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ABSTRACT OF THE DISSERTATION

Investigation of protein sequence-structure dynamics using bioinformatics, molecular
dynamics and machine learning

by
Vy T. Duong
Doctor of Philosophy in Chemistry
University of California, Irvine, 2020

Professor Rachel W. Martin, Chair

As genomic repositories increasingly grow with a variety of data from a multitude of or-
ganisms, the need to approach extracting and interpreting data also becomes increasingly
difficult. Recent advances in protein annotation and structure prediction have improved,
however the variety and sheer amount of data requires unique approaches from multiple
different disciplines. Bioinformatics yields important functional sequence information and
classification. Molecular dynamics (MD) simulation allows for the interrogation of biochem-
ical systems at the atomistic level. Combined with machine learning, these disciplines can
be equipped to investigate the complex functions and relationships of proteins within the

current abundant genomic landscape.

The objective of this dissertation is to outline complementary methodologies from various
fields - bioinformatics, molecular dynamics simulation, and machine learning - that together,

can investigate vast genomic repositories, functional protein data.

Aim 1: The development of the bioinformatics and in silico maturation pipeline consists of
gene annotation, MD simulation to equilibrate predicted proteins, and statistical methods
adopted from graph theory in collaboration with the Butts lab. Proteins can be represented

in graph theoretic terms allowing for the exploration of diverse protein structural features.

xiil



Aim 2: Molecular dynamics simulation gives rise to atomic level details of complex systems.
A variety of protein systems - HIV Rev, short intrinsically disordered peptides, STXPB4,
YAP-1 WW domain - explored are intrinsically disordered. MD simulations were used to
simulate the complexities and difficulties encountered within these proteins as well as plant

metabolic proteins.

Aim 3: After the aforementioned bioinformatics pipeline and in silico molecular dynamics-
based maturation of predicted proteins, methods to extract useful atomistic information
from coarse protein structure networks (PSNs) were developed. A multi-layer perceptron
was used to essentially upscale coarse PSNs into atomistic models. The significance of this
technique permits for the simulation of coarse PSNs, and the exploration of complex protein

structural conformations.
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Chapter 1

Introduction

1.1 Intrinsically disordered proteins/regions

It was once strongly presumed proteins required rigid secondary structure to function.
More recently, the scientific community has largely discounted this and accepted the over-
all prevalance of intrinsically disordered regions (IDRs) and fully intrinsically disordered
proteins (IDPs). These proteins are found in all three domains of life — archaea, bacteria,
eukarya — as well as all viruses studied to date [293]. Viruses in particular function with
minimial protein production, requiring adaptive proteins to bind to a multitude of different
targets and perofrm a variety of functions [283, 11|. Recent computational research has
also suggested with increasing organismal complexity, the presence of IDRs/IDPs also in-
creases [328, 316, 76]. Among archaea and eukarya, IDRs with lengths of approximately
>30 amino acids are comparably similar, however these computational studies suggest much
more is present in eukaryotic organisms [213, 316, 76, 329, 195]. IDRs/IDPs participate in
wide variety of important cellular actiivities to maintain functions encompassing recognition,

assembly, and modification of other proteins/molecular compounds [73, 74|. Their folding



properties also make these proteins elusive targets for structural characterization. Many
IDPs/IDRs exhibit coupled folding and binding properties, only forming a more defined
structure upon binding to a specific partner, thus also making apo conformations difficult to

structurally characterize [192].

These proteins are also implicated in a wide variety of diseases such as cardiovascular diseases,
diabetes, neurodegenerative diseases, cancer, etc [293]. Examples such as a-synuclein, p53,
amyloid-3, and tau protein are proteins of considerable interest in the scientific community
and public health [293]. Computationally, a combination of sequence and structural studies

are required to tackle the arduous investigation of these elusive, complex proteins.

1.2 Diversity and complexity of plant metabolic proteins

Plant metabolic proteomes remain largely unexplored in a wide variety of species. However,
these contain potentially useful proteins that can be used in agriculture, biomedical pur-
poses, and a plethora of other applications. Plant proteins from sources such as soy, wheat,
and corn also have a lower likelihood of inducing immunogenic responses in the human body
compared to animal-based proteins. For example, the commonly used bovine collagen used
in most medical procedures have been reported to cause negative reactions [212|. There-
fore, the investigation of proteins involved in plant metabolism can yield potentially useful

biomolecular tools in generating useful compounds such as flavonoids.

Herein, this dissertation focuses on mainly Drosera capensis and its unique metabolic biomolec-
ular machinery. Bioinformatics, MD simulation, and statistical techniques are combined to

investigate two proteins classes in Drosera capensis.



1.3 Bioinformatics and genomic studies

In the Uniparc database, there is approximately 250 million protein sequences, very few of
which have been fully structurally characterized [150]. A wide spectrum of functional and
structural diversity is present amongst these vastly unexplored data. With the rapid de-
velopment of high-throughput techniques, the availability of sequence data has thus quickly
outpaced the production of structural data in recent decades. The sheer expansion of ge-
nomics, proteomics, and transcriptomics data has also motivated researchers to develop
technologies to obtain meaningful interpretation of these repositories. Both sequence and
structural approaches are imperative in investigating the underlying biochemical machinery

of the the vast number of unexplored proteins found in nature.

Of the proteins that require IDPs are abundant in specific amino acids compositions, specifi-
cally polar and unstructured residues (Gly, Pro, Arg, Glu, Gln, Ser, Lys) [293|. Bioinformat-
ics analysis facilitates the prediction of IDRs/IDPs as shown by the DISOPREDS3 prediction
server [128|. In combination with large plant proteome repositories, bioinformatics also fa-

cilitates the exploration of Drosera capensis explored in this dissertation.

1.4 Molecular dynamics simulation

Experimental characterization techniques (e.g. X-ray crystallography, NMR, etc.) are in-
tegral in furthering current understanding of complex protein dynamics. However these
methodologies capture mainly rigid snapshots or average approximations of complex sys-
tems with a plethora of different conformations and behavior. To obtain a more expansive
range of conformations and behavior, molecular dynamics (MD) simulations have been ex-
tensively utilized to explore systems such as hinge movement in active site opening and

closing [62], tRNA flexibility [106], ligand binding in heme proteins [47], and a multitude of



other systems. MD simulations have developed rapidly from the first picosecond simulation

of bovine pancreatic trypsin inhibitor in 1977 to current capabilities [186].

Molecular dynamics (MD) simulations approximate the forces acting upon atoms via nu-
merical solution of the classical equations of motion: F' = —VU(r"). The forces acting
upon an atom are derived from a potential energy function, U(r"), where 3N coordinates

N = (r{,rq,...ry). Ranging between femtoseconds to microseconds for

are represented as r
most simulations, MD simulations approximate protein dynamics on timescales inaccessible
to traditional structural biology techniques. In this thesis, AMBER [46, 45, 243] MD soft-
ware suite is the primary tool used to generate simulations and investigate multiple protein

systems, ranging from plant metabolic proteins to IDPs. Other popular MD simulation

software alternatives consist of CHARMM [31], GROMOS [248], and NAMD |[218].

Although MD simulations are useful for exploring timescales from nanosecond to microsec-
onds, they are limited by the incapacity to simulate beyond microsecond timescales, with few
research groups having the resources to simulate in millisecond timescales. In the next sec-
tion, I explore the incorporation of machine learning in the investigation of complex protein

dynamics.

1.5 Machine learning

Machine learning algorithms have rapidly expanded as an essential utility across a variety of
different fields. In the field of structural biology, machine learning has established prominence
in topics ranging from structure prediction to modeling functional properties of proteins. In
2018, Deepmind’s AlphaFold convolutional neural network (CNN) model won the CASP18
competition by a wide margin, demonstrating the potential of incorporating neural network

models in structure biology [251]. Two major implementations of machine learning described



herein consist of unsupervised and supervised learning. Unsupervised learning encompasses
two possible tasks, either clustering data or learning potential groupings. These are stan-
dard, common techniques used by computational chemists/biologists to group sequence data,
MD simulation data, or other structural biology data. Algorithms range from classical al-
gorithms such as hierarchical, DBScan, K-means, etc. or more advanced techniques such as
autoencoder neural networks. Supervised learning consists of mainly regression (prediction
of a dependent variable from one or more independent variables) or classification (prediction
of qualitative labels from one of more input variables). Algorithms range from classical tech-
niques such as random forest to neural networks models (e.g. multilayer perceptons, CNN,

RNN, LSTM, etc.)

This thesis also focuses primarily on the implementation and results from various unsuper-
vised and supervised learning on MD simulation and bioinformatics data. These techniques
greatly expand the ability to extract and learn new features of protein dynamics or com-

monalities between protein sequence data.

1.6 Objectives of dissertation

Each methodology — bioinformatics, MD simulation, or machine learning — has their indi-
vidual advantages and disadvantages. Proteins with high sequence identity can often have
drastically different functions. For instance, ovalbumin, the most abundant protein in egg
white for instance belongs to the serpin protein superfamily. Despite sharing high sequence
and structural similarity to other serpins, ovalbumin however lacks the standard serpin func-
tion to inhibit serine proteases [115]. This example demonstrates the need of a multifaceted

approach regarding the investigation of protein sequence, structure, and function.

This dissertation probes the elucidation of protein sequence-structure-function relationship



via the merge of bioinformatics, MD simulation, and machine learning techniques. Chapter
2 delves into the sequence and structural features of Drosera capensis chitinases, and the
unique findings of these proteins used to either break the chitinous exoskeletons of insect prey
and /or defend itself against fungal pathogens. In the subsequent chapter 3, Drosera capensis
esterase/lipases are explored using analyses comparable to chapter 1 with the exception of
principal component analyses of network-based structural data. Chapter 4 investigates mul-
tiple WW domain proteins using proteomic anaysis, MD simulation, and unsupervised learn-
ing. Chapter 5 compares the performance of ff14SB and IDP-specific force field ff14IDPSFF
in their abilities to recapitulate experimental measurements of multiple IDP systems. Chap-
ter 6 explores the merger of MD simulation, graph-based networks, and machine learning to

backmap /upscale contact adjacency matrices to atomistic coordinate models.
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Chapter 2

Structure prediction and network
analysis of chitinases from the Cape

sundew, Drosera capensis.

2.1 Summary

Background: Carnivorous plants possess diverse sets of enzymes with novel functionalities
applicable to biotechnology, proteomics, and bioanalytical research. Chitinases constitute an
important class of such enzymes, with future applications including human-safe antifungal
agents and pesticides. Here, we compare chitinases from the genome of the carnivorous plant

Drosera capensis to those from related carnivorous plants and model organisms.



Methods: Using comparative modeling, in silico maturation, and molecular dynamics simu-
lation, we produce models of the mature enzymes in aqueous solution. We utilize network

analytic techniques to identify similarities and differences in chitinase topology.

Results: Here, we report molecular models and functional predictions from protein structure
networks for eleven new chitinases from D. capensis, including a novel class IV chitinase
with two active domains. This architecture has previously been observed in microorganisms
but not in plants. We use a combination of comparative and de novo structure prediction
followed by molecular dynamics simulation to produce models of the mature forms of these
proteins in aqueous solution. Protein structure network analysis of these and other plant

chitinases reveal characteristic features of the two major chitinase families.

General Significance: This work demonstrates how computational techniques can facilitate
quickly moving from raw sequence data to refined structural models and comparative anal-
ysis, and to select promising candidates for subsequent biochemical characterization. This
capability is increasingly important given the large and growing body of data from high-
throughput genome sequencing, which makes experimental characterization of every target

impractical.

Highlights:

We report eleven new chitinases from the carnivorous plant Drosera capensis. A novel two
domain class IV chitinase similar to those found in microbes was found. Protein structure
prediction and comparison to other carnivorous plant chitinases reveals commonalities. Se-
quence and structural motifs are conserved among carnivorous plant chitinases. Protein

structure networks reveal structural differences and predict functionality.



2.2 Introduction

Chitin, a polymer of 8-(1,4)-N acetylglucosamine (GlcNAc), is the second-most abundant
biopolymer [136]. Chitinases (EC 3.2.1.14) are ubiquitous even among organisms that do
not produce chitin, with the latter employing them for purposes of digestion and/or defense.
These enzymes cleave chitin at the 5-1,4 linkage of N-acetyl glucosamine units, although sub-
stantial variation in activity and substrate specificity exists. Some chitinases can also cleave
peptidoglycans at 3-1,4 linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine,
and chitodextrins between N-acetyl-D-glucosamine units. Plant chitinases sometimes have
multiple functionalities; some display lysozyme activity [229], while others have a calcium
storage function [183]. In humans, chitinases are produced in response to fungal infections, a
feature of the innate immune system that is suppressed in immunocompromised individuals,
including AIDS patients, transplant recipients, and burn victims [298]|. These enzymes and
related chitin-binding proteins are expressed in human lung tissue, where they are dysregu-

lated in cystic fibrosis and asthma [169].

In plants, these enzymes are expressed in response to environmental stress and pathogen or
pest infestation [33], driving efforts to overexpress particularly effective examples in trans-
genic crop plants [132]. Carnivorous plants use chitinases as part of the prey capture re-
sponse: active chitinases have been found in the pitcher fluid of Nepenthes [79, 238|, and in
the digestive fluids of the Venus flytrap [206]. However, the extent to which chitin is used as
a nitrogen source remains controversial. Drosera capensis plants fed on chitin incorporate
its nitrogen into their leaf tissue; however nutrient uptake is less efficient than for plants fed
on protein [207]. Examination of insect carcasses after digestion reveals that 40-60% of the
total nitrogen is unused |7, 208|, consistent with the observation that the remains of insect
exoskeletons appear mostly intact [130]. However, chitinase expression is upregulated in the
presence of prey in the related species Nepenthes alata. In Drosera rotundifolia, an increase

in both expression of chitinase mRNA and chitinase activity was induced by addition of



crustacean chitin with mechanical stimulation of the traps [185]. The prey-induced induc-
tion of chitinase activity, despite the low efficiency of chitin use, may indicate that chitinases
primarily function to inhibit fungal growth in the traps, just as cytotoxic peptides discourage

microbial growth in the fluid of Nepenthes pitchers [108, 32].

Here, we compare novel chitinases recently discovered from the genome of the Cape sundew
(Drosera capensis) [36], to those from other carnivorous plants in order Caryophylalles. The
conservation of the overall protein folds and active site architectures suggests that many
of the D. capensis chitinase sequences form functional enzymes. We use sequence analysis,
comparative modeling with all-atom refinement followed by in silico maturation [38], and
investigation of protein structure networks to identify structurally distinct subgroups of

proteins for subsequent expression and biochemical characterization.

2.3 Results and Discussion

2.3.1 Two Distinct Families of Carnivorous Plant Chitinases Are

Found

Gene sequences annotated as coding for chitinases using the MAKER-P (v2.31.8) pipeline
[40] and a BLAST search against SwissProt (downloaded 8/30/15) and InterProScan [225]
were clustered by sequence similarity, along with chitinases previously identified from Dion-
aea muscipula [206] and various species of Drosera and Nepenthes [232]. Annotated sequence
alignments of the Family 18 and Family 19 chitinases are shown in Supplementary Figures
A.1 and A.2, respectively. We have identified four fragments ranging from 41%-100% identity
to the DcChitl 1 fragment previously found by Renner and Specht in D. capensis genomic
DNA [232] (Supplementary Figure A.3). Several well-characterized reference sequences (e.g

chitinases from Vitis vinifera, Brassica napus, and Hordeum vulgare) are also included for
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comparison. Using the characterization scheme of the carbohydrate-active enzymes (CAZy)
database [42, 162], the chitinases investigated here belong to Family 18 (orange) or Family 19
(green). Overall, the sequence identity among the Family 18 chitinases from Caryophylalles
carnivorous plants is much higher than that of Family 19, as illustrated in Figure 3.2A and
B. These two types of chitinases have different folds and are thought to have evolved inde-
pendently, [189, 166]|, consistent with their separation into separate clusters (Figure 3.2C).

Family 18 contains types III and V, while types I, IT and IV belong to Family 19 [206].
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Figure 2.1: Clustering of chitinases identified from the D. capensis genome, compared
with those from other Caryophylalles carnivorous plants and well-characterized reference
sequences. All of the sequences examined belong to GH Families 18 or 19. The sequence
dissimilarity used here is the e-distance metric of Székely and Rizzo [273| (with a = 1).
This parameter is a weighted function of within-cluster similarities and between-cluster dif-
ferences with respect to a user-specified reference metric, defined here as the raw sequence
dissimilarity (1 - (%identity)/100).
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2.3.2 D. capensis Chitinases are Predicted to Adopt Folds Consis-

tent with Active Enzymes

Family 18 chitinases, which retain the S-anomeric carbon stereochemistry from the substrate
to the product, adopt the (a-f)s triosephosphateisomerase (TIM)-barrel fold [134, 294],
shown for DCAP 0106 in Figure 2.2A. The in silico maturation process, which we have
previously described for cysteine proteases [38], is illustrated in Supplementary Figure A.4.
The active site (Figure 2.2B), consists of a characteristic DXXDXDXE motif [134, 294]. The
“tunnel” containing the active site is shaped by an unusual structural feature, two non-proline
cis peptide bonds that are highly conserved, although the particular residues involved are
somewhat variable [285, 183]. The cis peptide bonds (shown in black in Figure 2.2C), are
captured by the molecular models for all full-length Family 18 chitinases examined here. The
shape of the tunnel and the surface formed by the aromatic rings opposite the catalytic D and
E residues acts to guide the chitin polymer chains into the active site, leading to processive
activity [112]. The ability of Family 18 chitinases to keep the strand that is currently being
degraded from re-encountering solid substrate is thought to be a key determinant of their

ability to hydrolyze crystalline polysaccharides [305].

The Family 19 chitinases, all of which are characterized by an anomeric inverting mechanism
[274], have diverse structural features. Much of the structural and functional diversity re-
sults from two highly variable regions, the C-rich chitin-binding domain and the P-rich hinge
[188, 198, each of which may vary in length or be absent altogether. We have identified two
class I chitinases (DCAP 4817 and DCAP _5513) and one class IV chitinase (DCAP_0533)
from the D. capensis genome. Most of the sequences in this set contain N-terminal secre-
tion signals, however two D. spatulata sequences (Q6IVX2 9CARY and Q6IVX4 9CARY)
and the reference sequence CHI2 BRANA contain short C-terminal extensions indicating
targeting to the vacuole, consistent with their playing a purely defensive role. One sequence

each from D. capensis (DCAP _5513), D. rotundifolia (Q6IV09 _DRORT), and D. spatulata
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(Q6DUKO_9CARY) is missing one or more critical active site residues; in other organisms,
enzymatically non-functional chitinase homologs are often present and can serve as chitin-
binding proteins [222]. The predicted structure after in silico maturation for a representative
chitinase, VF-1 from D. muscipula (Figure 2.2) is in good agreement overall with the homol-
ogy model of Paszota et al. [206], with the active site residues positioned in a shallow cleft
on the surface of the active domain. The two models do differ in the relative orientations of
the domains; however examination of the other models in this set suggests that the P-rich

hinge is highly flexible (Supplementary Figure A.5).

Because sequence identity between our targets and proteins with solved structures is only
moderate (in the range of 30-50 %), comparative modeling with all-atom refinement was
used. The starting structures are predicted using the Robetta implementation [139] of
Rosetta [228]. This approach uses a combination of fragment homology and de novo struc-
ture prediction, and is regularly validated via CAMEO [99]. Our modeling approach, in
which the starting Rosetta structures are subjected to in silico maturation, was previously
validated experimentally when the x-ray structure of a cysteine protease we had previously
predicted was solved. The crystal structure of Dionain 1 (PDB ID 5A24) [234], shows
excellent agreement with our predicted structure, with the prediction capturing all major
secondary structural elements and exhibiting only minor deviations in the flexible loop re-
gions [38]. For the chitinases, fragment homology was the primary method used. Sequence
alignments for the target molecule with all of the template sequences used by Rosetta are
shown for representative members of Family 18 and Family 19 in Supplementary Figures
A.6 and A.7, respectively. For DCAP 2209 (Family 18), excluding the N-terminal signal
sequence, 100% of the sequence aligns with homologous regions in the 11 template sequences
(tabulated in Supplementary Table A.1). For DCAP 5513, excluding the N-terminal signal
sequence, only one 6-residue stretch of the P-rich region is not directly homologous to at
least one of the template sequences (tabulated in Supplementary Table A.2). As a further

validation, a blind structure prediction was performed for the reference sequence HORV2, in
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which the actual pdb structure of this molecule (PDBID 1CNS, 2BAA) [264] was excluded
from the template set. The predicted and experimental structures are shown overlaid in
Supplementary Figure A.8. After equilibration, the backbone RMSD between these struc-
tures was 1.01 A. All major secondary structure elements are reproduced, with only minor

differences in relative orientation as well as some deviation in the loops and termini.

2.3.3 The Class IV Chitinase DCAP 0533 Has Two Functional Do-

mains

We have identified a new class IV chitinase from Drosera capensis, DCAP 0533. A class
IV chitinase has previously been described as one of the most abundant proteins in the
pitcher fluid N. alata [108|, where it preferentially hydrolyzes small GleNAc oligomers over
larger polymeric substrates [126]. Unlike other known plant chitinases, DCAP 0533 con-
tains two class IV catalytic domains. The N-terminal domain appears to be fully active,
while the C-terminal domain lacks one of the active residues but containts a full complement
of substrate-binding residues(Figure 2.2E, Supplementary Figures A.9-A.10). Multidomain
chitinases containing dedicated substrate-binding domains have previously been observed in
microbes [276]. For example, ChiA from the thermophilic archeon Pyrococcus kodakaraen-
sis, has two chitinase domains and three catalytically inactive substrate binding domains,
allowing separate optimizaton of substrate binding and catalytic function [279]. AFM data
suggests the binding is mostly determined by interaction of the aromatic residues in the
binding site (orange in Figure 2.2E) with the pyranose rings of the substrate [137]. This
type of functionality has not been previously observed in plants; we hypothesize that it is an
adaptation associated with carnivory, perhaps related to more effective breakdown of small

oligosaccharides to components that can be used as a nitrogen source.
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P-rich hinge
M catalytic domain
~4/

M acidic catalytic residue C-rich domain
basic catalytic residue inter-domain linker
binding residue

Figure 2.2: Equilibrated structures of the mature sequences of chitinases from carnivorous
plants. A. DCAP_ 0106, a representative Family 18 chitinase, after in silico maturation.
Numbering of secondary structure elements follows the convention of Si et al. [257|. B.
Notably, the tunnel containing the active site has two surfaces with different chemical prop-
erties; the aromatic rings (orange) hold the more hydrophobic face of the chitin polymer in
place, while the acidic residues (red) perform hydrolysis of the glycosidic linkages. C. Two
conserved non-proline cis peptide bonds (black) are critical to shaping the active site tun-
nel in Family 18 chitinases. D. Chitinase VF-1 from Dionaea muscipula VSTEIO DIOMU
[206], with important sequence features and active site residues labeled (red: acidic active
residue. blue: basic active residue. yellow: disulfide bond). E. The two-domain chitinase
DCAP _0533. Color coding is as in D, with the addition of substrate-binding residues in
orange.

2.3.4 Network Analysis Shows Substantial Topological Differences

by Family and within Proteins

When selecting potential targets for biophysical characterization, it is useful to consider
general patterns of structural similarity or difference within and between families that may
correlate with functional differences. Protein structure networks are useful for this purpose,
as they directly encode the potential for direct physical interaction between functional groups
(rather than representing detailed structure through properties such as side chain dihedral an-
gles that can often vary substantially and dynamically without impacting protein function).
Here we employ the PSN representation of Benson and Daggett [21], where vertices repre-
sent small moieties and edges represent the potential for direct interaction (as determined by

moiety-specific proximity constraints). Given two or more such PSNs, we may compare their
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topology by the structural distance method of [37], identifying the smallest number of edge
changes (i.e. altered inter-moiety interactions) needed to make one PSN isomorphic to the
other. Figure 2.3 depicts respective hierarchical clusterings of the Family 18 (panel A) and
Family 19 (panel B) chitinases based on this notion of structural similarity, with distances
normalized by the number of vertices to yield a metric with units of average changed interac-
tions per moiety. For Family 18, the pattern of topological similarity is strikingly close to the
pattern of sequence similarity, although somewhat more diversity can be seen among struc-
tures than among sequences (compare with Figure 3.2). By contrast, topological clustering
of Family 19 chitinases shows substantial differences from the sequence-based clustering.
For instance, while DCAP 0533, A9ZMK1 NEPAL, and Q6IV09 DRORT belong to an
outlying but internally cohesive cluster with respect to sequence similarity, the three show
markedly different topologies (and, indeed, are split between the two large structural clus-
ters characterizing the family). More broadly, we find that the Family 19 chitinases divide
structurally into two primary clusters (rather than the four obtained from sequence similar-
ity), both of which are internally heterogeneous and neither of which maps cleanly onto the
clusters found by sequence similarity. The relationship between sequence and structure is

thus much more tightly coupled for Family 18 than Family 19.

Further insight into the structural differences between the two families can be obtained by
considering variation in the properties of their respective PSNs. Here, we examine four
basic graph-level indices (GLIs) related to protein network organization. Transitivity |318]
is defined as the fraction of (4,7, k) two-paths for which there exists an (i,k) edge, and
is a standard measure of triadic closure; in the PSN context, higher levels of transitivity
are associated with structures that are closely and uniformly packed, with few cavities or
extended regions. Degree is defined as the number of edges incident on a given vertex; for a
PSN; this corresponds to the number of other moieties with which a given chemical group is
in contact. The standard deviation of the degree distribution within a PSN then provides a

measure of the level of heterogeneity in local packing around chemical groups, and we employ

17



it here as a second GLI. At a somewhat less local level, the (degree) core number of a given
vertex [250] provides a measure of the extent to which that vertex is embedded in a region of
high cohesion within the graph. More precisely, the k-th core (or k-core) of a graph is defined
as the maximum set of vertices having at least k£ neighbors within the set. The core number
of a vertex is then the number of the highest-order k-core to which it belongs. Although
each k-core is not necessarily cohesive as a whole, cores with £ > 2 are composed of unions
of cohesive subgraphs, such that all vertices with high core numbers necessarily belong to
highly cohesive subgroups. In a PSN context, cohesive subgroups of moieties are joined
by multiple, redundant paths and cannot be pulled apart without severing large numbers
of edges. At the level of the entire PSN, then, the standard deviation of the core number
serves as an indicator of the degree of heterogeneity in structural cohesion, and distinguishes
between highly organized structures and structures that combine rigidly and loosely bound
regions. Finally, we consider an indicator of the global path structure within the PSN, which
we call M-eccentricity. The eccentricity of a vertex is the maximum geodesic distance from
that vertex to any other vertex in the graph [323|; we here refer to the corresponding mean
geodesic distance as the M-eccentricity. Vertices with high M-eccentricity are on average
peripheral to the graph structure, while those with low M-eccentricity are relatively centrally
located. At the level of the PSN as a whole, the standard deviation of the M-eccentricity
distinguishes between uniformly globular structures and structures with deformations or

other elongations, and we employ it as our fourth GLI.

Panel C of Figure 2.3 shows the distribution of the above GLI values for both chitinase
families. All GLIs were calculated using the sna library [35]; to facilitate visualization,
each GLI was standardized across the combined set of PSNs by subtracting the mean and
dividing by the standard deviation prior to analysis. As is clear from Figure 2.3, the two
families differ markedly on these four characteristics. On average, the Family 18 structures
are substantially more homogeneous with respect to extended structure, local packing, and

cohesion, while also being less transitive (p < 0.001 for all measures, two-tailed t-test).
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With respect to variation within family, the Family 18 structures show significantly less
variability in eccentricity heterogeneity and transitivity (permutation test of logged IQR
ratios, respective p values < le —5 and 0.015), but more comparable variability with respect

to heterogeneity in local packing and cohesion (respectively p = 0.073 and p = 0.066, not
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Figure 2.3: (a)-(b) Within-family clustering of chitinases by normalized structural distances.
Ward’s method (in the generalization of [273|) was employed to construct a hierarchical
clustering of Family 18 (a) and Family 19 (b) chitinases based on topological dissimilarity.
Sequence similarity is broadly recapitulated by the structural distances in Family 18, while
Family 19 shows distinct patterns of variation. Differences between families are large, as
illustrated in (c), which shows distributions of M-eccentricity variation, degree variation,
core number variation, and transitivity by family. Family 19 chitinases tend to be markedly
more internally heterogeneous, with chemical groups whose local structural environments
vary far more than their counterparts in Family 18. Family 19 chitinases also show a higher
overall level of triadic closure, as captured by transitivity.

To provide an intuition for how these patterns play out in specific cases, Figure 2.4 shows
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vertex-level core numbers and M-eccentricity scores for the structures of CF821 NEPMI
(Family 18) and DCAP 5513 (Family 19). These structures have low median distance to
each other structure in the family, and are hence broadly representative of the classes in ques-
tion. The core number visualizations of panels (a) and (b) clearly show that CF821 NEPMI
is dominated be a large and uniformly cohesive core region, with few vertices in the outer
region (i.e., lower cores). By contrast, the highly irregular structure of DCAP 5513 has
numerous areas of low cohesion (including much of the C-rich domain) as well as the highly
cohesive region associated with the central helices (compare with Figure 2.2). Differences in
global structure are brought into sharp relief by the M-eccentricity visualizations of panels
(c) and (d). The uniform and tightly connected topology of CF821 NEPMI results in a
large number of vertices with short path distances to nearly all other chemical groups in the
protein, and relatively little overall variation. Moieties in DCAP 5513, on the other hand,
may be at an average distance of more than 9 steps from the rest of the protein, with large
differences between the relatively central vertices in the helical region and those in the outer

portions of the C-rich domain or the P-rich hinge.

Taken together, these findings suggest substantial structural differences in the basic organi-
zation of the Family 18 and Family 19 chitinases, with the former having more internally
homogeneous structures, and with structural differences being more closely related to differ-
ences in sequence. Family 19 is on the whole more diverse, and contains members that are on
average less internally homogeneous. The presence of a higher volume of low-cohesion regions
in the Family 19 chitinases suggests that these enzymes may be more prone to thermal denat-
uration than those in Family 18 (since low-cohesion regions require fewer disrupted edges to
pull apart), but may also have functional significance (e.g., by allowing enhanced flexibility).
Such structural insights from PSN topology complement those gained by studying specific

features, and are more easily extended to analyzing large numbers of sequences.
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Figure 2.4: PSN Visualizations for family-representative structures C7F821 NEPMI (Fam-
ily 18, (a) and (c)) and DCAP 5513 (Family 19, (b) and (d)). In panels (a) and (b),
vertices are colored by k-core number; vertices with higher core numbers are embedded in
more strongly cohesive local structures. Panels (c¢) and (d) show vertices by M-eccentricity
(with higher values indicating a higher mean distance to other vertices in the network). The
much higher level of internal heterogeneity in DCAP 5513 versus C7F821 NEPMI is im-
mediately evident, with the former containing complex and irregular structure that subjects
some vertices to higher levels of both cohesion and proximity than others.
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2.4 Materials and Methods

2.4.1 Sequence Alignment and Prediction of Putative Protein Struc-

tures

Network Modeling and Analysis

We mapped each equilibrated protein structure to a protein structure network (PSN) as
defined by the representation of [21] using software tools from [36]; these in turn make use of
VMD [119] and the statnet toolkit [102, 34| within the R statistical computing system [226].
To compare PSNs, we use the structural distance approach of [37], which defines a metric on
graph pairs that is in our case equal to the number of edges in one graph that would need
to be altered in order to make it isomorphic to the other. (Isolate addition was performed
when comparing graphs with differing numbers of vertices.) To remove size effects, the raw
distance between each pair of PSNs was normalized by the number of vertices, yielding a
metric corresponding to edge changes per vertex. These normalized structural distances were
analyzed using hierarchical clustering using R. Additional network analysis and visualization

was performed using the network and sna libraries within statnet [34, 35].

2.5 Conclusion

Modeling and analysis of Family 18 and 19 chitinases from D. capensis and several related
species reveal a number of novel enzymes that present promising targets for subsequent
expression and biophysical characterization. These include what is to our knowledge the
first plant chitinase found with multiple active domains, as well as several proteins that

differ in more conventional ways from others in their class. Comparative network analysis of
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these structures reveals within- and between-family differences in structural properties, with
Family 18 chitinases tending to be substantially more homogeneous in internal structure and
Family 19 chitinases showing variation in cohesion and packing with possible implications
for both function and thermal stability. These results also demonstrate the potential of in
silico pipelines to move rapidly from genomic DNA to predictions of tertiary structure and
comparative analysis thereof. As the “genomic revolution” makes such data available at an
ever-increasing rate, such pipelines will become critical to our ability to exploit this scientific

resource.
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Chapter 3

Protein structure networks provide
insight into active site flexibility in
esterase/lipases from the carnivorous

plant Drosera capensis

3.1 Summary

In plants, esterase/lipases perform transesterification reactions, playing an important role in
the synthesis of useful molecules, such those comprising the waxy coatings of leaf surfaces.
Plant genomes and transcriptomes have provided a wealth of data about expression patterns
and the circumstances under which these enzymes are upregulated, e.g. pathogen defense

and response to drought; however, predicting their functional characteristics from genomic
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or transcriptome data is challenging due to weak sequence conservation among the diverse
members of this group. Although functional sequence blocks mediating enzyme activity have
been identified, progress to date has been hampered by the paucity of information on the
structural relationships among these regions and how they affect substrate specificity. Here
we present methodology for predicting overall protein flexibility and active site flexibility
based on molecular modeling and analysis of protein structure networks (PSNs). We de-
fine two new types of specialized PSNs: sequence region networks (SRNs) and active site
networks (ASNs), which provide parsimonious representations of molecular structure in ref-
erence to known features of interest. Our approach, intended as an aid to target selection
for poorly characterized enzyme classes, is demonstrated for 26 previously uncharacterized
esterase/lipases from the genome of the carnivorous plant Drosera capensis and validated us-
ing a case/control design. Analysis of the network relationships among functional blocks and
among the chemical moieties making up the catalytic triad reveals potentially functionally

significant differences that are not apparent from sequence analysis alone.

3.2 Introduction

In land plants, tissues that are exposed to air are protected by the cuticle, a composite
biomaterial comprising a cross-linked polyester scaffold interpenetrated by wax components
[252]. The cuticle provides a barrier that minimizes water loss and protects the plant from
pathogen infection. The relative quantities of hydrophilic and hydrophobic components
must be appropriately balanced and spatially located to adhere to the underlying cell walls
while presenting a hydrophobic surface to the air interface [55|. Numerous enzymes are
involved in producing the polymer components of this material, including esterases, lipases,
and GDSL esterase/lipases. Herein we focus on the GDSL esterase/lipases, characterized by

the proximity of the active serine residue to the N-terminus, as well as by its surrounding
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residues (canonically GDSL) [8]. Esterase/lipases belong to the large /8 hydrolase enzyme
superfamily, in which the catalytic triad consists of a nucleophile, an acid, and a stabilizing
histidine (in this case Ser-Asp-His). In plants, these enzymes are often localized to the cuticle
matrix, where they catalyze the reverse reaction (biosynthesis of polyesters) rather than
acting as hydrolases [93]. This biosynthetic activity in the waxy cuticle is consistent with in
vitro results indicating that esterase/lipases are highly tolerant of hydrophobic environments,

where they catalyze the formation of polyesters rather than performing hydrolysis reactions

178.

Esterase/lipases present attractive targets for biotechnology applications because of their
potential for producing robust yet ultimately biodegradable polyester materials and hy-
drophobic surface coatings [174, 141, 300]. Several microbial GDSL proteins have been char-
acterized as relatively promiscuous enzymes that serve a variety of purposes (e.g. protease,
lysophospholipase, thioesterase, arylesterase) [160, 184|, and accomodating a wide range of
substrates [149]. Microbial cutinases, a subclass of serine esterases found in fungi and bac-
teria, catalyze esterification and transesterfication and can hydrolyze both hydrophobic and
lipid substrates in solution or emulsion [254]. In a chemical biology or biotechnology setting,
enzymes with different degrees of specificity may be preferred for different applications; for
example, promiscuous enzymes are useful for generalized hydrolysis, while those catalyzing
a specific reaction are more useful for biosynthetic reactions. Harnessing the potential of
these enzymes, given the enormous number of uncharacterized sequences available, requires

methodology for predicting their functional characteristics.

Plant GDSL esterase/lipases may provide a rich source of particular chemical functionalities.
Many such enzymes have been discovered from genome and transcriptome data [59, 138];
however their specific functions and substrate preferences remain relatively unexplored de-
spite their potential commercial and technological importance. 114 esterase/lipases have

been identified from the genome of rice (Oryza sativa) alone |57, and a survey of 12 plant
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proteomes found that each plant has many esterase/lipase isoforms, including multiple unique
genes as well as splice variants [306]. In genomic terms, the large number of GDSL esterase
lipases found in plants results from several gene duplication events, followed by selection for
novel functions and/or neutral drift [304]. Although in many cases their precise catalytic
activities are yet unknown, esterase/lipases are associated with developmental processes [43],
pollen exine formation [71], salt tolerance [196], and stress responses [111, 145]|. Many of
these functions appear to be related to the biosynthesis and metabolism of cutin and waxes
[203, 275|. A recent investigation by Zhang et al. demonstrated the first plant GDSL (BS1)
to exhibit polysaccharide esterase activity, which is vital for maintaining secondary cell wall
acetylation levels and homeostasis [337]. In the oil palm (FElaeis guineensis), oil yield cor-
relates with expression of genes for GDSL esterase/lipases and expression of these genes in

transgenic Arabidopsis plants increases their fatty acid production as well [340].

Much of what is known to date about the specific enzymatic activities of proteins in this
family comes from studies of either model systems such as Arapidopsis thaliana or crop
plants that produce large fruits [14]. For example, in the tomato (Solanum lycopersicum),
the GDSL1 enzyme is required for cuticle formation; knockdown of expression of the GDSL1
enzyme (also called CD1) using RNAI results in porous fruit cuticles. On the molecular
level, both a decrease in the density of cutin monomers and a reduction in ester bond
cross-links between the polymer chains were observed [93], consistent with the phenotype
of the c¢d! mutant, in which this gene is interrupted by a stop codon. Cutin deficiency
caused by the c¢d! mutation reduces the thickness of the cuticle, decreases its mechanical
flexibility, and increases its susceptibility to water loss, unlike some other cutin-deficient
mutants [124]. GDSL1 (CD1) acts as an acyltransferase, building up the polyester oligomers
of the cuticle [332]. This finding highlights the importance of characterizing esterase/lipases
in plants; studies in A. thaliana have shown that multiple enzymes are required to form
a functional cuticle [220], and technological applications will likely also require a series of

enzymatic reactions. The esterase/lipases from carnivorous plants have the potential to be
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particularly useful from a biotechnology standpoint because of the unique challenges faced
by their leaf surfaces, which must withstand the harsh chemical environment associated with

their digestive fluids for extended time periods.

