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Semi-classical bound states of

Schr�odinger equations

M. Schechter
�

Department of Mathematics, University of California

Irvine, CA 92697-3875, U. S. A

W. Zou
y

Department of Mathematical Sciences, Tsinghua University,

Beijing 100084, P. R. China

Abstract We study the existence of semi-classical bound states to the non-
linear Schr�odinger equation

�"2�u+ V (x)u = f(u); x 2 RN ;

where N � 3; " is a positive parameter; V : RN ! [0;1) satis�es some
suitable assumptions. We study two cases: If f is asymptotically linear, i.e.,
lim
jtj!1

f(t)=t = constant, we get positive solutions. If f is superlinear and

f(u) = jujp�2u+ jujq�2u, 2� > p > q > 2, we obtain the existence of multiple
sign-changing semi-classical bound states with a composite information on the
estimates of the energies, the Morse indices and the number of nodal domains.
For this purpose, we establish a mountain cli� theorem without compactness
condition and apply a new sign-changing critical point theorem.
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1 Introduction

Why electrons in atoms don't just spiral into the nucleus? The stability of a
bound state plays an important role. One of the historical puzzles that led to
the creation of quantum mechanics was also the stability of a bound state. We
have known it is the bound states of nucleons, atoms, molecules and solids that
allow the world and all of life to be what it is. Basically, the bound state is one
of the most important topics in quantum mechanics. So much current ongoing
research and historical research using quantum mechanics involve the bound
states. In some ways, it is a much more complicated problem than scattering or
half-scattering phenomenons. In physics, a bound state is a composite of two
or more building blocks like particles or bodies that behaves as a single object.
In quantum mechanics, where the number of particles is conserved, a bound
state is a state in the Hilbert space that corresponds to two or more particles
whose interaction energy determines whether these particles can be separated
or not. Hence, the energy of a bound state is very helpful to physicists for
understanding these particles. In general, a stable bound state is said to exist
in a given potential of some dimension if stationary wave functions exist. In this
paper we consider the existence of bound states for the following Schr�odinger
equation:

�"2�u+ V (x)u = f(x; u); u 2 H1(RN ): (1.1)

Equation (1.1) arises from the problem of obtaining the standing wave solutions
of the nonlinear Schr�odinger equation

i"
@ 

@t
= �"2� + (V (x) +M) � j j�1f(x; j j) in RN : (1.2)

A standing wave solution to problem (1.2) is one of the form

 (x; t) = exp(�i"�1Mt)u(x);

where u is a solution of (1.1). For " small enough, the solutions to problem (1.1)
can induce the standing waves of the Schr�odinger equation which are referred to
as semi-classical states. Some class of solutions of (1.1) concentrate and develop
spike layers and peaks around certain points in RN while vanishing elsewhere
as "! 0. The existence of single-peak solutions was �rst studied in [18] where
N = 1 and f = u3(super linear case). A single-peak solution was constructed
which concentrates around any given non-degenerate critical point of the po-
tential V (x). The higher dimension cases were considered in [27, 28]. In par-
ticular, in [28], the existence of multi-peak solutions which concentrate around
any �nite subsets of the nondegenerate critical points of V (x) was established.
The arguments in [18, 27, 28] are based on a Lyapunov-Schmidt reduction and
heavily rely on the uniqueness and non-degeneracy of the positive ground state
solutions (least energy solutions). In [1], they studied (1.1) and considered the
concentration phenomena at isolated local minima and maxima with polynomial
degeneracy. In [26], the author deals with C1-stable critical points of V (x). See
also [2, 11, 12, 20] for related results about (1.1). However, as observed by
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many experts, the uniqueness and non-degeneracy of the positive ground state
solutions are usually quite di�cult to verify. They are known so far only for
some very restricted cases on nonlinearities f in (1.1). To get the existence of
positive solutions without these assumptions, the variational approach which
was initiated in [29] has proved to be very successful. In [29], by the mountain
pass theorem, the author proves the existence of positive solutions of (1.1) for
small " > 0 whenever lim inf jxj!1 V (x)) > infx2RN V (x): These solutions con-
centrate around the global minimum points of V (x) when "! 0 as was shown in
[37]. Later in [14], by introducing a penalization approach, the authors proved
a localized version of the result in [29, 37], see also [15, 16] for related results,
they do not assume the uniqueness of a least-energy ground state in a related
homogeneous problem. In [8, 19], the monotonicity condition of [14] is not nec-
essary. Also, in [7], the authors develop a new variational approach to construct
localized positive solutions to (1.1) which concentrate at an isolated component
of positive local minimum points of V (x) as "! 0 under certain conditions on
f which are \almost optimal". Similarly, no uniqueness and non-degeneracy of
the positive ground state solutions are required in [7]. For studying of the prob-
lem (1.1), the above papers mainly concern the positive solutions and consider
the super linear case. In the present paper, we are interested in the existence
of positive solutions to (1.1) with asymptotically-linear growth. On the other
hand, it seems that the existence of multiple sign-changing semi-classical bound
states along with topological and geometrical properties has not been estab-
lished before.

1.1. Asymptotically linear case

Consider the existence of positive solutions to the semilinear Schr�odinger
equation

�"2�u+ V (x)u = f(u) in RN ; (1.3)

where N � 3 and " is a positive parameter; V : RN ! [0;1) and f : [0;1)!
[0;1) are non-negative continuous functions. We make the following basic as-
sumption on V .

(V1) There exist positive constants R1 < r1 < r2 < R2 such that V (x) =
0 for x 2 
 := fx 2 RN : r1 < jxj < r2g; V (x) � V0 > 0 in �c; where
� := fx 2 RN : R1 < jxj < R2g; �c = RNn�:

We need the following hypotheses on f , which characterize (1.3) as an asymp-
totically linear equation:

(Z1) lim
t!1

f(t)=t = �0 > 0:

(Z2) lim
t!0

f(t)=t = 0; f(t)=t is increasing when 0 < t � t0; where t0 > 0 is a

constant.

