

approximation 

∂2uk

∂t2
=
uk − 2uk−1 +uk−2

Δt2
. (5.4.3) 

The unit cell of a typical simulated structure is shown in Fig. 5.9. It consists of 

the substrate, a 110-nm-thick AR coating layer (hafnium oxide), and a nickel elliptic 

disk. The sidewalls of the substrate and AR coating layer adopt the periodic boundary 

conditions and represents infinite repetition in a rectangular array. As Tl simulated 
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from the previous step is applied, the nanomagnet expands and launches strain pulses 

into the substrate and the AR coating layer. Apart from the SAWs, a bulk longitudinal 

wave is launched into the substrate and eventually gets reflected from the bottom of 

the simulation structure. In order to avoid the effect of the reflected bulk waves, the 

substrate is taken to be long enough (12 µm in this case). An alternative modification 

would add a perfectly matched layer (PML) at the bottom boundary [206]. The SAWs 

are confined approximately within their wavelength, thus their characteristics are 

dominated by the elastic properties of the AR coating layer, which has been 

commercially evaporated on p-doped silicon wafers. In order to determine the 

material parameter for the AR coating, we assumed a literature value of the density ρ 

= 9.68 g/cm3 and ran multiple simulations with various Young’s modulus E. The 

three lowest RW frequencies in the resulted simulations were compared with the 

experimentally observed values (f = 12.2, 15.8, and 22.3 GHz) and a best value of E = 

161 GPa was determined with the least square method. It has been confirmed that 

change in the Poisson ratio ν makes little difference to the SAW frequencies and we 

assumed ν = 0.3. 
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Fig. 5.9. Example of a tetrahedron mesh for elastic simulations. 30-nm-thick nickel 

elliptic disks with the major and minor diameters of 150 and 75 nm, respectively, on a 

110-nm-thick hafnium oxide antireflection coating layer are modeled. The side walls 

of the substrate utilize the periodic boundary condition and represent an infinite array 

with the pitch p = 212 nm. 

 

The representative simulation results are shown in Fig. 5.10. Fig. 5.10a shows 

change in uz at the center of the magnet and its Fourier transform, as described in 

section 3.4. With Eq. (5.3.12), HMEL was calculated at the center of the elliptic disk 

for Happ = 4.0 kOe and its x component is displayed in Fig. 5.10b. Fig. 5.10c–f 

displays several snapshots of the simulated elastic motion at various time t after pump 

pulse excitation, with the displacement emphasized by a factor of 1500. In Chapter 6, 

the results of the elastic simulations will be discussed in more detail in comparison 

with the experimental results. 
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Fig. 5.10. (a) Example of the simulated displacement uz at the center of the nickel 

elliptic disk and its absolute Fourier amplitude spectrum. (b) x component of the 

magnetoelastic field HMEL calculated with Eq. (5.3.12) at Happ = 4.0 kOe applied at θH 

= 30º from the surface normal. HMEL was calculated assuming that the initial 

magnetization distribution remains near constant throughout the simulation. (c–f) 

Snapshots of the simulated displacement at t = 156, 168, 182, and 194 ps after pump 

excitation (top row) and the calculated magnetoelastic field HMEL. The displayed 

displacement is amplified by a factor of 1500. 

 

Once we have the elastic strain, obtained by Eq. (5.2.1) and the simulated 

displacement u, we can calculate the magnetoelastic contribution to the system with 

Eq. (5.3.12) and can add it in the micromagnetic simulations. As discussed in section 

5.3.3, this approach neglects the backaction of the magnetization dynamics on the 
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elastic motion. We justify this by an example of the successful magnetoelastic 

analysis in nickel films [183,184] and by the fact that we found no observable change 

in the nonmagnetic signal in the experiments, as will be discussed in the next chapter. 

Omission of the exchange terms with A1 and A2 in UMEL (5.3.1) is justified as 

follows. The exchange magnetoelastic constant A1,2 = ∂Aex ∂εii  is estimated with 

dependence of the exchange stiffness constant Aex on the normal strain under uniform 

compression with pressure P. With Aex = 4JS2/a, Tc = 8JS(S+1)/kB and dTc/dP = 

3.45×10-9 K Pa-1 [207], where J is the exchange integral, S = 1 is the spin angular 

momentum quantum number, a = 0.354 nm is the lattice constant, and kB is 

Boltzmann constant, 

A1,2 =
4S2

a
kBE

8S(S +1)(1− 2ν )
∂TC
∂P

=1.77×10−11  J m-1. (5.4.4) 

Using the ground state magnetization simulated for a nickel elliptic disk, additional 

UMEL terms were calculated and confirmed to be less than a percent of the first two 

terms in Eq. (5.3.1). Therefore, the exchange terms are negligible in our simulations 

and HMEL is evaluated with Eq. (5.3.12). 

The actual implementation is achieved in two different ways. First, HMEL was 

calculated using Eq. (5.3.12) assuming magnetization in a ground state and stored in a 

series of vector field distribution files. Typically, for a simulation for 1 ns, HMEL is 

evaluated for every 2 ps, generating 500 files. These files are then called from an 

OOMMF time evolver every 0.2 ps, linearly interpolating the successive two files to 
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provide smoother evolution in HMEL. This time scale is chosen to be much smaller 

than the typical period of the magnetization precession (10–200 ps). 

In the second implementation, OOMMF’s energy object classes were 

extended to include the magnetoelastic energy contribution, calculating HMEL at each 

simulation step. Multiple extension modules were developed to handle various 

demands for magnetoelastic simulation with time-varying, spatially nonuniform 

elastic strain. The extension is now publicly available [208]. This makes it 

unnecessary to store HMEL distribution in files and saves a lot of disk space (often tens 

of gigabytes). Greater simulation flexibility and smoother HMEL evolution are 

achieved. This implementation is especially advantageous when the magnetization 

deviates from its equilibrium state during the simulation. It runs at a comparable 

speed as the former implementation and generate consistent results when the 

precession amplitude is sufficiently small. In both implementations, as discussed in 

section 2.3, the speed of micromagnetic simulations is limited by the computation of 

the long-range demagnetization field and the additional calculation of HMEL only has 

a minor impact on the total simulation time.  
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6. Magnetoelastically coupled magnetization 

dynamics in nickel nanomagnet arrays 

Here, we show that the surface acoustic waves (SAWs) generated in 

nanostructures are indeed interacting with the magnetization dynamics and that even 

if you perfectly filter out the nonmagnetic reflectivity change from the TR-MOKE 

signal, you still see a strong effect of the elastically driven oscillations on 

magnetization dynamics. The magnetoelastic coupling ”pins” the magnetization 

precession at the SAW frequencies over a wide field range and causes an 

enhancement of the Fourier amplitude at the crossover fields, where the intrinsic 

mode crosses the magnetoelastic modes driven by the SAWs. The nature of these 

coupled modes is investigated by changing the array geometry. Using finite element 

analysis of the elastic motion and micromagnetic simulations with a magnetoelastic 

contribution, the experimental observations are reproduced. The origins and spatial 

modes are also characterized and discussed in detail. The major findings in this 

Chapter have been reported in [209]. 

6.1 Samples and experimental details 

To investigate the magnetoelastic dynamics in patterned nanomagnets, various 

patterns were fabricated at the Molecular Foundry at Berkeley. Nickel and aluminum 

nanoelements with 30 nm thicknesses were fabricated using electron beam 

lithography, electron beam evaporation, and liftoff. A commercially deposited 

110-nm-thick hafnium oxide AR coating was deposited in order to help maximize the 
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optical SNR by reducing the reflection from the trench [168]. Elliptic disks with 

major and minor axes of 140 and 80 nm, respectively, were fabricated with various 

array pitches p. In section 6.2, these elliptic disks will be discussed for the first 

demonstration of the magnetization precession magnetoelastically coupled to the 

SAWs. In section 6.4, nickel squares will also be characterized. Fig. 6.1 shows 

scanning electron micrographs of representative arrays. 

 

 

Fig. 6.1. Scanning electron micrographs of nickel and aluminum elliptic disks (a, b) 

and nickel squares (c). 

 

The magnetization dynamics and nonmagnetic elastic responses were 

measured with the TR-MOKE system described in section 3.3. The pump and probe 

beams were focused to the 1/e2 diameter of 10.2 and 5.7 µm, respectively, covering 

more than 300 elliptic disks within the effective probe beam diameter for p = 282 nm. 

The difference and sum of the two balanced photodetectors were recorded as the 

magnetic (difference channel) and nonmagnetic (sum channel) signal. In this chapter, 
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like in Chapter 4, the decaying background in the TR-MOKE time traces has been 

subtracted from the displayed results. 

6.2 Magnetoelastic modes in TR-MOKE measurements 

6.2.1 Magnetoelastically coupled modes in nickel elliptic disks 

The representative TR-MOKE signal after background correction is presented 

in Fig. 6.2, taken at Happ = 2.5 kOe applied at θH = 30° from the surface normal. Fig. 

6.2a–c exemplify the optical response from three sample types. The magnetic 

(difference) and nonmagnetic (sum) signals along with their Fourier spectra are 

shown. The vertical axes of the magnetic and nonmagnetic signal are identical for 

each pair. The nickel film (Fig. 6.2a) shows a clean single-frequency damped 

oscillation, identified as the Kittel mode [210]. The absence of any oscillations in the 

nonmagnetic signal demonstrates the separation of magnetic and nonmagnetic 

contribution in the signal. The colormap (Fig. 6.2d) shows the Fourier spectra 

obtained at various Happ. A single magnetic resonance peak appears. The dashed line 

is the analytic solution of the Kittel mode assuming a Landé factor g = 2.21 and a 

saturation magnetization Ms = 341.2 emu/cm3, obtained by the least square method. 

Using rather low Ms value as a fitting parameter accounts for uncertainties in the 

magnet size, shape, and the Happ value at the probed nanomagnet location in the 

experiments. Nevertheless, the analytic solution shows good agreement with the 

experimental results and these parameters are used in subsequent simulations. 
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Fig. 6.2. (a–c) Typical TR-MOKE signal from three sample types after background 

subtraction, measured at the field of Happ = 2.5 kOe applied at θH = 30° from the 

surface normal. Black and light gray curves represent the magnetic difference signal 

and nonmagnetic sum signal, respectively. In the Fourier spectra (right column), the 

black and light gray arrows indicate the frequencies of the Rayleigh waves and 

surface skimming longitudinal wave. (d) The Fourier spectra obtained from the planar 

nickel film at various field Happ. The dashed curve represents the fit with the Kittel 

equation (2.2.29). 

 

The patterned aluminum elliptic disks with p = 212 nm exhibit multiple 

oscillation modes in the nonmagnetic channel. Only a very small signal is observed in 

the magnetic channel due to imperfect balancing of the photodetectors. The 

nonmagnetic oscillations are attributed to the SAWs generated by the pump pulse 

heating the aluminum elements, as discussed in section 5.1.2. The four black arrows 

in Fig. 6.2b denote the lowest Rayleigh wave (RW) frequencies, predicted for the RW 
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velocity v = 2400 m/s with Eq. (5.1.2) and show good agreement with the experiment. 

Note that the SAW velocity is predominantly determined by the elastic properties of 

the hafnium oxide AR coating layer, where the majority of the elastic energy is 

confined. Due to the elliptic shape of the nanoelements, SAW modes along x and y 

directions are nondegenerate. However, the splitting is smaller than the linewidth of 

the Fourier peaks and cannot be seen here. As will be discussed later, the 

non-degeneracy was confirmed in the simulations (section 6.2.2) and also in more 

recent measurements with longer scans (section 6.4). In addition to the RWs, an 

additional peak at 17.6 GHz is observed (shown with a gray arrow in Fig. 6.2b). This 

mode is attributed to the surface skimming longitudinal wave (SSLW) as described in 

section 5.1.2. 

Fig. 6.2c shows the response of the patterned nickel elliptic disks. Here, we 

observe oscillations in both the magnetic and nonmagnetic channels. The 

nonmagnetic signal resembles that of the nonmagnetic aluminum array (Fig. 6.2b) 

and is attributed to the SAWs. These SAW frequencies agree with those observed in 

the lighter aluminum array and validates the assumption of negligible mass loading 

[177,190,191, also discussed in section 5.1.2]. The magnetic signal, on the other 

hand, is attributed to the interplay between the Kittel mode shifted from the film 

response due to the demagnetization field inside the nanomagnets and the SAWs. The 

presence of the peaks at the SAW frequencies shows that the excited magnetic 

response is determined by the elastic characteristics of the substrate material and the 

geometric design of the nanomagnet array, apart from the magnetostatic effect. 
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We carried out a series of TR-MOKE scans at varying Happ. Fig. 6.3 displays 

the Fourier spectra of the sum and difference channels. As expected, the nonmagnetic 

frequencies (Fig. 6.3a) were independent of the field, while the magnetic signal 

shows an unexpected and complex response. Fig. 6.3b shows the normalized Fourier 

spectra, in which the highest Fourier amplitude is assigned a value of 1 for better 

visualization of the mode structure. In contrast to the single continuous peak of the 

film (Fig. 6.2d), a fragmented multimode response is seen at fields Happ > 2.5 kOe, 

while at lower fields, the spectra are dominated by a single Kittel mode, qualitatively 

resembling the film response. The low-field response was well reproduced with 

micromagnetic simulations including only the magnetic contributions (dashed line). 

At higher fields, however, we find an extended band at 12.2 GHz where the magnetic 

response is “pinned” over a wide range of more than 2.0 kOe. A similar pinning is 

observed at 15.8, 17.7, and 22.3 GHz as well. This demonstrates the generation of 

magnetic oscillations at frequencies far removed from the intrinsic magnetic 

response. In a non-normalized display of the same Fourier spectra (Fig. 6.3c), the 

crossover point of the Kittel mode and these bands exhibits the highest Fourier 

amplitude. This enhancement of the Fourier amplitude at the crossover is 

manifestation of prolonged oscillation mode in the time domain, driven by the energy 

pumped from the elastic system. These frequencies coincide with the nonmagnetic 

SAW frequencies and suggest strong coupling between the mechanical and magnetic 

modes at the crossover points. The solid and dashed arrows identify the RWs and 

SSLW, respectively, and will be discussed in the following. 
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Fig. 6.3. Fourier spectra of the magnetization precession of nickel elliptic disks with p 

= 212 nm in TR-MOKE measurements and in simulations. In (b) and (d), the Fourier 

spectra have been normalized, assigning the value of one to the highest point in each 

spectrum. The solid and dashed arrows in (b) represents the frequencies of the 

Rayleigh waves and the surface skimming longitudinal wave. 