Here, we present molecular modeling and functional analyses of 26 esterase/lipases recently
discovered from the genome of the Cape sundew (Drosera capensis) |36]. The conservation
of active site residues, key functional sequence blocks, and overall protein folds suggests that
many of the D. capensis esterase/lipase sequences form functional enzymes; however the
diversity of sequence and structural features indicates a range of potential molecular targets
and enzymatic activities. We use sequence analysis, comparative modeling with all-atom
refinement followed by in silico maturation, and comparison of protein structure networks
(PSNs) to identify distinct subgroups of proteins as a first step toward target selection for
subsequent expression and biochemical characterization. To enable analysis of structural fea-
tures with potential functional relevance, we define two novel types of functionally-targeted
protein structure networks (FT-PSNs) generated using functional information specific to
this protein class. In particular, sequence region networks (SRNs) are based on connectivity
among previously identified functional sequence blocks, while active site networks (ASNs)
are based on interactions among chemical moieties comprising the active site residues. Clus-
tering of SRNs reveals several classes with distinct structural characteristics, providing a
parsimonious descriptor of protein structure and a predictor of global flexibility. ASNs are
used to construct a measure we hypothesize to correlate with active site flexibility and hence
enzyme promiscuity. A case-control comparison with a pair of experimentally characterized
esterase-lipases (one promiscuous and one specific) suggests that most of the D. capensis
esterase/lipases have relatively rigid active sites, consistent with their having specific func-
tionalities. This approach is readily adaptable to other incompletely characterized enzyme
classes, providing a potentially useful way of selecting experimental targets based on pre-

dicted catalytic specificity.
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3.3 Methods

3.3.1 Clustering, Sequence Alignment and Prediction of Putative

Protein Structures

D. capensis proteins were annotated using the MAKER-P (v2.31.8) pipeline [40, 41], a
BLAST search against SwissProt, and InterProScan [225|, as previously described in [36].
The protein set for this study was chosen starting from all sequences identified as having
esterase/lipase functionality, followed by elimination of truncated proteins for which one or
more of the active site residues were in the missing regions. Clustering of sequences was
performed by first aligning sequences using ClustalOmega [258], with settings for gap open
penalty = 10.0 and gap extension penalty = 0.05, hydrophilic residues = GPSNDQERK,
and BLOSUM weight matrix, and then computing a complete link hierarchical clustering of
the resulting dissimilarity scores (one minus the ClustalOmega sequence similarity divided
by 100, yielding in values on the [0,1]| interval). Clustering and other data analyses were
performed using the R statistical computing platform [227]. For purposes of subsequent
alignment and comparison, subclusters were then made by defining a cutoff point at a se-
quence dissimilarity value of 0.7. The presence and position of potential signal sequences
flagging the protein for extracellular transport were assessed using the program SignalP 4.1
[216], using the following settings: organism group = eukaryotes, D-value cutoff = default
(optimized for correlation), and method = input sequences may include transmembrane re-
gions. Structures were predicted from sequences using a three-stage process, following the
in silico maturation protocol of [38]. First, an initial model was created for each complete
sequence using the Robetta implementation of the Rosetta [139, 228| package. These struc-
tures were modified in the second stage of the process by removing any residues not present
in the mature proteins and by correcting protonation states to reflect their predicted cellular

or extracellular environments (with protonation states predicted using PROPKA 3.1 [200]).
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In the third phase, each corrected model structure was equilibrated in explicit solvent; sim-
ulations were carried out using NAMD [219] with the CHARMMS36 forcefield [25] and the
TIP3P water model [129] at 293K under periodic boundary conditions. Solvated models
were energy-minimized for 10,000 iterations before being simulated for 500ps, with the final
configuration being employed in subsequent analyses. This process was performed for the 26
esterase/lipase sequences from D. capensis and several reference sequences from other plants.
At least one reference sequence was included per subcluster. These proteins were chosen for
purposes of sequence annotation: their active sites and functional regions are relatively well
annotated in the UniProt database [287], enabling comparisons to the newly characterized
sequences. To the best of our knowledge, no structures have yet been solved for a plant es-
terase/lipase, therefore we also predicted structures for the annotation reference sequences.
The PDB files corresponding to the initial and equilibrated structures for all the proteins
discussed in this manuscript are available in the Supplementary Information (Supplementary

Tables B.1 and B.2).

3.3.2 Network Modeling and Analysis

A protein structure network (PSN) was calculated for each protein from its predicted three-
dimensional structure using software tools from [38| (which also make use of VMD [119]
and the statnet library [102, 34| for R [227]). Nodes and edges were defined per [21] (see
Figure 3.1A), in which each node represents a chemical group and two nodes are adjacent
if they potentially interact (as determined by a distance criterion). Specifically, two nodes
1 and j are considered adjacent if ¢ contains at least one atom of any type that is within
4.6A of at least one atom in j, or if ¢ contains at least one carbon that is within 5.4A of
at least one carbon in j. These structures were then secondarily processed to construct
functionally targeted PSNs (FT-PSNs) using the sna library [35] within statnet. A sequence

region network (SRN) was constructed from each PSN by identifying all vertices associated
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with each conserved sequence block or inter-block region (IBR, region between conserved
sequence blocks) and defining two regions to be adjacent in the SRN if and only if there
were more than five edges between their respective vertex sets in the corresponding PSN
(Figure 3.1B). Each SRN thus encodes the non-trivial interactions among chemical groups
within each functionally significant sequence region. Active site networks (ASNs) were also
constructed from each PSN as follows. First, all vertices associated with active site residues
were identified, as were all vertices adjacent to these vertices within the PSN. The ASN was
then defined as the subgraph of the corresponding PSN induced by this combined vertex
set. Thus, each ASN represents the local interactions among chemical groups in the active
site and the other groups with which they are in contact, irrespective of where these groups

reside within the primary sequence.

31



Nodes:
M Positive
M Negative
M Polar
M Nonpolar

1. N-terminus 6. Block IlI
2. Block | m7.1BR3

m3.IBR1 m 8. Block IV
4. Block I W 9. C-terminus
5.IBR 2

DCAP_0158 SRN
12 3 4 5 6 7 8 9
|

Figure 3.1: A. Node definitions for protein structure networks (PSNs).A polypeptide (here
illustrated by the tripeptide QVW) is divided into chemical groups using the Benson-Daggett
typology (colored ovals), each group becoming a small-moiety node in the PSN. Nodes are
adjacent if at least one atom pair is within a critical radius. B. SRNs are formed from
PSNs by first grouping all nodes associated with residues in each sequence region, and then
defining region pairs to be adjacent if a threshold number of their respective PSN nodes are
adjacent (here, > 5). Schematic shows correspondence between local structure involving the
Block IV region and its SRN neighbors (IBR1, IBR3, and the C-terminal region). Shaded
bar (bottom) shows relative lengths of each sequence region; although longer regions (e.g.,
IBR3) are often well-connected, short regions (e.g. IBR1) can also be extremely central.

Clustering of SRNs was performed by calculating the Hamming distance between SRNs
(i.e., the number of edge changes needed to convert one SRN into another) and computing a
complete link hierarchical clustering solution for the resulting distance matrix (all analyses

performed using statnet and R). Inspection of the dendrogram (Figure 3.5A) indicated a
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four-cluster solution, and central graphs were calculated from the networks in each respective
cluster. Block image matrices showing the fraction of SRNs having each respective inter-

region edge are shown in Figure 3.6.

Constraint of active site residues within ASNs was assessed as follows. For each vertex
associated with a moiety in the active site, three measures were computed: the degree, or
number of ties to other vertices; the triangle degree, or number of triangles (3-cliques) to
which the vertex belongs; and core number, or number of the highest degree k-core [319] to
which the vertex belongs. Physically, these respectively indicate the total number of contacts
associated with the chemical group (potentially impeding its motion), the number of truss-
like, triangular structures in which the group is embedded (again, restricting mobility), and
the extent of local cohesion around the chemical group (found to distinguish “tighter” and
“looser” packing regimes [291]). To summarize the impact of each measure over the active
site as a whole, values were averaged across active-site vertices. To obtain an additional
constraint measure, the number of paths between each pair of active-site vertices through
neighboring (i.e., non-active site) vertices was computed, and the log of the minimum of this
value over the set of active site vertex pairs was employed as a measure of site cohesion.
Intuitively, high values of site cohesion indicate that all active site chemical groups are con-
nected by a large number of indirect contacts, while low values suggest that at least one
pair of active site moieties has few local pathways holding them together. These four indices
(mean active site degree, mean active site triangle degree, mean active site core number, and
site cohesion) were used to produce an omnibus index of site constraint via principal com-
ponent analysis (PCA) of the standardized network measures. The PCA solution revealed
one primary dimension, with the first principal component accounting for 75% of the total
variance among the four measures (ratio of first eigenvalue to second greater than 5), and
the scores on this first component scores were hence employed for subsequent analysis as the

constraint index.
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3.4 Results and Discussion

3.4.1 D. capensis Esterase/Lipases Cluster Into Distinct Subfami-

lies Based on Sequence Features

All enzymes from the D. capensis genome previously annotated as functional esterase/lipases
were clustered by sequence similarity (Figure 3.2). Several annotation reference sequences
from other plants were also included to facilitate identification of the active site residues and
functional sequence blocks. The reference sequences (referred to by their UniProt IDs) are
from the plants Carica papaya (GDL1 CARPA) and Arabidopsis thaliana (GLIP6 _ ARATH,
GDL7 ARATH, EXL3 ARATH, APG2 ARATH). Although the active site residues and
functional sequence blocks are readily found, plant esterase/lipases are relatively poorly
characterized; these reference sequences lack high-resolution structures and in most cases
detailed functional information, e.g. experimental data about their substrate preferences.
One of the objectives of this work is to provide a starting point for approaching such studies

in undercharacterized enzyme classes such as this one.
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Figure 3.2: Protein sequence clustering of esterase/lipase sequences from the D. capensis
genome, denoted by DCAP, and annotation reference sequences from other plants, which are
identified by their UniProt IDs: Carica papaya (GDL1 CARPA) and Arabidopsis thaliana
(GLIP6 _ARATH, GDL7 ARATH, EXL3 ARATH, APG2_ ARATH). Information about
these annotation reference sequences found in UniProt enabled identification of functional
sequence features in the novel D. capensis proteins via sequence alignment and comparison.
Annotation details are shown in Supplementary Figures B.1-B.5.

In all the sequences examined here, the active site residues are consistent with the catalytic
triad of a serine hydrolase, and the functional sequence blocks characterizing the GDSL
esterase/lipase family are readily identified by comparison to the work of Akoh et al. [8]
and Vujaklija et al. [306]. In most cases, SignalP 4.1 predicts the presence of a signal
peptide sequence tagging these esterase/lipases for extracellular secretion. Annotated protein
sequence alignments showing functional sequence features can be found in Supplementary
Figures B.1-B.5. The sequence alignments are color-coded to indicate both individual amino
acid properties and important sequence regions. Sequence-based clustering yields four major
groups with greater than 30% sequence identity among all members. As previously observed

for this protein class, each group has significant diversity among its component sequences;
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only one pair in this set (DCAP 0405 and DCAP _4465) has more than 80% sequence
identity. For each cluster, the central sequence (the protein having the minimum average
distance in sequence space from all the others) is highlighted. Comparative models for
these central sequences are shown to the right of the cluster figure, revealing variations on a

common structural theme.

Cluster 1 contains sequences that have the canonical GDSL motif, as found in the reference
sequence GDL1 CARPA, which was isolated from papaya latex [3] and has been proposed as
a ‘naturally immobilized” biocatalyst for performing regioselective esterification and transes-
terification reactions [80]. The enzymes in cluster 2 instead have GDSN in the first functional
block. Clusters 3 and 4 contain the motif GDSX, where X is usually a hydrophobic residue,
but is Ser or Thr in some cases. Overall, the presence of the three active site residues in 24

of the 25 D. capensis esterase/lipases suggests they are functionally active enzymes.

3.4.2 Conserved Active Site Residues Suggest Functional Enzymes

In general, esterase/lipases are characterized by four moderately conserved sequence blocks
of length 8-13 residues that contain the cataytic triad, the oxyanion hole proton donors, and
other functionally relevant residues [292]. These blocks are always found in the same order in
sequence space, though the lengths of the intervening sequences can vary substantially [71].
Functional sequence blocks I-IV are highlighted in the sequence alignments (Supplementary
Figures B.1-B.5.) In Figure 3.3A, these functional blocks are represented as sequence logos,
where the size of each residue label correlates with the number of instances at that sequence
position within each cluster. The Ser-Asp-His catalytic triad is located within two block
regions: block I (Ser) and block IV (Asp-His). The remaining two blocks contain conserved
oxyanion hole residues, Gly in block II and Asn in block III [8]. Most of the proteins in

this set contain the expected functional residues, as exemplified by the reference sequences
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GDL1 CARPA, GLIP6 ARATH, and GDL7 ARATH, as well as the functionally charac-

terized GDSL esterase/lipase GIDEX3 SOLLC from the tomato.

A
ggj Cluster 1
“ILF.FGDSL~D. G | IGR.. s=GR > Yo Fs. . G=ND |[MFD. . H o
gg Cluster 2
922) leNFGDSNSDTaG| | iR _DGRL.. | [TE— | Gorne | =W
_gg Cluster 3
“1 FvFGDS...D-GN|| GRE=NG=T. e G=ND |FWDacHPT
gg Cluster 4
o5 VDN | = TARF=| Ly sGenD | [EWD2. HPT
Block | Block Il Block Il Block IV

Block |
Block II

Block Il
I Block IV

Figure 3.3: A. The sequences of the four functional blocks (inside the colored frames) are
presented by sequence cluster (arranged from top to bottom as in Figure 3.2). The sizes of
the residue labels correlate with the fraction of sequences in the cluster having that residue
in the indicated position. Amino acid properties are color coded as follows: hydrophobic-
green, positive-blue, negative-red, cysteine-yellow, other-black. B. A representative molec-
ular model of a D. capensis esterase/lipase (DCAP_0434) with the four functional blocks
highlighted using the color-coding of the frames in Panel A. C. Expanded view of the active
site catalytic triad for a typical esterase/lipase (DCAP 0434), showing that the active site
residues are positioned in a manner consistent with catalytic activity.

Some variation is observed in the oxyanion hole residues: the stabilizing Asn residue in block

IIT is replaced by Ile in DCAP 0434, Ser in APG2 ARATH and DCAP__ 5138, and Asp
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in EXL3 ARATH. These substitutions are consistent with almost all of the D. capensis
enzymes following the canonical GDSL mechanism [231]. The two exceptions in this set
are DCAP 2088, which is missing the entirety of block III, and DCAP 6260, which has
substitutions to the two active site residues located in block IV (Asp to Leu and His to
Ser, see Figure B.4). DCAP 6260 is the only protein in this set that does not contain
all three active site residues, although it retains the canonical GDSX motif in block I and
the stabilizing oxyanion residues in block II and III. The potentially catalytically inactive
sequences (DCAP 6260 and DCAP_2088) were included because they do contain most
of the relevant sequence and structural features; we hypothesize that these proteins may
play a binding rather than catalytic role. Alternatively, they may represent pseudogenes.
DCAP 4076 has a C-terminal extension not found in the other esterase/lipases, the role of
which is currently not known, although it has moderate sequence similarity to transcriptional

regulation proteins in Arabidopsis thaliana and soybean (Supplementary Figure B.8A.).

3.4.3 Molecular Modeling

The structure of a typical GDSL esterase/lipase has a 4-stranded parallel S-sheet with six
a-helices arranged around it (shown for a representative example in Figure 3.3B). Due to the
lack of solved structures for plant esterase/lipases, comparative modeling was used rather
than traditional homology modeling. To make a standard homology model, the sequence of
interest is threaded onto the known structure of a closely related protein, followed by energy
minimization. In comparative modeling, the procedure is similar except that the protein
is modeled piecewise using multiple template structures selected by the software (in this
case Rosetta [139]) from the Protein Data Bank, followed by global minimization using a
simplified force field. This methodology is regularly validated via CAMEO [99], and is the
basis of well-known structure prediction systems such as Rosetta (used here) and I-TASSER

[339]. All template structures used for a representative example (DCAP 0434) are tabulated
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in Supplementary Table B.3 and the parent structures for each model can be found in the

headers for their respective .pdb files (available for download in the SI.)

A. DCAP_0158

1. N-terminus 2.Block| M 3.I1BR1 4. Block Il 5.1BR2 6.Block Ill M 7.1BR3 M 8.Block IV M 9. C-terminus

Figure 3.4: Protein structure networks of DCAP 0158 (Cluster 4a) and DCAP 1380 (Clus-
ter 3). Each node (closed circles) represents a chemical moiety and is color coded based on its
respective sequence position in a functional block, terminus or IBR. Ties (gray lines) indicate
physical interactions between a set of nodes. The positioning of the nodes in this represen-
tation is optimized to show topology and does not directly correspond to three-dimensional
space; proximity within the cutoff distance is solely indicated by the ties.

We used the initial models generated by the Robetta server [228| as a starting point; how-
ever as these structures are not calculated in an aqueous environment and do not account
for protonation states, we modifed them to produce models that are more representative of
the mature enzyme (available for download in the SI.) Signal sequences were removed and
protonation states were corrected consistent with their expected functional environments.
These structures were then subjected to molecular dynamics simulation in explicit solvent
to generate the equilibrated structures (illustrated in Supplementary Figure B.6). The equi-
librated molecular models of these proteins show that although they all have the expected
overall fold, substantial diversity exists in the placement of secondary structure elements, as

well as the lengths of the linker regions (Supplementary Figures B.7 and B.8B). All three
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active site residues are accessible, in contrast to lipases, where only the serine is exposed due
to the hydrophobic “lid" that is characteristic of that enzyme class. The positioning of the
catalytic triad residues, which is consistent with catalytic competence, is shown in Figure
3.3C. The active site residues are located in loop regions, with the occasional exception of
the Ser, which is part of an a-helix in some esterase/lipases (e.g. in Cluster 1). The con-
served oxyanion hole residues in Block II reside in a loop region, while half of the Block III
residues lie in a -sheet and the other half in an a-helix. This mixture of structural motifs
presents a challenge for coarse-grained network analysis, where a common approach is to
break up the protein into discrete regions based on secondary structure. In the case of the
plant esterase/lipases of this set, that classification does not align with the functional re-
gions identified in previous studies of esterase/lipases; we have therefore used the functional
sequence blocks, termini, and inter-block regions rather than secondary structure elements

as the basis for constructing the FT-PSN representation of the overall enzyme folds.
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3.4.4 Protein Structure Networks

A S

0.30

0.20

Distance

0.00 0.10
L1 1

DCAP_6217

GLIP6_ARATH
DCAP_5461
DCAP_0158

EXL3_ARATH
DCAP_0405
DCAP_6218
DCAP_1761
DCAP_5587
DCAP_4076
DCAP_1365
DCAP_6260
DCAP_2187
DCAP_5138

APG2_ARATH
DCAP_2089
DCAP_5165
DCAP_5529
GDL1_CARPA
DCAP_1460
DCAP_4098
DCAP_8086
DCAP_0434
DCAP_6947
DCAP_1840
DCAP_4465
DCAP_0448
DCAP_1380
DCAP_3343

z
<
o
<
N
N
)
[a)
O]

1. N-terminus 2.Block| M 3.1BR1 4. Block Il 5.1BR2 6.Block Il M 7.1BR3 8. Block IV M 9. C-terminus

Figure 3.5: A. Clustering of sequence region networks (SRNs) for modeled esterase/lipase
structures from the D. capensis genome and reference sequences from other plants. Inset
structures depict the most central member of each cluster. B. Central graphs for the SRNs
in each cluster. Colors for nodes corresponding to conserved (circular) and non-conserved
(diamond-shaped) sequence regions correspond to residue colors in panel A; thick lines indi-
cate connections along the protein backbone.

Contacts between structural regions of the esterase/lipases were analyzed using a network
formalism; for each protein, full PSNs and two novel types of FT-PSNs were generated. First,
full PSNs were calculated for the esterase/lipase molecular models based on the formalism
of Benson and Daggett [21]|, where each amino acid is composed of nodes defined by chem-
ical functionality. Two illustrative visualizations of PSNs from different sequence clusters
are shown in Figure 3.4. Although we refer to the functional blocks themselves by Roman

numerals [-IV as defined in the earlier literature for the sake of comparison to prior work,
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for purposes of generating FT-PSNs we define nine sequence regions comprising the four
functional blocks as well as the regions between them (inter-block regions, or IBRs), and the
N- and C-termini. These sequence regions are numbered 1-9 in order from the N-terminus to
the C-terminus for each protein. In these PSN examples, nodes (chemical moieties) belong-
ing to the termini, functional blocks, and inter-block regions are color coded as indicated
in the legend. This representation allows rapid examination of the degree of connectivity
between different sequence regions, e.g. it can easily be seen that the nodes of Block 1T (or-
ange) are more connected to each other in DCAP 0158 (3.4A) than in DCAP 1380 (3.4B),
while many Block III nodes are connected to those from other sequence regions in both pro-
teins. Although this representation provides a visualization of connectivity between different
parts of the protein separate from the three-dimensional structure, the number of nodes and
the complexity of the plots makes comparison difficult. Therefore, we define two types of

specialized FT-PSNs based on functionally relevant sequence features of these proteins.

In order to further simplify the graph representations, a block model [319] was constructed
for each protein by condensing all nodes within each of these sequence regions to form a
coarse-grained F'T-PSN whose edges represent contacts between moieties in each pair of
sequence regions (each region constituting a node within the block model). These sequence
region networks (SRNs), provide a direct representation for the structure of contacts among
functionally significant components of the protein, which we hypothesize to be related to
overall function. To identify distinct classes of functionally relevant structure within the
D. capensis esterase/lipase set, we then performed a hierarchical clustering of SRNs by
Hamming distance (i.e. the number of adjacency differences among sequence regions between
two respective SRNs). Figure 3.5A shows the dendrogram for the clustered SRNs, along with
structural models for the protein structure corresponding to the central graph for each SRN
cluster. The central graphs themselves are shown in Figure 3.5B. Following clustering of
SRNs by Hamming distance, clusters were summarized by forming block image matrices

[319]. Within each matrix, the 7, j cell value corresponds to the fraction of cluster members
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whose SRN contains an edge between sequence region ¢ and sequence region j. Schematic
representations for each cluster, illustrating how the adjacency matrices for these models are
constructed, are shown in Figure 3.6. In addition to showing distinct structural patterns
across clusters, Figure 3.6 shows a fairly high level of consensus within clusters (with most
cells having densities close to either 0 or 1). For this reason, we summarize the SRNs within
each cluster by their central graph, which is equivalent to dichotomizing the image matrices

at 0.5; these networks are shown in Figure 3.5B.

Clustering of the SRNs reveals important differences among esterase/lipases that are not
apparent from the sequence clusters, as well as some common features of potential struc-
tural and functional significance. For example, the IBR between Blocks II and III (node 5)
is highly central across all structures, being in direct contact with a large number of other
sequence regions and frequently bridging regions not otherwise in contact. This suggests a
key structural role for this highly variable (i.e. non-conserved) sequence region that may
have been overlooked by purely sequence-based analyses. Likewise, Block III has identical
neighbors in all clusters, being tied only to its sequence-space neighbors and to Block I
(node 2). This highly conserved pattern of both interaction and non-interaction is sugges-
tive of functional significance. By contrast, the other interaction partners of Block I vary
considerably across clusters, as do e.g. the partners of IBR 1 (node 3). Such variation in
interaction among conserved sequence blocks may be indicative of corresponding differences

in functional characteristics.

Interestingly, clustering by structural similarity of SRNs yields a pattern that is distinct from
clustering by sequence (Figure 3.2). Although sequence homology is often a good indicator
of broad functional similarity at the level of protein classes, structural comparison provides
a much more precise tool for functional differentiation among related proteins. As with
previous applications of structure networks to study allostery, binding, inter /intramolecular

interactions, and other phenomena otherwise difficult to ascertain using only sequence anal-
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ysis [253, 21, 291], SRNs such as those introduced here have the potential to complement

sequence analytic methods for purposes such as functional prediction and target selection.

Cluster A Cluster B
123456789

Fraction Present
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Cluster C
123456789
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—~9000000000
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© ® N O AW N =

Figure 3.6: Block image matrices for the clustered sequence region networks. The i, j cell
value for each matrix indicates the fraction of cluster members whose SRN contains a tie
from region i to region 5. Node numbers correspond to sequence regions numbered from the
N-to the C-terminus as defined in the text.

The coarse-grained network representations described above provide a useful basis for com-
parison of overall structural properties among esterase/lipases, but they do not directly
address the flexibility and accessibility of the active site itself, which is a potential indicator
of enzyme specificity [12]. Most of what is known about the esterase/lipase family to date
comes from the microbial esterase/lipases, which are generally regarded as promiscuous en-
zymes. It has been suggested that this property may generalize to plant esterase/lipases,
which have so far not been extensively characterized. However, as discussed above, many
plants have numerous esterase/lipase paralogs, possibly indicating that the same diversity
of activity is accomplished using multiple enzymes, each with its own functionality, rather

than fewer multifunctional enzymes.

Because enzyme promiscuity is strongly correlated with active site flexibility [12], we used

a similar analysis of network structure to investigate the ties among nodes in the active site
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regions of the D. capensis esterase/lipases. As before, we began by constructing moiety-
level PSNs using the Benson-Daggett representation. We then formed active site networks
(ASNs) by taking the subgraph of each PSN induced by the nodes corresponding to active
site moieties together with the union of their respective network neighborhoods. Each ASN
thus represents the pattern of connectivity among moieties topologically local to the active
site. Structural constraints on the active site were measured using several common network
properties: mean degree (the average number of ties each node has to other nodes), mean
triangle degree (the number of memberships in 3-cliques or triangles), mean k-core number
(where the kth core of a graph is the maximum set of nodes such that every member of
the set is adjacent to at least k other nodes), and inter-node connectivity (counts of paths
connecting active-site nodes via other nodes in the ASN). These properties were computed
for all nodes corresponding to active site moieties, and are plotted in Supplementary Figure
B.9. They were then composited by taking their first principal component, yielding a single

measure of active site constraint for each network.
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Figure 3.7: Main panel: constraint level of active site moieties within protein structure
networks. Red-shaded region indicates lower constraint levels than the bacterial enzyme
TesA; yellow and blue shaded regions respectively indicate levels of constraint between TesA
and tomato cutinase and levels of constraint greater than tomato cutinase. Nearly all plant
enzymes studied here show more active site constraint than TesA, with tomato cutinase
falling near the median of these. Side panels: ASN visualizations for DCAP 3343 (left) and
DCAP 0405 (right) show respective examples of low and high levels of active site constraint.
Nodes correspond to moieties, with backbone (BB) and side chain (SC) moieties for the three
active site residues indicated by color. Highly cohesive ASNs imply numerous constraints on
the motion of active site residues, potentially leading to higher levels of substrate specificity.

Figure 3.7 shows the active site constraint measure for each enzyme in our set, as well as two
enyzmes for which more detailed activity data is available. The latter two, well-characterized
enzymes were selected as a “case/control” validation for the functional significance of the
constraint measure: the tomato cutinase (GIDEX3 SOLLC), which is known to catalyze a
specific reaction (high-specificity “case”); and E. coli TesA, (TESA ECOLI), which is known
to accept a variety of substrates (low-specificity “control”). Consistent with the hypothesis
that the large number of esterase/lipases in typical plant genomes corresponds with a higher
level of substrate specificity, we observe only two plant enzymes with a level of constraint

lower than the promiscuous TesA (red-shaded area); of the remainder, roughly half showed
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constraint levels between TesA and tomato cutinase (yellow-shaded area) and half showed
higher constraint levels (blue-shaded area). Our analysis suggests that the majority of es-
terase/lipases in D. capensis are likely to be highly specific, with the prominent exception
of DCAP _3343. This enzyme, and GDL77 ARATH from Arabidopsis, show extremely low
levels of active site constraint implying a very high level of local flexibility. We hypothesize
that these enzymes will accept a wider range of substrates than the others examined here,
and that they occupy a distinct functional role (perhaps more similar to the role of microbial

esterase/lipases).

Figure 3.8 shows structural models of the D. capensis esterase/lipases with the least (red)
and most (blue) constrained active sites, as determined by the ASN flexibility metric plot-
ted in Figure 3.7. Somewhat counterintuitively, the protein with the less flexible active site
(DCAP _3343) has a better-defined secondary structure. Based on the DSSP secondary
structure definitions [131], DCAP 0405 has 29.3 % a-helix, 2.9 % p-strand, and 67.8%
turn/coil, while (DCAP _3343) has 43.6% a-helix, 5.3% (-strand, and 51.1% turn/coil. Al-
though DCAP 3343 has more a-helical and [-strand secondary structure elements, the
structure around the active site itself is looser and less densely connected than that of
DCAP 0405, where loops and random coil regions interact to hold the active site residues
more rigidly in place. Although unstructured regions are often regarded as highly flexi-
ble regions, this depends on their context in the overall structure; recent NMR dynamics
measurements and MD simulations reveal that loops undergo dynamics over a wide range
of timescales [204] and their motions are frequently involved in allosteric regulation [109].
Longer loops, which are more able to become mutually entangled with other structural el-
ements are more likely to be rigid [98], which is consistent with the predicted structure of

DCAP_ 0405.
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Figure 3.8: Structural models of the least and most constrained enzymes based on the ASN
analysis shown in Fig 3.7. A. Surface and ribbon representations of DCAP 3343, which is
the only D. capensis esterase/lipase with a less constrained active site than that of TesA from
E. coli. B. Surface and ribbons for DCAP 0405, the most constrained enzyme in this set.
C. and D. Expanded views of the active ites of these enzymes show the differences in active
site constraint, which are not obvious from examination of the overall structural model. The
active site residue side-chains of DCAP 3343 (C) are oriented out and away from each other,
while those of DCAP 0405 are tightly held in a closely packed conformation.

3.5 Conclusion

In summary, molecular modeling and protein structure network analysis of 26 esterase/lipases
identified from the genomic DNA of Drosera capensis suggest that—with the exception of
one protein, DCAP 3343—the active site regions of these enzymes are less flexible than
those of related microbial proteins. We hypothesize that these enzymes act (like tomato
cutinase) to catalyze specific reactions, with the outlying protein behaving more like micro-
bial esterase/lipases. Two new types of protein structure networks, seqence region networks
(SRNs) and active site networks (ASNs) were defined in order to characterize overall protein
flexibility and that of the active sites. Principal component analysis of active site constraint

measures generated from PSNs enabled us to sort the esterase/lipases from decreasing to in-
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creasing active site rigidity; case/control validation using a pair of well-characterized enzymes
suggests that our index is related to substrate specificity. Clustering by SRN shows struc-
tural differences between enzymes with respect to functionally significant sequence blocks,
as well as an apparently conserved structural role for a highly sequence-variable and pre-
viously unnoted inter-block region. These results may serve to guide target selection for
subsequent structural or functional studies, and the analytical strategy employed may be

fruitfully adapted to other protein classes.
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WW domain ligand binding specificities in the Hippo pathway reveals STXBP4 as YAP
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Chapter 4

Elucidation of WW domain ligand
binding specificities in the Hippo
pathway reveals STXBP4 as YAP

inhibitor

4.1 Summary

The Hippo pathway, which plays a critical role in organ size control and cancer, features
numerous WW domain-based protein-protein interactions. However, ~100 WW domains
and 2,000 PY motif-containing peptide ligands are found in the human proteome, raising a

“WW-PY" binding specificity issue in the Hippo pathway. In this study, we have established
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the WW domain binding specificity for Hippo pathway components and uncovered a unique
amino acid sequence required for it. By using this criterion, we have identified a WW domain-
containing protein, STXBP4, as a negative regulator of YAP. Mechanistically, STXBP4
assembles a protein complex comprising a-catenin and a group of Hippo PY motif-containing
components/regulators to inhibit YAP, a process that is regulated by actin cytoskeleton
tension. Interestingly, STXBP4 is a potential tumor suppressor for human kidney cancer,
whose downregulation is correlated with YAP activation in clear cell renal cell carcinoma.
Taken together, our study not only elucidates the WW domain binding specificity for the
Hippo pathway, but also reveals STXBP4 as a player in actin cytoskeleton tension-mediated

Hippo pathway regulation.

4.2 Introduction

Signaling proteins often entail modular domains that facilitate protein-protein interactions
to assemble functional protein complexes, control enzymatic activity and regulate protein
cellular localization [60, 209]. Importantly, the recognition between domains and their pep-
tide ligands is usually specific, thus allowing the transduction of unique information through
signaling cascades [66, 114]. The WW domain is a small protein module that is defined
by the presence of two tryptophan (W) residues separated apart by ~25 amino acids [271].
WW domain and its cognate proline-rich peptide motif have been identified within various
protein complexes widely distributed in plasma membrane, cytoplasm and nucleus. Failure
of their recognition is associated with multiple human diseases including Alzheimer’s disease
[155, 177], Huntington’s disease [85, 205|, Liddle Syndrome [103], Golabi-Ito-Hall Syndrome
[165, 282], muscular dystrophy [28, 83, 233| and cancers [53, 240]. These facts highlight a
crucial role of the WW domain-mediated protein-protein interaction in biological processes

and tissue homeostasis.
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WW domain was initially uncovered by characterizing the protein sequence of YAP, a key
transcriptional co-activator downstream of the Hippo pathway [127, 202, 270]|. The Hippo
pathway is a highly conserved signaling pathway involved in tissue homeostasis, organ size
control and cancer development [101, 127, 202, 88, 243]. In mammals, the Hippo pathway
is composed of a kinase cascade (two serine/threonine kinases, MST and LATS; and the
adaptors SAV1 for MST and MOBI1 for LATS), downstream effectors (YAP and TAZ), and
nuclear transcriptional factors (TEADs). MST phosphorylates and activates LATS, which in
turn phosphorylates YAP and TAZ. The phosphorylated YAP /TAZ can be recognized by 14-
3-3 proteins, retained in the cytoplasm and eventually targeted by S-TRCP E3 ligase complex
for degradation. When the Hippo pathway is inactivated, unphosphorylated YAP /TAZ enter
into the nucleus, where they associate with TEAD transcriptional factors to promote the

transcription of genes that are involved in proliferation and survival.

Notably, many Hippo pathway components and regulators contain either the WW do-
main or its proline-rich peptide ligand, mostly “PPxY” motif (P, proline; Y, tyrosine; x,
any amino acid; hereafter named as “PY" motif) [240, 269]. YAP, TAZ, SAV1 and KI-
BRA, an upstream component of the Hippo kinase cascade [335], are four known WW
domain-containing components of the Hippo pathway [240]. In the nucleus, the WW do-
main of YAP/TAZ is a requirement for their association with a group of nuclear tran-
scriptional factors and regulators that contain the PY motif to regulate gene transcrip-
tion [46, 87, 107, 156, 224, 267, 268, 45]. In the cytoplasm, the PY motif of LATS1/2
is involved in the LATS1/2-mediated YAP/TAZ phosphorylation [104, 299]|; several PY
motif-containing proteins can physically bind the WW domain of YAP/TAZ and promote
YAP/TAZ’s cytoplasmic translocation [51, 84, 159, 190, 284, 313, 314, 315, 243]. Moreover,
the phosphorylated YAP/TAZ can negatively regulate Wnt pathway by forming a complex
with DVL2, which is mediated by the WW domain of YAP/TAZ and the PY motif of
DVL2 [296]. As a Hippo upstream component, KIBRA can similarly associate with several

Hippo PY motif-containing proteins and negatively regulate YAP [284, 326]. On the other
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hand, several WW domain-containing proteins have been shown to modulate the Hippo
pathway activity by regulating the Hippo PY motif-containing components and regulators
[6, 241, 242, 290, 308, 333]. Collectively, these facts suggest that the WW domain and PY
motif-mediated protein-protein interaction plays a fundamental role in building up the major

framework of the Hippo pathway.

Actually, ~100 WW domains and 2,000 PY motif-containing peptides have been predicted
in the human proteome [282], raising an issue of binding specificity for the proteins con-
taining WW domain and PY motif. Indeed, a large scale of WW domain array screen
only confirmed 10% of the tested WW domain-ligand interactions [114|. Several large-
scale proteomic studies exclusively identified a group of PY motif-containing proteins (e.g.,
LATS1/2, AMOTs, PTPN14) as the binding partners for the Hippo WW domain-containing
components [63, 15, 315|. These facts indicate the binding specificity for the Hippo WW
domain-mediated protein-protein interaction, while the underlying mechanism is still largely

unknown.

In this study, we demonstrated the WW domain binding specificity for the Hippo pathway
proteins and uncovered a highly conserved amino acid sequence required for it. By using this
criterion, we identified STXBP4 as a novel Hippo pathway regulator in human proteome.
Mechanistically, STXBP4 assembled a complex with a-catenin and several Hippo PY motif-
containing components/regulators to negatively regulate YAP when actin cytoskeleton ten-
sion is low. Moreover, both TCGA data and tissue array studies suggested STXBP4 as a
potential tumor suppressor in human kidney cancer, whose downregulation is significantly
correlated with YAP activation in clear cell renal cell carcinoma. Collectively, our study
not only elucidated the WW domain binding specificity for the Hippo pathway protein-
protein interaction network, but also identified STXBP4 as a Hippo pathway regulator and

a potential tumor suppressor in kidney cancer development.
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4.3 Results

4.3.1 Binding specificity exists for the Hippo WW domain-containing

components

We re-analyzed our previously published proteomic data [315] for four Hippo WW domain-
containing components YAP, TAZ, SAV1 and KIBRA (Figure 4.1A), and found that most of
the known Hippo PY motif-containing proteins (e.g., AMOT, AMOTL1, AMOTL2, LATSI,
LATS2, PTPN14, PTPN21, WBP2) were hardly detected in the SAV1-associated protein
complex (Figure 4.1B). Moreover, proteomic analysis of the WW domains isolated from these
four Hippo components (Figure C.1A) further confirmed this finding, where the WW domain
of YAP, TAZ and KIBRA, but not that of SAV1, retrieved most of these known Hippo PY
motif-containing proteins (Figure 4.1B). These data suggest that the WW domain of SAV1
is different from that of YAP, TAZ and KIBRA in associating with the known Hippo PY

motif-containing proteins.
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Figure 4.1: The Hippo WW domain shows binding specificity with the known
Hippo PY motif-containing proteins. (This figure is related to Figure C.1 and
Tables C.1-C.4) (A) Schematic illustration of the human Hippo pathway, where the Hippo
WW domain-containing components are highlighted. (B) A summary map of cytoscape-
generated merged interaction network for the Hippo WW domain-containing components
and their WW domains. (C) The Hippo WW domain-containing proteins show binding
specificity to the known Hippo PY motif-containing proteins. TAP-MS analysis of a series
of WW domain-containing proteins were performed and their binding with the indicated
Hippo PY motif-containing proteins was summarized in a heatmap. (D) The HCIPs for
the Hippo WW domain-containing proteins were involved in different signaling pathways
compared to those retrieved from the control WW domain-containing proteins. Gene On-
tology analysis was performed. (E) Validation of the binding specificity for the Hippo WW
domain-containing proteins. HEK293T cells were transfected with the indicated SFB-tagged
constructs and subjected to the pulldown assay. (F') Validation of the binding specificity for
the derived WW domains from the Hippo WW domain-containing proteins. HEK293T cells
were transfected with the indicated SFB-tagged constructs and subjected to the pulldown
assay.

