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Abstract

In this report, we present a hybrid discrete/ continuous time version of the observer-based
adaptive control system for MEMS gyroscopes developed in [8], which can be readily
implemented using digital processors. The control algorithm considered in this report is not
fully a discrete time controller, since only the feedback control, parameter adaptation
algorithms and feedforward control law are implemented in discrete time, while the
velocity observer is still implemented in continuous time.

A stochastic analysis of this algorithm is developed and it shows that the estimates of the
angular rate and the fabrication imperfections are biased due to the signal discretization
errors in the feedforward control path introduced by the sampler and holder. Thus, a two-
rate discrete time control is proposed as a compromise between the measurement biases due
to discretization errors and the computational burden imposed on the controller due to a fast
sampling rate. The convergence analysis of this algorithm is also conducted and an analysis
method is developed for determining the trade-off between the controller sampling
frequency and the magnitude of the angular rate estimate biased errors. All convergence
and stochastic properties of a continuous time adaptive control are preserved, and this
analysis is verified with computer simulations.


mailto:horowitz}@newton.berkeley.edu

1. Introduction

Gyroscopes are commonly used sensors for measuring angular velocity in many areas of
applications such as navigation, homing, and control stabilization. Although, conventional
rotating wheel, fiber optic and ring laser gyroscopes have dominated a wide range of
applications, they are too large and, most often too expensive to be used in most emerging
applications.

Recent advances in micro-machining technology have made the design and fabrication of
MEMS (Micro-Electro-Mechanical Systems) gyroscopes possible. These devices are
several orders of magnitude smaller than conventional mechanical gyroscopes, and can be
fabricated in large quantities by batch processes. Thus, there is great potential to
significantly reduce their fabrication cost. The emergence of MEMS gyroscopes is opening
up new market opportunities and applications in the area of low-cost to medium
performance inertial devices [1].

Most MEMS gyroscopes are laminar vibratory mechanical structures fabricated on
polysilicon or crystal silicon. Common fabrication steps include bulk micromachining,
wafer-to-wafer bonding, surface micromachining, and high aspect ratio micromachining.
Each of these fabrication steps involves multiple process steps such as deposition, etching
and patterning of materials. Generally, every fabrication step contributes to imperfections
in the gyroscope [2]. Fabrication imperfections that produce asymmetric structures, mis-
alignment of actuation mechanism and deviations of the center of mass from the geometric
center, result in undesirable, systematic perturbations in the form of mechanical and
electrostatic forces, which degrade the performance of a gyroscope. Traditionally, manual
mechanical or electrical balancing has been used to cancel parasitic effects with an open-
loop mode of operation [3-5]. Although this procedure reduces the effect of a certain
amount of imperfections, it is time consuming, expensive and difficult to perform on small,
nail-size (mm level) gyroscopes. Two different types of controllers have been proposed for

conventional closed-loop mode of operation in the literature. One is a Kalman filter based
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preview control [6] and the other is a recently published force-balancing feedback control

scheme using sigma-delta modulation [7]. Although these feedback control techniques
increase the bandwidth and dynamic range of the gyroscope beyond the open-loop mode of
operation, they still are sensitive to parameter variations such as damping, spring constant
and quadrature error variations, produce ZRO and require tedious calibrations. The motion
of a conventional mode-matched z-axis gyroscope does not have sufficient persistence of
excitation, which makes it difficult to identify and compensate for all major fabrication
imperfections in an on-line fashion. Moreover, some types of fabrication imperfections,
which can be modeled as cross-damping terms, limit the minimum detectable angular rate
signals.

Recently, a new gyroscope operation mode and a corresponding adaptive control algorithm
have been developed, which are well suited for the on-line compensation of imperfects and
to operate in varying environments that affect the behavior of a MEMS gyroscope [8]. This
adaptive controlled gyroscope is self-calibrating, compensates for friction forces and
fabrication imperfections that normally cause quadrature errors, and produces an unbiased
angular velocity measurement that has no ZRO.

The adaptive control algorithm presented in [8] is a continuous time controller. It is
assumed that the control and parameter adaptation laws are updated continuously in time.
Although the implementation of such a controller is certainly possible utilizing analog
circuits, it is of practical interest to explore the implementation of the adaptive control laws
utilizing digital computers.

In this report, we present a hybrid discrete/continuous time version of the observer-based
adaptive control system developed in [8], which can be readily implemented using digital
processors. The control algorithm considered in this report is not fully a discrete time
controller, since only the feedback control, parameter adaptation algorithms and
feedforward control law are implemented in discrete time, while the velocity observer is
still implemented in continuous time.

In the next section, the dynamics of MEMS gyroscopes is presented, by accounting for the

effect of fabrication imperfections. In section 3, the observer-based adaptive control
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algorithm presented in [8] is reviewed. The hybrid adaptive control law is developed in

section 4. In section 5, the performance of the hybrid adaptive controlled gyroscope is
analyzed, including magnitude of parameter estimation biases, convergence rate and

resolution estimation. Finally, computer simulations are performed in section 6.

