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ARTICLE

A functional map of HIV-host interactions
in primary human T cells
Joseph Hiatt 1,2,3,4,17, Judd F. Hultquist 5,6,17,18✉, Michael J. McGregor3,7,8, Mehdi Bouhaddou3,7,8,

Ryan T. Leenay9, Lacy M. Simons 5,6, Janet M. Young 10, Paige Haas3,7,8, Theodore L. Roth 1,2,4,

Victoria Tobin 1,2,4, Jason A. Wojcechowskyj3,7,8, Jonathan M. Woo1,2,4, Ujjwal Rathore1,2,3,4,

Devin A. Cavero1,2,3,4, Eric Shifrut1,2,4, Thong T. Nguyen3, Kelsey M. Haas 3,7,8, Harmit S. Malik10,

Jennifer A. Doudna 3,4,11,12,13,14, Andrew P. May 9, Alexander Marson 1,2,3,4,9,15,16,18✉ &

Nevan J. Krogan 3,7,8,18✉

Human Immunodeficiency Virus (HIV) relies on host molecular machinery for replication.

Systematic attempts to genetically or biochemically define these host factors have yielded

hundreds of candidates, but few have been functionally validated in primary cells. Here, we

target 426 genes previously implicated in the HIV lifecycle through protein interaction stu-

dies for CRISPR-Cas9-mediated knock-out in primary human CD4+ T cells in order to sys-

tematically assess their functional roles in HIV replication. We achieve efficient knockout

(>50% of alleles) in 364 of the targeted genes and identify 86 candidate host factors that

alter HIV infection. 47 of these factors validate by multiplex gene editing in independent

donors, including 23 factors with restrictive activity. Both gene editing efficiencies and HIV-1

phenotypes are highly concordant among independent donors. Importantly, over half of these

factors have not been previously described to play a functional role in HIV replication,

providing numerous novel avenues for understanding HIV biology. These data further suggest

that host-pathogen protein-protein interaction datasets offer an enriched source of candi-

dates for functional host factor discovery and provide an improved understanding of the

mechanics of HIV replication in primary T cells.
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Improved understanding of the molecular mechanisms under-
lying HIV replication, persistence, and pathogenesis is critical for
the development of new therapeutic and curative strategies1–4.

All viruses rely on and manipulate the molecular architecture of
their host’s cells for successful replication and dissemination.
Host proteins and complexes that are necessary for or that facilitate
viral replication are known as dependency factors, while those
that inhibit viral replication are known as restriction factors5–9.
Inhibiting the action of dependency factors or enhancing the
activity of restriction factors may significantly curtail viral replica-
tion and spread, and thus, these factors may serve as targets for
therapeutic intervention. For example, the antiretroviral drug
Maraviroc, used for the treatment of HIV infection, acts through
antagonism of the dependency factor CCR5, which is required for
viral entry10. Likewise, novel drugs that disrupt the integrity of
incoming HIV core particles and their interactions with host factors
are under clinical development11,12.

While targeted mechanistic studies have identified several well-
characterized host factors influencing HIV replication, systematic
attempts to identify and catalog host factors through genetic means
have yielded variable results with limited consensus. For example,
four genome-wide RNA-interference (RNAi) screens for HIV host
factors have been previously published, each identifying roughly
250–400 genes impacting replication for a hit rate that ranges from
0.46 to 1.83% of screened targets (Table 1)13–17. Despite these
herculean efforts, not a single gene was found in common between
all four datasets and no more than three genes were found in
common between any three datasets. These broad differences have
been attributed, at least in part, to inherent limitations in the RNAi-
based approaches used, as well as to the differences in the
immortalized cell-line models employed14,18.

More recently, two CRISPR–Cas9-based screens for HIV-
dependency factors19 and restriction factors20 have been repor-
ted, both of which also relied on immortalized cell-line models
(Table 1). Unlike the RNAi studies, which formatted their
screens in large arrays of independent wells, these CRISPR-based
studies leveraged a pooled approach whereby iterative rounds of
selection were used to identify hits that conferred the strongest
phenotype or selective advantage in the study. While effective as
discovery-based platforms, such pooled approaches often rely on
indirect phenotypic readouts that may favor the most impactful
perturbations, limiting sensitivity to detect mild phenotypes21.
Furthermore, none of the reports above included a systematic
validation of the genetic perturbations, which subsequently
limited results to only those genes that gave a positive phenotype.
In other words, the difference between a technical inability to
knock down or knock out a gene target and a true biological
finding of no impact on infection could not be resolved. A
genome-wide, arrayed CRISPR screen for HIV host factors has
not yet been reported, likely reflecting the cost and complexity of
such a project.

Most bona fide HIV host factors that have been described
mechanistically to date directly interact with a viral protein,
nucleic acid, or ribonucleoprotein complex. As such, a number
of studies have leveraged biochemical approaches to char-
acterize HIV virion-associated proteins and virus–host
protein–protein interactions (PPIs)22–25. In a previous study,
we employed an affinity-purification coupled with mass spec-
trometry (AP-MS) approach to identify 435 HIV–human PPIs
in two human cell lines23. Several well-documented interactions
were validated, including those between Tat and the depen-
dency factors CDK9 and CCNT126,27, and those between Vif
and the dependency factors ELOB and ELOC28–30. Since then, a
number of novel interactors have been genetically and bio-
chemically validated as host factors, including CBFβ31, PJA232,
UBE2O33, and AMBRA134. Nevertheless, a vast majority of

these interactions have yet to be characterized functionally or
mechanistically interrogated.

Over the past several years, we have developed and optimized a
high-throughput system for CRISPR–Cas9 gene editing in pri-
mary CD4+ T cells35–37. In vitro-assembled CRISPR–Cas9
ribonucleoprotein complexes (RNPs) are electroporated into
primary T cells in arrayed format allowing for the reproducible
and efficient knockout of gene targets. Edited cells retain high
viability and susceptibility to infection, allowing for the genera-
tion of quantitative, arrayed data on the impact of host-factor
knockout on HIV replication36,37. Coupled with deep sequencing
to validate knockout efficiency, this technology has the potential
to overcome many of the previous limitations to the systematic
identification of HIV host factors, but thus far, its use has been
limited to targeted interrogation of only a handful of genes (i.e.,
CYPA/TRIM5α38 and ARIH239).

In this report, we use CRISPR–Cas9 RNPs for systematic tar-
geting of 426 previously identified PPIs in primary CD4+ T cells
to determine their functional impact on HIV replication23. We
performed deep sequencing to quantify allelic knockout efficiency
for each perturbation (see also40), and monitored viral infection
over seven days following HIV-1 challenge. Linked genotypic and
phenotypic data allowed for discrimination between genes that
were not effectively perturbed and those that had no impact on
infection. In total, 86 candidate host factors were identified,
nearly half of which recapitulated known biology. Of these 86
candidate genes, 47 host factors were validated by gene editing in
independent donors using multiplexed RNPs, including 23 factors
with restrictive activity. Notably, this proteomics-to-genetics
approach resulted in a greater than 10% hit rate, demonstrating
that PPI datasets represent an enriched fraction of host factors
(Table 1). This strategy may be effective at focusing high-quality,
arrayed screening experiments for host-factor identification in
primary cell types in the future. Continued exploration of protein
interactions and functional mechanisms in primary human cells
will be vital to resolve outstanding questions in the field and
derive consensus on the host factors that may be leveraged for
future therapeutics.

