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Abstract 
 

In this report, we present a hybrid discrete/ continuous time version of the observer-based 
adaptive control system for MEMS gyroscopes developed in [8], which can be readily 
implemented using digital processors. The control algorithm considered in this report is not 
fully a discrete time controller, since only the feedback control, parameter adaptation 
algorithms and feedforward control law are implemented in discrete time, while the 
velocity observer is still implemented in continuous time. 
A stochastic analysis of this algorithm is developed and it shows that the estimates of the 
angular rate and the fabrication imperfections are biased due to the signal discretization 
errors in the feedforward control path introduced by the sampler and holder. Thus, a two-
rate discrete time control is proposed as a compromise between the measurement biases due 
to discretization errors and the computational burden imposed on the controller due to a fast 
sampling rate. The convergence analysis of this algorithm is also conducted and an analysis 
method is developed for determining the trade-off between the controller sampling 
frequency and the magnitude of the angular rate estimate biased errors. All convergence 
and stochastic properties of a continuous time adaptive control are preserved, and this 
analysis is verified with computer simulations. 
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1. Introduction 
 

Gyroscopes are commonly used sensors for measuring angular velocity in many areas of 

applications such as navigation, homing, and control stabilization. Although, conventional 

rotating wheel, fiber optic and ring laser gyroscopes have dominated a wide range of 

applications, they are too large and, most often too expensive to be used in most emerging 

applications. 

Recent advances in micro-machining technology have made the design and fabrication of 

MEMS (Micro-Electro-Mechanical Systems) gyroscopes possible. These devices are 

several orders of magnitude smaller than conventional mechanical gyroscopes, and can be 

fabricated in large quantities by batch processes. Thus, there is great potential to 

significantly reduce their fabrication cost. The emergence of MEMS gyroscopes is opening 

up new market opportunities and applications in the area of low-cost to medium 

performance inertial devices [1]. 

Most MEMS gyroscopes are laminar vibratory mechanical structures fabricated on 

polysilicon or crystal silicon. Common fabrication steps include bulk micromachining, 

wafer-to-wafer bonding, surface micromachining, and high aspect ratio micromachining. 

Each of these fabrication steps involves multiple process steps such as deposition, etching 

and patterning of materials. Generally, every fabrication step contributes to imperfections 

in the gyroscope [2]. Fabrication imperfections that produce asymmetric structures, mis-

alignment of actuation mechanism and deviations of the center of mass from the geometric 

center, result in undesirable, systematic perturbations in the form of mechanical and 

electrostatic forces, which degrade the performance of a gyroscope. Traditionally, manual 

mechanical or electrical balancing has been used to cancel parasitic effects with an open-

loop mode of operation [3-5]. Although this procedure reduces the effect of a certain 

amount of imperfections, it is time consuming, expensive and difficult to perform on small, 

nail-size (mm level) gyroscopes. Two different types of controllers have been proposed for 

conventional closed-loop mode of operation in the literature. One is a Kalman filter based 
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preview control [6] and the other is a recently published force-balancing feedback control 

scheme using sigma-delta modulation [7]. Although these feedback control techniques 

increase the bandwidth and dynamic range of the gyroscope beyond the open-loop mode of 

operation, they still are sensitive to parameter variations such as damping, spring constant 

and quadrature error variations, produce ZRO and require tedious calibrations. The motion 

of a conventional mode-matched z-axis gyroscope does not have sufficient persistence of 

excitation, which makes it difficult to identify and compensate for all major fabrication 

imperfections in an on-line fashion. Moreover, some types of fabrication imperfections, 

which can be modeled as cross-damping terms, limit the minimum detectable angular rate 

signals. 

Recently, a new gyroscope operation mode and a corresponding adaptive control algorithm 

have been developed, which are well suited for the on-line compensation of imperfects and 

to operate in varying environments that affect the behavior of a MEMS gyroscope [8]. This 

adaptive controlled gyroscope is self-calibrating, compensates for friction forces and 

fabrication imperfections that normally cause quadrature errors, and produces an unbiased 

angular velocity measurement that has no ZRO. 

The adaptive control algorithm presented in [8] is a continuous time controller. It is 

assumed that the control and parameter adaptation laws are updated continuously in time. 

Although the implementation of such a controller is certainly possible utilizing analog 

circuits, it is of practical interest to explore the implementation of the adaptive control laws 

utilizing digital computers. 

In this report, we present a hybrid discrete/continuous time version of the observer-based 

adaptive control system developed in [8], which can be readily implemented using digital 

processors. The control algorithm considered in this report is not fully a discrete time 

controller, since only the feedback control, parameter adaptation algorithms and 

feedforward control law are implemented in discrete time, while the velocity observer is 

still implemented in continuous time. 