 

To elucidate the experimental observations, the magnetoelastic simulation was 

run as described in section 5.4. With B1 = B2 = 7.85 MJ/m3 [184] for polycrystalline 

nickel with a pump fluence of 0.78 J/cm2, the calculated HMEL has an oscillation 
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amplitude of ~170 Oe at the center of the elliptic disk at 100 ps after the excitation, 

mainly along the major axis of the ellipse (see Fig. 5.10b–f). The simulated 

magnetization dynamics in the presence of HMEL was Fourier-transformed and the 

resulting spectra are shown in Fig. 6.3d and 6.3e. The simulated Fourier spectra are in 

excellent qualitative agreement with the measurements, reproducing the key features. 

Namely, the simulations correctly reproduced the mode pinning at 12.4, 16.0, 17.9 

and 21.1 GHz over a wide range of applied fields and show an increased Fourier 

amplitude at the crossover points, as can be seen in the non-normalized plots (Fig. 

6.3e). It also reproduces the mode at 17.9 GHz, which we attribute to the SSLW 

described in section 5.1.2. Later, we will confirm this assignment with space-time 

discrete Fourier transform analysis of the simulated displacement. 

The tunability of the SAW frequency and thus the pinning region was 

demonstrated by using nickel elliptic disks with larger array pitch of p = 282 nm. 

TR-MOKE measurements and simulations were carried out in the same way as the 

previous sample and are shown in Fig. 6.4. Both RWs and SSLW shifted their 

frequency downward as predicted by Eq. (5.1.2) and were again correctly reproduced 

by the magnetoelastic simulations. Consequently, the enhancement of the Fourier 

amplitude and the pinning are observed at different SAW frequencies under different 

applied fields. The RWs and SSLW are identified as solid and dashed arrows in Fig. 

6.4.  
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Fig. 6.4. Fourier spectra of the magnetization precession of nickel elliptic disks with p 

= 282 nm in TR-MOKE measurements and in simulations. In (b) and (d), the Fourier 

spectra have been normalized, assigning the value of one to the highest point in each 

spectrum. The solid and dashed arrows in (b) represents the frequencies of the 

Rayleigh waves and the surface skimming longitudinal wave. 

 

6.2.2 Spatial waveforms of SAWs 

In contrast to the strong dependence on the array pitch, we found no 

dependence of the magnetic spin wave spectra on optical pump power over a wide 
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range in experiments and simulations. This observation is consistent with the linear 

dependence of the induced strain on pump power. 

To understand the nature of these modes, we have performed further analysis 

on the simulated displacement u. First, spatiotemporal discrete Fourier transform 

(DFT) of the simulated u is carried out. Here, the coordinates are defined as in Fig. 

6.1. u at the top of the AR coating is taken along x, y, and z direction through (0,0,0). 

Two-dimensional Fourier transform  

F(kx,ky ) =
1
N

f (x, y)exp −
i2π (kxx + kyy)

N
"

#
$

%

&
'

q=0

N−1

∑
p=0

N−1

∑  (6.2.1) 

is applied to the displacement u(r,t) with zero padding and the Hamming window 

function applied in the time domain but not in the spatial domain.  

Fig. 6.5 shows an example of this analysis on nickel elliptic disks with p = 

212 nm. The wavenumbers ki are normalized to 2π/p so ki represents the order of the 

spatial mode in the xi direction. Each SAW frequency is decomposed into spatial 

modes (hk) with h = kx and k = ky as depicted in Fig. 6.5a. For example, the three 

lowest visible peaks in the Fourier spectrum of the overall displacement evolution 

(Fig. 6.5b) are decomposed to the (10) and (01) modes, (11) mode, and (20) and (02) 

modes, respectively. The (10) mode shows further splitting due to the asymmetry of 

the sample structure in x and y direction. With a scan length of 1 ns used in the 

experiments and simulations, this cannot be resolved in the Fourier spectrum. It also 

reveals the spatial mode of (21) and (12) modes, which show non-degeneracy at 25 



 136 

and 27 GHz. These peaks, however, can only seen as a broadened peak in the Fourier 

spectrum of the entire signal (Fig. 6.5b).  

 

 

Fig. 6.5. (a) Space-time discrete Fourier transfomr of nickel elliptic disks with p = 

212 nm. (b) Absolute Fourier amplitude of the overall displacement evolution uz at 

the center of the elliptic disk. (c) Snapshots of each SAW mode obtained by applying 

the Butterworth filter in the time domain to the displacement uz(r,t). 
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The spatial waveform of each mode was obtained by applying the Butterworth 

digital filter to the displacement. The Butterworth filter with a passband centered at a 

given mode frequency was applied to the time evolution of uz at each point. The 

snapshots of the filtered displacement evolution is displayed in Fig. 6.5c, representing 

each SAW mode. The lower branch of the (10) mode and the (01) mode are 

degenerate and are represented in the first plot in Fig. 6.5c. The upper branch of the 

(10) mode, on the other hand, shows the spatial mode with the largest amplitude in 

the substrate by the elliptic disk, propagating along its major axis. 

The spatiotemporal Fourier spectra of uz show a small peak at 18 GHz, not 

visible in Fig. 6.5b. This peak appears stronger in ux and uy along the x and y 

directions (Fig. 6.5a). These frequencies obey Eq. (5.1.1) and change linearly with 1/p 

but remain virtually unchanged in simulations with different AR coating thicknesses, 

magnet sizes, magnet densities, and shapes. Furthermore, this mode was observed 

even in the simulations without the magnets as seen in Fig. 6.6, where the 

Gaussian-shaped initial displacement is set for starting the elastic motion. Even 

though the simulated structure has no periodicity, the periodicity of the initial 

displacement launches SAWs and we observe various elastic modes, whose 

frequencies are determined by the speed of the RWs and the SSLW in the structure. 

As in the elliptic disks in Fig. 6.5, multiple RWs and SSLW peaks are decomposed 

into spatial modes with various wavenumbers. Unlike Fig. 6.5, the x and y directions 

were degenerate. These observations rule out the possibility that the 18 GHz mode is 

localized in the structure and indicate that this oscillation mode is the SSLW that is 



 138 

dominated by the longitudinal component of displacement and confined to the 

vicinity of the surface like RWs but having 1.5–2 times as large a velocity as the 

RWs. 

 

 

Fig. 6.6. (a) Space-time discrete Fourier transfomr of the hafnium oxide AR coating 

in the absense of nanomagnets. The initial displacement was given as a Gaussian 

profile with 30 µm FWHM. (b) Absolute Fourier spectrum of the overall 

displacement evolution at the center of the structure. 

 

Finally, the nature of the 18.0 GHz mode is further analyzed by intentionally 

exciting longitudinal waves along the minor axis of the elliptic disk. Here, the initial 

displacement is set to be ux0 = 0 , uy0 = sin 2π y p( )exp −z z0( )  with z0  = 200 nm. 

As shown in Fig. 6.7, the 18.0 GHz mode is selectively excited. The filtered spatial 
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mode (Fig. 6.7b) clearly shows that the mode has large longitudinal component (uy) 

along the propagation direction. 

 

 

Fig. 6.7. (a) Space-time discrete Fourier transfomr of nickel elliptic disks with p = 

212 nm with sinusoidal wave-like initial excitation. (b) Snapshots of each SAW mode 

obtained by applying the Butterworth filter in the time domain to the displacement 

u(r,t). 

 

6.3 Nonlocal excitation of magnetization precession with propagating 

SAWs 

As discussed in the previous sections, the 1/p dependence of the frequencies, 

multiple frequency components corresponding to different wavenumbers, and the 

presence of the SSLW mode observed both in experiments and simulations, indicate 

the excitation of propagating SAWs and not localized mechanical vibrations. Here, 
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we confirm this claim with a direct observation of the propagating nature of the 

excitation scheme by probing a region spatially separated from the pump spot.  

The sample is fabricated like the nickel nanomagnets in the previous sections 

but the pattern consists of nickel squares and bars as shown in Fig. 6.8. The pump 

pulses were focused on the bars of 100 nm width and 200 nm pitch. Approximately 2 

µm apart from the bars, two arrays of the 100 nm nickel squares were prepared with 

pitch p = 150 and 200 nm. The thermally expanding nickel bars act as the transducer 

of the elastic strain. They are expected to generate the SAW at a frequency 

determined by their pitch p, following the SSLW pulse with broad spectrum, which 

propagates faster. The SAWs travel perpendicular to the bars and enter the array. By 

adjusting the last mirror for the pump beam before it is combined with the probe 

beam, the probe beam is shifted from the position of the pump onto the array, as 

depicted in Fig. 6.8. Since the pump and probe beams are not overlapped, the thermal 

excitation of the magnetization precession will not be probed. Instead, the traveling 

SAWs eventually reach the probed region and, if they have sufficient amplitude, 

excite the magnetization precession in the nickel squares via the magnetoelastic 

effect. The pump and probe beams are focused to spot sizes of 1.6 and 3.0 µm 1/e2 

diameter, respectively, a few time smaller than in the previous sections. This is to 

ensure the clear separation of the pump and probe spots with a reasonably small 

center-to-center distance between them, which determines the delay of excitation. The 

distance is limited by the dissipation of the excitation power; as the probe spot is 



 141 

further separated from the pump spot, the SAWs power density dissipates and only a 

small fraction of the pumped energy reaches the probed region. 

 

 

Fig. 6.8. Scanning electron micrograph of nickel bars (100 nm wide on 200 nm pitch) 

and arrays (100 nm squares on 150 nm pitch). The blue and red circles represent the 

approximate position and size of the pump and probe spots. The distance between the 

ends of the bars and the array is 1.57 µm. A Rayleigh wave with velocity v = 2400 

m/s travels this distance in 655 ps. 

 

On the nickel array with p = 150 nm pitch, TR-MOKE measurements were 

carried out. Representative traces and corresponding Fourier spectra are shown in Fig. 

6.9 for Happ = 2.0 and 5.5 kOe, applied at θH = 30° from the surface normal. Both 

difference and sum signals show delayed excitation starting at ~500 ps. The finite size 

of the pump and probe spots and the broad pulse width of the traveling SAW cause a 

slow rising of the precession and excitation of the SAWs in the array. The Fourier 

spectra of the time section t = 900–1900 ps are shown in Fig. 6.9. They show 
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qualitatively similar features as in the previous sections—a field-dependent magnetic 

mode and its pinning and enhancement at crossover points with the SAW frequencies 

of the array. In addition, the spectra show a strong low frequency component due to 

the large excitation pulse for 500–1000 ps. In Fig. 6.9c and 6.9d, the pinning 

frequency is 16 GHz, determined by the pitch of the array p = 150 nm and not of the 

bars. Pinning with smaller Fourier amplitude is observed at 12 GHz too, 

corresponding to the first order SAW of the 200 nm pitch bars, but only with the 

absolute Fourier amplitude of about 1/3 of the 16 GHz peak.  

In Fig. 6.10, representative sectioned time traces and corresponding absolute 

Fourier amplitude spectra are shown for the magnetic signal. By sliding the analyzing 

time window, the time evolution of the frequency peaks was obtained. Magnetic 

signals measured at Happ = 2.0 and 5.5 kOe show increase in the Fourier amplitude 

peaking around 500–1500 ps and decaying subsequently. This reflects the delayed 

excitation with an elastic pulse. As seen in Fig. 6.9c, the Kittel mode is expected at ~ 

5 GHz for Happ = 2.0 kOe but it appears very weak in the sectioned Fourier spectra 

(Fig. 6.10a). At Happ = 5.5 kOe, in contrast, strong frequency peaks at 16 GHz and at 

higher frequencies were observed, reflecting the SAW frequencies determined by the 

array pitch p = 150 nm Fig. 6.10b). The delayed excitation of the magnetization 

precession is clearly seen in Fig. 6.10c. The absolute Fourier amplitude of the signal 

in each time section is obtained as a function of the analyzed time. Comparing to the 

standard TR-MOKE measurements with overlapped beams (solid lines), the signal 

with propagating SAWs (dashed lines) progressively increases its amplitude for the 
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time section t = 600–1100 ps, as the SAWs reach the probe region. It then reduces its 

magnitude over time. We also investigated another array with the identical element 

size and the array pitch p = 200 nm, matching that of the bars, obtaining qualitatively 

similar observations. Overall, the TR-MOKE signals with shifted pump and probe 

beams prove that the SAWs propagate in lateral directions and can be sufficiently 

strong to excite the magnetization precession. 

 

 

Fig. 6.9. (a, b) Time traces and Fourier spectra of the entire TR-MOKE signal with 

shifted pump and probe spots. The pump laser was focused on 100 nm bars with 200 
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nm pitch and the dynamics of 100 nm squares on 150 nm pitch was probed. The 

magnetic (a) and nonmagnetic (b) signals show delayed excitation. An excitation 

pulse with low frequency arrives at the probe region at around 500 ps and excites the 

precession and the surface acoustic waves in the array. (c, d) Absolute Fourier 

amplitude spectra of the magnetic (c) and nonmagnetic (d) signals. Time sections of t 

= 900–1900 ps are analyzed. 

 

 

Fig. 6.10. (a, b) Sectioned time traces and the corresponding Fourier spectra of the 

magnetic signal, measured with shifted pump and probe spots. The pump laser was 

focused on 100 nm bars with 200 nm pitch and the dynamics of 100 nm squares on 

150 nm pitch was probed. (c) Absolute Fourier amplitude (FA) traced at the 

fundamental SAW frequency at 16 GHz obtained by sliding the analyzed time 

section. The horizontal axis shows the center of analyzed time windows (600 ps 
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long). Solid lines represent the time evolution of the FA measured with overlapping 

(O) pump and probe beams (not shown). The dashed lines represent measurements 

with unoverlapped (UO) beams, whose subset is shown in (a, b). The overlapped data 

(O, solide lines) has been scaled for better visualization. 

 

6.4 Demonstration in other shapes and longer scans 

This section supplements the experimental results reported in section 6.2. 

First, the nickel elliptic disks with an array pitch p = 212 nm were measured again 

with a longer delay stage. A newer setup enabled TR-MOKE scans with up to 4 ns 

delay between the pump and probe. Fig. 6.11 presents the Fourier spectra of the same 

sample measured for a delay time up to 2.5 ns. 