Next, we expanded our proteomic analysis for additional 22 WW domain-containing proteins
(Figure C.1B; Tables C.1-C.3) and examined their ability to isolate these known Hippo PY
motif-containing proteins. Consistent with previous reports [6, 241, 290, 308, 333|, WWOX,
BAG3 and members of the HECT family of E3 ligases NEDD4L, WWP1 and WWP2 were
found to form complexes with the Hippo PY motif-containing proteins such as AMOT family
proteins, CCDC85C and WBP2 (Figure 4.1C). However, we failed to identify these Hippo PY
motif-containing proteins as the binding proteins for other tested WW domain-containing
proteins (Figure 4.1C). Moreover, the high-confident interacting proteins (HCIPs) of the
Hippo WW domain-containing components were involved in different signaling pathways
from those of the control WW domain-containing proteins (Figure 4.1D and Table EV4). We
also performed proteomic analysis for the WW domains isolated from 13 randomly selected
WW domain-containing proteins, and found that only 10.2% of the HCIPs were shared by
the Hippo and control WW domains (Figure C.1C). Taken together, these results indicate
that the WW domains of the Hippo pathway components YAP, TAZ and KIBRA possess a

binding specificity with the known Hippo PY motif-containing proteins.
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4.3.2 Validation of the Hippo WW domain binding specificity

To validate our proteomic findings, we examined the interaction between a series of WW
domain-containing proteins and AMOT family proteins. Unlike YAP, TAZ and KIBRA,
SAV1 failed to bind AMOT and AMOTLI1 (Figure 4.1E). Consistently, we hardly detected
the association between SAV1 and LATS1 in our experimental setting (Appendix Figure
C.6A). Moreover, BAG3, WWOX and several members of the HECT family of E3 ligases
can interact with AMOT proteins (Figure 4.1E), which is consistent with our proteomic
study (Figure 4.1C). However, other tested WW domain-containing proteins as well as their
derived WW domains failed to bind AMOT family proteins (Figures 4.1E, F). These results

demonstrate the WW domain binding specificity for the Hippo pathway proteins.

4.3.3 A highly conserved amino acid sequence is required for the

Hippo WW domain binding specificity

To further explore the underlying mechanism, we analyzed the WW domain protein sequence
for the Hippo pathway components as well as WWOX, BAG3 and several members of the
HECT family of E3 ligases, which can bind the known Hippo PY motif-containing proteins
(Figure 4.2A). Interestingly, in addition to the two tryptophan residues, additional 9 amino
acids were found to be highly conserved among these WW domains (Figure 4.2A). We
hypothesized that this conserved 9-amino acid sequence could be required for the specific

association with the known Hippo PY motif-containing proteins.
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A. B.
WWOX-WW 1 DELPPGWEERTTKD-GWVYYANHTEEKTOWEHEET 34 4340t m0 0P
BAG3-WW 1 DPLPPGWEIKIDEQTGWPFFVDHNSRTTTWHDERV 35 L PGWEDYFYFH T WP
NEDD4L-WW1 1 PPLPPGWEEEVD-NLGRTYY¥VNHNNRTTQWHRESL 34 [TT T T ] sAv-ww
NEDD4L-WW2 1 PGLPSGWEERKDAK-GRTYYVNHNMRTTTWTREIM 34 AFPBB1-WW
NEDDAL-WW3 1 SFLPPGWEMRIAFN-GRPFFIDHNTKTTTWEDERL 34 iEggg'm
HMEDD4L-WW4 1 GPLPPGWEERIHLD-GRTFYIDHNSEITOWEDPRL 34 | o ARHGJ“._F"B—\I'II'\'\'
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Figure 4.2: Identification of a conserved 9-amino acid sequence that determines
the Hippo WW domain binding specificity. (This Figure is related to Figures
C.2 and C.3; Figures C.6-C.8; Table EV5) (A) Sequence alignment of the WW do-
mains derived from the WW domain-containing proteins that are known to bind the Hippo
PY motif-containing proteins. The two conserved tryptophan restudies were highlighted in
purple. Additional conserved amino acid residues were highlighted in yellow. (B) Sum-
mary of the residue difference in the identified 9-amino acid sequence for the control WW
domains. The conserved two tryptophan residues are labelled in grey; the changed residues
are labelled in orange; and the unchanged residues are labelled in white. (C-G) Valida-
tion of the identified 9-amino acid sequence in determining the Hippo WW domain binding
specificity. The requirement of the identified 9-amino acid sequence for AMOT association
was respectively examined for TAZ (C), TAZ-WW domain (D), KIBRA (E), YAP (F) and
SAV1 (G). HEK293T cells were transfected with the indicated SFB-tagged constructs and
subjected to the pulldown assay.
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To test this hypothesis, we examined the identified 9-amino acid sequence in the control
WW domain-containing proteins that failed to bind the Hippo PY motif-containing proteins
(Figure 4.1C) and found that their WW domains have at least one of these 9 amino acids
replaced by other residues (Figures 4.2B and C.2A). As for SAV1, the conserved glutamate
residue within this 9-amino acid sequence was found changed to a serine in its WW domain
(Figure 4.2A). Consistently, mutating either of these identified 9 amino acids to alanine
dramatically disrupted the association of AMOT with TAZ (Figure 4.2C) or its WW domain
(Figure 4.2D). Similar findings were also observed for both KIBRA (Figure 4.2E) and YAP
(Figure 4.2F). Notably, mutations of the G and E residues among these identified 9 amino
acids are less detrimental to the Hippo WW-PY interaction as compared with other identified
sites (Figures 4.2C-4.2E). We also tested the conservative substitution for the “E/D", “Y /F"
or “F/Y" of this conserved amino acid sequence, and found that the association of AMOT
with TAZ and KIBRA was not affected by these substitutions (Appendix Figure C.6B).
Interestingly, an interaction between SAV1 and AMOT was recovered when the unmatched
serine residue was replaced by glutamate, allowing SAV1 WW domain to fit the 9-amino
acid sequence criterion (Figure 4.2G). Taken together, these results demonstrate that the
identified 9-amino acid sequence determines the WW domain binding specificity for the

Hippo pathway proteins.

We also examined the Hippo WW domain-containing components in Drosophila and found
that this 9-amino acid sequence was highly conserved in the WW domain of Yorkie and
Kibra, while Salvador similarly contains a replacement of the conserved glutamate residue
by alanine (Appendix Figure C.7). By taking YAP as an example, conservation of this 9-
amino acid sequence in the YAP WW domains can be even tracked to Capsapsora owczarzaki
(Figure C.2B and Table EV5), an unicellular specie that is known to contain the functional
Hippo pathway components [249]. Interestingly, in Capsapsora owczarzaki, a PY motif was
also identified in LATS (Figure C.2C), suggesting that this conserved 9-amino acid sequence

may play a crucial role for the Hippo pathway at its premetazoan origin.
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4.3.4 Role of the 9-amino acid sequence in assembly of a specific

WW-PY complex involving the Hippo pathway proteins

Next, we analyzed a NMR solution structure of the YAP-WW1 domain (the first WW
domain of YAP) and SMAD7-PY motif-containing peptide complex [10]. Interestingly, the

identified 9 amino acids form as two functional groups.

First, together with the second tryptophan (W199 of YAP-WW1), the conserved residues
E178, Y188, H192 and T197 were involved in the binding interface with the SMAD7-PY
motif (Figure C.3A). Specifically, hydrogen bond (H-bond) formation was respectively paired
between H192 (YAP-WW1 domain) and Y211 (SMAD7-PY motif), and T197 (YAP-WW1
domain) and P209 (SMAD7-PY motif) (Figures C.3B and C.3C). Hydrophobic contact not
only existed within the intramolecular interaction between the W199 and Y188 residues of
YAP1-WW domain, but also mediated their intermolecular interaction with the P208 and
P209 residues within SMAD7-PY motif, respectively (Figures C.3B and C.3C). E178 (YAP-
WW1 domain) functioned in sustaining the intermolecular contact between H192 (YAP-
WW1 domain) and Y211 (SMAD7-PY motif) by forming both electrostatic and H-bonding
interactions with H192 (Figures C.3B and C.3C).

Second, together with the first tryptophan (W177 of YAP-WW1 domain), the rest residues
L173, P174, G176, F189 and P202 formed a hydrophobic cluster at the backside of the
YAP-WW1/SMAD7-PY complex (Figures C.3A and C.3C). Although not directly interacted
with SMAD7-PY motif, this hydrophobic cluster may maintain a unique YAP-WW1 domain
structure to facilitate its binding with SMAD7-PY motif. Since these hydrophobic cluster
residues are also frequently replaced by other amino acids in the non-Hippo WW domains
(Figures 4.2B and C.2A), we consider them as part of the determinants for the specific Hippo
WW-PY recognition.

To further determine the role of this identified 9-amino acid sequence from a structure-
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based perspective, we mutated each of these conserved residues into alanine in silico and
performed root-mean-square deviation (RMSD) analyses using the average unbound (apo)
structure of YAP-WW1 domain as a reference. Interestingly, mutating either of the iden-
tified residues within the backside hydrophobic cluster significantly altered the YAP-WW1
protein structure as indicated by their relatively high RMSD values, while this was not the
case for the residues within the binding interface with SMAD7-PY motif (Figure C.3D).
These results further confirm the hypothesis that the backside hydrophobic cluster may play
a role in maintaining a functional YAP-WW1 structure. In addition, mutating either of the
conserved residues altered the complex structure (Figure C.3E and Appendix Figure C.8A)
and increased the average distance between YAP-WW1 domain and SMAD7-PY motif pep-
tide (Figure C.3F), indicating the intervention of their complex formation. As a control, we
analyzed a NMR solution structure of the APBB3-WW domain (Appendix Figure C.8B).
The APBB3-WW domain failed to bind the Hippo PY motif-containing proteins (Figure
4.1F), since it contains two unmatched residues (as compared to the identified 9-amino acid
sequence) locating in the PY motif binding interface (Figures 4.2B and C.2A; Appendix Fig-
ure C.8B). Consistently, the average distance between APBB3-WW domain and SMAD7-PY
motif peptide is comparable to that between YAP-WW1 domain mutants and SMAD7-PY
motif peptide (Figure C.3F), suggesting an unstable complex formation for APBB3-WW
domain and SMAD7-PY motif. Notably, the standard deviation of average distance value
for both YAP-WW1 domain mutants and APBB3-WW domain complexes is relatively larger
than that of the control YAP-WW domain complex (Figure C.3F), indicating a substantial
movement between SMAD7-PY motif peptide and the YAP-WW1 domain mutants as well

as APPB3-WW domain.

Taken together, these simulation analyses suggest that the identified 9-amino acid sequence
is involved in binding PY motif and maintaining a unique WW domain structure, which
both determine the Hippo WW domain binding specificity with the known Hippo PY motif-

containing proteins.
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4.3.5 Identification of STXBP4, a WW domain-containing protein,

whose WW domain fits the 9-amino acid sequence criterion

Next, we searched all the WW domain-containing proteins in the human proteome and
identified 12 WW domain-containing proteins whose WW domains fit such a 9-amino acid
sequence (Figure C.4 and Table EV6). Among them, role of STXBP4 in the Hippo pathway
regulation has not been fully characterized (Figure C.4). Although no STXBP4 ortholog
is identified in Drosophila, this 9-amino acid sequence of the STXBP4 WW domain was
largely conserved in different species (Figure 4.3A). Interestingly, STXBP4 can form a com-
plex with several Hippo PY motif-containing regulators including AMOT, AMOTL2 and
PTPN14 (Figure 4.3B). Mutating either of the conserved 9-amino acid residues diminished
the interaction between STXBP4 and AMOT (Figure 4.3C). As expected, the association
between STXBP4 and these PY motif-containing Hippo regulators are mediated by the WW
domain of STXBP4 (Appendix Figure C.9A) and the PY motif of these Hippo regulators

(Appendix Figure C.9B).
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Figure 4.3: STXBP4 is a Hippo pathway regulator, which contains a WW domain
that fits the criterion of the Hippo WW domain binding specificity. (This figure
is related to Figure C.4, Appendix Figures C.9 and C.10; Table EV6)

(A) Schematic illustration of STXBP4 protein, where the identified 9-amino acid sequence
of STXBP4-WW domain was aligned across the indicated species.

(B) STXBP4 forms a complex with several Hippo PY motif-containing proteins. Immuno-
precipitation was performed with STXBP4 antibody.

(C) The identified 9-amino acid sequence is required for the association between STXBP4
and AMOT. HEK293T cells were transfected with the indicated STXBP4 mutants and
subjected to the pulldown assay.

(D) Structural comparison between the YAP-WW1/SMAD7-PY and STXBP4-
WW/SMAD7-PY complexes. The identified 9 amino acid residues were indicated for
both complexes.

(E) The YAP-WW1/SMAD7-PY and STXBP4-WW/SMAD7-PY complexes show similar
cumulative average trend and average binding free energy (AG) within standard deviation
(the shaded region) of one another.

(F) Loss of STXBP4 inhibits YAP phosphorylation and LATS activation. Western blotting
was performed with the indicated antibodies.

(G and H) Loss of STXBP4 activates YAP. STXBP4 deficiency promotes YAP nuclear
translocation (G) and YAP downstream gene transcription (mean + s.d., n=3 biological
replicates) (H). Scale bar, 20 pm.*** p < 0.001 (Student’s t-test).

(I) WW domain is required for the STXBP4-mediated YAP cytoplasmic translocation.
STXBP4 KO cells were transfected with the indicated STXBP4 constructs and immunoflu-
orescent staining was performed. HA-positive cells (arrows) from ~ 30 different views (~
200 cells in total) were randomly selected and quantified for YAP localization. Percentage
of HA-positive cells with nuclear YAP enrichment is shown. Scale bar, 20 pm.

To gain a structural insight into the STXBP4 WW domain, we compared STXBP4-WW and
YAP-WW1 through ensemble molecular dynamics simulations and calculating binding free
energies (AG) using the molecular mechanics Poisson-Boltzman surface area (MM /PBSA)
method. As shown in Appendix Figure C.9C, the top 5 predicted clusters for the STXBP4-
WW/SMAD7-PY complex is similar to those of the YAP-WW1/SMAD7-PY complex. By
comparing the top one cluster for these two WW-PY complexes, we found that the identified
9-amino acid residues as well as the two tryptophan residues are similarly distributed within
both the STXBP4-WW /SMAD7-PY and YAP-WW1/SMADT7-PY complexes, where they

form as two groups to respectively involve in the binding with SMAD7-PY motif and assemble
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a supportive backside hydrophobic cluster for each WW domain (Figure 4.3D). The average
distance between STXBP4-WW domain and SMAD7-PY motif is close to that between YAP-
WW1 domain and SMAD7-PY motif with a similarly low standard deviation value (Figure
C.3F). Moreover, binding free energy (AG) from MM/PBSA calculations further indicates
the similarity between YAP-WW1 and STXBP4-WW when they form as a complex with
SMAD7-PY motif peptide (Figure 4.3E).

Taken together, these data suggest that the STXBP4 WW domain possesses the Hippo WW

domain binding specificity, endowing STXBP4 a potential role in the Hippo pathway.

4.3.6 STXBP4 is a negative regulator of YAP

To test the role of STXBP4 in regulation of the Hippo pathway, we examined YAP activation
in the STXBP4 knockout (KO) cells (Appendix Figure C.10). Interestingly, loss of STXBP4
significantly reduced YAP phosphorylation (Figure 4.3F), moved YAP into the nucleus (Fig-
ure 4.3G) and activated YAP downstream gene transcription (Figure 4.3H). Notably, either
deleting the WW domain or mutating the histidine residue out of the identified 9-amino acid
sequence to alanine failed to rescue YAP’s cytoplasmic localization (Figure 4.31), suggesting

that the WW domain is required for the STXBP4-mediated YAP inhibition.

The observation that STXBP4 deficiency reduced YAP phosphorylation at S127 (Figure
4.3F) suggests that the Hippo pathway is inhibited in the STXBP4 KO cells. Indeed, as
shown in Figure 4.3F, loss of STXBP4 suppressed LATS phosphorylation but did not affect
that of MST or its substrate MOB1. These data suggest that STXBP4 is required for LATS

activation in the Hippo pathway.

65



4.3.7 STXBP4 is involved in a protein-protein interaction network
comprising multiple Hippo pathway components and regula-

tors

To elucidate the mechanism by which STXBP4 regulates the Hippo pathway, we purified the
STXBP4-associated protein complex and characterized its binding partners by mass spec-
trometry analysis. As shown in Figure 4.4A, all the AMOT family proteins were identified
to form a complex with STXBP4, which is consistent with our previous findings (Figures
4.3B and Appendix Figure C.9A). Interestingly, we also identified a-catenin, a known Hippo
upstream regulator [86, 230, 245, 301|, as a binding partner for STXBP4 (Figure 4.4A).
STXBP4 was also reciprocally identified as a binding protein for some Hippo pathway com-
ponents (e.g., LATS1, LATS2, TAZ) and regulators (e.g., AMOT, AMOTL1, AMOTL2,
PTPN14) [63, 122, 315] (Figure 4.4A). Collectively, these data suggest that STXBP4 involves
in a protein-protein interaction network comprising a group of Hippo pathway components

and regulators.
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Figure 4.4: STXBP4 functions in the actin cytoskeleton tension-mediated Hippo
pathway regulation by forming a complex with a-catenin and a group of Hippo
PY motif-containing proteins. (This figure is related to Appendix Figures C.11
and C.12; Table EVT)

(A) A summary map of cytoscape-generated protein-protein interaction network for
STXBP4, a-catenin and a group of Hippo pathway proteins.

(B) STXBP4 forms a protein complex with a-catenin and a group of Hippo pathway pro-
teins.

(C) STXBP4 promotes the association of a-catenin with AMOT and LATS1. HEK293T cells
were transfected with the indicated SFB-tagged constructs and subjected to the pulldown
assay.

(D) Loss of STXBP4 diminishes the association of a-catenin with AMOT, LATS1 and YAP.
HEK293A and STXBP4 KO cells were transfected with the SFB-tagged a-catenin construct
and subjected to the pulldown assay.

(E) STXBP4 induces the co-localization between a-catenin and AMOT as well as LATS1
and YAP. HEK293A cells were transfected with the indicated constructs and immunofluo-
rescence was performed. Scale bar, 20 pm.

(F-H) Identification of several STXBP4 missense mutations that disrupt its interaction with
a-catenin and AMOT. The missense mutations within the STXBP4 a-catenin-binding region
and the 9-amino acid sequence of the STXBP4 WW domain were indicated and annotated
(F). The identified missense mutations respectively disrupted the STXBP4 a-catenin (G)
and STXBP4-AMOT (H) complex formation.

(I) Inhibition of actin cytoskeleton promotes the STXBP4-associated protein complex for-
mation. HEK293A and the STXBP4 KO cells were subjected to immunoprecipitation using
pre-immune serum and anti-STXBP4 serum under the indicated treatments.

(J) The missense mutations of STXBP4 (F) diminished the ability of STXBP4 to rescue
YAP phosphorylation in the STXBP4 KO cells with low actin cytoskeleton tension. YAP
phosphorylation was detected using phospho-tag gel, where the YAP phosphorylation level
was indicated.

Notably, most of these STXBP4-associated proteins are PY-motif containing proteins (Figure
4.4A), suggesting that STXBP4 WW domain is required here. Since a-catenin does not
contain a PY motif, we further characterized the a-catenin-binding region in STXBP4. To
achieve this, a series of STXBP4 truncation and deletion mutants were generated (Appendix
Figure C.11A). As shown in Appendix Figure C.11B, deletion of the 300 ~ 500 amino
acid residues of STXBP4, but not its WW domain, fully abolished its association with
a-catenin. Moreover, we failed to further narrow down the a-catenin binding region in

STXBP4 (Appendix Figure C.10C), suggesting that this identified 300 ~ 500 amino acid
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sequence region is required for its interaction with a-catenin.

Taken together, these data indicate that STXBP4 can form a complex with several Hippo PY
motif-containing proteins and a-catenin through its WW domain and the 300~500 amino

acid sequence region, respectively.

4.3.8 STXBP4 functions as a scaffold protein to assemble a protein

complex including a-catenin AMOT, LATS and YAP

To test this hypothesis, we performed a sequential pulldown/immunoprecipitation assay
using exogenously expressed SFB-STXBP4 and Myc-a-catenin in HEK293T cells. As shown
in Figure 4.4B, we first isolated STXBP4-associated protein complex using streptavidin
beads, eluted the complex with biotin, and purified the a-catenin-associated protein complex
through immunoprecipitation. This sequential purification approach can help to characterize
the proteins within the STXBP4/a-catenin protein complex. Consistent with our proteomic
data (Figure 4.4A), AMOT, LATS1 and YAP were all identified within the STXBP4/a-

catenin protein complex (Figure 4.4B).

Next, we examined the role of STXBP4 in this multi-protein complex. Overexpression
of STXBP4 induced the interaction of a-catenin with both AMOT and LATS1 (Figure
4.4C); while loss of STXBP4 largely attenuated the association of a-catenin with AMOT,
LATSI and YAP (Figure 4.4D). In addition, STXBP4 promoted the co-localization between
AMOT and a-catenin onto cell adherens junction/membrane region, where both LATS1 and
YAP were also identified (Figure 4.4E). These results suggest a scaffold role of STXBP4 in
assembly of a protein complex containing at least a-catenin, AMOT, LATS and YAP at

adherens junctions.

Both the WW domain and a-catenin association are required for the STXBP4-mediated
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YAP regulation Given the potential tumor suppressive role of STXBP4 in targeting YAP, we
next examined the genetic alteration of STXBP4 in the cBioportal database and found that
STXBP4 alleles harbor a series of mutations within cancer patient samples (Appendix Figure
C.12A and Table EV7). Four missense mutations that are localized in the a-catenin-binding
region (Figure 4.4F) disrupted the interaction between STXBP4 and a-catenin (Figure 4.4G).
As for the STXBP4 WW domain, four out of the identified 9 amino acid residues were found
mutated in oligodendrogioma (G501E), bladder urothelial carcinoma (Y513C), uterine carci-
nosarcoma (H517Y) and cutaneous melanoma (P527L), respectively (Figure 4.4F), and they
all diminished the association between STXBP4 and AMOT (Figure 4.4H). Notably, these
cancer-derived missense mutations in either a-catenin-binding region or the WW domain
of STXBP4 all failed to rescue YAP’s cytoplasmic localization in the STXBP4 KO cells
(Appendix Figure C.12B), suggesting that association with a-catenin and the Hippo PY
motif-containing components/regulators is required for the STXBP4-dependent the Hippo

pathway regulation.

STXBP4 functions as a potential mechano-transducer involved in actin cytoskeleton-mediated
Hippo pathway regulation Notably, a-catenin is known to play a critical role in mechan-
otransduction [54, 334|, and loss of STXBP4 significantly attenuated YAP phosphorylation
upon disruption of actin cytoskeleton or inhibition of its tension (Figure 4.3J). Interest-
ingly, depolymerization of actin cytoskeleton by latrunculin B or inhibition of its tension by
blebbistatin induced the association of STXBP4 with LATS1, AMOT and a-catenin (Fig-
ure 4.41). Reconstitution of STXBP4, but not its mutants with missense mutations at its
a-catenin-binding region and WW domain (Figure 4.4F), significantly rescued YAP phos-
phorylation when actin cytoskeleton tension was inhibited (Figure 4.4J). These data indicate
that the STXBP4-mediated protein complex formation with a-catenin and the Hippo PY
motif-containing proteins plays a role in actin cytoskeleton-dependent regulation of the Hippo

pathway.
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STXBP4 is frequently downregulated in kidney cancer and correlated with YAP activa-
tion By analyzing the cancer database, FireBrowse, a platform developed to analyze 14,729
tumor sample data generated by The Cancer Genome Atlas (TCGA), we found that the
mRNA level of STXBP4 was downregulated in all the listed kidney cancer subtypes (Fig-
ure 4.5A). This finding was further confirmed through a kidney tissue microarray analysis,
where the expression of STXBP4 was found decreased in several types of human kidney
cancer: 84.8% clear cell carcinoma, 100% papillary renal cell carcinoma, 50% chromophobe
carcinoma, 66.7% carcinoma sarcomatodes and 50% high grade urothelial carcinoma of renal
pelvis (Figure 4.5B). However, downregulation of STXBP4 was only observed in 10% normal
kidney tissue (Figure 4.5B), suggesting an inverse correlation between STXBP4 expression
and kidney cancer formation (P=2.9x107%°, R=-0.41). Moreover, our TCGA data analysis
indicated that low expression of STXBP4 was significantly correlated with the poor overall
survival rate for the cancer patients with clear cell renal cell carcinoma (ccRCC) (Figure

4.5C), indicating that STXBP4 is a potential tumor suppressor in ccRCC.
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Figure 4.5: STXBP4 is a tumor suppressor in human kidney cancer. (This figure
is related to Appendix Figure C.13).

(A and B) STXBP4 is downregulated in human kidney cancer. The mRNA level of STXBP4
is analyzed in the Firebrowse web database (http://firebrowse.org) (A), where 14,729 tumor
sample data generated by TCGA were included. The first quartile, median and third quartile
values were indicated as the boxplots. Outliers were plotted as individual points. Error bars
indicated the standard deviation above and below the mean of the data. The expression of
STXBP4 was also examined using kidney tissue microarray, where percentage of the indicated
tissue samples with downregulated STXBP4 was shown (B). The p value was calculated by
using the paired Student’s t-test.

(C) Kaplan-Meier curves of overall survival of patients with ccRCC is stratified by STXBP4
expression level. Clinical data of STXBP4 were analyzed in TCGA-KIRC project containing
total 611 patient samples. The p value was calculated by using the Log-rank (Mantel-Cox)
test.

(D) Immunohistochemical staining of STXBP4 and YAP were performed in a kidney cancer
tissue microarray, where the indicated regions in the box were shown three times enlarged.
Brown staining indicates positive immunoreactivity. Scale bar, 100 pum.

(E) Correlation analyses between STXBP4 and YAP in human normal kidney and clear cell
carcinoma samples are shown as tables. Statistical significance was determined by chi-square
test. R, correlation coefficient. N, nuclear localization. C, cytoplasmic localization.

(F) STXBP4 expression is examined in a panel of ccRCC cell lines by Western Blotting.
(G and H) Both the association with a-catenin and the functional WW domain are required
for the STXBP4’s tumor suppressive function in 786-O cells. Overexpression of STXBP4,
but not the indicated STXBP4 missense mutants, significantly suppressed the 786-O cell
xenograft tumor formation. Xenograft tumors are shown in (G), and the tumor weight is
quantified in (H) (n = 5 mice, mean + s.d.). ** p < 0.01 (Student’s t-test). Scale bar, 1 cm.

YAP is highly expressed and activated in multiple major human cancer types but genetic
mutation for the Hippo pathway components is hardly detected [127], suggesting that ad-
ditional oncogenic alterations could lead to YAP activation for tumorigenesis. Since loss of
STXBP4 activated YAP (Figures 4.3F-4.3H), we next examined the pathological correlation
between STXBP4 and YAP using a kidney cancer tissue microarray. Consistent with pre-
vious studies [44, 94, 246], upregulation of YAP was observed in 57% (45 of 79) of ccRCC
tissue samples, while only 20% (2 of 10) of normal kidney tissues showed high YAP expres-
sion (Figures 4.5D and 4.5E). Moreover, an inverse correlation between STXBP4 expression

and YAP nuclear enrichment was found in the tissue samples with high YAP expression
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(P=0.0036, R=-0.46), where 94.7% (36 of 38) of the tested tissue samples with low STXBP4
expression had high nuclear enrichment of YAP (Figures 4.5D and 4.5E). However, there
were still 10.6% (5 of 47) of the total tested specimens showing high STXBP4 expression
but YAP nuclear enrichment (Figure 4.5E). These results indicate that downregulation of
STXBP4 may contribute to YAP activation in a substantial fraction of ccRCC; however,

YAP can still be activated in other tumors via different mechanisms.

Interestingly, although a general low expression of YAP was found in normal kidney tissues,
we were still able to observe a relatively high expression of YAP in the podocytes of glomeru-
lus region and partially in the convoluted tubule region (Figure 4.5D). Even though, these
YAP highly expressed normal kidney regions still consistently showed a decreased STXBP4
expression level (Figure 4.5D), suggesting that their inverse correlation in expression could

involve in normal kidney physiology.

Both the a-catenin association and functional WW domain are required for the STXBP4’s
tumor suppressive function in kidney cancer To investigate the role of STXBP4 in kidney
cancer, we first determined the STXBP4 expression in normal mouse kidney tissue and a
group of human kidney-related cell lines. Interestingly, STXBP4 had an abundant expression
in mouse kidney tissue, an embryonic kidney immortalized cell line HEK293A and an immor-
talized human renal proximal tubular epithelial cell line RPTEC (Figure 4.5F). In contrast,
STXBP4 showed moderate or low expressions in all the tested ccRCC cell lines (Figure
4.5F), where YAP was found majorly localized in the nucleus (Appendix Figure C.13A).
Overexpression of STXBP4, but not its two patient-derived missense mutants (R490C and
P527L) (Figure 4.4F), in a ccRCC cell line 786-O (Appendix Figure C.13B), significantly
suppressed the xenograft tumor formation (Figures 4.5G and 4.5H). Since the R490C and
P527L mutations can respectively disrupt the STXBP4’s interaction with a-catenin (Figure
4.4G) and AMOT (Figure 4.4H), these results indicate that the association with a-catenin

and a functional WW domain are both required for STXBP4’s tumor suppressive function.
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4.4 Discussion

In this study, we identified a conserved 9-amino acid sequence within the WW domain of the
Hippo pathway components and regulators (Figure 4.2), which is required for the specific
Hippo WW-PY complex formation. Notably, this identified 9-amino acid sequence has at
least one residue altered in all the tested control WW domain-containing proteins (Figures
4.2B and C.2A), which could help to explain why these control WW domain-containing
proteins fail to interact with the Hippo PY motif-containing proteins (Figures 4.1E and 4.1F).
Since the “WW-PY" recognition is widely present in the Hippo pathway, manipulation of
their recognition is likely to control the outputs of this key signaling pathway in tissue/organ
growth and tumorigenesis. Thus, it would be highly exciting if this Hippo WW domain
determinants could be utilized for the development of small molecules or peptides to precisely

modulate YAP/TAZ activity in cancer therapy and tissue repair.

Mechanistically, the identified 9-amino acid sequence accounts for both a suitable WW do-
main structure and the binding interface with the PY motif peptide (Figures C.3A-C.3C),
providing a structural basis for the Hippo WW domain binding specificity. Here, our study
is only focused on the individual WW domain binding property. Actually, the mechanism
underlying the specific “WW-PY" recognition could be more complicated given the role of
WW tandem in mediating PY motif binding [154] and the potential homo- and hetero-dimer
formations among WW domains [272]. Moreover, although our current study mostly focused
on the WW domain, it is highly possible that its cognate PY motif ligand could also con-
tribute to the specific Hippo “WW-PY" recognition. However, the PY motif is relatively
short, flexible and could be easily buried into a higher level of protein structure, making it
difficult to assess its role at a protein level. Thus, we did not further address this question
from the PY motif-based perspective. Among the Hippo pathway components, the SAV1
WW domain functions differently from that of YAP, TAZ and KIBRA to bind Hippo PY

motif-containing proteins (Figure 4.1). This difference may arise from the change of one
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conserved glutamate residue in the identified 9-amino acid sequence for the SAV1 WW do-
main in both human (Figures 4.2A and 4.2B) and Drosophila (Appendix Figure C.7). Based
on our E/D substitution data (Appendix Figure C.6B) and the structural analysis (Figure
C.3C), the negative charge for this residue position could be essential. Interestingly, the sub-
stituted serine residue within the human SAV1 WW domain can be phosphorylated in vivo
(www.phosphosite.org), suggesting that the association between SAV1 and Hippo PY motif-
containing proteins could be regulated through a yet-to-be characterized phosphorylation

event.

There are only a few WW domain-containing proteins, whose WW domains fit such 9-amino
acid sequence in human proteome (Figure C.4 and Table EV6). Among them, STXBP4 was
found as a negative regulator for YAP (Figures 4.3F-4.3H) by forming a protein complex
with a series of Hippo PY motif-containing proteins and an adherens junction component,
a-catenin (Figure 4.4A). Interestingly, STXBP4 serves as a scaffold protein in this network
and transduces actin-based mechanical cues to regulate the Hippo pathway. Since a-catenin
is known to play a role in both cell density and cytoskeleton tension-dependent regulation
of YAP [86, 230, 245, 301|, our findings provided molecular insights into its downstream
signaling events. Under the condition with low actin cytoskeleton tension, STXBP4 recruits
several Hippo PY motif-containing proteins including at least AMOT, LATS to form a com-
plex with a-catenin at adherens junction. YAP/TAZ are also within this complex based on
their interaction with AMOT and LATS (Figure C.5). In proximity, LATS phosphorylates
and inhibits YAP. When mechanical cues increase actin cytoskeleton tension, both the ad-
herens junction-associated a-catenin and the filament actin-bound AMOT would be affected
in their conformation, resulting in the protein complex disassembly and YAP activation
(Figure C.5). Exactly how this a-catenin-STXBP4-Hippo PY proteins axis is coordinated
with other related signaling events [77, 164, 223] in regulating the interplay between actin

cytoskeleton and the Hippo-YAP /TAZ pathway deserves further investigation.
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Intriguingly, our TCGA database and tissue microarray studies suggested that STXBP4 is a
potential tumor suppressor in kidney cancer (Figures 4.5A-4.5C) and its downregulation is
significantly correlated with YAP activation in ccRCC tissues (Figures 4.5D and 4.5E). YAP
has been found highly expressed and activated in human kidney cancer including ccRCC
[44, 94, 246]. Here, our study identified a pathological relevance between STXBP4 and YAP,
providing a potential mechanism for the YAP activation in ccRCC. Notably, a CpG island
was identified in the STXBP4 promoter, suggesting that the loss of STXBP4 could occur
due to its promoter methylation. In addition, STXBP4 gene alleles harbor a relative high
mutation rate (13.45%) including nonsense mutation (6.92%), frameshift deletion (1.92%), in
frameshift deletion (0.38%) and gene fusion (4.23%) (Appendix Figure C.12A), which could

also partially explain the loss of STXBP4 in cancer.

STXBP4 is originally identified as an insulin-regulated protein involved in GLUT4-mediated
glucose transport in adipocyte [39], and functions as an inhibitory protein for the SNARE
complex-dependent membrane fusion [309]|. Dysregualted STXBP4 expression was associated
with some SNPs in breast cancer [29, 65, 16]. Recent studies also implicated the role of
STXBP4 in squamous cell carcinomas, by regulating N-terminally truncated isoform of p63
(ANp63) [201, 236]. Together with these studies, our findings in kidney cancer suggested a

complex role of STXBP4 in cancer development, which could depend on tissue context.

4.5 Materials and Methods

4.5.1 Antibodies and chemicals

For Western blotting, anti-a-tubulin (T6199-200UL, 1:5000 dilution), anti-Flag (M2) (F3165-
5MG, 1:5000 dilution), and anti-AMOTL1 (HPA001196, 1:1000 dilution) antibodies were ob-
tained from Sigma-Aldrich. Anti-Myc (sc-40, 1:500 dilution) and anti-GFP (sc¢-9996, 1:1000
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dilution) antibodies were purchased from Santa Cruz Biotechnology. Anti-phospho-YAP
(S127) (4911S, 1:1000 dilution), anti-phospho-LATS1 (Thr1079) (8654S, 1:1000 dilution),
anti-LATS1 (3477S, 1:1000 dilution), anti-phospho-MST (Thr180/Thr183) (3681S, 1:1000
dilution), anti-MST1 (3682S, 1:1000 dilution), anti-phospho-MOB1 (Thr35) (8699S, 1:1000
dilution), anti-MOB1 (3863S, 1:2000 dilution) and anti-NF2 (12896S, 1:2000 dilution) an-
tibodies were purchased from Cell Signaling Technology. The AMOT, AMOTL2, PTPN14
and YAP polyclonal antibodies were generated as previously described [313, 314]. The
STXBP4 antiserum was raised against MBP-STXBP4 (the 251~553 amino acid residues)
and polyclonal antibody was affinity-purified using an AminoLink Plus Immobilization and

Purification Kit (Pierce).

For immunostaining, an anti-YAP (sc-101199, 1:200 dilution) monoclonal antibody was
purchased from Santa Cruz Biotechnology. Anti-hemagglutinin (HA) polyclonal antibody
(37248, 1:3000 dilution) was obtained from Cell Signaling Technology.

For immunohistochemical staining, an anti-YAP (14074S, 1:15 dilution) monoclonal antibody
was purchased from Cell Signaling Technology. The STXBP4 antiserum was raised against
MBP-STXBP4 (the 1~250 amino acid residues) and polyclonal antibody (1:200 dilution)
was affinity-purified using an AminoLink Plus Immobilization and Purification Kit (Pierce).

Latrunculin B and blebbistatin were obtained from Sigma-Aldrich.