In the next section, the dynamics of MEMS gyroscopes is presented, by accounting for the 

effect of fabrication imperfections. In section 3, the observer-based adaptive control 
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algorithm presented in [8] is reviewed. The hybrid adaptive control law is developed in 

section 4. In section 5, the performance of the hybrid adaptive controlled gyroscope is 

analyzed, including magnitude of parameter estimation biases, convergence rate and 

resolution estimation. Finally, computer simulations are performed in section 6. 

 

 

2. Dynamics of MEMS Gyroscopes 
 

Common MEMS z-axis vibratory gyroscope configurations include a proof mass 

suspended by spring suspensions, and electrostatic actuations and sensing mechanisms for 

forcing an oscillatory motion and sensing the position and velocity of the proof mass. These 

mechanical components can be modeled as a two-degree-of-freedom mass, spring and 

damper system. To derive the gyroscope’s dynamic equations of motion, two coordinate 

systems are introduced: the inertial frame, which is fixed in an inertial space, and the gyro 

frame, which is fixed to the rotation platform. Figure 1 shows a simplified model of a 

MEMS gyroscope having two degrees of freedom in the associated Cartesian reference 

frames.  
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2ê

3ê

inertial frame 

gyro frame 

Figure 1. A model of a (planar vibratory) MEMS z-axis gyroscope 
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Assume that the gyro frame {g} is rotated with respect to inertial frame {e} by the angular 

velocity vector , then the equation of the motion of the proof mass of the gyroscope is 

derived from Newton’s law. If we wish to measure the component of the angular velocity 

along the z-axis, the motion of the proof mass can be constrained to be only along the x-y 

plane by making the spring stiffness in the z direction much larger than in the x and y 

directions. Assuming that the measured angular rate is almost constant over a long enough 

time interval and that linear accelerations are cancelled out, either as an offset from the 

output response or by applying counter-control forces, the equations of motion of a 

gyroscope are described in {g} frame as follows. 
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where x and y are the coordinates of the proof mass relative to the gyro frame, ,  are 

damping and spring coefficients, 

2,1d 2,1k

zyx ,,Ω  are the angular velocity components along each 

axis of the gyro frame and yx,τ  are control forces. In practice, small fabrication 

imperfections always occur, and cause dynamic coupling between the x and y axes through 

the asymmetric spring and damping terms. 

Taking into account fabrication imperfections, the dynamic equation (1) is modified as 

follows [9]. 
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Equation (2) is the governing equation for a z-axis MEMS gyroscope. Fabrication 

imperfections contribute mainly to the asymmetric spring and damping terms,  and . 

Therefore these terms are unknown, but can be assumed to be small. The x and y axes 

spring and damping terms are mostly known, but have small unknown variations from their 

xyk xyd
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nominal values. The proof mass can be determined very accurately. However, even if there 

are small-unknown variations in the proof mass, this will not be a problem, because 

equation (2) can be scaled by the proof mass. The components of angular rate along x and y 

axes are absorbed as part of the spring terms as unknown variations. Note that the spring 

coefficients kxx and kyy include the electrostatic spring softness. 

Non-dimensionalizing the equations of motion of a gyroscope is useful because the 

numerical simulation is easy, even under the existence of large two time-scales differences 

in gyroscope dynamics. One time scale is defined by the resonant natural frequency of the 

gyroscope, mk xx / , the other by the applied angular rate zΩ . Nondimensionalization also 

produces a unified mathematical formulation for a large variety of gyroscope designs. In 

this report, controllers will be designed based on non-dimensional equations. The 

realization to a dimensional control for the specific gyroscope can be easily accomplished 

by multiplying the dimensionalizing parameters by the non-dimensional controller 

parameters. Based on m ,  and 0q nω , which are a reference mass, length and natural 

resonance frequency respectively, where m  is a proof mass of the gyroscope, the non-

dimensionalized equation can be derived as follows: 
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where  and  are respectively the x and y axis quality factor, xQ yQ )/( 2
0ωω mk xxx = , 

)2
0ω/(ω my = k yy , , )/( 2

0ωω mk xyxy = )/( 0ωmdd xyxy ← , 0/ωzz Ω←Ω , 

 and . The natural frequency of the x or y axis can be 

used to define the nondimensionalizing parameter 

)0
2q/(xτ 0mx ωτ ← )/( 0

2
0 qmyy ωττ ←

0ω . Since the usual displacement range 

of the MEMS gyroscope in each axis is sub-micrometer level, it is reasonable to choose 

m 1µ  as a reference length q .  0
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3. Adaptive Mode of Operation 
 

The aim of the adaptive mode of operation scheme presented in [8] is to achieve (1) on-line 

compensation of fabrication imperfections, (2) closed-loop identification of the angular rate, 

(3) to attain a large bandwidth and dynamic range, and (4) self-calibration operation. The 

adaptive mode of operation operates based on the observer-based adaptive control which 

needs only position measurements of the proof mass of the gyroscope. 