As discussed in section 6.2, the Fourier spectra show a clear magnetic mode 

with the frequency increasing with the applied field Happ. It crosses and is pinned at 

the SAW frequencies, with enhanced Fourier amplitude at the crossover. Due to the 

longer scan length, the frequency resolution of the Fourier spectra is better than the 

spectra shown in Fig. 6.3. Most remarkably, the crossover of the magnetic mode with 

the fundamental SAW around 11 GHz is now split into two closely located modes 

due to the asymmetry of the elliptic disks in x and y directions, as predicted in the 

simulations and shown as the (10) modes in Fig. 6.5. This demonstrates the 

reproducibility of SAW generation with a pulsed laser and the reliability of the 

magnetoelastic simulation procedure described in section 5.4. 
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Fig. 6.11 Fourier spectra of 2.5 ns scans on nickel elliptic disks, p = 212 nm. 

 

Another nickel nanomagnet array with different shape was also measured. 125 

nm nickel squares with the pitch p = 250 nm (Fig. 6.1c) were characterized using the 

same experimental procedure and the resulted Fourier spectra are shown in Fig. 6.12. 
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Unlike the elliptic disks (Fig. 6.11), the array of square nanomagnets showed only 

one fundamental SAW mode at 10.1 GHz. The magnetic response exhibits both 

center and edge modes and makes two crossovers with a SAW mode. This is most 

clearly seen at 10 GHz at 3 and 3.75 kOe in Fig. 6.12a, as indicated by two upward 

arrows. 
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Fig. 6.12 Fourier spectra of 2.5 ns scans on 125 nm nickel squares, p = 250 nm. In 

(a), the arrows indicate the position of crossover of the center and edge modes with 

the fundamental SAW mode. 

 

6.5 Summary 

We have investigated the magnetoelastic response of densely packed nickel 

nanomagnet arrays strongly coupled to propagating SAWs via the magnetoelastic 

effect. Both mechanical and magnetic oscillation modes are excited by an optical 

pump pulse and are found to be strongly coupled to one another. When the intrinsic 

oscillation frequencies of the two modes are brought near degeneracy by adjusting the 

applied field, the magnetization precession is pinned at the SAW frequencies and 

exhibits an enhancement in the Fourier amplitude, reflecting prolonged oscillation 

modes in the time domain, driven by the effective magnetoelastic field. Even when 

the magnetostatic interelement interaction is negligible, the array geometry can 

crucially determine the magnetic response via the elastic mode, primarily determined 

by the array pitch and the elastic properties of the substrate material. The finite 

element analysis of the elastic motion and micromagnetic simulations taking the 

magnetoelastic coupling into account are in excellent agreement with the 

experimental observations, reproducing the correct frequencies of the RWs and 

SSLW, the pinning of the magnetic modes the SAW frequencies, and the Fourier 

amplitude enhancement at the crossover fields.  
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7. Pinning width of the magnetoelastically driven 

magnetization precession 

In this chapter, we will discuss the range of the applied field where the 

magnetization precession is pinned by the magnetoelastic coupling with surface 

acoustic waves. By characterizing various materials with different magnetic and 

magnetoelastic parameters, we have characterized this pinning width as a function of 

these parameters. We found that it depends on the damping parameter. This ensures a 

new and accurate method to quantify the phenomenological damping parameter of 

patterned nanomagnets where fitting of time traces is restricted by the presence of 

multiple magnetoelastic modes. Moreover, this technique provides exciting 

possibilities for determining damping which is notoriously difficult in nanopatterned 

magnetic structures. We demonstrate this damping characterization in nickel, cobalt, 

and TbFe nanomagnet arrays and verify its validity by comparison to fitting of time 

traces and by micromagnetic simulations. 

7.1 Introduction 

The damping characteristics of nanostructured magnets determine critical 

operational characteristics of spintronic devices and its experimental characterization 

is of great practical interest for their development. To list a few examples, in spin 

transfer torque magnetic random access memories (STT-MRAMs), the damping 

parameter is directly proportional to the threshold switching current density and limits 

the energy consumption of the device [15,211]. It also plays an important role in 
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heat-assisted magnetic recording, determining the critical device characteristics such 

as the switching time [23] and transition jitters [212]. 

Along with the ferromagnetic resonance (FMR), commonly used for damping 

characterization, the time-resolved magneto-optic Kerr effect (TR-MOKE) has 

successfully been demonstrated to estimate the damping parameters in several 

ferromagnetic films [91,104,133,162–164,213,214] and isolated individual 

nanomagnets [71]. By fitting TR-MOKE time traces with a damped harmonic 

oscillation as discussed in section 3.4, an effective damping parameter is obtained. In 

contrast to the FMR measurements, the time-domain optical technique probes a 

smaller region of samples with high spatial resolution [161,165]. However, the 

analysis is complicated by the presence of extrinsic damping mechanisms, 

dominating the energy dissipation at low applied field. An accurate estimate of the 

intrinsic Gilbert damping can only be achieved at large fields [71,104,162–164]. In 

patterned nanomagnet arrays, as seen in Chapter 6, the presence of multiple 

SAW-driven magnetoelastic modes further complicates the time-domain damping 

analysis, making it very challenging, if not impossible. 

In this Chapter, we present a novel empirical method to measure the Gilbert 

damping in patterned nanomagnet arrays, utilizing the strong magnetoelastic 

interaction demonstrated in Chapter 6. The pinning width ΔHP in various materials of 

large magnetoelastic coefficients Bi (i = 1 and 2 denoting coefficients for normal and 

shear strain, as defined in Eq. (5.3.1)) were investigated, in order to quantify the 

effect of the magnetoelastic coefficients over the magnetization dynamics. However, 
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as will be discussed in the following sections, it was found that the pinning width ΔHP 

depends only on the damping parameter α, but not on Bi. Conversely, this provides a 

convenient method to characterize the damping from complicated magnetoelastic 

dynamics of nanomagnets.  

Specifically, nanomagnet arrays of cobalt and TbFe alloy were prepared in 

addition to the nickel samples. Table 7.1 summarizes the characteristics of the 

parameters. They were chosen for their large magnetoelastic coefficients Bi about 

three times as large as that of nickel (Bi = 7.85 [184], 25.6 [215], and -22.5 [216] 

MJ/m3 for nickel, cobalt, and TbFe, respectively). Like the nickel nanomagnets 

characterized in Chapter 6, 30-nm-thick nickel and cobalt squares, with an average 

element size of 125 and 160 nm, respectively, were fabricated with the electron-beam 

lithography, electron-beam evaporation and liftoff process on an AR coated silicon 

wafer. Although identical pitches were used, the actual size of the nanoelements 

turned out slightly different for different materials as shown in Fig. 7.1. An 

18.7-nm-thick Tb0.25Fe0.75 film with 5 nm Pt capping layer was deposited on a 100 nm 

SiO2 layer and was milled into an array of 150 nm dots using a focused ion beam. 

Despite the milling pattern with square elements, the actual sample turned out to have 

rounder corners as shown in Fig. 7.1c. As will be discussed below, the magnetization 

dynamics in these nanomagnets was dominated by the Kittle (center) mode and the 

difference in the shape of individual nanomagnets made a negligible effect. 

 magnetoelastic coefficients Bi damping α 

Nickel low low 
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Cobalt high low 

TbFe high low 

Table 7.1. Qualitative summary of the magnetoelastic coefficients Bi and the damping 

parameter α of the sample materials. 

 

 

Fig. 7.1. Scanning electron micrographs of nickel (a), cobalt (b), and TbFe (c) arrays. 

Nickel and cobalt arrays were fabricated with electron beam lithography and liftoff 

process. The TbFe dots were milled using a focused ion beam. 

 

7.2 Theory of magnetization precession magnetoelastically driven by 

SAWs 

As discussed in section 5.4, the magnetoelastic contribution in TR-MOKE 

measurements on nanomagnet arrays works as a driving effective field HMEL 

oscillating at the SAW frequencies determined by the array geometry and the elastic 

properties of the materials. As explained in Chapter 6, the backaction of the 
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magnetization dynamics on the elastic system is negligible in this measurement setup 

and a simple model with additional effective field terms suffices to interpret 

TR-MOKE spectra. The SAWs have a slower damping rate than the decay rate of the 

magnetization precession for the materials discussed in this chapter. Therefore, the 

magnetoelastic field can be treated as a pseudo-steady AC field. We assume the 

slowly varying envelope approximation and the linearity of the system. Under these 

assumptions, the magnetoelastic field is modeled as an AC driving field with steady 

magnitude in the time scale on the problem and the multiple frequency components of 

the SAWs can be treated separately. We obtain the linewidth of the 

magnetoelastically coupled mode driven by a SAW by deriving the magnetic 

susceptibility χ [108 pp. 17-22]. Despite the exotic mechanical nature of the 

excitation field, the mathematical discussion below is commonly encountered in 

characterization of the FMR linewidth. First, we linearize the Landau-Lifshitz-Gilbert 

equation without allowance of the damping term and derive the frequency 

dependence of the χ for the small amplitude limit. Then, we will introduce the 

damping in the form of the LLG equation (2.2.2) and modify the frequency 

dependence of χ.  

The magnetization M and the effective field Heff (2.2.6) are decomposed into 

the steady equilibrium part and the alternating part as 

M =M0 +ΔM(t)  

H = Heff,0 +ΔH(t) , (7.2.1) 
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Furthermore, we assume sinusoidal time-dependence of MAC and Heff,AC with 

complex amplitudes MAC and Heff,AC as 

MAC =MAC exp(iωt)  

H eff,AC = Heff,AC exp(iωt)  (7.2.2) 

whose real parts are ΔM(t) and ΔH(t). Assuming Heff,AC << Heff,0  and MAC <<M0 , 

the LLG equation (2.2.2) without the damping term 

∂M
∂t

= −γM ×Heff  (7.2.3) 

is linearized as 

∂MAC

∂t
+γMAC ×Heff,0 = −γM0 ×Heff,AC  (7.2.4) 

by neglecting the products of the alternating parts. We have also used the relation 

M0 ×Heff,0 = 0  at the equilibrium. With the complex amplitudes (7.2.2), Eq. (7.2.4) 

becomes 

iωMAC +γMAC ×Heff,0 = −γM0 ×Heff,AC . (7.2.5) 

As (7.2.5) shows, only the components of Heff,AC perpendicular to the directions of 

M0 and Heff,0 drive the magnetization. Here, we define the z axis as the direction of 

M0 and Heff,0 and (7.2.5) can be projected on to the Cartesian axes. The solution of the 

system is  

MAC,x = χHeff,AC,x + iχaHeff,AC,y  

MAC,y = −iχaHeff,AC,x + χHeff,AC,y  

MAC,z = 0 , (7.2.6) 
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or in tensor form MAC =

χHeff,AC  with 


χ =

χ iχa 0
−iχa χ 0
0 0 0

"

#

$
$
$
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&

'
'
'
, (7.2.7) 

where 

χ =
γ 2MSHeff,0

2

γ 2Heff,0
2 −ω 2

 

χa =
γMSω

γ 2Heff,0
2 −ω 2

 (7.2.8) 

and ωH = γHeff,0 . 

With the damping in the Gilbert form (2.2.2), the Landau-Lifshitz-Gilbert 

equation can be linearized as 

iωMAC +γMAC ×Heff,0 +
iαω
MS

MAC ×M0 = γM0 ×Heff,AC . (7.2.9) 

(7.2.9) can be obtained by replacing ωH = γHeff,0  in (7.2.5) with γHeff,0 + iαω . 

Therefore, the solution of (7.2.9) is obtained by the same replacement. The magnetic 

susceptibility now becomes complex ( χ = !χ + i !!χ  and χa = !χa + i !!χa ) as 

!χ =
γMSωH[ωH

2 − (1−α 2 )ω 2 ]
[ωH

2 − (1+α 2 )ω 2 ]2 + 4α 2ω 2ωH
2

 

!!χ =
αγMSω[ωH

2 + (1+α 2 )ω 2 ]
[ωH

2 − (1+α 2 )ω 2 ]2 + 4α 2ω 2ωH
2

 

!χa =
γMSω[ωH

2 − (1+α 2 )ω 2 ]
[ωH

2 − (1+α 2 )ω 2 ]2 + 4α 2ω 2ωH
2

 

!!χa = 2αγMSω 2ωH . (7.2.10) 
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The resonance condition is given by 

ω =
ωH

1+α 2
 (7.2.11) 

and gives 

!!χ res =
γM0

2αω
 

!!χa,res =
γM0

2αωH
≈ !!χ res . (7.2.12) 

Around the resonance, the magnetic susceptibility (7.2.10) is approximated as 

!χ
!!χ res
≈

!χa

!!χ res
≈

β
1+β 2

 

!!χ
!!χ res
≈

!!χa

!!χ res
≈

1
1+β 2

, (7.2.13) 

where β = (Heff,0 −ω γ ) (αω)  for a constant ω = 2πfSAW. (7.2.13) represents a 

Lorentzian resonance curve. At a sufficiently large external field Happ where the 

change in Heff,0 is equal to that of Happ, Eq. (7.2.13) predicts a Lorentz resonance 

curve of the SAW-driven magnetoelastic mode with the pinning width 

ΔHP =
4πα fSAW

γ
, (7.2.14) 

defined as the full width half maximum (FWHM) of the imaginary part !!χ . 

Therefore, when the magnetization is driven by a pseudo-steady SAW and when we 

can neglect its spatially nonuniform distribution, the pinning linewidth ΔHP depends 

only on the damping parameter α and not on the magnitude of HMEL. Thus, ΔHP does 
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not depend on the magnetoelastic coefficients Bi. Conversely, Eq. (7.2.14) can be 

used to obtain the damping parameter as 

α =
γΔHP

4π fSAW
. (7.2.15) 

The subsequent sections demonstrate the validity of (7.2.15) and establish it as the 

basis for experimentally characterizing α in nanopatterned samples, avoiding the 

difficulties associated with a conventional time-domain method. 

