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Ongoing biomarker development programs have been designed to identify serologic or
imaging signatures of clinico-pathologic entities, assuming distinct biological boundaries
between them. Identified putative biomarkers have exhibited large variability and
inconsistency between cohorts, and remain inadequate for selecting suitable recipients
for potential disease-modifying interventions. We launched the Cincinnati Cohort
Biomarker Program (CCBP) as a population-based, phenotype-agnostic longitudinal
study. While patients affected by a wide range of neurodegenerative disorders will be
deeply phenotyped using clinical, imaging, and mobile health technologies, analyses
will not be anchored on phenotypic clusters but on bioassays of to-be-repurposed
medications as well as on genomics, transcriptomics, proteomics, metabolomics,
epigenomics, microbiomics, and pharmacogenomics analyses blinded to phenotypic
data. Unique features of this cohort study include (1) a reverse biology-to-phenotype
direction of biomarker development in which clinical, imaging, and mobile health
technologies are subordinate to biological signals of interest; (2) hypothesis free,
causally- and data driven-based analyses; (3) inclusive recruitment of patients with
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neurodegenerative disorders beyond clinical criteria-meeting patients with Parkinson’s
and Alzheimer’s diseases, and (4) a large number of longitudinally followed participants.
The parallel development of serum bioassays will be aimed at linking biologically suitable
subjects to already available drugs with repurposing potential in future proof-of-concept
adaptive clinical trials. Although many challenges are anticipated, including the unclear
pathogenic relevance of identifiable biological signals and the possibility that some
signals of importance may not yet be measurable with current technologies, this cohort
study abandons the anchoring role of clinico-pathologic criteria in favor of biomarker-
driven disease subtyping to facilitate future biosubtype-specific disease-modifying
therapeutic efforts.

Keywords: biomarkers, Parkinson’s disease, Alzheimer’s disease, neurodegeneration, cohort, drug repurposing,
bioassay

INTRODUCTION

We have long assumed that the neuropathological findings of
aggregated α-synuclein (α-syn) into Lewy bodies and Lewy
neurites define and cause Parkinson’s disease (PD) and that
aggregations of amyloid (Aβ) into plaques and tau into
neurofibrillary tangles define and cause Alzheimer’s disease (AD),
and that the distribution of these proteins explains their clinical
heterogeneity (Espay et al., 2020). These pathological findings
are, however, ubiquitous and do not correlate with agnostic post-
mortem analysis: α-syn, Aβ, and tau aggregation are frequent
“co-pathologies” in AD and PD (Irwin et al., 2017; Boyle et al.,
2018; Karanth et al., 2020) and can be found even in super-
survivors without dementia or parkinsonism (Head et al., 2009;
Wallace et al., 2019). The overlapping pathological features may
instead reflect clinical characteristics shared by PD and AD
(Scarmeas et al., 2004, 2005; Kehagia et al., 2010). Indirect
evidence from human studies suggest protein aggregation in
sporadic cases may in fact be protective and not capable of
discriminating clinical disease subtypes (Espay et al., 2019). As
a result, it has become imperative to transition from the century-
old, clinico-pathological convergent model on which diseases are
classified to a systems biology framework, in which genotype
and biomolecular abnormalities, rather than clinical phenotypes
alone, define nosology and drive therapeutics (Espay et al., 2017).

Given these premises, we have recently launched at the
University of Cincinnati’s James J. and Joan A. Gardner Center
for Parkinson’s Disease and Movement Disorders, a phenotype-
agnostic biomarker-discovery program aimed at characterizing
biological subtypes of neurodegenerative disorders, particularly
those best suited for targeting with therapies available for
repurposing. This cohort study has unique features compared
to ongoing [e.g., Parkinson’s Progression Marker Initiative
(PPMI)] or newly assembled cohorts [e.g., Luxembourg study,
Personalized Parkinson Project (PPP)] (Table 1) (Kenneth et al.,
2011; Hipp et al., 2018; Bloem et al., 2019). The main novelty
for our cohort study is a design based on the assumption we
do not know which biomarkers have clinical relevance at the
individual level. Accordingly, the recruitment will be deliberately
inclusive of different neurodegenerative phenotypes with the

expectation that biological subtypes may not align with clinico-
pathological subtypes.

Here we summarize the methodological aspects of this cohort
study, including phenotypic measures and analytic approach, and
discuss anticipated challenges.

THE CINCINNATI COHORT BIOMARKER
PROGRAM

This is an omics-based, longitudinal, structural causal model,
non-phenotype-driven population-based study. We will enroll
a total of 4,000 patients with neurodegenerative diseases and
1,000 healthy age-matched controls with yearly follow-up for
at least 5 years, extended to 10 and beyond contingent on
additional funding. At each visit, patients will undergo a similar
clinical, paraclinical, and biospecimen collection. Pragmatic
approaches such as streamlining data gathering (prioritizing
biospecimen collection) will be allowed if important to retain
subjects and minimize dropouts. The exploratory nature of
this study rendered it unsuitable for funding considerations
by agencies giving continued preference for hypothesis-based
studies based on the prevailing clinico-pathologic model of
neurodegenerative diseases, which remains the gold standard for
nosology, biomarker validation, and disease modification. As a
result, this study was funded through philanthropy, with major
support by the James J. and Joan A. Gardner Family Foundation.
The main aim is to identify biological outliers defining molecular
disease subtypes, with a focus on those suitable for targeting
with already available therapies (repurposing) in future built-in
adaptive clinical trials.

Inclusion and Exclusion Criteria
Given the inclusive nature of the study, we are recruiting subjects
older than 18 years of age exhibiting a range of parkinsonisms
representing PD and PD-like disorders, such as progressive
supranuclear palsy, multiple system atrophy, and corticobasal
syndrome, as well as AD and AD-like disorders, such as
frontotemporal dementias, normal pressure hydrocephalus, and
vascular dementia. The enrollment of young subjects could help
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TABLE 1 | Comparison between established biomarker-development cohorts.