For convenience, governing equation (3) of the MEMS gyroscopes is re-written as matrix 

form: 

bqKqqDq +Ω−=++ &&&&      2τ                                                  (4) 

 

where b is Brownian noise and 
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The adaptive control problems of the gyroscope is formalized as follows: given equation 

(4) with unknown constant parameters , D K  and Ω , determine the control law τ  based on 

measuring q , such that the dynamic range is constrained within a specified region and Ω  is 

estimated correctly.  

Note that direct measurement of the velocity of the proof mass is avoided in the problem 

formulation. This is because current velocity sensing circuitry technology produces a noise 

with spectral power that is 3 to 4 orders of magnitude larger than the ideally expected value, 

as compared with position sensing technology. 
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The observer-based adaptive control and parameter adaptation laws are introduced in [8] as 

follows: 
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where ,  are estimates of D, R and mKKR −= Ω̂,ˆ,ˆ RD Ω , and },{ 21 γγγ diag= , and 

Rγ , Dγ , and Ωγ  are adaptation gains. 

Reference trajectory, , is updated by the following ideal oscillator, T
mmm yxq ][=

 

0     =+ mmm qKq&&                                                                               (7) 

 

where  are the reference resonant modes of both axis. Note that the 

signal  and q  may be calculated and stored off-line, resulting in a significant reduction 

in the number of on-line computations. 
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where n is a position measurement noise, which is assumed to be uncorrelated with 

Brownian noise b, and L is a observer gain matrix given by L },{ 21 LLdiag= . The 

estimated power spectral densities of the position measurement noise (Sp) and Brownian 

noise (Sb) measurements are given by [3,4] 
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where kB, Cp, C0, Rw, T, d and m are respectively Boltzmann’s constant, the device’s 

parasite capacitance, nominal sensing capacitance, wiring resistance, absolute temperature, 

damping coefficient and mass. Both are assumed zero-mean white noises. 

We present the following two theorems without proof. The proofs can be found in [8]. 

 

Theorem 1 (Stability) 

Given the observer (8), the adaptive control (5) and parameter adaptation laws (6), it is 

always possible to choose a velocity observer gain L, which makes the trajectory error, 

, trajectory estimation errors, qmp qqe −= qq pp −= ˆ~  and qqq vv &−= ˆ~ , and their time 

derivatives converge locally, uniformly and exponentially to zero. 

 

Theorem 2 (Persistent excitation condition) 

With control law (5), parameter adaptation laws (6), and the observer (8), if the gyroscope 

is controlled to follow the mode-unmatched reference model, i.e. 21 ωω ≠ , the persistent 

excitation condition is satisfied and all unknown gyroscope parameters, including the 

angular rate, are estimated correctly. 

 

Theorems 1 and 2 show that the motion of a mode-unmatched gyroscope, in which the 

resonance frequency of the x-axis is different from that of the y-axis, has sufficient 
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persistence of excitation to permit the identification of all major fabrication imperfections 

as well as “input” angular rate. This means that adaptive controlled gyroscope has no ZRO 

and is self-calibrating. 

The main advantages of the adaptive mode of operation proposed in this report include self-

calibration, large robustness to parameter variations, and no zero-rate output. Moreover, the 

adaptive controller design is also easy to implement in high Q systems. Thus, the noise 

properties associated with a high Q system can be fully utilized. Another advantage of the 

adaptive mode of operation is that it is easy to adjust the trade-off between bandwidth and 

resolution by simply adjusting the angular rate adaptation gain. 

 

 

4. Hybrid Adaptive Control Law 
 

4.1 Discrete Time Adaptive Control 
 

We now consider the implementation of the adaptive control algorithm described by 

equations (5)-(6) utilizing a digital computer. As stated earlier, the parameter adaptation 

algorithm (6) and control law (5) will be implemented in discrete time, while the observer 

(8) will be implemented in continuous time. Thus, the adaptive algorithm can no longer be 

analyzed as a continuous time system, but rather as a hybrid system which includes both 

discrete time and continuous time algorithms.  

For convenience, let us define an adaptation gain matrix Γ , a signal regressor W , 

and parameter estimation errors 

),( mm qq &

θθθ −= ˆ~  as follows: 
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where ,  and  are respectively elements of R, D and ijr ijd zΩ Ω .  

Also, let us define the sampling index k and the sampling time t∆ , such that t . We 

define the hold operator H such that,  denotes  
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Using W  as a short hand notation for W , let us define W  as )(tm ),( mm qq & )(km

 

))(),(()()( kmkmkmm tqtqWtWkW &==                                                (11) 

 

Now, define the discrete time adaptive control law as 
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where )(kqδ  is a quantization noise of the velocity estimate. Because of finite word length 

error or digital computational error, the actual signal W  must also be modeled as )(km

)()(( kWkkW ma ) Wm δ+= , where )(kWmδ  is a finite word length error. However, since the 

signal W  is known in advance and can be generated by the computer, its finite word 

length error can be made arbitrary small and will be neglected here. Note that the signal 

 may be calculated and stored in an off-line fashion, resulting in a significant 

reduction in the number of on-line computations. 
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The parameter estimate sequence  in the equation (12) is updated by the following 

approximated continuous time parameter adaptation law. 
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while the observer signals q  and  are still updated by the continuous time 

observer (8) and sampled at every 

)(ˆ tc
p
& )(ˆ tq c

v

t∆ . 