Results
Arrayed knockout of HIV–human PPIs. To define the func-
tional contribution of previously identified HIV–human PPIs to
HIV replication23, we aimed to employ a CRISPR-Cas9 RNP
approach to knock out 435 genes in primary CD4+ T cells from
multiple, independent human-blood donors (Fig. 1A). Three
independent guide RNAs (gRNAs) per gene were arrayed across
a total of eighteen 96-well plates, targeting 426 of the 435 genes
from the protein–protein-interaction dataset, plus two addi-
tional genes encoding previously described host factors
CD4 and HEXIM141,42 (Supplementary Data 1). Nine genes
could not be targeted for specific deletion due to extensive
sequence homology with related family members; two members
of the HIST1H3 gene family (HIST1H3D and HIST1H3I)
were selected for knockout from the larger gene family (Sup-
plementary Data 1). Each 96-well plate included three distinct,
nontargeting, negative-control gRNAs that do not align to any
PAM-adjacent region of the human genome and should not
cause any Cas9-induced double-strand breaks. We also inclu-
ded three previously validated, positive-control gRNAs on each
plate targeting known HIV host factors: the HIV coreceptor
CXCR4, which is required for viral entry of CXCR4-tropic
viruses like the NL4–3 strain used here43–45; LEDGF, which
facilitates viral integration46,47; and the transcription factor
CDK9, which is hijacked by the accessory protein Tat to pro-
mote HIV transcription26,27.
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Cas9 RNPs were generated as previously described and frozen
in 96-well arrays36,37,48. The arrayed RNPs were electroporated
into 400,000 activated CD4+ T cells per well. Each electropora-
tion was repeated in cells from at least two distinct biological
donors (total of 18 donors used over the entire experiment,
median of 147 unique gRNAs tested per donor, see also
Supplementary Fig. 1a). After allowing six days for DNA repair,
protein depletion, and cell recovery, genomic DNA and protein
samples were harvested from each culture for determination
of knockout efficiency. The following day, cells were challenged
in triplicate with replication-competent HIV-1 NL4–3
Nef:IRES:GFP49. Infection rate (percent GFP+ cells) and cell
count were monitored by flow cytometry at days 3, 5, and 7 post
infection to capture HIV host factors that act both early and late
in the replication cycle (Fig. 1A, Supplementary Fig. 2a).
To facilitate comparison of infection rate across different plates
and donor samples, the data were filtered, corrected for edge
effects, and normalized to the median infection percentage of
each plate to calculate a log2 fold change in percent HIV infection
(Supplementary Fig. 2b). The resultant fold changes were strongly
correlated across technical triplicates and used to calculate mean
and standard deviation for subsequent analyses (Fig. 1B). Samples
with low cell counts or high variability in either cell count or
infection rate were removed from further analysis (154 of
31,209 samples, Supplementary Fig. 2b, c).

Each gRNA was ranked based on the log2 fold change in HIV-
infection rate relative to the plate median (Fig. 1C). The majority
of gRNAs clustered closely around the plate median and the
nontargeting controls (black dots, Fig. 1C), indicating that either
the gRNA was ineffective at knocking out the targeted gene, or
that the targeted gene does not influence HIV replication in
activated CD4+ T cells. The six control gRNAs resulted in highly
reproducible changes in infection rate across all donors and
plates, with each nontargeting control clustering tightly at the
plate median (Fig. 1D). Knockout of CXCR4 (green dots, Fig. 1C),
resulted in strong decreases in infection rates at all three
timepoints, as did knock out of LEDGF and CDK9 (Fig. 1D).
Notably, CDK9, a component of the positive transcription-
elongation factor b (P-TEFb) complex, is critical for both viral
and cellular transcription26,27,50; knockout of this factor yielded
diminished cell viability with several wells excluded from analysis
due to viability filtering (Fig. 1D). Overall, more gene knockouts
resulted in decreased rather than increased infection (Fig. 1C).
This likely reflects the relative rarity of restriction factors
compared with dependency factors5, the greater potential for
nonspecific disruption of T-cell architecture/activation, as well as
the capacity of wild-type HIV-1 to evade host defenses in CD4+

T cells. In other words, knockout of virally countered restriction
factors would not be expected to have an observable phenotype
on the replication of wild-type viruses. For example, the antiviral
restriction factor APOBEC3G is already counteracted by the HIV
Vif protein30,51, so knockout of APOBEC3G would not be
expected to influence the replication of a wild-type virus.

Quantification of mutational efficiency. To measure the muta-
tional efficiency of each gRNA, we next quantified the fraction of
alleles knocked out in each reaction in each donor using high-
throughput, next-generation amplicon sequencing (Fig. 2A).
Repair of the CRISPR–Cas9-induced double-strand breaks by the
endogenous DNA-repair machinery resulted in variable, but
nonrandom sequences at the cut site in each polyclonal pool of
cells40. Alignment of these reads allowed us to calculate percent
mutational efficiency, defined as the fraction of aligned reads that
resulted in a frameshift mutation or an insertion or deletion of
more than two amino acids. Using this method, we were able to
calculate the mutational efficiencies for 83% (1079 out of 1296) of
the gRNA used in the study in at least one blood donor.

The most efficient guide for each gene had a median allelic
mutational efficiency of 76.4%, with several guides editing all
observed alleles (Fig. 2B). Including controls, of the 430 genes
targeted, 364 (85%) had sequence-confirmed disruption of at least
50% of alleles with at least one gRNA (Supplementary Fig. 1b).
The editing efficiency of each gRNA was highly correlated
between donors (pairwise r2 range 0.67–0.99, mean= 0.88,
Fig. 2C, Supplementary Fig. 1c). In silico off-target analysis
found that over 88% of gRNA used in the study had minimal
predicted off-target effects, and verified that every gene is
represented by at least one gRNA with low off-target probability52

(Supplementary Data 1).

Identification of candidate host factors. Plotting mutational
efficiency versus the relative HIV-infection rate revealed editing-
dependent changes at each timepoint (Fig. 2D). Overall, gRNAs
with poor editing efficiency did not impact HIV infectivity, while
a subset of gRNAs with high efficiency yielded marked effects. To
determine the minimum percent editing required to detect a
change in HIV infectivity, CXCR4-knockout cells were mixed
with nontargeting control cells at fixed ratios from 0 to 100% and
challenged with HIV-1 as above. At each timepoint, significant
decreases in infection were observed when at least 30% of the
population consisted of edited cells (Supplementary Fig. 3a). The
same held true when titrating LEDGF- or CDK9-knockout cells
(Supplementary Fig. 3b, c). While this experiment quantifies

Table 1 Comparison of results in this study to previously published screens13,15–17,19,20.

