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Abstract

A new algorithm for generating solution-adaptive
grids (SAG) about airfoil configurations embedded in
transonic flow is presented. The present SAG
approach uses only the airfoil surface solution to
recluster grid points on the airfoil surface, i.e.,
the reclustering problem is one dimension smaller
than the flow-field calculation problem. Special
controls automatically built into the elliptic grid
generation procedure are then used to obtain grids
with suitable interior behavior. This concept of
redistributing grid points greatly simplifies the
idea of solution-adaptive grids. Numerical results
indicate significant improvements in accuracy for
SAG grids relative to standard grids using the same
number of points.

I. Introduction

The concept of rearranging grid points in a
finite-difference calculation so as to improve
solution accuracy (i.e., local clustering as opposed
to global grid refinement) is not by itself new.
Many researchers have used various types of grid
clustering to improve solution accuracy for many
different applications. A common example is the
normal-direction grid stretching, routinely used in
boundary-layer calculations. The normal-direction
flow-field gradients in the boundary layer are rela-
tively large compared with the normal gradients
associated with the outer inviscid flow. Thus the
normal distribution of grid points is usually very
fine in the boundary layer and relatively coarse in
the inviscid region with smooth exponential stretch-
ing in between. The rate of stretching used in this
situation may be related to the expected boundary-
layer thickness (i.e., the Reynolds number) or other
user input, but in general is not influenced by the
particular solution. Therefore, in the present con-
text, this type of clustering is not considered to
be solution adaptive. A solution-adaptive grid
(SAG) technique is defined to be a grid generation
technique in which the flow-field solution influences
the evolving grid.

This flow-field solution influence may be
achieved via either "simultaneous" or '"nonsimulta-
neous"” iteration. In the simultaneous iteration
SAG approach, the finite-difference grid and the
flow field are iterated together and therefore con-
verge simultaneously. This approach is usually used
only if the grid generation procedure itself is

*Research Scientist, Applied Computational
Aerodynamics Branch. Member AIAA,

tCurrently, graduate student, California Insti-
tute of Technology, Pasadena, California.

This paper is declared a work of the U.S. Government and
therefore is in the public domain.

iterative, presumably an iterative procedure similar
to the flow solver. For example, an elliptic equa-—
tion, grid generation technique” uses a relaxation
algorithm in much the same fashion as that used by
the transonic full-potential equation. Therefore,
both the grid and flow solver equations could be
iterated and converged together.

0f course, a necessary complication of this
approach is that a standard "initial condition"
grid, which is consistent with the physics of the
problem, must be generated. If the grid generation
technique is direct, e.g., the hyperbolic solver
techniquez or the algebraic technique,3 then a non-
simultaneous SAG approach is best. In this case a
grid with no a priori influence from the flow solu-
tion is first obtained and then used to obtain a
standard flow-field solution. Next, a new grid is
computed and adapted to the existing standard flow-
field solution. The proper levels of clustering at
the proper locations are built into the grid so as
to reduce the error associated with the particular
solution being computed. Finally, using the newly
computed grid, the final flow field is computed. If
more precise grid adapting is desired, this process
could be repeated in an iterative fashion. Because
the latter nonsimultaneous approach seems to be
somewhat more general for relaxation problems
(either an iterative (elliptic numerical) or direct
(algebraic or hyperbolic numerical) grid generation
procedure could be used), this is the approach used
in the present study. In an attempt to minimize
computer time only a single iteration will be used.

An additional point regarding the use of the
nonsimultaneous SAG procedure is in order. In many
relaxation algorithms the solution is obtained on a
sequence of grids (coarse, medium, fine). Converged
results from the coarse mesh are interpolated onto
the medium mesh, and then from the medium mesh onto
the fine mesh, thus providing a good initial guess
for the fine mesh calculation. The solution from
the medium mesh could be used to produce an improved
SAG solution on the fine mesh. The additional com-
puter time used to produce the SAG solution for this
situation would be minimal. In the present study no
attempt to minimize the total amount of computa-
tional work has been made. Instead, the main
emphasis is on determining the feasibility of using
SAG to improve solution accuracy.

The primary motivation for using the SAG
approach can be viewed in either of two ways:
1) improved accuracy for a fixed number of grid
points, or 2) improved computational efficiency for
fixed accuracy, i.e., fewer grid points. Generally
speaking, a SAG approach uses some aspect of the
evolving solution to recluster or redistribute grid
points so as to reduce the solution truncation
error. Several researchers have experimented with
different SAG algorithms including Dwyer ct al.,"”
who developed a simultaneous iteration procedure



for various time-accurate heat-transfer problems;
Glowinski,® who experimented with optimal grids for
incompressible, inviscid flow using a finite element
technique; and Pierson and Kutler,® who determined
the optimal grid-point distribution for the Blausius
boundary-layer solution and an inviscid Burger's
equation solution with a steady-state shock wave.