7.3 TR-MOKE results 

7.3.1 Fourier spectra of TbFe, nickel, and cobalt arrays 

Fig. 7.2 shows representative TR-MOKE signals obtained from the TbFe 

array, measured at the field orientation of θH = 60° from the surface normal. The top 

row presents the time traces after background correction and the corresponding 

Fourier amplitude spectra measured at the applied field of Happ = 2.25 kOe. Similar to 

the TR-MOKE results in Chapter 6, the sum channel shows prolonged oscillations, 

mainly corresponding to the nonmagnetic SAW peak at fSAW = 17.8 GHz. This 

frequency is determined by the velocity of the SAWs in the substrate layer (100 nm 

SiO2). The time trace of the magnetic (difference) signal shows a heavily damped 

oscillation with a field-dependent frequency in the first ~250 ps, corresponding to the 

Kittel mode at 9.1 GHz. We note that the intrinsic Kittel mode could not be observed 

in the unpatterned TbFe film, suggesting that this magnetic mode in the nanomagnet 

array is magnetoelastically excited by the thermal expansion of the nanomagnets, 
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rather than the effective field pulse associated with the spin temperature. After it 

decays, the SAW-coupled magnetoelastic mode dominates the magnetization 

response, resulting in the peak at 17.8 GHz in the Fourier spectrum. The Fourier 

amplitude (FA) spectra with varying field Happ are summarized in the bottom row. 

Again, as discussed in Chapter 6, the sum signal spectra are independent of the 

applied field and the difference signal shows the magnetic response strongly altered 

by the SAWs. When the intrinsic Kittel mode seen at the low field range crosses the 

17.8 GHz SAW frequency, a wide pinning of the precession and strong enhancement 

of the Fourier amplitude is observed. The light silicon oxide layer is affected more by 

mass loading of the nanomagnets and results in some low amplitude SAW modes 

below 15 GHz.  
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Fig. 7.2. (Top) Representative TR-MOKE time traces after background correction 

and the corresponding Fourier amplitude spectra, measured on the TbFe arrays at Happ 

= 2.25 kOe applied at θH = 60° from the surface normal. (Bottom) Fourier amplitude 

spectra at varying Happ. 

 

To quantify the range of Happ where the precession is dominated by the 

magnetoelastic field HMEL from SAWs, we analyzed sections of the TR-MOKE time 

traces after the intrinsic magnetic mode has damped out. Namely, Fourier transform 

was applied to time sections of t = 400–1100 ps as shown in Fig. 7.3. The starting 

time of the analyzed sections is more than four times as late as the characteristic 

decay time of the intrinsic magnetic modes and ensures that the magnetization 
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dynamics are exclusively driven by the pseudo-steady magnetoelastic field HMEL in 

the analyzed time sections. This observation provides stronger evidence of the 

magnetoelastically coupled dynamics beyond leakage of SAW oscillations observed 

in the A-B signal due to imperfect setup alignment. When this condition is not met, 

the Fourier amplitude of the intrinsic magnetic mode is superimposed as well and 

makes the pinning appear wider. While the Fourier spectra (Fig. 7.3a, b) do not show 

the intrinsic Kittel mode with varying frequency, the magnetoelastic mode pinned at 

fSAW remains in the spectra due to its longer decay time and shows enhanced 

amplitude at the crossover field. The complex Fourier amplitude of the magnetic 

signal ŵM = ŵM exp(iφM)  at varying Happ was traced at fSAW = 17.8 GHz as indicated 

with the dashed line in Fig. 7.3a. To adjust the phase relative to the nonmagnetic 

signal and to compensate for small drifts in the laser power, ŵM  was scaled to the 

likewise traced nonmagnetic signal ŵNM = ŵNM exp(iφNM )  as  

ŵM,adj f = fSAW =
ŵM
ŵNM f = fSAW

=
ŵM
ŵNM

exp(−iφNM )
f = fSAW

. (7.3.1) 

The real and imaginary parts are normalized to the range of [-1,1] and plotted in Fig. 

7.3c. Instead of simply tracing the Fourier amplitudes ŵM  at fSAW, one can also 

integrate it over some frequency range (~ 1 GHz) but it does not improve the 

noisiness of the outcome in Fig. 7.3c. By minimizing the sum of the square error with 

the Lorentzian shape for both real and imaginary parts, the pinning width ΔHP = 3154 

Oe was obtained. Note that the absolute Fourier amplitude, as presented in Fig. 7.3a, 

has a somewhat wider peak at fSAW and one has to decompose it to the real and 
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imaginary parts for accurate estimation. By substituting this ΔHP value to Eq. 

(7.2.15), the Gilbert damping is estimated to be α = 0.25 for the patterned TbFe 

nanomagnets. This number coarsely agrees with the expected damping in literature 

[106] and demonstrates the extraction of damping values from complicated 

magnetoelastically-driven magnetization dynamics. 

 

 

Fig. 7.3. (a, b) Absolute Fourier amplitude apectra of the magnetic (a) and (b) 

nonmagnetic signals, measured on the TbFe milled dots with the field applied at θH = 

60° from the surface normal. The time section t = 400–1100 ps was analyzed. The 

horizontal dashed line indicates the fundamental SAW frequency at fSAW = 17.8 GHz. 

(c) Normalized complex Fourier amplitude of the magnetic signal traced at fSAW, after 

phase adjustment and scaling with the nonmagnetic signal. The circles and squares 

represent the real and imaginary parts, respectively. The solid and dashed lines are 

Lorentzian fits. The obtained pinning width ΔHP and the Gilbert damping estimated 

with Eq. (7.2.15) are also displayed. 
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To rule out the possibility that the large magnetoelastic coefficients Bi of TbFe 

contribute to the large ΔHP, we investigated different materials with various Bi and α, 

namely the polycrystalline nickel and cobalt nanomagnets presented in section 7.1 

(Fig. 7.1 and Table 7.1). While nickel is less magnetoelastic (Bi = 7.85 MJ/m3), cobalt 

has large magnetoelastic coefficients (Bi = 25.6 MJ/m3 [215]) comparable to TbFe (Bi 

= -22.5 MJ/m3). 30-nm-thick nickel and cobalt squares with average sizes of 125 and 

160 nm, respectively, and array pitch p = 250 nm were deposited with the e-beam 

lithography, e-beam evaporation, and liftoff process on a substrate with a 

110-nm-thick hafnium oxide antireflection (AR) coating. The nickel and cobalt arrays 

were measured under the field applied at θH = 30° and characterized in the same 

manner as the TbFe. Time sections of t = 1750–2450 ps were analyzed, where the 

precession was exclusively driven by the SAWs. Again, the starting time of the 

analyzed time sections was chosen to be more than four times larger than the 

characteristic exponential decay time of the magnetization precession observed in the 

films. 

The resulting Fourier spectra for the nickel and cobalt arrays are presented in 

Fig. 7.4 and 7.5. Fig. 7.4c and 7.5c show the complex Fourier amplitudes traced at the 

fundamental SAW frequency fSAW = 10.1 GHz. The difference in the fundamental 

SAW frequencies in each array (fSAW = 10.1 GHz for nickel and cobalt and 17.8 GHz 

for TbFe) is attributed to the SAW velocity in different substrates structures (a 

100-nm-thick SiO2 for the TbFe array instead of the 110-nm-thick hafnium oxide AR 

coating layer in nickel and cobalt arrays). After adjusting its phase and magnitude 
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with the sum signal, the real and imaginary parts exhibit Lorentzian curves around the 

crossover field. As seen in Fig. 7.4c, the complex Fourier amplitude of the nickel 

array at fSAW was fitted well with two equal-width Lorentzian peaks, corresponding to 

the crossover of the edge and center modes. For the cobalt array (Fig. 7.5), the fit was 

carried out with more measurements with smaller Happ steps than in the nickel array, 

in order to resolve the narrower pinning width ΔHP with smaller signal to noise ratio. 

The pinning width for the nickel and cobalt arrays were found similar at ΔHP = 388 

and 385 Oe, respectively, despite the Bi of cobalt being more than three times as large 

as that of nickel. They both are distinctly smaller than the ΔHP = 3154 Oe observed in 

the TbFe array, which has a comparable Bi as Co. Therefore, as predicted by Eq. 

(7.2.14), ΔHP is characterized by the damping parameter α and not by Bi. Substituting 

the observed ΔHP values in Eq. (7.2.15), the damping parameters were estimated as α 

= 0.059 for both nickel and cobalt nanomagnets and found close to the expected 

value.  
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Fig. 7.4. (a, b) Absolute Fourier amplitude spectra of the magnetic (a) and (b) 

nonmagnetic signals measured on the nickel squares with the field applied at θH = 

30º. Time section t = 1750–2450 ps was analyzed. The dashed line indicates the 

fundamental SAW frequency at fSAW = 10.1 GHz. (c) Normalized complex Fourier 

amplitude of the magnetic signal traced at fSAW, after phase adjustment and scaling 

with the nonmagnetic signal. The circles and squares represent the real and imaginary 

parts, respectively. The solid and dashed lines are Lorentzian fits. Two equal-width 

Lorentzian peaks were assumed for the fit, corresponding to the crossover of the 

center and edge modes. The obtained pinning width ΔHP and the Gilbert damping 

parameter α estimated with Eq. (7.2.15) are also displayed. 

 

 

Fig. 7.5. (a, b) Absolute Fourier amplitude spectra of the magnetic (a) and (b) 

nonmagnetic signals measured on the cobalt squares with the field applied at θH = 

30º. Time section t = 1750–2450 ps was analyzed. The dashed line indicates the 

fundamental SAW frequency at fSAW = 10.1 GHz. (c) Normalized complex Fourier 
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amplitude of the magnetic signal traced at fSAW, after phase adjustment and scaling 

with the nonmagnetic signal. The circles and squares represent the real and imaginary 

parts, respectively. The solid and dashed lines are Lorentzian fits. The obtained 

pinning width ΔHP and the Gilbert damping parameter estimated with Eq. (7.2.15) are 

also displayed. 

 

7.3.2 Comparison to damping analysis by fitting time traces 

For verification of the damping estimate with the pinning width ΔHP as 

described in the previous section, we compared the results to the damping estimate by 

fitting the time traces with the damped harmonic oscillation. As illustrated in Fig. 

7.2a, the intrinsic magnetic oscillation of TbFe appears only in the first few 100 ps 

due to its large damping. In this case, we can only use a short time section for fitting 

and digital filtering described in section 3.4 is prone to induce an error by changing 

the waveform of the beginning of the time traces via the end effect, which is always 

found in the filtered signal. Instead of filtering, separation of the intrinsic magnetic 

mode from the SAW-coupled magnetoelastic oscillations was achieved by analyzing 

only the first few 100 ps of the time traces. Without digital filtering and background 

correction, the beginning part of time traces was fitted with a damped harmonic 

oscillation with the exponentially decaying background term and a constant offset 

y(t) = Aexp −
t
τ

"

#
$

%

&
'cos 2π ft +φ( )+ A1 exp −

t
τ1

"

#
$

%

&
'+ A0 . (7.4.1) 

Fig. 7.6a presents the fitting examples of TbFe time traces.  
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Fig. 7.6. (a) Representative time traces and fits of TbFe array. No background 

correction and filtering were applied in order to maintain the waveform in the first 

few 100 ps. (b) Representative time traces and fits of a SiN-coated nickel array. A 65 

nm SiN coating was deposited to suppress SAW excitation. Butterworth filtering with 

3 dB passband width of 6 GHz was applied (red open circles) before fitting with a 

damped oscillation (blue solid curves). The open squares represent the raw data. 

 

Fitting of time traces for the nickel and cobalt arrays requires more elaborate 

care. Due to their relatively small damping, the intrinsic magnetic precession could 

not be separated from the SAW-driven magnetoelastic oscillations even with filtering, 

unlike TbFe where the intrinsic magnetic precession distinctly dominates the first few 

100 ps of the magnetic signal. Their apparent damping obtained from time-domain 

analysis appeared much smaller than the expected value, especially at the crossover 
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field. The oscillation magnitude sometimes even increased over time, resulting in the 

negative apparent damping. To avoid this problem, a 65 nm silicon nitride coating 

was deposited on the nickel array. The added dielectric layer suppresses the excitation 

of SAWs and enables more reliable characterization of the Gilbert damping from the 

TR-MOKE time traces. The signal, however, degraded because of a broken AR 

condition due to the additional layer. There is room for optimizing the MOKE signal 

taking this suppression dielectric layer into account. Fig. 7.6b shows representative 

fits of the time traces of the coated nickel array. The Butterworth filter (3 dB 

passband width of 6 GHz) was applied in order to reject the noise and small remnant 

leakage of SAWs in the difference channel, as well as to eliminate the low frequency 

component induced by an error in background correction. Filtered data was fitted 

with a damped harmonic oscillation 

y(t) = Aexp −
t
τ

"

#
$

%

&
'cos 2π ft +φ( )+ A0 . (7.4.2) 

 

 

Fig. 7.7. Fitting results of the coated nickel and TbFe time traces and estimate of the 

effective damping. (a, b) Frequency (a) and decay time (b) obtained by the fit of the 
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coated Ni and TbFe time traces. (c) Estimated effective damping αeff by the fitting 

results. The horizontal dashed lines indicate the intrinsic damping values estimated as 

the limit of αeff at sufficiently high Happ. 

 

Fig. 7.7 shows the fitted frequency f and decay time τ for the coated nickel 

and TbFe nanomagnets. Using these fitting results, the effective damping parameter 

αeff = 1/(2πfτ) [104] was calculated and is presented in Fig. 7.7c. αeff in both coated 

nickel and TbFe turned out large for the low field range. This is due to extrinsic 

damping effects, such as the anisotropy dispersion [162,163] or incoherent spin 

waves [104,164], and is commonly observed in TR-MOKE time traces. At high 

fields, however, αeff converges to a constant values of 0.25 at Happ > 1.75 kOe for 

TbFe and 0.07 at Happ > 4.0 kOe for the coated nickel. These values are expected to 

be close to the intrinsic Gilbert damping [162,163] and are in excellent agreement 

with the estimate by the pinning width characterization, obtained in the previous 

section. Above Happ = 3.5 kOe, the magnitude of the intrinsic magnetic oscillation in 

TbFe time traces became small and we could not fit them reliably. Nevertheless, αeff 

stays at a constant value for Happ = 1.75–3.25 kOe and indicates that it has reached the 

intrinsic value. TbFe measurements were repeated at the field orientation of θH = 30° 

at which the nickel and cobalt arrays were characterized. The fitting of time traces 

yielded similar results of αeff converging at 0.25 at sufficiently large Happ. 