4.5.2 Constructs and viruses

Plasmids encoding the indicated genes were obtained from the Human ORFeome V5.1 library
or purchased from Harvard Plasmid DNA Resource Core and Dharmacon. All constructs
were generated via polymerase chain reaction (PCR) and subcloned into a pDONOR201
vector using Gateway Technology (Invitrogen) as the entry clones. For tandem affinity pu-

rification, all entry clones were subsequently recombined into a lentiviral Gateway-compatible
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destination vector for the expression of C-terminal SFB-tagged fusion proteins. Gateway-
compatible destination vectors with the indicated SFB tag, HA tag, GFP tag or Myc tag were
used to express various fusion proteins. PCR-mediated mutagenesis was used to generate all

the indicated site mutations and internal region/domain deletion mutations.

All lentiviral supernatants were generated by transient transfection of HEK293T cells with
the helper plasmids pSPAX2 and pMD2G (kindly provided by Dr. Zhou Songyang, Baylor
College of Medicine) and harvested 48 hours later. Supernatants were passed through a
0.45-pm filter and used to infect cells with the addition of 8 pg/mL hexadimethrine bromide
(Polybrene) (Sigma-Aldrich).

4.5.3 Cell culture and transfection

HEK293T, ACHN, SLR20 and UMRCE cell lines were purchased from ATCC and kindly pro-
vided by Drs. Boyi Gan and Junjie Chen (MD Anderson Cancer Center). HEK293A cells
were purchased from ThermoFisher and kindly provided by Dr. Jae-Il Park (MD Ander-
son Cancer Center). RPTEC, 786-O, RCC4 and UMRC?2 cells were purchased from ATCC
and kindly provided by Dr. Olga Razorenova (University of California, Irvine). HEK293T,
HEK293A, RCC4, UMRC2 and UMRCG6 cells were maintained in Dulbecco’s modified es-
sential medium (DMEM) supplemented with 10% fetal bovine serum at 37°C in 5% CO2
(v/v). SLR20 and 786-O cells were grown in RPMI-1640 medium supplemented with 10%
fetal bovine serum at 37°C in 5% CO2 (v/v). RPTEC cells were maintained in DMEM /F12
medium supplemented with 5 pM triiodo-L-thyronine, 10 ng/mL epidermal growth factor,
3.5 pgmlL ascorbic acid, 5 pg/mL transferrin, 5 pg/mL insulin, 25 ng/mL prostaglandin E1,
25 ng/mL hydrocortisone, 8.65 ng/mL sodium selenite and 1.2 mg/mL sodium bicarbonate
at 37 °C in 5% CO2 (v/v). All the culture media contain 1% penicillin and streptomycin.

Plasmid transfection was performed using a polyethylenimine reagent.
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4.5.4 Immunofluorescent staining

Immunofluorescent staining was performed as described previously [311] with minor modi-
fications. Briefly, cells cultured on coverslips were fixed with 4% paraformaldehyde for 10
minutes at room temperature and then extracted with 0.5% Triton X-100 solution for 5
minutes. For a-catenin-related immunofluorescent staining, cells were pretreated with PBS
solution containing 0.5% Trion X-100 and 1% paraformaldehyde for 4 minutes, and subjected
to 4% paraformaldehyde fixation. After blocking with Tris-buffered saline with Tween 20
containing 1% bovine serum albumin, the cells were incubated with the indicated primary
antibodies for 1 hour at room temperature. After that, the cells were washed and incubated
with fluorescein isothiocyanate-, rhodamine- and Cyb-conjugated secondary antibodies for 1
hour. Cells were counterstained with 100 ng/mL 4’,6-diamidino-2-phenylindole (DAPI) for
2 minutes to visualize nuclear DNA. The coverslips were mounted onto glass slides with an

anti-fade solution and visualized under a Nikon Eclipse Ti spinning-disk confocal microscope.

4.5.5 Tandem affinity purification (TAP) of SFB-tagged protein

complexes

HEK293T cells stably expressing the indicated SFB-tagged proteins were selected by cul-
turing in medium containing 2 pg/mL puromycin and confirmed by immunostaining and
Western blotting as described previously [315]. For TAP, HEK293T cells were lysed in
NETN buffer (with protease and phosphatase inhibitors) at 4°C for 20 minutes. The crude
lysates were centrifuged at 14,000 rpm for 15 minutes at 4°C. The supernatants were in-
cubated with streptavidin-conjugated beads (GE Healthcare) for 1 hour at 4°C. The beads
were washed 3 times with NETN buffer, and bound proteins were eluted with NETN buffer
containing 2 mg/mL biotin (Sigma-Aldrich) for 2 hours at 4°C. The elutes were incubated

with S protein beads (Novagen) for 1 hour. The beads were washed three times with NETN
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buffer and subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis. Each
pulldown sample was run just into the separation gel so that the whole bands could be

excised as one sample and subjected to in-gel trypsin digestion and MS analysis.

4.5.6 Mass spectrometry (MS) analysis

The mass spectrometry was performed as described previously [284, 315|. Briefly, the excised
gel bands described above were cut into approximately 1-mm? pieces. The gel pieces were
then subjected to in-gel trypsin digestion [256] and dried. Samples were reconstituted in 5
pL of high-performance liquid chromatography (HPLC) solvent A (2.5% acetonitrile, 0.1%
formic acid). A nanoscale reverse-phase HPLC capillary column was created by packing
5-pm C18 spherical silica beads into a fused silica capillary (100 Atm inner diameter AU
~20 cm length) with a flame-drawn tip. After the column was equilibrated, each sample was
loaded onto the column via a Famos autosampler (LC Packings). A gradient was formed,
and peptides were eluted with increasing concentrations of solvent B (97.5% acetonitrile,

0.1% formic acid).

As the peptides eluted, they were subjected to electrospray ionization and then entered into
an LTQ-Velos mass spectrometer (Thermo Fisher Scientific). The peptides were detected,
isolated, and fragmented to produce a tandem mass spectrum of specific fragment ions for
each peptide. Peptide sequences (and hence protein identity) were determined by matching
protein databases with the fragmentation pattern acquired by the software program SE-
QUEST (ver. 28) (Thermo Fisher Scientific). Enzyme specificity was set to partially tryptic
with two missed cleavages. Modifications included carboxyamidomethyl (cysteine, fixed)
and oxidation (methionine, variable). Mass tolerance was set to 0.5 Da for precursor ions
and fragment ions. The database searched was UniProt. Spectral matches were filtered to

contain a false discovery rate of less than 1% at the peptide level using the target-decoy
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method [81], and the protein inference was considered followed the general rules [197|, with
manual annotation based on experiences applied when necessary. This same principle was
used for isoforms when they were present in the database. The longest isoform was reported

as the match.

4.5.7 Bioinformatic analysis

The full-length YAP, TAZ, SAV1 and KIBRA dataset was retrieved from a previous study
[315]. The TAP-MS dataset for a group of full-length WW domain-containing proteins
randomly selected from human proteome and the WW domains isolated from these proteins
as well as the four Hippo pathway WW components (YAP, TAZ, SAV1 and KIBRA) were
newly generated in this study. We combined these two datasets and assigned quality scores
to the identified protein-protein interactions using MUSE algorithm as previously described
[153]|, where a group of unrelated TAP-MS experiments (1,806 experiments using stably
expressed TAP-tagged protein baits and 20 experiments using empty vector baits) were
included as a control group. Through it, we considered any interaction with a MUSE score
of at least 0.9 and raw spectra count greater than 1 to be a high-confident interacting protein
(HCIP). The overall HCIP reproducibility rate was close to 85%, which increased when the
cutoff peptide number increased. The full-length WW domain-containing proteins and their
corresponded WW domains shared 47.5% HCIPs and only 10.2% overlapped HCIPs were
identified for the WW domains isolated from the Hippo WW domain-containing components

and the control ones (Figure C.1C).

The WW domain-containing proteins’ interactomes were enriched in signaling pathways,
biological processes and diseases using the HCIPs identified in our studies. The P values
were estimated using the Knowledge Base provided by Ingenuity Pathway software (Ingenuity

Systems, www.ingenuity.com), which contains findings and annotations from multiple sources
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including the Gene Ontology database, KEGG pathway database, and Panther pathway
database. Only statistically significant correlations (P < 0.05) are shown. The -log (P

value) for each function and related HCIPs is listed.

4.5.8 Data availability

The MS proteomic data have been deposited in the ProteomeXchange Consortium database
(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository [302] with
the dataset identifier PXD004649. The detailed project information is as follows:

Project Name: Human WW-domain containing proteins TAP-LC-MSMS

Project accession: PXD004649

Project DOI: 10.6019/PXD004649

Reviewer account username: reviewer38029@Qebi.ac.uk

Password: eavjPdCz

4.5.9 Screen of human WW domain-containing proteins using the

identified Hippo WW domain binding criterion

All the WW domain-containing proteins were retrieved from human proteome using a Simple
Modular Architecture Research Tool (SMART) (http://smart.embl-heidelberg.de) and the
WW domain-containing protein list was further refined in Uniprot (https://www.uniprot.org).
Based on the definition, the WW domain-containing proteins are defaulted with two tryp-
tophan (W) residues as separated by 20-22 amino acids within the sequence. All the WW
domain sequences were downloaded from Uniprot and subjected to scan with the identified
9-amino acid sequence manually. The list of all the human WW domain-containing proteins

and the searching result are listed in Table EV6.
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4.5.10 Gene inactivation by CRISPR /Cas9 system

To generate the STXBP4 knockout cells, five distinct single-guide RNAs (sgRNA) were de-
signed by CHOPCHOP website (https://chopchop.rc.fas.harvard.edu), cloned into lentiGuide-
Puro vector (Addgene plasmid # 52963), and transfected into HEK293A cells with lentiCas9-
Blast construct (Addgene plasmid # 52962). The next day, cells were selected with puromycin
(2 pg/ml) for two days and subcloned to form single colonies. Knockout cell clones were
screened by Western blotting to verify the loss of STXBP4 expression and their genomic

editing was further confirmed by sequencing (Appendix Figure C.10).

The sequence information for sgRNAs used for STXBP4 knockout cell generation is as fol-
lows:

STXBP4 sgRNA1l: AGACTTAATGTTGAGGCTTG;

STXBP4 sgRNA2: GGCTTGGTGTTGTTCCTTTG;

STXBP4 sgRNA3: TGCTTTCACCAAAGTAGCCT;

STXBP4 sgRNA4: GGAAACAGGCCTTGGCCTGA;

STXBP4 sgRNA5: AGGTACTAGGAGGAATTAAC.

4.5.11 RNA extraction, reverse transcription and real-time PCR

RNA samples were extracted with TRIzol reagent (Invitrogen). Reverse transcription assay
was performed using the Script Reverse Transcription Supermix Kit (Bio-Rad) according to
the manufacturer’s instructions. Real-time PCR was performed using Power SYBR Green
9AACH

PCR master mix (Applied Biosystems). For quantification of gene expression, the

method was used. GAPDH expression was used for normalization.

The sequence information for each primer used for gene expression analysis is as follows:

CTGF-Forward: 5-CCAATGACAACGCCTCCTG-3;

84



CTGF-Reverse: 5-GAGCTTTCTGGCTGCACCA-3’;
CYR61-Forward: 5-AGCCTCGCATCCTATACAACC-3’;
CYR61-Reverse: 5'-GAGTGCCGCCTTGTGAAAGAA-3;
ANKRDI1-Forward: 5-CACTTCTAGCCCACCCTGTGA-3’;
ANKRDI1-Reverse: 5’-CCACAGGTTCCGTAATGATTT-3".

4.5.12 Molecular dynamics simulations

All simulations were conducted using the AMBER18 molecular dynamics suite [46, 45, 243].
Initial parameterization of complexes and apo conformations was conducted with the LeAP
module in AMBERIS, using the protein force field ff14SB [175]. YAP-WW1 domain bound
to SMAD7-PY motif-containing peptide was initially parameterized using the PDB struc-
ture, 2LTW. The SMAD7-PY motif-containing peptide structure was removed from 2LTW
and docked to the STXBP4-WW domain (PDB: 2YSG) to form a complex (STXBP4-
WW /SMAD7-PY). In the N-terminal sequence of STXBP4, four non-native residues (GSSG)
were removed prior to docking and formation of the complex STXBP4-WW /SMAD7-PY to
maintain consistent residue number with the YAP-WW1 domain. To generate the mutant
complexes, all the conserved residues from 2LLTW were mutated into alanine using Modeller
v9.21 [88, 181, 175, 270], and initial docked poses between mutated YAP-WW1 domains
and SMAD7 were generated using the HADDOCK docking program [53, 70| prior to sim-
ulation (Appendix Table C.1). This docking procedure was also repeated for the APBB3-
WW/SMAD7-PY simulations. An apo form of SMAD7-PY and YAP-WW1 (wild-type
domain mutants: L173A/P174A, G176A, W177A, E178A, Y188A, F189A, H192A, T197A,
WI199A, P202A) were also derived from PDB structure 2LTW, for simulations (Appendix
Table C.1).

Neutralized with either Na™ or C1~ counter ions, systems were solvated using a 10 Abuffer of
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TIP3P waters in a truncated octahedron box. All complexes and apo forms were minimized
in a two-step process using the PMEMD program to remove any steric clashes and overlaps.
Complexes were heated to 300K for 100 ps in the canonical (NVT) ensemble and equilibrated
for 10 ns at 300K in the isothermal-isobaric (NPT) ensemble. Production runs were generated
using the accelerated CUDA version of PMEMD [243] in the NVT ensemble with 2-fs time
steps at 300K, until MM /PBSA calculations converged. Appendix Table C.1 outlines the

complete simulation conditions for each complex and apo structure.

The MM /PBSA module in AMBERI18 [29, 39, 191, 65, 307, 309, 240, 164] was employed to
calculate the binding free energies (AG) of wild-type and mutant complexes. Calculations
do not take into consideration entropy; however, all complexes retain SMAD7-PY as a com-
mon binder meeting the necessary requirements for MM /PBSA calculation and comparison.
Convergence of both YAP-WW1 and STXBP4-WW complex simulations was determined
via cumulative average calculations of AG values and timeframes for all subsequent analyses
(e.g. clustering, averaging, RMSD, etc.) of each complex were determined based on this

metric.

Utilizing the AMBER post-processing program (CPPTRAJ) [235] module in the AMBER18
package, clustering was performed for each complex using only the Car atoms in SMAD7-PY
motif-containing peptide. We chose to cluster using SMAD7-PY motif-containing peptide
that coordinates upon observation of the relative stability of both wild-type YAP-WW1 and
STXBP4-WW domains. For wild-type complexes (YAP-WW1 or STXBP4-WW bound to
SMADT-PY), all frames were incorporated to generate representative clusters, and only the
top 5 clusters are displayed (Appendix Figure C.9C). Conformations were clustered using
the hierarchical agglomerative clustering algorithm (average-linkage), with 2.33 Acriteria
set as the minimum distance between clusters. Average structures were calculated from
only converged timeframes indicated in Appendix Table C.1. Using only Ca atoms, the

conformation with the smallest RMSD to the average structure was used to represent the

86



average conformation (Figures C.3A, C.3E and 3D). Hydrogen bonds were quantified using
the Baker-Hubbard [15] criteria and the MDTraj [84] python module. Ionic salt bridge
interactions were determined with a distance criterion [16] (6 A) between centers of charged
groups (positively charged atoms from basic residues Arg, Lys, His: NH* NZ* NE2; regions
of partial positive charge from His: NE2, HE*, CE1, HD2; negatively charged atoms from
acidic residues Glu and Asp: OE*, OD*). Hydrophobic interactions were also measured
via a distance criterion of 3.9 Abetween carbon atoms. Initially identified in WT YAP-
WW1/SMAD7-PY simulations, four intermolecular residue pairs (P208-W199, P209-T197,
Y211-H192, P209-Y188) and their Ca atoms were used to calculate the average distance (AD)
values in frames outlined in the simulation conditions table (Figure C.3F and Appendix Table
C.1). This AD calculation procedure was repeated for all complex simulations (SMAD7-PY
bound to YAP-WW1 mutants, STXBP4-WW, and APBB3-WW), with Ca atoms of residues

in equivalent positions of YAP-WW1 residues.

4.5.13 Xenograft Assays

Athymic nude (nu/nu) mouse strain was used for the xenograft tumor assay in this study.
Four-week-old female nude mice were purchased from Jackson Laboratory (002019) and kept
in a pathogen-free environment. The xenograft tumor experiments were followed institutional
guidelines, approved by the Institutional Animal Care and Use Committee of the University
of California, Irvine, and performed under veterinary supervision. The indicated 786-O cells
(2x10°) were subcutaneously injected into the nude mice. After 60 days’ adaptation, mice

were euthanized, and tumor weights were analyzed.
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4.5.14 Immunohistochemical analysis

The kidney tissue array (BC07115a) was purchased from US Biomax, Inc. According to the
Declaration of Specimen Collection provided by US Biomax, each specimen collected from

any clinic was consented by both hospital and individual.

The kidney tissue array was deparaffinized and rehydrated. The antigens were retrieved
by applying Unmask Solution (Vector Laboratories) in a steamer for 40 min. To block en-
dogenous peroxidase activity, the sections were treated with 3% hydrogen peroxide for 30
min. After 1 hour of pre-incubation in 10% goat serum to prevent non-specific staining,
the samples were incubated with an antibody at 4°C overnight. The sections were incu-
bated with SignalStain Boost detection reagent at room temperature for 30 min. Color was
developed with SignalStain 3,3’-diaminobenzidine chromogen-diluted solution (all reagents
were obtained from Cell Signaling Technology). Sections were counterstained with Mayer
hematoxylin. To quantify the results, a total score of protein expression was calculated from
both the percentage of immunopositive cells and immunostaining intensity. High and low
protein expressions were defined using the mean score of all samples as a cutoff point. Pear-
son chi-square analysis test was used for statistical analysis of the correlation of STXBP4

with tissue type (normal versus cancer) and the correlation between STXBP4 and YAP.

4.5.15 TCGA database analysis

Dataset for STXBP4 was downloaded from the Cancer Genome Atlas (TCGA) data portal
(https://portal.gdc.cancer.gov/). The mRNA expression and clinical data of STXBP4 were
analyzed in TCGA-KIRC project. The mRNA levels of STXBP4 was categorized into high
and low expression groups based on the median value. The correlation between STXBP4

expression and patient survival rate was analyzed. Total 611 patient samples were analyzed.
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4.5.16 Quantification and statistical analysis

Each experiment was repeated twice or more, unless otherwise noted. There were no samples
or animals excluded for the analyses in this study. As for the mouse experiments, there was
no statistical method used to predetermine sample size. We assigned the animals randomly
to different groups. A laboratory technician was blinded to the group allocation and tumor
collections during the animal experiments as well as the data analyses. The Student’s ¢-test
was used to analyze the differences between groups. Data were analyzed by Student’s t-test
or Pearson chi-square analysis. SD was used for error estimation. A P value < 0.05 was

considered statistically significant.
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Chapter 5

Computational Studies of Intrinsically

Disordered Proteins

5.1 Introduction

As structural data accumulates at an ever increasingly fast pace, intrinsically disordered
proteins (IDPs) have garnered widespread acknowledgment for their ubiquitous presence in
biochemical pathways vital to eukaryotic systems. Although the exact correlation between
disordered protein regions and function remains elusive, IDPs or proteins containing both
structured and intrinsically disordered regions (IDRs) have been experimentally shown to
participate in DNA binding, transcription, translation, cell signaling, and the overall regu-
lation of the cell cycle [90, 123, 158, 266, 322, 327]. Mutations in IDPs/IDRs or expression
pathways of IDPs/IDRs have been implicated in various neurological disorders, cancers,

and other disease-related condition [13, 97, 297|. These proteins also vary considerably in
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behavior, occupying a fully disordered state, exhibiting folding only upon binding (known
as coupled folding and binding)[266], or existing in mixed states of structured /unstructured
regions. Experimental methods to characterize IDPs and elucidate structure-function associ-
ations can therefore be arduous and challenging. To explore the dynamic structures of IDPs,
computational methods can provide the expansive sampling to complement experimental

measurements.

Widely used to simulate globular proteins, generic protein force fields (e.g. ff14SB[175] and
CHARMM36[24]) have been shown to disagree with experimental observables due to biases
towards structured motifs [23]. Improvements to address this bias have resulted in multiple
IDP-specific force fields (CHARMM36m|[117], ff991DPs|331], ff141DPs|263], CHARMMS36IDPSFF[157])
to replicate the disordered characteristics of IDPs. The ff14IDPs force field developed by Song
et al.[263] included dihedral energy corrections for only eight disorder-promoting residues (A,
Q, G, P, R, K, S, E) [75, 237, 324]. Although this resulted in improved IDP sampling, several
inconsistencies with experimental observables arose due to the limited number of residues
corrected [263]. In 2017, Song et al.[262] extended their optimization of dihedral energy
terms using grid-based energy correction maps|[170, 171, 172] to all 20 amino acids resulting
in the ff14IDPSFF force field. This new force field simulated chemical shift values in closer

agreement with experimental values [262].

Thus, our first goal of this computational study of disordered proteins is to assess the qual-
ity of both the generic protein force field (ff14SB[175]) and its IDP-specific counterpart
(ff14IDPSFF[262]). However, it is notoriously difficult to obtain adequate conformational
sampling for IDPs/IDRs due to the lack of one or few dominant conformations. Since mi-
crosecond timescales and multiple independent trajectories may be required, our second goal
of this study is to assess the extent of sampling that is needed for quantitative structural

annotation of IDPs/IDRs and to explore how to assess the sampling convergence. Here, nine

short IDP peptides of the motif EGAAXAASS (X = D, E, Q, W, Y, P, L, H, K)|[64, 152]
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and the RNA-binding protein, HIV-1 Rev (Rev)|[18, 48, 68, 176, 178, 277| were chosen as
test cases to assess the quality of MD simulations with the two Amber protein force fields.
The EGAAXAASS short peptides were thoroughly characterized experimentally and were
found to exhibit a combination of disordered behavior and local interactions between the 5X
substituted residues and adjacent neutral alanine residues [64, 152|. The longer and more
complex Rev protein is a more challenging and realistic system for assessment of sampling
techniques and accuracy of the tested force fields. Composed of highly charged residues (10
arginines out of 23 residues), the Rev protein is a vital component in the regulation of the
HIV-1 replication cycle |68, 176, 178]. Despite its short sequence the Rev protein has been
shown to adopt a diverse array of conformations (a-helices, disordered, beta) and simulta-
neously bind to target proteins or RNA-substrates with high affinity [176, 178, 260, 278|.
Once bound to its target, it was found to adopt a very stable conformation, providing a very

interesting system to probe the binding-induced folding process.

By tackling issues of force field accuracy and sampling convergence, force field advancements
in the realm of IDPs can be highly informative, revealing behaviors otherwise experimentally
inaccessible or providing details potentially useful in guiding experimental studies. After
careful analysis of the simulation sampling convergence and force field accuracy, we further
analyzed the diverse conformational preferences of the Rev protein in both the apo and

bound state to complete the computational analysis of this important protein.

5.2 Methods

5.2.1 Force Fields Tested

In this study, two Amber protein force fields (ff14SB and ff14IDPSFF) were tested to as-

sess their quality in reproducing IDP structural properties. In the generic protein force
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field f114SB[175], dihedral modifications and validation relied primarily on comparison to
crystal structures exhibiting ordered secondary structures. To address the limitations of
increased structured propensity propagated by the ff14SB force field, the IDP-specific force
field ff14IDPSFF was developed to address the deficiency of generic protein force fields by
modification of the main-chain dihedral terms [262|. The ff14IDPSFF force field is the
most recently developed AMBER, IDP-specific force field, improved upon from older ver-
sions 263, 331]. Song et al.[262] provided the CMAP (grid-based energy correction map)
parameters for ff14IDPSFF and a utility perl script to revise ff14SB-parameterized topology
files into ff14IDPSFF topology files.

5.2.2 Molecular Dynamics Simulations

The molecular dynamics package, Amber version 16, was used to generate all trajectories
[46, 45, 243, 243|. Nine short peptides with the sequence motif of EGAAXAASS (X = D,
E, Q, W, Y, P, L, H K) were tested in this study. All 9 peptides were built in the all-
trans initial conformation using the Amber LEaP module, followed by minimization with
the steepest descent and conjugate gradient methods, each 500 steps. Short peptides were
then simulated in the GB implicit solvent for 10 ns (time steps of 1 fs) at 450K to generate
10 random conformations per peptide per force field (Table 5.1). The randomized initial
structures were solvated with explicit TIP3P waters in a truncated octahedron box, with a
buffer of 10 A(Table 5.1). Neutralization was accomplished with the addition of either Na+ or
Cl- ions depending on the total charge of a peptide. All solvated structures were minimized
for 20,000 steps steepest descent, heated up for 20 ps in the NVT ensemble from OK to
298K, and were equilibrated for 20 ps in the NPT ensemble at 298K. The CUDA-accelerated
PMEMD|243, 243| in Amberl6 was then used to generate production trajectories in the

NVT ensemble at 298K. The Langevin thermostat was used for all temperature regulation.
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Force fields were also tested via simulation of a larger IDP, the HIV-1 apo Rev protein (apo
Rev), by extracting the protein from its bound conformation in the crystal structure (PDB
ID: 1ETF) as the initial conformation. MD preparation protocols (minimization, heating,
etc.) were mostly identical to those for the nine peptides mentioned above, except that
60 random conformations per force field were generated in the GB implicit solvent. These
conformations were used as the initial starting structures for two sampling strategies also
outlined in Table 5.1: fifty 200ns simulations (short) and ten 1 us simulations (long). Here
we chose to simulate a total of 10 us in the form of both short and long protocols to assess

which strategy leads to faster convergence of tested NMR observables.

In addition to the apo Rev simulations, we also simulated the HIV-1 Rev protein bound to
its RNA-binding partner Rev responsive element (RRE). Beginning with the full NMR solu-
tion structure (PDB: 1ETF), we repeated MD simulation protocol as mentioned previously,

except that only five production trajectories of 200 ns each were collected.

Table 5.1: Summary of simulation setups.

Short peptide Citations, BMRB,PDB Force fields Simulation number Length per simulation Ions ‘Waters
EGAADAASS [64] ff14SB 10 1 ps 1 Na+ 1532-2178
ff14IDPSFF 10 1 ps 1 Na+ 1465-2569
EGAAEAASS [64] ff14SB 10 1 ps 1 Na+ 1628-2622
ff14IDPSFF 10 1 ps 1 Na-+ 1464-3151
EGAAQAASS [64] ff14SB 10 1 ps 1 Na-+ 1299-2752
ff14IDPSFF 10 1 ps 1 Na 1520-3668
EGAAWAASS |64, 152] ff14SB 10 1 ps 0 1574-2637
{f14IDPSFF 10 1 ps 0 1876-3092
EGAAYAASS [64] ff14SB 10 1 ps 0 1804-2867
ff14IDPSFF 10 1 pus 0 1888-3141
EGAALAASS [64] ff14SB 10 1 ps 0 1373-3224
ff14IDPSFF 10 1 ps 0 1606-3131
EGAAPAASS [64] ff14SB 10 1 ps 0 1751-2713
ffI4IDPSFF 10 1 ps 0 1693-2885
EGAAHAASS [64] ff14SB 10 1 ps 0 1498-2675
ffI4IDPSFF 10 1 pus 0 1430-3159
EGAAKAASS |64] ff14SB 10 1 s 1 Cl- 1733-2434
ffI4IDPSFF 10 1 ps 1 Cl- 1633-2399
apo Rev (23 amino acids) (AdCa),[48] ff14SB 10/50 1 ps / 200 ns 9 Cl- 3727-11638
CJunna),48] ff14IDPSFF  10/50 1 ps / 200 ns 9 Cl- 4424-13224
RRE - Rev complex (A6Ca),|17, 18] ff14SB 5 200 ns 53 Na+29 Cl- 10928
(Cdunna),17] ff14IDPSFF 5 200 ns 53 Na+29 Cl- 10928
PDB:1ETF[18]
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5.2.3 Analyses of Simulations

Post-simulation analysis incorporated a variety of software to extract observables for compar-
ison with experiment. NMR observables — chemical shift and Jgx go-coupling values — were
calculated to validate the performance of both tested force fields and assess the quality of
MD sampling. The Amber module, cpptraj|235], was used to remove solvent for subsequent
frame-by-frame processing and analysis. All chemical shift values were calculated using the
SPARTA+ package [255]. A3 Jy N Ha-coupling constants were calculated using the Karplus
equation that was programmed with the MDTraj python library[187| and coefficients from
literature[303]. Experimental values (Figures 5.10C-D, 5.11B) were extracted from published

figures in respective papers if raw data were not available from the authors (Table 5.1).

Time-dependent cumulative averages of both NMR observables were calculated for conver-
gence assessment. From these cumulative average calculations, the rate of change per NMR
observable (ANMR Observable) was calculated to assess its rate of convergence. Rate of

change datasets were fitted to a biphasic exponential-decay model:

ANMR Observable = Ale%lz + Aze%; +c

Of the fitted parameters, the slower 75 values were calculated and utilized to assess the rate of
convergence of the observable. Kernel density estimations (KDEs) were used to analyze the
detailed distribution of each predicted observable per frame. KDE’s were calculated using the
python packages Scikit-Learn and Seaborn [121, 211]. Epanechnikov kernels were adopted
with appropriate bandwidths (h=0.5) in KDEs [82]. Initial bandwidths were determined
using Scikit-Learn’s grid search and cross validation function (GridSearchCV) (h=0.1) and

further rescaled to h=0.5 as it yields comparable distributions with less noise.

Secondary structure propensity estimates were calculated using the DSSP program [131].

Prior to clustering, frames were pre-sorted using DSSP secondary structure assignments.
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Since DSSP default settings assign residues with three basic secondary structure assignments
— H (a-helix, 31p-helix, m-helix), E (beta ladder, isolated beta-bridge residues), C (hydrogen
bond turn, bend, loops, irregular residues) — frames were first grouped into the following
categories if they contained at least one of the 3 assignments: H only, E only, C only, EH
only, CH only, CE only, CEH only. Frames for all simulations fell into only four of the
categories: C only, CH only, CE only, and CEH only. Clustering was then restricted to a
single secondary structure category (e.g. C only). This pre-clustering assortment permits

filtering based on secondary structure and increases accuracy in the clustering step.

After pre-clustering, ¢ and 1 torsion angles were extracted from trajectories with the
MDTraj[187] module as input in our clustering methodology. Torsional data was then sub-
jected to PCA dimensionality reduction with settings specified to retain 99% of variation
in torsion angle data. Clustering was performed by generating gaussian mixture models
(GMM)[72| for each secondary structure category (e.g. C only), in which each frame was
clustered depending on its likelihood of occupying a specific component /cluster. GMMs con-
sist of a mixture of multi-dimensional gaussian probability distributions from which the num-
ber of components/mixtures (number of “clusters") can be estimated using cross-validation
techniques such as Bayesian information criterion (BIC) [247]. The lowest BIC value was
used to estimate the appropriate number of mixtures for each GMM model (Figure D.14).
GMMs were created using the Scikit-Learn|[211] python module and implemented using the

expectation-maximization algorithm|69] to fit and achieve converged mixtures/clusters.

In RRE-bound Rev (RRE-Rev) simulations, the snapshot closest to the average was used as a
representative of the average structure and implemented using cpptraj [235|. Hydrogen bond
occupancies were calculated using the Baker-Hubbard[15] criteria from the MDTraj|187]
python module and ionic salt bridge interactions were determined with a strict distance
criterion[16] (4 A) between centers of charged groups (positively charged atoms from residues

Arg and Lys: NH* NZ*; negatively charged atoms: OP* phosphate backbone atoms in the
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RNA-binding partner RRE). Pymol was used to generate the representative structural image

and TOC image.

5.3 Results and Discussion

Nine short peptides, EGAAXAASS (X = D, E, H, K, L, P, Q, W, Y) and the structurally
dynamic apo Rev protein from type-1 HIV were simulated to illustrate the issues that must
be addressed in computational studies of IDPs, namely both the accuracy of force fields and
convergence of sampling. In the following, the convergence issue of the sampling is addressed
before studying the quality of the two selected force fields in reproducing NMR observables.
Finally, the structural characteristics of both disordered and ordered apo Rev protein are

discussed based on the expansive MD simulations in explicit solvent.

5.3.1 Convergence Analysis

Previous studies of IDPs relied on backbone RMSD analysis and/or clustering of MD tra-
jectories within hundred nanosecond timescales to confirm proper sampling and convergence
of IDPs [48, 262|. In this study, we relied on direct analysis of time-dependent cumulative
averages of specific NMR observables, a reasonable technique to investigate the convergence

of simulated observables.

We analyzed time-dependent cumulative averages (Figure D.1-D.5) of simulated secondary
chemical shifts and 3Jgymae-coupling constants to estimate the time scales at which the
rates of change of the observables go to zero, an indication that convergence is achieved. A
convergence decay was fitted to a biphasic exponential decay model (ANMR Observable =
Ale%lz + AQG%; + ¢) thereby allowing for the determination of 75. Here, the parameter

generated from the first rapid decay phase, 7 is discarded. The implementation of this
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Table 5.2: Average 7, values (AdCa and 3 Jgypo-coupling constants) of 9-residue EGAAX-
AASS with standard deviations (SDs)

Avg. 75 + SD (AdéCa (ns)) Avg. 1 + SD (CJyyua (ns))

Protein ff14SB ff141DPSFF ff14SB ff141DPSFF
EGAADAASS 705 + 134 221 £ 22 679 £ 242 761 £+ 187
EGAAEAASS 389 £ 63 195 £ 25 639 £ 179 715 £ 179
EGAAHAASS 561 4+ 104 508 £ 107 686 & 193 786 £ 279
EGAAKAASS 412 £ 68 163 £ 21 570 £+ 130 685 £+ 183
EGAALAASS 307 £ 50 239 + 36 692 £+ 163 710 £ 185
EGAAPAASS 247 £+ 31 270 £ 40 716 + 205 581 + 181
EGAAQAASS 435 £ 68 437 £ 74 74T = 225 689 + 154
EGAAWAASS 423 £ 60 343 £ 40 631 £ 113 525 £ 136
EGAAYAASS 511 £ 93 480 £ 77 641 £ 173 687 £ 250

technique allows us to quantitatively assess and compare the convergence rates of tested

systems and sampling protocols.

Short Peptides Table 5.2 summarizes the average 7, values — derived from simulated A§Ca
— of the 9 short peptides. These values are further represented in boxplots detailing their
ranges, medians, and lower /upper quartiles (Figure 5.1). Detailed fitting plots for all residues
and simulation types are shown in the SI file (Figure D.6-D.7). Calculated average 75 val-
ues of EGAAXAASS simulations reveal a stark contrast between ff14SB- and ff14IDPSFF-
generated simulated AdCa values, with ff14IDPSFF exhibiting lower values than the generic
ff14SB force field, except the Q-substituted simulations, whose 7, values are quite similar
between the two. The analysis suggests ff14IDPSFF simulations converge mostly faster than

the ff14SB simulations for the chemical shifts monitored (Figure 5.1).

99



2500 4 (A) 1 (B)

2000 - il
— 4
§1500- T ’
o 1000 L T -
* lellefe® o 2k
0 L= I%I = *"E == %ﬁ@iiﬁ@@
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

D EHIKLP QWY D EHKILPQWY
ff14SB ff141IDPSFF

Figure 5.1: Summary of 7, values (medians, ranges, quartiles, outliers) for peptides of
EGAAXAASS (X=D, E, H, K, L, P, Q, W, Y), derived from AAJCa calculations. Simu-
lations are labeled by peptide and force field: (A) ff14SB and (B) ff14IDPSFF. Diamonds
indicate outliers and a red box denotes the average 7, value. Fitted plots from which boxplots
were derived can be found in the SI (Figure D.6-D.7).

Next, we repeated the above biphasic exponential fitting to cumulative averages of a second
simulated NMR. observable — 3.Jyxgo-coupling constants (Figure D.10-D.11). Overall, the
range of calculated 75 values is narrow and comparable between both force fields (Figure
5.2). Upon closer inspection, the average 7 (indicated by red boxes) is generally higher in
ff14IDPSFF simulations than those in ff14IDPSFF simulations, different from the chemical
shift analysis. Interestingly, the final 3.y ypo-coupling constants are comparable between
the two force fields, as the average values are within standard deviations. Peptides substi-
tuted with P, Q, or W in ff14IDPSFF simulations, exhibit lower 7 values in comparison
to other substituted short peptides, suggesting possible conformational preferences leading
to increased convergence rate. Comparison of the 7 values for the two NMR observables
suggests that J-coupling constants in general converge slower than secondary chemical shifts
in our simulations, as shown in Figures 5.1-5.2 and Table 5.2. Nevertheless, both sets of
simulations are believed to be converged as far as both NMR observables are concerned, as

the 75 values are much shorter than the cumulative simulation time scales sampled.
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Figure 5.2: Summarization of 7o values (median, range, quartiles, outliers) for peptides
of EGAAXAASS (X=DEHKLPQWY), derived from 3 Jg ypo-coupling constants. Diamonds
indicate outliers and a red box denotes the average 7, value. Fitted plots from which boxplots
were derived can be found in the SI (Figure D.10-D.11).

Apo Rev and RRE-Rev We extended the convergence analysis of the two tested force
fields for the simulations of both apo and bound Rev. Biphasic exponential decay models
were fitted (Figure D.8-D.9, D.12-D.13) as outlined in the Short Peptides subsection, us-
ing cumulative averages (Figure D.3-D.5) of simulated secondary Ca chemical shifts and
3 Junra-coupling constants. A summary of 7 values for apo Rev in Table 5.3 reveals a con-
sistent pattern in comparison to the short peptides: the 7 values for AdCe in ff14IDPSFF
simulations are lower than those in ff14SB simulations and the 7 values of 3.Jy yzo-coupling

constants in ff14IDPSFF simulations are higher than those in ff14SB simulations.

We also explored the convergence behavior of different simulation protocols in the simulations
of apo Rev. Since the duration of MD simulations can significantly impact the conforma-
tional sampling, a total of 10 microseconds of MD simulation with both short (200ns x 50)
and long (1us x 10) protocols was generated for comparative analysis. Initial, qualitative
inspection of cumulative averages (Figure D.3-D.4) of simulated NMR, observables reveals
higher fluctuations in the long protocol. Different observations in the short and long protocols
suggest the two probably converged to different conformational minima, though it is clear

via inspection of cumulative averages (Figure D.3-D.4) that the short protocol transitioned
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Table 5.3: Average T, values (AdCa and 3.Jynga-coupling constants) of apo Rev and RRE-
Rev with SDs

Avg. 5 + SD (AdCa (ns)) Avg. 1 + SD (CJyyya (ns))

Protein ff14SB ff14IDPSFF ff14SB ff141DPSFF
Apo Rev (1us x 10) 445 £ 75 396 + 70 642 + 166 710 £ 209
Apo Rev (200ns x 50) 119 + 73 115 £ 58 422 £ 71 451 £+ 67
RRE-Rev (200ns x 5) 21.8 + 1.6 24.0 £ 2.3 3.4+£03 3.6 £0.3

to their minima faster.