In the last two optimization studies the grid point
(or element) positions were themselves chosen as
decision variables, thus limiting applicability of
these procedures to one- or relatively simple two-
dimensional problems. Despite this, insight
obtained from such theoretical studies can be used
to good advantage on more complicated two- and
three-dimensional SAG problems. For instance,
results from the Ref. 6 study for the one-dimensional
inviscid Burger's equation show that a 55.7% reduc-
tion in error is possible with the grid points
clustered at the shock wave in an optimal fashion.
If a significant part of this error reduction can
be retained for nonoptimal transformations in two
and three dimensions, the overall benefit could be
quite substantial.

The present approach uses a simplified formula-
tion for the development of a SAG algorithm.
Although the positioning of the grid points in this
procedure is not optimal, it is speculated that sig-
nificant improvements in solution accuracy can be
obtained by qualitatively following the same types
of clustering as produced by the optimal SAG
approaches. The present SAG procedure can be sum-
marized as follows. First, a preliminary solution
is computed using a standard solution procedure.

The GRAPE grid generation code’ is used to generate
the mesh and the TAIR conservative full-potential
code® is used to compute the flow-field solution.
Information from this solution is used to redistri-
bute grid points on only the airfoil surface. Next,
using the newly clustered surface distribution, a
new interior mesh is numerically generated using

the GRAPE code. Use of this code is important
because of its unique capabilities regarding airfoil
surface coordinate line control (both angle and nor-
mal spacing can be specified). Without the use of
this control, improperly skewed meshes would result
at the cluster points. After the SAG is generated
the final flow field is recomputed with a second
application of the TAIR flow-solver code.

The unique concept of redistributing points
only on the airfoil surface greatly simplifies the
idea of SAG calculations. It essentially reduces a
two-dimensional SAG problem to one dimension and a
three-dimensional SAG problem to two dimensions.
This concept, even though quite simple, works
remarkably well, primarily because the gradients
generated around a transonic airfoil are generally
maximum on the surface and decay exponentially in a
radial-like direction away from the airfoil. Like-
wise, the amount of grid-point clustering used in
the present SAG approach is maximum on the airfoil
surface and decays exponentially into the mesh
interior. This behavior is a consequence of the
elliptic solver algorithm used to numerically
generate the finite-difference grid.

The next section of this paper presents details
of the present SAG algorithm. A review of the grid
generation and flow-solver algorithms is also
included in this section because of the important
role played by these features in the overall SAG
algorithm. In the third section several different

numerically generated SAG results are shown and
compared with standard grid results,

II., Solution-Adaptive Grid (SAG) Algorithm

Governing Equations

The full-potential equation written in strong
conservation-law form is given by

(09, + (9) = 0 (1a)

o[-ER )] w

where the density (p) and velocity components

(¢x and ¢.) are nondimensionalized by the stagna-
tion density (pg) and the critical sound speed
(a,), respectively; x and y are Cartesian coor-
dinates; and y 1s the ratio of specific heats.

Equation (1) expresses mass conservation for
flows that are isentropic and irrotational. The
corresponding shock-jump conditions are valid
approximations to the Rankine-Hugoniot relations
for many transonic flow applications. A comparison
of the isentropic and Rankine-Hugoniot shock polars
is given in Ref. 9.

Equation (1) is transformed from the physical
domain (Cartesian coordinates) into a computational
domain by using a general independent variable
transformation. This general transformation, indi-
cated by (see Fig. 1)

£ = £(x,y)
(2)
n = n(x,y)
maintains the strong conservation~law form of
Eq. (1) as discussed in Refs. 10-13. The full-
potential equation written in the computational
domain (E-n coordinate system) is given by
@@ e
3 n
S 1/(y-1) .
= - +
o =[1 - 157 @ +ve ) (3b)
where
U= A1¢E + A2¢n N V= Az¢5 + A3¢n
- F 2 2 - - 2 2
A= gy +€y s A Exn:':"'gyn}” A=ty p (4)
and
J = Exny - iynx J

U and V are the contravariant velocity components
along the £ and n directions, respectively; A;,
A2, and A; are metric quantities; and J is the
Jacobian of the transformation.

The transformed full-potential equation
[Eq. (3)] is only slightly more complicated than
the original Cartesian form [Eq. (1)] and offers
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Fig. 1 Numerically generated transformation,
(x,y) + (£,n). (a) physical domain;
(b) computational domain.

several significant advantages. The main advantage
is that boundaries associated with the physical
domain are transformed to boundaries of the compu-
tational domain. This aspect is illustrated in
Fig. 1 where the physical and computational domains
for a typical transformation are shown. The inner
airfoil boundary becomes the n = npax computa-
tional boundary and the outer physical boundary
becomes the n = npip computational boundary.