 

4.2 Stability Analysis 
 

In order to derive the closed loop error equations, we apply the control law (12) and the 

adaptation algorithm (15) to the system equation (4) and observer (8). Define the signal 

discretization error function as  
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then the trajectory error equations are 

 

btWkkWHkqkqkeH

eKeDe

p
T

m
T

mpp

pmpp

+−−+++−=

+Ω++

Re)()](ˆ)([)]()(~)([      

)2(

θθδγ &&

&&&
    (17) 



 
 
 
 

        12 
where 
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The trajectory estimation error equations are 
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where , mp qqe −= qqq c
pp −= ˆ~ , and qqq c

vv &−= ˆ~ . Equations (17) and (18) can be described 

compactly by the sum of a linear known and a linear unknown term as follows:  

 

nbtWkkWH

kqkLnkqLkqkeH

cc
T

mc
T

mc

spvpc

ccuccc

CBBB

B
xAxAx

++∆++

++−+−
+=

θθ

δγ

)()](~)([      

)]()()(~)(~)([      &

&

                        (19) 

 

where is the sampled measurement noise, where )(kns ) ,0(~)( tSk psn ∆ , 
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Since the “control input” in equation (19), 
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)](~)([)]()()(~)(~)([ kkWHkqkLnkqLkqkeH mspvp θδ +++−+&  

 

is held constant over the sampling period and the parameters are updated in a discrete time, 

it is convenient for the further analysis to discretize the trajectory and trajectory estimate 

error systems (17,18) as follows. 
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If the sampling time is small, terms of order ∆  can be disregarded in a Taylor series 

expansion, and Euler’s numerical approximation can be used to integrate equation (20). 

Thus, 
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and , ),0(~)( tSkb bd ∆ ),0(~)( tSkn pd ∆ . Notice that, in the numerical integration of 

equation (20) using Euler’s approximation, the intensity of the sampled noises b , 

 can be calculated by multiplying the intensity of noises b ,  by . Utilizing 

the parameter adaptation law, 

)(kd

)k(nd )(t )(tn t∆
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the extended error dynamics can be described by the following discrete time system. 
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where , ),( 2tStdiag quancd ∆∆= SS } ,{ pbc SSdiag=S

q

 and  is the power spectral 

density of the quantization noise for 

quanS

δ . In order to prove the stability of the closed-loop 

system, we consider the stochastic expectation propagation of equation (22). Since the 

propagation equation has the same form as its deterministic counterpart, we can consider 

the deterministic case, i.e. 0)( =kdw . Since in equation (22) is a periodic discrete 

time-varying matrix with period 

)(kdA

t∆
=

21

24
ωω
πk , where T 1ω  and 2ω  are the model reference 

frequencies, we can utilize a similar analytical procedure to be the one that was employed 

in [8] to analyze the stability of the continuous time varying error dynamics. To do that, we 

consider a discrete time version of Floquet theory. 

 

Lemma (Discrete-Time Floquet theory) 

Consider the following discrete time periodic time-varying linear system with period , Tk

 

)()()1( kxkAkx =+ ,  where )()( TkkAkA +=                           (23) 

 

where A(k) is a nonsingular matrix. Then, there exists a periodic transformation which 

converts the periodic time-varying linear system to a time invariant linear system. 

 

Proof : 

Let Φ be a state transition matrix of the time varying linear system (23), Then )(k

 

)()()1( kkAk Φ=+Φ  

Consider 

)()(                      
)()()1(

T

TTT

kkkA
kkkkAkk

+Φ=
+Φ+=++Φ
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Thus, there exists a nonsingular constant matrix Q such that 

 

Qkk )()1( Φ=+Φ  

 

Now, set TkAQ =  and define kAkkF −Φ= )()( , then 

 

)(                
)( )()()(

kF
AkAAAkAAkkkkF kkkkkk

TT
TTT

=
Φ=Φ=+Φ=+ −−−−−

 

 

Therefore, the matrix F  is a periodic matrix with the same period as the system, and 

can be considered as a state transformation matrix. Thus, consider the new state  such 

that . If we substitute it into the system (23), 

)(k

)(kz

)()()( kzkFkx =

 

)()()()1()1( kzkFkAkzkF =++  

Thus, 

)()()()1()1( 1 kzkFkAkFkz +=+ −  

where 

A
AkkAkAkAA

AkkAkAAkFkAkF
kk

kk

=

ΦΦ=

Φ+Φ=+
−−−

−−−

                              
)()()()(                               

)()()1()()()1(
11

11

 

 

Finally, we get the state equation for the equivalent time invariant system: 

 

)()1( kzAkz =+  

 

and the lemma is proved. 