(Z3) f(t)t� 2F (t) > 0 for t > 0, where F (t) =

Z t

0

f(s)ds:
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(Z4) lim inf
t!1

f(t)t� 2F (t)

jtj�
� c > 0, where � 2 (0; 2).

(Z5) lim inf
t!0

f(t)t

F (t)
= � > 2:

The main result for this case under consideration is the following theorem.

Theorem 1.1. Assume that conditions (V1); (Z1)-(Z5) hold. Then there exists
an "0 > 0 such that for all " 2 (0; "0); equation (1.3) has a positive solution
u" 2 H1(RN ) with u"(x)! 0 as jxj ! 1 and

R
RN

�
"2jru"j2+V (x)u2"

�
dx! 0

as "! 0.

1.2. Super linear case

We study the existence of multiple semi-classical sign-changing bound states
to the Schr�odinger equation

�"2�u+ V (x)u = jujp�2u+ jujq�2u; in RN (1.4)

for N � 3; 2� > p > q > 2; V � 0 is a continuous function satisfying the
following basic assumption:

(V2) V (0) = 0 and there exists a constant R1 > 0 such that V (x) � V0 > 0 if
jxj > R1:

The solutions of (1.4) correspond to the critical points of the C2-functional

H"(u) =
1

2

Z
RN

("2jruj2 + V (x)u2)dx�
1

p

Z
RN

jujpdx�
1

q

Z
RN

jujqdx

for u 2 E, where E := fu 2 H1(RN ) :
R
RN V (x)u

2dx <1g.

Theorem 1.2. Assume (V2). Then for m 2 N, there exists an "0 2 (0; 1) such
that for each " 2 (0; "0), the problem (1.4) has m pairs of solutions f�u�k;"g

m+1
k=2

possessing the following composite properties:

(1) For each k � 2; u�k;" is sign-changing.

(2) H"(u
�
k;") � k

q � 2

q
2

q

q�2 "�
4q
q�2 :

(3) ku�k;"kH1(RN ) � Ck
2

N(p�2) if q � 2 + 4=N , where C > 0 is a constant
depending only on N; p and q.

(4) The number of nodal domains of u�k;" is � k.

(5) The augmented Morse index of u�k;" is � k.

(6) u�2;" changes sign exactly once.
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2 Abstract Theory

In this section, we shall establish two abstract theories for proving Theorems
1.1-1.2. Since we want to establish universally applicable theorems, we make
some general assumptions for the abstract results though these are not strictly
necessary for Theorems 1.1-1.2. Let E be a Banach space and let G� be a
functional in C1(E;R) of the form

G�(u) := A(u) + �B(u) + �C(u)� �D(u); where � > 0; � > 0:

We make the following assumptions:

(A1) A(u) � 0; B(u) � 0; C(u) � 0; D(u) � 0; 8u 2 E:

(A2) One of the following conditions holds:

(1) B(u) + C(u)!1 as kuk ! 1;

(2) A(u)� �D(u)!1 as kuk ! 1;

(3) C(u) = D(u) for all u and A(u) + �B(u)!1 as kuk ! 1:

(A3) There exist N0 2 � and �0 2 R such that G�(0) � �0 and G�(e0) �
�0; G�(u) � �0 for all u 2 @N0 and all � > 0; where e0 2 Enf0g and

� := fN � E : N is a bounded open set of E such that 0 2 N ; e0 62 Ng:

Theorem 2.1. Assume that (A1)-(A3) hold. Then for almost all � > 0; there
exists a bounded sequence fuk(�)g � E such that

G�(uk(�))! b� := sup
N2�

inf
u2@N

G�(u); G0�(uk(�))! 0; as k !1;

where b� 2 [�0; D�]; D� := maxt2[0;1]G�(te0). In particular, if b� = �0, then
dist (uk(�); @N0)! 0 as k !1:

Remark 2.1. In deriving Theorem 2.1 we have been inspired by [21] and [32].
In [21], the author established an existence theorem of bounded (PS) sequences
of \Mountain Pass Type " due to [3]. We do not know whether the energy of the
mountain pass point is the same as that of Theorem 2.1 in the present paper.
Theorem 2.1 here gives information of the location of the (PS) sequence. For a
special case, the critical point lies on the cli� @N0. The proof of Theorem 2.1
relies on the monotonicity trick due to the pioneering papers of [21, 22, 23](see
also [24, 36]) and linking methods due to [32].

Proof. Evidently, b� � �0 and b� is nondecreasing with respect to �. There-
fore, the derivative b0� := db�=d� exists for almost all �. Throughout this section,
we consider those � such that b0� exists. Choose �n 2 (0; �) such that �n ! �

and b0�� 1 � b�n�b�
�n��

� b0�+1; n large. Following [21], we claim that there exist
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Nn 2 �; k0 = k0(�) > 0 such that kuk � k0(�) whenever G�(u) � b� + (�� �n)
for u 2 @Nn. By the de�nition of b�n ; there exists an Nn 2 � such that

inf
u2@Nn

G�(u) � inf
u2@Nn

G�n(u) � b�n + (�n � �): (2.1)

If u 2 @Nn is such that G�(u) � b� + (� � �n), then A(u) � �D(u) � b� + �

and B(u) + C(u) =
G�(u)�G�n (u)

���n
� b0� + 3: If C(u) = D(u) for all u, then

A(u) � �(b0� + 3) + b� + �: Therefore, by (A2), there exists a constant k0;
depending only on �, such that kuk � k0: By (2.1), we see that G�(u) �
G�n(u) � infu2@Nn

G�n(u) � b� � (b0� + 2)(�� �n) for all u 2 @Nn: We de�ne
D("; �) := fu 2 E : kuk � k0 + 3; jG�(u) � b�j � "g: We �rst observe that
D("; �) 6= ;: To see this, choose n large enough such that (b0� + 2)(�� �n) < ":
Hence, G�(u) � b� � (b0� + 2)(� � �n) � b� � ";8u 2 @Nn: If there exists an
u 2 @Nn such that G�(u) � b� + (� � �n) � b� + ", then by the claim at
the beginning, we see that kuk � k0(�): Therefore, u 2 D("; �): Otherwise,
G�(u) > b� + (� � �n) for all u 2 @Nn. It implies that b� + (� � �n) �
infu2@Nn