PPMI (Kenneth et al., 2011) Luxembourg (Hipp et al., 2018) PPP (Bloem et al., 2019) CCBP

Overview To identify biomarkers to define
progression of PD (independent
variable: PD; dependent
variable: biological measures)

To identify biomarkers to define
progression of PD and APD
(independent variable: PD, APDs;
dependent variable: biological
measures)

To identify biomarkers to define
progression of PD (independent variable:
PD; dependent variable: biological
measures)

To identify biomarkers of
subtypes regardless of clinical
diagnosis (independent variable:
biological signals; dependent
variable: phenotypes)

Objectives Use clinical assessments of
short-term (6 months)
progression to predict long-term
PD progression
Define longitudinal stability of
PD subtypes (TD vs. PIGD vs.
indeterminant)

Clinico-genomic stratification
Progression of PD and APD
APD differential diagnosis
Characterize cognitive, gait, and
vision disturbances

Compare treatment response with
biomarker status
Association between biomarkers and
progression of motor and cognitive
symptoms

Define causal biological disease
pathways
Identify subpopulations with
biological outliers
Repurpose existing therapies to
target subpopulations

Inclusion criteria PD ≤ 2 years
Positive DAT-scan

PD, APD (any disease stage)
≥ 18 years old

PD ≤ 5 years
≥ 18 years old

PD and PD-like,
AD and AD-like disorders
(inclusive, any disease stage)
≥ 18 years old

Sample size 1400* patients, 200 healthy
controls

800 patients, 800 healthy controls 650 patients, no healthy controls 4,000 patients, 1,000 healthy
controls

Data analysis Hypothesis-driven analysis:
standard exploratory analyses

Data-driven: standard statistical
and machine learning approaches
for classification, regression,
clusterization, and time-series
analyses

Hypothesis-driven analysis: linear
prediction models

Data-driven: iterative causal
modeling and deep learning

Directionality of
analysis

Phenotype-to-biomarker Phenotype-to-biomarker Phenotype-to-biomarker Biomarker-to-phenotype

Follow-up period Every 6 months (∼6 years
accrued to date)

Annual Up to 2 years Annual (for at least 5 years)

In clinic-
assessment

Motor symptoms
Non-motor symptoms
+ neuropsychological
assessment
Demographics and
epidemiological data

Motor symptoms
Non-motor symptoms
+ neuropsychological
assessment
ADLs questionnaires
Sensor-based: gait analysis
Demographics and
epidemiological data

Motor symptoms
Non-motor symptoms
+ neuropsychological
assessment
ADLs questionnaires
Sensor-based: continuous accelerometer
recording, pulse rate, and ECG data
Demographics and epidemiological data

Motor symptoms
Non-motor symptoms
+ neuropsychological
assessment
ADLs questionnaires
Sensor-based: motor and voice
analysis
Demographics and
epidemiological data

Biospecimens DNA, plasma, serum CSF,
urine

DNA, RNA, peripheral blood
mononuclear cells, plasma, serum;
CSF, stools, fibroblast, and colon
biopsy are optional

DNA, RNA, peripheral blood mononuclear
cells, plasma, serum, CSF, stools

DNA, RNA, peripheral blood
mononuclear cells, plasma,
serum, urine, stools, exosomes

Neuro-imaging DaT-scan and MRI imaging Based on patient records (if
available)

MRI (including fMRI) MRI (including 3D, DTI, and
fMRI)

At-home
assessment

Smartwatch data recording:
accelerometer data, pulse
rate, ECG

Mobile phone application: finger
tapping and gait analysis

2-years continuous smartwatch data
recording: accelerometer data, pulse rate,
ECG, clinical scales, and questionnaires

24-h continuous smartwatch
data recording: pulse rate, HRV,
sleep-related parameters

PPMI, Parkinson’s Progression Markers Initiative; PPP, Personalized Parkinson Project; CCBP, Cincinnati Cohort Biomarker Program; PD, Parkinson’s disease; APD,
atypical parkinsonian disorders (PSP, CBS, MSA); AD, Alzheimer disease; TD, tremor dominant; PIGD, postural instability and gait disturbance; ADLs, activities of daily
living; RNA, ribonucleic acid; DNA, deoxyribonucleic acid; CSF, cerebrospinal fluid; DaT-scan, Dopamine Transporter Scan; MRI, magnetic resonance imaging; fMRI,
functional MRI; ECG, electrocardiogram; HRV, heart rate variability. *Encompassing different cohorts of patients. PPMI 2.0 will soon increase the number of patients and
ex the use of mobile health technologies.

in the identification of early biomarkers in specific conditions
(e.g., genetic). However, our enrollment will be initially focused
on the elderly population seeking care at the University of
Cincinnati Gardner Center, which receives referrals from a
wide range of Cincinnati-area neurologists. The Center evaluates
a representative population of neurodegenerative disorders
seeking care in the Cincinnati area. We will also recruit age-
and sex-matched healthy controls. Controls that during the
study assessment manifest signs of neurological disease will be
shifted as cases.

Although “Cases” and “Controls” are determined by virtue of
the presence or absence of neurological symptoms, respectively,
our inclusion criteria for neurodegenerative disorders are
otherwise deliberately inclusive, based on the premise that we
do not a priori know in which clinical phenotypes will the
first targetable molecular subtypes be identified. As noted in
Section “Data Analysis and Management,” none of proposed
analysis will use the classification of participants into cases
or controls, nor any phenotypic subtype created therein, as
independent variables. Nevertheless, all participants will be
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referred by a neurologist to make sure they present specific
signs of parkinsonism or dementia. In case of doubt, the
Principal Investigator will decide if the subjects fit inclusion
criteria. Only subjects with recognized causes or contributors
for their motor or cognitive manifestations (e.g., vitamin B12
deficiency) and those requiring aggressive medical management
will be excluded.