2. Dynamics of MEMS Gyroscopes

Common MEMS z-axis vibratory gyroscope configurations include a proof mass
suspended by spring suspensions, and electrostatic actuations and sensing mechanisms for
forcing an oscillatory motion and sensing the position and velocity of the proof mass. These
mechanical components can be modeled as a two-degree-of-freedom mass, spring and
damper system. To derive the gyroscope’s dynamic equations of motion, two coordinate
systems are introduced: the inertial frame, which is fixed in an inertial space, and the gyro
frame, which is fixed to the rotation platform. Figure 1 shows a simplified model of a
MEMS gyroscope having two degrees of freedom in the associated Cartesian reference

frames.

Q
z A

gyro frame

X

€ inertial frame

Figure 1. A model of a (planar vibratory) MEMS z-axis gyroscope
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Assume that the gyro frame {g} is rotated with respect to inertial frame {e} by the angular

velocity vector Q¢ then the equation of the motion of the proof mass of the gyroscope is
derived from Newton’s law. If we wish to measure the component of the angular velocity
along the z-axis, the motion of the proof mass can be constrained to be only along the x-y
plane by making the spring stiffness in the z direction much larger than in the x and y
directions. Assuming that the measured angular rate is almost constant over a long enough
time interval and that linear accelerations are cancelled out, either as an offset from the
output response or by applying counter-control forces, the equations of motion of a

gyroscope are described in {g} frame as follows.

msi+d, 5+ (k, —m(@Q2 Q)+ mQ Q y =7, +2mQ,

(1
mi+d, y+(k, —m@Q2 Q) y+mQ Q x =7, —2mQ, %

where x and y are the coordinates of the proof mass relative to the gyro frame, d, ,, k,, are

damping and spring coefficients, 2 are the angular velocity components along each

X,)Y,Z
axis of the gyro frame and 7 , are control forces. In practice, small fabrication

imperfections always occur, and cause dynamic coupling between the x and y axes through
the asymmetric spring and damping terms.
Taking into account fabrication imperfections, the dynamic equation (1) is modified as
follows [9].

mi+d x+d, y+k. x+k y=1, +2mQ,y

)

my+d x+d, y+k x+k, y=1, -2mQ x

Equation (2) is the governing equation for a z-axis MEMS gyroscope. Fabrication

imperfections contribute mainly to the asymmetric spring and damping terms, &, and d_, .

Therefore these terms are unknown, but can be assumed to be small. The x and y axes

spring and damping terms are mostly known, but have small unknown variations from their
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nominal values. The proof mass can be determined very accurately. However, even if there

are small-unknown variations in the proof mass, this will not be a problem, because
equation (2) can be scaled by the proof mass. The components of angular rate along x and y
axes are absorbed as part of the spring terms as unknown variations. Note that the spring
coefficients k., and k,, include the electrostatic spring softness.

Non-dimensionalizing the equations of motion of a gyroscope is useful because the
numerical simulation is easy, even under the existence of large two time-scales differences

in gyroscope dynamics. One time scale is defined by the resonant natural frequency of the
gyroscope, 4/k_ /m, the other by the applied angular rate Q. Nondimensionalization also

produces a unified mathematical formulation for a large variety of gyroscope designs. In
this report, controllers will be designed based on non-dimensional equations. The
realization to a dimensional control for the specific gyroscope can be easily accomplished
by multiplying the dimensionalizing parameters by the non-dimensional controller
parameters. Based on m, g, and ®,, which are a reference mass, length and natural
resonance frequency respectively, where m is a proof mass of the gyroscope, the non-

dimensionalized equation can be derived as follows:

.. . . 2 _ .
Yt+o /0, x+d y+ox+0,y=1+2Q,y

3)

J+d i+w,/0, y+o x+0ly=1,-2Q,%

where O and Q, are respectively the x and y axis quality factor, o, =k, (mw]) ,

o, =k, (mog) , o=k /(meoy) , d, <d /(mo) , Q «<Q /o, ,
r, <1, /(mw;gq,) and 7, <7, /(mw;q,) . The natural frequency of the x or y axis can be

used to define the nondimensionalizing parameter @, . Since the usual displacement range

of the MEMS gyroscope in each axis is sub-micrometer level, it is reasonable to choose

1 ym as a reference length ¢, .



3. Adaptive Mode of Operation

The aim of the adaptive mode of operation scheme presented in [8] is to achieve (1) on-line
compensation of fabrication imperfections, (2) closed-loop identification of the angular rate,
(3) to attain a large bandwidth and dynamic range, and (4) self-calibration operation. The
adaptive mode of operation operates based on the observer-based adaptive control which
needs only position measurements of the proof mass of the gyroscope.

For convenience, governing equation (3) of the MEMS gyroscopes is re-written as matrix
form:

g+Dg+Kqg=1-2Qqg+b 4)

where b is Brownian noise and

The adaptive control problems of the gyroscope is formalized as follows: given equation
(4) with unknown constant parameters D, K and Q, determine the control law 7z based on

measuring ¢, such that the dynamic range is constrained within a specified region and Q is

estimated correctly.