G�(u) � supN2� infu2@N G�(u) = b�; a contradiction. Therefore,
D("; �) 6= ;: We consider �rstly that b� > �0: We now prove that inffkG0�(u)k :
u 2 D("; �)g = 0: By way of negation, we assume that there exists an "0 > 0
such that kG0�(u)k � "0 for u 2 D("0; �): Without loss of generality, we may
assume "0 < (b���0)=3. Choose n large enough such that (���n) � "0=5; (b

0
�+

2)(�� �n) < "0=5: Then by (2.1),

G�(u) � b� � (b0� + 2)(�� �n) > b� � "0=5 > �0; 8u 2 @Nn: (2.2)

De�ne

D�("0; �) := fu 2 E : kuk � k0 + 3; b� � "0 � G�(u) � b� + (�� �n)g: (2.3)

Then D�("0; �) 6= ;: De�ne

M1 := fu 2 E : kuk � k0 + 1; b� � "0=2 � G�(u) � b� + (�� �n)=2g;

M2 := fu 2 E : kuk � k0 + 1; b� � "0=4 � G�(u) � b� + (�� �n)=4g:

Let �(u) :=
dist(u;EnM1)

dist(u;M2) + dist(u;EnM1)
and Y�(u) be a locally Lipschitz con-

tinuous pseudo-gradient vector �eld for G� (cf. [32, Lemma 2.10.1]), i.e., a
mapping satisfying (G0�(u); Y�(u)) �

1
2kG

0
�(u)k; kY�(u)k � 1; u 2 Ê := fu :

G0�(u) 6= 0g: Consider the following initial value problem and the increasing ow:
d�(t; u)

dt
= �(�(t; u))Y�(�(t; u)); �(0; u) = u; u 2 E: Note that � vanishes on

an open set containing the points whereG0� = 0: It is well known that there exists

a unique solution �(t; u)(t � 0) satisfying k�(t; u)� uk � t and
dG�(�(t; u))

dt
�

1

2
�(�(t; u))kG0�(�(t; u))k � 0: Therefore, G�(�(t; u)) � G�(u) � b� � "0=5 >

�0; 8u 2 @Nn: It follows that �(t; u) 6= 0; �(t; u) 6= e0; 8u 2 @Nn; t � 0:
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Next, we prove that G�(�(1; u)) � b� + (�� �n); 8u 2 @Nn: In fact, if u 2 @Nn

and G�(u) � b�+(���n)=4, then kuk � k0. Furthermore, if G�(u) � b��"0=4,
then u 2M2. Therefore, we must have

G�(�(t; u)) � G�(u) > b� + (�� �n)=4; u 2 @Nn; u 62M2: (2.4)

If u 2 @Nn\M2, we suppose that t1 is the largest number such that �(t; u) 2M2

for 0 � t � t1: If t1 < 1; then there exists an s > 0 such that t1 + s < 1
and G�(�(t1 + s; u)) � G�(�(t1; u)) � b� � "0=4: Since �(t1 + s; u) 62 M2; we
have either k�(t1 + s; u)k > k0 + 1 or G�(�(t1 + s; u)) > b� + (� � �n)=4: If
G�(�(t1 + s; u)) � b� + (�� �n)=4, then G�(u) � G�(�(t1 + s; u)) � b� + (��
�n)=4 � b�+(���n); which implies that kuk � k0. Moreover, G�(u) � b��"0=5
for u 2 @Nn. Then k�(t1+ s; u)k � kuk+ t1+ s � k0+1. Combining the above
arguments, we observe that G�(�(1; u)) > G�(�(t1 + s; u)) � b� + (� � �n)=4:
If t1 = 1, then �(t; u) 2 M2 for 0 � t � 1: Hence, G�(�(1; u)) � G�(u) �
1
2

R 1
0
�(�(s; u))kG0�(�(s; u))kds �

1
2"0: Conseqently, G�(�(1; u)) �

1
2"0 + b� �

"0
5 � b� + (���n)

4 : Combining the above arguments, we have G�(�(1; u)) �
b� + (� � �n)=4;8u 2 @Nn: Let ~v1 := f�(1; u) : u 2 Nng. Then it is easy to
check that @ ~N1 := f�(1; u) : u 2 @Nng: Since 0; e0 62 M1, �(0) = �(e) = 0.
Since � � 0 on EnfM1g, we see that �(1; 0) = 0; �(1; e0) = e0. That is, ~N1 2 �
and G�(u) � b�+(���n)=4 when u 2 @N1; which contradicts the de�nition of
b�. The remaining case is b� = �. De�ne Q("; �; T ) := fu 2 E : dist(u; @N0) �
T; jG�(u)�b�j � "g; where 0 < T < 1

2 minfdist(0; @N0); dist(e0; @N0); 1g. Since
we cannot have G�(u) > b� + " for all u 2 @N0, we see that Q("; �; T ) 6= ;.
We proceed to prove that inffkG0�(u)k : u 2 Q("; �; T )g = 0: Assume that there
exists an "0 > 0 such that kG0�(u)k � "0 for u 2 Q("0; �; T ). De�ne

Q�("0; �; T ) := fu 2 E : dist(u; @N0) � T; b� � "0 � G�(u) � b� +
4"0
5
g:

Then Q�("0; �; T ) 6= ;: De�ne

W1 := fu 2 E : dist(u; @N0) �
T

2
; b� � "0 � G�(u) � b� +

2"0
5
g;

W2 := fu 2 E : dist(u; @N0) �
T

2
; b� �

"0
4
� G�(u) � b� +

"0
5
g

and ��(u) :=
dist(u;EnW1)

dist(u;W2) + dist(u;EnW1)
: Let Y�(u) be a locally Lipschitz con-

tinuous pseudo-gradient vector �eld forG� satisfying (G
0
�(u); Y�(u)) �

1
2kG

0
�(u)k

and kY�(u)k � 1: Consider the Cauchy problem
d�(t; u)

dt
= ��(�(t; u))Y�(�(t; u))

with �(0; u) = u; u 2 E: Then there exists a unique solution �(t; u)(t � 0)

satisfying k�(t; u) � uk � t and
dG�(�(t; u))

dt
�

1

2
��(�(t; u))kG0�(�(t; u))k � 0:

By the choice of T , we see that �(t; u) 6= 0; �(t; u) 6= e0 for 0 � t � T; u 2 @N0.
We claim that G�(�(

T
4 ; u)) � b� + "0T=8; 8u 2 N0: Evidently, if u 2 @N0 and
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u 62 W2; then G�(�(T=4; u)) � G�(u) > b� + "0=5 � "0T=8. If u 2 @N0 \W2;
we assume that t1 � 0 is the largest number such that �(t1; u) 2 W2. If
t1 < T=4, then G�(�(t1 + s; u)) � G�(�(t1; u)) � b� � "0=4: We suppose that
s small enough such that t1 + s < T=4. But the fact that �(t1 + s) 62 W2 im-
plies that either dist(�(t1 + s; u); @N0) > T=2 or G�(�(t1 + s; u)) > b� + "0=5.
However, since dist(�(t1 + s; u); @N0) � k�(t1 + s; u) � uk � t1 + s � T=4;
we have G�(�(T=4; u)) � b� + "0=5: If t1 = T=4, then �(t; u) 2 W2 for
0 � t � T=4: Therefore, G�(�(T=4; u)) � G�(u) � T"0=8: Thus, we see that
G�(�(T=4; u)) � b� + T"0=8: Choose NT := f�(T=4; u) : u 2 N0g, similar to
the �rst case, we get a contradiction. 2

Next, we are going to introduce a new theorem concerning the sign-changing
critical point with a composite information. Let (E; h�; �i) be a Hilbert space
with the corresponding norm k�k, P � E be a closed convex (positive) cone. We
call the elements outside �P sign-changing. Let Z be a subspace of E with E =
Z?�Z, dimZ? = k�1; k � 2. The nontrivial elements of Z are sign-changing.
We assume that P is weakly closed in the sense that P 3 uk * u weakly in
(E; k �k) implies u 2 P: Suppose that there is another norm k �k� of E such that
kuk� � C�kuk for all u 2 E, here C� > 0 is a constant. Moreover, we assume
that kun � u�k� ! 0 whenever un * u� weakly in (E; k � k). Let G 2 C1(E;R)
be an even functional and the gradient G0 be of the form G0(u) = u � G(u);
where G : E ! E is a continuous operator. Let K := fu 2 E : G0(u) = 0g and
~E := EnK; K[a; b] := fu 2 K : G(u) 2 [a; b]g; Ga := fu 2 E : G(u) � ag: For
�0 > 0, de�ne D�0 := fu 2 E : dist(u;P) < �0g: Set D := D�0 [ (�D�0); S =
EnD: We make the following assumptions.

(B1) G(�D�0) � �D� for some � 2 (0; �0); K \
�
Enf�P [ Pg

�
� S:

(B2) For any a; b > 0, Ga \ fu 2 E : kuk� = bg is k � k-bounded.

(B3) There exists a � > 0 such that �k := inf
kuk�=�; u2Z

G > �1:

(B4) lim
u2Y; kuk!1

G(u) = �1, for any subspace Y � E with dimY <1.

In applications, conditions (B1)-(B4) are satis�ed readily. In particular, the
condition similar to (B1) has been introduced in [5, 9, 10]. The functional G is
said to satisfy the (w�-PS) condition on [a; b] if for any sequence fung such that
G(un) ! c 2 [a; b] and G0(un) ! 0, we have either fung is bounded and has a
convergent subsequence or kG0(un)kkunk ! 1: Let Y � E be a subspace of E
with �nite dimensional dimY � k. De�ne

�k := inf
Y�E;

k�dimY <1

sup
Y
G:

Theorem 2.2. (See [39]) Assume (B1)-(B4) hold and G 2 C2 is even. If there
is a �0 > 0 such that G satis�es (w�-PS) condition on [�k; �k+�0], then G has
a sign-changing critical point u� 2 S with G(u�) 2 [�k; �k] and the augmented
Morse index of u� is � k.
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3 Positive bound states for asymptotically lin-

ear Schr�odinger equations

Since we are concerned with positive solutions, we may assume, from now on,
that f(t) = 0 for t � 0: For a constant �0 > 2 large enough, by (Z2), there exists
an a0 > 0 small enough such that

�0 :=
V0
f(a0)
a0

�
V0
f(s)
s

for s 2 (0; a0]: (3.1)

We let p(x; t) = ��(x)f(t) + (1 � ��(x)) �f(t); where �� is the characteristic
function on �; �f(t) = f(t) if t � a0; �f(t) = V0t=�0 for t > a0. It is easy to check
that p(x; t) satis�es the following condition:

0 � 2P (x; t) � p(x; t)t �
V (x)t2

�0
for x 2 �c; t 2 R; (3.2)

where P (x; t) =
R t
0
p(x; s)ds: We will be working in the following Hilbert space

E := fu 2 H1
rad(R

N ) :

Z
RN

V u2dx < 1g endowed with the norm kuk =

�Z
RN

("2jruj2 + V (x)u2)dx
�1=2

and inner product h�; �i; where H1
rad(R

N ) :=

fu 2 H1(RN ) : u is radially symmetricg: We �rst study the critical points of
the C1 functional de�ned by

G�(u) =
�

2

Z
RN

("2jruj2 + V (x)u2)dx�

Z
RN

P (x; u)dx; u 2 E; � 2 [1; 2]:

Then the critical points of G� correspond to the solutions of the equation

�"2�u+ V (x)u =
1

�
p(x; u); in RN : (3.3)

Lemma 3.1. There exist numbers �0 > 0; r0 > 0 such that G�(u) � �0 for
u 2 N0 := fu 2 E : kuk = r0g uniformly for � 2 [1; 2]:

Proof. We �rst recall the Strauss Inequality (see [35] or [25]): ju(x)j �
2�kukH1;2

jxj1=2
; 8x 2 RNnf0g: By the boundedness of � and Poincar�e Inequality,

we have that Z
�

u2dx � c

Z
RN

jruj2dx �

(
1 + c

"2
+ 1)

Z
RN

(j"ruj2 + V (x)u2)dx � (
1 + c

"2
+ 1)kuk2: (3.4)

Therefore,

kuk2H1;2 �

Z
RN

jruj2dx+
1

V0

Z
�c
V (x)u2dx+

Z
�

u2dx �

9



c

"2
maxf1;

1

V0
gkuk2 �

c

"2
kuk2: (3.5)

By (Z2), for any "
0 > 0, there is a � > 0 such that F (t) � "0t2=2 for all jtj � �:

Therefore,
R
�
F (u)dx � "0

2

R
�
u2dx for kuk � r0, where r0 > 0 is a constant

(small enough) depending on "0. Consequently, by (3.2) and (3.4),

G�(u) = (

Z
�

+

Z
�c
)
��
2
(j"ruj2 + V (x)u2)dx� P (x; u)

�
dx

�
�

2

Z
RN

("jruj2 + V (x)u2)dx�

Z
�

F (u)dx�
1

2�0

Z
�c
V (x)u2dx

�
1

2

Z
RN

�
j"ruj2 + (1�

1

�0
)V (x)u2

�
dx�

"0

2

Z
�

u2dx:

Hence, G�(u) � �0 for kuk = r0, where �0 > 0; r0 > 0 depend on ": 2

Lemma 3.2. There exists an e0 2 Enf0g such that G�(e0) < 0 uniformly for
� 2 [1; 2]. Moreover, e0(x) � �e0 > 0 on 
0 � 
; where 
 is given in (V ).

Proof. Consider �0 > 0 and the conditions on V , we may choose R1; R2

appropriately such that �0 > 3max
�

V (x). Now choose �0 2 C10 (�) so that

�0 � c0 > 0 for all x 2 
0 � supp�0 and 
0 � 
: We con�ne " to the open

interval
�
0;
�0
R
�
j�0j2dx

6
R
�
jr�0j2dx

�
: Next, we prove that G�(t0�0) < 0 for some t0 large

enough. By way of negation, if there exists tn ! 1 such that G�(tn�0) � 0;
then

0 � 1�

R
RN P (x; tn�0)dx

t2nk�0k
2

� 1�

R
�

1
2�0t

2
nj�0j

2dx+
R
�
H(tn�0)dx

t2nk�0k
2

;

where H(t) =
R t
0
h(s)ds; h(s) = f(s)��0s: Since h(t) = o(t) as t!1, we have

that 0 � 1 �
�0
2

Z
�

j�0j2

k�0k2
dx: It implies that

�0
2

Z
�

j�0j
2dx �

Z
�

�
"2jr�0j

2 +

V (x)�20

�
dx; which contradicts the choice of " > 0: So we may choose e0 = t0�0

such that G�(e0) < 0 uniformly for � 2 [1; 2], where e0(x) � t0c0 := �e0 > 0 for
all x 2 
0 � 
: 2

Remark 3.1. By the proof of Lemma 3.2, �0 is independent of " and �; e0 is

independent of � and " for " 2
�
0;
�0
R
�
j�0j2dx

6
R
�
jr�0j2dx

�
and � 2 [1; 2]:

Lemma 3.3. There exists an "� small enough such that for all " 2 (0; "�) and
for almost all � 2 [1; 2]; there exists u�;" satisfying G�(u�;") = b� � �0 >
0; G0�(u�;") = 0:

Proof. By Theorem 2.1, for almost all � 2 [1; 2], there exists a bounded
(PS)-sequence fung such that supn kunk < 1; G�(un) ! b�; G0�(un) !

10



0; as n ! 1 and 0 < �0 � b� := sup
N2�

inf
u2@N

G�(u) � D� = sup
s2[0;1]

G�(se0) =

G�(s0e0) with s0 2 (0; 1); G0�(s0e0)e0 = 0: We may assume that un ! u
weakly in E, un ! u a.e. in RN . We claim that for any "0 > 0, there exists an
R > 0 large enough such that

lim sup
n!1

Z
jxj�R

(j"runj
2 + V (x)u2n)dx < "0: (3.6)

In fact, by similar arguments as that in [14], we choose �R 2 C10 (RN ) such that
�R = 0 for jxj < R=2; �R = 1 for jxj � R and jr�Rj � c=R. Then

o(1) = hG0�(un); un�Ri

=

Z
jxj�R=2

("2jrunj
2 + V (x)u2n)�Rdx+

Z
R=2�jxj<R

unjrunjr�Rdx

�

Z
R=2�jxj

g(x; un)un�Rdx

�

Z
jxj�R=2

("2jrunj
2 + V (x)u2n)�Rdx� kunk2krunk2

c

R

�
1

�0

Z
jxj�R=2

V (x)u2n�Rdx:

Therefore,

(1�
1

�0
)

Z
jxj�R

("2jrunj
2 + V (x)u2n)�Rdx � o(1) + kunk2krunk2

c

R
;

that is,

Z
jxj�R

("2jrunj
2 + V (x)u2n)�Rdx < "0 by taking R large. Since p :

RN � R ! R is a continuous and radially symmetric function and un ! u
weakly in H1

rad, then for given positive constants a and b, it is easy to check
that Z

a<jxj<b
p(x; un)undx!

Z
a<jxj<b

p(x; u)udx;

Z
a<jxj<b

P (x; un)dx!

