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Abstract

One  great  advantage  of  graphene-polyelectrolyte  multilayer  (GPM)

membranes  is  their  tunable  structure  and  internal  charge  for  improved

separation  performance.  In  this  study,  we  synthesized  GO-dominant  GPM

membrane  with  internal  negatively-charged  domains,  polyethyleneimine

(PEI)-dominant GPM membrane with internal positively-charged domains and

charged-balanced dense/loose GPM membranes by simply adjusting the ionic

strength  and  pH  of  the  GO  and  PEI  solutions  used  in  layer-by-layer

membrane synthesis. A combined system of quartz crystal microbalance with

dissipation  (QCM-D)  and  ellipsometry  was  used  to  analyze  the  mass

deposition,  film thickness,  and layer density of  the GPM membranes.  The

performance  of  the  GPM  membranes  were  compared  in  terms  of  both

permeability and selectivity to determine the optimal membrane structure

and  synthesis  strategy.   One  effective  strategy  to  improve  the  GPM

membrane permeability-selectivity tradeoff is to assemble charged-balanced

dense  membranes  under  weak  electrostatic  interactions.  This  balanced

membrane exhibits the highest MgCl2 selectivity (~86%).  Another effective

strategy for improved cation removal is to create PEI-dominant membranes

that provide internal positively-charged barrier to enhance cation selectivity

without  sacrificing  water  permeability.  These  findings  shine  lights  on  the

development of a systematic approach to push the boundary of permeability-

selectivity tradeoff for GPM membranes.



1. Introduction

Graphene oxide (GO), a two-dimensional (2D) carbon-based nanosheet, has

been  studied  intensively  as  an  interesting  material  for  making  water-

purification membranes.[1-5] However, due to the well-known swelling issues

(i.e., expansion of interlayer spacing or even resuspension) in the aqueous

solutions,[6, 7] stabilization of the GO layers is a key step toward any real

applications.  Till  now,  many  stabilization  methods  have  been  proposed,

including physical confinement by polymer matrix,[3] chemical crosslinking,

[8-10] cationic bonding,[11] and others. [12] 

Among  various  synthesis  methods,  layer-by-layer  (LbL)  assembly  has

gained popularity as a facile, scalable, and cost-effective strategy.[13, 14] An

LbL assembly  process  typically  involves  the successive adsorption of  two

materials  via  attractive  forces  such  as  electrostatic  interaction,  van  der

Waals  (vdW)  interaction,  and  hydrogen  bonding.[15-18] For  example,  a

positively  charged polycation  and a  negatively  charged polyanion can be

sequentially adsorbed onto a substrate via electrostatic interactions without

any  chemical  reaction.[19] Due  to  the  presence  of  ionizable  carboxylic

groups, GO is negatively charged in neutral and basic solutions, and hence

can be considered as a unique 2D polyanion. Therefore, GO layers can be

stabilized  through  the  LbL  assembly  of  GO  and  a  positively  charged

polycation to form GO-polyelectrolyte multilayer (GPM) membranes. Recent

studies have demonstrated several promising environmental applications of

GPM membranes, such as pervaporation and dehydration,[20] heavy metal

removal,[21] divalent cation removal,[22] and organic dye removal.[23-25]



The ionic strength and pH of the membrane synthesis environment can

alter the charge properties and structure of the GPM membranes, and hence

affect  their  performance  in  removing  ionic  and  organic  species.[14]

Therefore, it is potentially feasible to actively control membrane structure

and charge properties by adjusting the ionic strength and pH of the synthesis

solutions  during  the  LbL  assembly  process.  The  alternating  adsorption  of

polyelectrolytes in LbL assembly is mainly driven by electrostatic interactions

and  self-terminated  when  charge  neutralization  is  reached.[26] The

availability of charged sites on polyelectrolytes can be adjusted by solution

pH,  and  the  strength  of  electrostatic  interaction  force  could  be  greatly

affected by ionic strength of the solution. Attempts have been made to tune

multilayer polyelectrolyte membranes by adding sodium chloride into one or

both polyelectrolyte solutions.[27-29] It was found that the thickness of each

polyelectrolyte layer can be changed by salt addition.[27]  However, as a

unique polyanion,  GO has very different  morphology and response to the

aqueous  environment  compared  to  the  conventional  polymer-based

polyelectrolytes,  thus  potentially  resulting  in  very  different  multilayer

membranes. However, the effects of synthesis conditions on the properties

and performance of GPM membranes have rarely been discussed and the

corresponding mechanisms are largely lacking.