Note that direct measurement of the velocity of the proof mass is avoided in the problem
formulation. This is because current velocity sensing circuitry technology produces a noise
with spectral power that is 3 to 4 orders of magnitude larger than the ideally expected value,

as compared with position sensing technology.
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The observer-based adaptive control and parameter adaptation laws are introduced in [8] as

follows:

r=-7(4° —-4,)+Dq, +Rq, +294, (5)
1;3 _l ( T T)
- 2 7/R Tqu +qu0
o1 o
D=27, (cod +G,77 ) (6)

A

Q=7alredn 4,7
7o =4, = 4,)
where R=K-K, , D, R, Q are estimates of D, R and Q, and y =diagly,,7,}, and

Vr-¥p»and y, are adaptation gains.

Reference trajectory, ¢, =[x, v, ]1",is updated by the following ideal oscillator,
Gn +K,q, =0 (7

where K, =diag{w.,®;} are the reference resonant modes of both axis. Note that the
signal ¢, and ¢, may be calculated and stored off-line, resulting in a significant reduction
in the number of on-line computations.
The velocity estimate é , 1s corrupted by a measurement noise and produced by the
following velocity observer.
4y =4: +Lg+n=q;)
¢, =-K,4q,

mLp

®)
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where n is a position measurement noise, which is assumed to be uncorrelated with

Brownian noise b, and L is a observer gain matrix given by L =diag{L,,L,} . The

estimated power spectral densities of the position measurement noise (S,) and Brownian

noise (Sp) measurements are given by [3,4]

2

2C, +C, 4k, Td
P dC m
2V, =
dy

where kg, C,, Co, Ry, T, d and m are respectively Boltzmann’s constant, the device’s
parasite capacitance, nominal sensing capacitance, wiring resistance, absolute temperature,
damping coefficient and mass. Both are assumed zero-mean white noises.

We present the following two theorems without proof. The proofs can be found in [8].

Theorem 1 (Stability)
Given the observer (8), the adaptive control (5) and parameter adaptation laws (6), it is
always possible to choose a velocity observer gain L, which makes the trajectory error,

e,=q-q, , trajectory estimation errors, ¢, =¢, —¢ and ¢, =q, —q , and their time

derivatives converge locally, uniformly and exponentially to zero.

Theorem 2 (Persistent excitation condition)

With control law (5), parameter adaptation laws (6), and the observer (8), if the gyroscope
is controlled to follow the mode-unmatched reference model, i.e. , # @,, the persistent
excitation condition is satisfied and all unknown gyroscope parameters, including the

angular rate, are estimated correctly.

Theorems 1 and 2 show that the motion of a mode-unmatched gyroscope, in which the

resonance frequency of the x-axis is different from that of the y-axis, has sufficient
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persistence of excitation to permit the identification of all major fabrication imperfections

as well as “input” angular rate. This means that adaptive controlled gyroscope has no ZRO
and is self-calibrating.

The main advantages of the adaptive mode of operation proposed in this report include self-
calibration, large robustness to parameter variations, and no zero-rate output. Moreover, the
adaptive controller design is also easy to implement in high Q systems. Thus, the noise
properties associated with a high Q system can be fully utilized. Another advantage of the
adaptive mode of operation is that it is easy to adjust the trade-off between bandwidth and

resolution by simply adjusting the angular rate adaptation gain.

4. Hybrid Adaptive Control Law

4.1 Discrete Time Adaptive Control

We now consider the implementation of the adaptive control algorithm described by
equations (5)-(6) utilizing a digital computer. As stated earlier, the parameter adaptation
algorithm (6) and control law (5) will be implemented in discrete time, while the observer
(8) will be implemented in continuous time. Thus, the adaptive algorithm can no longer be
analyzed as a continuous time system, but rather as a hybrid system which includes both
discrete time and continuous time algorithms.

For convenience, let us define an adaptation gain matrix I', a signal regressor W(q, .4, ),

and parameter estimation errors 0 =6-0 as follows:

, 1 1 1
I' =diagsy, 57/R, Vrs Vp>s E?/D’ V> 579

0 xm ym 0 xm ym 2xm

. xm ym 0 xm ym O _2ym
WT(qm?q”z):|: :|
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0" =[r, r, r, d, d, 6 d, Q]

x o Txy Ty

where 7,

iy

d, and Q_ are respectively elements of R, D and Q.
Also, let us define the sampling index k and the sampling time Af, such that ¢, = kAr. We

define the hold operator / such that, H[s(¢, )] denotes

s(t,) if 1, <t<t,,
H[s(t,)]= (10)

S(tkﬂ) lf t= tk+l
Using W, (t) as a short hand notation for W(q, ,q,, ), let us define W (k) as

W, (k)y=w,(t,)=W(q, ()4, () (1D

Now, define the discrete time adaptive control law as
2(t) = =y H[(§}, (k) — 4, (k) + 8q (k)] + H[W,) (k)0 (k)] (12)

where dg(k) is a quantization noise of the velocity estimate. Because of finite word length
error or digital computational error, the actual signal W, (k) must also be modeled as
W, (k)y=W, (k)+oW,k (k), where oW, (k) is a finite word length error. However, since the
signal W (k) is known in advance and can be generated by the computer, its finite word

length error can be made arbitrary small and will be neglected here. Note that the signal