 

Now, we are ready to prove the stability of the error dynamics of equation (22). 
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Theorem 3 (Stability) 

Consider the adaptive control law and adaptation laws, given by equations (12) and (13), 

and the adaptive observer (8), which result in the error dynamics (22). If the sampling time 

 is sufficiently small, it is always possible to choose an observer gain L which will result 

in all error signals, e

t∆

vp qqe ~,~,, &  and θ~  being bounded. These bounds are a function of the 

discretization error introduced by sampling and the zero-order hold. 

 

Proof : 

Let Φ be a state transition matrix associated with the periodic matrix  in equation 

(22), i.e. 

)(k )(kdA

)()()1( kkk ddd Φ=+Φ A                                               (24) 

 

then according to Lemma, the state transition matrix can be written as a product of two 

matrices as 

        k
ddd kk AF )()( =Φ  

 

where  is a discrete periodic nonsingular matrix with period k)(kdF

dF

T which satisfies 

condition, . IkTd == )()0( F dA  is a constant matrix and the stability of the linear time 

varying known dynamics 

)()()1( kkk dnddn xAx =+                                             (25) 

 

is determined by eigenvalues of dA . Similarly to the continuous time case, an appropriate 

observer gain L always exists such that the matrix dA

(kd

 will be stable, if the sampling time is 

made sufficiently small. In order to determine F , the state transition matrix ) )(kdΦ  

must be computed. Unfortunately, it is hard to analytically compute Φ . Instead, the )(kd
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transition matrix at the end of one period is numerically computed from equation (24) 

utilizing the initial condition Id =Φ and )0( dA  is obtained from )( T
k

d kT−Φ=A . 

()( kk T
dx=

0 (−T
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The remainder of the stability proof is based on the Lyapunov function approach. Consider 

the following Lyapunov function candidate: 

 

)()()() 1 kkkV dd
T

d xMFF −−  

 

where  is the solution of Lyapunov function, M IMAM −=−d
T
dA . Since dA  is 

asymptotically stable, M  and  for all . Using the following 

relationships,

> 0)() 1 >− kk dMF 0≥k

)1(1 k +−
dd FA = , and calculating the difference of V along the 

trajectory (22) gives 

 

)()(               

)1()1()1(            
()(

1

1

kk

kk
kVkV

dd
T
d

dd
T
d

xMFx
xMFx

−

−

−

+++=

=∆

 

            

θ

θ

θθ

)()1()1(2    

)()1()2    

)()1()1(    

)()1()2    

)()1()1(    

)()(

1

1

1

1

1

1

kkk

kkk

kkk

kkk

kkk

kk

dd
T

dd
T
d

dd

ddud
T
d

ddud

dd
T
d

CMF
CMFA

CMF
xAMFA

xAMFx
xFx

+++

++

+++

++

+++

−=

−−

−

−

−

−

−

 

 

Since  is a nonsingular matrix for all k ,  for all k . Thus, )(kF 0≥ 0)()( 1 >−− kkT FF 0≥
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where  )(min 1

0min kdkk T

−

≤≤
= Fα , )(max 1

0max kdkk T

−

≤≤
= Fα , )(max

0
kdkk T

C
≤≤

=η , duA=β  and  

dA=ε . If the signal discretization error )()]([)( tWkWHtW mmm −=∆  is zero, or equally 

0=η , the origin of the state space 0)~,~,~,, =θvpp qqe&

(max
2
max

2
min λαα > M

(  is guaranteed to be locally 

uniformly exponentially stable within the domain of . Since 

some amount of discretization error is always present, the trajectory, trajectory estimation 

and parameter estimation errors will not converge to zero, but rather to a compact residual 

set. This residual set is defined by 

pe

)2() εββ +

 






















 ++
⋅≤=ℵ

a
acbb

dd

2

: θηxx  

where  

           a  )2()(max
2
max

2
min εββλαα +−= M

))((max
2
max εβλα += Mb ,  )(max

2
max Mλα=c

 

and the theorem is proved. 

 

 

5. Performance Analysis 
 

5.1 Magnitude of Parameter Estimation Biases 
 

As discussed in the stability analysis, the introduction of the signal discretization error 

function ∆ , which was defined in equation (16), prevents the error dynamics from 

asymptotically converging to zero and introduces bias in the estimates of the angular rate 

and fabrication imperfections. In order to reduce bias of the estimates, it is necessary to 

make this discretization error small by achieving a fast computation rate in the feedforward 

)(tWm
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control path. To choose an appropriate computation rate in the feedforward control path, it 

is necessary to determine the relationship between the computation rate and the magnitude 

of the bias estimate. Consider the signal discretization error term θ)(kC  in equation (21) 

and its average power. If its power is equal to the power spectral density of a fictitious 

noise term G , where )(kc w

{ bSdiag=

vp qq ~,~

tW T
m )( θk(C
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where ,the effect of the signal discretization error on the error dynamics 

of e

} , pc SS

pep ,& θ,  and ~  will be same to that of the noise in the stochastic average sense. 