Cumulative averages were then fitted as biphasic exponential decay models (Figure D.8,
D.12, summary of fitted 75 in Table 5.3 and Figure 5.3). Table 5.3 and Figure 5.3 clearly
show that both NMR observables converge faster in the short protocol. This is consistent
with the initial qualitative inspection of apo Rev cumulative averages (Figure D.3-D.4),
where it appears that the short protocol produces overall better convergence trends in all
cases. The 7, values are also consistently distributed within narrower ranges (aka smaller
SDs) in the short protocol, indicating consistent convergence of simulated NMR observables.
In contrast the distributions of 7, values from the long protocol strongly depend on force

fields and observables analyzed.

Finally convergence rates for RRE-Rev simulations in Table 5.3 also indicate comparable
convergence between ff14SB and ff14IDPSFF simulations, although 3Jg x go-coupling-derived
79 values are much smaller than AdCa—derived 7, apparently due to the much more stable
Rev in the bound state. Overall the convergence rate analysis shows that it is important to

monitor individual observables for their convergence trends.

102



1600 1 (A) 1600 1 (B)
1400 - 1400 -
1200 S 1200 S
% 1000 - % 1000 -
£ 800 - £ 800 -
& 600 A & 600 A
400 - . 400 -
200 A ‘ 200 A
0 1 1 O 1 %
Tus x 10 200ns x 50 Tus x 10 200ns x 50
ff14SB Simulation Type ff14IDPSFF Simulation Type
1400 91 (C) 1400 7 (D)
1200 - . 1200 S
1000 - 1000 S
g 800 A : ié), 800 A
~ 600 - ~ 600 - T
3 [
400 - \ + 400 - "
200 - 200 -
0 T T 0 T 1
Tus x 10 200ns x 50 1us x 10 200ns x 50
ff14SB Simulation Type ff14IDPSFF Simulation Type

Figure 5.3: Summarization of 7 values derived from cumulative averages of AdCa and
3 Junra-coupling constants for apo Rev. Boxplots depict median, range, quartiles, outliers,
and averages (red box). (A) Details only ff14SB-parameterized simulations of AdCa-derived
7y values. (B) Details only ff14IDPSFF-parameterized simulations of AjCa-derived 7 val-
ues. (C) Only ff14SB-parameterized simulations of 3.Jyxgo-coupling-derived 7 values are
shown. (D) Details only ff14IDPSFF-parameterized simulations of ®Jg yx4-coupling-derived
T values.

5.3.2 Distributions of Simulated Observables

We implemented the kernel density estimation (KDE) method to determine the probability
density distributions of simulated NMR, observables. There are two purposes in conducting
this analysis. First, it provides a more detailed view of simulated observables. Second, it
provides a means to cross-validate, in more detail, the different simulation protocols used in

the simulations of the more challenging apo Rev.
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Short Peptides Figure 5.4 shows KDE analyses for Ca secondary chemical shifts. The
distribution in Figure 5.4 shows that ff14SB conformations (first/third columns) are concen-
trated into multiple peaks in regions characteristic of helices (3 & 1 ppm) and random coil (~0
ppm) [265]. As an example, peptide EGAADAASS (ff14SB) exhibits multiple peaks, and a
higher concentration of positive secondary Ca chemical shifts. In contrast, the ff14IDPSFF
distributions (second/fourth columns) are overall narrower, more symmetrical, and more
Gaussian-like centered around 0 ppm, suggesting more uniform disordered structures in the

ensemble (Figure 5.4).
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Figure 5.4: Kernel density estimations (KDEs) of secondary Ca chemical shift values for 9
short peptides of EGAAXAASS (X =D, E, H, K, L, P, Q, W, Y) and residues 2-8. Residues
are colored as indicated in the legend.
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KDEs of 3Jg n e -coupling scalar coupling constants are shown in Figure 5.5. Scalar 2 Jg nfra-
coupling constants for helical structures typically average 4.2-5.6 Hz, beta sheet conforma-
tions average 8.5-10 Hz, and random coil average 5.9-7.7 Hz [261]. In Figure 5.5, a significant
proportion of residues display peaks within the helical region, from both force fields. How-
ever, distributions in ff14SB simulations display higher densities characteristic of helices than
those in the ff14IDSPFF simulations for most peptides. A high concentration of peaks can
also be observed in the 8.5-10 Hz range typical of beta conformations in the ff14IDPSFF
simulations. However only a small fraction of conformations are within values characteristic
of beta conformations in the ff14SB simulations. We supplemented the NMR observables
with a more detailed secondary structure analysis based on the DSSP[131] program. The
DSSP data shows, however, that beta secondary structure is nonexistent in both simulations
(Figure D.17). The discrepancy is not a surprise given that the 3Jyyp,-coupling constant
calculation only considers the main-chain torsion angles while DSSP considers a range of

different structural and energetic properties.
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Figure 5.5: KDEs of 3Jgyga-coupling constants for 9 short peptides of EGAAXAASS (X =
D, E, H, K, L P, Q, W, Y) and residues 3-9.

Apo Rev Apo Rev simulations also display similar distributions described above — increased

peak densities in the helical region in the ff14SB simulations compared to the ff14IDPSFF

simulations. Juxtaposition of the two distributions displays an overall heterogeneous dis-

tribution in the ff14SB force field, with peaks in ranges typical of helical character (3 + 1

ppm) (Figure 5.6A-B). The long-protocol simulations contain higher density peaks in the

3 £+ 1 ppm range, indicating that more conformations contain helical content compared to

the short-protocol simulations (Figure 5.6B). This increased helicity observed in long ff14SB

simulations suggests the impact of timescales (short vs. long) is more apparent in ff14SB
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simulations than ff14IDPSFF simulations. In the ff14IDPSFF simulations, both timescale

types produce almost identical homogenous distributions centered ~0 ppm (Figure 5.6C-D).

A B
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Figure 5.6: KDEs of secondary Ca chemical shift values for 1us x 10 (long) simulations and
200ns x 50 (short) simulations. Residues are colored according to the legend and simulations
are plotted according to the following combination of force field and timescale types: (A)
Short simulations using the ff14SB force field. (B) Long simulations using the ff14SB force
field. (C) Short simulations using the ff14IDPSFF force field. (D) Long simulations using
the ff14IDPSFF force field. Asterisks (*) indicate non-native residues.

The KDE analysis was also conducted for simulated Jgxpo-coupling constants. In all
simulations, we observed three general regions in the KDE distributions: helical region (av-
erage 4.2-5.6 Hz), beta region (average 8.5-10 Hz), and disordered/coiled region (average
values 5.9-7.7 Hz) [261]. Similar observation was also noted in experimental findings [48|.

Both force fields and simulation protocols exhibit similar peaks in the helical region (broad
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with densities less than 0.2), but differ in the following: 1) ff14SB simulations peaks con-
tain higher densities, indicating more helical content than both ff14IDPSFF simulations;
and 2) the long-protocol ff14SB simulations peaks are more left-shifted indicating increased
helicity than its short protocol counterpart (Figure 5.7A-5.7B). In the disordered region:
1) the ff14SB simulations exhibit less disordered secondary structures as density peaks are
lower than the ff14IDPSFF simulations; and 2) the peaks are similar between short and
long-protocol simulations when apo Rev is modeled with ff14IDPSFF. In the beta region,
density peaks in the ff14SB simulations are in general lower than those in the ff14IDPSFF

simulations.

Several observations, however, are contradictory to those in the chemical-shift KDE anal-
ysis. A single peak representing residue 46R is the only density peak > 0.6 in the ff14SB
simulations (long protocol), while all other peaks are ~0.2 density within Figure 5.7B. The
beta region is also more readily populated with high densities in the 3Jg ypo-coupling distri-
butions for all simulations whereas minimal densities were observed in the beta region (-1.48
+ 1.23 ppm)[265] in the AdCa distributions for the ff14IDPSFF simulations (Figure 5.6 and
5.7). This discrepancy might result from our uses of the ?Jgypo-coupling constants to infer

secondary structures as discussed in the Short Peptide analysis.

KDE distribution analysis of simulated NMR observables is also a useful assessment of
convergence quality, supplementing the convergence rate analysis in section 5.3.1. The dis-
tribution data show that the ff14SB force field is more sensitive to simulation protocols than
ff14IDPSFF. Consistently converged distributions in the ff14IDPSFF simulations allow us
to use the convergence rates obtained in section 5.3.1 to compare which protocol is better.
However, the rate estimations (Table 5.3 and Figure 5.3A-5.3B) show that the convergence
rates between the two are quite similar, within 200ns in general, though it is clear that the
short protocol converges faster than the long protocol. For ff14SB simulations, the differ-

ent distributions presented here give us pause to claim that the sampling of the apo Rev

108



is sufficient in either protocol even if 10 microseconds worth of sampling has been collected

(Figure 5.6). This indicates that enhanced sampling techniques would greatly benefit IDP

simulations for systems as small as 23 amino acids such as apo Rev.
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Figure 5.7: KDEs of 3Jyypa-coupling constants of short (200ns x 50) and long (lus x
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5.4 Comparison of Simulated and Measured NMR Ob-

servables

Short Peptides We next calculated the final averages of secondary Ca chemical shifts for
both sets of simulations and compared with experimental values (Figure 5.8). Figure 5.8
shows that experimental chemical shifts[64, 152| of the 5X-substituted residues often result
in a more negative ppm shift. This suggests that the 5X-substituted residues are more
disordered /extended than their adjacent residues [265]. This trend can be reproduced by
both force fields, with the exception of the 5W-substituted simulations (Figure 5.8). In 5P-
substituted simulation simulations, the proline residue is expected to rigidify and increase
overall order in the peptide [64, 163]. Both sets of simulations agree well with experiment,
replicating the expected -2 ppm shift observed for residue 4A, with ff14DIPSFF generating a
slightly more negative shift (Figure 5.8). In simulations of aromatic-substituted residues (5X
= W, Y), both force fields also replicate a similar observation by Dames et. al,[64] a negative
-0.3 ppm shift in residue 6A. Overall, the agreement between simulation and experiment is
summarized in Table 5.4, which shows improved performance of ff14IDPSFF over its generic

counterpart ff14SB in modeling the tested peptides (Table 5.4, Figure 5.8).

We also compared simulated ®Jxyma-coupling constants to experimental values for these
disordered peptides in Figure 5.9. Table 5.4 presents corresponding root mean square er-
rors (RMSEs) with respect to experiment, indicating overall better agreement between ex-
perimental and ff14IDSPFF-simulated values (Table 5.4, Figure 5.9). In summary, both
simulated chemical shifts and J-coupling constants demonstrates that the ff14IDPSFF sim-
ulations can better reproduce the two tested NMR observables than the ff14SB simulations

in these short peptides.

Apo Rev In simulations of the more complex apo Rev, simulated secondary chemical shifts

do not agree with experiment as well as those in the tested short peptides. For ff14SB sim-
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Table 5.4: RMSE of calculated Ca chemical shifts and 3Jynme-coupling constants with
respect to experimental values.

AéCa RMSE (ppm) 3Jynp.-coupling RMSE (Hz)

Protein ff14SB ff14IDPSFF {f14SB ff14IDPSFF
EGAADAASS 0.72 0.34 0.95 0.42
EGAAEAASS 0.54 0.2 1.01 0.61
EGAAHAASS 0.43 0.33 1.01 0.56
EGAAKAASS 0.25 0.16 0.53 0.36
EGAALAASS 0.32 0.17 0.61 0.5
EGAAPAASS 0.29 0.3 0.79 0.67
EGAAQAASS 0.36 0.18 0.88 0.57
EGAAWAASS 0.31 0.26 0.65 0.44
EGAAYAASS 0.3 0.14 0.76 0.66

Apo Rev (1us x 10) 0.64 1.16 1.34 1.03
Apo Rev (200ns x 50)  0.68 1.19 1.17 1.02
RRE-Rev (200ns x 5)  2.35 2.62 0.9 1.08

ulations, short (200ns x 50) and long (1us x 10) protocols overall agree with each other but
not in the N-terminal portion (residues 35 to 41) (Figure 5.10A). Overall the long protocol
agrees a bit better with experiment (Table 5.4). Experimental values occupy mostly positive
secondary chemical shifts, indicating possible residual helical secondary structure in apo Rev
and this is reproduced well in the ff14SB simulations. It is also worth noting experimen-
tal secondary chemical shifts are still within reasonable values typical of random coil, < 2
ppm. For ff14IDPSFF simulations, both short and long protocols produce nearly identical
secondary chemical shift values (Figure 5.10B), lending support that the simulated observ-
ables converged very well. However, the agreement with experiment is not as good as the
ff14SB simulations (Figure 5.10B and Table 5.4). Specifically, the ff14IDPSFF simulations

may overestimate disordered structures in apo Rev.

Interestingly worse agreement is apparent between ff14SB-simulated 3.Jp ygo-coupling con-
stants and experimental values (Figure 5.10C). Overall higher helical propensity is visible
in the ff14SB simulations (average 4.2-5.6 Hz) versus higher disordered propensity (average
5.9-7.7 Hz) in the experiment (Figure 5.10C). Notably, ffl14IDPSFF simulations agree closer

to experiment in this regard with 3.Jy ypo-coupling constants in the similar range as in the
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experiment. Nevertheless, both experimental and simulated 3Jgx go-coupling constants are
still within reasonable range of disordered secondary structure. These ambiguous, sometimes
overlapping secondary structure boundaries used in NMR experiments highlight the difficulty
in definitively assigning secondary structures based on either chemical shifts and Jp ya-
coupling constants. Multiple, independent CD experiments, however, suggest the conforma-
tional landscape of apo Rev is more populated as disordered than helical [18, 48, 67, 68|.
In summary, the ff14IDPSFF simulations agree surprisingly well with both NMR and CD
experiments with disordered structures dominant in its simulations of apo Rev. These obser-
vations will be highly useful in further refining IDP-specific force fields to improve simulation

of complex, dynamic IDPs such as apo Rev.
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Figure 5.10: Comparison of force field and simulation types of apo Rev to experimental
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RRE-Rev Since the Rev protein is known to sustain a helical structure upon binding to its
RNA-binding partner, Stem IIB of Rev response element (RRE), we also simulated the RRE-
Rev complex (PDB: 1ETF) and compared to the apo Rev simulations. Experimental AdCa
and 3Jynre-coupling constant datasets were extracted from two separate literature sources
and each source used different non-native residues in the N-terminal portion of otherwise
identical Rev peptides [17, 18, 48]. The ®Jynma-coupling dataset[48] was generated from
a Rev peptide containing a 4-residue non-native extension (GAMA) at the N-terminus,
while the AdCa dataset|17] resulted from a Rev peptide containing a non-native, N-terminal

residue Asp. The GAMA sequence was a byproduct leftover from His6-GB1 tag, and the
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Asp non-native sequence was used as an alternative to a synthetic N-terminal sequence from
earlier experiments. Although we chose to simulate Rev bound to RRE with the N-terminal
Asp from the literature,[17] the remaining 22 residues are identical between Rev peptides
used in both experiments. Nevertheless experimental data show that both sequences from
literature|[17, 18, 48| exhibited RNA-binding specificity /activity in addition to disordered

secondary structure in the apo state.

Although experimental chemical shifts fluctuate significantly, simulated values are stable
and almost identical between the two force fields except terminal residues 49-52 (Figure
5.11). Both C-terminal experimental and simulated values seem to be decreasing to ranges
characteristic of random coil (Figure 5.11). In analyses of 3Jgyg-coupling constants, ex-
perimental values and ff14SB-simulated values occupy typically helical ranges (< 5.6 Hz),
whereas ff14IDPSFF-simulated values are almost identical to both ff14SB and experimental
values until residue 49Q (Figure 5.11). The comparison shows that the beta-forming ten-
dency is too strong for 49Q) in the ff14IDPSFF simulations of the bound Rev (Figure 5.11B).
Similar tendency is also noticeable in the ff14IDPSFF simulations of the apo Rev (Figure
5.10D) where the ®Jynma-coupling constant is also overestimated for 49Q. This suggests
further refinement is clearly required in the development of IDP force fields. RMSE dif-
ferences between simulated NMR observables and experimental values are also rather close
(Table 5.4), though the chemical shift agreement is not as good as those for the apo Rev
simulations. This is probably because RRE was not considered in the conversion from MD
conformations to chemical shifts by the SPARTA+ package [255]. Overall both ff14SB and
ff14IDPSFF are adequate in the RRE-Rev simulations, with accuracy in predicted NMR
observables comparable to that obtained for the NMR structure (RMSE of 2.50 ppm for

A§Ca and RMSE of 1.86 Hz for 3.Jyxga-coupling constants).

116



8 Rev from RRE-Rev 10 Rev from RRE-Rev

Expt.
ff14SB
ff14IDPSFF

50R

T T 1 T T T T 17T T T T 7T LI 1 T 1T 1T 1T T T 1T 1T T T T T T T T T°T
CEQSEEZUEEEIEUEIESSST  LEOSEEZEREEEEMEoEIsss
PO RBeEBITIIIIRISIIIBLOLGED PO E®BITIIIIRISTIIBLhLOD®

Residue Residue

Figure 5.11: Simulated NMR observables are superimposed with experimental NMR val-
ues of Rev bound to the Stem IIB of RNA-binding partner, Rev-response element. Bold
residues indicate native residues and asterisk (*) denotes non-native residues. (A) Com-
parison of experimental[17, 18] and average simulated AdCa values. (B) Comparison of
experimental|17] and average simulated 3 Ju N Ha-coupling constants.

5.4.1 Structural Signatures of Apo Rev Disordered State

Despite the extensive investigation of the Rev protein, as evidenced by 1647 hits from a gen-
eral Pubmed search, this highly dynamic protein only occupies a monomeric state at submi-
cromolar concentrations,|[61] thus remaining elusive to structural characterization. Previous
pursuits to structurally characterize the apo form of Rev encountered difficulties ranging
from protein solubility to oligomerization, preventing characterization of apo Rev in physio-
logical conditions [221]. Early circular dichroism (CD) and mutagenesis experiments suggest
that apo Rev is disordered, forming helical structure depending on terminal amino acids (e.g.
amidated C-terminus, C-terminal extension AAAR) [277]. Overall, attempts to characterize
monomeric apo Rev have required techniques to induce ordered structure propensity, such as
specific helix-inducing solution buffers (e.g. 2,2,2-trifluoroethanol), residue mutations to pre-
vent oligomerization, or the introduction of structure-inducing binding partners [277, 244].
MD simulations thus provide a useful tool to probe the highly mobile conformations of Rev
in its physiological disordered state. In previous structural modeling studies and MD sim-

ulations from Song et. al[262] and Casu et. al[48], researchers observed primarily coiled

117



secondary structure of apo Rev. These simulations however simulate apo Rev in nanosecond
timescales. Herein we generated tens of microseconds trajectories to ensure proper sampling

of disordered apo Rev conformations.

Clustering and secondary structure propensity calculations are discussed hereafter, highlight-
ing the differences between the ff14SB and ff14IDPSFF simulations (in the long protocol).
Although both ff14SB and ff14IDPSFF simulations exhibit ordered and disordered char-
acteristics, the two force fields differ in secondary structure preferences: increased helical
content observations in the generic ff14SB simulations (Figure 5.12), disordered structural
preferences in the ff14IDPSFF simulations (Figure 5.13). The top ten clusters between both
force fields occupy similar percentages: ff14SB at 17.87% versus ff14IDPSFF at 17.41%.
Further evidence from DSSP[131] (hydrogen bond estimation algorithm) calculations also
suggests the majority of ffl14IDPSFF conformations exhibit coiled secondary structure, in
Figure D.18. All residues in ffl14IDPSFF simulations exhibit roughly equal probabilities of
coiled secondary structure (average > 80%) in addition to some beta contents (Figure D.18B-
C, D.19B-C). DSSP (Figures D.18-D.19) and clustering results (Figures D.15-D.16) of the
short protocol simulations are also provided in the supplementary information although sim-
ulations from the long protocol are the primary focus in this section. Experimental findings
ranging from secondary chemical shift, 3 Jy n ro-coupling, and CD suggests apo Rev is mainly
disordered when unbound [48]. Despite the observation that both force fields replicate the
average coiled secondary structure as in experiment, these clustering analyses show that each
force field exhibits either disordered or ordered structural bias — observations that will be

useful in future refinement of IDP-specific force fields.

118



S

(C1) 2.93%

‘ry

(C6) 1.63%

Loowd

(C2) 2.08% (C3) 1.90% (C4) 1.87%

e

/\f < L Se
¢ N ¥

(C7) 1.59% (C8) 1.47% (C9) 1.44%

\bl‘—q

(C5) 1.66%

(C10) 1.31%

Figure 5.12: Top 10 clusters of ff14SB-parameterized simulations encompass 17.87% of all
frames. Clusters are labeled C1-C10 and colored according to N- to C-termini sequence (red

to blue).

o~

{

D

(C1) 2.15%

(™

(C6) 1.67%

~\ —
S o

LN
(C2) 1.94% (C3) 1.85% (C4) 1.82%

QD 4

y
s

(C7)1.63% (C8) 1.58% (C9) 1.53%

~
\C‘\\

Y 3

(C5) 1.74%

V

(C10) 1.52%

Figure 5.13: Top 10 clusters of ff14IDPSFF-parameterized simulations encompass 17.41% of
all frames. Clusters are labeled C1-C10 and colored according to N- to C-termini sequence

(red to blue).

119



5.4.2 Conformational Analysis of Bound Rev Ordered State

To supplement our apo Rev simulations above, we also simulated Rev bound to its RNA bind-
ing partner, RRE Stem IIB, to assess how our simulations perform in replicating experimentally-
observed behaviors such as induced fit [61, 325]. Previous studies emphasize induced fit
and proper RRE binding requires the presence of a single Rev monomer, from which more
Rev monomers are recruited and oligomerize [61]. The NMR solution structure depicts an
a-helical Rev situated in the major groove of RRE-Stem IIB [17]|. After simulating this com-
plex, we proceeded to align the Rev peptide from the NMR solution structure (PDB: 1ETF)
to the average Rev structure extracted from RRE-Rev simulations (Figure 5.14). Simula-
tions of Rev bound to RRE yield significantly more stabilized conformations compared to apo
simulations. In the ff14SB simulations, we observed almost entirely helical content (Figure
5.14). In ff14IDPSFF force field simulations, helical secondary structure was observed in N-
terminal residues, whereas coiled, disordered structure was observed in C-terminal residues
(Figure 5.14). We also estimated the average secondary structure propensities of each residue
for all simulations using the DSSP algorithm (Figure D.20). Despite some fluctuation in the
last 4-5 C-terminal residues, most residues remain fairly stable, retaining the characteristic

helical conformation found in the NMR solution structure (Figure D.20) [48].
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B 14sB
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Figure 5.14: Alignment of average Rev structure from ff14SB and ff14IDPSFF RRE-Rev
simulations to chain B in the NMR solution structure (PDB: 1ETF). (A) The average struc-
ture from ff14SB simulations is superimposed to Rev protein from 1ETF, with an RMSD of

0.57 (Ca atoms). (B) The average structure from ff14IDPSFF simulations is superimposed
to Rev protein from 1ETF, with an RMSD of 1.14 (Ca atoms).

Unsurprisingly, ff14SB simulations yield a lower RMSD than ff14IDPSFF simulations from
alignments to the experimental structure (Figure 5.14). This induced helical content is most
likely attributed to inherent native-structure-biases of the generic ff14SB protein force field
[22, 89, 91, 113]. Although the RMSD of the experimental and ff14IDPSFF-derived structure
is larger, it is notable that the helical component is quite stable (first 16 residues), with the
remaining 7 residues exhibiting multiple helix-to-coil transitions (Figure 5.14, D.20). Chem-
ical shift and CD data of the wild-type Rev and various mutants (oligomerization-deficient
mutant V16D /I55N Rev, and L60R mutant Rev bound to Stem IIB RRE), also suggests
disordered content in the C-terminus [18, 48, 67, 68]. The stable N-terminal fragment found
in ff14SB- and ff14IDPSFF-simulated residues contrasts sharply with the high structural
fluctuation observed in apo Rev simulations, and is consistent with experimental RRE-Rev
results [48]. Alignment of average simulated complexes also generated structures similar to

the experimental NMR solution structure (Figure 5.15).
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Figure 5.15: Alignment of average complex structure from ff14SB and ff14IDPSFF RRE-Rev
simulations to the full NMR solution structure (PDB: 1ETF). Nitrogenous bases are colored
according to Nucleic Acid Database convention: A — red, U — cyan, C — yellow, and G —
green. (A) The average structure from ff14SB simulations (red) is superimposed to RRE-
Rev from 1ETF, with an RMSD of 1.48 (backbone atoms: CA, P, O5’, O3’, C3’, C4’, C5’).
(B) The average structure from ff14IDPSFF simulations is superimposed to RRE-Rev from
1ETF, with an RMSD of 1.9 (backbone atoms: CA, P, O5’, O3’, C3’, C4’, C5’).

Fluctuation of Rev backbone atoms are further explored via root-mean squared fluctuation
(RMSF) analyses for apo and bound Rev simulations. In all Rev simulations, backbone
atoms (Ca) fluctuate more in fl14IDPSFF simulations than the ff14SB simulations (Figure
5.16). Comparison of apo and bound simulations shows the bound Rev fluctuates less, due
to the stabilization from binding with RRE (Figure 5.16C, D.21). Unsurprisingly terminal
residues display the highest fluctuation in all simulations, except the relatively stable N-
terminal region in the bound Rev simulations. This is corroborated by hydrogen bonding

populations of residues 34-36 (Figure 5.16, D.21, Table 5.5), which stabilizes the N-terminal
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region. The observed different fluctuation trends can also be explained by the different
secondary structure propensities. For instance in Figure 5.16B, residues 36-38 in the ff14SB

apo Rev simulations exhibit lower RMSF values and also exhibit higher helical propensity

(Figure D.18A).

12 Apo Rev (200ns x 50) Apo Rev (1us x 10) RRE-Rev (200ns x 5)
10l A —— ff14SB 1(B) —— f14SB 1(€) —— ff14SB
—— ff14IDSFF —— ff14IDSFF ] —— ff14IDSFF
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Figure 5.16: RMSF analyses of backbone Ca atoms per force field and simulation type.
(A) Average RMSF of backbone atoms between fifty, 200ns apo Rev simulations. Asterisks
(*) indicate non-native residues. (B) Average RMSF of backbone atoms between ten, 1us
apo Rev simulations. (C) Average RMSF of backbone atoms between five, 200ns RRE-Rev
simulations.

Inspection of intermolecular hydrogen bond and ionic salt bridge occupancies (only frequen-
cies > 0.5 is shown) in Table 5.5 and 6 reveals similar interactions between simulations of
both force fields, but with slight differences (Table 5.5). Since ionic salt bridge formations
are almost identical between the two force fields (Table 5.6), we chose to focus primarily
on differences in hydrogen bond formation. In ff14SB complex simulations, the hydrogen
bond pair ARG46-U72 dominates compared to ff14IDPSFF complexes due to the increased
stability and helical propensity of the C-terminal end (Table 5.5). While retaining mostly
helical character between residues 33-46, Rev contains two hydrogen bonds (GLN36-G47,
ARG41-U45) in the N-terminal region in the ffl4IDPSFF simulations, which are less fre-
quent in the ff14SB simulations, an unexpected outcome considering the stability of the
ff14SB simulations over that of the ff14IDPSFF simulations (Table 5.5). Co-existence of
stabilized N-terminal helices and coiled C-terminal components in the ff14IDPSFF simula-

tions of bound Rev suggests this new force field is able to simulate disordered region in an
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otherwise ordered protein, while the ff14SB simulation retains more helical characteristics.

Table 5.5: Intermolecular Hydrogen Bond Occupancy (criteria: 6 > 120°, distance < 2.5
A)[15]

Row Number Donor Residue Acceptor Residue Freg. (ff14SB) Freq. (ff14IDPSFF)

0 THR34 G47 0.5926 0.6576
1 ARG35 C65 0.753 0.5848
2 ARG35 U66 0.8388 0.7287
3 GLN36 G48 0.7831 0.6025
4 ARG38 U66 0.9777 0.9303
) ARG38 G67 0.7867 0.7301
6 ARG39 G70 0.9918 0.9702
7 ASN40 G47 0.8201 0.9814
8 ASN40 G46 0.6765 0.8927
9 ARGA41 G46 0.6674 0.7484
10 ARG42 G67 0.8515 0.8345
11 ARG42 A68 0.764 0.8502
12 ARG44 U45 0.7013 0.728
13 ARG46 ur2 0.6373 0.4805
14 ARG48 U43 0.8294 0.7139
15 ARG48 C44 0.6949 0.6611
16 GLN36 G47 0.3891 0.5076
17 ARG41 U45 0.4667 0.5766

124



Table 5.6: Intermolecular Tonic Salt Bridge Occupancy (criterion: distance < 4 A)[16]

Row Number Acidic Residue Basic Residue Freq. (ff14SB) Freq. (ff14IDPSFF)

0 U43 ARG48 0.8611 0.7314
1 C44 ARG48 0.7535 0.8062
2 U45 ARG44 0.5244 0.5146
3 G46 ARG41 0.7136 0.8019
4 C65 ARG35 0.7934 0.6226
5 U66 ARG35 0.8821 0.7189
6 U66 ARG38 0.9821 0.9527
7 G67 ARG38 0.7981 0.7406
8 G67 ARG42 0.9152 0.9513
9 A68 ARG42 0.7722 0.8712
10 ur2 ARG46 0.6879 0.6017
11 U45 ARGA41 0.4922 0.596

5.5 Conclusion

IDPs remain elusive by standard experimental methods due to their conformational flexi-
bility. Molecular dynamics simulations can thus provide detailed insight into their complex
structures, dynamics, and functions, if they can reproduce the available experimental ob-
servables. However, there are several issues in computational studies. First the generic force
fields were found to be biased towards ordered structures in many prior simulation studies.
Second the expansive conformations occupied by IDPs is often beyond typical simulation

amount needed for ordered proteins.

Thus, our first goal of this computational study is to assess the quality of both a generic

protein force field (ff14SB) and its IDP-specific counterpart (ff14IDPSFF) that was intended
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to address the biases in the generic force field. Overall simulated average observables from
ff14IDPSFF replicate experimental chemical shifts and 3.Jp yga-coupling constants more ac-
curately than those derived from ff14SB simulations for the tested EGAAXAASS peptides.
DSSP analyses also suggest different secondary structural biases between the two force fields,
increased helical content from ff14SB and coiled content from ff14IDPSFF, with the latter
in higher agreement with experiment. When used to simulate more complex proteins such
as Rev in apo and bound forms, computational models gravitate toward either ordered sec-
ondary structure (ff14SB) or disordered secondary structure (ffl4IDPSFF) as the clustering
analyses revealed. However simulated observables between the two force fields are roughly
comparable to experiment, fflI4IDPSFF simulations agree with both NMR and CD measure-

ments slightly better.

Our second goal of this study is to assess the extent of sampling that is needed for quan-
titative structural annotation of IDPs and to explore how to assess the sampling conver-
gence. This was first conducted by analyses of convergence rates of individual observables
in the form of bi-phasic decays. Convergence analyses of both NMR observables show that
ff14IDPSFF simulations converge slightly faster than ff14SB simulations in the chemical shift
calculations for all tested systems, though they converge slightly slower for 3.Jy yzo-coupling
constants for all tested systems. This is consistent with the observations that conformations
in ff14IDPSFF simulations are more diversified, sampling a larger range of main-chain tor-
sion angles, leading to slower convergence in 3.Jp ya-coupling constants that solely depends
on these torsion angles. The decay half times also show that the total sampling amount (in

term of nanoseconds simulated) is adequate as they are much less the total amount collected.

In addition, simulation protocols were also tested by simulating apo Rev as either many
short (50 x 200ns) trajectories or a few long (10 x 1us) trajectories. Consistently converged
distributions in the ff14IDPSFF simulations allows us to use the convergence rates to com-

pare which protocol is better. However, the rate estimations show that differences in the
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convergence rates between the two are small, within 200ns in general, though it can be said
the short protocol is slightly faster than the long protocol. For ff14SB simulations, the dif-
ferent distributions give us pause to claim that the sampling of the apo Rev is sufficient in
either protocol even if 10 microseconds worth of sampling has been collected. This indicates
that enhanced sampling techniques would greatly benefit IDP simulations for systems as

small as 23 amino acids such as apo Rev.

Despite the short sequence length of apo Rev, no monomeric disordered Rev protein has been
structurally characterized as demonstrated by its absence in the Protein Data Bank (PDB).
To compensate for this lack of structural characterization, we utilized a combination of NMR
and CD data for comparison to our clustering and secondary structural analyses. Chemical
shift and CD studies from various different sources of oligomerization-deficient mutants and
wildtype Rev conclude that monomeric Rev is mostly disordered [18, 48, 67, 68|. These
experimental findings are comparable to random coil clusters and DSSP calculations from
the ff14DIPSFF simulations of and differ from the ff14SB simulations where increased helical
content was found. Both force fields also generate stabilized helical structure and induced
fit in RRE-REV simulations, exhibiting a coiled C-terminus as shown by the chemical shift
data [17, 18, 48|. These structural computational studies of apo and bound Rev stress the

importance to assign the correct secondary structural biases in both force fields.

Interesting observations were also found when Rev was simulated with its RNA-binding
partner RRE, ff14DIPSFF was able to replicate the structured regions in the bound form,
despite over-representation of coiled secondary structure in the apo Rev simulations. De-
tailed analysis of the average conformation and secondary structures of the ff14IDPSFF
simulations shows that both the helical N-terminal region and coiled C-terminal region are
readily observed, in agreement with experimental findings, despite coiled secondary struc-
tural preferences in the apo Rev simulations. In comparison, a more stable helical structure

was observed throughout the ff14SB simulations. A natural next step is to ask a more
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quantitative question: whether ff14SB is too stable or ff14IDPSFF is too unstable in the
simulations of more complex IDPs such as Rev. This requires further quantitative stability

analysis both experimentally and computationally.

This study articulates the difficulties of obtaining converged and expansive sampling of IDPs,
though our exploration of different simulation protocols demonstrates consistent observations
with the ffI4IDPSFF force field regardless of the protocols used. Although successful in
simulating short peptides and bound Rev, the advantages of ff14IDPSFF are not as clear-cut
for the more complex apo Rev. These findings also suggest future refinements of IDP-specific
force fields and reduction of force field biases are still necessary for consistent performance

in modeling IDPs.
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Chapter 6

Neural upscaling from coarse protein
structure networks to atomistic

structures

6.1 Summary

As protein structural landscapes exhibit an increasingly diverse array of behavior and com-
plexity, here we explore the utility of expanding exploratory methods through residue-level
Protein Structure Networks (PSNs). As shown in previous work by the Butts lab, proteins
can be represented as PSNs and fitted with exponential random graph models (ERGMs).
An ERGM is statistical model where one attempts to fit parameters to this model such that
they maximize the likelihood of observing a given network, whose energy function which
is defined by a network Hamiltonian. This PSN simulation methodology can thus greatly
extend the timescales accessible to computer simulations of proteins that sample diverse

structural conformations over long timescales. Since PSNs represent proteins in a coarse
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structural form, further information can be extracted if PSNs can be transformed into an
atomistic model. Here, we use a multi-layer perceptron neural network to do exactly this
with the protein amyloid-3. Amyloid-# is an intrinsically disordered protein exhibiting a
dynamic range of secondary structural conformations (e.g. a-helix, 5 sheet, random coil).
This work demonstrates it is possible to use a neural network to map from coarser PSN rep-
resentations of macromolecular configurations to finer atomistic configurations. Therefore,
a PSN model can possess a surprisingly minimal loss of structural information compared to
classical atomistic simulations, especially considering PSN dynamics are orders of magni-
tude less costly to simulate than their atomistic counterparts. The trained neural network is
able to reconstruct the complex conformations of amyloid-3 at the atomic level from coarse
binary contact adjacency matrices extracted from PSNs, thereby expanding the toolkit of

protein conformation exploration.

6.2 Background

Proteins and biomolecules exhibit q wide variety of complex dynamics and interactions at
varying size and time scales. Coarse-grained (CG) models offer an alternative means to
traditional atomistic simulations by traversing larger timescales (e.g. beyond microsecond
timescales) as well as representing biomolecules at varying degrees of freedom (e.g. residue-
level, chemical moiety-level, etc.). Coarse-grained (CG) simulations can be parameterized
using either a force field (e.g. MARTINI [180]) or graph-based theoretic terms [96]. De-
spite their temporal advantage, coarse grained models benefit from the additional step of
backmapping/upscaling to atomic level in order to infer finer detailed observables. Although
methods to backmap or reverse map from CG to atomistic models exist, a majority of reverse
mapping methods focus primarily on force field-based CG models. Methods to backmap or

reverse map force field-based CG models consist of two steps, beginning with model gen-
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eration using either random placement [239], fragment-based [110, 215|, or geometric-based
[95, 30, 317, 168|, followed by an equilibration step to relax the system. However, these

methods sufficiently reverse map specifically CG force field-based models.

Previous approaches in graphed, coarse-grained modeling have focused primarily on map-
ping from atomistic to coarse grain networks [320, 50, 96]. One study in particular was
able to simulate amyloid fibril aggregation, representing the fibril topology as network rep-
resentations fitted with statistical models, exponential random graph models (ERGMs) [96].
Development of reverse mapping methods specific to these network simulation techniques

can thus expand the utility of this technique to explore complex protein conformations.

Over time, the development of CG-based simulation methods has also steadily incorporated
machine learning techniques [20, 27, 50, 151, 310, 320, 338]. However to our knowledge,
multilayer perceptron-based (MLP) neural networks have not been incorporated with graph-
based CG methods. MLP neural network architecture is a supervised learning technique
capable of fine-tuning weights and biases, in this context specific to our input (contact
adjacency matrices) and output (pairwise interatomic distances). Its capabilities differentiate

it from a linear perceptron with its ability to interpret non-linear data.