7.4 Demonstration of the concept with simulations 
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For further verification of the damping estimate with the pinning width 

characterization, a series of micromagnetic simulations with varying parameters was 

carried out. An array of 125×125×30 nm3 squares on a 110 nm hafnium oxide AR 

coating layer with 250 nm pitch is simulated with the magnetoelastic field from 

SAWs as described in section 5.4. The elastic parameters were taken from the nickel 

arrays on hafnium oxide AR coating layer. Ms = 350 kA/m and the free electron 

gyromagnetic ratio γ = 2.211×105 m/A/s were used. The Gilbert damping α and the 

magnetoelastic coefficients Bi were changed in order to investigate the effect of each 

parameter. The time evolution of mz is computed for 2.5 ns and the Fourier transform 

was performed with the time section of t = 1750–2450 ps as in the same manner as 

the experiments in section 7.3.1. 
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Fig. 7.8. (a–c) Simulated absolute Fourier spectra for various magnetoelastic 

coefficients Bi, while keeping an identical value of α = 0.1. A time section of t = 

1750–2450 ps was analyzed. (d–f) Calculated complex Fourier amplitude at fSAW 

(symbols) and the fit with two Lorentzian peaks (lines). 
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Fig. 7.9. (a–c) Simulated absolute Fourier spectra for various damping parameters α, 

while keeping identical magnetoelastic coefficients Bi = 8 MJ/m3. A time section of t 

= 1750–2450 ps was analyzed. (d–f) Calculated complex Fourier amplitude at fSAW 

(symbols) and the fit with two Lorentzian peaks (lines). 

 

Fig. 7.8 shows the simulated spectra of mz with varying Bi = 8×104–8×107 

J/m3 and constant α = 0.1. As in the colormaps in Fig. 7.8a–c, the spectra show 

pinning at fSAW = 10.1 GHz SAW frequency. The two peaks at 3.25 and 4.75 kOe 

mark the crossover of the edge mode and center mode with the fundamental SAW 

frequency. The bottom row presents the complex Fourier amplitudes at fSAW, after 

adjustment of their phase and magnitude, as described in section 7.3.1 but using the 
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driving displacement uz at the center of the squares instead of the nonmagnetic signal 

as in the experiments. The obtained pinning width ΔHP and the damping estimated by 

Eq. (7.2.15) are also shown. In Fig. 7.9, the magnetoelastic response was simulated 

with varying Gilbert damping α while keeping Bi = 8×106 J/m3 constant. In contrast 

to the above results with varying Bi (Fig. 7.8), the pinning width ΔHP shows clear 

dependence on α. The resulted pinning width ΔHP and the damping estimate are 

summarized in Fig. 7.10. They show that ΔHP is proportional to α but unaffected by 

changes in Bi over three orders of magnitude, as suggested by the observations in 

experimental data on nickel, cobalt, and TbFe in section 7.3. It also shows that the 

estimated α closely agrees with the Gilbert damping values specified in the 

simulations and further verifies the accuracy of damping characterization with the 

pinning width ΔHP. 

 

 

Fig. 7.10. Plots of estimated pinning width ΔHP and α as functions of the 

magnetoelastic coefficients Bi and the Gilbert damping α specified in the simulations. 
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From ΔHP, α was estimated with Eq. (7.2.15) and displayed with the second vertical 

axes. 

 

7.5 Summary 

The magnetoelastic dynamics of the patterned nanomagnets of various 

materials were investigated. Contrary to the original expectation that the high 

magnetoelastic coefficients Bi would lead to strong dominance of the SAWs over a 

wider field range, the pinning width of the precession frequency was found 

independent of Bi. Instead, it was shown to depend solely on the phenomenological 

damping parameter α of the nanomagnets. The finding was supported by the 

magnetic susceptibility for small amplitude oscillation with pseudo-steady HMEL as 

the driving field as well as by micromagnetic simulations. Conversely, this 

demonstrates accurate estimation of the intrinsic damping in patterned nanomagnet 

arrays where the SAWs heavily complicate magnetization dynamics and other 

experimental techniques are restrictive.  
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8. Summary 

In this thesis, we discussed the measurements and modeling of the 

nanopatterned transition metal magnet arrays, with the emphasis on the magnetostatic 

and magnetoelastic effects in closely located nanomagnets. Dynamics of nanomagnet 

arrays, distinctly different from the bulk materials, were probed using all-optical 

TR-MOKE setup, complemented with micromagnetic modeling.  

In Chapter 4, we discussed the magnetization response and the magnetostatic 

interelement interactions probed with the dynamic separation technique. Using the 

frequency-domain information, the magneto-optical signals, composed of responses 

from many nanomagnets, were separated into subgroups of nanomagnets. We 

characterized arrays of identically shaped nanomagnets, oriented along orthogonal 

directions. Responses of individual subgroups were resolved beyond the 

diffraction-limited spatial resolution. With micromagnetic simulations, the 

magnetostatic effect of one subgroup to the other was modeled, correctly reproducing 

the experimental observations. Relatively small effect of the dipole field from the 

neighboring elements was attributed to the smaller total magnetic moment of thinner 

nanomagnets than our previous reports [81]. The technique demonstrated the ability 

of differentiating the identical nanomagnets within arrays. Suggested future work 

involves elements with identical shape and orientation, made of different materials, 

for characterizing a single magnet embedded in a dense array. If the difficulty for 

fabricating such array is resolved, single nanomagnets may be evaluated in a realistic 

magnetostatic environment.  
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The following chapters were devoted for characterization of the 

magnetoelastic dynamics in nanostructures. Preceding studies on magnetoelastic 

dynamics were limited to simple configurations due to mathematical complexity. By 

carefully eliminating intermixing of magnetic and nonmagnetic TR-MOKE signals, 

we proved strong coupling between the magnetic and elastic oscillation modes, 

simultaneously excited by the pump laser pulse. A numerical approach was developed 

for modeling their coupled response. By including an additional magnetoelastic 

contribution, micromagnetic simulations reproduced experimental findings with 

excellent accuracy. This demonstration provided crucial pieces of knowledge and 

implications about the ultrafast magnetization dynamics in nanomagnet arrays. First 

of all, the strong magnetoelastic effect indicates the importance of elastic design via 

sample geometry. For suppressing or avoiding this effect in order to observe the 

purely magnetic response, one must be aware of the eminent presence of the 

magnetoelastic coupling. Conversely, the magnetoelastic effect can also be utilized 

for signal enhancement and magnetization manipulation, as demonstrated in the last 

chapter. Finally, the numerical simulation procedure developed for this analysis is 

applicable to a broader range of problems with arbitrary structures. 

Utilizing the validated measurement and modeling techniques for 

magnetoelastic dynamics, we developed a novel experimental method to characterize 

the phenomenological damping parameter of nanomagnet arrays. The magnetoelastic 

effective field acted as a pseudo-steady alternating field and drove the magnetization 

precession. By scanning the external field, the Fourier amplitude of the 
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magnetoelastic mode exhibited a Lorentz resonance curve and the damping parameter 

was accurately characterized from its linewidth. The validity of the method was 

verified through comparison to another experimental method and micromagnetic 

modeling with magnetoelastic contributions. The new method maintains advantages 

of TR-MOKE—a high spatial resolution and high sensitivity for small-sized 

samples—while avoiding the usual difficulties associated with the time-domain 

analysis. This technique can be used for evaluating critical operation characteristics of 

spintronic devices. For example, damping evaluation in CoFeB magnetic tunneling 

junctions will yield an important insight about their performance under the influence 

of small size and fabrication defects.  



 177 

References 

[1] T. Valet, and a Fert, “Theory of the perpendicular magnetoresistance in magnetic 
multilayers,” Phys. Rev. B 48, 7099–7113 (1993). 

[2] A. Fert, J.-L. Duvail, and T. Valet, “Spin relaxation effects in the perpendicular 
magnetoresistance of magnetic multilayers,” Phys. Rev. B 52, 6513–6521 (1995). 

[3] M. N. N. Baibich, J. M. M. Broto, A. Fert, F. N. Van Dau, and F. Petroff, “Giant 
Magnetosresistance of (001)Fe/(001)Cr Magnetic Superlattices,” Phys. Rev. Lett. 61, 
2472–2475 (1988). 

[4] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, “Enhanced 
magnetoresistance in layered magnetic structures with antiferromagnetic interlayer 
exchange,” Phys. Rev. B 39, 4828–4830 (1989). 

[5] T. Miyazaki, and N. Tezuka, “Giant magnetic tunneling effect in Fe/Al2O3/Fe 
junction,” J. Magn. Magn. Mater. 139, L231–L234 (1995). 

[6] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, “Large 
magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions,” 
Phys. Rev. Lett. 74, 3273–3276 (1995). 

[7] S. N. Piramanayagam, “Perpendicular recording media for hard disk drives,” J. 
Appl. Phys. 102, 011301 (2007). 

[8] S. Iwasaki, “Perpendicular Magnetic Recording,” IEEE Trans. Magn. 16, 71–76 
(1980). 

[9] R. Wood, “Future hard disk drive systems,” J. Magn. Magn. Mater. 321, 555–561 
(2009). 

[10] J. K. W. Yang, Y. Chen, T. Huang, H. Duan, N. Thiyagarajah, H. K. Hui, S. H. 
Leong, and V. Ng, “Fabrication and characterization of bit-patterned media beyond 
1.5 Tbit/in2.,” Nanotechnology 22, 385301 (2011). 

[11] C. Chappert, A. Fert, and F. N. Van Dau, “The emergence of spin electronics in 
data storage.,” Nat. Mater. 6, 813–823 (2007). 

[12] R. E. Fontana, G. M. Decad, and S. R. Hetzler, “Volumetric density trends 
(TB/in.3) for storage components: TAPE, hard disk drives, NAND, and Blu-ray,” J. 
Appl. Phys. 117, 17E301 (2015). 

[13] L. Néel, Ann. Geophys. (C.N.R.S.) 5, 99 (1949). 



 178 

[14] W. F. Brown, “Thermal fluctuations of a single-domain particle,” Phys. Rev. 
130, 1677–1686 (1963). 

[15] J. Z. Sun, “Spin-current interaction with a monodomain magnetic body: A model 
study,” Phys. Rev. B 62, 570–578 (2000). 

[16] G. Fiedler, J. Fidler, J. Lee, T. Schrefl, R. L. Stamps, H. B. Braun, and D. Suess, 
“Direct calculation of the attempt frequency of magnetic structures using the finite 
element method,” J. Appl. Phys. 111, 093917 (2012). 

[17] C. A. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. 
Walsh, M. C. Abraham, and R. J. Ram, “Fabrication of patterned media for high 
density magnetic storage,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 17, 
3168 (1999). 

[18] B. D. Terris, and T. Thomson, “Nanofabricated and self-assembled magnetic 
structures as data storage media,” J. Phys. D. Appl. Phys. 38, R199–R222 (2005). 

[19] A. Kikitsu, “Prospects for bit patterned media for high-density magnetic 
recording,” J. Magn. Magn. Mater. 321, 526–530 (2009). 

[20] M. A. Seigler et al., “Heat Assisted Magnetic Recording with a Fully Integrated 
Recording Head,” Proc. SPIE 6620, edited by B. Bell and T. Shimano, 66200P 
(2007). 

[21] M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, 
G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat Assisted Magnetic Recording,” Proc. IEEE 
96, 1810–1835 (2008). 

[22] W. A. Challener et al., “Heat-assisted magnetic recording by a near-field 
transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009). 

[23] X. Wang, K. Gao, H. Zhou, A. Itagi, M. Seigler, and E. Gage, “HAMR 
Recording Limitations and Extendibility,” IEEE Trans. Magn. 49, 686–692 (2013). 

[24] D. Weller, G. Parker, O. Mosendz, E. Champion, B. Stipe, X. Wang, T. 
Klemmer, G. Ju, and A. Ajan, “A HAMR media technology roadmap to an areal 
density of 4 Tb/in2,” IEEE Trans. Magn. 50, 1–8 (2014). 

[25] T. Rausch, A. S. Chu, P.-L. Lu, S. Puranam, D. Nagulapally, T. Lammers, J. W. 
Dykes, and E. C. Gage, “Recording Performance of a Pulsed HAMR Architecture,” 
IEEE Trans. Magn. 51, 1–5 (2015). 

[26] J. M. Daughton, “Magnetic tunneling applied to memory (invited),” J. Appl. 
Phys. 81, 3758 (1997). 



 179 

[27] S. Tehrani et al., “Magnetoresistive random access memory using magnetic 
tunnel junctions,” Proc. IEEE 91, 703–714 (2003). 

[28] B. N. Engel et al., “A 4-Mb toggle MRAM based on a novel bit and switching 
method,” IEEE Trans. Magn. 41, 132–136 (2005). 

[29] D. Apalkov et al., “Spin-transfer torque magnetic random access memory 
(STT-MRAM),” J. Emerg. Technol. Comput. Syst. 9, 13:1 (2013). 

[30] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and 
S.-H. Yang, “Giant tunnelling magnetoresistance at room temperature with MgO 
(100) tunnel barriers.,” Nat. Mater. 3, 862–867 (2004). 

[31] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, “Giant 
room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel 
junctions,” Nat. Mater. 3, 868–871 (2004). 

[32] D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. 
Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, “230% room-temperature 
magnetoresistance in CoFeB⁄MgO⁄CoFeB magnetic tunnel junctions,” Appl. Phys. 
Lett. 86, 092502 (2005). 

[33] J. Hayakawa, S. Ikeda, F. Matsukura, H. Takahashi, and H. Ohno, “Dependence 
of giant tunnel magnetoresistance of sputtered CoFeB/MgO/CoFeB magnetic tunnel 
junctions on MgO barrier thickness and annealing temperature,” Japanese J. Appl. 
Physics, Part 2 Lett. 44, 2–5 (2005). 

[34] Z. Diao, D. Apalkov, M. Pakala, Y. Ding, A. Panchula, and Y. Huai, “Spin 
transfer switching and spin polarization in magnetic tunnel junctions with MgO and 
AlOx barriers,” Appl. Phys. Lett. 87, 232502 (2005). 

[35] J. Hayakawa, S. Ikeda, Y. M. Lee, F. Matsukura, and H. Ohno, “Effect of high 
annealing temperature on giant tunnel magnetoresistance ratio of CoFeB⁄MgO⁄CoFeB 
magnetic tunnel junctions,” Appl. Phys. Lett. 89, 232510 (2006). 

[36] Y. M. Lee, J. Hayakawa, S. Ikeda, F. Matsukura, and H. Ohno, “Effect of 
electrode composition on the tunnel magnetoresistance of pseudo-spin-valve 
magnetic tunnel junction with a MgO tunnel barrier,” Appl. Phys. Lett. 90, 23–25 
(2007). 

[37] J. C. Slonczewski, “Current-driven excitation of magnetic multilayers,” J. Magn. 
Magn. Mater. 159, L1–L7 (1996). 

[38] L. Berger, “Emission of spin waves by a magnetic multilayer traversed by a 
current,” Phys. Rev. B 54, 9353–9358 (1996). 