Study Hits Genes
targeted

Hit rate Gene list description Technology Pooled or
arrayed

Cell type

Yeung et al. 252 54509 0.46% 54,509 human transcripts, including ESTs shRNA Pooled Jurkat
Brass et al. 386 21,121 1.83% 21,121 pools of 4 siRNAs per gene

(genome wide)
siRNA Arrayed TZM-bl

Konig et al. 294 20000 1.47% arrayed genome-wide siRNA library
targeting ∼20,000 human genes

siRNA Arrayed 293 T

Zhou et al. 311 19709 1.58% siRNA library targeting 19,709 genes with
pools of 3 siRNAs per gene

siRNA Arrayed HeLa P4/R5

OhAinle et al. 15 1905 0.79% Interferon-stimulated genes in cell types
relevant to HIV infection

CRISPR Pooled THP-1

Park et al. 5 18543 0.03% Genome-wide protein-coding genes CRISPR Pooled GXRCas9 T cell line
Hiatt et al. 47 426 11.03% HIV interactome (Jager et al.) CRISPR RNPs Arrayed Primary human

CD4+ T cells

Bold values reflect the number of hits over the number of genes targeted as indicated.
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Fig. 1 An arrayed screening pipeline for HIV host-factor identification. A Schematic of the HIV host-factor screen design using high-throughput
CRISPR–Cas9 gene editing in primary CD4+ T cells. B Scatterplots of the log2 fold change in infection relative to the plate median for each gRNA after data
processing compared across technical replicates. C S-curve plots of the log2 fold change in infection relative to the plate median for each gRNA in every
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knockout on a per-cell rather than per-allele basis, these data
suggest that a minimum of 30% allelic editing is required to cause
an observable phenotype in this assay when targeting factors are
absolutely required for viral replication. Given these results, we
considered any phenotypic variation below this editing-efficiency
threshold to be noise.

Thresholds for candidate hit calling at each timepoint were
defined empirically, such that fewer than 1% of gRNA with
inefficient editing (i.e., mutational efficiency of less than 30%) had
changes in infection beyond the threshold (0.6, 0.56, and 0.57 log2
fold change on days 3, 5, and 7, respectively, Fig. 2D, Supplemen-
tary Fig. 2b). For additional stringency, gRNA was required to
exceed the threshold over two or more timepoints or across two or
more donors. In other words, a gRNA had to have editing efficiency
over 30% and resulted in a change in infection beyond the threshold
at multiple timepoints or across multiple donors to be considered a
hit. In total, 133 gRNA satisfied these criteria, implicating 90 genes
(including the CD4, CXCR4, LEDGF, and HEXIM1 controls) as
potential HIV-dependency or restriction factors in primary CD4+
T cells (Fig. 3A, Supplementary Data 2). Of these, 40 genes yielded
significant infection phenotypes across all donors analyzed, while
the other 50 hits showed some donor dependency (Fig. 3A,
Supplementary Data 3).

Of the 435 protein–protein interactors in the original report23,
these combined experimental and computational analyses
revealed 86 candidate HIV host factors that influence replication
of HIV-1 NL4–3 in CD4+ T cells. Twenty-three genes yielded a
restriction-factor phenotype, increasing HIV replication upon
knock out, while 62 genes yielded a dependency-factor pheno-
type, decreasing HIV replication upon knockout; one gene,
PELO, yielded conflicting phenotypes dependent on donor
(Fig. 3A, Supplementary Fig. 4a, Supplementary Data 3). In
total, 269 genes yielded no observable HIV phenotype, despite
sequence-confirmed gene editing of at least 50% of alleles, thus
indicating that these genes likely do not have a functional role in
HIV replication in activated primary CD4+ T cells ex vivo. An
additional 80 genes remain functionally ambiguous due to an
inability to specifically target them for knockout, low cell viability
upon knockout, or insufficient editing (Supplementary Data 3).

Initial characterization of candidate host factors. Knockout of
host factors that influence early events in the HIV-replication
cycle (entry, reverse transcription, uncoating, integration, and
transcription) should influence the first round of replication and
their effects should be apparent even at the first timepoint (day 3).
Knockout of host factors that influence late events or compromise
fitness of progeny virions (translation, assembly, budding, and
maturation) should become increasingly apparent at later time-
points after multiple rounds of replication (days 5 and/or 7). We
found that a majority of identified host factors elicited significant
differences in replication at the first timepoint (58 genes, green
bars), consistent with potential roles in the early lifecycle, while a
minority only showed significant differences at later timepoints
(28 genes, brown bars) (Fig. 3A, Supplementary Fig. 4c). Notably,
host factors that physically interact with the viral accessory pro-
teins (Vif, Vpr, and Vpu) and the viral protease (PR) were
enriched in host factors with late phenotypes, consistent with
their roles later in the viral lifecycle5,9. By contrast, a majority of
host factors that bind to the processed HIV polyproteins, struc-
tural proteins, and the regulatory proteins Tat and Rev yielded
earlier phenotypes7,8 (Fig. 3A, Supplementary Fig. 4c).

Among candidate dependency factors, we observed an increase
in cell count over time, consistent with protection from the
cytopathic effects of ongoing viral infection (Fig. 3B). Conversely,
we observed a decrease in cell count over time upon restriction

factor knock out, consistent with increased viral infection and
increased cell death (Fig. 3B). Factors without a phenotype, but
with efficient editing, led to no significant change in cell count
over time. Of the 86 candidate host factors, 40 have been
previously linked to HIV infection in the NCBI Gene References
into Function (GeneRIF) database, illustrating the power of this
approach for recapitulating known biology (Fig. 3C). Conver-
sely, 46 of these factors have no previously reported role in HIV
infection and several represent potential druggable targets53

(Fig. 3C, Supplementary Fig. 4b, Supplementary Data 4).
Comparison of this dataset to those from previously published
RNAi screens, however, revealed minimal overlap, perhaps
reflecting the significant variation in the cell types used and in
the gene-perturbation strategies employed (Supplementary Fig. 5).
Collectively, these data demonstrate the ability of this arrayed
proteomics-to-genetics approach to identify and functionally
categorize host factors directly in primary cells.