Ethics, Collection, and Storage of
Biological Samples
The study protocol was approved by the Institutional Review
Board of the University of Cincinnati (protocol number 2020-
0039). Informed consent is obtained from all subjects with
the conduct of the study fully adhering to the principles of
the Declaration of Helsinki. Biospecimens will be collected
from subjects and healthy controls, including peripheral blood,
urine, and stool.

Plasma is being isolated from blood collected in EDTA
vacutainers and aliquoted for future use, including isolation of
plasma proteins and extracellular vesicles (EVs). As all cells
secrete EVs, they are abundant in all bodily fluids and have been
shown to carry diverse species of nucleic acids, proteins, and
lipids (van Niel et al., 2018). Plasma will be subjected to size
exclusion chromatography (70 nm qEV original, Izon Science)
to separate EVs from soluble proteins. The EVs present in each
sample will be quantified using nanoparticle tracking analysis
(NanoSight NS300, Malvern Panalytical), and their surface
proteins characterized by a flow cytometry method optimized
for vesicle analysis (Wiklander et al., 2018). Following isolation,
we will extract RNA and sequence the mRNA present within
these vesicles using methods developed for single-cell RNA-
sequencing. In order to amplify the most informative signals in
total EVs mRNA, we will utilize known neuron, astrocyte and
oligodendrocyte cell surface markers using immunoprecipitation
(Miltenyi Biotec).

A urine sample is being collected in a sterile kit during
in-clinic visits. Stool samples are aliquoted into preservative
containers (OMNIgene.Gut, DNA Genotek, Corp.) immediately
after passage. Samples are transferred to −80◦ storage within
72 h. DNA is subsequently extracted from 0.25 gm stool using the
PowerFecal Pro extraction kit (Qiagen, Inc.). DNA sequencing
libraries will be constructed (Nextera XT, Illumina, Corp.) and
pooled for sequencing on an Illumina sequencing machine
(NextSeq500, Illumina, Corp.). Sequencing reads will be aligned
to a microbial genome database using Kraken (Wood and
Salzberg, 2014) to determine the assemblage of microorganisms
present in each fecal sample (Quigley, 2017). Biospecimens are
processed and aliquoted for downstream use consistent with the
strategy of future use/sharing of the samples. All sample meta-
data are tracked via the DT Biobank’s LIMS system to catalog
the chain of custody and processing details. Stool samples are
stored at −80◦C in the Microbial Genomics and Metagenomics
Laboratory at Cincinnati Children’s Hospital. Participants are
also asked to participate in an optional brain donation program.

Genomics, transcriptomics, proteomics, metabolomics,
epigenomics, and microbiomics will be processed from our

biological samples. We will use validated methods for the
analysis of the samples to ensure feasibility and reproducibility
of the study in future independent cohorts. The specific methods
will be selected at a later time; this will give us greater flexibility
in the choice of assays as the analytic technologies become less
expensive. Also, we may add other ‘–omics’ (e.g., lipidomics,
etc.) in the future.

Clinical, Paraclinical, and Neuroimaging
Assessments
Clinical Scales and Questionnaires
Motor and non-motor symptoms are assessed through the
Movement Disorders Society Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS part II and III) (Goetz et al., 2008), the
Tinetti Gait and Balance scale (Tinetti et al., 1986), the Non-
motor Symptoms Scale (NMSS) (Chaudhuri et al., 2006), the
Parkinson’s Disease Quality of Life Questionnaire (PDQ-8)
(Jenkinson et al., 1997), the Epworth Sleepiness Scale (ESS)
(Johns and Hocking, 1997), the Activities of Daily Living (ADL),
the Instrumental ADL (iADL) (Katz, 1983), the Beck Depression
Inventory scale (BDI) (Beck and Beamesderfer, 1974), Beck
Anxiety Inventory scale (BAI) (Beck et al., 1988), the REM
Sleep Behavior Disorder Screening Questionnaire (RBDSQ)
(Stiasny-Kolster et al., 2007), and the Montreal Cognitive
Assessment (MoCA) (Nasreddine et al., 2005). An extensive
epidemiological, demographical, pharmacological, and lifestyle
questionnaire, as well as a Food Frequency Questionnaire (FFQ),1

are also collected.

Gait and Postural Stability Outcome Measures
Obtained Using Mobile Health Technologies
Gait and postural stability are measured in the following
conditions (Axivity, Ltd., Newcastle upon Tyne,
United Kingdom): (1) Two-minute Walk: Subjects are asked
to walk a straight path for 2 min. Parameters include: stride
length, gait speed, stride width, and stride asymmetry; (2)
Instrumented Time Up and Go (iTUG): Subjects are instructed
to sit comfortably in an armless chair. At the “go” signal, they rise
from the chair without using support, walk 3 m, turn 180◦ and
walk back; (3) Postural Sway: Subjects are asked to stand with
their hands at their sides and feet together spaced by a wooden
wedge on a firm surface; (4) 360◦ Turn: Subjects are instructed
to turn in a complete circle (360◦), first to the left, and then to
the right. Other measures include: (1) Tapping test: Subjects are
asked to tap on the smartphone screen for 30 s; (2) Rest and
postural tremor tests: Subjects hold their arm out straight for
30 s, and subsequently rest their arms in the lap while counting
down from 100; and (3) Voice and speech tests: Subjects are
asked to say “aaaah” at a comfortable pitch and loudness, and
subsequently recite a short, phonetically-balanced passage, into
an Android-based smartphone microphone.