W (k) may be calculated and stored in an off-line fashion, resulting in a significant
reduction in the number of on-line computations.
The parameter estimate sequence é(k) in the equation (12) is updated by the following

approximated continuous time parameter adaptation law.
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[ 6@ ar= [ ~rHlw, )y @G0 -d, )+ sqtk)] di (13)

Ik Ik

Thus,
Ok +1)=0(k)-TW, (k)y [q5(k)~q,, (k) +dq(k)]At (14)

or
R(k +1) = R(k) +%A% (ro (K)g ] (k) + g, ()7 (k)

D(k +1) = D(k) %A% (zo (k)41 (k) + 4, (k)T (k) (15)
Ok +1) = Q) + Aty o (7, (K)g L (k) — g, )zl ()

7, (k) =~(q5 (k) - q,, (k)

while the observer signals é; (t) and g;(¢) are still updated by the continuous time

observer (8) and sampled at every Af.
4.2 Stability Analysis

In order to derive the closed loop error equations, we apply the control law (12) and the
adaptation algorithm (15) to the system equation (4) and observer (8). Define the signal

discretization error function as
AW, ()= H[W,, (k)]-W, (t) (16)
then the trajectory error equations are

e, +(D+2Q)e, +K,e,

. n 17
=~y Hle,(k)+q, (k) +dq(k)]+ HW, (k)O(k)] =W, ()0 —Re ,+b a7
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where

HIW, ()00 - W] (60 = HIW, (k)0 (k)] +{HDW, (k)]- W, ()}6
= H[W, (k)6 (k)]+ AW, (1)0

The trajectory estimation error equations are

q,=q,—-Lg,+Ln
g, =-K,q,+(D+2Q)¢, +y He,(k)+,(k)+ (k)] (18)

— HW, (k)0 (k)] - AW, ()0 + Re ,— b

where e, =q-q,,4,=q, —q,and g, =q, —q. Equations (17) and (18) can be described

compactly by the sum of a linear known and a linear unknown term as follows:

x.=A.x,+A4,x

—B.y Hle,(k)+q,(k)—Lg,(k)+Ln (k)+5q(k)] (19)
+B_H[W (k)0 (k)]+B. AW (1)0+B_ b+C.n

where n (k) is the sampled measurement noise, where n (k)~(0,S, /At) ,

xc=[ep e, q, %]T and

0 1 0 0 0 0 0 0 0

-K, 0 0 0 I 0 -R —(D+2Q) 0 0
A,: ,B,= ,Ccz ’Acuz

¢ 0 0 —-L [ ‘ 0 L 0 0 0 0

0 0 -K, 0 -1 0 R (D+2Q) 0 0

Since the “control input” in equation (19),
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Hlé, (k) +§, (k)= Lg, (k) + Ln, (k) + 8q (k)] + HIW,, (k) (k)]

is held constant over the sampling period and the parameters are updated in a discrete time,
it is convenient for the further analysis to discretize the trajectory and trajectory estimate

error systems (17,18) as follows.

x, (k+1) =% x (k)
— [ et wB y He, (k) +q,(k)— LG, (k) + Ln (k) + oq(k)] dt

Tk

+ j ) WO B T () (k)] dt

Ik

o]
N J- o(ActAu) (tk—’)BcAWmT (t)e dt

12

738
+ [ et OB b(r) dt (20)

1

o]
+ j e(AchAcu)(frt)Ccn(t) dt

Ik

If the sampling time is small, terms of order A¢* can be disregarded in a Taylor series
expansion, and Euler’s numerical approximation can be used to integrate equation (20).
Thus,
x,(k+)=(U+AA)x, (k)+ A, At x_ (k)
—B.At y [é,(k)+q,(k)—Lg,(k)+ Ln (k) + 6q(k)] ey
+B AW/ (k)0 (k) + C (k)6 + B.b,(k)+C.n, (k)

where

C(k)= [ e WO B AW, (1) dt
Tk
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and b, (k)~(0,S,At) , n,(k)~(0,§,Ar) . Notice that, in the numerical integration of

equation (20) using Euler’s approximation, the intensity of the sampled noises b, (k) ,
n, (k) can be calculated by multiplying the intensity of noises b(¢), n(t) by At. Utilizing

the parameter adaptation law,

0(k+1)=0(k)-ATW, (k)y [¢,(k)+q,(k)+q(k)]
=0 (k)— ATW, (k)y [¢, (k) +§, (k) — L, (k) + Ln, (k) + 54 (k)]

the extended error dynamics can be described by the following discrete time system.