To address the above issue, we thoroughly investigated the effects of

ionic  strength  and  pH  on  the  properties  of  suspended  GO  and

polyethyleneimine (PEI), which are used in the synthesis of GPM membranes

using LbL assembly.  A hydrolyzed polyacrylonitrile  (hPAN) membrane with

negatively-charged  surface  was  selected  as  the  substrate  for  the  GPM

membranes.  A  combined  system  of  quartz  crystal  microbalance  with

dissipation (QCM-D) and ellipsometry was employed to precisely monitor the

mass deposition and film thickness of GO and PEI in each deposition cycle.

The  structure  and  charge  properties  of  the  GPM  membranes  assembled

under  different  ionic  strength  and  pH  conditions  were  analyzed  and

optimized.  The  membrane  performance  was  evaluated  in  terms  of  water



permeability  and  selectivity  tradeoff.  Based  on  our  findings,  potential

strategies to enhance the separation performance of GPM membranes were

proposed.

2. Experimental

2.1. Chemicals and materials  

Polyethyleneimine (PEI,  Mw 750,000), polyacrylonitrile  (PAN, Mw 150,000),

N,N-dimethylformamide  (DMF),  and lithium  chloride  (LiCl) were  used  as

received  from Sigma-Aldrich (St.  Louis,  MO). Sodium  chloride  (NaCl),

hydrogen  chloride  (HCl),  and  sodium  hydroxide  (NaOH)  were  used  as

received from Fisher Chemical (Fair Lawn, NJ). The hPAN membrane substrate

was  made  by  using  a  conventional  phase-inversion  method  followed  by

partial hydrolyzation in 1.5 M NaOH solution for 1.5 h.[30] The pure water

permeability and zeta potential of hPAN substrate were characterized as 22

LMH/bar and -67.0 mV, respectively. GO was prepared from graphite using

the modified Hummers’ method as described in our previous work.[8, 13]

2.2. LbL assembly of the GO-polyelectrolyte multilayer (GPM) membranes

As a positively charged polyelectrolyte with high charge density[16, 31], PEI

was used in this study to neutralize the negatively charged GO nanosheets in

the layer-by-layer (LbL) assembly of the GO-polyelectrolyte multilayer (GPM)

membranes. The concentrations of both GO and PEI solutions was 1 g/L. The

procedure for the LbL assembly of a GPM membrane is illustrated in Fig. 1.

After  hydrolysis,  the  negatively  charged  hPAN  membrane  substrate  was

soaked in PEI solution for 30 min, allowing the deposition of PEI, followed by

thoroughly rinsing the substrate with deionized (DI)  water to remove any

loosely bounded PEI from the membrane surface. The membrane was then

soaked in GO solution for another 30 min, followed by DI water rinsing. With

such a cycle of alternating PEI and GO deposition, a double layer (DL) of GO-

PEI was formed. The above deposition cycle was repeated several times to

fabricate the GPM membrane with a desired number of  double layers.  To



investigate the ionic strength effect, NaCl was added into the GO and PEI

solutions while maintaining a neutral pH. To study the pH effect, the ionic

strength of GO and PEI solutions was controlled at 100 mM by NaCl addition,

and the pH was adjusted using 0.1 M NaOH or HCl. 

Fig.1. Schematic illustration of the LbL assembly of GPM membranes.

2.3. Membrane and Material Characterization 

The zeta potential and hydrodynamic diameter  of GO and PEI in  solutions

were measured by  Zetasizer Nano ZS90  (Malvern Instruments, UK).  The

assembled GPM membranes were characterized using  X-ray photoelectron

(XPS) spectroscopy (PHI 5400, Perkin-Elmer, Eden Prairie, MN) to determine

chemical functional groups and elemental composition. The surface charge

and morphology of the GPM membranes were characterized using Zetasizer

and atomic force microscope (AFM, Dimension Icon, Bruker, Santa Barbara,

CA) respectively.  An integrated system of quartz crystal microbalance with

dissipation  (QCM-D,  E-1,  Q-sense,  Sweden)  and  ellipsometry  (FS-1  Multi-

wavelength,  Film  Sense,  Lincoln,  NE)  was  employed  to  monitor  the

consecutive  assembly  of  GO  and  PEI  layers  on  a  gold  sensor.  Detailed

information on sample preparation and data analysis can be found in the

supplementary data. 



2.4. Membrane performance tests

Membrane  performance  was  evaluated  using  a  lab-scale  cross-flow

nanofiltration (NF) system under a trans-membrane pressure of 50 psi (3.4

bar) at room temperature (20 ℃). Water permeability was recorded using a

digital balance (Denver Instruments, Denver, CO). Feed solutions contain one

of the following representative ionic species: MgCl2 (10 mM), CaCl2 (10 mM),

Na2SO4 (10 mM), and NaCl (30 mM) or one of Methylene blue (MB, 7.5 mg/L)

and  Rhodamine-WT  (R-WT,  7.5  mg/L)  as  model  organic  species.  The

concentration  of  ionic  species  in  the  permeate  was  measured  by  a

conductivity meter (Accumet Excel XL30, Thermo Scientific, Marietta, OH).