Z
a<jxj<b

P (x; u)dx;

as n!1: Writing

Z
RN

�
p(x; un)un � p(x; u)u

�
dx as

�Z
jxj<R1

+

Z
R1�jxj<R2

+

Z
jxj�R2

��
p(x; un)un � p(x; u)u

�
dx:

It is easy to prove that each term of the above goes to zero. On the other hand,

since jun(x)j � c on � by the Strauss Inequality, we see that
R
�

�
p(x; un)v �

p(x; u)v
�
! 0 as n!1; 8v 2 E: Furthermore,

R
�c

�
p(x; un)v�p(x; u)v

�2
dx �

11



R
�c

V0(junj+juj)
2

�0
dx � c: Therefore, by the Brezis-Lieb Theorem (cf. [6]), we see

that
R
�c

�
p(x; un)v � p(x; u)v

�
dx! 0: Hence

R
RN

�
p(x; un)v � p(x; u)v

�
dx!

0as n!1; 8v 2 E: Combining these, we have that un ! u strongly in E and
G0�(u) = 0: 2

Lemma 3.4. ku�;"k ! 0 as "! 0 uniformly for � 2 [1; 2].

Proof. First, we note that

b� � G�(s0e0) �

Z



s20"
2jre0j

2dx�

Z



F (s0e0)dx:

Furthermore, note G0�(s0e0)e0 = 0, we have that

�"2
Z



jre0j
2 =

Z



f(s0e0)e0
s0

dx � �e20

Z

0

f(s0e0)

s0e0
dx:

Since s0 2 (0; 1) and � 2 [1; 2], by Remark 3.1, we conclude that s0 ! 0 as
"! 0 uniformly for � 2 [1; 2]: Therefore,

0 < �0 � b� � D� �

Z



s20"
2jre0j

2dx! 0;
b�
"2

! 0 as "! 0 (3.7)

uniformly for � 2 [1; 2]: Since, by (Z3)-(Z5), there exists an R0 > 0 such that

b� = G�(u�;")�
1

2
G0�(u�;")u�;"

�

Z
�\fju�; "j�R0g

�1
2
f(u�;;")u�;" � F�(u�;")

�
dx

+

Z
�\fju�;"j�R0g

�1
2
f(u�;")u�;" � F (u�;")

�
dx

� c

Z
�\fju�;"j�R0g

ju�;"j
�dx+ c

Z
�\fju�;"j�R0g

ju�;"j
�dx: (3.8)

On the other hand, if we choose q = 2�(1��=2)
2��� , then q 2 (0; 1) andZ

�\fju�; "j�R0g
ju�; "j

2dx

�
�Z

�\fju�; "j�R0g
ju�; "j

�dx
�2(1�q)=��Z

�\fju�; "j�R0g
ju�; "j

2�dx
�2q=2�

� c
�
b�

�2(1�q)=�
ku�; "k

2q: (3.9)

Condition (Z5) implies that f(t)t � cjtjm for t small enough, where m > �.
Therefore, by combining (3.8)-(3.9) and conditions (Z1)-(Z5), we haveZ

�

f(u�; ")u�; "dx � c

Z
�\fju�; "j�R0g

ju�; "j
2dx+ c

Z
�\fju�; "j�R0g

ju�; "j
mdx

� c
�
b�

�2(1�q)=�
ku�; "k

2q + cb�: (3.10)
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Noting that G0�(u�; ") = 0, we see that

�

Z
RN

("2jru�;"j
2 + V (x)u2�;")dx �

Z
�

p(x; u�;")u�;"dx+

Z
�c

V (x)u2�; "
�0

dx:

It follows thatZ
RN

("2jru�;"j
2+(1�

1

�0
)V (x)u2�;")dx �

Z
�

p(x; u�;")u�;"dx =

Z
�

f(u�;")u�;"dx:

(3.11)

By (3.10)-(3.11), ku�; "k
2 � c

�
b�

�2(1�q)=�
ku�; "k

2q + cb� ! 0 as " ! 0:

Hence,
ku�; "k2

"2
�
�b�
"2

�2(1�q)=� ku�; "k2q

"2�4(1�q)=�
+
cb�
"2
:

By (3.5)-(3.7) and the fact that 2 > 2q > 2�4(1�q)=�, we have that ku�; "k ! 0
as "! 0 uniformly for � 2 [1; 2]: 2

Lemma 3.6. There exists an u" 6= 0 such that G01(u") = 0; G1(u") � �0:
Particularly, ku"k ! 0 as "! 0:

Proof. Since ku�; "k ! 0 as " ! 0 uniformly for �, we let � ! 1. Using the
same arguments as that in Lemma 3.4, we may prove that u�;" ! u" strongly
in E as � ! 1 and G01(u") = 0; G1(u") � �0: By the same reasoning as that in
Lemma 3.5, ku"k ! 0 as "! 0: 2

Proof of Theorem 1.1. We prove that u" is the solution of (1.3) when "
is small enough. For each " > 0, by the Strauss Inequality, we have that
m" = max�� u"(x) ! 0 as " ! 0: Therefore, there is an "0 > 0 such that
m" < a0 for all " 2 (0; "0); where a0 is given in (3.1). Now

Z
RNn��

�
"2jr(u"�a0)

+j2+V (x)u"(u"�a0)
+
�
dx =

Z
RNn��

p(x; u")(u"�a0)
+dx;

where w+ = maxf0; wg: Since by (3.2), V (x)u"(u"�a0)+�p(x; u")(u"�a0)+ �
0; 8x 2 �c; we have

R
RNn�� "

2jr(u" � a0)
+j2dx = 0; it follows that u" � a0

for all x 2 RNn��, and hence p(x; u") = f(u") for all x 2 RNn��: Thus for all
" 2 (0; "0); u" is a solution of (1.3). 2

4 Sign-changing bound states for superlinear

Schr�odinger equations

In this section, we study the sign-changing bound states for the Schr�odinger
equation (1.4) and prove Theorem 1.2. Let � = 1="2: Then (1.4) becomes as

��u+ �V (x)u = �jujp�2u+ �jujq�2u; x 2 RN : (4.1)

13



Let H1(RN ) be the Sobolev space with the norm kukH1(RN ) =
� R

RN (jruj
2 +

u2)dx
�1=2

. The solutions of (4.1) correspond to the critical points of the C2-

functional

G�(u) =
1

2

Z
RN

(jruj2 + �V (x)u2)dx�
�

p

Z
RN

jujpdx�
�

q

Z
RN

jujqdx;

for u 2 E, where E := fu 2 H1(RN ) :
R
RN V (x)u

2dx <1g, which is a Hilbert
space equipped with the inner product hu; viE :=

R
RN (rurv+ V (x)uv)dx and

the associated norm kukE := hu; vi
1=2
E : Let hu; vi� :=

R
RN (rurv+�V (x)uv)dx

and the associated norm kuk� := hu; vi
1=2
� : Then k � kE and k � k� are equivalent.