Some host-restriction and dependency factors are known to be
in evolutionary arms races with viral factors, as the conflicting
interests of the host and virus in establishing or escaping
interactions drive recurrent rounds of adaptation and counter-
adaptation at protein–protein interaction interfaces54 (Fig. 3D).
These arms races can result in numerous amino acid sequence
changes over evolutionary time in a process known as positive
selection, which can be detected in DNA-sequence alignments if
the rate of nonsynonymous changes is higher than the rate of
synonymous changes. We looked for evidence of positive
selection in the coding regions of the 90 previously described
host factors and novel candidates examined here, comparing the
human amino acid sequences to at least 17 primate orthologs. By
this method, we observed positive selection in nine genes (q-value
threshold <0.05), of which four were already known to experience
rapid evolution (CD4, RANBP2, EIF2AK2/PKR, and PARP4;
Fig. 3D, Supplementary Data 5). CD4 and RANBP2, in particular,
have already been shown to be in evolutionary arms races with
HIV and other lentiviruses55–57, while EIF2AK2/PKR restricts
many viruses and its rapid evolution could be driven by any or all
of these pathogens58. We previously described rapid evolution of
dependency factor PARP459, but the competing entity driving
that evolution has not yet been identified. We also find novel
evidence for positive selection in five additional genes: restriction
factors NCOR1 and SDCCAG8, and dependency factors AFF1,
NCAPD3, and NUDC.

Vif- and Tat-binding host factors. HIV Tat is required to pro-
mote transcriptional elongation of proviral transcripts by recruit-
ment of the P-TEFb complex (composed of host proteins CDK9
and CCNT1) to the TAR stemloop and the subsequent assembly of
the super elongation complex (including AFF1, AFF4, ENL, and
ELL2)60. P-TEFb can alternatively be held in an inactive state by
sequestration in the 7SK RNA complex composed of 7SK RNA,
MEPCE, LARP7, and HEXIM133,42. Consistent with these descri-
bed roles, MEPCE, LARP7, and HEXIM1 were all found to act as
restriction factors, while CDK9, CCNT1, and AFF1 were all found
to act as dependency factors in primary T cells. All of these factors
act early in the replication cycle and yield significant phenotypes at
day 3 (Figs. 3A, 4A–D). Of the Tat-interacting hits, only the
splicing factor HNRNPH361 and the deubiquitinase USP1162 have
not previously been linked to HIV replication, though these data
suggest potential roles in HIV transcription.

Vif, an accessory protein, recruits an E3 ubiquitin ligase complex
composed of CUL5, ELOB, ELOC, CBFβ, and RBX2 to degrade the
antiviral APOBEC3 restriction factors, which otherwise package
into virions and inhibit faithful reverse transcription during
subsequent rounds of infection29–31,51. While editing of CUL5
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failed to reach the 30% threshold required for phenotype calling,
ELOB, ELOC, and CBFβ were all found to act as dependency
factors in this study (Fig. 3A). Consistent with their known roles
late in the replication cycle, this phenotype was more pronounced at
days 5 and 7 compared with day 3 (Fig. 4E). Interestingly, we also
found several potential restriction factors among the Vif PPIs,
including HUWE1, AMBRA1, HDAC3, NCOR1, and CUL2
(Figs. 3A, 4E–F). We recently demonstrated that AMBRA1, a
known DDB1- and CUL4-associated factor (DCAF), associates with

the CUL4A complex and targets ELOC for ubiquitination and
degradation34. HUWE1 and CUL2 are involved in other ubiquitin-
ligase complexes but their connection to Vif remains unknown. The
other two restriction factors associated with Vif, HDAC3 and
NCOR1, form part of a histone-deacetylation complex that has
been previously implicated in regulation of the proviral promoter63.
Future work will be required to further characterize these and other
novel HIV host factors, though the physical and functional handles
described here should hasten these studies.

Fig. 3 Identification of 86 candidate HIV host factors in primary CD4+ T cells. A Heatmap of the donor-average log2-normalized HIV-infection rate at
each timepoint for each gRNA called as a hit (purple= decreased infection, pink= increased infection). Each gRNA is grouped by the HIV protein the
target gene was found to interact with physically and by early- versus late-presenting phenotypes on the far left. Only donors that reached significance
were included in the averages; the percent of donors showing the phenotype are indicated in an adjacent, red-colored heatmap. B Box-and-whisker plot of
the distribution of log2-normalized cell counts per day for called dependency factors, restriction factors, and genes with no phenotype; center line, median;
box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. C Horizontal stacked bar chart representing the percent of factors
previously reported to be HIV host factors in the NCBI GeneRIF database (green) per phenotypic designation, Chi-square test and p-value reported below.
D Theoretical example of a host–pathogen arms race driving positive selection (top) with a table summarizing genes found under evolutionary positive
selection in this study (bottom). The table summarizes the gene under selection (blue= candidate dependency factor, red= candidate restriction factor),
the phenotype reported here, the ratio of nonsynonymous to synonymous changes in the gene body (dN/dS), p-value, number of sites under selective
pressure, and if selection had been previously reported. A likelihood-ratio test was used to obtain a p-value, by comparing twice the difference in log-
likelihoods with the chi-squared distribution with one degree of freedom; the Benjamini–Hochberg procedure was used to control the false-discovery rate.
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Functional network mapping of HIV-host interactions. Over-
laying these genetic data onto the biochemical HIV-host-
interaction map reveals a functional map of HIV-host com-
plexes in primary human CD4+ T cells (Fig. 5). Overall, 19.8% of
identified PPIs were identified as candidate host factors in pri-
mary CD4+ T cells. Excluding genes that could not be knocked
out (and so remain functionally ambiguous), this implies that up
to 24.2% of the physical network may have a functional role in
this model system. Previously published genome-wide screens
using arrayed RNAi or pooled CRISPR approaches have identi-
fied host factors at a rate of 0.1–2% of the starting
pool13,15–17,19,20, suggesting a strong enrichment in host-factor
identification when starting with a proteomic interactome dataset.
While protein–protein-interaction score did not correlate with
host-factor validation (Supplementary Fig. 6a), fewer restriction
factors were identified as PPIs in HEK293T cells when compared
with Jurkat cells (Supplementary Fig. 6b), emphasizing the need

for high quality interactome data collected in physiologically
relevant cell models.

Validation of host factors. To validate the host-factor candidates
reported here, we repeated these experiments using a new panel
of gRNA in cells from three independent human-blood donors.
Rather than using an array of individual gRNA for each gene,
four different gRNA per gene were multiplexed into a single well
to generate multiplexed Cas9 RNPs (Fig. 6A). To confirm this
approach worked, we first compared the efficacy of multiplexed
Cas9 RNPs to the efficacy of RNPs containing each constituent
gRNA at three independent loci encoding the well-described HIV
host factors CCNT1, CYPA, and LEDGF. Four days after elec-
troporation, protein lysates were collected for Western blotting
and cells were challenged with HIV-1 NL4–3 nef:IRES:GFP in
technical triplicate as above. Percent infected cells were quantified
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by flow cytometry three days post challenge. Consistent with our
deep-sequencing results, we observed variability in the efficiency
of each individual gRNA at the protein level (Fig. 6B). However,
the multiplexed pool of gRNA resulted in consistent protein
depletion similar to the best gRNA contained in the pool. Fur-
thermore, the percent of HIV-infected CD4+ T cells was sig-
nificantly decreased by each pool relative to the nontargeting
control similar to the degree observed with the most efficient
gRNA in the pool (Fig. 6B). Taken together, these results suggest
that gRNA multiplexing may be a viable and cost-effective way to
minimize arrayed screening—especially for validation and char-
acterization of selected hits—without sacrificing overall efficacy.