Thus, 

( ) tkkAVG T
ccc

TT ∆= GSGCC )()( θθ                                                 (26) 

 

Equation (26) can be used to determine the following bound, 

 

tk cc ∆= SGC 22)(max θ                                                            (27) 

 

Using Euler’s numerical integration approximation, θ)(kC  can be further approximated 

as follows. 

tdttWe c
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t
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)()( )()
1

θθ BBAA  

 

The right hand side of the above equation can be further expanded as follows. 
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Under the decoupling condition of the angular estimate and fabrication imperfection 

estimates [8], i.e. 2010 ωω YX = , equation (27) becomes, 

 

( ) cc tRDXt SG ∆=Ω+∆   ,2max2 110
2 ωω                                     (28) 

 

Therefore, the required sampling time to achieve parameter estimation bias magnitude 

below or equal to the Brownian and position measurement noise floor is given by 

 

( )
3
2

110   ,2max2 













Ω+
=∆

RDX
t cc

ωω

SG
                                           (29) 

 

where D is the damping matrix, R is the resonant frequency modeling error matrix, and Ω  

is the unknown “input” angular rate.  

Equation (29) is a useful criterion for choosing an approximate computation rate for the 

feedforward control path. Equation (29) suggests that the magnitude of biases of the 

angular rate and fabrication imperfection estimates is proportional to the computation rate 

elevated to the 23  as shown in Figure 2. However, it is important to note that “magnitude” 

in this context means the norm of a vector composed of the angular rate and fabrication 

imperfection estimate errors. Thus, individual biases such as the angular rate estimation 

bias, may be equal to or less than this estimate. 

When the sampling rate of the discrete time control algorithm in equations (12) and (15) is 

increased significantly, the computational burden of the control algorithm may become too 

high, and may cause unnecessarily over-sampling in the parameter adaptation algorithm. 
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Figure 2. Computation rate in the feed forward control path 

vs bias in the parameter estimations 

 

 

The sampling rate of the parameter adaptation algorithm may not be to be larger than two 

or three times the Nyquist frequency. This analysis suggests the introduction of a two-rate 

discrete time control as a compromise between minimizing bias estimate due to 

discretization errors and attaining an implemental controller computational burden. In this 

two-rate discrete time controller, the parameter adaptation algorithm is updated at a slower 

rate than the reference signal which is used in the feedforward control. The two-rate 

discrete time control is realized as follows: 
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where H is the sample and hold operation defined in equation (10), k  (or 

alternatively ∆ ) where r is some integer greater than 1, and 
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5.2 Convergent Rate Analysis 
 

In order to apply averaging analysis, consider the error dynamics given by equations (14) 

and (19). We will ignore the signal discretization error in the feedforward control path 

which causes the bias of the states. As in the continuous time counter part, we first assume 

that all noise terms are zero. If we do a state coordinate transformation from 
T

vpppc qqee  ]~ ~  [ &=x  to T
ppppa qqee  ]~ ~  [ &&=x , then 
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We also assume that sampling rate is small so that the exponential matrix e  can be 

approximated by the first order Taylor expansion . After discretizing 

equation (31), we obtain 

tAa∆

tIe a
ta ∆+≈∆ AA
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Using the discrete time version of averaging technique [10], the average dynamics of the 

parameter estimation error equation in equation (32) is given by 

 

{ }( ) )(~))((ˆ )(  )1(~ kkWMkWAVGtIk av
T

mdmav θθ Γ∆−=+                       (33) 

 

where  is the transfer function matrix, dM̂
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bbbd zIzM BAC 1)()(ˆ −−= , ]   0      0[ γγ=bC                                     (34) 

 

and z is the Z-transform variable. Equation (33) is the sampled and zero-order hold input 

version of the continuous time result obtained in [8]. Therefore, M  in equation (34) is 

given by 
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where  and 1−L Z  respectively denote the inverse Laplace and Z-transforms, and M  is 

given in [8] as , where 
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Since the sampling frequency ( t∆/2π ) is larger than the reference resonant frequencies 1ω  

and 2ω , the filtered steady state response through  is given by )(ˆ T
md WM
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where 
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Note that equation (36) has the same form as its continuous time counterpart equation in [8]. 

Therefore, every convergence property mentioned in the continuous time case is preserved 

here. Applying the decoupling condition 2010 ωω YX = , the bandwidth of the adaptive 

controlled gyroscope is approximately given by  

 

)(~)21()1(~ 2
1

2
0 kXtk zavzav Ω∆−≈+Ω Ω ωγ                                       (37) 

or  

                                      Ω zavzav X Ω−≈ Ω
~2~ 2

1
2
0ωγ&  

 

since the parameter estimation dynamics is much slower than the sampling rate. 