x, (k+1)=A,(k)x, (k)+A,x,(k)+C, (k)0 +G,w, (k) (22)

where x, :[ep e, q, q, §]T, w,=[b, n, &,]" and

[T At 0 0 0 |
- K, At I —yAt yLAt — YAt W (k)At
A,(ky=| 0 0 I— LAt At 0
0 yAt —(K,, + 7L)At I+ yAt —W!(k)At
0 ~TW, (k)yAt  TW, (kLA  —TW, (k)yAt I
0 0 0 0 0]
~RAt —(D+2Q)At 0 0 0
C(k)
A, =l 0 0 0 0 0 ,Cd(k){ 0 }
RAt  (D+2Q)At 0 0 0
.0 0 0 0 0]
[0 0 (U
1 — L -y
G,=| 0 L 0 w,(k)~(0,5,)
-1 7L 4
| 0 —TW, (kL -TW, (k)]
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where S, =diag(S At, S, At"), S, =diag{S,,S,} and S, 1s the power spectral

quan quan

density of the quantization noise for og. In order to prove the stability of the closed-loop
system, we consider the stochastic expectation propagation of equation (22). Since the
propagation equation has the same form as its deterministic counterpart, we can consider
the deterministic case, i.e. w,(k)=0. Since 4, (k) in equation (22) is a periodic discrete

4r*

time-varying matrix with period k, =
w,0,At

, where @, and w, are the model reference

frequencies, we can utilize a similar analytical procedure to be the one that was employed
in [8] to analyze the stability of the continuous time varying error dynamics. To do that, we

consider a discrete time version of Floquet theory.

Lemma (Discrete-Time Floquet theory)

Consider the following discrete time periodic time-varying linear system with period &,

x(k+1) = A(k)x(k), where A(k)= A(k+k,) (23)

where A(k) is a nonsingular matrix. Then, there exists a periodic transformation which

converts the periodic time-varying linear system to a time invariant linear system.

Proof :

Let ®(k)be a state transition matrix of the time varying linear system (23), Then

O(k+1) = A(k)D(k)
Consider

Ok +1+k,) = Ak +k, )D(k+k,)
= A(k)YD(k +k,)
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Thus, there exists a nonsingular constant matrix Q such that

Dk +1) = D(K)Q
Now, set O = A" and define F(k)=®(k)4 ™", then

F(k+k,)=®(k+k) A" A* =D(k)A" 4 47 = d(k)A™
= F(k)

Therefore, the matrix F(k) is a periodic matrix with the same period as the system, and
can be considered as a state transformation matrix. Thus, consider the new state z(k) such

that x(k) = F(k)z(k) . If we substitute it into the system (23),

F(k+1)z(k+1) = A(k)F (k)z(k)
Thus,
z(k+1) = F ' (k+1)A(k)F (k)z(k)
where
F' (k+D)AK)F (k)= AA*® " (k+1) A(k)D(k)A ™
= AA D (k) A7 (k) A(k)D(k)A ™
=4

Finally, we get the state equation for the equivalent time invariant system:
z(k+1) = Az(k)
and the lemma is proved.

Now, we are ready to prove the stability of the error dynamics of equation (22).
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Theorem 3 (Stability)
Consider the adaptive control law and adaptation laws, given by equations (12) and (13),
and the adaptive observer (8), which result in the error dynamics (22). If the sampling time

At is sufficiently small, it is always possible to choose an observer gain L which will result
in all error signals, e,é,q,,q, and 0 being bounded. These bounds are a function of the

discretization error introduced by sampling and the zero-order hold.

Proof :

Let ®(k)be a state transition matrix associated with the periodic matrix A4, (k) in equation
(22), i.e.
®,(k+1)= A, (), (k) (24)

then according to Lemma, the state transition matrix can be written as a product of two

matrices as

O, (k)=F,(k)A;

where F,(k) is a discrete periodic nonsingular matrix with period k7 which satisfies

condition, F,(0)=F,(k,)=1. A , 1s a constant matrix and the stability of the linear time

varying known dynamics

X, (k+1)=4,(k)x,, (k) (25)

is determined by eigenvalues of A4 .- Similarly to the continuous time case, an appropriate
observer gain L always exists such that the matrix A4 . Will be stable, if the sampling time is
made sufficiently small. In order to determine F,(k), the state transition matrix @ , (k)

must be computed. Unfortunately, it is hard to analytically compute @ , (k). Instead, the
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transition matrix at the end of one period is numerically computed from equation (24)

utilizing the initial condition ® ,(0)=7and A, is obtained from 4, =® " (k).
The remainder of the stability proof is based on the Lyapunov function approach. Consider

the following Lyapunov function candidate:

Vk)=x;(K)F," (k)MF," (k)x, (k)

where M is the solution of Lyapunov function, A MA, —M =—I . Since A, is
asymptotically stable, M >0 and F,” (k)YMF,'(k)>0 for all k>0. Using the following

relationships, 4, = F,' (k+1)A,(k)F, (k) , and calculating the difference of ¥ along the

trajectory (22) gives

AV (k) =V (k+1) =V (k)
= x!(k+)F,;" (k+)MF," (k+)x, (k +1)
—x, (W)F; " (KYMF ' (k)x, (k)

=—x, ()F;" (k)F;" (k)x, (k)
+x! (k)AL F;"(k+1)MF;' (k+1)A, x, (k)
+2x) (k)F;" (k)A] MF;' (k+1)A,, x , (k)
+07C!(k)F," (k+1)MF,;' (k+1)C, (k)0
+2x7 (k)F;" (k)A] MF;' (k+1)C (k)@
+2x7 (k)AL F;" (k+1)MF," (k+1)C (k)0

Since F (k) is a nonsingular matrix forall k>0, F " (k)F ' (k)>0 forall k>0. Thus,