Another advantage of this approach is the
ability to adjust arbitrarily the mesh spacing on
the airfoil surface or in the mesh interior with the
provision that the smoothness of the mesh is not
disrupted. This feature is the cornerstone of the
present SAG algorithm. The next section discusses
the method of generating finite-difference grids
used in the present study.

Grid Generation

The present SAG algorithm uses the elliptic-
solver grid-generation routine introduced by Steger
and Sorenson." This procedure is similar to other
elliptic-solver routines (e.g., see Refs, 1 and 15)
but has one additional highly desirable feature.
The Steger-Sorenson algorithm utilizes a novel
technique for introducing simple and flexible grid
control at domain boundaries. Both normal spacing
and cell skewness can be specified by the user.
This grid generation flexibility is precisely what
makes the present SAG algorithm successful.

Steger and Sorenson use the same elliptic
governing equations proposed by Thompson et al.

OXpp = ZBxgn + X o= —JZ(ng + an)
5)
ayge = 28yg, * Wy T -2 (Ry, +Qy)
where
a=xnz+yn2, B=xExn+y€yn, Y-‘-)cgz-%yg2 (6)
and
J = XYy = X Ve )

Appropriate mumerical solutions of Eqs. (5) through
(7) define the transformation which is functionally
indicated by Eq. (2). The primary difference
between the two approaches lies in how the P and Q
forcing terms are specified. Thompson uses rela-
tively complicated exponential term summations to
evaluate P and Q while Steger and Sorenson use

—a(n—
Pe=p;e (n-ny)

(8)
—b(n-
Q=0q e (n n1)

where Py = f(§), Q1 = g(§) and a and b are all
constants. The quantity ny represents a mesh
boundary which for the present case is the airfoil.

The quantities Pi and Qi are chosen so as to
control the spacing between n1 and ny3 + An and
the mesh skewness at the airfoil boundary. The
rate at which this control decays into the mesh
interior is governed by the constants a and b.
Typical values used in the present study are
0.5-0.7. Development of the theory behind this con-
trol is fully discussed in Ref. 14 and will not be
discussed further. Use of a controlling mechanism
such as that just presented is imperative for suc-—
cessful operation of the present SAG algorithm.
Without proper controls, primarily on cell skewness,
the region of a grid generated in the vicinity of a
cluster point would be highly skewed. The result-
ing flow field in this vicinity could be quite
inaccurate. An example showing the consequences of
no control will be shown in the results section.

The numerical algorithm used to solve Eqs. (5)
through (7) with the appropriate Pi and Q1 bound-
ary conditions is successive line overrelaxation
(SLOR) using a classical coarse-fine mesh sequence.
Values of Py and Qi must be greatly underrelaxed
to prevent divergence. This grid generation proce-
dure is available in the GRAPE (Grids About Airfoils
Using Poisson's Equation) computer code which was
written by Reese Soremson at Ames (see Ref. 7 for a
complete description of this code). Computation
times for a typical grid involving 4470 points
(149 x 30) requires about 2 sec of CPU time on a
CDC 7600 computer using default convergence
tolerances. !

Full-Potential Equation Algorithm

The full-potential equation algorithm used in
the present study is presented and extensively
discussed in Refs. 8, 16, and 17. Pertinent details
regarding this algorithm are now reproduced for
completeness.



Spatial Differencing. A finite-difference
approximation to Eq. (1), suitable for both subsonic
and supersonic flow regions, is given by

EE[Ei(g)ih/hj] * gn[aj(%)i,jh/z] =0 (%)

[(1 - v)p]

(9b)

o2}
[
1]

i+1/2,3 + vi+1/2,jpi+k+1/2,j

n

Ej (a - (9¢)

VIO gpayn t Vi,341/2P1, 4241 /2

k = ¥1 when U 0

i+1/2,j =
(10)
L =7F]

when V 20

i,j+1/2
and

max[(Mi ., -1)c, 0] for U
sJ

i+1/2,j >0
vi+1/z,j =

maX[(Mi+1,j -1)C, 0] for U <0

i+1/2,j
(11)

“ “«
The operators 6z( ) and Gn( ) are first-order-
accurate, backward-difference operators in the
£ and n directions, respectively; Mi,5 1s the
local Mach number; C is a user specified constant
(usually between 1.0 and 2.0); and the quantities
U and V are computed by standard, second-order—
accurate finite-difference formulas. The density
(p) is computed from the second-order-accurate,
discretized version of Eq. (2) and is stored at half
points in the finite~difference mesh (i.e.,
i+ 1/2, j +1/2). Values needed at i + 1/2,j
or 1i,j + 1/2 are obtained by using simple averages.

Use of the density coefficients given by
Eqs. (9b) and (9c) is equivalent to the addition of
an appropriately differenced artificial viscosity
term (Refs. 8 and 16). This effectively maintains
an upwind influence in the differencing scheme for
supersonic regions anywhere in the finite difference
mesh for any orientation of the velocity vector,
thus approximating a rotated differencing scheme.