In this work, we demonstrate the utility of multilayer perceptron neural network models to
translate coarse protein structure network representations to their more finely detailed 3D
coordinate structures. From coarse network representations, the trained neural network is
able reproduce the conformations of amyloid-5 protein to atomic-level detail while captur-
ing its diverse secondary structure behavior. Training to contact adjacency matrices and
their corresponding pairwise interatomic distances (PIDs) allows the neural network to learn
detailed and specific structural information. CG network representations combined with a
MLP neural network architecture can thereby capture this complex atomistic data, expand-
ing the utility of graph-based CG modeling into applications where atomic coordinates are

needed.
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6.3 Methods

Data Generation Molecular dynamics simulations are the basis from which input and
output data are extracted to train the model (Figure 6.1). Although PSNs can be simulated
using an exponential family of random graph models (ERGMs), their starting structure is
typically derived from an atomic model. Beginning with the lowest energy monomer of
the PDB structure, 2LFM, g-amyloid protein was simulated for 1 us using NAMD via the
following protocol: initial monomer structure was solvated in a cubic TIP3P water box of
minimum margin 25 Angstroms, and neutralized with NaCl counter-ions. This assembly
was minimized for 10,000 iterations, followed by velocity initialization and 250 simulation
iterations before final adjustment of the water box. A one us trajectory was then simulated.
Simulation was performed under periodic boundary conditions in NAMD, using an NPT
ensemble at 300K and 1 atm pressure. Temperature control was maintained by Langevin
dynamics with a period of 1/ps, with Nosé-Hoover Langevin piston pressure control. The
CHARMM 36m forcefield was employed. Monomer states were sampled from the trajectory
every 100ps, from which residue-level protein structure networks were constructed. Vertices
correspond to individual residues, with two vertices being considered adjacent if they contain
respective atoms whose distance is less than or equal to 1.1 times the sum of their van der

Waals radii.

The simulation contains 11,926 total frames/conformations, of which 72% was allocated for
training, 20% for testing, and 8% for validation. A 5-fold cross validation was also performed
to ensure bias was not introduced during initial train-test splitting (Figure SE.1). For each
frame in the amyloid-5 simulation, a protein structure network (PSN) was calculated using
software from [38] (in combination with VMD [120] and the statnet library [102, 34] for R

227)).

Monomer states were sampled from the trajectory every 100 ps, from which residue-level
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protein structure networks were constructed. Vertices correspond to individual residues,

with two vertices being considered adjacent if they contain respective atoms whose distance

is less than or equal to 1.1 times the sum of their van der Waals radii. The input data used

to train the neural network model consists of the flattened upper triangular data extracted

from the residue-level contact adjacency matrix for each conformation in the amyloid-g3

microsecond simulation. The output data used to train the model is the flattened upper

triangular of pairwise interatomic distance matrices calculated for each non-hydrogen atom

(across all frames in the MD simulation) (Figure 6.1).
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Figure 6.1: Data generation of input (upper triangular of contact adjacency matrices) and

output (upper triangular of PIDs) data.
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Figure 6.2: Pipeline of MLP neural network training and post-prediction processing.

Neural network architecture and hyperparameters After generation of input and
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output data, a multi-layer perceptron (MLP) neural network was utilized for training as
indicated in the pipeline (Figure 6.2). The neural network is based on a multi-layer per-
ceptron utilizing the machine-learning Keras [58| and tensorflow [2] framework. The first
three hidden layers consist of 2000 neurons, the fourth layer contains 8000 neurons, and the
last output layer predicts the flattened upper triangular of the pairwise interatomic distance
matrix for a given frame from the MD simulation (46665 neurons) (Figure 6.2). Hyperpa-
rameters were optimized using the Talos Keras tuning module [1]. A Nvidia P6000 Quadro
GPU card was used to train the model with the following hyperparameters: nonlinearity
= relu, dropout rate = 0.2, optimization = AMSGrad, loss = mean squared error, batch
size = 50, epochs = 100. Predicted output data were initially assessed using three metrics:
root-mean squared deviation/error (RMSD/RMSE), mean squared error (MSE), and mean

absolute percentage error (MAPE).

Post-prediction processing The predicted output data (flattened upper triangular data
of pairwise interatomic distance matrices) were then transformed into symmetric pairwise
interatomic distance matrices. This was then transformed into 3D coordinate data using
the multi-dimensional scaling function from scikit-learn python module and MDtraj [187]
to generate PDB structures (Figure 6.2). Chimera [217] was then used to add hydrogens
to predicted PDB structures, which were then further processed to remove inaccurate chiral
predictions. If more than half of Ca centers were inaccurately predicted as R chiral centers
(D-amino acids instead of L-aminio acids), this indicated the MDS portion predicted a
reflection of the true coordinates. This was mitigated by reflecting all coordinates over the
y-axis for predictions exhibiting an % ratio greater than 1. If fewer than half of a-carbons
exhibited R chiral centers, reflecting coordinates was unnecessary. Instead, Chimera was
used to switch side chain coordinates and the a-hydrogen for all inaccurately predicted Ca
chiral centers. After checking for correct chirality for each residue, all conformations were

further minimized for 75 conjugate gradient steps.
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The number of conjugate gradient steps was chosen by evaluating structures every subse-
quent 20 conjugate gradient steps for a cumulative 520 steps total. The maximum 520
conjugate gradient steps was chosen based on qualitative determination of average potential
energy trends of all predicted conformations with increasing conjugate gradient minimiza-
tion (Figure SE.2). Three superposition-based metrics (RMSD, global distance test, total
score (GDT _TS), template modeling (TM) score) and one superposition-free metric (lo-
cal distance difference test (LDDT)) were used to analyze any potential improvements in
additional conjugate gradient steps between predicted 3D structure and the original, MD-
generated 3D conformation. The RMSD metric analyze all heavy atoms, TM score focuses
primarily on Ca atoms, and GDT TS also focuses primarily on backbone atoms. The LDDT
score calculates a comparison using all-atom pairwise interatomic distances. Average values
of 500 randomly chosen structures (RMSD, TM Scores, GDT TS, and LDDT) suggest a
minimization range between 50-100 conjugate gradient steps. Thus 75 steps was chosen as
the total number of conjugate gradient steps to minimize all 11,926 predicted conformations.
Overall, minimization yields minimial improvement relative to no minimization, however is

a necessary step to remove steric clashes and slight stereochemical errors (Figure E.3).

6.4 Results

6.4.1 Multilayer perceptron (MLP) neural network reconstructs AS

conformations with atomistic detail

Pairwise interatomic distance (PID) predictions were made for all sets of data (train, vali-
dation, test). Predictions were evaluated against original PIDs from MD simulation using
root-mean square error/deviation (RMSE/RMSD), mean absolute error (MAE), mean ab-

solute percentage error (MAPE). The average metrics for the test set exhibit a favorable
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RMSE (1.7A), MAE (1.17A), and MAPE (7.35%) (Figure 6.3). A 5-fold cross-validation
suggests bias was not arbitrarily introduced during the initial train-test split (Figure E.1).
Overall, average PID metrics for the validation and test set suggest the neural network was

able to devise quality predictions.
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Figure 6.3: Boxplot distributions summarize the following metrics (RMSE, MAE, MAPE)
for the train, validation, and test datasets: minimum, maximum, median, outliers (grey
dots), average (yellow diamond) + standard error, lower and upper quartiles.

To illustrate model performance, we assess a range of examples from the test set, beginning
with frame 1133. Original and predicted pairwise interatomic distances for frame 1133 upon
initial visualization, have highly comparable values (Figure 6.4A-B). A grayscale depiction of
absolute value differences between original and predicted PIDs reveals white and light grey
data points, denoting mostly low values (Figure 6.4D). A distribution of this data shows
approximately 98% of difference values are less than 2 A and 88% are less than 1 A (Figure
6.4C). Within the test set, this is an example of one of best performing predictions made by

the neural network model.
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Figure 6.4: Comparison between original and predicted pairwise interatomic dis-
tances for frame 1133 (from the test set). a. Actual distances are shown for all heavy
atoms. b. Heavy-atom predictions of all pairwise interatomic distance. c. Histogram of
differences between original and predicted euclidean distances. d. Binary plot displaying
the absolute difference values between each actual and predicted distance for frame 1133.

Using RMSEs of PIDs as a basis, we show processed 3D predictions of the lowest RMSE
score representation (frame 1133, Figure 6.5A), the median representation (frame 7431,
Figure 6.5B), and the highest RMSE score structure (frame 7560, Figure 6.5B). The best
prediction with the lowest RMSE (0.67 A) exhibits more helical secondary structure com-
pared to median and the worst predictions, which exhibit more random coil-like dynamics.

RMSE of all heavy atoms for the median representation exhibits a fairly reasonable value of
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1.46 A whereas the worst PID prediction has a RMSE of 10.4 A. Notably, the prediction for
Figure 6.5C aligns reasonably well for the first 20 residues and the remaining residues are
more poorly predicted by the neural network model. Since the protein spends the majority
of its time in more compact conformations, it is not surprising the neural network model
struggles to predict this specific overly extended conformation. The RMSEs according to
3D structure alignment between original and processed 3D structure and not on the basis of
PIDs also contain similar values: best (0.77 A), median (2.13 A), and worst (12.01 A). These
values are slightly higher compared to PID-based RMSEs most likely due to introduced 3D

alignment wheres PIDs report RMSEs between all heavy atoms.

(o
3
a \ M Original
\ } Prediction

Figure 6.5: Alignment between original and predicted and processed 3D structures
for (a) the best, (b) median, and (c) worst predictions based on RMSE values of PIDs.

6.4.2 Generation of 3D structures and subsequent minimization

When multidimensional scaling maps PIDs into 3D dimensional coordinates, it does so with-
out regard to chirality. There are instances in which entire conformations are D- instead of

L-amino acids, a correction that can be easily identified and fixed by reflecting coordinates
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across the y-axis. We also corrected conformations that contained only a few instances of
D-amino acids, a result of the neural network predicting slightly incorrect side chain and/or
a-hydrogen PIDs. These chirality checks followed by minimization are necessary, computa-
tionally inexpensive processing steps required to transform PIDs into sterically reasonable 3D
structures. Once corrections where fixed using Chimera, we then minimized all proteins for
75 conjugate gradient steps (a determination detailed in Methods), with a few conformations

(23) requiring an additional 5 steps.

Figure 6.6 depicts a pre- and post-minimization of the best predicted conformation (frame
1133) in the test set. Here we focus particularly on residues histidine 13 (His13) and pheny-
lalanine (Phe4). Both residues in the pre-minimized conformation are sterically incorrect
and misplaced. Whereas in the post-minimized conformation, both residues have expected
canonical sterics, devoid of incorrectly positioned atoms. When these optimization tech-
niques (stereochemical corrections and minimization) are combined with the predictive power

of the MLP neural network, this method yields highly effective predictive capabilities.

AN

B No minimization
Minimization

Figure 6.6: Comparison of pre- and post-minimized structures of the best prediction in the
test set, frame 1133.

After minimization, it was also imperative to compare 3D minimized predictions to their
original MD simulation counterparts. Three superposition-based metrics (RMSD, TM score,

GDT _TS) and one superposition-free metric (local distance difference test (LDDT)) were
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utilized for this evaluation. Template modeling (TM) score measures the backbone similarity
between a reference protein and target protein with a range from 0 (dissimilar) to 1 (iden-
tical) [341]. RMSD is a canonical protein comparison metric and here we parameterize it to
compare all heavy atoms between native and predicted structures. LDDT utilizes pairwise
interatomic distances in its methodology, focusing on local intramolecular interactions and
the degree (range 0-1) of their retention in the target conformation in comparison to the
native reference structure [179]. Global distance test, total score (GDT _TS) is an improve-
ment compared to RMSD designed to assess structures with the same sequence but different
tertiary structure, with a higher score denoting better agreement (range 0-1) [336]. All four
metrics are commonly used during the biennial Critical Assessment of Structure Prediction
(CASP) structure prediction and assessment competition [142| and here we use these metrics

to assess the predictive performance of the model.

Figure 6.7 illustrates these metrics for the combined validation-test set. There exists a
positive correlation between LDDT vs. TM scores and GDT _TS (Figure 6.7A-B). Between
RMSDs vs. TM scores and GDT TS, predictions exhibit a negative correlation (Figure 6.7C-
D). Included are also the aforementioned best (yellow diamond), median (purple diamond),
and worst (red diamond) PID predictions from Figure 6.5. Since their designation as best,
median and worst were on the basis of RMSEs of PIDs and not 3D structure, it is interesting
to observe the surprisingly high LDDT value of frame 7560 (the worst prediction). This
suggests the neural network was able to preserve more local residue interactions despite
struggling with larger more regional intramolecular interactions. TM scores exhibit values
in the lower range of < 0.5, whereas most GDT TS and LDDT values occupy a range >
0.5, suggesting TM scores may not be as reliable of an assessment metric for amyloid-3. The
average and 95% confidence intervals suggest predicted 3D models are predicted relatively
well considering the high GDT TS average and narrow 95% confidence interval (Figure 6.8).
The best and median test cases occupy expected 3D metrics (Figure 6.7). In combination

with PID metrics (Figure 6.3), the 3D metrics demonstrate the model’s ability to reasonably
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reconstruct the complex protein conformation of amyloid-5 from coarse contact adjacency

matrices.
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c d & Best
121 R * 124 g ¢ Median
Worst
10 10- ¢ Wors
E 8- 84 .
0
s 6 6 -
o
4+ 4
21 21
0 T T T o T T T T T
0.2 0.4 0.6 0.8 1.0 04 0.5 0.6 0.7 0.8 0.9 1.0

TM Score GDT_TS

Figure 6.7: Juxtaposition of 3D structural metrics of the combined validation-test
set: TM score, LDDT, GDT TS, and RMSD. In addition, best, median, and worst
predictions are shown based on PIDs. A) LDDT vs. TM score metrics of the validation-
test set. B) LDDT vs. GDT _TS score metrics of the validation-test set. C) RMSD vs.
TM score metrics of the validation-test set. D) RMSD vs. GTD TS score metrics of the
validation-test set.
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Figure 6.8: Barplot of average 3D accuracy metrics and corresponding 95% confidence in-
tervals per score type.

6.5 Discussion

In this work, we have implemented a custom MLP neural network model approach to re-
construct atom-level representations of amyloid-5 from coarse PSNs. Although this neural
upscaling method is specific to amyloid-3, the MLP neural network model can be retrained
to other biomolecular systems from a variety of different sources (e.g. MD simulation, NMR
ensemble, etc.), and thus can be generalizable and adaptable. For any given biomolecular
coordinate structure, input (contact adjacency matrices) and output (PIDs) data for neural

network retraining can be extracted.

Although previous reverse mapping methods (e.g. random placement, geometric-based, etc.)
are able to reconstruct atomistic models, they do so typically from coarse grain force field
models (e.g. MARTINI [180]). The advantage of a MLP neural network is the ability to learn
and fine-tune parameters specific to the system under investigation from minimal information

(contact adjacency matrices) in comparison to coarse grain force fields. The MLP neural
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network can thus familiarize itself with a specific target system of interest and coarse grain

network simulations [96] can be used to explore these biomolecules.

In the literature, another example of neural networks specifically, variational autoencorders
(VAE), have been used primarily on single small molecules and bulk-phase simulations as test
cases for reverse mapping [312]. This VAE methodology, although not tested on proteins,
could possibly be adapted for such systems, however we are able to demonstrate backmapping
with a MLP neural network architecture. To better generalize our neural upscaling technique
to protein systems of different sizes, convolutional neural network architectures similar to
AlphaFold [251] could be also be incorporated and trained to predict regions (e.g. N x N

residue regions).

6.6 Conclusion

Direct predictions of PID metrics demonstrate the predictive capabilities of the MLP neural
network to reconstruct all-atom representations of proteins from binary contact adjacency
matrices. Example conformations of the best, median and worst PID-based predictions in
the test set illustrate the MLP performance. In the worst prediction (frame 7560), the RMSD
between the N-terminal halves of the original vs. predicted is quite favorable (0.98 A). Chi-
rality corrections and conjugate gradient minimization were vital post-prediction processing
steps in generating stereochemically reasonable 3D structures. Three-dimensional accuracy
metrics, in particular GDT TS — the main assessment metric in the CASP competition —
suggests the neural network performed well given the average values and 95% confidence
intervals. In totality, we're able to illustrate the viability of the MLP neural network ar-
chitecture in this transformation experiment. This work exemplifies neural network-based

techniques capable of extracting useful, meaningful data from coarse grained models.
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Appendix A

Supplement: Structure prediction and
network analysis of chitinases from the

Cape sundew, Drosera capensis.

Sequence Alignments

The catalytic action of family 18 chitinases, which retains the [-anomeric carbon stereo-
chemistry from the substrate to the product, is based on substrate-assisted hydrolysis of the
glycosidic bond [294, 210, 173]. Catalysis is initiated by distorting the -1 sugar ring subsite
adjacent to the glycosidic bond. Next, Asp 123 rotates to form hydrogen bonds with both
Glu 127 and the N-acetyl group of the +1 sugar. This step protonates Glu 127. Then, the
anomeric carbon is subjected to a nucleophilic attack by the oxygen from the N-acetyl group,
forming an oxazolinium ion as an intermediate, followed by cleavage of the glycosidic bond
by hydrolysis to generate smaller fragments. The DXDXE motif is essential for activity,

hence fragments that were lacking this sequence due to truncation were excluded from our
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protein set.

A sequence alignment for Family 18 chitinases from Caryophylalles carnivorous plants is
shown in Supplementary Figure A.1. The figure is annotated to highlight specific amino
acid properties and important sequence features. The chemical properties of amino acids are
color-coded as follows: cysteines are yellow, positively charged residues are blue, negatively
charged residues are red, hydrophobic residues are green, and all others are black. Highly
conserved residues are indicated with a dot above the sequence position. Cysteine residues
involved in structure-stabilizing disulfide bonds are indicated with yellow asterisks, while the
active amino acid residues are marked with colored arrows. SignalP 4.1 is used to predict
the signal peptide cleavage site, which is specified by underlining the residues on either of
the cleavage point. The signal peptide itself is highlighted in light orange. Strikethrough
text indicates sequence regions that are absent in the active enzyme, in this case the N-
terminal signal peptide that is expressed but removed during maturation. Annotations

were performed by homology to a well-characterized acidic endochitinase from Vitis vinifera

(CHIT3_ VITVI, Uniprot ID-P51614).

Family 19 contains Class I, II, and IV chitinases, all of which are characterized by an anomeric
inverting mechanism [274, 125]. The N-terminal chitin-binding domain is present in Class
I and absent in Class II, which are otherwise similar in sequence. Family 19 chitinases
from plants have in common a catalytic domain with an active glutamic acid residue. The
active site motif surrounding the active E is either HETT (type I and II) or HETG (type
IV) [232], both of which are observed in this set of proteins. Annotations for the Family
19 chitinases are shown in Supplementary Figure A.2. Amino acid and sequence features
are indicated as in Supplementary Figure A.1, with the following additions, when present:
the C-rich domain is highlighted in light green, the P-rich hinge in light blue, and the C-
terminal extension (CTE) in light gray. Both the C-rich domain and the P-rich hinge are

highly variable in length and are absent in some sequences. Only three chitinases in this
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set contain the CTE, which targets those sequences to the vacuole. The reference sequences
for this cluster are CHI3 CASSA (Castanea sativa), CHI2 BRANA (Brassica napus), and
HORV2 (Hordeum vulgare).
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DCAP_7323
DCAP:OlOG == =—MAMAK LLRIEILLLTIRERSNAG GIAVYWGQED NEGSLADACN SGLYQYVMVA FLCODEGNFQT PTLNLAGHCD PPSGG TGLS NDIGT QSKG
DCAP_7544 —--MATSFHS—PLILERTEE LFEPSKSSAG GIAVYWGQED NEGTLTDT'N SGLYKYVNLA FLOUNFGYGQS PTLNLAGH D PPSGG KSVS NGIRS QSRG
DCAP_2209 MENHSPAKELPLLALL-—-~T FLSIRRPSNAG GIAVYWGQNG NEGSLSDTCT SGNYQYVMIS FLTTFGEGQT PVLNLAGH'D PSSGG TSLT DDINTCQGSN
C7F821_NEPMI MKTH TP EPLE V—FLSENPSHES GIAV/WGQNG NEGTLSDT A TGNYQYVLLS FLTTEGNGQT PVLNLAGH D PSSNG TGLS TDITS QNQG
C7F817_9CARY METH L PPLTLE V—ELSINPSHGS GIAVYWGQONG NEGTLSDT A TGNYQYVLLS FLTTFGNGQT PVLNLAGH'D PSSNG' TGLS TDITS"QNQG
I7HCY7_NEPAL MKTH ATE—PIVELE FLSEINPSHGS GIAVYWGQNG NEGTLSDT A TGNYNYVLVS FLTTFGNGQT PVLNLAGH D PSSNG TGLS TDITS QNQG
C7F818_9CARY METH L PILTLE V—ELSINPSHGS GIAVYWGQONG NEGTLSDT A TGNYNYVLVS FLTTEFGNGQT PVLNLAGHD PSSNG' TGLS TDITSCQNQG
QO06SNO_9CARY MKTH ATE—PILTEE FLSINPSHGS GIAVYWGONG NEGTLSDTCA TGNYNYVLVS FLTTFGNGQT PVLNLAGHC'D PSSNG'TGLS TDITSCQNQG
C7F824_9CARY METH IL—PILTLE V—ELSINRPSHGS GIAVYWGQONG NEGTLSDT A TGNYNYVLVS FLTTFGNGQT PVLNLAGHCD PSSNG' TGLS TDITSCQNQG
C7F822_9CARY MKTH ATE—PIVELE FLSINPSHGS GIAVYWGQONG NEGTLSDTCA TGNYEYVLIS FLTTFGNGQT PVLNLAGHCD PSSNG' TGLS TDITSCQNQG
C7F819_9CARY METH ILPILTLE V—ELSINRSHGS GIAVYWGQNG NEGTLSDTCA TGNYNYVLVS FLTTEGNGQT PVLNLAGH D PSSNG'TGLS TDITST KNQG
C7F823_NEPGR MKTH ATE—PIETEE FLSINPSHGS GIAVYWGONG NEGTLSDTCA TGNYNYVLVS FLTTFGNGQT PVLNLAGHCD PSSNGC TGLS TDITSCKNQG
CHIT3_VITVI MA-R-TPOST PLLT L LALLQTSYAG GIAIYWGONG NEGTLTQT N TGKYSYVNIA FLNKFGNGQT PEINLAGHCN PASNG' TSVS TGIRNCQNRG
DCAP_5455 MS-MTENKEE—PRELIL-PELF—PRSE WHHG RIAVYWGQNG FEGTLNETCN NGTYKYVNLA FLYIFGGGQA PQLNLAGH D PQSGG VSLA SEIEH QSIG
DCAP_2879 MS-MSTNKLL PLLIL-PILE PST RIAVYWGQNG NEGTLTET'N NGTYKYVNLA FLYIFGGGQV PQLNLAGH D PQSGG VSLA SEIEH QSIG
DCAP_4799 MP-MNEDKEL—PLEIELFATILPRSE-A--SQG DIAVYWGONG FEGTLTQTCN NGTYKYVNVA FLYIFGSGQT PVLNLAGHCD PSSGGCVALA SEIEYCQSIG
DCAP_2737 MP—MNINKLE PLILLERIIT PRSL-AHPSQG GIAVYWGQONG FEGTLTQTCN NGTYKYVNLA FLYIFGSGQT PVLNLAGH'D PPSGG VALA SEIKY'QSIG
weoee oo co e o ° o Yol ° oo o
DCAP_7323 = —-mmmmmmom mommmmmmom oo MGQLLW R--=------ T IEPLGGASLD DIDLDIEKDT SNYYSDLVGR LSQLC--QQN GQQLTFSAAP QSPFSDRWDI
DCAP_0106 VKVLLSLGGG DGNYGFQSQD DARNLAQYLW DNYFGGQ-SS NRPLGGASLD GIDLDIEHGS SNYYPDLVGR LDQLG--QQON GQQLTFSAAP QU PFPDQWDN
DCAP_7544 IKVFLSLGGA DGNYGFSTAD EARGLAQYLW DNYLGGQ-SG NRPLGDASLD GVDLDIEQGS SHYYADLVGR LSEIG--QQH GKKVYFSAAP QCPFPDQWDD
DCAP_2209 IKVLLSLGGA VGSYGLSSTD DANQVAAYLW NNYLGGQ-SD SRPLGSAVLD GIDFDIEMGS DQYWGDLASA LNAYG----- -S-VVLSAAP QU PYPDAHLD
C7F821_NEPMI IKVLLSLGGA SGSYSLVSTD DANQVAAYLW NNYLGGQ-SD SRPLGSAVLD GIDFDIESGA DDYWGDLASA LKGYS- -QSVLVSAAP QU PYPDAHLD
C7F817_9CARY IKVLLSLGGA SGSYSLVSTD DANQVAAYLW NNYLGGQ-SD SRPLGSAVLD GIDFDIESGT DDYWGDLASA —-QSVLVSAAP QUPYPDAHLD
I7HCY7_NEPAL IKVLLSLGGA SGSYSLVSTD DANQVAAYLW NNYLGGQ-SD SRPLGAAVLD IESGS DNYWGDLASA -QSVLVSAAP QCPYPDAHLD
C7F818_9CARY IKVLLSLGGA SGSYSLVSTD DADQVAAYLW NNYLGGQ-SD SRPLGSAVLD GIDFDIESGS DNYWGDLASA -QSVLVSAAP QUPYPDAHLD
QO06SNO_9CARY IKVLLSLGGA SGSYSLVSTD DADQVAAYLW NNYLGGQ-SD SRPLGSAVLD GI IESGS DNYWGDLATA -QSVLVSAAP QU PYPDAHLD
C7F824_9CARY IKVLLSLGGA SGSYSLVSTD DADQVAAYLW NNYLGGQ-SD SRPLGSAVLD GIDFDIESGS DNYWGDLATA -QSVLVSAAP QUPYPDAHLD
C7F822_9CARY TKVLLSLGGA SGSYSLVSTD DASQVATYLW NNYLGGQ-SD SRPLGSAVLD DDYWGDLASA -QSVLVSAAP QUPYPDAHLD
C7F819_9CARY IKVLLSLGGA SGSYTLVSTD DANQVAAYLW NNYLGGQ-SD SRPLGSAVLD DDYWGDLASA —-QSVLVSAAP QUPYPDAHLD
C7F823_NEPGR IKVLLSLGGA SGSYTLVSTD DANQVAAYLW NNYLGGQ-SD SRPLGSAVLD DDYWGDLASA -QSVLVSAAP QUPYPDAHLD
CHIT3_VITVI IKVMLSIGGG AGSYSLSSSN DAQNVANYLW NNFLGGQ-SS SRPLGDAVLD TLHWDDLARA LSRIEFQQER GRKVYLTAAP QCPFPDKVPG
DCAP*5455 IKVLLSIGGG AGNYTLTSPA DAKSVARFLW NTYLGGK-SS FRPLGKAVLD TLYYDSLAKD LARYS---AK GKRVHLSAAP QUPFPDAHLG
DCAP_2879 IKVLLSIGGG AGNYTLTSPA DAKSVARFLW NTYLGGK-SS FRPLGKAVLD TLYYDCLAKD LVRYS---AK GKRVHLSAAP QCPFPDAHLG
DCAP_4799 IKVLLSIGGG VGTYNLSSVS DAKNVANYLW NTYLGGTNSS FRPLGNATLD TLYYDNLAKF LASYS---IL GRKVYLSAAP QUPFPDAHLG
DCAP_2737 IKVLLSIGGG VGTYNLSSVS DAKNVANYLW NTYLGGTNSS FRPLGNAILD TLYYNNLAKF LASYS---LL GRKVYLSAAP QU PFPDAHLG
o0 o o oo ° ° 000 ° ose o oo
DCAP_7323 PVLRTGFIDL VWIQFYNNPE CEYNSGDPSA FQNSWNQWTS SVPVSPFFVG LPASPSTG'D GYVDPSDIEL GHSAV - mmmmmmmee
DCAP_0106 PVLQTGLIKL VWIQFYNNPE —EYNSGDPSA FQNSWNQWTS LPASPSAAGD GYVDPSDVNS GILPFIKQSE GKYGGIMLWD RG' DIQTGFS
DCAP_7544 PVLRTGLIDF VWIQFYNNQE CEFKSGNPVD FQNSWRKWTS SIPARK LPASHAAAGD GYVPSALMKS QLLPFVQQSG DKYGGVMLWD RGNDIKSGYS
DCAP_2209 TAIATGLENY VWVQEFYNNPS CEYVSDD-SN LLSSWNQWSP V--VKTLFLG LPASTDAAGS GYIPPDVLTS QVLPSIKGS- SNYGGVMLWN KYYDD--GYS
C7F821_NEPMI KAIATGIFDY VWVQFYNNEQ CEYVNDD-TN LLSAWNQWTS SQ-ANVVFLG LPASTAAANS GYIPPDVLTS QVLPSIKAS- SKYGGVMLWS KYYDN--GYS
C7F817_9CARY KAIATGIFDY VWVQFYNNEQ CEYVNDD-TN LLSAWNQWTS SQ-ANVVFLG LPASTAAANS GYIPPDVLTS QVLPSIKAS- SKYGGVMLWS KYYDN--GYS
I7HCY7_NEPAL QATATGIFDY VWVQFYNNEQ CEYVSDD-TN LLSAWNQWTS SQ-ANVVFLG LPASTDAASS GYIPPDVLTS QVLPSIKAS- SKYGGVMLWS KYYDN--GYS
C7F818_9CARY LAIATGIFDY VWVQFYNNEQ CEYVNDD-TN LLSAWNQWTS SQ-ANVVFLG LPASTDAASS GYISPDVLIS QVLPSIKAS- SKYGGVMLWS KYYDN--GYS
QO06SNO_9CARY LATIATGIFDY VWVQFYNNEQ CEYVTDD-TN LLSAWNQWTS SQ-ANVVFLG LPASTDAASS GYISPDVLIS QVLPSIKAS- SKYGGVMLWS KYYDN--GYS
C7F824_9CARY LAIATGIFDY VWVQFYNNEQ CEYVTDD-AN LLSAWNQWTS SQ-ANVVFLG LPASTDAASS GYISPDVLIS QVLPSIKAS- SKYGGVMLWS KYYDN--GYS
C7F822_9CARY TAIATGIFDY VWVQFYNNEQ CEYVNDD-TN LLSAWNQWTS SQ-ANVVFLG LPASTDAASS G PDVLIS QVLPSIKAS- SKYGGVMLWS KYYDN--GYS
C7F819_9CARY TAIATGIFDY VWVQFYNNEQ CEYVNDD-TN LLSAWNQWTS SQ-ANVVFLG LPASTDAASS GYIPPDVLIS QVLPSIKAS- SKYGGVMLWS KYYDN--GYS
C7F823_NEPGR TAIATGIFDY VWVQFYNNEQ CEYVNDD-TN LLSAWNQWTS SQ-ANVVFLG LPASTDAASS GYIPPDVLIS QVLPSIKAS- SKYGGVMLWS KYYDN--GYS
CHIT3_VITVI TALNTGLEFDY VWVQFYNNPP CQYSSGNTNN LLNSWNRWTS SINSTGSFMG LPASSAAAGR G ANVLTS QILPVIKRS- PKYGGVMLWS KYYDDQSGYS
DCAP_5455 TALKTGLEFDY VWVQFYNNPP CEYLNGNTTN LLSSWKLWDS QRYIRKLFLG LPAATEAAGS GFIPANVLTS QVLPVIKKT- RKYGGVMLYS RYYDTLTGYS
DCAP_2879 TALKTGLEFDY VWVQFYNNPP CEYLNGNTTN LLSSWKLWDS QKYIRKLFMG LPAATEAAGS GFIPANVLTS QVLSVIKKT- RKYGGVMLES RYYDTLTGYS
DCAP_4799 TALRTGLEFDY VWVQEFYNNPP CEYLNSNTTN LISAWNLWSK QGFIRKLFMG LPAGPQAAGS GFIPTDVLTT QVLPVIKKT- PTYGGVMLWS RYDDTLTGYS
DCAP_2737 TALRTGLFDY VWVQFYNNPP CEYLNGNTTN LISSWNLWSK QWFIRKLFLG LPAATQAAGS GFIPTDVLTT QVLPVIKKT- PKYGGVMLWS RYYDTLTGYS
e o
DCAP_7323 ———----
DCAP_0106 NQIIGNV
DCAP_7544 SKIIGNV
DCAP_2209 SAIIGSV
C7F821_NEPMI SAIKDSV
C7F817 9CARY SAIKDSV X )
I7HCY7 NEPAL SATKDSV XX signal cleavage site
C7F818_9CARY SAIKDSV @ conserved residue
Q06SNO_9CARY SAIKDSV
C7F824_9CARY SATKDSV C in disulfide bond
C7F822_9CARY SAIKDSV
C7F819_9CARY SAIKDSV .
C7F823:NEPGR SAIKDSV Slgnal sequence
CHIT3_VITVI SSIKSSV L .
DCAP 5455 EATTDSY non-proline cis peptide bond
DCAP_2879 KATIDSV
DCAP_4799 EAIISSV
DCAP 2737 EAIISSV

Figure A.1: Sequence alignment for Family 18 chitinases, annotated by homology to the
reference sequence CHIT3 VITVI. The “DXDXE” motif, in which the acidic residues are
marked with red arrows, is imperative for the enzyme activity. Orange arrows indicate
residues implicated in substrate binding.
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Figure A.2: Sequence alignment and annotation for Family 19 chitinases. Many sequences
in this cluster contain a chitin-binding C-rich domain (light green) that is connected to
the active region by a P-rich hinge (light blue). Three sequences in this cluster contain a
C-terminal extension (CTE) that causes the proteins to be targeted to the vacuole.
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Four Family 19 chitinase fragments were identified from the D. capensis genome by per-
forming a BLAST search for DcChit 1, a chitinase fragment previously identified from
genomic DNA of the same organism [232]. Their sequences range from 41%-100% identity
to DcChitl 1. These fragments contain part of the N-terminal region, including the C-rich
domain and the P-rich hinge, neither of which was observed in the original fragment, along
with part of the catalytic domain (Supplementary Figure A.3). However, these sequences are
all truncated before the catalytic residues. Sequencing of the D. capensis transcriptome will
clarify whether these are fragments of active genes containing one or more introns, or inactive
pseudogenes, which are relatively common in gene families undergoing rapid evolution [116]

(as is the case for many proteins associated with pathogen defense [133]).

DecChitI 2 —=mmmmmoos mmmoooooos —ooooooo o -MRIT PLLSGTY AVQUGSEVGG PNGL S KYGY GTTSA Y GPG QSQ GGSSPPPAPP
TOCMI1 DROCA === === mmm = mmm oo o o o o o o e oo
DcChitI 1 mmmmmmmmmm mmmmmmmmmm —mmm o -MRIT PLLSGTY AVQCUGSEVGG PNGLCCS KYGYCGTTSA YCGPGCQSQ" GGSSPPPAPP
DcChitI 3 TRSIPEIS STAPIISETL DHTIQT SPPMKSIH TMPRHLARQS CGUAAGLCCS KYGYCGTTSD YCGDGUQAGP CSSTPA----
DcChitI_4 ~ ———=——mmm— mmmmmmmmmm e SPPMENYHMT T TMPGHLARQS CGUAAGLCCS KYGYCGTTSS YCGDG QAGP CSSTPT----
DcChitI_2 SPTPSPPSPS GGGDVSSIIT SQIEFNQ H RNDNACPANG FYSYQ. D. SGFGTT GDINT E GQTSHE TTG--——=——= ——————————
IOCMI1_DROCA ——==-- PSPS GGGDVSSIIT SQIFNQMLLH RNDNACPAHG FYSYQAFLD. SGFGTT GDINTRKKE GQTSHE TT-————m== ————————
DcChitI_1 SPTPSPPSPS GGGDVSSIIT SQIFNQ H RNDNACPAHG FYSYQ. D. SGFGTT GDINT E GQTSHE TT-——=——m== ————————
DcChitI_3  ——mmmmm- G SGVSVPAVVT -NGIIN KAGSGCPGTG FYSRSAFLSA IGSYPSFGTT GTSD E HVTHE TGCKHIH SKFYAVLY
DcChitI 4 -=------- S SGVSVP T D -NGIIN QAGSG PGKG FYSES s GSYPSFGTT GTTDASKQE HVTHE T-=m—==m== ——————————
DcChitI 2 —=—mmmmmmm oo

IOCMI1 DROCA ~  —=—=———===-= —--

DcChitI_1 = —====----m oo

DcChitI_3 Y DE AID

DcChitI_4 ~ —----mmmom oo

Figure A.3: Chitinase 1 fragments discovered using a BLAST search of the D. capensis
genome against the DcChitl 1 fragment previously identified by Renner and Specht from
D. capensis genomic DNA.

Preliminary Structural Models and In silico Maturation

Preliminary models for both Family 18 and Family 19 chitinases were produced using Rosetta
[139], implemented in the online Robetta server [228]. The Rosetta structures contain the full
sequences, including the N-terminal signal peptides, and in some cases, C-terminal targeting
peptides that are also cleaved during maturation. The in silico maturation process, which

we have previously described for cysteine proteases [38], is illustrated in Supplementary Fig-
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ure A.4 for a representative family 18 chitinase, DCAP 2209. The initial Rosetta sequence,
including the signal peptide and lacking post-translational modifications, is shown in Supple-
mentary Figure A.4. In order to generate the equilibrated structure Supplementary Figure
A.4b, which more closely approximates the active form of the enzyme in solution, the signal
sequence is removed, disulfide bonds are added using homology to a reference sequence (in
this case CHIT3 VITVI), and the structure is equilibrated in explicit solvent. Many Family
18 chitinases from plants contain three disulfide bonds [19, 134], although examples without
any disulfide bonds also exist [140]. Three are found in all the Family 18 chitinases in this
set, as in CHIT3_VITVI [33], and hevamine from Hevea brasiliensis (PDB ID: 2HVM) [285].
The functionally important cis peptide bonds are captured by the molecular models for all
the Family 18 chitinases examined here except for DCAP 7323, which unlikely to be active

in any case because it is truncated at the N-terminal end.

a DCAP_2209 Rosetta (full)

b DCAP_2209 Rosetta (equilibrated)

N-terminus

signal sequence

Figure A.4: DCAP 2209 (a) before and (b) after in silico maturation. The light orange helix
in part a is the N-terminal signal sequence. Important residues are color-coded as follows:
Red: catalytically active residues of the “DXDXE” motif. Orange: aromatic substrate-
binding residues. Yellow: Cysteines in disulfide bonds.

Supplementary Figure A.5 shows full-length structures for Q6IVX8 9CARY and Q6IVX2 9CARY
from Drosera spatulata. The N-terminal and C-terminal targeting sequences are exposed on
the surface of the protein, as expected. The P-rich hinge in these proteins is variable in

length, and highly flexible, as illustrated by the different relative conformations of of the
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Supplementary Table A.1: Structures used in DCAP 0106 structure prediction (Ginzu).