 180 

[39] E. B. Myers, “Current-Induced Switching of Domains in Magnetic Multilayer 
Devices,” Science 285, 867–870 (1999). 

[40] J. Katine, F. Albert, R. Buhrman, E. Myers, and D. Ralph, “Current-driven 
magnetization reversal and spin-wave excitations in Co /Cu /Co pillars,” Phys. Rev. 
Lett. 84, 3149–3152 (2000). 

[41] Y. Huai, F. Albert, P. Nguyen, M. Pakala, and T. Valet, “Observation of 
spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel 
junctions,” Appl. Phys. Lett. 84, 3118 (2004). 

[42] W. Zhao, S. Chaudhuri, C. Accoto, J.-O. Klein, D. Ravelosona, C. Chappert, and 
P. Mazoyer, “High Density Spin-Transfer Torque (STT)-MRAM Based on 
Cross-Point Architecture,” 2012 4th IEEE Int. Mem. Work. 0, 1–4, IEEE (2012). 

[43] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, 
J. Hayakawa, F. Matsukura, and H. Ohno, “A perpendicular-anisotropy CoFeB-MgO 
magnetic tunnel junction.,” Nat. Mater. 9, 721–724 (2010). 

[44] S. S. P. Parkin, M. Hayashi, L. Thomas, C. M. Lewandowski, S. S. P. Parkin, M. 
Hayashi, and L. Thomas, “Magnetic domain-wall racetrack memory.,” Science 320, 
190 (2008). 

[45] H. Kubota et al., “Quantitative measurement of voltage dependence of 
spin-transfer torque in MgO-based magnetic tunnel junctions,” Nat. Phys. 4, 37–41 
(2008). 

[46] A. M. Deac, A. Fukushima, H. Kubota, H. Maehara, Y. Suzuki, S. Yuasa, Y. 
Nagamine, K. Tsunekawa, D. D. Djayaprawira, and N. Watanabe, “Bias-driven 
high-power microwave emission from MgO-based tunnel magnetoresistance 
devices,” Nat. Phys. 4, 803–809 (2008). 

[47] A. A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara, K. 
Tsunekawa, D. D. Djayaprawira, N. Watanabe, and S. Yuasa, “Spin-torque diode 
effect in magnetic tunnel junctions.,” Nature 438, 339–342 (2005). 

[48] C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, 
and T. Rasing, “All-Optical Magnetic Recording with Circularly Polarized Light,” 
Phys. Rev. Lett. 99, 047601 (2007). 

[49] C. Stanciu, A. Tsukamoto, A. Kimel, F. Hansteen, A. Kirilyuk, A. Itoh, and T. 
Rasing, “Subpicosecond Magnetization Reversal across Ferrimagnetic Compensation 
Points,” Phys. Rev. Lett. 99, 217204 (2007). 



 181 

[50] S. Alebrand, A. Hassdenteufel, D. Steil, M. Cinchetti, and M. Aeschlimann, 
“Interplay of heating and helicity in all-optical magnetization switching,” Phys. Rev. 
B 85, 092401 (2012). 

[51] T. A. Ostler et al., “Ultrafast heating as a sufficient stimulus for magnetization 
reversal in a ferrimagnet.,” Nat. Commun. 3, 666 (2012). 

[52] K. Vahaplar et al., “All-optical magnetization reversal by circularly polarized 
laser pulses: Experiment and multiscale modeling,” Phys. Rev. B 85, 104402 (2012). 

[53] M. Savoini et al., “Highly efficient all-optical switching of magnetization in 
GdFeCo microstructures by interference-enhanced absorption of light,” Phys. Rev. B 
86, 140404 (2012). 

[54] L. Le Guyader et al., “Demonstration of laser induced magnetization reversal in 
GdFeCo nanostructures,” Appl. Phys. Lett. 101, 022410 (2012).  

[55] A. Hassdenteufel, B. Hebler, C. Schubert, A. Liebig, M. Teich, M. Helm, M. 
Aeschlimann, M. Albrecht, and R. Bratschitsch, “Thermally assisted all-optical 
helicity dependent magnetic switching in amorphous Fe(100-x)Tb(x) alloy films.,” 
Adv. Mater. 25, 3122–3128 (2013). 

[56] C. Schubert, A. Hassdenteufel, P. Matthes, J. Schmidt, M. Helm, R. Bratschitsch, 
and M. Albrecht, “All-optical helicity dependent magnetic switching in an artificial 
zero moment magnet,” Appl. Phys. Lett. 104, 082406 (2014). 

[57] A. Hassdenteufel, J. Schmidt, C. Schubert, B. Hebler, M. Helm, M. Albrecht, 
and R. Bratschitsch, “Low-remanence criterion for helicity-dependent all-optical 
magnetic switching in ferrimagnets,” Phys. Rev. B 91, 104431 (2015). 

[58] T.-M. Liu et al., “Nanoscale Con fi nement of All-Optical Magnetic Switching in 
TbFeCo - Competition with Nanoscale Heterogeneity,” Nano Lett. 15, 6862 (2015). 

[59] S. Mangin et al., “Engineered materials for all-optical helicity-dependent 
magnetic switching.,” Nat. Mater. 13, 286–292 (2014). 

[60] R. F. L. Evans, T. A. Ostler, R. W. Chantrell, I. Radu, and T. Rasing, “Ultrafast 
thermally induced magnetic switching in synthetic ferrimagnets,” Appl. Phys. Lett. 
104, 082410 (2014). 

[61] I. Radu et al., “Transient ferromagnetic-like state mediating ultrafast reversal of 
antiferromagnetically coupled spins.,” Nature 472, 205–208 (2011). 



 182 

[62] J. Mentink, J. Hellsvik, D. Afanasiev, B. Ivanov, A. Kirilyuk, A. Kimel, O. 
Eriksson, M. Katsnelson, and T. Rasing, “Ultrafast Spin Dynamics in Multisublattice 
Magnets,” Phys. Rev. Lett. 108, 057202 (2012). 

[63] A. N. Slavin, S. O. Demokritov, and B. Hillebrands, “Nonlinear Spinwaves in 
One- and Two-Dimensional Magnetic Waveguides,” 35–66 (2002). 

[64] C. Bayer et al., “Spin-wave excitations in finite rectangular elements of 
Ni80Fe20,” Phys. Rev. B 72, 064427 (2005). 

[65] V. V. Kruglyak, A. Barman, R. J. Hicken, J. R. Childress, and J. A. Katine, 
“Picosecond magnetization dynamics in nanomagnets: Crossover to nonuniform 
precession,” Phys. Rev. B 71, 220409 (2005). 

[66] C. Bayer, J. Jorzick, S. Demokritov, A. N. Slavin, K. Y. Guslienko, D. V 
Berkov, N. L. Gorn, M. P. Kostylev, and B. Hilebrands, “Spin-wave excitations in 
finite rectangular elements,” [Spin Dynamics in Confined Magnetic Structures II, 
Topics in Applied Physics], edited by B. Hillebrands and A. Thiaville, 57–103, 
(Springer, Berlin, Heidelberg 2006). 

[67] M. L. Schneider, T. Gerrits, A. B. Kos, and T. J. Silva, “Experimental 
determination of the inhomogeneous contribution to linewidth in Permalloy films 
using a time-resolved magneto-optic Kerr effect microprobe,” J. Appl. Phys. 102, 
053910 (2007). 

[68] J. M. Shaw, H. T. Nembach, T. J. Silva, S. E. Russek, C. Jones, N. Clark, T. Leo, 
and D. J. Smith, “Effect of microstructure on magnetic properties and anisotropy 
distributions in Co/Pd thin films and nanostructures,” Phys. Rev. B 80, 184419 
(2009). 

[69] J. Jersch, V. E. Demidov, H. Fuchs, K. Rott, P. Krzysteczko, J. Münchenberger, 
G. Reiss, and S. O. Demokritov, “Mapping of localized spin-wave excitations by 
near-field Brillouin light scattering,” Appl. Phys. Lett. 97, 152502 (2010). 

[70] A. Barman, V. Kruglyak, R. Hicken, J. Rowe, A. Kundrotaite, J. Scott, and M. 
Rahman, “Imaging the dephasing of spin wave modes in a square thin film magnetic 
element,” Phys. Rev. B 69, 174426 (2004). 

[71] A. Barman, S. Wang, J. Maas, A. R. Hawkins, S. Kwon, J. Bokor, A. Liddle, and 
H. Schmidt, “Size dependent damping in picosecond dynamics of single 
nanomagnets,” Appl. Phys. Lett. 90, 202504 (2007). 

[72] J. Walowski, M. D. Kaufmann, B. Lenk, C. Hamann, J. McCord, and M. 
Münzenberg, “Intrinsic and non-local Gilbert damping in polycrystalline nickel 



 183 

studied by Ti  :  sapphire laser fs spectroscopy,” J. Phys. D. Appl. Phys. 41, 164016 
(2008). 

[73] K.-D. D. Lee, J.-W. W. Kim, J.-W. W. Jeong, and S.-C. C. Shin, “Nonuniform 
apparent relaxation from dephasing of magnetostatic wave modes in a confined 
microdisk,” J. Appl. Phys. 106, 113904 (2009). 

[74] O. Ozatay et al., “Sidewall oxide effects on spin-torque- and 
magnetic-field-induced reversal characteristics of thin-film nanomagnets.,” Nat. 
Mater. 7, 567–573 (2008). 

[75] H. T. Nembach, J. M. Shaw, T. J. Silva, W. L. Johnson, S. A. Kim, R. D. 
McMichael, and P. Kabos, “Effects of shape distortions and imperfections on mode 
frequencies and collective linewidths in nanomagnets,” Phys. Rev. B 83, 094427 
(2011). 

[76] J. M. Shaw, H. T. Nembach, and T. J. Silva, “Roughness induced magnetic 
inhomogeneity in Co/Ni multilayers: Ferromagnetic resonance and switching 
properties in nanostructures,” J. Appl. Phys. 108, 093922 (2010). 

[77] J. Shaw, S. Russek, T. Thomson, M. Donahue, B. Terris, O. Hellwig, E. Dobisz, 
and M. Schneider, “Reversal mechanisms in perpendicularly magnetized 
nanostructures,” Phys. Rev. B 78, 024414 (2008). 

[78] J. Shaw, M. Olsen, J. Lau, M. Schneider, T. Silva, O. Hellwig, E. Dobisz, and B. 
Terris, “Intrinsic defects in perpendicularly magnetized multilayer thin films and 
nanostructures,” Phys. Rev. B 82, 144437 (2010). 

[79] P. S. Keatley, V. V. Kruglyak, A. Neudert, E. A. Galaktionov, R. J. Hicken, J. R. 
Childress, and J. A. Katine, “Time-resolved investigation of magnetization dynamics 
of arrays of nonellipsoidal nanomagnets with nonuniform ground states,” Phys. Rev. 
B 78, 214412 (2008). 

[80] A. A. Awad, G. R. Aranda, D. Dieleman, K. Y. Guslienko, G. N. Kakazei, B. A. 
Ivanov, and F. G. Aliev, “Spin excitation frequencies in magnetostatically coupled 
arrays of vortex state circular Permalloy dots,” Appl. Phys. Lett. 97, 132501 (2010). 

[81] Z. Liu, R. Brandt, Y. Yahagi, B. Hansen, B. Harteneck, J. Bokor, A. R. Hawkins, 
and H. Schmidt, “Detecting single nanomagnet dynamics beyond the diffraction limit 
in varying magnetostatic environments,” Appl. Phys. Lett. 98, 52502 (2011). 

[82] K. J. J. Kirk, J. N. N. Chapman, S. McVitie, P. R. R. Aitchison, and C. D. W. D. 
W. Wilkinson, “Interactions and switching field distributions of nanoscale magnetic 
elements,” J. Appl. Phys. 5105, 10–13 (2000). 



 184 

[83] M. C. Abraham, H. Schmidt, T. A. Savas, H. I. Smith, C. A. Ross, and R. J. 
Ram, “Magnetic properties and interactions of single-domain nanomagnets in a 
periodic array,”J. Appl. Phys. 89, 5667 (2001). 

[84] O. Hellwig, A. Berger, T. Thomson, E. Dobisz, Z. Z. Bandic, H. Yang, D. S. 
Kercher, and E. E. Fullerton, “Separating dipolar broadening from the intrinsic 
switching field distribution in perpendicular patterned media,” Appl. Phys. Lett. 90, 
2005–2008 (2007). 

[85] A. Barman, and S. Barman, “Dynamic dephasing of magnetization precession in 
arrays of thin magnetic elements,” Phys. Rev. B 79, 144415 (2009). 

[86] V. V. Kruglyak, P. S. Keatley, A. Neudert, R. J. Hicken, J. R. Childress, and J. 
A. Katine, “Imaging Collective Magnonic Modes in 2D Arrays of Magnetic 
Nanoelements,” Phys. Rev. Lett. 104, 027201 (2010). 

[87] B. Rana, D. Kumar, S. Barman, S. Pal, R. Mandal, Y. Fukuma, Y. Otani, S. 
Sugimoto, and A. Barman, “Anisotropy in collective precessional dynamics in arrays 
of Ni80Fe20 nanoelements,” J. Appl. Phys. 111, 07D503 (2012). 

[88] W. Kim, T.-D. Lee, J.-E. Lee, S.-C. Oh, K.-H. Shin, H.-J. Suh, and K.-J. Lee, 
“Enhanced switching current density due to resonant precession in current-induced 
magnetization switching,” Appl. Phys. Lett. 90, 212504 (2007). 

[89] N. Qureshi, S. Wang, M. A. Lowther, A. R. Hawkins, S. Kwon, A. Liddle, J. 
Bokor, and H. Schmidt, “Cavity-enhanced magnetooptical observation of 
magnetization reversal in individual single-domain nanomagnets.,” Nano Lett. 5, 
1413–1417 (2005). 

[90] A. Barman, S. Wang, J. D. Maas, A. R. Hawkins, S. Kwon, A. Liddle, J. Bokor, 
and H. Schmidt, “Magneto-optical observation of picosecond dynamics of single 
nanomagnets,” Nano Lett. 6, 2939–2944 (2006). 

[91] Z. Liu, R. Sydora, and M. Freeman, “Shape effects on magnetization state 
transitions in individual 160-nm diameter Permalloy disks,” Phys. Rev. B 77, 174410 
(2008). 