AV (k)< —a’

min xd ||2 + Ofriaxﬂz/1 (M)”xd ||2 + 2a§1axgﬂ2’max (M)”xd ||2

(M), |16 + 20130 12 M), | -]

max

+ aiaxnz/i (M)||6’||2 + 20‘131“ nei

max max
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= min , ﬂ:”Adu || and

0<ks<k,

where « , . = max

= max
0<k<ky 7

0<k<ky

min

|F, (k)

|7, (k)

C, (k)

E= HZ 4 H If the signal discretization error AW, (¢t)=H[W, (k)]-W, (t) is zero, or equally

n=0, the origin of the state space (e,,¢,,q p,av,é):o is guaranteed to be locally

uniformly exponentially stable within the domain of &’ >a_ A (M)B(B+2¢). Since

max max
some amount of discretization error is always present, the trajectory, trajectory estimation
and parameter estimation errors will not converge to zero, but rather to a compact residual

set. This residual set is defined by

b++b*
‘- { i [P “]}

a

where

a=al —a’ A (M)B(B+2¢)

min max ““max

b=a’ A (M)B+¢e),c=a’ A (M)

max “~ “max max “~ "max

and the theorem is proved.

5. Performance Analysis

5.1 Magnitude of Parameter Estimation Biases

As discussed in the stability analysis, the introduction of the signal discretization error
function AW, (t), which was defined in equation (16), prevents the error dynamics from
asymptotically converging to zero and introduces bias in the estimates of the angular rate
and fabrication imperfections. In order to reduce bias of the estimates, it is necessary to

make this discretization error small by achieving a fast computation rate in the feedforward
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control path. To choose an appropriate computation rate in the feedforward control path, it

is necessary to determine the relationship between the computation rate and the magnitude
of the bias estimate. Consider the signal discretization error term C (k)@ in equation (21)
and its average power. If its power is equal to the power spectral density of a fictitious

noise term G w(k), where

0 0
I - b

G, = w7 <0, 8,0
0 L n,
-1 L

where S, =diag{S,, S} the effect of the signal discretization error on the error dynamics

ofe,e,q,,q, and & will be same to that of the noise in the stochastic average sense.

Thus,
AVG(C(k)96" C(k)" )= G, 8,G! At (26)

Equation (26) can be used to determine the following bound,

max|C(k)d] =|

2|S

c

GC

At (27)

Using Euler’s numerical integration approximation,

C(k)¢9|| can be further approximated

as follows.

At

max

lewel< ||

et B AW (0] de <|B| AW, (00

The right hand side of the above equation can be further expanded as follows.
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|aw, )] =D+ 294, (6) + RAg,, ()]

iag,, )] |RI}

, Jxior 1120 |R|)

< max{|ag, (0] [D +20

3

= At max{\/ona)f +Y, o) ||D +2Q

Under the decoupling condition of the angular estimate and fabrication imperfection

estimates [8], 1.e. X @, =Y, ®,, equation (27) becomes,

20 X o, rnax(a)1 ||D +2Q

R|)=|G.|{Ads. (28)

>

Therefore, the required sampling time to achieve parameter estimation bias magnitude

below or equal to the Brownian and position measurement noise floor is given by

3

G

c

S

c

2X @, max(o, |D +2Q

At =

(29)

[)

>

where D is the damping matrix, R is the resonant frequency modeling error matrix, and Q
is the unknown “input” angular rate.

Equation (29) is a useful criterion for choosing an approximate computation rate for the
feedforward control path. Equation (29) suggests that the magnitude of biases of the
angular rate and fabrication imperfection estimates is proportional to the computation rate

elevated to the 3/2 as shown in Figure 2. However, it is important to note that “magnitude”

in this context means the norm of a vector composed of the angular rate and fabrication
imperfection estimate errors. Thus, individual biases such as the angular rate estimation
bias, may be equal to or less than this estimate.

When the sampling rate of the discrete time control algorithm in equations (12) and (15) is
increased significantly, the computational burden of the control algorithm may become too

high, and may cause unnecessarily over-sampling in the parameter adaptation algorithm.
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Computation Rate vs Biases in Angular Rate Estimation

10 L E
X : simulation

%2 line

10 + E

position sensing noise floor

1071 7

Biases in Angular Rate Estimation (deg/sec)

L L
10° 10°
Computation Rate in Feedforward Control (Hz)

Figure 2. Computation rate in the feed forward control path

vs bias in the parameter estimations

The sampling rate of the parameter adaptation algorithm may not be to be larger than two
or three times the Nyquist frequency. This analysis suggests the introduction of a two-rate
discrete time control as a compromise between minimizing bias estimate due to
discretization errors and attaining an implemental controller computational burden. In this
two-rate discrete time controller, the parameter adaptation algorithm is updated at a slower
rate than the reference signal which is used in the feedforward control. The two-rate

discrete time control is realized as follows:

2(t) = -y H[(G,(k)~q, (k)]
+ H[D(k,)q,, (k )+ R(k,)q,, (k) +20(k g, (k )]
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R(k+1)=R(k) +§ Aty (2, (K)g (k) +q,, (K)e! ()
Dlk+1) = D(k) %A% (e W)™ (K +4,, (02T (8)) (30)
Ok +1) = k) + Aty (¢ (K)g L (k) - ¢, (k)T (K))