PDBID protein name organism % identity to target | citation
4TX6 (B) AfChiAl Aspergillus fumigatus 26.13 [161]
3MU7 (A) XAIP-I Scadozus multiflorus 41.64 [143]
3D5H (A) haementhin Haemanthus multiflorus 42.14 [144]
2GSJ (A) PPL2 Parkia platycephala 55.64 [49]
4TOQ (A) Class II chitinase Punica granatum 51.26 [183]
1HVQ (A) hevamine Hevea brasiliensis 55.27 [285]
2HVM (A) hevamine Hevea brasiliensis 55.64 [286]
1KRO (A) hevamine variant D125A /Y183F Hevea brasiliensis 54.18 [26]
1KR1 (A) hevamine variant D125A /E127A Hevea brasiliensis 54.18 [26]
1KQY (A) | hevamine variant D125A /E127A /Y183F Hevea brasiliensis 53.82 [26]
309N (A) XATP-III Scadoxus multiflorus 42.86 [259]

catalytic and C-rich chitin binding domains observed here.

a Q61VX8_9CARY b Q6IVX2_9CARY

"(Qﬁ’”

. N-term.
signal sequence

C-rich domain
P-rich hinge
vaculolar targeting sequence

C-term.
GLLWATE

Figure A.5: Initial Rosetta structures for two class I chitinases from Drosera spatulata,
Q6IVX8 9CARY and Q6IVX2 9CARY, illustrating positioning of the N-terminal and C-
terminal targeting sequences and the variability in length and conformation for the P-rich
hinge.

Description of a Novel Two-Domain Class IV Chitinase

Class IV chitinases exhibit an amino acid substitution in the first active site region rela-
tive to Class I chitinases, resulting in a HETG/I motif instead of the HETT motif [232].

A deletion of four amino acids in the Cys-rich binding domain is also observed in class IV
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YWGQGPNQLR LSHFCQETSL DIINIGFINY FPDMSPGHWP GSNFGNQCDG SVYVTNDGVV TKLLSGCHQI
YWGQSFDERS LEATCDSGNY AYVIIGFLNT FGG---GQTP ALDISGHSP- -- - =

YWGONFDERS LEATCDSGNY AYVIIGFLNT FGG---GQTP ALDISGHSP-
YWGONFDERS LEATCDTGNY AYVIIGFLNT FGG---GQTP ALDISGHSP-

L Y QY LCD > TLNL D- -PP “TGL
YWGONGGEGT LTSTCESGLY QIVNIAFLSQ QINLAGHCD- —PANNGCRTV
YWGONGGEGT LASTCDTGRY AYVIVSEVTT VVNLAGHCD- -PAAGTCTGL
YWGONGNEGT LTQTCSTRKY SYVNIAFLNK FGN---GQTP QINLAGHCN- -PAAGGCTIV
YWGONGNEGT LTQTCSTRKY SYVNIAFLNK FGN---GQTP QINLAGHCN- -PAAGGCTIV
YWGONGNEGT LTQTCSTRKY SYVNIAFLNK FGN---GQTP QINLAGHCN- -PAAGGCTIV
YWGONGNEGT LTQTCSTRKY SYVNIAFLNK FGN---GQTP QINLAGHCN- —-PAAGGCTIV
YWGONGNEGT LTQTCSTRKY SYVNIAFLNK FGN---GQTP QINLAGHCN- -PAAGGCTIV

MEDIPICQAA GKKVLLSIGG AYPPDQSILS EDSAVAFATF LWGAFGPVAE GWEGPRPFGD VVVDGFDFDI EHNGGFGYAT MVNTFRQYFN QVPERKFYLS
EPQIKHCQSK NVKVLLSIGG PAGP-YSLDS RNDANDLAVY LHKNFLLPPA GTSESRPFGN AVLDGIDFHI EHGGPSQYQL LANILSSF-R L-SGSEFALT
EPQIKHCQSK NVKVLLSIGG PAGP-YSLDS RSDANDLAVY LENNFLLPP- GHSENNPFGN AVLDGIDFHI EHGGPSQYQL LANILSSF-R L-KGTEFALT
EPQIKHCQSK NVKVLLSIGG PKGP-YSLDS RSDANDLAVY LENNFLLPP- GHSENRPFGN AVLDGIDFHI EHGGPSQYQL LANILSSF-R L-AGTEFALT

SNDIGTCQS VLLSLGG GDGN-YGFQS QD RNLAQY LWD RPL ASLDGIDLDI SNYYPD L RLDQL-G Q JLTFS
SDGIRACQRR GIKVMLSIGG GAGS-YSLSS VQDARSVADY IWNNFLG--- GRSSSRPLGD AVLDGVDFDI EHGG-AYYDA LARRLSEH-N R-GGKKVFLS
SDEIRSCQGK DIKVLMSIGG GAGD-YSLVS EADADNFADY LWNNFLG--- GQSSSRPLGD AVLDGIDFDI ELGTTTFYDT LARALSSR-S T-QAAKVYLT
SNGIRSCQIQ GIKVMLSLGG GIGS-YTLAS QADAKNVADY LWNNFLG--- GKSSSRPLGD AVLDGIDFDI EHGSTLYWDD LARYLSAY-S K-QGKKVYLT
SNGIRSCQIQ GIKVMLSLGG GIGS-YTLAS QADAKNVADY LWNNFLG--- GKSSSRPLGD AVLDGIDFDI EHGSTLYWDD LARYLSAY-S K-QGKKVYLT
SNGIRSCQIQ GIKVMLSLGG GIGS-YTLAS QADAKNVADY LWNNFLG--- GKSSSRPLGD AVLDGIDFAI EHGSTLYWDD LARYLSAY-S K-QGKKVYLT
SNGIRSCQIQ GIKVMLSLGG GIGS-YTLAS QADAKNVADY LWNNFLG--- GKSSSRPLGD AVLDGIDFAI AHGSTLYWDD LARYLSAY-S K-QGKKVYLT
SNGIRSCQIQ GIKVMLSLGG GIGS-YTLAS QADAKNVADY LWNNFLG--- GKSSSRPLGD AVLDGIDFAI AHGSTLYWDD LARYLSAY-S K-QGKKVYLT
4TX6:A AAPQCIIPDA QLSDAIFNAA FDFIWIQYYN TA--ACSAKS FIDTSLGTEFN FDAWVTVLKA SASKDAKLYV GLPASETAAN QGYYLTPDEV ESLVSTYMDR
3MU7:A AAPQCVYPDP NLGTVINSAT FDAIWVQFYN NP--QCSYSA SNASA-LMNA WKEWSM---- -KARTDKVFL GFPAHPDAAG SGY-MPPTKV KFSVFPNAQD
309N:A AAPQCVYPDP NLGTVINSAT FDAIWVQFYN NP--QCSYSS GNAEA-LMNA WREWSM---- -KARTKKVFL GFPAHPDAAG SGY-MPPAKV KFHVFPAAKK
3D5H:A AAPQCVYPDP NLGTVINSAT FDAIWVQFYN NP--QCSYSS GNAEA-LMNA WREWSM---- -KARTKKVFL GFPAHPDAAG SGY-MPPEKV KFHVFPAAKK
DCAP_0106 AAPQCPFPDQ WDNPVLQTGL IKLVWIQFYN NP--ECEYNS GDPSA-FQNS WNQWTS---- -SVPASQFFV GLPASPSAAG DGY-VDPSDV NSGILPFIKQ
2GSJ:A AAPQCPFPDQ SLNKALSTGL FDYVWVQEYN NP--QCEFNS GNPSN-FRNS WNKWTS---- -SFNA-KFYV GLPASPEAAG SGY-VPPQQL INQVLPFVKR
4TOQ:A AAPQCPHPDS HLDAALNTGL FDNVWIQFYN NPLAQCQYSS GNTND-ILSS WNTWTS---- -STTAGKIFL GLPAAPEAAG SGY-IPPDVL TGQILPQIKT
1HVQ:A AAPQCPFPDR YLGTALNTGL FDYVWVQEFYN NP--PCQYSS GNINN-IINS WNRWTT- —-SINAGKIFL GLPAAPEAAG SGY-VPPDVL ISRILPEIKK
2HVM:A AAPQCPFPDR YLGTALNTGL FDYVWVQEFYN NP--PCQYSS GNINN-IINS WNRWTT---- -SINAGKIFL GLPAAPEAAG SGY-VPPDVL ISRILPEIKK
1KRO:A AAPQCPFPDR YLGTALNTGL FDYVWVQFFN NP--PCQYSS GNINN-IINS WNRWTT---- -SINAGKIFL GLPAAPEAAG SGY-VPPDVL ISRILPEIKK
1KR1:A AAPQCPFPDR YLGTALNTGL FDYVWVQEFYN NP--PCQYSS GNINN-IINS WNRWTT---- -SINAGKIFL GLPAAPEAAG SGY-VPPDVL ISRILPEIKK
1KQY:A AAPQCPFPDR YLGTALNTGL FDYVWVQFFN NP--PCQYSS GNINN-IINS WNRWTT---- -SINAGKIFL GLPAAPEAAG SGY-VPPDVL ISRILPEIKK
4TX6:A YPDTFGGIML WEATASENNQ IDGAPYADHM KDILLH
3MU7:A S-TKFGGIML WDSYWDTVSQ LGKGV-
309N:A S-YKFGGIML WDSYWDTVSQ LGDGV-

3D5H:A S-YKFGGIML WDSYWDTVSN
) YGGIML WDRGCDIQTG
S-PKYGGVML WDRENDLKTK
S-AKYGGVML YSKFYDTT--
S-PKYGGVML WSKFYDDKNG
S-PKYGGVML WSKEFYDDKNG
S-PKYGGVML WSKEFYDDKNG
S-PKYGGVML WSKEFYDDKNG
S-PKYGGVML WSKEFYDDKNG

Figure A.6: Sequences used for domain prediction of DCAP 0106, designated by PDBID.
The target sequence is colored green. Strikethrough text indicates the N-terminal signal
sequence, which is removed during maturation.

Supplementary Table A.2: Structures used in DCAP 5513 structure prediction (Ginzu).
PDBID protein name organism % identity to target | citation
2739 (A) Bjchi3-E234A Brassica juncea 40.65 [289]
2738 (A) Bjchi3 Brassica juncea 40.89 [289]
1DXJ (A) jack bean chitinase Canavalia ensiformis 45.08 [100]
2DKV (A) OsChialb Oryza sativa L. japonica 47.21 [135]
4DWX (A) GH-19 chitinase Secale cereale 45.87 [199]
4JO0L (A) | GH-19 chitinase W72A /E67Q Secale cereale 45.68 [199]
1CNS (A) GH-19 chitinase Hordeum vulgare 46.91 [264]
2BAA (A) GH-19 chitinase Hordeum vulgare 46.50 [105]
4TX7 (A) GH-19 chitinase Vigna unguiculata 47.15 [214]
A) GH-19 chitinase Carica papaya 45.68 [118]
A) HbCLP1 Hevea brasiliensis 48.13 [182]
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DCAP_5513 MRETFEEELE—VAREESGTYA VOCGSEVGGA LCPNGLCCSK YGYCGTTSAY CGPGCQSQCG GSSPPPAPPS PTPSPPS

DVSSIITS QIFNQMLLHR

G GG

27239:A FGDLSGIISR DQFYKMLKHM
2738:A E FGDLSGIISR DQFYKMLKHM
1DXJ:A --DVGSVIDA SLFDQLLKHR
2DKV:A  mmmmmmmmmm mm——— o M EQCGAQAGGA RCPNCLCCSR WGWCGTTSDF CGDGCQSQCS GCGPTPTPT- ------— PPSP SDGVGSIVPR DLFERLLLHR
4DWX:A -MSVSSIISH AQFDRMLLHR
4J0L:A -MSVSSIISH AQFDRMLLHR
1CNS:A SVSSIVSR AQFDRMLLHR
2BAA:A --SVSSIVSR AQFDRMLLHR
4TXT:A A PSDLSALIPR ATFDQMLKHR
3CQL:A --GIEKIISR SMFDQMLKHR
AMST:A S S e e e o S S oo SIISR STFEEMLKHR
DCAP_5513 NDNACPANGF YSYQAFLDAA RKFSGFGTTG DINTRKKELA AF PTAPDG PYAWGYCFKQ EQGNPGDYCV GKKYYGRGPI
27239:A NDNDCHAVGF FTYDAFITAA KSFPSFGNTG DLAMRKKEIA AFFGQTSHET TGGWSGAPDG ANTWGYCYKE AIDKSDPHCD SNNLEWPCAP GKFYYGRGPM
2738:A NDNDCHAVGF FTYDAFITAA KSFPSFGNTG DLAMRKKEIA AFFGQTSHET TGGWSGAPDG ANTWGYCYKE EIDKSDPHCD SNNLEWPCAP GKFYYGRGPM
1DXJ:A NDPACEGKGF YSYNAFVTAA RSFGGFGTTG DTNTRKREVA AFLAQTSHET TGGAAGSPDG PYAWGYCFVT ERDKSNKYCD P-G--TPCPA GKSYYGRGPI
2DKV:A NDGACPARGF YTYEAFLAAA AAFPAFGGTG NTETRKREVA AFLGQTSHET TGGWPTAPDG PFSWGYCFKQ EQNPPSDYCQ P-SPEWPCAP GRKYYGRGPI
4DWX:A NDGACQAKGF YTYDAFVAAA NAFPGFGATG STDARKRDVA AFLAQTSHET TGGWATAPDG AFAWGYCFKQ ERGAAADYCT P-SAQWPCAP GKRYYGRGPI
4J0L:A NDGACQAKGF YTYDAFVAAA NAFPGFGATG STDARKRDVA AFLAQTSHQT TGGAATAPDG AFAWGYCFKQ ERGAAADYCT P-SAQWPCAP GKRYYGRGPI
1CNS:A NDGACQAKGF YTYDAFVAAA AAFSGFGTTG SADVQKREVA AFLAQTSHET TGGWATAPDG AFAWGYCFKQ ERGASSDYCT P-SAQWPCAP GKRYYGRGPI
2BAA:A NDGACQAKGF YTYDAFVAAA AAFPGFGTTG SADAQKREVA AFLAQTSHET TGGWATAPDG AFAWGYCFKQ ERGASSDYCT P-SAQWPCAP GKRYYGRGPI
4TXT:A NDGACPARGF YTYDAFIAAA RAFPSFGNTG DTATRKREIA AFLGQTSHET TGGWPSAPDG PYAWGYCFVR EQNP-SAYCS P-TPQFPCAS GQQYYGRGPI
3CQL:A NNPACPAKGF YTYDAFIAAA KSFPSFGTTG STDVRKREIA AFLGQTSHET TGGWPSAPDG PYAWGYCFLK ERNPSSNYCA P-SPRYPCAP GKSYYGRGPI
4MST:A NDAACPAKGF YTYDAFISAA KAFPAFGTTG DVDTCKREIA AFFGQTSHAT TGGWPTAPDG PYAWGYCYKE ELNQASSYCS P-SPAYPCAP GKKYYGRGPI
DCAP_5513 QISYNYNYGQ CGVAINQPLL SNPDLVASNA DVSFETAIWF WMTPQGSKPS CHAVATGQWT PTAADQAAGR VPGYGVITNI INGGVECGKG TVPQVADRIG
27239:A MLSWNYNYGP CGRDLGLELL KNPDVASSDP VIAFKTAIWF WMTPQAPKPS CHDVITDQWE PSAADISAGR LPGYGVITNI INGGLECAGR DVAKVQDRIS
2738:A MLSWNYNYGP CGRDLGLELL KNPDVASSDP VIAFKTAIWF WMTPQAPKPS CHDVITDQWE PSAADISAGR LPGYGVITNI INGGLECAGR DVAKVQDRIS
1DXJ:A QLTHNYNYAQ AGRALGVDLI NNPDLVARDA VISFKTAIWF WMTPQGNKPS CHDVITNRWT PSAADVAANR TPGFGVITNI INGGIECGRG PSPASGDRIG
2DKV:A QLSFNFNYGP AGRAIGVDLL SNPDLVATDA TVSFKTALWE WMTPQGNKPS SHDVITGRWA PSPADAAAGR APGYGVITNI VNGGLECGHG PDDRVANRIG
4DWX:A QLSHNYNYGP AGRAIGVDLL RNPDLVATDP TVSFKTALWE WMTAQAPKPS SHAVITGKWS PSGADRAAGR APGFGVITNI INGGLECGHG QDSRVADRIG
4J0L:A QLSHNYNYGP AGRAIGVDLL RNPDLVATDP TVSFKTALWE WMTAQAPKPS SHAVITGKWS PSGADRAAGR APGFGVITNI INGGLECGHG QDSRVADRIG
1CNS:A QLSHNYNYGP AGRAIGVDLL ANPDLVATDA TVSFKTAMWE WMTAQPPKPS SHAVIVGQWS PSGADRAAGR VPGFGVITNI INGGIECGHG QDSRVADRIG
2BAA:A QLSHNYNYGP AGRAIGVDLL ANPDLVATDA TVGFKTAIWE WMTAQPPKPS SHAVIAGQWS PSGADRAAGR VPGFGVITNI INGGIECGHG QDSRVADRIG
4TX7:A QISWNYNYGQ CGNAIGVDLI NNPDLVATDP VVSFKSAIWE WMTPQSPKPS SHDVITSQWT PSAADVAAGK LPGYGTVTNI INGGLECGRG QDSRVEDRIG
3CQL:A QLSWNYNYGP CGEALRVNLL GNPDLVATDR VISFKTALWE WMTPQAPKPS CHDVITGRWQ PSAADTAAGR LPGYGVITNI INGGLECGKG PNPQVADRIG
4MST:A QLSWNYNYGQ CGQALGLDLL NNPDLVATDR VISFKAAIWF WMTPQFPKPS CHDVITGQWS PTGHDISAGR APGYGVITNI INGGLECGRG WDARVEDRIG
DCAP_5513 FYQRYCSIMG ISPGGNLDCY NQRPFS---- ——-----—

27239:A FYTRYCGMFG VDPGSNIDCD

2738:A FYTRYCGMFG VDPGSNIDCD

1DXJ:A FYKRYCDVLH LSYGPNLNCR

2DKV:A FYQRYCGAFG IGTGGNLDCY

4DWX:A FYKRYCDILG VGYGDNLDCY

4J0L:A FYKRYCDILG VGYGDNLDCY

1CNS:A FYKRYCDILG VGYGNNLDCY

2BAA:A FYKRYCDILG VGYGNNLDCY

4TX7:A FFKQYCDLFG VGYGNNLDCY

3CQL:A FFRRYCGILG VGTGNNLDCY NQRPFG----

4MST:A FYKRYCDMFA VGYGSNLDCY NQTPFGLG--

Figure A.7: Sequences used for domain prediction of DCAP 5513, designated by PDBID.
The target sequence is colored green. Strikethrough text indicates the N-terminal signal
sequence, which is removed during maturation.
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[l crystal structure

blind prediction

Figure A.8: Blind prediction of the HORV2 structure (PDBID:1CNS chain A, light blue)

compared with the experimentally determined crystal structure (dark blue).

chitinases, as shown for a class IV chitinase from Nepenthes alata (A9ZMK1 NEPAL) [126]
and DCAP 0533 in A.2. Supplementary Figure A.9 shows a sequence alignment of the N-
and C-terminal domains of the Class IV chitinase DCAP 0533 with single domain class IV
chitinases from Picea abies (Q6WSR8_PICAB), Zea mays (CHIA _MAIZE), and Sorghum
bicolor (C5YBE7 SORBI). The two domains of DCAP 0533 were aligned with the most
closely related annotated class IV chitinases, those from Picea abies (EC: 3.2.1.14, Uniprot:
Q6WSR8 PICAB), Zea mays (EC: 3.2.1.14, Uniprot: CHIA MAIZE), and Sorghum bi-
color (Uniprot: C5YBE7 SORBI) [288, 232, 56] (Supplementary Figure A.10).

Structurally, each domain consists of two lobes with eight helices each, separated by a large
active site cleft (Supplementary Figure A.10(a). In Supplementary Figure A.10(b), the two
domains of this protein are shown overlaid with the crystal structures of class IV chitinases
from Zea mays (PDBID: 4MCK, 60% identity with the NTD) and Picea abies (PDBID:
3HBE, 64% identity with the CTD). The NTD Supplementary Figure A.10(c) has an N-
terminal signal peptide, a conserved C-rich binding domain, and a catalytic domain that

appears to be functional. In its homolog CHIA MAIZE, Chaudet et. al. characterized four
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catalytic residues (E62, E71, E165, and R171) [56], all of which have counterparts in the
NTD of DCAP 0533 (E173, E182, E278, R290) (Supplementary Figures A.9, A.10. Previous
modeling studies of well-characterized class I chitinases from barley, mustard, and chestnut
seed homologs (barley: E67, mustard: E212, chestnut: E124) suggest the necessity of E62 in
CHIA MAIZE and E173 in the NTD of DCAP 0533 as a proton donor |9, 92, 280]. Overall,
mutagenesis studies highlight the significance of E62 as an essential residue of the catalytic
triad (E62, E165, R171 in CHIA MAIZE) which we use to infer an equivalent catalytic
triad in the NTD of DCAP_ 0533 (E173, E278, and R290). It has also been hypothesized
that purpose of the triad is to alter the surrounding environment to induce activation of the

glutamic acid in the HETG/I (class IV) or HETT (class I/I1) motif by changing its pKa [280].

Linked to the NTD by a cysteine and glycine-rich linker sequence, the CTD of DCAP 0533
(Supplementary Figure A.10(d) potentially houses a second catalytic domain or binding
domain whose closest structural homolog is Q6WSR8 PICAB from Norway spruce (Picea
abies) (Supplementary Figure A.9). Binding site residues and cysteines involved in disulfide
bond formation are conserved in both chitinases. Comparing this sequence with the catalytic
triad of QGWSR8 PICAB (E113, R230, E218), we observe a potentially equivalent triad in
the CTD (E407, E507, R519) (Supplementary Figure A.10). Ubhayasekera et. al. describe
the flexibility of E113 and demonstrate two conformations that it can adopt during catalysis
[288]. Although E407 is not located in the equivalent sequence position to E113, the flexi-
bility of this residue in Q6WSR8 PICAB suggests that Glu407 may be at an appropriate
distance to function as part of the CTD triad. Alternatively, the CTD may lack catalytic

activity and act as a binding domain as in multidomain chitinases from archaea and bacteria.

All initial and equilibrated structures are available for download as PDB files. The available

structures for Families 18 and 19 are tabulated in Supplementary Tables 1 and 2, respectively.
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e o ® o0 o eeoe oo
Q6WSR8_PICAB ~  —=——===—=== —mmmmmmmmm —mmemm o B NAONCGCATG VCCSQYGYCG TTSAYCGKGC KSGPCYSSGG
N_term_DCAP_0533 HASTNK AKLD PYTSTOTRKL YNYEN TXTH 2AQDCGCDSS LCCSQYGYCG TSDAYCGVGC QEGPCKSAVN
C_term DCAP_0533 -AQSCGCAAG LCCSKYGYCG TTSSYCGDGC QAGPCSSTPRT
CHIA MAIZE  —========= ———mmmmmmm —mmmmmoo oo NAP 2AQNCGCQPN SKFGYCG TTDAYCGDGC QSGPCRSGGG
C5YBE7 SORBI ~  —————————— ——mmmm——om oo ENAP T P2-2AAQNCGCQPG YCUSQYGYCG KGDAYCGKGC RSGPCQGGGG
° ° oo ) ° ° o ecooe Yo o ¥ °
Q6WSR87PICAE SQSFENG GGAASSTEGX GFYTYN N-AYSGEG TTGSND E N HETGGL_YIN EXNP-PINY
N_term DCAP_0533 SD. NG DQAASTCEGI GFYS S SNYTDFG TTGSVEES E HVT HETGHFCYIN EINGSSKDY
C_term DCAP_0533 TDAFFNGIT NQAGSG PGY GFYSRSAFLS AIG-SYPSFG TTGTTDAS<Q E --- HENGGA---- -- SQPKSQY
CHIA MAIZE TDAFENGIK NQAGSGCEGK NEYTRSAFLS AVN-AYPGEA HGGTEVEGKR E HVT HETGHE YIS EINK-SNAY
C5YBE7_SORBI TD NG NQAPNWCEGK NEYTRS. N N-AYPG HGGSEVEG! E HVT HETGHFCYIN EINGASENY
° e0ee ! Voo 000 c0 000 o o o oooe ¥ Yoo @ woe! YV oo
Q6WSR8_PICAB QS-SSTWPCT SGKSYHGRGP NYNYG AAGKSIGEDG LNNPEXVGQD STISEXT. SNCHS AITSGQGEGG T S-ME CNGGNSGEVS
NitermiDCAP70533 DETNTEWP PSKGYYGRGP NENYG PAGRDLGFDG LNSPETVAND PVISEKT. NHVH-N- SGQGEGE T S-IE CDGGNTPEVN
C_term DCAP_0533 DASYTQYP'N PNKGYYGRGP NYNYG GSSIGFDG LNSPETVANN SEHT. NNGI-HS SGQGFGA T S-GE CNGGNLGAVN
CHIA_MAIZE SNEQUWP GQIYYGHGP NYNYG PAGRDIGENG LADPNRVAQD T NNVH--- -GVMPQGFGA T GALE _NGNNPAQVN
C5YBE7_SORBI NNRQUWPCA PGHKYYGRGP NYNYG PAGKAIGEDG LGNPDXVAQD PVISEXT. NNVH--- -QVMPQGEGA T GALE CNGKNPGAVN
Yo eoo .
Q6WSR8_PICAB SRVNYY SQLGVDPGAN VS XX signal cleavage site V¥ acidic catalytic residue C-rich domain
N_term DCAP_0533 DRVXYYXQY' DEL---=—=-= —-=
C_term DCAP_0533 QYYKQYC SQFGVAPGAS LT @ conserved residue ¥ basic catalytic residue signal sequence
CHIA MAIZE GYYHQY" QQ DPGPN
C5YBE7_SORBI GYYKDY" XQFGVDPGNN LT C in disulfide bond \/ binding residue

Figure A.9: Sequence alignment and annotation of Q6WSR8 PICAB, CHIA MAIZE, and
the N-terminal domain (NTD) and C-terminal domain (CTD) of DCAP_0533. For the
purpose of comparison, the sequence is manually separated above. We observe high sequence
conservation regarding: the signal cleavage site, C-rich domain length and location, cysteines
composing disulfide bonds, other binding site residues surrounding the main binding site
residues (orange arrows), and catalytic residues except Glu407 of the CTD which is unaligned

with Glull3 of Q6WSR8_PICAB
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DCAP_0533 CHIA_MAIZE [ Q6WSR8_PICAB . acidic catalytic residue . basic catalytic residue . binding residue

Figure A.10: DCAP 0533 comparison with CHIA MAIZE (4MCK) and Q6WSR8 PICAB
(3HBE) and close up of catalytic residues and binding residues: (a) Robetta generated pre-
dicted structure with highlighted catalytic residues and binding residues. (b) Superimpo-
sition of CHIA MAIZE and Q6WSR8 PICAB against DCAP _0533. (c¢) Catalytic site of
NTD with 1-letter residue code and specifier. Catalytic triad consists of E173, E278, R290.

(d) Catalytic site of CTD with 1-letter residue code and specifier. Catalytic triad consists
of E407, E507, R519.
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Supplementary Table A.3: Rosetta and equilibrated structures for Family 18 Chitinases
PDB files available for download

Protein

Organism

Sequence Elements included

File Name

CHIT3_VITVI
CHIT3_VITVI
DCAP_ 7323
DCAP_ 7323
DCAP_ 0106
DCAP_ 0106
DCAP_ 7544
DCAP_ 7544
DCAP_ 2209
DCAP_ 2209
C7F821 _NEPMI
C7F821_NEPMI
CTF817_9CARY
CTF817_9CARY
I7THCY7 NEPAL
ITHCY7 NEPAL
C7F818_9CARY
C7F818_9CARY
QO6SNO_9CARY
QO6SNO_9CARY
C7F824_9CARY
C7F824 9CARY
C7F822_ 9CARY
CTF822 9CARY
CTF819_9CARY
C7F819_9CARY
C7F823_NEPGR
C7F823 NEPGR
DCAP_ 5455
DCAP_ 5455
DCAP_ 2879
DCAP_ 2879
DCAP_ 4799
DCAP_ 4799
DCAP_ 2737
DCAP_ 2737

Vitis vinifera
Vitis vinifera
. capensis
. capensis
capensis
capensis
capensis
capensis
capensis
capensis
mirabilis
mirabilis
spatulata
. spatulata
N. alata

N. alata

spatulata
spatulata
spatulata
spatulata
spatulata
spatulata
spatulata
spatulata
. spatulata
. spatulata
. gracilis

. gracilis

. capensis
. capensis
. capensis
. capensis
. capensis
. capensis
. capensis
. capensis

S ESESESASESESESESES

SN

SECECECECECACECENEUSRSESASASASESESESES

signal, active region
active region
active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
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CHIT3_VITVI_ ml.pdb
CHIT3 VITVI mature ml.pdb
DCAP 7323 ml.pdb
DCAP 7323 mature ml.pdb
DCAP 0106 ml.pdb
DCAP_ 0106 _mature ml.pdb
DCAP_ 7544 ml.pdb
DCAP_ 7544 mature ml.pdb
DCAP_ 2209 ml.pdb
DCAP 2209 mature ml.pdb
C7F821 NEPMI ml.pdb
C7F821 NEPMI mature ml.pdb
C7F817 9CARY ml.pdb
C7F817 9CARY mature ml.pdb
I7HCY7 NEPAL_ ml.pdb
ITHCY7 NEPAL mature ml.pdb
C7F818_9CARY_ ml.pdb
C7F818 9CARY mature ml.pdb
QO06SNO_9CARY ml.pdb
QO06SNO_9CARY mature _ml.pdb
C7F824 9CARY ml.pdb
C7F824 9CARY mature ml.pdb
C7F822 9CARY ml.pdb
C7F822 9CARY mature ml.pdb
C7F819 9CARY ml.pdb
C7F819 9CARY mature ml.pdb
C7F823 _NEPGR_ml.pdb
C7F823 NEPGR mature ml.pdb
DCAP 5455 ml.pdb
DCAP 5455 mature ml.pdb
DCAP_ 2879 ml.pdb
DCAP 2879 mature ml.pdb
DCAP 4799 ml.pdb
DCAP_ 4799 mature _ml.pdb
DCAP 2737 ml.pdb
DCAP 2737 mature ml.pdb



Supplementary Table A.4: Rosetta and equilibrated structures for Family 19 Chitinases
PDB files available for download

Protein Organism Sequence Elements included File Name
HORV2 H. vulgare active region HORV2 PDBID: 2BAA
HORV2 H. vulgare active region HORV2_crystal struc_mature_ml.pdb
Q6IV09_DRORT D. rotundifolia active region Q6IV09_DRORT_ml.pdb
Q6IV09_DRORT D. rotundifolia active region Q6IV09_DRORT _mature_ml.pdb
CHI3_CASSA Castanea sativa C-rich domain, P-rich hinge, active region CHI3_CASSA_ ml.pdb
CHI3_CASSA Castanea sativa C-rich domain, P-rich hinge, active region CHI3_CASSA _mature_ml.pdb
Q6IVX8 9CARY D. spatulata signal, C-rich domain, P-rich hinge, active region Q6IVX8 9CARY _ml.pdb
Q6IVX8_ 9CARY D. spatulata C-rich domain, P-rich hinge, active region Q6IVX8_ 9CARY _mature_ml.pdb
V5TEIO_ DIOMU D. muscipula signal, C-rich domain, P-rich hinge, active region V5TEIO_ DIOMU _ml.pdb
V5TEIO_ DIOMU D. muscipula C-rich domain, P-rich hinge, active region V5TEIO_ DIOMU _mature_m1l.pdb
Q6DUJ9_DIOMU D. muscipula signal, C-rich domain, P-rich hinge, active region Q6DUJ9_DIOMU _ml.pdb
Q6DUJ9_DIOMU D. muscipula C-rich domain, P-rich hinge, active region 6DUJ9_DIOMU _mature_ml.pdb
VJH3_9CARY D. spatulata signal, C-rich domain, P-rich hinge, active region VJH3_9CARY_ml.pdb
VJH3 9CARY D. spatulata C-rich domain, P-rich hinge, active region VJH3 9CARY mature ml.pdb
DCAP_ 5513 D. capensis signal, C-rich domain, P-rich hinge, active region DCAP_ 5513 ml.pdb
DCAP 5513 D. capensis C-rich domain, P-rich hinge, active region DCAP 5513 mature _ml.pdb
Q6DUKO:QCARY D. spatulata active region QGD[TKOigCARYi?nl.pdb
Q6DUKO_9CARY D. spatulata active region Q6DUKO_9CARY _mature_ml.pdb
DCAP_ 4817 D. capensis signal, C-rich domain, P-rich hinge, active region DCAP_4817_ml.pdb
DCAP_ 4817 D. capensis C-rich domain, P-rich hinge, active region DCAP_4817 mature_ml.pdb
CHI2_BRANA B. napus signal, C-rich domain, P-rich hinge, active region, CTE CHI2_BRANA _ ml.pdb
CHI2 _BRANA B. napus C-rich domain, P-rich hinge, active region CHI2 BRANA mature_ml.pdb
Q6IV10_DRORT D. rotundifolia active region Q6IV10_DRORT _ml.pdb
Q6IV10_DRORT D. rotundifolia active region Q6IV10_DRORT _mature_ml.pdb
I0CMI2_DIOMU D. muscipula active region I0CMI2_DIOMU_ml.pdb
I0CMI2_DIOMU D. muscipula active region I0CMI2_DIOMU_ mature_ml.pdb
I0CMI3_9CARY D. spatulata active region I0CMI3_9CARY_ml.pdb
I0CMI3_9CARY D. spatulata active region I0CMI3_9CARY _mature_ml.pdb
I0CMI4_9CARY D. spatulata active region I0CMI4_9CARY_ml.pdb
I0CMI4_9CARY D. spatulata active region I0CMI4_9CARY _mature_ml.pdb
I0CMI6 NEPMI N. mirabilis active region I0CMI6 NEPMI ml.pdb
I0CMI6_NEPMI N. mirabilis active region I0CMI6 NEPMI_mature ml.pdb
Q6IVX2 9CARY D. spatulata signal, C-rich domain, P-rich hinge, active region, CTE Q6IVX2 9CARY ml.pdb
QGIVXZ:QCARY D. spatulata C-rich domain, P-rich hinge, active region QGIVX279CKRY7ma?ureim1.pdb
Q6IVX4 9CARY D. spatulata signal, C-rich domain, P-rich hinge, active region, CTE Q6IVX4 9CARY_ml.pdb
Q6IVX4 9CARY D. spatulata C-rich domain, P-rich hinge, active region Q6IVX4 9CARY _mature_ml.pdb
DCAP_0533 D. capensis signal, C-rich domain, P-rich hinge, active region, C-terminal domain DCAP_0533_ml.pdb
DCAP_0533 D. capensis C-rich domain, P-rich hinge, active region, C-terminal domain DCAP_0533 _mature_ml.pdb
A9ZMK1 NEPAL N. alata signal, C-rich domain, P-rich hinge, active region A9ZMK1 NEPAL ml.pdb
A9ZMK1 NEPAL N. alata

C-rich domain, P-rich hinge, active region A9ZMK1 NEPAL mature_ml.pdb
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Appendix B

Supplement: Protein structure networks
provide insight into active site flexibility
in esterase/lipases from the carnivorous

plant Drosera capensis

Sequence Alignments

Sequence alignments for the esterase/lipases from D. capensis are shown along with annota-
tion reference sequences from other plants. Cluster 1 (Figure B.1) contains enzymes with the
traditional GDSL motif, including GDL1 CARPA from Carica papaya. Cluster 2 (Figure
B.2) contains only sequences from D. capensis, while Cluster 3 (Figure B.3) contains two
reference sequences from Arabidopsis thaliana. Cluster 4 is split into two figures for legibility
(Figures SB.4 and SB.5). The alignment figures are annotated to highlight chemical prop-

erties of the amino acid residues as well as important sequence features. The amino acid
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attributes are color-coded as follows: cysteines are yellow, positively charged residues are
blue, negatively charged residues are red, hydrophobic residues are green, and all others are
black. Highly conserved residues are indicated with a dot above the sequence position. The
catalytic triad residues are marked with colored arrows. SignalP 4.1 [216] is used to predict
the signal peptide cleavage site, which is specified by underlining the residues on either end of
the cleavage point. The signal peptide itself is highlighted in light orange. Strikethrough text
indicates sequence regions that are absent in the active enzyme, in this case the N-terminal
signal peptide that is expressed but removed during maturation. Functional blocks I-IV are
highlighted with colored boxes. Annotations were performed by homology to the annota-
tions reference sequences from C. papaya and A. thaliana found in the UniProt database

and identified by their UniProt IDs.

o o e oo oo e o
GDLl_CARPA EXPSCQFLG—LS —~EPEE—fh————————— ——RISENAQQ DS ) NGNKP TD VP--STEWPY GLS-IDFPNG SDG PD FIA-------
DCAP_3343 OSTEIN—LAT STE—FE-——LESNNAH-—S PDNH ) VGMNSYFKHG TL--STYLPY GETFFGKPTG RY' NG PD FVA-------
DCAP_6947 PTPSSTLS— —LEFSE— 9 SSS GQrQVP GDSLEFD PGNNNYLNDT GQATSWPY GET TG SDG PD GMGVRTLD
Block | Block Il
e [ J [J (X ] [ ] o 600
GDLlicARPA ---EFLGIPEF PPPVLDR-SA NFSSGVTFAT ADATIL-GTP PQTLTLGDQ QIKSTW T----=---- D AQRQKGIY YIGANDYLNY TNANLN---
DCAP73343 —---EFANLP PPYLQPGLS NYTDGVNFAS AG DTR PGTIN QV DYFEEMVT SQIGVAEAN GNAVY SIGGNDYVS TANLNXP.
DCAP76947 DTE P YLEPGQH GGANFAS GGAGVLSQTH PGTISLREQL SYFKDVVST QQFGEAET Y SMGGNDYFSE YTSY---PN
Block IlI
[ ] o o8 L _J e o [ ] [ N J (]
GDL1_CARPA TAQQQOE S Q DQ YGLGG ONLAPLG P QD TG-N P SN QHNQ SETLENLSE TLDGEFNYIIY DYFNSS
DCAP73343 SASYXREYIS TVLGNLTAHI TTIYNTGG ONVGPIG PST YT GDVGN DP QT THN GIAQKLQT QLSGFKYS DYYS N
DCAP76947 SESAQKEYVS GNLTE EETYQIGG ONVGALG PLNREQK-- TGDGS AEET N. SHNH ES SLG PGFXYS DYYH
o0 ° e o V1V oo
GDLlicARPA PNNYGYF'T TN GTGS -HDAFG G NVHSNLUSYQ RGY! DGRH NAEKTNE H SADPS PMNLREE HP-
DCAP_3343 YNTRYGENQ S GSGA YNGAFT GSP T QACSDP SDY DAAH PTEKANQQYA Q DGAAPN ----T STTT
DCAP_6947 SNPEXYGEFMN GTSACYTGN- ----- TPGKT TTKPSL SDP SKY DSGH TTEACNWQLS GKED SPYNVEKQLY ELL-
Block 1V
XX signal cleavage site | active Ser residue
signal sequence { active Asp residue
® conserved residue { active His residue