Let 
n := fx 2 RN : jxj < ng and En := H1
0 (
n) with the inner product

hu; vi =
R

n
(ru �rv+V (x)uv)dx and the corresponding norm kuk = hu; ui1=2;

which is equivalent to the standard norm of H1
0 (
n). Consider the following

problem approximating (4.1):

�
��u+ �V (x)u = �jujp�2u+ �jujq�2u in 
n;

u = 0 on @
n:
(4.2)

The solutions of (4.2) correspond to the critical points of the C2-functional

Gn;�(u) =
1

2

Z

n

(jruj2 + �V (x)u2)dx�
�

p

Z

n

jujpdx�
�

q

Z

n

jujqdx;

for u 2 H1
0 (
n): Let 0 < �1(
n) < �2(
n) � � � � � �k(
n) � � � � be the eigen-

values counted with their multiplicities of the following Dirichlet zero-boundary
value problem on 
n: ��u + �V (x)u = �u; and let fen;jg1j=1 2 H1

0 (
n)
be the corresponding eigenfunctions with ken;jk2 = 1: Let P := fu 2 En :
u(x) � 0 for a.e. x 2 
ng: Then P is a positive cone of En. We de�ne
D�0 := fu 2 En : dist(u;P) < �0g: Similar to [5, 33, 38], (B1) is satis�ed
for Gn. We choose k � k� = k � kp, then it is easy to check that (B2)-(B4) are
satis�ed for Gn;� . Let Z

? := spanfen;1; � � � ; en;k�1g; k � 2; then En := Z?�Z,
where Z := (Z?)?: By Theorem 2.2, we �nd a sequence un;k;� 2 En such that

(1) for each k � 2, �un;k;� are sign-changing solutions of (4.2);

(2) the augmented Morse index of un;k;� is � k;

(3) 0 < Gn;�(un;k;�) � inf Y�En;

k�dimY <1
supY Gn;� :

Note that inff

Z
RN

jruj2dx : u 2 C1
0 (RN ); kukq = 1g = 0: For any k � 2,

we choose wj 2 C1
0 (RN ) with kwjkq = 1;

R
RN jrwj j

2dx < 1 for j = 1; :::; k.
We may want suppwj \ suppwi = ; for i 6= j and suppwj � 
nk for all

j = 1; :::; k. For 0 < s < 2(p�q)
(p�2)(2N+2q�Nq) , we set �j(x) = wj(�

sx) and Yk :=

spanf�1; :::; �kg. Then there exists a constant nk depending on k such that
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Yk � En for n � nk (we assume that � � 1). For any u =
Pk

i=1 ci�i 2 Yk,

we have that Gn;�(u) =
Pk

i=1Gn;�(ci�i) if n � nk. Recall that V (0) = 0,
there is a �k (depending on k) such that if we consider � � �k, we have that
V (��sx) � kwik

�2
2 for all x 2 
nk ; i = 1; :::; k: Therefore,

Gn;�(t�i)

=
t2

2

�
�2s�sN

Z

n

jrwij
2dx+ �1�sN

Z

n

V (��sx)jwij
2dx

�

�
tp�1�sN

p

Z

n

jwij
pdx�

tq�1�sN

q

Z

n

jwij
qdx

�
q � 2

2q

�
�2s�sN + �1�sN

�q=(q�2)
�2(sN�1)=(q�2):

Therefore, by item (3) above, we have

Lemma 4.1. We have

0 < Gn;�(un;k;�) � k
q � 2

2q

�
�2s�sN + �1�sN

�q=(q�2)
�2(sN�1)=(q�2):

Therefore, we may assume that Gn;�(un;k;�) ! ck;� � 0 as n ! 1. On the
other hand, the number of nodal domains of un;k;� is � k.

Proof. We just estimate the number of nodal domains of un;k;� . If the number
of nodal domains of un;k;� is > k, we denote such domains by 
n;1; � � � ;
n;k+1.
Let �i(x) = un;k;�(x) if x 2 
n;i and �i(x) = 0 otherwise, then �i 2 En. Let

vn;k;� := un;k;� �
Pk

i=1 �i, we have that 0 < Gn;�(un;k;�) = Gn;�(vn;k;�) +Pk
i=1Gn;�(�i) and Gn;�(vn;k;�) > 0 (up to an appropriate choice of 
n;j). Note

that hG0n;�(�i); �ii = hG0n;�(un;k;�); �ii = 0 and thatGn;�(�i) = supt2RGn;�(t�i).
Let X := spanf�1; � � � ; �kg: We obtain Gn;�(un;k;�) � inf

Y�En;

k�dimY <1

sup
Y
Gn;� �

sup
X
Gn;� =

kX
i=1

Gn;�(�i): But the last term is Gn;�(un;k;�) � Gn;�(vn;k;�); it

follows a contradiction. �

Proof of Theorem 1.2. Due to (V2), V (x) has a positive lower-bound outside
a big ball, together with Lemma 4.1, it is a routine to show that fun;k;�g1n=1
is bounded in E. We assume un;k;� ! u�k;� weakly in E, in Lp(RN ) and in

Lq(RN ); strongly in Lploc(R
N ) and Lqloc(R

N ) for 2 < q < p < 2�; un;k;�(x) !
u�k;�(x) for a.e. x 2 RN : Let �(t) : [0;1)! [0; 1] be a smooth function satisfying
�(t) = 1 if t � 1 and �(t) = 0 if t � 2: Let ûn;k;�(x) = �(3jxj=n)u�k;�(x).
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Combining Br�ezis-Lieb Lemma (see [6]):