7,(k)=~(q, (k) -4, (k)

where H is the sample and hold operation defined in equation (10), k=rk, (or

alternatively Az =rAt ) where r is some integer greater than 1, and

D(k, + pk ;)= D(k)
R(k, + pk,)=R(k)
Q(k, + pk ) = (k)

for p=1,...,r—1.
5.2 Convergent Rate Analysis

In order to apply averaging analysis, consider the error dynamics given by equations (14)
and (19). We will ignore the signal discretization error in the feedforward control path
which causes the bias of the states. As in the continuous time counter part, we first assume

that all noise terms are zero. If we do a state coordinate transformation from
x,.=le,e,q, g,1" to x, =le,e,q, qNP]T,then

x,=A,x,+A4,x

cu a

. ~ 31
-B.y Hle,(k)+q,(k)]+ B H[W, (k)6 (k)] D

0 (k+1)=0(k)-ATW, (k)y [¢,(k)+7, (k)]
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where
0 I 0 0 0
-K, 0 0 0 1
Aa = ’BC =
0 0 0 I 0
0 0 -K -L -1

At

We also assume that sampling rate is small so that the exponential matrix e”* can be

approximated by the first order Taylor expansion e™* ~ I+ A4 At . After discretizing

equation (31), we obtain

x,(k+)=A,x(k)+A_x, (k)+B,HW/ (k)8 (k)]

cu a

_ _ . (32)
0 (k+1)=8(k)—ATW, (k)yy [é,(k)+q, (k)]

where

At
A, =exp(4.At),B, = Iexp(Aa (At —s5))B,ds
0

Using the discrete time version of averaging technique [10], the average dynamics of the

parameter estimation error equation in equation (32) is given by
0., (k+1) = 1— A AVG W, (k) 1, 07 (k) 8, (k) (33)

where M , is the transfer function matrix,
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M,(2)=C,(zI-A,)"'B,, C,=[0 y 0 7] (34)

and z is the Z-transform variable. Equation (33) is the sampled and zero-order hold input
version of the continuous time result obtained in [8]. Therefore, M , In equation (34) is

given by

M, (z2)=(1-z" )Z(L‘l [1 e M, (s)jj (35)
S

where L™ and Z respectively denote the inverse Laplace and Z-transforms, and M ,(s) 1s

given in [8] as M (s) = diag{M ,(s),M ,,(s)} , where

~ 7,Ls’

Mol(s)z 4 3 2 — 2 2 4
s"+Lis”+Qw; +y,L)s” +o; Lis+o,

n L.s?

M()Z(S): 7/2 2S

s+ L,s + Qo] +y,L,)s’ +@;L,s +w,

Since the sampling frequency (27 / At) is larger than the reference resonant frequencies @,

and o, , the filtered steady state response through M , (WY is given by

X, sin(wk) 0
AY, sin(wk + @) A, X, sin(awk + ¢,)
0 Y, sin(w,k)
MWD =| X, cos(ayk) 0 (36)
AY o, cos(wk+¢)  AXw cos(ok+¢,)
0 Y, 0, cos(w,k)
| =24 Y0, cos(@,k +¢) 24,Xw, cos(wk +p,) |

where
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A - Vi Lo,
VLol -] -0))') + Lol (@ -0))
4, = tan” Llwzz(a)lz 2—6022)2 :
v Lo, — (o] —w5)
4, = 7,L,0,
VLol =] —02)') + Lo} (@ —0?)’
4, = tan"" ~ Lo (0] —o3)

2 2 232
7. Lo —(0] —w))

Note that equation (36) has the same form as its continuous time counterpart equation in [8].
Therefore, every convergence property mentioned in the continuous time case is preserved

here. Applying the decoupling condition X ,®, =Y,®,, the bandwidth of the adaptive

controlled gyroscope is approximately given by

Q. (k+) = (1-2A17, X 20}) Q. (k) (37)
or

< N s
Qzav ~ _27/QX00)1 Qzav

since the parameter estimation dynamics is much slower than the sampling rate.
This is exactly same result that was obtained for the continuous time observer-based
adaptive control case, and the bandwidth of the adaptive controlled gyroscope is also

approximately given by BW ~2y,X .. Thus, the bandwidth of a MEMS gyroscope

under the observer-based discrete time adaptive control is also proportional to the
adaptation gain y,, and the energy of oscillation of the reference model.

Other statements made in [8] regarding the comparison between the analytical convergence
rate of the angular rate estimate and simulation results for various resonant frequency ratios,

and control and observer gains are also valid.



27

5.3 Resolution Analysis

The resolution analysis for this hybrid control system that will be presented in this section
is very similar to those in [8]. The error expectation propagation of equation (22) is given
by

X, (k+)=A,(k)x,(k)+A,x,(k)+C, (k)0 (38)

Notice that the expectation equation has the same form as its deterministic counterpart.