A 3-Tesla brain MRI will be obtained within 6 months
from the baseline. A comprehensive protocol including 3D
T1 fast spoiled gradient echo (FSPGR), 3D T2-weighted, 3D
T2-FLAIR, susceptibility weighted imaging (SWI), resting state

1https://epi.grants.cancer.gov/DHQ/about/
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functional MRI (fMRI), diffusion tensor imaging (DTI), and 3D
arterial spin labelling (ASL) will be performed. 3D T1 FSPGR
sequence provides volumetric analysis of regional atrophy. T2
and FLAIR sequences will be analyzed for chronic small vessel
disease including white matter disease, lacunar infarcts, dilated
perivascular spaces. SWI will provide information on iron
deposition in the deep nuclei and microbleeds. Resting state
fMRI will be analyzed for changes in functional connectivity.
DTI tractography analysis will provide information on white
matter integrity.

At Home Sensor-Based Assessment
Participants are provided with smartwatches (Sony Corporation,
Tokyo, Japan) for at-home 24-h continuous collection
of sensor data such as accelerometry and wrist-based
photoplethysmography, from which estimates of multiple
behavioral parameters, including sleep behavior quality, heart
rate variability and step count will be obtained.

Data Storage and Process
All biological samples are stored for future analyses in a dedicated
Biobank at Cincinnati Children’s Hospital Medical Center
(CCHMC) and Discover Together Biobank using established
protocols, for processing, storage, and future analysis. The
database was designed to account for the longitudinal study
design, linkage to multi-omics measurements and formats, and
capacity to store big data. The stored data are labeled according
to processed or unprocessed data, methods, and type of omics
data. All the samples are coded using an identifier reflecting
sites and subject number. All the samples are preprocessed for
background correction, quality control and standard deviation of
the intensity ratios. Prior to conducting analyses, normalization
using LOWESS or quantiles, scaling with baseline correction,
outlier removal, and missing imputation for less than 20%
missing data using K-nearest neighbor imputation will be
performed. BioMart for database and Bioconductor for data
processing and analyses will be used along with specific software
required for sequence, network, reads, mining, and pathways will
be utilized according to their specific purposes. We plan to create
an online platform where de-identified and analyzed data can be
shared. To protect confidentiality and prevent bias, all imaging
data will be deidentified and transmitted with unique study
identification numbers to the imaging core lab, utilizing a HIPAA
complaint secure platform. Imaging readings will be recorded
on electronic case report forms and integrated seamlessly with
the clinical data.

Data Quality Management
A pre-analytical standard operating procedure (SOP) has
been developed. The multiple steps included are aimed at
minimizing biases at forming and analyzing substudy cohorts.
The following SOP are highlighted: (a) subjects are selected
only by neurologists; (b) controls are selected from the same
population and time period than cases; (c) a substantially large
sample size will permit estimating rare molecular subtypes;
(d) pragmatic assessments to minimize dropouts and maximize
adherence to protocol over a long observational period. Finally,

our interdisciplinary team is meeting regularly to review the
quality controls of data collection, SOP protocol adherence, data-
gathering issues, and concerns related to ethics, data storage, data
process, and management.

DATA ANALYSIS AND MANAGEMENT

Aim
The main aim is to identify biologically unique biological
subgroups with emphasis on those suitable for repurposing
of already available therapies using proof-of-concept adaptive
clinical trials.

Sample Size and Statistical Power
The sample size of this study was computed using several
simulations under various conditions. We utilized the Qiu and
Joe (2009) formula (10× d× k) (Qiu and Joe, 2009) where d is the
number of variables included for clustering while k is the number
of clusters and formula (70 × d) (Dolnicar et al., 2014). Using
this formula to estimate the moderate, adjusted Rand index values
produces a sample size of 3500 with 50 biological markers. This
sample size is powered for detecting at least 10 subtypes with 40
biological markers using the Qiu and Joe formula. Furthermore,
a total of 800 healthy controls are required to form a comparative
group based on 1:2 case-control design for detecting small Cohen
effect sizes (D = 0.2) between groups with more than 90% power
and 5% level of significance. The sample size suggested in this
study is more than sufficient to detect small (odds ratio 1.2 or
standardized mean difference 0.20) to moderate (OR = 1.5 or
SMD = 0.50) expected associations between individual subtypes
and clinical outcomes depending on the types of outcomes and
subtypes with more than 80% power and 5% level of significance
and covariates accounting for 10 to 50% of variance in a given
outcome using logistic regression analysis. This sample size also
ensures adequate power for detecting small to moderate Cohen’s
effect sizes (SMD 0.20–0.50) using two-sided unpaired t-tests.
The sample size estimation was also found to be sufficient using
data-driven sample size driven algorithm (DSD) (Billoir et al.,
2016) and sample size in high-dimensionality data settings using
the MV power algorithm (Guo et al., 2010). We note here that
these formulas depend upon assumptions (such as Gaussianity)
which may not hold for these data and for the kinds of clustering
analysis we plan to use in this study and can only be considered
reasonable to justify the sample size. Although a sample size of
3500 patients and 800 healthy controls was estimated as sufficient,
we plan to enroll 4000 cases and 1000 controls in order to account
for potential dropouts. The sample size will most likely need to
increase to identify heretofore unanticipated molecular subtypes.

Exploratory Data Analysis
All potential biomarkers will be compared between cases
and controls using a bootstrap test to screen for significant
biomarkers from each omics platform and thereafter we will
apply Bayesian exponential family principal components analysis
(BE-PCA) (Shakir et al., 2008), a generalization of principal
component analysis (PCA), which is a widely used method of
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statistical analysis and simplification of data sets, to reduce the
dimensionality of the multi-omic data (Wold et al., 1987). We
avoid the use of simple PCA because some of the variables we
measure in this project are likely to be non-Gaussian.