The scheme given by Eq. (9) is centrally dif-
ferenced and second-order-accurate in subsonic
regions. In supersonic regions, the differencing is
a combination of the second-order-accurate central
differencing used in subsonic regions and the
first-order-accurate upwind differencing resulting
from the upwind evaluation of the density. As the
flow becomes increasingly supersonic the scheme
is increasingly retarded in the upwind direction.

AF2 Iteration Scheme. The AF2 fully implicit
iteration scheme used in the present study can be
expressed in a two-step format given by

Step 1:
A
2 -nf 3 n n
a=-67p (——) ]f . = awlLe, . (12)
[ n"j\J i,j-1/2 i, i,j
Step 2:
< e - Ay > n
- n
as F aBS, - § p?(-—) s cY . =¢ (13)
[ n £ £Ti\J i+1/2,j g]71,3 i,3

where the n superscript is au iieratioa iudex, a
is an acceleration parameter (see Ref. 8 for a dis-
cussion of a), w is a relaxation parameter (set
equal to 1.8 for all cases), L¢g’j is the nth

iteration residual operator (defined by Eq. (9a)),
and fg 3 is an intermediate result stored at each
’

point in the finite-difference mesh. In step 1,
the f array is obtained by solving a simple

bidiagonal matrix equation for each £ = constant
line. The correction array (C? i = ¢?+; - ¢? j) is
t] ’ ’

then obtained in the second step from the f array
by solving a tridiagonal matrix equation for each
N = constant line. Note that with the AF2 scheme
the n-direction difference approximation is split
between the two steps. This generates a éne-type
term, which is useful to the iteration scheme as
timelike dissipation. (The iterative process is
considered as an iteration in pseudotime. Thus,
the time derivative is introduced by

O L I O L J¢+) The split n term also
Places a sweep direction restriction on both steps,
namely, outward (away from the airfoil) for the
first step and inward (toward the airfoil) for the
second step. No sweep restrictions are placed on
either of the two sweeps due to flow direction.

A ¢gr-type term has been added inside the
brackets of step 2 (see Eq. (13)), to provide time-
dependent dissipation in the £ direction. The
parameter B is fixed at a value of 0.3 in subsonic
regions and specified as needed in supersonic
regions (usually between 1.0 and 5.0). The double
arrow notation in Eq. (13) on the GE—difference
operator indicates that the difference is always
upwind, which on the upper surface is a backward
difference and on the lower surface is a forward
difference. The sign is chosen in such a way that
the addition of ¢ t 1ncreases the magnitude of
the second sweep diagonal.

The full-potential equation solution algorithm
just discussed has been coded into a user-oriented
computer code called TAIR (Transonic Airfoil
Analysis). Details of this code's operation are
discussed in Ref. 8. Computation times for a typi-
cal transonic airfoil calculation on the default
grid containing 4470 points (149 x 30) are about
5 to 15 sec of CPU time on the CDC 7600 computer
using the default convergence tolerance.

Grid Clustering Algorithm

As already mentioned the present SAG algorithm
redistributes grid points in a solution-adaptive
sense by first redistributing points on the airfoil
surface. Appropriate interior characteristics of
the solution-adaptive grid are then automatically
obtained from the elliptic-solver numerical grid
generation scheme. The algorithm used to redistri-
bute points on the airfoil surface is quite simple
and is now presented. First, determine the normal-~
ized arc-length distribution about the airfoil
surface (84)

5, =0 (14a)
S, =8 + [(XB, - XB, )% + (YB, - YB )2]1/2
i i-1 1 i-) i i-1
for 1 =2,3,...,NI (14b)
S, =8§,/8 for i =1,2, ..., NI (l4c)



where XB and YB are the airfoil coordinates and
NI is the total number of points on the airfoil
surface.

Next, compute values of a test function
(A44,/,) designed to simulate (approximately) the
surface solution truncation error at the middle of
each grid interval, i + 1/2. This test function
must be both grid and solution dependent. Several
expressions have been tested, with the most suitable
given by

= 3
Ai+1/2 (HH1+1/2) X
)/,
P,
|( 1+3/z i+1/z it i+1/2 Pi—1/z 1
H + H
i+
(15)
where
=1 -
By =7 Gy = 54) (16a)
HH1+1/2 = max(Hi+1, Hi) (16b)
and C, is the standard pressure coefficient. The

structure of this expression is partly due to the
fact that the TAIR program output involves pressure
coefficient data at half points (i.e., i + 1/2) and
XB and YB data (and therefore §) at integer points.
The (HH)? quantity, appearing as the lead multiply-
ing term in Eq. (15), is basically an empirical
result. Use of (HH)z, which more appropriately
models the truncation error associated with the
present spatial differencing algorithm, produced too
much clustering in the v1c1n1ty of the airfoil lead-
ing edge. By using (HH)? a proper balance between
the leading edge and shock clustering seemed to
result. Use of a test function which puts more
emphasis on clustering in supersonic regions,
because these regions are only first-order accurate,
could be implemented with the present logic but

to date has not been investigated.