The  concentrations  of  MB  and  R-WT  were  determined  using  a  UV-vis

spectrophotometer  (UV160U,  Shimadzu  Scientific  Instruments,  Columbia,

MD) at wavelengths of 655 and 590 nm, respectively. The apparent rejection

of the ionic and organic species was calculated using Eq. 1. 

R=(1−
CP

CF
)×100%

(1)

where  CP and CF stand for the concentrations of ionic/organic species in the

permeate and in the feed, respectively. 

3. Results and discussion

3.1. Effects of ionic strength and pH on GO and PEI properties 

The freshly synthesized GO, as characterized by XPS in Fig. 2(a), is abundant

with  oxygenated  function  groups,  which  occupy  a  total  of  ~58%  of  the

carbon  atoms  in  the  basal  plane.  In  particular,  the  ionizable  carboxylic

groups cause the GO to be negatively charged with a zeta potential of -40

mV in neutral and basic solutions, as shown in Fig. 2(b). PEI is a branched



polyelectrolyte that is positively charged with a zeta potential of +40 mV in

neutral  and acidic  solutions  due  to  the  repeating  units  containing  amine

groups. When NaCl is added to increase the ionic strength of GO and PEI

solutions, the surface charge of GO and PEI are screened by the excessive

counterions (i.e., Na+ and Cl-), leading to a decrease in the absolute value of

zeta  potential.  As  shown  in  Fig.  2(b),  the  zeta  potential  of  GO  and  PEI

becomes -25 mV and 30 mV, respectively, in 100 mM NaCl solutions.  It is

worth  noticing  that  multivalent  ions  like  Ca2+ and  Mg2+ potentially  form

coordinative  complex  with  GO  [32,  33],  causing  their  aggregation  and

precipitation in solutions, hence are not used to study the effects of ionic

strength. 

Fig. 2. Characterizations of the properties of GO and PEI in solutions. (a) The
composition of carbon peaks in the XPS spectrum of GO to demonstrate the
degree of oxidation.  The effects of NaCl concentration on the zeta potential
(b) and hydrodynamic diameters (c) of suspended GO and PEI in solutions.
(d) Analysis of the energy potential between GO nanosheets as a function of
separation distance based on DLVO theory.  The effects of pH on the zeta
potential (e) and hydrodynamic diameters (f) of suspended GO and PEI in
solutions.



Interestingly, the ionic strength has opposite effects on the size of GO

and PEI in solutions. As shown in Fig. 2(c), the hydrodynamic diameter of PEI

decreases with increasing ionic strength, most likely because the repulsive

electrostatic force between the charged amine groups on its polymeric chain

becomes  weaker  at  higher  ionic  strength,  leading  to  a  more  coiled  and

denser chain structure. Whereas the hydrodynamic diameter of GO increases

with increasing ionic  strength.  This  is  possibly  because the less  repulsive

electrostatic  forces  between  suspended  GO  nanosheets  cause  them  to

restack and aggregate, forming larger particles in the solution. To confirm

this  hypothesis,  we  calculated  the  vdW attractive  force  and  electrostatic

repulsion  force  between  two  aligned  GO  nanosheets  (with  detailed

calculation  discussed  in  the  supplementary  data).  The  attractive  and

repulsive forces and their sum, which gives the net DLVO interaction force,

are plotted as a function of  separation distance in  Fig.  2(d).  As the ionic

strength increases from 1 to 100 mM, the vdW attraction remains constant,

but  the  electrostatic  repulsion  decreases  significantly.  Consequently,  the

energy barrier/repulsive peak depicted by the net  DLVO interaction curve

becomes much weaker at higher ionic strength, suggesting the likelihood of

forming GO aggregates in solutions.