This is exactly same result that was obtained for the continuous time observer-based 

adaptive control case, and the bandwidth of the adaptive controlled gyroscope is also 

approximately given by BW . Thus, the bandwidth of a MEMS gyroscope 

under the observer-based discrete time adaptive control is also proportional to the 

adaptation gain 

2
1

2
02 ωγ XΩ≈

Ωγ  and the energy of oscillation of the reference model.   

Other statements made in [8] regarding the comparison between the analytical convergence 

rate of the angular rate estimate and simulation results for various resonant frequency ratios, 

and control and observer gains are also valid. 



 
 
 
 

        27 
 

 

5.3 Resolution Analysis 
 

The resolution analysis for this hybrid control system that will be presented in this section 

is very similar to those in [8]. The error expectation propagation of equation (22) is given 

by 

θ)()()()()1( kkkkk ddduddd CxAxAx ++=+                                 (38) 

 

Notice that the expectation equation has the same form as its deterministic counterpart. 

Therefore, the mean trajectory under an stochastic environment is also biased because of 

the θ)(kdC  term. Defining covariance as ]))(([ T
ddddd xxxx −−=P , the covariance 

propagation equation is given by 

 

)()()()()()1( kkkkkk T
ddd

T
dddd GSGAPAP +≈+                              (39) 

 

The covariance Pd can easily be pre-computed independently of equation (38). The 

standard deviation of the angular rate estimate error is obtained from the covariance matrix 

Pd as 

T
dtmeasuremen HHP=σ                                                             (40) 

where . ]10[ 141×=H

In this case, the resolution is a summation of the standard deviation of angular rate estimate 

error computed from (40) and the bias in the angular rate estimate. The ultimate achievable 

resolution can also be calculated by setting 0=pS  and computing masurementσ with equation 

(40). As in the convergence rate analysis presented in [8], the same results regarding the 

effects of various design parameters such as control gains and parameter adaptation gains 

on the variance of the angular rate estimate error, can be stated in the discrete time case. In 
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summary, the resolution of the gyroscope can be adjusted independently by the angular rate 

adaptation gain, without affecting the other fabrication imperfection estimation dynamics. 

The effect of the quantization noise )(kqδ  on the velocity estimation may be explored in a 

similar way as the analysis used in section 5.1 to estimate the parameter estimate biases. 

Consider the noise terms in equation (21). If power of the )(kqdδ  is equal to the power 

spectral density of noise term , then the effect of quantization noise )k(Lns )(kqdδ  on the 

error dynamics of e vqppp qe ~,~,, &  and θ~  is approximately the same to that of the position 

measurement noise. Since the observer gain does not make any significant effects on the 

variance of the angular rate estimate error, we can neglect observer gain in the 

measurement noise terms. Thus, 

tSI p ∆=
∆ /
12

2

 

or 

tS p ∆=∆ /12                                                           (41) 

 

where  is the quantization level. ∆

Figure 3 shows the effect of different values of the observer gain L in predicting the effect 

of quantization noise. As mentioned, the effect of the observer gain is not significant. Since 

the quantization level is defined by the number of bits in the A/D converter as 

 

Bit

Range
2

=∆                                                                          (42) 

 

where Range is a signal range to be quantized, which in this case corresponds to the 

velocity estimation range. From equations (41) and (42), the required A/D bit numbers for 

achieving the same power as the position sensing noise is  
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)/12(log
2
1)(log 22 tSRangeBit p ∆−=                                (43) 
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Figure 3. The effect of the observer gain in predicting 

on the effect of a quantization noise 

 

 

Equation (43) is a useful criterion for choosing the approximate bits numbers in an A/D 

converter for the velocity estimation signal. For typical numbers of the designed gyroscope, 

this corresponds about 16 bits. Overall, gyroscope resolution can be estimated by following 

formula: 

22
nquatizatiotmeasuremenbiasresolution σσ ++=                                 (44) 

 

where bias is a bias in angular rate estimate,  is a variance of the angular rate 

estimate error due to measurement noise, and  is a variance of the angular rate 

estimate error due to a quantization noise. 

2
tmeasuremenσ

2
onquantizatiσ
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6. Simulation 

 

A computer simulation study was conducted using the preliminary design data of the MIT-

SOI MEMS gyroscope, to test the analytical results presented in this report and verify its 

predicted performance. The data of some of the gyroscope parameters is given by Table 1 

and is same as that used in [8]. The estimate of the angular rate response to the step input 

angular rate is shown in Figure 4. In this figure, the upper and lower bounds, which 

corresponds to the analytically estimated standard deviation calculated by equation (44) are 

also plotted. Figure 5 shows the estimate of angular rate response to the sinusoidal input 

angular rate.  These simulation results support the theoretical results obtained in the 

previous section, regarding predicted gyroscope bandwidth and resolution. 