Once the test function A 1is defined at all
airfoil surface points, a new surface grid-point
distribution is constructed by adding new points
into the old distribution at intervals in which A

exceeds some user-specified tolerance, T. This pro-
cess is defined more explicitly as follows:
n o
[ Sk = Si
1f Ai+1/2 ST A (17a)
{increment both kand i by 1
( n o
Sk - Sl
o o
S - S,
n o i+1 i
1f Ai+1/z > T ¢ Sk+1 = Si +-————5———— (17b)
Lincrement k by 2 and i by 1
where S and s° represent the new clustered and

old standard arc-length distributions, respectively.
This process is repeated until all values of

Ai41/2 from i = IMIN to = IMAX have been
tested. IMIN and IMAX set the range of testing
which for all cases presented extends from

SIMIN =~ 0.05 to SIMAX * 0,95, This eliminates

clustering at the airfoil training edge (S1 = 0.0

or S = 1.0) which was found to be difficult to
implement. The difference between the final values
of k and i is the number of points added to the

arc-length distribution.

The arc-length distribution represented by S:

has several slope discontlnultles. These disconti-
nuities are removed from Sk by a heat equation

smoothing process given by

=n n n
5p = sp + e(sk+ 257 + s 1)

where the overbar indicates the smoothed distribu-
tion and € 1is a user-specified smoothing coeffi-
cient set to 0.4 for all cases tested. The smooth-
ing process is implemented in an iterative fashion
over a limited range, e.g., from Sp = 0.05 to

The

arc-length distribution near the trailing edge is
not smoothed because the smoothing process would
destroy the strong clustering needed to cope with
the trailing-edge mapping singularity. The bound-
ary conditions applied during this smoothing process
force the matching of slope at the endpoints of the
smoothing domain. In addition, the smoothed distri-
bution is renormalized after each smoothing itera-
tion to force the matching of function at the
smoothing domain endpoints. (This renormalization
actually causes the slope-matching boundary condi-
tion to be only approximate.) Thus, the transition
from a smoothed region into an unsmoothed region is
quite well behaved in both function and slope.

(18)

SE ~ 0.95, thus excluding the trailing edge.

The smoothing iteration continues until a maxi-
mum iteration 1limit (~30) is encountered or until a
user-specified smoothness constraint is satisfied.
The smoothness constraint utilizes a user-specified
parameter (RATIO) defined by

max[S (£) Jclustered mesh

RATIO = (19)

max[S (£)]standard mesh
i

where I is the normalized equally spaced computa-
tional coordinate along the airfoil and S"(E) is
the second derivative of 8y with respect to E.
The smoothing iteration continues until max{S!'(§)]
of the clustered distribution is less than RATIO
times max[SE(E)] of the initial standard arc-
length distribution. Values of RATIO between
1.0 and 3.0 have been tested with the present
algorithm.

Once the smoothing iteration has been com-
pleted, new values of Cp are obtained at the new
Sy positions, Cp(Sk), from the initial distribu-~
tion, Cp(Si), by cubic spline interpolation. Then
the whole process is repeated until no additional
points are added by the test on Aj4,/,. For
larger values of T this addition of points pro-
cess will be repeated, perhaps, three or four times.
For smaller values of T this process may be
repeated as many as a dozen times resulting in much
higher levels of clustering. Occasionally, if the
T and RATIO values are both specified too low the
overall clustering algorithm will never converge to
a sensible result. However, a little experience in
choosing proper values for T and RATIO will
generally prevent this situation from occurring.



After the clustering and smoothing iterations
have both converged, the final clustered arc-length
distribution will contain more points than the orig-
inal distribution. If the final number of points is
not the desired number — and in general it won't be —
a distribution with the desired number of points is
obtained via cubic spline interpolation. This inter-
polation process does not change the clustering built
into the arc-length distribution, only the number of
points used to define it. During this interpolation
step the user may choose a finer mesh with the newly
clustered distribution or simply "scale back" to the
same number of points as in the original mesh. With
the former option the cost of obtaining the clustered
mesh would be smaller. This is the recommended pro-
cedure for implementation of the present SAG concept
for practical applications. Some testing of this
implementation has been done with reasonably success-
ful results. However, all results presented herein
will be of the latter type, i.e., the initial stan-
dard and final clustered grids will have exactly the
same number of grid points in both directions. This
approach is desirable because for each SAG computa-
tion an additional standard mesh computation involv-
ing the same number of grid points is available for
direct comparison.