Solution pH can also affect the charge and size of GO and PEI due to the

protonation/deprotonation of  charged functional groups, i.e., the carboxylic

groups on GO and amine groups on PEI.[34-36] The carboxylic  functional

group on GO is a weak acid with a pKa of around 4 [37], similar to that of

isolated carboxylic groups[38]. Therefore, as pH gradually increases from 2

to 11, the zeta potential of GO becomes more negative (Fig. 2(d)) due to the

deprotonation  of  carboxylic  groups  (Fig.  2(e)).   Correspondingly,  the

hydrodynamic  diameter  of  GO  increases  from  300  to  1100  nm  with

decreasing pH (Fig. 2(f)) because of the formation of GO aggregates at low

pH when the electrostatic repulsion between GO is weak.  For PEI, the zeta

potential measurements in Fig. 2(e) depict a pKa value of around  8.5  [39],

lower than that of  isolated amine groups (∼10). This is because the amine



groups on the PEI  polymeric chain are densely packed, resulting in steric

effects on the deprotonation reaction[40]. Therefore, the zeta potential of PEI

remains almost constant at  ∼35 mV in acidic and neutral environment (pH

below 8), but sharply decreases to around 5 mV when pH increases above 9

due to the deprotonation of amine groups. As a result of the change in zeta

potential, the weakly charged PEI chains become more coiled and looped,

slightly reducing the hydrodynamic diameter of PEI (Fig.2 (f)). 

3.2. Tailoring the structure of GPM membranes by adjusting ionic strength

Since ionic strength can affect the charge and size of GO and PEI in solution,

it is possible to tailor the structure of GPM membranes by adjusting the ionic

strength of GO and PEI solutions. In order to understand the GPM membrane

structure, a combined QCM-D and ellipsometry analysis was used to online

monitor the mass and thickness of the membrane at each step of the LbL

deposition. As shown in Fig. 3(a) and 3(b), when 100 mM NaCl was added to

increase the ionic strength of GO and PEI solutions during the LbL deposition,

both deposited mass and membrane thickness increase more dramatically

than that without salt addition. After depositing 4 double layers (DL) of PEI

and GO, the mass of the GPM membrane with salt addition becomes around

4 times and thickness almost 6 times of  that without salt.  Note that the

addition  of  salt  also  increases  the  amount  of  deposited  GO  much  more

dramatically than PEI. As shown in Fig. 3(a), the blue dashed line exhibits a

much higher step increase for GO than PEI when NaCl is added, while the

mass increase of GO and PEI is comparable without salt addition (red line).

For example, adding salt increases the GO deposition amount from ∼300 ng/

cm2 to  almost  ∼3000  ng/cm2 in  each  LbL  cycle,  while  the  mass  of  PEI

deposited in each cycle only increases from ∼350 ng/cm2 to ∼700 ng/cm2.  It

indicates that increasing the ionic strength not only increases the total mass

and thickness of the assembled membrane, but also changes the relative

amount of GO and PEI within the membrane.



Fig.  3. Characterization  of  the  mass  (a)  and  thickness  (b)  of  the  GPM
membranes during LbL assembly of GO and PEI with and without the addition
of 100 mM NaCl. (c) Percentage of GO mass in each consecutive double layer
(DL) of GO-PEI. (d) Schematic illustration of the LbL assembly of GO and PEI
and the structure of thus synthesized GPM membrane with and without salt.

A more detailed composition analysis of the GPM membrane is shown

in Fig. 3(c). GO is evidently the predominant material (~97%) in the first DL

with or without NaCl addition.  However, in the subsequently deposited DLs

with NaCl addition, GO consistently accounts for ~80% of the total mass,

while in the DL without NaCl addition, GO only contributes to less than 50%

of the total mass. Such differences in the deposition behavior of GO and PEI

can be attributed to their conformational change in solutions with/without

salt. As schematically illustrated in Figure 3(d), the PEI polymer chains are

more stretched at low ionic strength due to the repulsive force between the

ionizable head groups and they tend to lay flat when deposited15. At higher

ionic strength, although the hydrodynamic diameter of PEI decreases as the

polymer chain coil up (Fig. 2(c)), the coiled structure leads to an increase in

the  layer  thickness  in  deposition[41,  42].  Therefore,  although  the  fine

morphology  of  the  deposited  PEI  may  differ  slightly,  the  total  mass  and

thickness of the deposited PEI layer do not change dramatically at high or



low ionic strength.  On the other hand,  GO preassembles/grows into larger

particles  with  less  exposed  surface  charges  at  high  ionic  strength,  their

deposition thus results in a much thicker GO layer in the synthesized GPM

membrane. Therefore, the LbL assembly at high ionic strength leads to a GO-

dominant  GPM  membrane,  while  low  ionic  strength  results  in  a  GO-PEI

balanced membrane composition.  

3.3. Water Permeability and Selectivity of the GPM membranes tailored by

adjusting ionic strength

The GPM membranes synthesized at different ionic strengths are expected to

exhibit  different  performances  due  to  the  structural  and  compositional

changes. In order to understand the effects, we evaluated the water flux and

ion  rejection  of  the  GPM membranes  with  2.5  DL  of  GO-PEI,  which  were

tailored by changing ionic strength. The outermost layer of a 2.5-DL GPM

membrane is PEI, thus the membrane surface is positively charged, enabling

the rejection of divalent cations (e.g., Mg2+, Ca2+) by Donnan exclusion effect.