[92] P. S. Keatley, P. Gangmei, M. Dvornik, R. J. Hicken, J. R. Childress, and J. A. 
Katine, “Large amplitude magnetization dynamics and the suppression of edge modes 
in a single nanomagnet,” Appl. Phys. Lett. 98, 082506 (2011). 

[93] R. Brandt, F. Ganss, R. Rückriem, T. Senn, C. Brombacher, P. Krone, M. 
Albrecht, and H. Schmidt, “Three-dimensional shape dependence of spin-wave 
modes in single FePt nanomagnets,” Phys. Rev. B 86, 094426 (2012). 



 185 

[94] V. Uhlíř, M. Urbánek, L. Hladík, J. Spousta, M.-Y. Im, P. Fischer, N. Eibagi, J. 
J. Kan, E. E. Fullerton, and T. Sikola, “Dynamic switching of the spin circulation in 
tapered magnetic nanodisks.,” Nat. Nanotechnol. 8, 341–346 (2013). 

[95] S. Tamaru, K. Yakushiji, A. Fukushima, S. Yuasa, and H. Kubota, “Ultrahigh 
Sensitivity Ferromagnetic Resonance Measurement Based on Microwave 
Interferometer,” IEEE Magn. Lett. 5, 1–4 (2014). 

[96] A. Aharoni, Introduction to the Theory of Ferromagnetism, 2nd ed. (Oxford 
University Press, Oxford, 1996). 

[97] S. Chikazumi, Physics of Ferromagnetism (Oxford University Press, Oxford, 
1997). 

[98] U. Mizutani, Introduction to the Electron Theory of Metals (Cambridge 
University Press, Cambridge, 2001). 

[99] R.M. White, Quantum Theory of Magnetism, 3rd ed. Springer Series in Solid 
State Sciences vol. 32 (Springer, Berlin, Heiderlberg, 2007). 

[100] L. Landau, and E. Lifshits, “on the Theory of the Dispersion of Magnetic 
Permeability in Ferromagnetic Bodies,” Phys. Z. Sowjetunion 8, 153 (1935). 

[101] T. L. Gilbert, “A Lagrangian Formulation of the Gyromagnetic Equation of the 
Magnetization Field,” Phys. Rev. 100, 1243 (1955). 

[102] T. L. Gilbert, “Classics in Magnetics A Phenomenological Theory of Damping 
in Ferromagnetic Materials,” IEEE Trans. Magn. 40, 3443–3449 (2004). 

[103] A. Barman, S. Wang, O. Hellwig, A. Berger, E. E. Fullerton, and H. Schmidt, 
“Ultrafast magnetization dynamics in high perpendicular anisotropy [Co⁄Pt]n 
multilayers,” J. Appl. Phys. 101, 09D102 (2007). 

[104] G. Malinowski, K. C. Kuiper, R. Lavrijsen, H. J. M. Swagten, and B. 
Koopmans, “Magnetization dynamics and Gilbert damping in ultrathin Co48Fe32B20 
films with out-of-plane anisotropy,” Appl. Phys. Lett. 94, 102501 (2009). 

[105] S. Mizukami, E. P. Sajitha, D. Watanabe, F. Wu, T. Miyazaki, H. Naganuma, 
M. Oogane, and Y. Ando, “Gilbert damping in perpendicularly magnetized Pt/Co/Pt 
films investigated by all-optical pump-probe technique,” Appl. Phys. Lett. 96, 152502 
(2010). 

[106] Y. Ren, Y. L. Zuo, M. S. Si, Z. Z. Zhang, Q. Y. Jin, and S. M. Zhou, 
“Correlation between ultrafast demagnetization process and gilbert damping in 
amorphous TbFeCo films,” IEEE Trans. Magn. 49, 3159–3162 (2013). 



 186 

[107] J. A. Osborn, “Demagnetizing Factors of the General Ellipsoid,” Phys. Rev. 67, 
351–357 (1945). 

[108] A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves 
(CRC Press, Boca Raton, 1996). 

[109] J. Fidler, and T. Schrefl, “Micromagnetic modelling-the current state of the 
art,” J. Phys. D 33, R135 (2000). 

[110] M. E. Schabes, and H. N. Bertram, “Magnetization processes in ferromagnetic 
cubes,” J. Appl. Phys. 64, 1347–1357 (1988). 

[111] Y. Nakatani, Y. Uesaka, and N. Hayashi, “Direct Solution of the 
Landau-Lifshitz-Gilbert Equation for Micromagnetics,” Jpn. J. Appl. Phys. 28, 2485–
2507 (1989). 

[112] T. R. Koehler, and D. R. Fredkin, “Finite element methods for 
micromagnetics,” IEEE Trans. Magn. 28, 1239–1244 (1992). 

[113] S. W. Yuan, and H. N. Bertram, “Fast adaptive algorithms for 
micromagnetics,” IEEE Trans. Magn. 28, 2031–2036 (1992). 

[114] D. V. Berkov, K. R. Ramstöck, A. Hubert, K. Ramstöcck, and A. Hubert, 
“Solving micromagnetic problems. Towards an Optimal Numerical Method,” Phys. 
Stat. Sol. 137, 207 (1993). 

[115] K. Fabian, A. Kirchner, W. Williams, F. Heider, T. Leibl, and A. Huber, 
“Three-dimensional micromagnetic calculations for magnetite using FFT,” Geophys. 
J. Int. 124, 89–104 (1996). 

[116] D. V. Berkov, and N. L. Gorn, “Quasistatic remagnetization processes in 
two-dimensional systems with random on-site anisotropy and dipolar interaction: 
Numerical simulations,” Phys. Rev. B 57, 14332–14343 (1998). 

[117] Q. Chen, and A. Konrad, “A review of finite element open boundary techniques 
for static and quasi-static electromagnetic field problems,” IEEE Trans. Magn. 33, 
663–676 (1997). 

[118] T. R. Koehler, “Hybrid FEM-BEM method for fast micromagnetic 
calculations,” Phys. B Condens. Matter 233, 302–307 (1997). 

[119] M. Donahue and D. G. Porter, OOMMF User’s guide, Version 1.0, Interagency 
Report NISTIR 6376, National Institute of Standard and Technology, Gaithersburg, 
MD (1999); http://math.nist.gov/oommf 



 187 

[120] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and 
B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv. 4, 107133 
(2014). 

[121] W. Scholz, J. Fidler, T. Schrefl, D. Suess, R. Dittrich, H. Forster, and V. 
Tsiantos, “Scalable parallel micromagnetic solvers for magnetic nanostructures,” 
Comput. Mater. Sci. 28, 366–383 (2003). 

[122] T. Fischbacher, M. Franchin, G. Bordignon, and H. Fangohr, “A Systematic 
Approach to Multiphysics Extensions of Finite-Element-Based Micromagnetic 
Simulations: Nmag,” IEEE Trans. Magn. 43, 2896–2898 (2007). 

[123] H. Forster, T. Schrefl, R. Dittrich, W. Scholz, and J. Fidler, “Fast Boundary 
Methods for Magnetostatic Interactions in Micromagnetics,” IEEE Trans. Magn. 39, 
2513–2515 (2003). 

[124] A. Knittel, M. Franchin, G. Bordignon, T. Fischbacher, S. Bending, and H. 
Fangohr, “Compression of boundary element matrix in micromagnetic simulations,” 
J. Appl. Phys. 105, 07D542 (2009). 

[125] M. Faraday, “Experimental Researches in Electricity. Nineteenth Series,” 
Philos. Trans. R. Soc. London 136, 1 (1846).  

[126] P. Fumagalli, “Scanning Near-field Optical Microscopy (SNOM, NSOM),” 
[Modern Techniques for Characterizing Magnetic Materials], edited by Y. Zhu 
(Springer, New York, 2005). 

[127] H. A. Lorentz, Versuch einer Theorie der elektrischen und optischen 
Erscheinungen in bewegten Körpern (Springer Netherlands, 1937). 

[128] C. C. Robinson, “Longitudinal Kerr Magneto-Optic Effect in Thin Films of 
Iron, Nickel, and Permalloy,” J. Opt. Soc. Am. 53, 681 (1963). 

[129] J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Magneto-optics of multilayers 
with arbitrary magnetization directions,” Phys. Rev. B 43, 6423–6429 (1991). 

[130] M. R. Freeman, M. J. Brady, and J. Smyth, “Extremely high frequency 
magneto-optic sampling pulse magnetic resonance by picosecond magneto-optic 
sampling,” Appl. Phys. Lett. 60, 2555–2557 (1992). 

[131] R. J. Hicken, and J. Wu, “Observation of ferromagnetic resonance in the time 
domain,” J. Appl. Phys. 85, 4580–4582 (1999). 

[132] T. Gerrits, H. A. M. van den Berg, J. Hohlfeld, O. Gielkens, L. Bär, and T. 
Rasing, “Picosecond control of coherent magnetisation dynamics in permalloy thin 



 188 

films by picosecond magnetic field pulse shaping,” J. Magn. Magn. Mater. 240, 283–
286 (2002). 

[133] J. Wu, N. D. Hughes, J. R. Moore, and R. J. Hicken, “Excitation and damping 
of spin excitations in ferromagnetic thin films,” J. Magn. Magn. Mater. 241, 96–109 
(2002). 

[134] R. J. Hicken, A. Barman, V. V Kruglyak, and S. Ladak, “Optical ferromagnetic 
resonance studies,” J. Phys. D. Appl. Phys. 36, 2183–2192 (2003). 

[135] T. Korn, F. Giesen, J. Podbielski, D. Ravlic, C. Schueller, and D. Grundler, 
“Time-resolved study of the increased magnetization precession frequency in Fe 
wires,” J. Magn. Magn. Mater. 285, 240–244 (2005). 

[136] E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, “Ultrafast Spin 
Dynamics in Ferromagnetic Nickel,” Phys. Rev. Lett. 76, 4250–4253 (1996). 

[137] B. Koopmans, M. van Kampen, J. Kohlhepp, and W. de Jonge, “Ultrafast 
Magneto-Optics in Nickel: Magnetism or Optics?,” Phys. Rev. Lett. 85, 844–847 
(2000). 

[138] B. Koopmans, H. H. J. E. Kicken, M. van Kampen, and W. J. M. de Jonge, 
“Microscopic model for femtosecond magnetization dynamics,” J. Magn. Magn. 
Mater. 286, 271–275 (2005). 

[139] F. Dalla Longa, J. T. Kohlhepp, W. J. M. De Jonge, and B. Koopmans, 
“Influence of photon angular momentum on ultrafast demagnetization in nickel,” 
Phys. Rev. B 75, 224431 (2007). 

[140] B. Koopmans, G. Malinowski, F. Dalla Longa, D. Steiauf, M. Fähnle, T. Roth, 
M. Cinchetti, and M. Aeschlimann, “Explaining the paradoxical diversity of ultrafast 
laser-induced demagnetization.,” Nat. Mater. 9, 259–265 (2010). 

[141] A. J. Schellekens, and B. Koopmans, “Microscopic model for ultrafast 
magnetization dynamics of multisublattice magnets,” Phys. Rev. B 87, 020407 
(2013). 

[142] T. Saito, O. Matsuda, and O. Wright, “Picosecond acoustic phonon pulse 
generation in nickel and chromium,” Phys. Rev. B 67, 205421 (2003). 

[143] D. L. D. Connelly, J. S. Loomis, and D. E. DE Mapother, “Specific Heat of 
Nickel near the Curie Temperature,” Phys. Rev. B 3, 924–934 (1971). 



 189 

[144] F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond 
Photomagnetic Switching of Spins in Ferrimagnetic Garnet Films,” Phys. Rev. Lett. 
95, 047402 (2005). 

[145] F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, “Nonthermal ultrafast 
optical control of the magnetization in garnet films,” Phys. Rev. B 73, 014421 (2006). 

[146] C. Stanciu, F. Hansteen, A. Kimel, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. 
Rasing, “Ultrafast Interaction of the Angular Momentum of Photons with Spins in the 
Metallic Amorphous Alloy GdFeCo,” Phys. Rev. Lett. 98, 207401 (2007). 

[147] A. V. Scherbakov, A. S. Salasyuk, A. V. Akimov, X. Liu, M. Bombeck, C. 
Brüggemann, D. R. Yakovlev, V. F. Sapega, J. K. Furdyna, and M. Bayer, “Coherent 
Magnetization Precession in Ferromagnetic (Ga,Mn)As Induced by Picosecond 
Acoustic Pulses,” Phys. Rev. Lett. 105, 117204 (2010). 

[148] L. Thevenard, E. Peronne, C. Gourdon, C. Testelin, M. Cubukcu, E. Charron, S. 
Vincent, A. Lemaître, and B. Perrin, “Effect of picosecond strain pulses on thin layers 
of the ferromagnetic semiconductor (Ga,Mn)(As,P),” Phys. Rev. B 82, 104422 
(2010). 

[149] M. Bombeck et al., “Excitation of spin waves in ferromagnetic (Ga,Mn)As 
layers by picosecond strain pulses,” Phys. Rev. B 85, 195324 (2012). 

[150] M. Bombeck, J. V. Jäger, A. V. Scherbakov, T. Linnik, D. R. Yakovlev, X. Liu, 
J. K. Furdyna, A. V. Akimov, and M. Bayer, “Magnetization precession induced by 
quasitransverse picosecond strain pulses in (311) ferromagnetic (Ga,Mn)As,” Phys. 
Rev. B 87, 060302(R) (2013). 

[151] J.-W. Kim, M. Vomir, and J.-Y. Bigot, “Ultrafast Magnetoacoustics in Nickel 
Films,” Phys. Rev. Lett. 109, 166601 (2012). 

[152] J.-W. Kim, M. Vomir, and J.-Y. Bigot, “Controlling the spins angular 
momentum in ferromagnets with sequences of picosecond acoustic pulses.,” Sci. Rep. 
5, 8511 (2015). 

[153] B. Koopmans, “Laser-induced magnetization dynamics,” [Spin Dynamics in 
Confined Magnetic Structures II, Topics in Applied Physics, Vol. 87], edited by B. 
Hillebrands and K. Ounadjela, 253 (Springer, Berlin, Heidelberg, 2003). 

[154] D. A. Allwood, G. Xiong, M. D. Cooke, and R. P. Cowburn, “Magneto-optical 
Kerr effect analysis of magnetic nanostructures,” J. Phys. D. Appl. Phys. 36, 2175–
2182 (2003). 



 190 

[155] M. A. C. de Araújo, R. Silva, E. de Lima, D. P. Pereira, and P. C. de Oliveira, 
“Measurement of Gaussian laser beam radius using the knife-edge technique: 
improvement on data analysis.,” Appl. Opt. 48, 393 (2009). 