Taking advantage of this approach, multiplexed RNPs were
generated for all 86 candidate host factors identified above, as well
as for four control genes: CD4, CXCR4, LEDGF, and HEXIM1. As
before, these were delivered to T cells from three independent
blood donors by electroporation alongside the 6 individual,
previously validated control RNPs: three with nontargeting
negative-control gRNA and three with positive-control gRNA
targeting CXCR4, LEDGF, and CDK9. Viability was monitored by
amine-dye staining and flow cytometry four days post electro-
poration. While a majority of perturbations had no impact on cell
viability across the three donors, 13 were statistical outliers,
significantly decreasing viable cell counts (Fig. 6C). Both the
multiplexed and single gRNA knockout of CDK9 yielded similar
viability defects by this measure. Cells were subsequently split six
ways and challenged with HIV-1 NL4–3 nef:IRES:GFP. Half of
the plates were treated with the protease inhibitor saquinavir
(SQV) 24 h after addition of virus to limit replication to a single
round of infection. Spreading infection was monitored at days 3,
5, and 7 by flow cytometry, whereas single-round infection was
monitored at day 3 only. The log2 fold change was calculated
relative to the plate median and averaged across donors.

Overall, these results were in agreement with those obtained in
the original screen. Relative HIV-infection rates (average log2 fold
change) differed significantly between the previously called
dependency and restriction factors as expected (Fig. 6E) with
the nontargeting gRNA all distributed tightly near the plate
median (Fig. 6D). Focusing on the day-5 timepoint, 38 of the
targeted genes decreased HIV infection beyond the range of the
nontargeting gRNAs. These included the CD4, CXCR4, LEDGF,
and CDK9 control guides as well as 32 of the 62 dependency
factors called in the original screen. Of note, 11 of these factors
resulted in viability defects, which could confound these results
(Fig. 6C). On the other side, 38 of the targeted genes increased
HIV infection beyond the range of the nontargeting gRNAs
(Fig. 6D). These included the HEXIM1 control guide, PELO, and
22 of the 23 originally identified restriction factors. While a
number of previously called dependency factors also increased
infection here, they largely clustered near the nontargeting guides
and likely reflect some bias caused by normalization to the plate
median, given the enrichment of putative dependency factors
(Fig. 6D). Overall, these data confirmed 55 of the 86 hits
originally called in the screen in independent knockout experi-
ments across three independent human-blood donors for a 64%
confirmation rate.

Assuming that each host factor was edited to the same extent
and would have the same relative magnitude of impact on HIV
replication in cells from each individual donor, we can treat each
donor as a biological replicate and calculate significance using a
Wilcoxon rank sum test. These differences should persist over the
time course of infection such that significant differences are
apparent over at least two timepoints with the exception of those
genes that only reach significance at day 7. By this more stringent
metric (Wilcoxon rank sum, adjusted p-value < 0.1 over at least
2 timepoints or at day 7), 47 of the 86 hits originally called in

the screen recapitulated their phenotype (55%, Fig. 6F), while
13 showed toxicity (15%), and 26 (30%) did not confirm. The
multiplex nature of the approach precluded simple amplicon
sequencing to calculate knockout efficiency, so it is unclear how
many of these failed to recapitulate due to a lack of editing versus
a lack of a phenotype.

As before, we see several different trends in the replication
profiles upon gene knockout. Some genes result in strong effects
on replication even early in the infection timecourse (by day 3),
while others have significant impacts only at later timepoints
(Fig. 6F). Delayed phenotypes could either be due to genes only
having an impact during the late stages of viral replication or due
to small magnitude changes building over multiple rounds of
infection. To differentiate between these possibilities, we directly
compared the spreading infection data collected at day 5 with the
single-round data collected at day 3 in the presence of SQV
(Fig. 6G). A majority of genes fell along a steady diagonal, with a
log2 fold change of 1 in single-cycle roughly equating to a log2
fold change of 3 in multicycle replication. These factors all likely
act during the early stage of viral replication. However, a subset of
dependency factors only yielded phenotypes in multicycle
replication and fell above the diagonal, including the well-
known Vif-interacting factors ELOB and ELOC, as well as the
novel hits SPCS3 and EIF3D (Fig. 6G). Likewise, a handful of
restriction factors only yielded phenotypes in multicycle replica-
tion and so fell below the diagonal, including the Vif-interacting
factor AMBRA134. These phenotypes are consistent with roles in
the late stage of replication. Ultimately, these data will help in the
mechanistic characterization of the newly described host factors
reported here.

Discussion
By leveraging a proteomics-to-genetics platform, our study
identified 86 candidate HIV host factors in primary CD4+
T cells, 47 of which were validated in follow-up assays. Alto-
gether, over 10% of protein interactors validated as functional
host factors, a significant enrichment over identification rates in
genome-wide screens13,15–17,19,20 (Table 1). Of the initial candi-
dates, 40 genes were already associated with HIV replication in
the literature, demonstrating the power of the approach to
uncover real biological features of pathogens. An additional 46
new candidate host factors were nominated and systematically
tested for cell-viability effects, positive-selection signatures, and
early versus late lifecycle effects. Ultimately, we hope these results
will serve as a significant resource for deciphering the molecular
mechanism of these factors and as a roadmap for host-factor
discovery in emerging and understudied pathogens.

While these results aligned well with the published literature,
they correlated poorly with results from previous arrayed or
pooled genome-wide RNAi screens in cell lines, reflecting the
unique biology of the different model systems used and under-
lining the importance of studying therapeutically relevant pri-
mary cells14,18 (Supplementary Fig. 5). Expanding this approach
to other primary targets of HIV, notably tissue-resident cells and
myeloid populations, will likely reveal important roles for addi-
tional host factors64. We believe this principle extends far beyond
studies of HIV or host–pathogen interactions. Advances in gene
editing and other technologies should make primary human cells
a principal system of investigation for discovery- and hypothesis-
based inquiries in future biomedical research, rather than solely a
confirmatory or validating model system.

Importantly, our arrayed screen approach provided paired
editing efficiency and HIV-infectivity data. This not only validates
the approach, as we see the frequency and magnitude of changes
in HIV-phenotype increase as editing increases, but also allows
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for the disambiguation of negative results. While roughly 80% of
total gene targets yielded no infectivity phenotype, three-quarters
of these were efficiently targeted for knockout, implying that these
factors have no functional role in infection in the context of our
assay (Fig. 2D). These factors may only be critical for replication
of other HIV-1 strains or under other in vitro or in vivo condi-
tions, may have functional roles in other cell types not assayed
here, may be false positives in the proteomic data, or may be
functionally redundant and therefore require systematic double-
knockout studies to reveal their phenotypes65.