Gn;�(un;k;� � ûn;k;�)

= Gn;�(un;k;�)�Gn;�(ûn;k;�)

�

Z
RN

�
r(un;k;� � ûn;k;�)rûn;k;�dx+ �V (x)(un;k;� � ûn;k;�)ûn;k;�

�
dx

+
�

p

Z
RN

�
jun;k;� j

p � jun;k;� � ûn;k;� j
p � jûn;k;� j

p
�
dx

+
�

q

Z
RN

�
jun;k;� j

q � jun;k;� � ûn;k;� j
q � jûn;k;� j

q
�
dx

! ck;� �G�(u
�
n;�)

as n ! 1. Further, it is easy to check that hG0n;�(un;k;� � ûn;k;�); (un;k;� �
ûn;k;�)i ! 0 as n!1: Note that

Gn;�(un;k;� � ûn;k;�)�
1

2
hG0n;�(un;k;� � ûn;k;�); (un;k;� � ûn;k;�)i

� (
1

2
�

1

p
)�

Z

n

jun;k;� � ûn;k;� j
pdx:

It follows that

kun;k;� � ûn;k;�kp �
�2p(ck;� �G�(u

�
k;�))

�(p� 2)
+ o(1)

�1=p
: (4.3)

We claim that there is a ��k > �k such that for all � > ��k we have that

un;k;� ! u�k;� strongly in E; n!1: (4.4)

Otherwise, un;k;� 6! u�k;� in E for some � !1: Thus, lim inf
n!1

kun;k;��ûn;k;�k >

0. Recall that un;k;��ûn;k;� ! 0 in L2loc. Since there is a constant C(p)(depending
on p only) such that

kun;k;� � ûn;k;�k
2
p � C(p)

Z
RN

�
jr(un;k;� � ûn;k;�)j

2 + (un;k;� � ûn;k;�)
2
�
dx:

Combining (V2), we deduce that

kun;k;� � ûn;k;�k
2
p � C(p; V )�

Z
RN

jun;k;� � ûn;k;� j
pdx+ o(1); (4.5)

where and in the sequel, we denote by C(p; V ) the constant depending on p and
V (x) only. Thus, o(1) + kun;k;� � ûn;k;�k

p � (�C(p; V ))�1=(p�2) as n!1: By
(4.3), we have

(�C(p; V ))�1=(p�2) �
�2p(ck;� �G�(u

�
k;�))

�(p� 2)

�1=p
+ o(1) (4.6)
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as n!1: Further, we observe that G�(u
�
k;�) � 0, by Lemma 4.1,

C(p; V )�1�p=(p�2)

� ck;� �G�(u
�
k;�)

� k
q � 2

2q

�
�2s�sN + �1�sN

�q=(q�2)
�2(sN�1)=(q�2):

This is impossible if � large enough. So, our claim in (4.4) is true, that is, there
is a ��k > �k large enough, such that for � > ��k , un;k;� ! u�k;� strongly in E:
Then �u�k;� are solutions of (4.1) such that

G�(u
�
k;�) � k

q � 2

2q

�
�2s�sN + �1�sN

�q=(q�2)
�2(sN�1)=(q�2): (4.7)

The number of nodal domains of u�k;� is � k; the augmented Morse index of
u�k;� is � k. We claim that u�k;� is still sign-changing. Indeed, since �un;k;� are
sign-changing solutions of (4.2), we haveZ


n

(jru�n;k;� j
2 + �V (x)(u�n;k;�)

2)dx = �

Z

n

ju�n;k;� j
pdx+ �

Z

n

ju�n;k;� j
qdx

� C1(ku
�
n;k;�k

p
H1(RN )

+ ku�n;k;�k
q
H1(RN )

); (4.8)

where w� = maxf�w; 0g and C1 > 0 is a constant independent of n; k. When
n large enough, the �rst integral in (4.8) is � C2ku

�
n;k;�k

2
H1(RN ) for a constant

C2 > 0 independent of n and k. Hence, we may conclude that u�k;� must be
sign-changing. Finally, since the augmented Morse index of un;k;� is � k; we let
f�n;jg1j=1 be the sequence of the eigenvalues (repeated with their multiplicities)

of the operator w 7! (��w+V (x)w� (p�1)jun;k;� jp�2w� (q�1)jun;k;� jq�2w)
with Dirichlet zero-boundary condition on @
n, then the cardinality ]fj 2 N :
�n;j � 0g � k. On the other hand, let W (x) = a(x) � (p � 1)jun;k;� jp�2 �
(q � 1)jun;k;� jq�2 in 
n and W (x) = 0 outside 
n, by [31, Theorem 3], there
is a constant CN depending on N only such that ]fj 2 N : �n;j � 0g �

CN
R
RN

�
W�(x)

�N=2
dx; whereW�(x) = (p�1)jun;k;� jp�2+(q�1)jun;k;� jq�2�

V (x) if (p � 1)jun;k;� jp�2 + (q � 1)jun;k;� jq�2 � V (x) � 0 and W�(x) = 0
otherwise. Hence,

k � CN

�
(p� 1)N=2

Z

n

jun;k;� j
N(p�2)=2dx+ (q � 1)N=2

Z

n

jun;k;� j
N(q�2)=2dx

�

for all n � 1: If q � 2 + 4=N; by the Sobolev embedding theorem, we see

that ku�k;�k
N(p�2)=2
H1(RN )

+ ku�k;�k
N(q�2)=2
H1(RN )

� C(p; q;N)k, where C(p; q;N) > 0 is a

constant depending on p; q and N only. It is easy to check that ku�k;�kH1(RN ) �

C(p; q;N)k2=(N(p�2)). Note that u�k;� := u�k;" is also a solution of (1.4). Further,
since G�(u) = �H"(u), by combining (4.7) and noting that s may be chosen

arbitrarily small, we see that H"(u
�
k;") � k

q � 2

q
2

q

q�2 "�
4q
q�2 : This �nishes the

proof of Theorem 1.2. �
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