As  shown  in  Figure  4(a),  the  water  permeability  of  GPM  membranes

decreases with increasing ionic strength, most likely due to the increasing

membrane thickness, as demonstrated earlier.  Note that the most dramatic

change takes place between zero and 10 mM NaCl, the water permeability

drops from 20 to 3.6 LMH/bar when only 10 mM NaCl was added and remains

almost constant despite any further increase in ionic strength. The rejection

of  MgCl2 by  the  GPM  membrane  increases  with  increasing  NaCl

concentration. It jumps from 10% without NaCl addition to  ∼50% with the

addition of 10 mM NaCl.  Unlike the trend in water permeability though, the

MgCl2 rejection keeps increasing when more salt is  added until  it  reaches

∼75% with the addition of 100 mM NaCl. Such an increase in rejection can

again  be attributed to the increased membrane thickness  at  higher  ionic

strength.  It  indicates  that  the  hindered  diffusion  of  ions  within  the  GPM

membrane must also play a very important role in the cation rejection in

addition to Donnan charge exclusion effects.



When NaCl is added in the LbL assembly of GPM membranes, it only

takes a small number of DLs to obtain the desired membrane performance.

As shown in Fig. 4(b), the rejection of MgCl2 already reaches ∼70% upon the

deposition of 1.5 DLs (i.e., PEI-GO-PEI), and slightly increases to ∼80% after

the deposition of 4.5 DLs. The water permeability almost remains constant at

3.5  LMH/bar  when the  deposition  cycle  increases  from 1.5  to  4.5  DLs.  It

indicates that adding NaCl could become an effective strategy to minimize

the number of deposition cycles needed in LbL membrane synthesis. 

Fig. 4. Characterization of the GPM membrane performance. (a) The water
permeability  and  10  mM  MgCl2 rejection  by  a  2.5-DL  GPM  membrane
assembled  in  solutions  with  different  NaCl  concentration.  (b)  Effects  of
deposited GO and PEI layers on the water permeability and 10 mM MgCl2

rejection  of  GPM  membranes.  Effects  of  surface  charge  on  the  water
permeability (c) and solute rejection (d) of a GPM membrane tested with feed
water containing various solutes.  To maintain a constant ionic strength, the
concentration of MgCl2,  CaCl2 and Na2SO4 solutions is 10 mM, and that of
NaCl  is  30  mM.  The  concentration  of  the  organic  dyes  is  7.5  mg/L.  The
positive and negative surface charge was achieved by synthesizing a 2.5-DL
membrane (with PEI as the outermost layer) and 3.0-DL membrane (with GO
as the outermost layer),  respectively. Both 2.5-DL and 3.0-DL membranes



were synthesized with the addition of 100 mM NaCl.

In order to understand the effects of membrane surface charge on the

water permeability and cation rejection of GPM membranes, we compared

the performance of a 2.5-DL membrane with positively charged PEI as the

outermost layer and a 3-DL membrane with negatively charged GO as the

outermost layer. The surface charge of the 2.5-DL membrane was measured

to be 16 ± 3 mV and that of the 3.0 DL membrane was measured to be -28 ±

3 mV (Fig.S2). Fig. 4(c) shows that membrane surface charge does not affect

water  permeability  of  GPM  membranes,  as  no  significant  difference  was

observed  between  the  2.5-DL  and  3-DL  membranes  in  the  filtration

experiments. The rejection of different solutes is compared in Fig. 4(d). The

membrane surface charge only has minor effects on the rejection of different

solutes. The membrane with positively charged surface has slightly higher

rejection  of  divalent  cations  (MgCl2 and  CaCl2)  than  negatively  charged

membrane, while the membrane with negatively charged surface has slightly

higher  rejection  of  divalent  anions  (Na2SO4)  than  positively  charged

membranes.  Nevertheless,  the overall  effects of  surface charge on solute

rejection  is  very  weak,  indicating  the  rejection  is  dominated  by  internal

properties of the GPM membranes instead of surface charge.

The internal charge of GPM membranes has a major effect on membrane

selectivity,  because as  shown in Fig.  4(d),  both  positively  and negatively

charged GPM membranes  have significantly higher rejection of  MgCl2 and

CaCl2 (> 60%) than that of  Na2SO4 and NaCl (~ 20%).  It  is  believed that

within the GPM membrane structure there are predominant domains of PEI

that  offer  dense  internal  positive  charge  and  thus  serve  as  an  effective

barrier to stop the passage of divalent cations (Mg2+, Ca2+) due to Donnan

exclusion. There are predominant, negatively-charged domains of GO as well,

but they cannot serve as effective barriers for divalent anions, most likely

because  the  GO  domains  suffer  severe  swelling  that  results  in  large

interlayer spacing to prevent it from serving as an effective barrier for SO4
2-.