After the final interpolated arc-length distri-
bution has been obtained, new x and y airfoil
coordinates, which reflect the same clustering as
that of the arc-length distribution are computed
via cubic spline interpolation. These coordinates
are then used as the required Dirichlet boundary
conditions for the final grid generation using
GRAPE.

During the initial grid generation; in which
the standard grid was established, the two airfoil
surface boundary conditions utilized for mesh con-
trol were
90°

6 = (20)

An

i

[}

1.5 ASi (21)

where 6 is the angle of intersection between the

n and £ coordinates at the airfoil surface and n
is the physical arc length along the n coordinate
direction. The first condition forces orthogonality
and the second condition forces a constant tangential
to normal mesh spacing ratio around the airfoil sur-
face. For these conditions all cells around the
airfoil surface should be (approximately) similar
rectangles with an aspect ratio of 1.5. The second
boundary condition given by Eq. (21), however, is
not acceptable for the final solution-adapted grid
generation. Specification of a constant tangential/
normal mesh spacing ratio at the airfoil surface
forces a drastic reduction of the normal spacing in
regions of large tangential clustering. Thus the

€ lines (n = constant lines) would be drastically
pulled toward the airfoil at all cluster points. To
eliminate this difficulty the boundary condition of
Eq. (21) is changed for the SAG computation. The
new boundary condition simply uses the direct speci-
fication of the old An distribution saved from

the previous standard grid calculation. The values
of An(Sj) are interpolated via cubic spline so as
to yield An(Sk) and then directly substituted in
place of the An values which would have normally
resulted from Eq. (21). Use of this boundary con-
dition essentially causes the n = n; + An coor-
dinate to be unaffected by any amount of clustering.

Several results presented in the next section illus-
trate this feature.

III. Computed Results

The SAG algorithm discussed in the previous
section is evaluated in this section by presenting
a range of numerically computed transonic airfoil
solutions. For all calculations the GRAPE computer
code’ has been used to obtain the finite-difference
grids and the TAIR computer code® has been used to
solve the governing full-potential equation.

The first case considered is for the NACA 0012
airfoil at M, = 0.75 and « = 1.5°. Pressure
coefficient distributions computed on 105 x 22
meshes, both standard and solution-adapted versions,
are compared in Fig. 2. A blowup of the grid show-
ing detail around the airfoil is plotted in Fig. 3a
for the standard grid and in Fig. 3b for the
solution-adapted grid. For this SAG calculation
T = 0.0006 and RATIO = 1.2. 1In addition, because
no clustering was performed at the airfoil leading
edge or on the lower surface, the smoothing interval
was reduced to only the upper surface,

(Smin» Smax) * (0.55, 0.95). For these conditions,
only a moderate amount of clustering centered at the
shock wave is introduced into the SAG solution (see
Fig. 3b). This results in a sharper shock wave with
a slight upstream shift in position (see Fig. 2), as
well as a corresponding decrease in 1lift and drag.
The difference between the two results is not large
for this case, partly because the mesh is already
fine enough for the standard grid solution to do a

OV STANDARD GRID SOLUTION
€ =.408 Cpy=.0084

O SAG SOLUTION
Cy = 391 Cp=.0075

1.2

1.6
-0.2

r

0.0

T —

04 06 08 10

X/C
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Fig. 2 Pressure coefficient distribution comparison
(NACA 0012 airfoil, M, = 0.75, o = 1.5°).



(a) Standard grid.
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(b) Solution-adapted grid.

Fig. 3 Numerically generated finite-difference mesh
about an NACA 0012 airfoil (105 x 22).

relatively good job and partly because only a mod-
erate amount of clustering was used for the SAG
case. Nevertheless, a significant improvement in
accuracy is achieved even for the present case, and
will become apparent when the asymptotic behavior of
the present solution is discussed.

More complete information about the SAG airfoil
surface arc-length distribution for this case is
shown in Fig. 4. The arc length, S, and its first
and second derivatives, S'(E) and S"(£), are plotted
versus the normalized computational coordinate, E.
Results for both the standard and SAG grids are
shown for comparison. The airfoil leading edge is
represented by S = 0.5, at least for the present

10 A

s (E)

-10}F

STANDARD GRID
== =——SOLUTION ADAPTIVE GRID

1.0

Fig. 4 Airfoil surface arc-length solution, func-
tion, slope, and curvature (NACA 0012 airfoil,
M, = 0.75, a = 1.5°).

symmetrical NACA 0012 case. From the S vs £ sAG
curve it is readily seen that the leading edge
occurs at £ = 0.46, indicating that for this cal-
culation 46% of the surface grid points exist on
the lower surface and 54% on the upper surface.

Of course, the symmetrical standard arc-length
distribution of grid points is equally divided
between the upper and lower surfaces. The redis-
tribution of points about the airfoil in this
global sense is a direct result of the present SAG
algorithm. In other words, the clustering achieved
around any high-frequency detail of the solution —
in this case the shock wave on the upper surface —
results in a slight coarsening of the solution in
all other areas.