Data-Driven Causal Inference
The analytical approach of this study will be based on the
latest techniques from statistics and data science (Little, 2019),
revolving around causal modeling and inference of the interaction
between all the variables captured in the study across genomics,
transcriptomics, proteomics, metabolomics, epigenomics,
microbiomics, and pharmacogenomics data (Figure 1). Starting
with a simple causal model built using existing datasets, the
model can be used for various purposes, including simulating
randomized trials using causal inference, and acting as a guide
to designing pragmatic trials to collect appropriate data to “fill
in” missing information in the causal model. Results of these
simulated trials will then further inform the modeling and
statistical analysis choices, with the end goal of deriving a simple,
mechanistic model that is both explanatory and predictive,
which can be used to extract “subtypes” most likely to respond to
therapies (Pearl, 2010).

The justification for the use of these techniques is that
they aim to minimize the misleading effects of reliance on
speculative and unproven theories of disease, behavior and
symptom mechanisms while avoiding the problems of purely
data-driven modeling, which can be easily confounded by
unmeasured variables, poor-quality data or mischaracterized
measurement processes.

These advances in causal inferential methods rely on a
synthesis of two analytical techniques (Little and Badawy, 2019):

(1) Data-driven approaches. These approaches often have
high predictive accuracy, and can capture high-
dimensional, non-Gaussian, non-linear relationships.
Machine learning is one example. The primary drawback
is their limited explanatory power and high sensitivity
to irrelevant confounding effects, which inevitably creep
into measurements.

(2) Causal modeling approaches. A set of probabilistic
relationships is drawn up to describe the mechanistic
processes explaining the data. Because these models
traditionally require fully-specified probabilistic
relationships between variables, they often do not
make quantitatively accurate predictions, but they do allow
realistic, causal interactions among biological, behavioral
and symptom expression processes to be built in to the
analysis. This causal structure is essential in this study
given the sheer number of variables and the resulting
complexity of interaction between them.

We propose to use a synthesis of these two approaches,
which can be described as data-driven causal inference.
This aims to exploit the advantages of the high predictive
accuracy of data-driven approaches and the realism of causal
modeling. It respects the causal structure of the real world
captured by the measurements, and is verified against the

high-dimensional, non-Gaussian measured data with non-
linear interactions, promising to circumvent both the problems
of erroneous clinico-pathological reasoning and prevent data
analysis which is heavily biased by spurious correlations because
its structure can disentangle confounding factors in the measured
data, for example.

Technically, data-driven causal inference involves finding
variables and their covariates (Figure 1), isolating the mechanism
predicting these variables using causal bootstrapping (Little and
Badawy, 2019) or other causal adjustment methods (Pearl, 2010),
then using the data to fit a predictive model of that isolated
mechanism. The isolated mechanisms can then be assembled into
a full, predictive causal network. After examining the associations
of identified biological subtypes with clinical characteristics and
outcomes, the severity of subtypes, their motor and non-motor
functionalities, and progression pattern will be determined by
integrating data from biological interpretation of subtypes as
well. Visual interpretations obtained using Bayesian exponential
family PCA and other dimensionality reduction techniques and
relationship with clinical neurodegenerative disease subtypes,
will be summarized to generate a global view of each subtype.
The main benefit of this causal-inference data driven model is
not the validation in separate populations but the identification
of suitable candidates, within the cohort for future repurposing
therapy approaches.

Machine Learning-Based Subtyping and
Integration
Subtyping Based on Individual Markers From
Integrative Analysis
The analysis of the biological data should lead to clustering
subjects with shared biomolecular alterations regardless of
phenotype (Espay et al., 2017). In data-driven biological
subtyping, the “truth” is unknown and the analysis hypothesis
free. Clustering is a major method for disease subtyping based
on high-dimensional omics data (Wang and Gu, 2016). We
will apply clustering methods to identify subtypes in genomics,
transcriptomics, proteomics, metabolomics, epigenomics,
microbiomics, and pharmacogenomics. There are currently
two main methods for the fusion clustering of multi-omics
data [i.e., iCluster, similarity network fusion (SNF)] based on
the sample similarity network. Studies have shown that SNF
has better performance in disease subtyping than iCluster
(e.g., cancer) (Wang et al., 2014; Wang and Gu, 2016). We
will perform unsupervised clustering on the processed data by
SNF and validate similarities and dissimilarities in identified
subtypes using moCluster and pattern fusion analysis by adaptive
alignment of multiple heterogeneous omics data. Because
clustering analysis is an unsupervised learning method, the
results cannot be tested by ground truth which usually indicates
the accuracy of training set’s classification of supervised leaning
techniques. We can also perform bioinformatics analysis, such
as differential expression analysis and functional enrichment
analysis, for different subtypes and compare the difference among
them. Data-driven subtypes will be determined using various
parameters described above. Deep phenotyping from clinical
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FIGURE 1 | Basic causal model of proposed relationships between measured variables in the CCBP cohort study. Arrows between variables (in circles) indicate the
dominant direction of causal influence between them. In this study, machine learning is used to model predictive relationships, but these should also be causal, not
merely associational, relationships. For example, in predicting phenotype (effect) from omics data (causes), confounders such as subject age influence both cause
and effect variables, which makes it critical to take these into consideration when using predictive machine learning algorithms.

(e.g., development of clinical milestones such as falls, progression
of motor and non-motor symptoms, etc.), paraclinical (e.g.,
mobile health technologies), and neuroimaging data (e.g.,
brain atrophy) will be used as outcome measures or dependent
variables. The longitudinal design, with multiple follow-ups, will
give us information about the casual role of potentially druggable
biomarkers. The relationship between biomarkers and disease
will require similar assessments in the control group.