Therefore, although SO4
2- ions are bigger than Mg2+ or Ca2+, the rejection of

SO4
2- ions  by  GPM  membranes  are  lower.  When  the  solutes  get  bigger,

however, size exclusion becomes the dominant separation mechanism and

the effect of internal charge diminishes.  For example,  the GPM membrane

has relatively high rejection of R-WT and MB regardless of their charge (R-WT

being negatively charged, and MB being positively charged).  

A unique benefit of tailoring the structure of GPM membranes using ionic

strength  during  the  LbL  assembly  process  is  that  dominant  GO  and  PEI

domains that are either negatively or positively charged can be generated

internally within the GPM membrane. Such internal negative/positive layers

may  serve  as  a  charged  barrier,  thus  leading  to  enhanced  rejection  of

targeted cations or anions. For traditional NF membranes, the rejection of

ions  often  relies  on  the  surface  charge  of  the  membrane.  A  positively

charged membrane surface is typically more effective in removing divalent

cations  due to  Donnan charge exclusion.   However,  a  positively  charged

membrane  surface  is  more  prone  to  fouling  than  negatively  charged

membranes because most natural organic matters and particles in water are

negatively  charged.  Therefore,  a  positively  charged  membrane surface  is

usually avoided to prevent membrane fouling in water purification. To solve

such a dilemma on surface charge, generating internal  positively charged

domains (i.e. PEI layers) to effectively remove divalent cations offer a novel

approach to enhance the selectivity of membranes without scarifying their

antifouling properties.

3.4.  Synthesis  and  characterization  of  GO-dominant,  PEI-dominant,  and

charge-balanced GPM membranes 

The internal positively/negatively-charged domains within a GPM membrane

can be further tailored by adjusting the pH of the GO and PEI solutions during

the LbL assembly. Because the carboxylic groups on GO and amine groups on

PEI have different pKa, varying pH can independently change the charge and

deposition amount of GO and PEI. For example, a GO-dominant membrane



can be synthesized at pH 3.5. Because the carboxylic groups on GO (with a

pKa of around 4) are protonated and carry less negative charge at pH 3.5,

while the amine groups on PEI  (with a pKa between 8 and 9) carry strong

positive charge at pH 3.5,  the charge neutralization between GO and PEI will

result in more deposition of GO and form thick GO-dominant layers. QCM-D

was  used  to  monitor  the  formation  of  such  domains  during  the  LbL

membrane assembly. As shown in Fig. 5(a), the cumulative deposition of GO

and PEI at pH 3.5 demonstrates that the GO deposition results in a more

dramatic mass increase than PEI. Overall, GO accounts for more than 80% of

the total mass, confirming a GO-dominant membrane structure (Fig. 5(b)).

Fig. 5(c) shows that thickness of the GO-dominant membrane is almost three

times  of  the  baseline  GPM  membrane  (synthesized  at  neutral  pH).  The

presence  of  GO  domains  can  be  visually  observed  in  Fig.  5(d)  as  dark

aggregated brownish spots on the surface. The AFM image in Fig. 5(e) also

shows much rougher surface for the GO-dominant membrane, confirming the

presence  of  aggregated  GO  domains.  The  density  of  the  GO-dominant

membrane is only around 1 g/cm3, slightly lower than that of the baseline

GPM membrane.    Our  previous  study  showed that  the  density  of  layer-

stacked GO membranes is high (~1.8 g/cm3) when dry, but drops to ~ 1

g/cm3  in aqueous  solutions due  to  severe  swelling.[6] Therefore,  the  low

density of GO-dominant membranes indicates significant swelling of the GO

domains, similar to that of layer-stacked GO membranes. 

Under  similar  mechanisms,  a  PEI-dominant  membrane  can  be

synthesized at pH 9.5. The amine groups on PEI are partially deprotonated

and lose some positive charge at pH 9.5, while the carboxylic groups on GO

maintain strong negative charge.  Therefore, the LbL assembly at pH 9.5 will

increase  the  amount  of  PEI  deposition  and  form  PEI-dominant  domains.

However, because GO in general has lower charge-to-mass ratio than PEI,

the absolute mass of PEI within the membrane is still slightly lower than GO.

As shown in Fig. 5(b),  PEI accounts for 41% of the total mass in the PEI-



dominant membrane, much higher than the 20% of PEI in a  GO-dominant

membrane. Fig. 5(c) demonstrates that the PEI-dominant membrane is both

thicker (50 nm) and denser (1.6 g/cm3) than the baseline GPM membrane (25

nm and 1.2 g/cm3).