[156] AutoIt v3; https://www.autoitscript.com/site/autoit/ 

[157] A. V Oppenheim, R. W. Schafer, and J. R. Buck, Discrete Time Signal 
Processing, 2nd ed., Princeton Hall, Upper Saddle River, NJ (1999). 

[158] M. Djordjevic, G. Eilers, A. Parge, M. Münzenberg, and J. S. Moodera, 
“Intrinsic and nonlocal Gilbert damping parameter in all optical pump-probe 
experiments,” J. Appl. Phys. 99, 08F308 (2006). 

[159] Y. Liu, L. R. Shelford, V. V. Kruglyak, R. J. Hicken, Y. Sakuraba, M. Oogane, 
and Y. Ando, “Optically induced magnetization dynamics and variation of damping 
parameter in epitaxial Co 2 MnSi Heusler alloy films,” Phys. Rev. B 81, 094402 
(2010). 

[160] S. Pal, B. Rana, O. Hellwig, T. Thomson, and A. Barman, “Tunable magnonic 
frequency and damping in [Co/Pd]8 multilayers with variable Co layer thickness,” 
Appl. Phys. Lett. 98, 082501 (2011). 

[161] I. Neudecker, G. Woltersdorf, B. Heinrich, T. Okuno, G. Gubbiotti, and C. H. 
Back, “Comparison of frequency, field, and time domain ferromagnetic resonance 
methods,” J. Magn. Magn. Mater. 307, 148–156 (2006). 

[162] H.-S. Song, K.-D. Lee, J.-W. Sohn, S.-H. Yang, S. S. P. Parkin, C.-Y. You, and 
S.-C. Shin, “Observation of the intrinsic Gilbert damping constant in Co/Ni 
multilayers independent of the stack number with perpendicular anisotropy,” Appl. 
Phys. Lett. 102, 102401 (2013). 

[163] S. Mizukami, D. Watanabe, T. Kubota, X. Zhang, H. Naganuma, M. Oogane, 
Y. Ando, and T. Miyazaki, “Laser-Induced Fast Magnetization Precession and Gilbert 
Damping for CoCrPt Alloy Thin Films with Perpendicular Magnetic Anisotropy,” 
Appl. Phys. Express 3, 123001 (2010). 

[164] J. A. King, A. Ganguly, D. M. Burn, S. Pal, E. A. Sallabank, T. P. A. Hase, A. 
T. Hindmarch, A. Barman, and D. Atkinson, “Local control of magnetic damping in 
ferromagnetic/non-magnetic bilayers by interfacial intermixing induced by focused 
ion-beam irradiation,” Appl. Phys. Lett. 104, 242410 (2014). 

[165] G. Woltersdorf, M. Buess, B. Heinrich, and C. H. Back, “Time Resolved 
Magnetization Dynamics of Ultrathin Fe(001) Films: Spin-Pumping and 
Two-Magnon Scattering,” Phys. Rev. Lett. 95, 037401 (2005). 



 191 

[166] N. Ross, M. Kostylev, and R. L. Stamps, “Effect of disorder studied with 
ferromagnetic resonance for arrays of tangentially magnetized sub-micron Permalloy 
discs fabricated by nanosphere lithography,” J. Appl. Phys. 109, 013906 (2010). 

[167] N. Qureshi, H. Schmidt, and A. R. Hawkins, “Cavity enhancement of the 
magneto-optic Kerr effect for optical studies of magnetic nanostructures,” Appl. Phys. 
Lett. 85, 431 (2004). 

[168] S. Wang, A. Barman, H. Schmidt, J. D. Maas, A. R. Hawkins, S. Kwon, B. 
Harteneck, S. Cabrini, and J. Bokor, “Optimization of nano-magneto-optic sensitivity 
using dual dielectric layer enhancement,” Appl. Phys. Lett. 90, 252504 (2007). 

[169] D. Weller, “Scanning near-field optical microscope domains in optically 
opaque materials for the imaging of magnetic,” Appl. Phys. Lett 65, 658–660 (1994). 

[170] G. Meyer, T. Crecelius, A. Bauer, I. Mauch, and G. Kaindl, “In situ near-field 
imaging of magnetic domain patterns in ultrathin iron films,” Appl. Phys. Lett. 83, 
1394 (2003). 

[171] Zoriniants, G., et al. "Development of a Near-Field Magneto-Optical 
Microscopy for Studying Ultrafast Magnetization Dynamics." AIP Conf. Proc.. Vol. 
696. No. LNS-ARTICLE-2003-001. 2003. 

[172] Y. Yahagi, C. R. Berk, B. D. Harteneck, S. D. Cabrini, and H. Schmidt, 
“Dynamic separation of nanomagnet sublattices by orientation of elliptical elements,” 
Appl. Phys. Lett. 104, 162406 (2014). 

[173] C. A. Neugebauer, “Saturation magnetization of nickel films of thickness less 
than 100 A,” Phys. Rev. 116, 1441–1446 (1959). 

[174] M. J. Graham, and M. Cohen, “On the Mechanism of Low-Temperature 
Oxidation (23°–450°C) of Polycrystalline Nickel,” J. Electrochem. Soc. 119, 879 
(1972). 

[175] D. Hurley, and K. Telschow, “Picosecond surface acoustic waves using a 
suboptical wavelength absorption grating,” Phys. Rev. B 66, 153301 (2002). 

[176] J.-F. Robillard, A. Devos, and I. Roch-Jeune, “Time-resolved vibrations of 
two-dimensional hypersonic phononic crystals,” Phys. Rev. B 76, 092301 (2007). 

[177] C. Giannetti et al., “Thermomechanical behavior of surface acoustic waves in 
ordered arrays of nanodisks studied by near-infrared pump-probe diffraction 
experiments,” Phys. Rev. B 76, 125413 (2007). 



 192 

[178] Q. Li et al., “Generation and control of ultrashort-wavelength two-dimensional 
surface acoustic waves at nanoscale interfaces,” Phys. Rev. B 85, 195431 (2012). 

[179] S. Davis, A. Baruth, and S. Adenwalla, “Magnetization dynamics triggered by 
surface acoustic waves,” Appl. Phys. Lett. 97, 232507 (2010). 

[180] N. Tiercelin, Y. Dusch, A. Klimov, S. Giordano, V. Preobrazhensky, and P. 
Pernod, “Room temperature magnetoelectric memory cell using stress-mediated 
magnetoelastic switching in nanostructured multilayers,” Appl. Phys. Lett. 99, 192507 
(2011). 

[181] A. Casiraghi, P. Walker, A. V. Akimov, K. W. Edmonds, A. W. Rushforth, E. 
De Ranieri, R. P. Campion, B. L. Gallagher, and A. J. Kent, “Fast switching of 
magnetization in the ferromagnetic semiconductor (Ga,Mn)(As,P) using 
nonequilibrium phonon pulses,” Appl. Phys. Lett. 99, 262503 (2011). 

[182] L. Thevenard, J.-Y. Duquesne, E. Peronne, H. von Bardeleben, H. Jaffres, S. 
Ruttala, J.-M. George, A. Lemaître, and C. Gourdon, “Irreversible magnetization 
switching using surface acoustic waves,” Phys. Rev. B 87, 144402 (2013). 

[183] M. Weiler, L. Dreher, C. Heeg, H. Huebl, R. Gross, M. Brandt, and S. 
Goennenwein, “Elastically Driven Ferromagnetic Resonance in Nickel Thin Films,” 
Phys. Rev. Lett. 106, 117601 (2011). 

[184] L. Dreher, M. Weiler, M. Pernpeintner, H. Huebl, R. Gross, M. S. Brandt, and 
S. T. B. Goennenwein, “Surface acoustic wave driven ferromagnetic resonance in 
nickel thin films: Theory and experiment,” Phys. Rev. B 86, 134415 (2012). 

[185] O. Kovalenko, T. Pezeril, and V. V. Temnov, “New Concept for Magnetization 
Switching by Ultrafast Acoustic Pulses,” Phys. Rev. Lett. 110, 266602 (2013). 

[186] A. K. Biswas, S. Bandyopadhyay, and J. Atulasimha, “Acoustically assisted 
spin-transfer-torque switching of nanomagnets: An energy-efficient hybrid writing 
scheme for non-volatile memory,” Appl. Phys. Lett. 103, 232401 (2013). 

[187] T. Saito, O. Matsuda, M. Tomoda, and O. B. Wright, “Imaging gigahertz 
surface acoustic waves through the photoelastic effect,” J. Opt. Soc. Am. B 27, 2632 
(2010). 

[188] H.-N. Lin, H. J. Maris, L. B. Freund, K. Y. Lee, H. Luhn, and D. P. Kern, 
“Study of vibrational modes of gold nanostructures by picosecond ultrasonics,” J. 
Appl. Phys. 73, 37 (1993). 

[189] H. Robinson, Y. Hahn, and J. N. Gau, “A comprehensive analysis of surface 
acoustic wave reflections,” J. Appl. Phys. 65, 4573 (1989). 



 193 

[190] D. Nardi, F. Banfi, C. Giannetti, B. Revaz, G. Ferrini, and F. Parmigiani, 
“Pseudosurface acoustic waves in hypersonic surface phononic crystals,” Phys. Rev. 
B 80, 104119 (2009). 

[191] J. Sadhu, J. H. Lee, and S. Sinha, “Frequency shift and attenuation of 
hypersonic surface acoustic phonons under metallic gratings,” Appl. Phys. Lett. 97, 
133106 (2010). 

[192] D. E. Bray, and W. Tang, “Subsurface stress evaluation in steel plates and bars 
using the LCR ultrasonic wave,” Nucl. Eng. Des. 207, 231–240 (2001). 

[193] Lord Rayleigh, “On Waves Propagated along the Plane Surface of an Elastic 
Solid,” Proc. London Math. Soc. 17, 4–11 (1885). 

[194] J. de Klerk, “Ultrasonic transducers,” Ultrasonics 9, 35–48 (1971). 

[195] J. F. Doyle, Wave Propagation in Structures, 2nd ed. (Springer, New York, 
1997) 

[196] R. M. Bozorth, “Magnetostriction and Crystal Anisotropy of Single Crystals of 
Hexagonal Cobalt,” Phys. Rev. 96, 311–316 (1954). 

[197] O. Song, Ph.D. thesis, “Magnetoelastic Coupling in Thin Films,” Massachusetts 
Institute of Technology (1994). 

[198] C. Kittel, “Physical Theory of Ferromagnetic Domains,” Rev. Mod. Phys. 21, 
541–583 (1949). 

[199] C. Kittel, “Interaction of Spin Waves and Ultrasonic Waves in Ferromagnetic 
Crystals,” Phys. Rev. 110, 836–841 (1958). 

[200] T. Linnik, A. Scherbakov, D. Yakovlev, X. Liu, J. Furdyna, and M. Bayer, 
“Theory of magnetization precession induced by a picosecond strain pulse in 
ferromagnetic semiconductor (Ga,Mn)As,” Phys. Rev. B 84, 214432 (2011). 

[201] A. Kamra, H. Keshtgar, P. Yan, and G. E. W. Bauer, “Coherent elastic 
excitation of spin waves,” Phys. Rev. B 91, 104409 (2015). 

[202] A. Rückriegel, P. Kopietz, D. A. Bozhko, A. A. Serga, and B. Hillebrands, 
“Magnetoelastic modes and lifetime of magnons in thin yttrium iron garnet films,” 
Phys. Rev. B 89, 184413 (2014). 

[203] R. R. Birss, “The Saturation Magnetostriction of Polycrystals,” Proc. Phys. Soc. 
75, 8–16 (1960). 



 194 

[204] C. Forestiere, M. D’Aquino, G. Miano, C. Serpico, M. D’Aquino, G. Miano, 
and C. Serpico, “Finite element computations of resonant modes for small magnetic 
particles,” J. Appl. Phys. 105, 07D312 (2009). 

[205] V. V. Naletov et al., “Identification and selection rules of the spin-wave 
eigenmodes in a normally magnetized nanopillar,” Phys. Rev. B 84, 224423 (2011). 

[206] J.-P. Berenger, “A perfectly matched layer for the absorption of 
electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). 

[207] L. Patrick, “The Change of Ferromagnetic Curie Points with Hydrostatic 
Pressure,” Phys. Rev. 93, 384–392 (1954). 

[208] OOMMF magnetoelastic extension; http://sourceforge.net/projects/oommf-mel/ 

[209] Y. Yahagi, B. Harteneck, S. Cabrini, and H. Schmidt, “Controlling nanomagnet 
magnetization dynamics via magnetoelastic coupling,” Phys. Rev. B 90, 140405(R) 
(2014). 

[210] C. Chappert, K. Le Dang, P. Beauvillain, H. Hurdequint, and D. Renard, 
“Ferromagnetic resonance studies of very thin cobalt films on a gold substrate,” Phys. 
Rev. B 34, 3192–3197 (1986). 

[211] P. B. Visscher, and D. M. Apalkov, “Fokker–Planck calculation of spin-torque 
resistance hysteresis and switching currents,” J. Appl. Phys. 97, 10C704 (2005). 

[212] P.-W. Huang, and R. H. Victora, “Heat assisted magnetic recording: Grain size 
dependency, enhanced damping, and a simulation/experiment comparison,” J. Appl. 
Phys. 115, 17B710 (2014). 

[213] S. Mizukami, S. Iihama, N. Inami, T. Hiratsuka, G. Kim, H. Naganuma, M. 
Oogane, and Y. Ando, “Fast magnetization precession observed in L10-FePt epitaxial 
thin film,” Appl. Phys. Lett. 98, 052501 (2011). 

[214] Z. Chen, M. Yi, M. Chen, S. Li, S. Zhou, and T. Lai, “Spin waves and small 
intrinsic damping in an in-plane magnetized FePt film,” Appl. Phys. Lett. 101, 222402 
(2012). 

[215] D. Sander, “The correlation between mechanical stress and magnetic anisotropy 
in ultrathin films,” Reports Prog. Phys. 62, 809 (1999); Voigt-Reuss average and 
[Birss PPS 1960] was used to obtain the polycrystalline Co parameters with the hcp 
grains. 



 195 

[216] H. Takagi, S. Tsunashima, S. Uchiyama, and T. Fujii, “Stress induced 
anisotropy in amorphous Gd-Fe and Tb-Fe sputtered films,” J. Appl. Phys. 50, 1642 
(1979). 