Subtyping Based on Composite Markers From
Integrative Analysis
The clustering of markers (joint expressions of important
features) arising from different omics measurements may be
useful in identifying unique subtypes of patients as opposed to
using patterns of individual markers to form patient subtyping.
This procedure typically involves a two-stage framework of
clustering. The first stage of clustering groups the subset of
variables into disjointed segments whereas the second stage
creates subtyping of patients by exploring the patterns in the
identified clusters of markers from the first stage. We will utilize
unsupervised feature selection methods such as sparse partial
least square (sPLS), sparse canonical correlation analysis (sCCA)
(Witten and Tibshirani, 2009), and variable cluster analysis
(VCLUS) in the first step followed by moCluster (Meng et al.,
2016) and SNF in the second stage to determine subtypes.

Subtyping Based on Outlier and Non-Gaussian
Markers
Heterogeneity may exit in the identified subtypes of patients.
Generally, clustering approaches are conducted to determine
subtypes and variable selection after removing outliers and
non-Gaussian data. As opposed to removing outliers and
non-Gaussian data, several unique subtypes and biological
heterogeneity can be obtained by determining subtypes based
on outlier markers. In this regard, two novel approaches can
be adopted to identify outlier markers as well as non-normal
markers. We will employ outlier profile and pathway analysis
(OPPAR) using the modified cancer outlier profile analysis
(mCOPA) (Wang et al., 2012). The mCOPA is used to identify
markers that are outliers either up-regulated or down-regulated.
We will also apply the maximum ordered subset t-statistics
(MOST) (Karrila et al., 2011) method for identifying bimodal
distributed markers. After selecting the appropriate set of non-
normal and outlier markers, moCluster and SNF methods will be
used to cluster patients into homogenous patterns of non-normal
and outlier markers. These steps of identifying subtypes will be
replicated for gene set enrichment analysis using OPPAR.

Subtyping Based on Dynamic Network Biomarkers
Individual sets of omics may have limitations, such as poor
sample quality or data sparsity, network-based stratification
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can be used to overcome these limitations and identify unique
patient subtypes. We will employ a network-based stratification
approach for baseline omics data that determines patients with
genes in similar network regions (Hofree et al., 2013). The
dynamic network biomarkers (DNBs) method examines time-
dependent alterations in biomarkers. We will select the cases-
markers which are not statistically different at the baseline
from controls and determine the longitudinal changes in the
markers according to disease progression or treatment response.
MoCluster and SNF will then be applied to determining subtypes
based on the changes in non-significant markers.

Bioassay Development for Currently
Available Therapies
First, genomics, transcriptomics, proteomics, metabolomics,
epigenomics, and microbiomics data will serve to identify
potentially altered molecular pathways for each global
neurodegenerative subtype (Figure 2). Bioassay candidates
will be selected depending on candidates identified by relevant
pathway analyses. For example, from the genomics data, we
will perform genome-wide association study (GWAS) analysis
to obtain SNPs of each subtype and then identify the potential
pathogenic genotype and pathways in which they are associated.
Viable bioassay candidates will be selected, determined by the
generation of high-throughput clinically relevant assays for the
quantification of expression and/or biologic state of candidates.

Second, online databases, including OMIM and PubMed, will
be searched for related mechanistic information. Specifically,
we will collect information of the effects of gain of function
(GOF) and loss of function (LOF) in human and/or mammalian
models and remove targets that can significantly aggravate the
corresponding phenotype. Targets will be obtained through

candidate analysis above and candidate drugs with repurposing
potential will be recognized for future proof-of-concept clinical
trials from identified pathways/protein combinations and drug-
related protein information (Table 2).

We plan to work with industry partners to develop/utilize
bioassays for the presumed mechanisms of actions for each of
the candidate drugs. Given the phenotype-agnostic nature of
this study, after the identification of bioassay-based abnormality
suggesting vulnerability to a specific drug, a proof-of-concept
clinical trial will be designed to match the drug with the bioassay-
defined clinical cohort in order to evaluate for preliminary safety
and efficacy of such to-be-repurposed intervention.

Reliability and Validation of Patient
Subtypes
Various approaches will be used to assess replicability,
naturalness, and validation of cluster subtypes. The reliability
will be assessed by the adjusted Rand statistic and percentage
agreement on cross-validated hold-out testing. The validation
will be assessed by comparing the clusters across different
clustering methods (SNF, moCluster) (sPLA and sCCA) and
(OPPAR followed by SNF, moCluster) and the concordance
index (c-statistic) by evaluating the predictive performance of
each cluster on primary outcomes across different methods.

ANTICIPATED CHALLENGES

Accessibility of Target Tissue and Use of
Systemic Surrogates
Given the impossibility of serial brain biopsies, we can only rely
on extra-cerebral surrogates (e.g., peripheral blood, urine, stool)

FIGURE 2 | Overview of the pipeline to ascertaining biologically suitable subpopulations for drug repurposing. GWAS, genome-wide association study; WGCNA,
weighted correlation network analysis; DE, differential expression analysis; DMP, differential methylation probe; DMR, differential methylation region; DMB, differential
methylation block; PCA, principal component analysis; PLS-DA, partial least squares discrimination analysis; OUTs, operational taxonomic unit.
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TABLE 2 | Available putative disease-modifying drugs for bioassay development (and targeted repurposing) examined in phase III clinical trials in Parkinson’s disease.