The S'(E) quantity physically represents the
ratio of the local grid spacing along the airfoil,
AS, to the average value, Asavg- At the shock,

§ % 0.75, S"(E) has been reduced by approximately
a factor of two for the SAG solution relative to
the standard grid solution. This indicates a fac-
tor of two reduction in the surface grid spacing at
the shock wave. Finally, the S"() vs £ curves
indicate that the required smoothness requested by
the RATIO = 1.2 specification has been achieved.
The maximum value of S$"(E) for the SAG solution
in the range (Spipn, Smax) = (0.55, 0.95) occurs at
£ =0.95 and is approximately 1.2 times the corre-
sponding value from the standard grid solution,

A most important consideration for any type of
finite-difference calculation procedure is deter-
mining the accuracy of the solution, i.e., how well
does the numerical solution approximate the govern—
ing differential equation? This question is most
easily answered (for nonlinear equations) by com-
puting a series of solutions on successively finer
meshes and then noting the behavior of the solution.
For consistency, an asymptotic solution should
result, but the rate of approach to the asymptotic
solution is also of interest. Figures 5 and 6 show
the results of such a study applied to the first
example calculation (NACA 0012 airfoil, M, = 0.75

@ =1.5°), The lift and wave-drag coefficients are
a8r
O STANDARD GRID SOLUTIONS
O SAG SOLUTIONS
46

CL .42

.38

36 1 L ] ]
0 .004 .008 .012 016
AVERAGE GRID SPACING ALONG AIRFOIL
[ - 1 1 ]
o 400 200 100

NUMBER OF POINTS ON AIRFOIL ~ NI

Fig. 5 Asymptotic behavior of the 1lift on a
sequence of meshes (NACA 0012 airfoil,
M, = 0.75, a = 1.5°).

plotted as a function of the average grid spacing,
A = 1/NI, where NI is the number of grid points
in the & direction. Results for both standard
and solution-adaptive grids are presented. For the
SAG results the clustering tolerance parameter, T,
is scaled by NI, i.e., Tactual = 100 Tinput/NI'
With this scaling, a constant value of Tinput will
produce approximately the same amount of clustering
regardless of mesh dimensions. The values of
Tinput and RATIO were set to 0.0006 and 1.2,
respectively, for all cases computed in Figs. 5

and 6. For all calculations the ratio of the num-
ber of grid points in the § direction to the
number of points in the n direction is approx-
imately held fixed. Figure 5 shows that both the
standard and SAG solution sequences approach the
same asymptotic value of 1lift. The most interest-
ing feature, however, is the difference in the rate
of approach. The SAG curve is consistently under
the standard curve and therefore produces a more
accurate value of 1ift on a coarser mesh. The drag
results of Fig. 6 essentially produce the same
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Fig. 6 Asymptotic behavior of the drag on a
sequence of meshes (NACA 0012 airfoil,
M, =0.75, a = 1.5°).



conclusions. However, the drag data is more
scattered. This is undoubtedly due to the more
sensitive nature of the wave-drag pressure integra-
tion. These curves indicate that a SAG solution
produces lift and drag accuracy equivalent to a
standard grid with two or three times as many grid
points. In other words, the SAG solutions have

less error than the standard grid solutions contain-
ing the same number of grid points.

For the sequence of calculations presented in
Figs. 5 and 6, the error associated with the stan-
dard grid calculations ranged from about 3% for lift
and 7% for drag for the finest mesh (209 x 43) to
about 22% for lift and 80% for drag for the coarsest
mesh (77 x 16). For two-dimensional potential cal-
culations the mesh size chosen is usually nearer
the finer of these two extremes (e.g., 149 x 31).
The error associated with this size mesh for many
applications is not that significant. Therefore,
reduction of this error, by whatever amount, is not
that significant., However, for three-dimensional
potential calculations as well as two-dimensional
Euler/Navier-Stokes calculations, mesh dimensions
are considerably smaller and therefore the corre-
sponding solutions may have significant amounts of
truncation error. For these types of calculations
a means of reducing inherent truncation error would
have significant importance.

For the sequence of calculations presented in
Figs. 5 and 6, the error reduction provided by the
SAG approach for the lift was about 40% to 65% and
for the drag about 50% to 75%. The amount of
improvement can be increased for higher degrees of
clustering, i.e., for smaller values of T. How-
ever, some difficulty in forming a smooth asymptotic
curve has been encountered for higher degrees of
clustering. Thus, establishment of the actual error
reduction is difficult.