Therefore, the mean trajectory under an stochastic environment is also biased because of

the C, (k)0 term. Defining covariance as P, =[(x, —X,)(x, —X,)" ], the covariance

propagation equation is given by
P,(k+1)~ A, (K)P,(k)A] (k) + G, (k)S G (k) (39)

The covariance P, can easily be pre-computed independently of equation (38). The
standard deviation of the angular rate estimate error is obtained from the covariance matrix

P, as

O-measurement = V HPdHT (40)

where H =[0,, 1].

In this case, the resolution is a summation of the standard deviation of angular rate estimate
error computed from (40) and the bias in the angular rate estimate. The ultimate achievable

resolution can also be calculated by setting S, =0 and computing & with equation

masurement
(40). As in the convergence rate analysis presented in [8], the same results regarding the
effects of various design parameters such as control gains and parameter adaptation gains

on the variance of the angular rate estimate error, can be stated in the discrete time case. In
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summary, the resolution of the gyroscope can be adjusted independently by the angular rate

adaptation gain, without affecting the other fabrication imperfection estimation dynamics.

The effect of the quantization noise dg(k) on the velocity estimation may be explored in a
similar way as the analysis used in section 5.1 to estimate the parameter estimate biases.

Consider the noise terms in equation (21). If power of the d¢g, (k) is equal to the power

spectral density of noise term Ln_(k), then the effect of quantization noise og, (k) on the

error dynamics of e¢,,¢,,q,,q, and 0 is approximately the same to that of the position

measurement noise. Since the observer gain does not make any significant effects on the
variance of the angular rate estimate error, we can neglect observer gain in the

measurement noise terms. Thus,

2
o5,
12 i

or

A=\[125 /A (41)

where A is the quantization level.
Figure 3 shows the effect of different values of the observer gain L in predicting the effect
of quantization noise. As mentioned, the effect of the observer gain is not significant. Since

the quantization level is defined by the number of bits in the A/D converter as

_ Range

A 2 Bit

(42)

where Range is a signal range to be quantized, which in this case corresponds to the
velocity estimation range. From equations (41) and (42), the required A/D bit numbers for

achieving the same power as the position sensing noise is
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Bit =log, (Range) —%log2 (125, / At) (43)

Resolution due to quantization noise vs Observer gain
0.4 T T T T T

0.341 Calculated bound by equation (41) i

0.32+ 4

0.3 4

o --- simulation

resolution (deg/sec)

0.22+ 4

0.2 I I I I I L L

Observer gain L1 M

Figure 3. The effect of the observer gain in predicting

on the effect of a quantization noise

Equation (43) is a useful criterion for choosing the approximate bits numbers in an A/D
converter for the velocity estimation signal. For typical numbers of the designed gyroscope,
this corresponds about 16 bits. Overall, gyroscope resolution can be estimated by following

formula:

measurement quatization

resolution = bias + \/ o’ +o? (44)

2
measurement

where bias is a bias in angular rate estimate, o is a variance of the angular rate

2
quantization

estimate error due to measurement noise, and o is a variance of the angular rate

estimate error due to a quantization noise.
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6. Simulation

A computer simulation study was conducted using the preliminary design data of the MIT-
SOI MEMS gyroscope, to test the analytical results presented in this report and verify its
predicted performance. The data of some of the gyroscope parameters is given by Table 1
and is same as that used in [8]. The estimate of the angular rate response to the step input
angular rate is shown in Figure 4. In this figure, the upper and lower bounds, which
corresponds to the analytically estimated standard deviation calculated by equation (44) are
also plotted. Figure 5 shows the estimate of angular rate response to the sinusoidal input
angular rate. These simulation results support the theoretical results obtained in the

previous section, regarding predicted gyroscope bandwidth and resolution.

parameter value

mass 5.095x107 kg

X-axis frequency 4.17 KHz

y-axis frequency 5.11 KHz

Quality factor 10"

Brownian noise PSD 1.47x107° N”sec
Position noise PSD 1.49x10”7 m’sec
Velocity noise PSD 2.94x10™"° (m/sec)’sec

Table 1. Key parameters of the designed gyroscope
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Figure 4. Time responses of angular rate estimate

to the 5 deg/sec step input
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Figure 5. Time responses of angular rate estimate

to the 5 deg/sec sinusoid input at 50 Hz
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7. Conclusions

In this report, a discrete time version of the observer-based adaptive control system
described in [8], was developed and its stability proven. This control can be readily
implemented using digital processors. A stochastic analysis of this algorithm was also
developed and it showed that the estimates of the angular rate and the fabrication
imperfections are biased due to the signal discretization errors in the feedforward control
path introduced by the sampler and holder. Thus, a two-rate discrete time control was
proposed as a compromise between the measurement biases due to discretization errors and
the computational burden imposed on the controller due to a fast sampling rate. In this
control scheme, the parameter adaptation algorithm is updated at a slower rate than the
reference signal which is used in the feedforward control. The convergence analysis of this
algorithm was conducted and an analysis method was developed for determining the trade-
off between the controller sampling frequency and the magnitude of the angular rate
estimate biased errors. All convergence and stochastic properties of a continuous time

adaptive control were preserved, and this analysis was verified with computer simulations.
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