Drug Mechanism of action Pathways for potential bioassay development

Increasing Decreasing

GLP 1 analogs (Baggio and Drucker,
2007; Li et al., 2012; Morales et al.,
2014; Nassar et al., 2015; Athauda and
Foltynie, 2016)

Anti-inflammatory, anti-apoptotic,
mitochondrial enhancement

Bcl-2, Bcl-XL, Mfn2, SIRT1, PGC-1a,
NGF, BDNF, ChAT activity

NF-Kb, iNOS, TNF- α, ICAM-1, MPO

Tocopherols
(vitamin E) (Rizvi et al., 2014; Uchoa
et al., 2016; Comitato et al., 2017)

Anti-oxidant, cells membrane
protection, enhancement of immune
system, regulation of cell proliferation

Tocopherols (α, β, γ, δ), tocotrienols (α, β,
γ, δ), CD4, IL2, PI3K activation

GSSG/GSH, HMGCoA, HIF-1α,
ICAM-1, VCAM-1, cAMP, MAPK/ERK,
12-lipoxygenase, arachidonic acid
metabolism, oxidation of PUFA

Carnitine and Acetyl-L-carnitine
(ALCAR) (Zanelli et al., 2005; Ferreira
and McKenna, 2017)

Anti-oxidant, anti-inflammatory effects pNFH, NGF Free carnitine/acylated carnitine,
GSSG/GSH, oxidation of PUFA, TNF- α

Pioglitazone (Swanson et al., 2011;
Galimberti and Scarpini, 2017; Villapol,
2018; Xia et al., 2018)

Anti-oxidant, mitochondrial
enhancement

COX-2, MMP9, SR-A, iNOS, Cu/Zn SOD,
CD36, CD68, VEGF

STAT1, NF-κB, TNF-α, NADPH
oxidase, LDH

Riluzole (Dennys et al., 2015) Neurotropic CT-1, BDNF, GDNF

Selegiline – Rasagiline (Wu et al., 2015;
Inaba-Hasegawa et al., 2017; Szökö
et al., 2018)

Mitochondrial enhancement,
anti-apoptotic, anti-inflammatory,
anti-oxidant

Bcl-2, BDNF, NGF, GDNF Nrf2, NF-κB, GSSG/GSH, oxidation of
PUFA, oxidative pattern,
NMDA-induced neurotoxicity

Minocycline (Thomas, 2004; Zemke
and Majid, 2004)

Anti-oxidant, anti-apoptotic,
anti-inflammatory, enhancement of
immune system

IL10, PGE-2, Th-2 iNOS, NADPH-oxidase, caspase-1,
caspase-3, IL1, COX-2, MMP2, MMP9,
ICE, TNF- α, p38 MAPK
phosphorylation, Th-1

Coenzyme Q10 (Fetoni et al., 2009;
Orsucci et al., 2011; Fan et al., 2017)

Anti-inflammatory, anti-oxidant,
anti-apoptotic

Complexes I + III and II + III activities,
percentage of oxidized to total CoQ10,
CoQ10/total cholesterol, mutations in
ubiquinone biosynthetic genes (i.e.,
PDSS1, PDSS2, CABC1)

CRP, IL6, TNF- α, LDH, caspase 3

Mitoquinone
(Analog CoQ10) (Ghosh et al., 2010;
Orsucci et al., 2011; Zhou et al., 2018)

Anti-oxidant, mitochondrial
enhancement

Heme oxygenase-1 NADPH, glutathione
peroxidase, SOD

MDA, aconitase, oxidation of PUFA,
ICAM-1

GPI 1485 (Harikishore and Sup Yoon,
2015)

Regulation of immune system,
mediation of protein-protein
interactions, mitochondrial
enhancement, Neurotrophic

NGF, protective mitochondrial oxidative
pathway

NF-AT, IL2, damage in mitochondrial
DNA

AAV2-Neurturin (Olanow et al., 2015) Neurotrophic GDNF N/A

GDNF (Liatermin) (Lang et al., 2006) Neurotrophic GDNF N/A

Paliroden (Labie et al., 2006) Neurotrophic N/A AChE, β-amyloid formation

PYM50028 (Cogane) (Visanji et al.,
2008)

Neurotrophic NGF, BDNF N/A

Omigapil (TCH346 or CGP3466)
(Olanow et al., 2006)

Anti-apoptotic N/A GAPDH

CEP-1347 (Parkinson Study Group
PRECEPT Investigators, 2007; Kumar
et al., 2015)

Anti-apoptotic N/A JNK signaling pathway

Deferiprone (Hider and Hoffbrand,
2018)