 

 
 

parameter value 

mass 5.095x10-7 kg 

x-axis frequency 4.17 KHz 

y-axis frequency 5.11 KHz 

Quality factor 104 

Brownian noise PSD 1.47x10-26 N2sec 

Position noise PSD 1.49x10-27 m2sec 

Velocity noise PSD 2.94x10-12 (m/sec)2sec 

 
Table 1. Key parameters of the designed gyroscope 

 

 

 

 



 
 
 
 

        31 

550 600 650 700 750 800 850 900 950 1000
-1

0

1

2

3

4

5
x 10

-6 Angular Rate Response

nondimensional time

5 deg/sec step input
estimate            

analytical bound 

 
Figure 4. Time responses of angular rate estimate 

to the 5 deg/sec step input 
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Figure 5. Time responses of angular rate estimate 

to the 5 deg/sec sinusoid input at 50 Hz 
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7. Conclusions 
 

In this report, a discrete time version of the observer-based adaptive control system 

described in [8], was developed and its stability proven. This control can be readily 

implemented using digital processors. A stochastic analysis of this algorithm was also 

developed and it showed that the estimates of the angular rate and the fabrication 

imperfections are biased due to the signal discretization errors in the feedforward control 

path introduced by the sampler and holder. Thus, a two-rate discrete time control was 

proposed as a compromise between the measurement biases due to discretization errors and 

the computational burden imposed on the controller due to a fast sampling rate. In this 

control scheme, the parameter adaptation algorithm is updated at a slower rate than the 

reference signal which is used in the feedforward control. The convergence analysis of this 

algorithm was conducted and an analysis method was developed for determining the trade-

off between the controller sampling frequency and the magnitude of the angular rate 

estimate biased errors. All convergence and stochastic properties of a continuous time 

adaptive control were preserved, and this analysis was verified with computer simulations. 

 

 

References 
 

[1] Yazdi, N., F. Ayazi and K. Najafi, “Micromachined Inertial Sensors”, Proceedings of  
     the IEEE, Vol.86, No.8, pp.1640-1659, Aug. 1998. 
[2] Shkel, A., R.T. Howe and R. Horowitz, “Modeling and simulation of micromachined  

gyroscopes in the presence of imperfection”, Int. Conf. On Modelling and Simulation of  
Microsystems, pp. 605-608, Puerto Rico, U.S.A., 1999. 

[3] Clark, W.A., Micromachined Vibratory Rate Gyroscopes, Doctoral Thesis, U.C.  
      Berkeley, 1997. 
[4] Juneau, T.N, Micromachined Dual Input Axis Rate Gyroscope, Doctoral Thesis, U.C.  
      Berkeley, 1997. 
[5] Loveday, P.W and C.A. Rogers, “Modification of Piezoelectric Vibratory Gyroscope  
      Resonator Parameters by Feedback Control”, IEEE Transactions on Ultrasonics,  



 
 
 
 

        33 
      Ferroelectrics and Frequency Control, Vol.45, No.5, pp.1211-1215, Sep. 1998. 
[6] Ljung, P.B., Micromachined Gyroscope with Integrated Electronics, Doctoral Thesis,  
     U.C. Berkeley, 1997. 
[7] Jiang, X., J. Seeger, M. Kraft and B.E. Boser, “A monolithic surface micromachined Z- 

axis gyroscope with digital output”, 2000 Symposium on VLSI Circuits, Honolulu, HI,  
USA, pp.16-19, June 2000. 

[8] Park, S., Adaptive Control Strategies for MEMS Gyroscopes, Doctoral Thesis, U.C.  
      Berkeley, 2000. 
[9] Shkel, A.M., R. Horowitz, A.A. Seshia, S. Park and R.T. Howe, “Dynamics and Control  
     of Micromachined Gyroscopes”, Proceedings of the American Control Conference,  
      pp.2119-2124, Jun. 1999. 
[10] Bai, E-W., L-C Fu and S.S. Sastry, “Averaging Analysis for Discrete Time and  

Sampled Data Adaptive Systems”, IEEE Transactions on Circuits and Systems, Vol.35,  
No.2, pp.137-148, Feb. 1988. 

[11] Morando, A. R. Horowitz and N. Sadegh, “Digital Implementation of Adaptive  
     Algorithms for Robot Manipulators”, IEEE International Conference on Robotics and  
     Automation, pp.1656-1662, May 1989. 
[12] Park, S. and R. Horowitz, “Adaptive Control of  MEMS Gyroscopes”, The  
      7th  Mechatronics Forum International Conference, Atlanta, GA, USA, Sept. 2000. 
[13] Parameswaran, L., C. Hsu and M.A. Schmidt, “A Merged MEMS-CMOS Process  

using Silicon Wafer Bonding”, IEEE International Electron Devices Meeting,  
Washington DC, pp. 613-616, Dec. 1995. 

[14] Lawrence, A., Modern Inertial Technology: Navigation, Guidance and Control,  
      Springer Verlag, 1993. 