Despite the strength of this approach, it also has a number of
potential drawbacks. First, the reliance on a physical interactome
dataset introduces a bias toward identification of factors that are

amenable to detection by affinity-purification mass spectrometry,
most notably factors that exist in stable, soluble complexes. These
studies are furthermore typically conducted in cell-line models
that do not fully recapitulate the physical networks that may exist
in primary cell types, potentially complicating interpretation of
the results. Second, limitations in cell numbers necessitated the
use of cells from several independent donors that may or may not
be directly comparable in editing efficiency, basal susceptibility to
HIV-1 infection, or magnitude of phenotypic impact after
knockout. We attempted to account for these limitations by
normalizing data within donors, benchmarking set controls, and
relying on dual thresholds of editing efficiency and infection-
rate change. Nevertheless, in separate validation experiments
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leveraging a different approach to gene editing and statistical hit
calling, 30% of candidates failed to recapitulate, emphasizing the
importance of secondary validation.

The adoption of interdisciplinary approaches, such as the
proteomics-to-genetics strategy taken here, will be critical to
streamline experimental-discovery pipelines, more quickly vali-
date novel drug targets, and enhance translational research66–69.
While current combination antiretroviral-therapy regimens are
triumphs of biomedical science that have changed the face of the
HIV epidemic2, there is increasing recognition of the morbidity
and mortality costs associated with failure to clear the virus and
long-term use of these drugs, motivating a search for alternative
treatment modalities. This functional map of HIV host factors in
primary cells provides several leads for future functional inter-
rogation and will hopefully open the door to additional ther-
apeutics that physically antagonize virus–host protein–protein
interactions10–12.

Methods
Plasmid constructs. Replication-competent reporter-virus stocks were generated
from an HIV-1 NL4–3 molecular clone, wherein GFP has been cloned behind an
internal ribosomal entry site (IRES) cassette following the viral nef gene49 (AIDS
Reagent Program #11349).

Cell lines. HEK293T cells (ATCC, CRL-3216) used for the production of HIV-1
virus and HeLa–TZM cells used for titering supernatants70 (AIDS Reagent Pro-
gram #1470) were maintained in Dulbecco’s modified Eagle’s medium (Corning or
Gibco) with 10% fetal bovine serum (FBS, Gibco) and 25 μg/mL penicillin/strep-
tomycin (P/S, Corning or Gibco) in humidified atmosphere at 37 °C/5% CO2.

Primary CD4+ T cell isolation and culture. Detailed protocols for primary
CD4+ T-cell isolation and culture can be found here36. Briefly, primary human
T cells were isolated from healthy human donors either from fresh whole blood
obtained after informed consent under a protocol approved by the UCSF Com-
mittee on Human Research (CHR #13-11950), or from leukoreduction chambers
after Trima apheresis (Blood Centers of the Pacific, now Vitalant). Peripheral blood
mononuclear cells (PBMCs) were isolated by Ficoll centrifugation using SepMate
tubes (STEMCELL, per manufacturer’s instructions). T cells were subsequently
isolated from PBMCs by magnetic negative selection using an EasySep Human T
Cell Isolation Kit (STEMCELL, per manufacturer’s instructions).

Isolated CD4+ T cells were suspended in complete Roswell Park Memorial
Institute (RPMI) media, consisting of RPMI-1640 (Sigma) supplemented with
5 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, Corning),
2 mM glutamine (UCSF Cell Culture Facility), 50 μg/mL penicillin/streptomycin
(P/S, Corning), 5 mM sodium pyruvate (Corning), and 10% fetal bovine serum
(FBS, Gibco). Media was supplemented with 20 IU/mL IL-2 (Miltenyi)
immediately before use. Cells were immediately stimulated on anti-CD3-coated
plates [coated for 2 h at 37 °C with 20 µg/mL anti-CD3 (UCHT1, Tonbo
Biosciences)] in the presence of 5 µg/mL soluble anti-CD28 (CD28.2, Tonbo
Biosciences). Cells were stimulated for 72 h at 37 °C/5% CO2 prior to
electroporation.

RNP production. Detailed protocols for RNP production and T-cell editing have
been previously published36. Briefly, lyophilized crRNA and tracrRNA (Dharma-
con) was resuspended at a concentration of 160 µM in 10 mM Tris-HCL (7.4 pH)
with 150 mM KCl. Cas9 ribonucleoproteins (RNPs) were made by incubating 5 µL
of 160 µM crRNA with 5 µL of 160 µM tracrRNA for 30 min at 37 °C, followed by
incubation of this 80 µM gRNA:tracrRNA complex product with 10 µL of 40 µM
Cas9 (UC Berkeley Macrolab) to form RNPs at 20 µM. Five 3.5 µL aliquots were
frozen in Lo-Bind 96-well V-bottom plates (E&K Scientific) at −80 °C until use. All
crRNA guide sequences were from the Dharmacon predesigned Edit-R library for
gene knockout. For synthesis of multiplexed RNPs, four independent crRNA tar-
geting the same gene were mixed at a 1:1:1:1 ratio prior to addition of the tracrRNA
as above.

T cell editing. Detailed protocols for RNP production and T-cell editing have been
previously published36. Briefly, after three days of stimulation as above, cells were
suspended and counted. Each reaction consisted of 4 × 105 cells, 3.5 µL of RNP, and
20 µL of electroporation buffer. Immediately before electroporation, cells were
centrifuged at 400 × g for 5 min, the supernatant was removed by aspiration, and
the pellet was resuspended in 20 µL of room-temperature P3 electroporation buffer
(Lonza) per reaction. The cell suspension was then gently mixed with thawed RNP
and aliquoted into a 96-well electroporation cuvette for nucleofection with the 4D
96-well shuttle unit (Lonza) using pulse code EH-115. Immediately after electro-
poration, 80 µL of prewarmed media without IL-2 was added to each well and cells
were allowed to rest for at least one hour in a 37 °C cell culture incubator. Sub-
sequently, cells were moved to 96-well flat-bottom culture plates prefilled with
100 µL of warm complete media with IL-2 at 40 IU/mL (for a final concentration of
20 IU/mL) and anti-CD3/anti-CD2/anti-CD28 beads (T cell Activation and Sti-
mulation Kit, Miltenyi) at a 1:1 bead:cell ratio.

Cells were cultured at 37 °C/5% CO2 in a dark, humidified cell culture incubator
for a further 6 days to allow for gene knockout, with media supplementation on
days 3 and 5. On day 6, one-eighth of each culture, approximately 35 µL, was
removed for the extraction of genomic DNA and subsequent mutational analysis
by deep sequencing. Cells were mixed at a 1:1 vol:vol ratio with QuickExtract buffer
(EpiCentre) in a 96-well PCR plate. Plates were sealed with adhesive foil and heated
at 65 °C for 20 min followed by 98 °C for 5 min. Genomic DNA extracts were
stored at −20 °C until use. A further 35 µL of culture was reserved for protein
lysates. Cells were pelleted, supernatant was removed, and pellets were resuspended
in 70 µL of 2.5x Laemmli Sample Buffer. Protein lysates were heated to 98 °C for
20 min before storage at −80 °C for later use.