Iron chelation N/A Oxidation of dopamine and hydroxyl
radicals, reduction NTBI

Isradipine (Ortner et al., 2017) Antagonism of L-type Cav1.3 calcium
channels

N/A Cyto-solic Ca2+ levels, mitochondrial
oxidant stress

NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; iNOS, inducible nitric oxide synthase; TNF- α, tumor necrosis factor; ICAM-1, intercellular adhesion
molecule; MPO, myeloperoxidase; PKA, protein kinase A; PI3K, phosphoinositide 3-kinase; Bcl-2, B-cell lymphoma 2; Bcl-XL, B-cell lymphoma-extra-large; Mfn2,
mitofusin; SIRT1, Sirtuin 1; PGC-1a, peroxisome proliferator-activated receptor-gamma coactivator 1a; NGF, nerve growth factor; BDNF, brain-derived neurotrophic factor;
GDNF, glial cell-derived neurotrophic factor; ChAT, choline acetyltransferase; HMGCoA, cholesterol biosynthesis by suppressing 3-hydroxy-3-methylglutaryl-CoA; VCAM-
1, vascular cell adhesion protein 1; CD4, cluster of differentiation 4; IL2, interleukin2; cAMP, cyclic adenosine monophosphate; MAPK/ERK, Ras-Raf-MEK-ERK pathway;
GSSG/GSH, oxidized glutathione, glutathione; HIF-1α, hypoxia-inducible factor 1-alpha; PUFA, polyunsaturated fatty acids; pNFH, phosphorylated high-molecular weight
neurofilament; STAT1, signal transducer and activator of transcription 1; COX-2, cyclooxygenase-2; MMP2, metalloproteinase 2; MMP9, metalloproteinase 9; SR-A,
scavenger receptor A; Cu/Zn SOD, copper/zinc superoxide dismutase; CD36, cluster of differentiation 36; CD68, cluster of differentiation 68; NADPH oxidase, nicotinamide
adenine dinucleotide phosphate oxidase; VEGF, vascular endothelial growth factor; LDH, lactate dehydrogenase; CoQ10, coenzyme Q10; CT-1, cardiotrophin-1; Nrf2,
nuclear factor E2-related factor 2; NMDA, N-methyl-D-aspartate; IL10, interleukin 10; IL1, interleukin 1; PGE-2, prostaglandin E2; ICE, interleukin converting enzyme;
MMP, metalloproteinases; Th-1, T helper cells 1; Th-2, T helper cells 2; p38 MAPK, p38 mitogen-activated protein kinase; CRP, C-reactive protein; IL6, Interleukin 6; MDA
malondialdehyde; NF-AT, nuclear factor of activated T-cells; AChE, acetylcholinesterase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; JNK, c-Jun N-terminal
kinase; NTBI, non-transferrin bound iron; N/A, not available.
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to assess phenomena associated with brain neurodegeneration
(Lehmann-Werman et al., 2016). Nevertheless, selected
biological alterations associated with central nervous system
neurodegeneration can also be detected in other tissues (Kaushik
and Cuervo, 2015; Lehmann-Werman et al., 2016); for instance,
EVs will be used as a platform for “liquid biopsies.” EVs have
been shown to transport this molecular cargo directly between
neighboring cells, as well as to distant cells via blood and other
fluids (van Niel et al., 2018). EVs bear both surface proteins
and intracellular contents from their parent cells into peripheral
fluids, which are then accessible without the invasiveness of
tissue biopsy (El Andaloussi et al., 2013). Moreover, in the future,
EVs may also serve as a delivery system for therapies given that,
as native nanoparticles, they benefit from immune tolerance
and the ability to cross biological barriers (van Niel et al., 2018;
Wiklander et al., 2019).

Relevance of Biomarkers
Neurodegeneration starts years prior to symptom onset
(Cacabelos, 2017). This creates difficulties in distinguishing
between early biomarkers, related to causal disease mechanisms,
and late biomarkers, possibly end results of other processes,
themselves pathogenic, or resulting from response to various
treatments (Espay et al., 2017). Moreover, early or late biomarkers
may be transient or constant across neurodegenerative disorders,
potentially underestimating or overestimating the importance
of an early or late biomarker depending on the time of
data acquisition. A population-based study design with
control subjects, multiple visits, longitudinal assessments and
next-generation statistical analysis may help mitigate these issues.

Development of Bioassays
Some of the known mechanisms of therapies with repurposing
potential (Table 2) may not be relevant to disease pathogenesis
in any subtype, even if bioassays can be developed to measure
their range in a laboratory. Some bioassay candidates can be
difficult to deploy or measure with existing technology in a
manner that would make them clinically viable. Connecting
specific biomarkers to disease stage/progression will be difficult
given our study design. This concern will be ameliorated by
using promising bioassays to select patients for future proof-
of-concept drug studies. Such studies will contribute toward
separating primary from secondary biologic mechanisms of each
neurodegenerative subtype.

Uncertainty About Extent of Unknowns
While the data-driven design of this study favors the collection of
data without a priori hypotheses for later analysis using discovery
algorithms (Kim et al., 2016), a major challenge is to define
which biologically promising targets may be more relevant than
any of the currently known biomarkers. Also, some technologies
may be insufficiently sensitive for potentially relevant biomarkers
or result in false negative assays. As for the known variability
of prior omics data, we expect that to be attenuated by the
unbiased analysis, not anchored on diagnostic or phenotypic
data. The creation of a robust biobank is designed to mitigate

these difficulties by providing the opportunity to re-analyze
samples and data in the future.

THE “ALL OF US” PROGRAM

The “All of US” program is an important effort funded by the
NIH starting in 2015, aiming to collect clinical, paraclinical,
and biological data in a very large population, not preselected
for the presence of neurodegenerative disorders (All of Us
Research Program Investigators, 2019). The goal of the program
is to enroll at least 1 million persons nationwide from 340
recruitment sites (All of Us Research Program Investigators,
2019). This effort represents a significant step forward in the
understanding of human health and disease. However, the lack
of focus on neurodegenerative disorders (or any other disorder)
represents an important limitation from the standpoint of our
research objectives.

Compared to the “All of US,” our study aims to merge
an “inclusive” approach to all neurodegenerative disorders
and utilizes standardized clinical questionnaires and scales, in-
clinic and at-home wearable technologies, and more extensive
biological sampling. Nevertheless, a future collaboration between
these two approaches stands to accelerate the understanding of
neurodegenerative disorders.

CONCLUSION

This phenotype-agnostic, population-based, bio-subtyping and
bioassay development program will provide longitudinally-
collected clinical and biological data to characterize patients
affected by neurodegenerative diseases –not to understand
diseases, but to understand how individuals are affected
by them. The inclusivity and large number of deeply-
phenotyped individuals (currently classified under a range of
neurodegenerative disorders) and the causal model-driven nature
of analyses, blinded to the clinical disease classification, are
unique elements in the design of this study, expected to identify
small but molecularly suitable subsets of subjects for embedded
proof-of-concept adaptive clinical trials. Our goal is to identity
the first molecular subset of individuals for whom an available
therapy can be repurposed before the end of the 2020s. Despite
many anticipated challenges, the ascertainment of biological
subtypes will help to materialize the promise of precision
medicine for patients affected by neurodegenerative disorders.
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