Fig. 5. Characterization of GO-dominant, PEI-dominant, and charge-balanced
GPM membranes synthesized by adjusting pH of GO and PEI solutions. (a)
Mass  of  GO  and  PEI  layers  deposited  at  different  pH:  GO  dominant
membranes synthesized at pH of  3.5 for  both GO and PEI  solutions,  PEI-
dominant membranes synthesized at pH of 9.5 for both GO and PEI solutions,
balanced membranes synthesized at pH of 3.5 for GO and pH of 9.5 for PEI
solutions, and baseline GPM membranes synthesized at neutral pH for both
GO and PEI solutions. The composition (b), membrane density and thickness
(c),  visual  observation  (d),  and  AFM  images  (e)  of  GO-dominant,  PEI-
dominant, balanced and unadjusted membranes. All the membranes contain
3 DLs of GO and PEI.

It  is  also possible  to purposely  prepare a denser GPM membrane by

independently adjusting the pH of GO and PEI solutions.   As shown in Fig.

5(a), when the GO and PEI solutions have different pH (pH 3.5 for GO and pH

9.5 for PEI), both GO and PEI carry weaker charges and thus deposited less

mass  onto  the  membrane  in  each  LbL  deposition  cycle.  Such  controlled

deposition with weaker electrostatic interactions results in a more charge-

balanced  membrane  with  denser  structures.   Fig.  5(b)  shows  that  the



balanced membrane contains 67% of GO in mass, which is smaller than the

GO-dominant, but higher than the PEI-dominant membranes.  The balanced

membrane  has  the  tightest  structure  among  all  GPM  membranes.  As

demonstrated in Fig.  5(c),  the balanced membrane has a density of  ~1.8

g/cm3,  which  is  much higher  than the  GO-dominant  (~1.0  g/cm3)  or  PEI-

dominant (~1.6 g/cm3) membranes. In addition, the density of the balanced

membrane in wet conditions is  comparable to that of  a layer-stacked GO

membrane  when it  is  dry.[6] In  contrast  to  the  swelling  of  GO-dominant

membrane,  the  balanced  membrane  maintains  a  high  layer  density  in

aqueous  solutions,  suggesting  that  the  balanced  membrane  has  a  well

aligned layer structure that does not swell.  This is most likely because the

PEI plays a very important role in effectively stabilizing the GO layers and

prevent them from swelling. 

3.5.  Optimization  of  the  GPM  membranes  for  improved  divalent  cation

removal

In order to determine the optimized structure of GPM membranes for the

best  removal  of  divalent  cations  (e.g.,  MgCl2),  the  performance  of  five

different GPM membranes with 3 DLs of GO-PEI are summarized in Fig. 6. As

being discussed earlier, tailoring the internal charged domains could result in

membranes  dominated with  either  GO or  PEI.  Fig.  6  shows that  the  GO-

dominant membranes behave very similarly to the baseline-GPM membrane,

which  is  synthesized  at  neutral  pH.  This  is  consistent  with  our  earlier

understanding that baseline-GPM membranes also have predominantly GO

domains  (Fig.  5(b)),  although  its  GO  content  is  slightly  lower  than  GO-

dominant  membranes.  Both  baseline  and  GO-dominant  membranes

demonstrate poor removal of divalent cations, which can be attributed to the

severe swelling of GO domains as discussed earlier. 

An effective strategy to improve the rejection of divalent cations is to

make  denser  structures.  As  shown  in  Fig.  6(a),  the  balanced  membrane

synthesized under weak electrostatic interactions provides the highest MgCl2



rejection of 86%, although the membrane is relatively thin (~ 30 nm).  The

high rejection can be attributed to the dense and non-swelling structures of

the  balanced  membrane.   In  addition,  the  PEI  could  potentially  seal  the

defects and shortcuts between GO layers, which are believed to play a very

important role in the low ion rejection by layer-stacked GO membranes.[43]

In order to understand the importance of membrane density, we also

synthesized a charge-balanced but loose membrane using highly charged GO

and  PEI  by  adjusting  the  pH  of  GO  and  PEI  solutions  to  9.5  and  3.5,

respectively. The strong electrostatic repulsion between individual PEI or GO

molecules  prevents  them  from  being  deposited  closely  to  each  other,

causing  loose  structure  with  large  voids  in  the  synthesized  membrane.