Preparation of HIV stocks. Replication-competent reporter-virus stocks were
generated from an HIV-1 NL4-3 molecular clone wherein GFP had been cloned
behind an internal ribosomal entry site (IRES) cassette following the viral nef gene.
Briefly, 10 µg of molecular clone was transfected (PolyJet, SignaGen) into 5 × 106

HEK293T cells (ATCC CRL-3216) according to the manufacturer’s protocol. In all,
25 mL of supernatant was collected at 48 and 72 h and combined. Virus-containing
supernatant was filtered through 0.45 mm polyvinylidene fluoride (PVDF) filters
(Millipore) and precipitated in 8.5% polyethylene glycol (PEG, average Mn 6000,
Sigma), 0.3 M sodium chloride for 4 h at 4 °C. Supernatants were centrifuged at
3500 rpm for 20 min and virus resuspended in 0.5 mL of phosphate-buffered saline
(PBS) for a 100x effective concentration. Aliquots were stored at −80 °C until use.

HIV infection. Detailed protocols for HIV-spreading infection have been pre-
viously described36. Briefly, 6 days post electroporation, cells were replica-plated
into triplicate 96-well round-bottom plates and cultured overnight in 150 µL of
complete RPMI as described above in the constant presence of 20 IU/mL IL-2. On
the following day, 2.5 µL of concentrated virus was added to each well in a 50 µL
carrier volume to bring the total volume in each well to 200 µL. Cells were cultured

Fig. 6 Hit validation using multiplexed gRNA. A Schematic of the multiplex gRNA approach for gene knock out in primary CD4+ T cells. B Bar charts
depicting percent HIV-infected cells post challenge upon knockout with individual gRNA 1 through 4 versus a multiplexed pool of gRNAs 1 through 4
(average of technical triplicates ±SD). Western blots below depict protein depletion for each targeted gene. Three independent loci were targeted: CCNT1
(left), CYPA (middle), and LEDGF (right). C Box-and-whisker plot of the average percent of live CD4+ T cells in each well four days after electroporation
with multiplexed gRNA; center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; black points, outliers. Outlier points are
considered toxic and are labeled by targeted gene name. D S-curve plot of the log2 fold change in infection relative to the plate median at day 5 for each
multiplexed gRNA, averaged across all 3 donors ±SD. The dashed black line indicates the median; the dashed gray lines represent the nontargeting range.
Dots are colored by toxicity and by phenotype in the original screen as indicated. E Box-and-whisker plot of the distribution of log2-normalized HIV-
infection rates for dependency factors (n= 52) versus restriction factors (n= 21) versus essential genes (n= 13) at day 5. Center line, median; box limits,
upper and lower quartiles; whiskers, 1.5x interquartile range; p-value reflects a two-sided Wilcoxon rank-sum test comparing dependency factors and
restriction factors each measured in three biologically independent replicates. F Line chart of log2-normalized HIV-infection rates over time for each
validated hit (two-sided Wilcoxon rank-sum test, p-value < 0.1 at multiple timepoints). Restriction factors are shown above and dependency factors shown
below with relevant controls. Genes with significant differences at day 3 are coded “early” and sorted by magnitude of effect; genes with significant
differences at only days 5 or 7 are coded as “late”. G Log2-normalized HIV-infection rates at day 5 after multicycle replication versus at day 3 after single-
cycle replication in the presence of Saquinavir. The linear regression line with 95% confidence interval is shown in gray.
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in a dark, humidified incubator at 37 °C/5% CO2. On days 3 and 5 post infection,
75 µL of each culture was removed and mixed 1:1 with freshly made 2% for-
maldehyde in PBS (Sigma) and stored at 4 °C for analysis by flow cytometry.
Cultures were supplemented with 75 µL of complete, IL-2-containing RPMI media
and returned to the incubator. On day 7 post infection, 150 µL of culture was
sampled and mixed with 50 µL of freshly made 4% formaldehyde solution for a
final concentration of 1% formaldehyde and stored at 4 °C for analysis by flow
cytometry. The remaining cultures were bleached and discarded per institutional
biosafety regulations. For single-round infection assays, each well is supplemented
with Saquinavir to a final concentration of 5 µM 24 h post challenge. On day 3 post
infection, 75 µL of each culture was removed and mixed 1:1 with freshly made 2%
formaldehyde in PBS (Sigma) and stored at 4 °C for analysis by flow cytometry.

Flow cytometry and analysis of infection data. Flow-cytometric analysis was
performed on an Attune NxT Acoustic Focusing Cytometer (ThermoFisher),
recording all events in a 100 µL sample volume after one 150 µL mixing cycle. Data
were exported as FCS3.0 files using Attune NxT Software v3.2.0 and analyzed with
a consistent template on FlowJo v10.5.3. See Supplementary Fig. 2 for the gating
strategy and representative results.

PCR amplification of cut sites. Sequencing was conducted as previously
described40. PCR primers were designed using a Python wrapper around Primer3
(github.com/czbiohub/Primer3Wrapper) (Leenay et al., 2018). This pipeline was
used to design 180 to 260 nucleotide amplicons, ensuring that the cut site was at
least 50 nucleotides from the end of each primer, as well as 15 nucleotides from the
center of the read. Sequencing adapters (forward: 5′-CTC TTT CCC TAC ACG
ACG CTC TTC CGA TCT-3′ and reverse 5′-CTG GAG TTC AGA CGT GTG
CTC TTC CGA TCT-3′) were appended to the designed primers. Sites were
amplified using between 4000 and 10,000 genomic copies, 0.5 µM of each primer,
and Q5 hot-start high-fidelity 2x master mix (NEB). PCR was performed using a
standard protocol: 98 °C for 30 seconds; then 35 cycles of 98 °C for 10 seconds,
60 °C for 30 seconds, and 72 °C for 30 seconds; followed by a final extension at
72 °C for 2 min. Samples were diluted 1:100 and individually indexed in a second,
12-cycle PCR using index primers containing Illumina sequencing adapters and
eight base barcodes, under the same conditions as the first PCR. After the second
PCR, indexed samples were pooled and purified using a 0.7x SPRIselect purifica-
tion and sequenced on an Illumina NextSeq 500.

Analysis of deep sequencing data. Raw sequencing files were filtered, trimmed
and aligned as previously described40. Each sample was individually analyzed
using the CrispRVariants Bioconductor (Release 3.14) package in R71, which
performs a secondary alignment and quantifies each unique insertion and
deletion per sequencing read. Repair outcomes were then further parsed using
embedded CrispRVariants packages to quantify mutational efficiencies as the
fraction of reads with frameshift or an insertion or deletion greater than two
amino acids.