The second case considered is for the NLR
airfoil at M, = 0.65 and o = 2.5°. Pressure
coefficient distributions for both standard and SAG
meshes, each consisting of 129 x 31 points, are
compared in Fig. 7. Details of both the standard
and solution-adapted grids are shown in Figs. 8
and 9. Figures 8a and 9a show blowup views of the
standard and SAG grids around the entire airfoil,
while Figs. 8b and 9b show further enlargements
around the airfoil leading edge. For this case the
solution contains two cluster points, one at the
leading edge (S = 0.5) and one at the shock
(S ~ 0.58). Values of T and RATIO used in this
calculation were 0.00015 and 1.2, respectively, and
the full smoothing interval,

(Smin, Smax) = (0.05, 0.95), was used. The smaller
value of T produces a more highly clustered grid.
For instance, the maximum reduction in S'(E) for
this case was 2.5 as compared with 2.0 for the pre-
vious case. Again, as in the previous case, the
result of the clustering procedure is to sharpen
the shock and capture more crisply the high-
frequency detail of the solution (see Fig. 7).

Note that details of the SAG solution away from the
clustered areas are in almost perfect agreement
with the standard grid calculation.

Results presenting additional characteristics
of the present SAG algorithm are given in Figs. 10
and 11. Figure 10 shows a leading-edge blowup of
the grid for precisely the same conditions of the
previous calculation except that the grid control
features imposed by the GRAPE grid generation code
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OO SAG SOLUTION
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Fig. 7 Pressure coefficient distribution comparison
(NLR airfoil, M, = 0.65, a = 2.5°).

have been removed. The clustered arc-length
distribution about the airfoil surface is identical
to the previous case but the resulting grid is com-
pletely different. This difference can be seen by
directly comparing Figs. 10 and 9b. The grid with
no control is highly skewed, particularly in the
vicinity of the leading edge. Such grid skewness
does not generally interfere with solution stability
but does produce an inaccurate solution. Another
parameter which has an influence on solution accu-
racy is the smoothness control parameter, RATIO.
Figure 11 shows an enlargement of the leading-edge
grid for precisely the same conditions used to com-
pute the grid of Fig. 9b, except that RATIO has
been changed from 1.2 to 3.0. The resulting differ-
ence can be seen by directly comparing Figs. 11 and
9b. Allowing large values of S§"(£) to exist in
the surface arc-length distribution does not harm
solution quality nearly as much as the skewness
shown in the previous example. However, sensitiv-
ity studies to determine the effect of grid smooth-
ness on solution accuracy seem to indicate that a
value of RATIO below 2.0 (e.g., 1.2 to 2.0) pro-
duces the best results. Values of RATIO below
1.2 (e.g., 1.0 to 1.1) can also cause problems,
primarily in conjunction with small values of T
(e.g., 0.0001 to 0.0002), and should be avoided.
For small T and RATIO ~ 1.0, the clustering
algorithm either does not comverge or converges to
a nonsensible answer. Acceptable SAG results can
be obtained quite easily and reliably if this com-
bination of parameter values is avoided.

The final case presented is for an experimen-
tal airfoil from Gates-Learjet at M, = 0.8 and
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(b) Leading edge detail.

Fig. 8 Numerically generated finite-difference
mesh about an NLR airfoil (standard grid).
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(b) Leading edge detail.

Fig. 9 Numerically generated finite-difference
mesh about an NLR airfoil (solution-adapted
case, My, = 0.65, o = 2.5°).
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(a) Standard grid solution.

(b) Solution-adapted grid solution.

Fig. 13 Mach number contours about an experimental Gates-Learjet airfoil (M, = 0.65, o = 2.5°).

IV. Conclusions

A new algorithm for generating solution-
adaptive grids about airfoil configurations embedded
in transonic flow is presented. The present SAG
approach uses only the airfoil surface solution to
recluster grid points on the airfoil surface.
Therefore, the reclustering problem is one dimension
smaller than the flow-field calculation problem.
Special controls automatically built into the
elliptic grid generation procedure are then used to
obtain grids with suitable interior behavior. This
concept of redistributing grid points greatly sim-
plifies the idea of solution-adaptive grids.

Computed results on solution-adaptive grids
indicate significant reductions in the error rela-
tive to standard grids using the same number of grid
points. Results computed on mesh sequences indicate
that both standard grid and SAG calculations approach
the same asymptotic values of lift and drag. How-
ever, the rate of approach of the SAG sequence is
much faster than that of the standard grid sequence.
For this sequence of calculations the error reduc-
tion provided by the SAG approach was about 40% to
65% for the lift and about 50% to 75% for the drag.

In the present formulation the full-potential
equation in conservative form was used as the flow-
field governing equation. The present SAG algorithm,
however, could be used with other formulations, e.8.,
the Euler or even the Navier-Stokes equations. For
three-dimensional full-potential or Euler/Navier-
Stokes applications where both execution time and

12

storage place stringent requirements on almost any
computer, the present SAG algorithm could provide

even more significant benefits than those obtained
in the present study.
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