Consequently, the loose membrane (marked as the star in Fig. 6) the highest

water  permeability  (7.3  LMH/bar)  but  lowest  MgCl2 rejection  (40%).  The

performance  of  the  charge-balanced  dense  and  loose  membranes  may

represent two extreme conditions of the tradeoff relationship between the

selectivity and permeability of GPM membranes. However, they represent an

improved upper  boundary  (red dashed line  in  Fig.  6(a))  compared to  the

baseline  and  GO-dominant  membranes  (black  dashed  line)  in  the

permeability-selectivity tradeoff analysis. 

Fig. 6(a) reveals that the performance of the PEI-dominant membranes

falls on the same permeability-selectivity tradeoff boundary as the charge-

balanced GPM membranes. It suggests that PEI-dominant membranes have

better  performance  than  GO-dominant  or  baseline  GPM  membranes.

Therefore, another potential strategy to improve divalent cation removal is to

synthesize internal positively-charged domains that can serve as a charge

barrier. 



Fig.  6. (a)  The  permeability-selectivity  tradeoff of  GPM membranes  with
different  structures  and  internal  charge  distributions.  All  the  membranes
contain 3 DLs of GO and PEI. There are three strategies to push the boundary
of permeability-selectivity tradeoff of GPM membranes, including Route 1 of
increasing the GPM density by creating charge-balanced deposition of thin
and  dense  layers  of  graphene  and polyelectrolyte;  Route  2  of  increasing
positively-charged PEI domains inside the membrane while decreasing the
overall  mass  deposition;  and  Route  3  of  decreasing  the  GPM density  by
creating  loose  structures  during  deposition.  (b)  Comparison  of  the
performances of GPM membranes and selected commercial membranes. [44-
46] 

Comparing  the  membrane  performance  associated  with  different

membrane  structures  provides  us  some  hints  on  developing  membrane

synthesis strategies to push the upper boundary of permeability-selectivity

tradeoff.  The most effective strategy seems to be making charge-balanced,

thin, and dense membranes, going in the direction of route 1 in Fig. 6(a).

Another feasible  strategy is  to increase positively-charged domains inside

the  membrane  while  decreasing  the  overall  mass  deposition/membrane

thickness  to  simultaneously  improve  water  permeability  and  selectivity,

going in the direction of route 2 in Fig.6(a).  As shown in Fig. 6(b), the charge

balanced  dense  GPM  membrane  and  the  PEI-dominant  membrane  have

demonstrated better selectivity than commercial NF membranes, such as NF



40  and  NF  270  from Dow Chemical,  the  water  permeability  of  the  GPM

membranes are higher than NF 40 but lower than NF 270. [44-46]   

Decreasing membrane density will increase the number of large voids in

the membrane structure thus increasing membrane permeability but usually

accompanied  by  reduced  selectivity  (shown  as  route  3  in  Fig.  6(a)).

Therefore, to increase the water permeability while maintaining membrane

selectivity, large voids need to be avoided. Instead, creating nanoscale pores

on GO can provide additional transport path for water while preventing the

passage  of  ions  or  molecules.  Despite  the  challenges  involved  in  drilling

holes on GO,  the availability of a large family of 2D materials (i.e., zeolite

and  MoS2)  could  be  potentially  used  to  overcome some of  the  technical

problems. [47-49] For example, Ye et al. reported the defect-engineered MoS2

using oxygen plasma,[50] and 2D zeolite has recently been synthesized with

0.6 nm in-plane pores.[51] Since both of the materials are 2D nanosheets

with negative charge, they can be used to substitute GO in the membrane

fabrication. Therefore, this can potentially offer a path to further push the

upper boundary of the permeability-selectivity tradeoff.

4. Conclusion

We  have  demonstrated  that  the  structure  and  performance  of  GPM

membranes  can  be  optimized  conveniently  by  adjusting  the  synthesis

conditions,  i.e.  the  ionic  strength  and  pH  of  GO  and  PEI  solutions.  We

synthesized  GO-dominant,  PEI-dominant,  and  charge-balanced  dense  and

loose membranes and compared their performances in terms of permeability

and selectivity tradeoff.  Two effective strategies are identified to improve

the  GPM  membrane  permeability-selectivity  tradeoff.  One  is  to  assemble

charge-balanced dense and thin GPM membranes under weak electrostatic

interactions  by  using  high  ionic  strength  and  varying  pH.  This  balanced

membrane exhibits the highest MgCl2 selectivity (~86%).  Another strategy is

to create PEI-dominant membranes that provide internal positively-charged



barrier to enhance cation selectivity without sacrificing water permeability.

We also found that GO-dominant and loose membranes have poor selectivity

either due to the swelling of GO domains or the existence of large voids that

allow  the  passage  of  small  ions.   These  findings  shine  lights  on  the

development of a systematic approach to push the boundary of permeability-

selectivity tradeoff for GPM membranes. 
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