Analysis and filtering of infection data. Flow data were analyzed with a stan-
dard template in FlowJo (v10.5.3, TreeStar) (refer to Fig. S2 for gating strategy),
and data were exported to .csv files. These files were then imported into R using
RStudio (v1.4). Wells with too few lymphocytes (<1000) or nonautofluorescent
singlets (<500) were excluded from analysis (Fig. S2). Log2 fold change in
infection in each well was computed relative to the plate median. Edge correc-
tion was done assuming that the ratio of the median infection of a given edge to
the median of the center of the plate should be consistent across biological and
technical replicates. After normalizing edges to this factor, log2 fold changes
were recalculated, and average and standard deviation of infection and cell count
were computed for each set of technical triplicates. Samples with low average cell
count (<−1.45 log2 fold change relative to plate median) or high variability
(SD > 2 log2 fold change in infection or SD > 1.5 log2 fold change in cell count)
across technical triplicates were redacted. Sequencing data were then imported
and matched to individual wells. Per-day thresholds for significance were cal-
culated by focusing on data with poor mutational efficiency (<30%) as repre-
sentative of phenotypic noise. The thresholds were set by iteratively calculating
the maximal log2 fold change in infection that still left fewer than 1% of points
positive, defined as having an absolute value(L2FC) > threshold. From the list of
all guides with significant points, significant genes were identified by having
either: (1) significance in at least one point across greater than 50% of all donors
tested with that guide, or (2) strong, donor-dependent phenotype of two or more
timepoints significant in the same guide and same donor. Dependency and
restriction factors were identified in separate one-sided analyses such that guides
must have log2 fold change in the same direction across donors and timepoints
to be called a hit. All raw and averaged infection data and cell counts from the
initial screen are available in Supplementary Data 6 and 7, respectively. All raw
and averaged infection data and cell counts from the multiplexed validation
experiment screen are available in Supplementary Data 8.

Literature review. An unbiased literature review of the 435 screened genes was
performed to determine whether a functional role in HIV biology had been

previously demonstrated. GeneRIFs were downloaded for all genes with anno-
tated HIV relevance on December 22, 2017. A subsequent manual keyword
search was conducted and completed on August 23, 2018. Each potential host
factor was identified using NCBI GeneID and Uniprot accession number. All
gene and protein aliases provided were searched in Google and Google Scholar
using the identified gene or protein name or recognized aliases, and “HIV-1.”
Further, literature cited in the NCBI HIV-1 interactions tab was reviewed for
demonstration of a functional role. A gene was concluded to have a functional
role only if demonstrated perturbation or inhibition of the gene product had
been shown to positively or negatively alter HIV function. The results from
previously described genome-wide HIV RNAi screens were not considered
sufficient demonstration of the functional role for the purposes of this review.
Refer to Supplementary Data 4.

Immunoblotting. Cell lysates were prepared by suspension of cell pellets directly in
2.5x Laemmli Sample Buffer followed by homogenization at 98 °C for 30 min.
Samples were run on 4–20% Tris-HCl SDS-PAGE gels (BioRad Criterion) at 90 V
for 40 min followed by separation at 150 V for 70 min. Proteins were transferred to
PVDF membranes by electrotransfer (BioRad Criterion Blotter) at 90 V for 2 h.
Membranes were blocked in 4% milk in PBS, 0.1% Tween-20 for 1 h prior to
primary antibody incubation overnight at 4 C. LEDGF (1:2000 dilution, clone
C57G11, Cell Signaling Technologies, Cat. No. 2088 S), CCNT1 (1:1000 dilution,
clone D1B6G, Cell Signaling Technologies, Cat. No. 81464 S), and CYPA (1:12000
dilution, polyclonal, Cell Signaling Technologies, Cat. No. 2175 S) levels were
probed relative to β-actin (1:10000 dilution, clone 8H10D10, Cell Signaling
Technologies, Cat. No. 3700 S) as a protein-loading control. Anti-rabbit or anti-
mouse IgG horseradish peroxidase (HRP)-conjugated secondary antibodies
(1:20000, polyclonal, Jackson ImmunoResearch Laboratories, Cat. Nos. 111-035-
003 and 115-035-003) were detected using Pierce™ ECL Western Blotting Substrate
(ThermoFisher). Blots were incubated in a 1xPBS, 0.2 M glycine, 1.0% SDS, 1.0%
Tween-20, and pH 2.2 stripping buffer before reprobing. Refer to the Source Data
file for full-blot scans.

Positive selection analysis. For each gene, we obtained a human ORF sequence,
choosing the splice isoform with the longest ORF. We used this ORF as query in
a blastn search72 of NCBI’s NR database and for each nonhuman primate spe-
cies, we collected the blast hit with the highest bit score, filtering out matches of
<60% identity or <100 bp alignment length, and ignoring database sequences
that are >20 kb long or have no annotated ORF. We also blasted each primate hit
to a collection of all human genes, to ensure all sequences are reciprocal best hits
(a proxy for true orthology, albeit imperfect). We extracted ORFs from each
primate match, and aligned orthologous sequences using MACSE v2.0073,
treating the human sequence as “reliable” and the other primate sequences as
“less reliable” (parameters: -fs_lr 10 and -stop_lr 10). We then manually
inspected and, if necessary, edited all alignments to remove unreliable sequence
segments, as gene predictions found in NR sometimes contain erroneous exons.
We used phyml v3.074 to estimate a phylogeny for each alignment (parameters:
-m GTR --pinv e --alpha e -f e). The alignment and phylogeny were then used as
input for the codeml algorithm through PAML v4.975, comparing the neutral/
purifying model 8a (where dN/dS for codons follows a beta distribution with
values between 0 and 1, with an extra class of sites with dN/dS fixed at 1) with
model 8 that allows a subset of codons to have dN/dS > 1 (parameters: codon
frequency F3x4, estimate kappa, initial kappa 2, initial omega 0.4, ncatG 10, and
cleandata 0). We performed a likelihood-ratio test75 to obtain a p-value, by
comparing twice the difference in log-likelihoods with the chi-squared dis-
tribution with 1 degree of freedom. After running all 88 analyses, we used
the Benjamini–Hochberg procedure76 to control the false-discovery rate. We
also used a custom script to remove codons in each alignment that overlap a
CpG dinucleotide in any aligned species, and repeated PAML analysis as
described above. All results from these analyses are reported in Supplementary
Data 5.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All raw sequencing data and downstream analyses are openly available through SRA
(BioProject: PRJNA486372) and Figshare (https://doi.org/10.6084/
m9.figshare.6957119.v1)40. All raw and processed flow-cytometry data, mutational
efficiency data, and gRNA sequences are provided here as Supplementary Data Files. All
other data are available from the corresponding author upon reasonable request. Source
data are provided with this paper.

Code availability
All code used for the calculation of editing efficiency is available on FigShare as
previously reported (https://doi.org/10.6084/m9.figshare.6957119.v1)40. Furthermore,
additional code generated for statistical calculations reported here has been uploaded to
and is openly available on Figshare (https://doi.org/10.6084/m9.figshare.7246652).
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