Figure B.1: Sequence alignment for Cluster 1 esterase/lipases, annotated by homology to the
reference sequence GDL1 CARPA. The four functional blocks that are critical for enzyme
function are highlighted using outlined colored boxes. The N-terminal signal peptide is
highlighted in light orange. Colored arrows indicate the catalytic triad residues. Conserved
residues are marked using colored dots: acidic (red), basic (blue), hydrophobic (green), and
hydrophilic (black) residues.
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DCAP_0448
DCAP_8086
DCAP_0434
DCAP_4098
DCAP_5529
DCAP_5165

DCAP_0448
DCAP_8086
DCAP_0434
DCAP_4098
DCAP_5529
DCAP_5165

DCAP_0448
DCAP_8086
DCAP_0434
DCAP_4098
DCAP_5529
DCAP_5165

DCAP_0448
DCAP_8086
DCAP_0434
DCAP_4098
DCAP_5529
DCAP_5165

DCAP_0448
DCAP_8086
DCAP_0434
DCAP_4098
DCAP_5529
DCAP_5165

) cesiem 00 o o L X X ) 0 ® oo
FEA [[FNEGDSNSD PA QSGPFGMTYF K¥PAGIATDG «L[[VDFL=== —=========
FEA [[FNFGDSNSD QSGPFGMTYF KKPAGRATDG TGIPFLSPYL
ADRPPCQFPA [TYNFGDSNSD TPCAYGATFF GKAARRNSDG RLLIDLIGIY TLSTLKGKSN
ADRPPCQFPA [[YNFGDSNSD TGGISAAFMP IPWPYGATFF RKAAGRDCDG DFIAEE LDLPFLSAYL
MESCRRIANL VRLL-~LLIE ITOCTAKRAA SPTEPCKFPA [[FNFGDSNSD TGGFSAAFGQ AAPPAGETFF GRPAGRYSDG DFIAQG LGVPYLSAY
7777777777777777777777 MEVVPETP TAAGPCKI NEGDSNSD_TGGLSAAFGE IGSPAGETFF GHPAGRYCDG DFIAES FGLPFLSAY
Block | Block Il
[ ] @ 09 O [ J [ ] ]
——————————————————— LLPNTSLEFVS GLSPFSVATQ LNQNEGIQGK SLQIATQPW
QSTGSDYRHG ANYATLASTV LLPNTSLEVS GLSPFSLATQ LNQMKEFKAR VYESRSN-HG
SSLGANFSHG A QNETTFEY GICSFSCSMS RSGITTSSNR GPLISTTKVK SP-SHFTNIS EINPNENKSN -INSH A-LLIVI
NSLGANFSHG QNETTFEY GISPFSLDVQ LWHYDQFFSI SSDIH-NQUT DP-YH!S-== =11 P-===== ————-—-—— -
DAVGSNFSHG ANFATAASTI RPONKTLNQG GFSPISLNVQ WYQFYEFQSR TQYFRSQGIP HSRLHYPD-- -MIPIQITDI ILGIWVETD RMY
DSVGTNFSHG ANFATAGST! HPQNTTLEQS GFSPVSLLDQ FVEFSDFYHR APA======= ===mmm———— —mmmmmmoo o o 1
DATSFSS HIREGDIYTE YIGQNDSTSN - -
---STPLPSV HIIGKATYTF YIGQNDETSN LAPTGCYPAF IVE-LPHDDS DVDQYGC LIS
TRITKASFQS LWTSPRIYTH ---PISVKMI TGPIGCLPVA VMYIADPKPG FLDPYGCIKG
EDF======= —== YTF DIGONDLSVA TGPIGCLPVA VMYITDPKPG FLDQYGCIKG
GVYEELLPKP EYFSEALYTF DIGQNDLTAG YFLKMSTDEV RSFVPDLMDQ FRTITKNIYG TGPVGCLPYV M-DSLLIKAS QVDRAGCUASP
GIYTELLPTA EAFTEALYTE DIGQONDLTAG YFSRMSTDQV KDFVPDLILN LSNITRYTY TGPVGLPYV M-DTQLITAG QVDHIG ADP
Block 11l
[ X ] [ J [ ]
ATLADASATY VDVHSVMLEL FREPTSHGLK HGTKACCGEG GGAYNENP
AALADASLIY VDVHSVMLEL FRHPTFHGLK HGTKACCGEG GGAYNENPKV
TQLPEAATTY VDLYAAKYGL ISTTXSPGFV DPLKICCGYH -EKX---DGN-
TQLPEAATITY VDLYAAKY STTXSQGFV DPI GYH -EX---DGN
ELPLAALTY VDVYSLKYDL ISNAKQHGFR EPLRACCGHG -GHYNFNSH
DELPLAALTY VDVNSVMYDI, YEHATKYGFQ HPI GHG -GHFNYNQHH
Block IV
[
7:#52; ?{D;;fpigs—s v XX signal cleavage site | active Ser residue
1 FADHILNRSL SRFLSPML-- . .
STDHTINGSI, SDPSTPTTHA signal sequence { active Asp residue
E : ;ggy zzggg H ; ® conserved residue { active His residue

Figure B.2: Sequence alignment and annotation for Cluster 2. The four block regions are
determined by sequence conservation and outlined with colored boxes. Three D. capensis
esterase/lipases contain the N-terminal signal sequence (highlighted in light orange) and
three lack it. The catalytic triad is indicated using colored arrows. Colored dots denote
conserved residues.
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GLIP6_ARATH
GDL77_ARATH

DCAP_1840
DCAP_1460
DCAP_1380 DMNGMEHACM FVTERKSNGA
DCAP_0405 =  ————mmmmmm mmmmmm e - -MON-H AAST A
DCAP_4465 -- - e - e e -MQTSFCSG
[__J o0 [ N ¢ [ ] [ J
GLIP6_ARATH T GNNHYNXN'T AQADFPPYGS SFFH-—-EPT [GRETNG-T LQ-¥PFLELQ IQILNGTSNE SGLLLDTNXE
GDL77_ARATH GNNNYL-VTT ARXADSPPYGI DFPT--2RPT |GXESNGLNIP EPPLPYLSPE —---L-GMSL I IGILNDTGFQ
DCAP_1840 GNNNFL-PTL SRANVTPNGI DFKASGGTPT |GRYSNGRTMS DIIGEELGQS NYAVPFLAPN —---STGHAT I GGIINSTGST
DCAP_1460 GNNNNI-ASL ARSNYLPYGI DFPQ---GPT |GRESNGXTTV DVITQLLGFD DY-IP-PHAT ----ASGEQI AGIREETGQQ
DCAP_1380 GNNNFL-NSV AKSNFWPYG® DFSR---GPT |GRFSNGKTVV DFIGELLGIS NI-PAFADPA ----TAGTKV VTGINYASAA AGILDETGRH
DCAP_0405 GNNNYL-NS NYFPYGI EFEQ---GPT |GRFCNGRTFM DYLAEMLGLP RI-PAFANPL ----ETGHGI LHGVNYASAS AGILEETG
DCAP 4465 GNNNYL-NSV NYFPYGI DFEQ---GPT |GRFCNGRTFI DYLAEMLG -PAFANPF ----ETGHGI LHGINYASAS AGILEETGL!
Block I
[ ] e 60 00
GLIP6_ARATH ---TPIQTQL QQFQTLVEQ- ———=—====- N LIEKSII LFLLETGSND IF-NYFLPF ---TLSP VNKTIDQIY
GDL77_ARATH DYFQQYQQRV SRLIGKP--- —QTQRLVSQA LVLITVGGND EVNNYFLEPY -SRQFTI ) YXKILLRLNS
DCAP_1840 / DYFENITRXQC DRLLGASN-- -TRNYIMHES IFSITIGSND FLNNYLLPFS SVGSRITQSP TAFVDDMISQ LXNQLTRLYQ
DCAP_1460 NNY“NTVSQI VNILGDED-- -SAASYLSXC MYTIGLGNND YLNNYFMPLY YST-SNRYTP DQYADVLIQE YSQQIQSLYN
DCAP_1380 NFESTLGQL KNTMATANPT FNMSQHLAKS MVFMSFGSND YINNYLLPSL YTS-SFTYTP VDFANLLLNH YARQ HS
DCAP_0405 ONFEITLTQL HGPMTET-—-- -EMXDYLPN i GSND YINNYLIPTL YTS-PXTSQI SLS§———-—-— ——————————
DCAP_4465 ONFEITLTQL HGQITET-—— -EMXDYLPNV LM GSND YLNNYLLPTL YPS-SNLYKP ENFADILISE YN:QIVTLHS
Block Il

R e R I N R R ® [ ) -
GLIP6_ARATH GA FFS LGPVG VPAR AMLPNAPTNK _FGHMNVM YNKRLEDIV NIIPTKYPGA THRFQTYPAR YGFSDVSNA (GN-GTLGGL
GDL77_ARATH LGVGRVLVTG AGPLGUAPAE LARSGTSNGR CSAELQRAAS LYDPQLLQMI NELNKKIGRN V I QEDFLSTPRR YGFVTSKVAC CGQ-GPYNGM
DCAP_1840 DARKFSVGS VGPIGCTIPYQ KIINQLNADQ CADLPNKMAL AYNSKLXDLL IQLNKNLPGA TFVYANVYDL VMELISNYKA YGFVTATQAC CNGGGIFAG
DCAP_1460 °G IG IGQIGUSPNE LANNSPDGKT CDGXINSANQ MFNGKLXSLV DQLNSQFSDA HFIYINAYDI FQDMLDNPAA YGFRVTNAGC CGV-GRNNGQ
DCAP_1380 Gl FLAG IAPLGCIPNQ RASGLAPAGR CVDSVNQMLG SFNEGLRSLV SLLNSKYPGS YGNTYGA VGDILNNPTE NGFSVVDRGC CGL-GRNQGQ
DCAP_0405 - - e - - AST TSRPWLEKLA DQLNSNHPDA XEVYGDTYAA SMDMIANGST YGENVADEG. CGI-GENRGQ
DCAP_4465 LGLRKFFMAG IGPLGCIPNQ RASGAGPPGK CVSAVNDMVL MFNLRLDKLA DQLNSNHPDA YGDTYAA SMDMIANGST YGFXVVDEGC CGI-GRNRGQ
GLIP6 ARATH MQUGREGYKI CNNPNEFI EHTY RLMSKALWNG N-KNHIRPFN LMALATNKIT F
GDL77_ARATH GL TVL-SNIL ~PNRELY EXAN HILTG T-THYMNPMN 1.8SAlal--- - XX signal cleavage site ,L active Ser residue
DCAP_1840 PCGPT-SSL CQDRHXH EARN JAKQLMDG D-TKYVSPIN LEQLRDL--- -
DCAP_1460 TCLPM-QQP CPNENEYI EAAN IVVGTRSYRA QSASDAYPYD IQHLAQL--- - signal sequence ¢ active Asp residue
DCAP_1380 ITCLPY-AVP CANETQYYV EAVN SLL FEG P=PTD YPIN 1QQIALL--- —
DCAP_0405 S ANRDEYV QARN I-LSKF---- - @ conservedresidue | active His residue
DCAP_4465 VSCLPL-LPP CANRDEYVEW DAFHPTQAAN -

Block IV

Figure B.3: Sequence alignment and annotation for Cluster 3. Reference sequences are
GLIP6 ARATH and GDL77 ARATH. All but three Cluster 3 esterase/lipases contain a
N-terminal signal peptide (highlighted in light orange). Functional block regions are outlined
using colored boxes. Colored dots indicate conserved residues.
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e o [ _
DCAP_6218 Y NSRGSNSFVI DPG ADHSPYGRDE
DCAP_6260 LHRGTHSQST /DPG ADHPPYGRDF
EXL3 ARATH MEKDNS-SH-SCSCSWSSH ~LLSVLE LTETITAVKL IVDIG 1 DFLPYGINF
DCAP 1761 YSSVN-Q SLAAKLVVEQ =FIATLHM-= —===== SAY DTG NNNYLQTIGK CDFPPYGCDF PTGLPTGRYS
DCAP 6217 -MMEFNN-KN QCKAFLV -LAKILTFLN LSEAVIL /DPG NNNYINTIAR CNFPPYGKDF PGGKATGRES
DCAP_ 5461 DAG MNNDYPTL( X TNHAPYGHDE KGSKPTGHES
DCAP_0158 /DSG NNNHIITTCR SNEVPYGRDE EE|KPTGRET
DCAP_2088 /DTG NNNYNSTLC ¥ SNEPPYGRDE PGGQATGHES
DCAP_2089 DSG NNNYISTLCX SNFPPYGRDF PGGQATGRES
Block | Block Il
[ X ] [ BN J @ o [ ) [ J
DCAP 6218 NAKIPTDYLA ESLGIKDLLP AYLDPTIETE DLLTGVSFAF ACCGYDPLTP QFFVSTHFHF DFYSSSTCIA HGWILS VTERVPSLQD QLEYFKEY
DCAP_6260 NAKIPSDYTA QEFGVKELLP AYLDISLRTE DLLTGVSFAF TCSGYDPMTS L-TI -- B QVPTLTD QLQHFREWQL
EXL3_ARATH DGRVPADLLA EELGIKSIVP AYLDPNLXSX DLLTGVSFAS GGSGYDPITP K- -- B SLED QLSYFEEYIE
DCAP_1761 NGKVPADLIV EKLGIKEYLP PYLNQSLEFQ DLVTGVNFAT GATGYDPVSA Q- -- - SLDD QLELFKDYKT
DCAP_6217 NGKIPTDLFA ELLGIKELLP AYLDPTLTTQ DLLTGVSFGS GVAGYDPVSA A-LL -- B TLSLDA QLNLFKEYQS
DCAP_5461 VP SYLDEGLSPN DMLTGVSFAC GCSGWDPSTS QYGYFEEYTV
DCAP_0158 /P PYLDPSLTMD DLLTGVNFAS ACSGYLPATZ ---PSLSLED QLDLFKEYIS
DCAP 2088 P AYLDPSLSTD EMLTGVNFAS ACSGYLPLTA ISLSLEN QLDLFKQYTV
DCAP 2089 DGIVPSDIVG NSE--RKLS— NE --- —===SSNHLV [FQY====== —====———m= —————ooooo ———f 'SLSLEN QLDLEXQYV
(] [ ] [ ] [ ]
DCAP_6218 VGEER TSFIVSKSTY GSNDFT FTYNLF-- EMNMSSYT GVLQLL ========== ——————
DCAP_6260 TAVGGKK ASYVISESVY LIVTGNNDET ENYYGS-LER SLQYNVSSY IGAIGLP PQG LPAMHT SAEGHSHP N
EXL3_ARATH NIVGE DFIVANSLF LLVAGSDDIA NTYYTL-R-A RPEYDVDSYT AVFGAP PIGCVPSQRT LGGGILED
DCAP_1761 SAY LIFAGSNDIT NTYFLT-NLE RPQYDVDSYT TMGVMNTP PIGCLPSQRT FAGGLQRS
DCAP 6217 SMY GSNDVT DTYFAT-PFR KPFYNMTAYA ARKIGVFSVP KSGULPSART LFGGLFRT
DCAP 5461 . ; AFY LVGTGVNDFL NNFDDPSSE NHDLASYT ARRIGIFGIP PYGHIPFSRT TAGGVEFRAP
DCAP 0158 TAEVGEQK TSSLLSQCII TGSNDFN YFYDTQ---- -<NGNITAFL DILUNYTSGE LTPIVI-=== ———=m—————e ——— - --
DCAP_2088 PLY====== mmmmmmmmm e - - GDSA PQG VPAART NYGGL LRI
DCAP_2089 GEER TTRIISQS TGSNDFL YYYETQ---- —<SGNMSAYT GGAP PQGLPAART NYGGLLR!
Block IlI
(]
DCAP_6218 LRGKNPDSRF VYLDLYNPVL RLVQNPTQSG F! VG CCATGTSETS NESE YI
DCAP_6260 . LGKNLTGAKL VYLDLYGPLL QLVKNPENFV I A RKGDTNREMV TECSS Y
EXL3 ARATH DNYNE F NSKLSPXLDS LEKTLPGIKP TYINIYDPLF DIIQNPANYG G CCGTGAIEVA PDVST H
DCAP 1761 DEYNKAALLF NSKLNTEIES LNRNLSGVAM FFLDVYAPLL DLINNPSQAG G CCGTGNIEVS DATK Y
DCAP_ 6217 PQFDQLALLE NSKLQETVVD LNKNLTG! YIDLYQPLA HLINNGSEYG G CCGTGLFEAS NDSQ Y
DCAP_5461 TEFNNAATLE NFKLQTLIDS LNENEPG GYLDIYSKLM YVIENAADEG G CCGTGLVEMG NNSE YV
DCAP 0158 ——===———mmm mmmmmmoom oo o o IFFLVG G CCGTGLFEEG HTSX YV
DCAP_2088 ESFNQDSLDF NLKLQAMLKS LKNTLQGSRF AYFDLYYTVLI DLIQKPHEYG F G CCGTGFFEEG PNASK YV
DCAP_2089 ESFNQDTLNF NLKLQTMLKS LQNTLQGSRF IYFDFYYTVL DLVQKPHDYG F' G CCGTGLFEEG PNASK YVEWDASHPT
Block IV
DCAP 6218 DRANKIIIEE LFGKKMVSMA CINFGCPEGL SVELAGRTGN RTLASITRAF VQSQRGD
DCAP_6260 - -
EXL3_ARATH - XX signal cleavage site | active Ser residue
DCAP_1761
DCAP_6217 signal sequence { active Asp residue
DCAP_5461
DCAP_0158 QAAYKHVLDR ILNVTIMPHFF @ conserved residue { active His residue
DCAP 2088 QAAYNTVLAK NFNQTMSKEF --
DCAP 2089 QAAYNTIVAR NINQTMSQFE --

Figure B.4: Sequence alignment and annotation of Cluster 4a (first set), annotated by homol-
ogy to EXL3 ARATH. Cluster 4 is separated into two parts (4a and 4b) for clarity. Block
regions [-IV are shown in colored boxes with active site residues marked by colored arrows.
Colored dots indicate conserved residues. When present, the N-terminal signal peptide is
highlighted in light orange.
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.“*... [d 00 o os

080 [ X o
DCAP75138 EQ-KQDKS E! EN SS - ENIN AQPLVP GDSSVDTGN| NDYTHT NYPPYGRD O TG N G TDITAD
APGZﬁARATH ***************** = Iss € [STLSILQIS FAQLVP. T FGDSVVDVGN, NNYLPT DYPPYGRD NHEATG N G TDITAE
DCAP71365 S 'T_CF; P GDSSVDPGN| NNQVPT! S NFAPYGRDLP GGQPTG N G PDFISE
DCAP_5587 OLITTLOH GSKVP GDSSVDTGN| NN T S NEFRPYGRDFD GGRPTGRESN GRVPADFISE
DCAP_2187 NP NTSXVTSS SPSQVP. GDSTVDPGN| NNYIGTIFTS NYAPYGRDLP NHIPTGRESN G TD S
DCAP_4076 EQFSTNST S PIQTRGG IGFGRHVXNG SDPMVP GDSTMDPGN NDYIATTFRS NFAPYGRD NHEATGRETN G TD S
Block | Block I
® 60 0 ® O0e [ = [ ] % o [ ] e oo [ ]
DCAP75138 TLGETSYPPS YLSPQAAGKN GANFASA GSGYDDLTAY LSHAIPLSQQ LEYYKEYQG S GSSNA NSTLTGALY GAGNSD Q NYFLNP--
APGZﬁARATH TLGEFTKYPPA YLSPEASGKN GANFAS SGYDD NHAIPLYQQ VEYFKEYKS GS DS G. SAGSSD='VQ NYYVNP--
DCAP71365 GLKQLVPA YLDPGYTIAD TGVSEFASA GTGYDTTTSN SVIP E VEYYKEFQQ DYLGEE N SEALYM TSIGTND-LE NYYTLP--Q
DCAP_5587 TVPA YLDPMYDISN FSTG SA GTGYDNST SVIP E VEYYKEYQ. EYLGEREA NHILSEAVY SIGTND-LE NYYLPT-G.
DCAP_2187 DLGVKEYVPP YLDP NE TGVSFASA GSGYDPYTAQ LGGVITMQKXQ LEYFREY E GKEKS RHIIENAAY SAGAND! NYYLPPLMS
DCAP_4076 YLG YVPA YLDPSLSDQE TGVSFASG GNGYDPLTPQ LSGVISMQRQ LEYFKEYKS E GEE DHIVGSAGY SAGTND NYYSTALP
Block Il
(] [ ] [ ] o o o [ ]
DCAP75138 QKTYTPAQYA SKLT S DLYX LG GATNLPPL GCAP. T GD---HSNN TRLN YNK----KLN ETAAQLQXQY PD N
APGZﬁARATH YXVYTVDAYG S DNE'ST QVYAVG. GVTSLPPT G LP. GE'---HEKG SELNTDAQN ENK----KLN SKLQXQY SD D
DCAP71365 TQFTVEQYQ DY ED QLYGLG. SEGGLPPM GULPLERATN VQ---GQQG~ NEEYNS D EFNA----KLY EMVDRLNVQL PG GNP
DCAP_5587 SLQFTIEQYQ N G N QIYNLG. SLGGLPPM G LPLERTTN ---GGN. SHYNN Q FNS----KLE NQLNGDL PD SNP
DCAP_2187 -NLSVEQYQ P QIAQD QE EG. GVVGLAPL GULP: TLN THENITQPRG SPG SS YNQQLQI N DIQNQ SD QT YLD
DCAP_4076 NTYSVGEYQ ONVQE QG EG GLPPM GULPEVITTN SRESIFQGRE ESLSSISRE YNQQFQSQILD Qr0 EV QTT YID
° o e e o ° oV Yo
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X% signal cleavage sitt | active Ser residue Block IV
signal sequence { active Asp residue C-terminal domain of DCAP_4076 not shown

@ conserved residue ¢ active His residue

Figure B.5: Sequence alignment and annotation of Cluster 4b (second set), annotated by
homology to APG2 ARATH. Cluster 4 is separated into two parts (4a and 4b) for clarity.
Block regions [-IV are shown in colored boxes with active site residues marked by colored
arrows. Colored dots indicate conserved residues. When present, the N-terminal signal
peptide is highlighted in light orange. DCAP 4076 has an additional C-terminal domain
(shown in Figure B.8).

Preliminary Structural Models and In silico Maturation

Preliminary models for the esterase/lipases were produced using the online Robetta imple-
mentation [228] of Rosetta [139]. The Rosetta structures contain the full sequences, including
the N-terminal signal peptides that are cleaved during maturation. We performed in silico
maturation, which we have previously described for cysteine proteases [38], for each protein.
The initial Rosetta structure for each enzyme includes the signal peptide and lacks post-
translational modifications. During in silico maturation, the signal sequence is removed and
the structure is equilibrated for 500 ps in explicit TIP3P solvent using NAMDI[219]. Figures

of predicted structures were generated using Chimera [217]. Figure B.6A shows the workflow
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of the overall enzyme discovery process. Panels (B) and (C) show an example of a Cluster
2 esterase/lipase, DCAP 8086, before (B) and after (C) the in silico maturation process.
Further comparison of a Cluster 3 esterase/lipase (DCAP _1460) to Cluster 4 enzymes and
a cutin synthase from Solanum lycopersicum (tomato), GIDEX3 SOLLC, is shown in Fig-
ure B.7. Functional sequence blocks DCAP 1460 and G1DEX3 SOLLC are highlighted
by color (Figure B.7). DCAP_ 4076, has an additional C-terminal domain. A PSI-BLAST
search for the sequence of this domain indicated that it is related to the negative regulator of
systemic acquired resistance proteins previously discovered in other plants [330], with approx-
imately 36% sequence identity to the SNI1 proteins from Arabidopsis thaliana (Uniprot ID:
SNI1 ARATH) and Glycine maz (Uniprot ID: QOZFU8 SOYBN). The Arabidopsis pro-
tein negatively regulates DNA recombination and gene expression during short-term stress
responses. It has been suggested that SNI1 ARATH provides a scaffold for other proteins
involved in regulation of transcription to bind; [193] it is possible that this domain is playing
a similar role here. DCAP 4076 lacks the N-terminal secretion signal common to many of

the esterase/lipases, suggesting an intracellular function (Figure B.8).

The template structures used by Rosetta to calculate the predicted structures for a repre-

sentative esterase / lipase, DCAP 0434, are tabulated in Supplementary Table B.1.
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Figure B.6: (A) Flow chart illustrating the overall strategy for identifying enzymatic targets
from genomic DNA. The workflow is indicated with solid arrows, while dotted arrows repre-
sent steps where information from a later stage of the pipeline enables refinement of earlier
stages in an iterative manner. After genome sequencing, assembly, and gene discovery, target
proteins are identified based on putative enzymatic activity. Functional sequence features
are identified by analogy to annotation reference sequences found in the UniProt database.
Structures are predicted using the Rosetta software, and equilibrated in explicit solvent af-
ter removal of sequence regions not present in the mature enzyme. Structures are compared
using network analytic methods, enabling strategic selection of enzymes for experimental
characterization in a future study. (B) DCAP 8086 before and (C) after in silico matura-
tion. The light orange helix in part A is the N-terminal signal sequence, which is cleaved
upon maturation. Important residues are color-coded as follows: dark cyan (catalytically
active serine), red (active site aspartic acid), purple (active site histidine).
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Block | Block Il DCAP_1460 B DCAP 6260 B G1DEX3_SOLLC
Block |1 I Block IV B pcAP_5587 DCAP_2088

Figure B.7: Comparison of DCAP 1460 (Cluster 3) to D. capensis esterase/lipases from
each of the other clusters. These pairwise alignments of structural models provide an indi-
cation of the type and magnitude of structural differences between clusters: in general, the
overall fold and secondary structural elements is conserved, although considerable variation
can be observed in their relative positions and the conformations of loops and termini. Align-
ment was performed using the matchmaker feature of Chimera with default settings [217].
Functional block regions I-IV are colored accordingly while the catalytic triad (Ser-His-Asp)
residues are colored dark cyan, red, and purple. Active site residues are located in block I
and IV, binding residues in block II-III. A. Comparison of DCAP 1460 to esterase/lipase
DCAP_6260 (Cluster 4a). B. Comparison of DCAP 1460 to DCAP 5587 (Cluster 4b). C.
Comparison of DCAP 1460 to DCAP _2088YCluster 4a). D. Comparison of DCAP 1460
to model esterase/lipase, GIDEX3 SOLLC, from Solanum lycopersicum (tomato).
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Figure B.8: A. Sequence alignment of the C-terminal domain of DCAP 4076 with the SNI1
proteins from Arabidopsis thaliana (Uniprot ID: SNI1 ARATH) and Glycine maz (Uniprot
ID: QOZFU8 SOYBN). B. Ribbon structure of DCAP 4076, with the catalytic domain in
light blue and the C-terminal domain in dark blue. C. Structural model of DCAP 4076
showing the surface representation. The active site D (red) and H (magenta) residues are
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All initial and equilibrated structures available for download as PDB files are tabulated in

Supplementary Tables 1 and 2, respectively.

Supplementary Table B.1: Rosetta structures for esterase / lipases (PDB files available for

download)

Protein Organism Sequence Elements included File Name
GDL1_CARPA  Carica papaya signal, active region GDL1 CARPA_ ml.pdb
DCAP 3343 capensis signal, active region DCAP 3343 ml.pdb
DCAP_6947 capensis signal, active region DCAP_ 6947 ml.pdb
DCAP 0448 capensis signal, active region DCAP_ 0448 ml.pdb
DCAP_8086 capensis signal, active region DCAP_8086_ ml.pdb
DCAP_ 0434 capensis active region DCAP_0434 ml.pdb
DCAP 4098 capensis active region DCAP 4098 ml.pdb
DCAP_ 5529 capensis signal, active region DCAP_5529 ml.pdb
DCAP 5165 capensis active region DCAP 5165 ml.pdb

GLIP6ARATH
GDL77_ ARATH

DCAP_ 1840
DCAP_ 1460
DCAP_ 1380
DCAP_ 0405
DCAP_ 4465
DCAP_ 6218
DCAP_ 6260

EXL3 ARATH

DCAP_ 1761
DCAP_ 6217
DCAP_ 5461
DCAP_ 0158
DCAP_ 2088
DCAP_ 2089
DCAP_ 5138

APG2 ARATH

DCAP_ 1365
DCAP_ 5587
DCAP_ 2187
DCAP_ 4076

thaliana
thaliana
capensis
capensis
capensis
capensis
capensis
capensis
capensis
thaliana
capensis
capensis
capensis
capensis
capensis
capensis
capensis
thaliana
capensis
capensis
capensis
capensis

SESES AN Y S ASECRCASRCRS R SRS IS A S AR R SECRC SRS RS RS RS

signal, active region
signal, active region
active region
signal, active region
active region
signal, active region
active region
active region
active region
signal, active region
active region
signal, active region
signal, active region
signal, active region
active region
active region
active region
signal, active region
signal, active region
signal, active region
active region
active region
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GLIP6 ARATH ml.pdb

GDL77_ARATH_ml.pdb

DCAP_ 1840 ml.pdb
DCAP 1460 ml.pdb
DCAP 1380 ml.pdb
DCAP 0405 ml.pdb
DCAP_ 4465 ml.pdb
DCAP 6218 ml.pdb
DCAP 6260 ml.pdb
EXL3 ARATH ml.pdb
DCAP 1761 ml.pdb
DCAP 6217 ml.pdb
DCAP_ 5461 ml.pdb
DCAP 0158 ml.pdb
DCAP 2088 ml.pdb
DCAP 2089 ml.pdb
DCAP_ 5138 ml.pdb
APG2_ARATH ml.pdb
DCAP 1365 ml.pdb
DCAP 5587 ml.pdb
DCAP 2187 ml.pdb
DCAP_ 4076 _ml.pdb



Supplementary Table B.2: Mature structures for esterase / lipases (PDB files available for
download)
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Protein Organism Sequence Elements included File Name
GDL1_ CARPA  Carica papaya active region GDL1 CARPA_ mature ml.pdb
DCAP 3343 D. capensis active region DCAP_ 3343 mature _ml.pdb
DCAP 6947 D. capensis active region DCAP_ 6947 mature _ml.pdb
DCAP_ 0448 D. capensis active region DCAP_ 0448 mature _ml.pdb
DCAP 8086 D. capensis active region DCAP 8086 mature ml.pdb
DCAP 0434 D. capensis active region DCAP 0434 mature ml.pdb
DCAP_ 4098 D. capensis active region DCAP 4098 mature ml.pdb
DCAP_ 5529 D. capensis active region DCAP_5529 mature _ml.pdb
DCAP 5165 D. capensis active region DCAP_ 5165 mature _ml.pdb
GLIP6 _ARATH A. thaliana active region GLIP6 _ARATH mature _ml.pdb
GDL77 ARATH  A. thaliana active region GDL77 ARATH mature ml.pdb
DCAP_ 1840 D. capensis active region DCAP 1840 mature ml.pdb
DCAP 1460 D. capensis active region DCAP_ 1460 mature ml.pdb
DCAP 1380 D. capensis active region DCAP_ 1380 mature _ml.pdb
DCAP_ 0405 D. capensis active region DCAP_ 0405 mature _ml.pdb
DCAP 4465 D. capensis active region DCAP 4465 mature ml.pdb
DCAP_ 6218 D. capensis active region DCAP 6218 mature ml.pdb
DCAP_6260 D. capensis active region DCAP 6260 mature ml.pdb
EXL3 ARATH A. thaliana active region EXL3 ARATH mature ml.pdb
DCAP_1761 D. capensis active region DCAP_ 1761 mature _ml.pdb
DCAP 6217 D. capensis active region DCAP 6217 mature ml.pdb
DCAP 5461 D. capensis active region DCAP 5461 mature ml.pdb
DCAP_ 0158 D. capensis active region DCAP 0158 mature ml.pdb
DCAP 2088 D. capensis active region DCAP_ 2088 mature ml.pdb
DCAP_ 2089 D. capensis active region DCAP_ 2089 mature _ml.pdb
DCAP_5138 D. capensis active region DCAP_ 5138 mature _ml.pdb
APG2 ARATH A. thaliana active region APG2 ARATH mature ml.pdb
DCAP_ 1365 D. capensis active region DCAP 1365 mature ml.pdb
DCAP 5587 D. capensis active region DCAP_5587 mature _ml.pdb
DCAP 2187 D. capensis active region DCAP_ 2187 mature _ml.pdb
DCAP_4076 D. capensis active region DCAP_ 4076 mature _ml.pdb



Supplementary Table B.3: Templates used for structure prediction of DCAP 0434, designated by PDBID.

PDBID protein organism citation

3KVN (A) EstA Pseudomonas aeruginosa [295]
3KVN (X) EstA Pseudomonas aeruginosa [295]
1ESC (A) Streptomyces scabies esterase Streptomyces scabies [321]
3RJT (A) lipolytic protein Alicyclobacillus acidocaldarius [52]
3MIL (A) isoamyl acetate- hydrolyzing esterase Saccharomyces cerevisiae [167]
4JJ6 (A) Axe2 variant H194A Geobacillus stearothermophilus [147]
40AP (A) Axe2 variant W190I Geobacillus stearothermophilus [146]
3WT7V (A) Axe2 Geobacillus stearothermophilus [147]
4JKO (A) Axe2 variant S15A Geobacillus stearothermophilus [148]
4HYQ (A) phospholipase Al Streptomyces albidoflavus NA297 [194]
47R8 (A) uroporphyrinogen decarboxylase Acinetobacter baumannii [5]

4WSH (B) probable uroporphyrinogen decarboxylase Pseudomonas aeruginosa [4]

4R7G (A) | Phosphoribosylformylglycinamidine synthase Salmonella enterica [281]
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Active Site Network Constraint Measures

To assess the extent to which each active site was structurally constrained, four base con-
straint measures and one derived measure (the first principal component of these measures
following standardization) were computed as described in the main text. Figure B.9 shows
the values of each studied protein on five constraint measures; proteins are ordered vertically

by rank on the omnibus site constraint measure.
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Figure B.9: Constraint measures for the active site networks. Vertical axes indicate values

on each of the four base constraint measures and the omnibus derived measure, as described
in the main text.
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Appendix C

Supplement: Elucidation of WW domain
ligand binding specificities in the Hippo
pathway reveals STXBP4 as YAP

inhibitor
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Figure C.1: Proteomic analysis of the WW-containing proteins. (This figure is
related to Figure 4.1).

(A) Schematic illustration of the Hippo WW domain-containing components.

(B) The total spectral counts (TSCs) and corresponding numbers of HCIPs for the indicated
proteomic experiments.

(C) The overlapped HCIP rate was respectively compared for the full-length protein and its
WW domain, and Hippo WW domains and control WW domains.
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Figure EV2
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B. Homo sapiens VPLPAGWEMAKTSSGQRYFLNHIDQTTTWQDPRK GPLPDGWEQAMTQDGEIYYINHKNKTTSWLDPRL

Mus musculus VPLPAGWEMAKTSSGQRYFLNHNDQTTTWQDPRK GPLPDGWEQAMTQDGEVYY INHKNKTTSWLDPRL

Gallus gallus VPLPPGWEMAKTPSGQRYFLNHIDQTTTWQDPRK GPLPDGWEQAMTQDGEIYYINHKNKTTSWLDPRL

‘ Alligator sinensis VPLPPGWEMAKTPSGQRYFLNHIDQTTTWQDPRK GPLPDGWEQAMTQDGEIYYINHKNKTTSWLDPRL

Pseudonaja textilis VPLPPGWEMAKTPSGQRYFLNHIDQTTTWQDPRK GPLPEGWEQAMTQDGEIYYINHKNKTTSWLDPRL

‘ Xenopus laevis VPLPPGWEMAKTPSGQRYFLNHMEQTTTWQDPRK GPLPDGWEQALTPEGETYFINHKNKTTSWLDPRL

L Xenopus tropicalis VPLPPGWEMAKTPSGQRYFLNHIDQTTTWQDPRK GPLPDGWEQALTPEGEAYFINHKNKSTSWLDPRL

Nothobranchius furzeri ~ VPLPAGWEMAKTSSGQRYFLNHIDKTTTWQDPRK GPLPEGWEQAITPEGEIYYINHKNKTTSWLDPRL

Danio rerio MPLPPGWEMAKTPSGQRYFLNHNDQTTTWQDPRK GPLPDGWEQAITSEGEIYYINHKNKTTSWLDPRL

Callorhinchus milii VPLPPGWEMAKTPSGQRYFLNHVDRITTWHDPRK GPVPEGWEQAVTPEGEIYFINHKTKSTSWLDPRL

Rhincodon typus VPLPPGWEMAKTPSGQRYYLNHIEQTTTHQDPRK GPMPEGWEQAVSPEGEIYFTNHKTKTTSWLDPRL

Patiria miniate MPCLQVIMLALKASPFKFAPSHNRHSTTWQDPRK GPLPSNWEQATTPEGEVYFINHLERTTTWLDPRI

Acanthaster planci TPLPPGWEMASTSTGORYYLDHNRHTTTWQDPRK GPLPPNWEQATTPEGEVYF INHLERTTTWLDPRI

Strongyfocentrotus purpurafus  PNLPSGWEMAVTPTGQOKYFLDHSNQQTTWEDPRK GPLPINWEQAVTPEGEVYFINHVERTTTWLDPRI

— Daphnia pulex FPLPEGWEQAKTPQGQVYFLNHLTQTTTWEDPRK GPLPDGWEQAVTPEGELYFIDHHTRKTSWFDPRL

Drosophila melanogaster GALPPGWEQAKTNDGQIYYLNHTTKSTQWEDPRI GPLPDGWEQAVTESGDLYFINHIDRTTSWNDPRM

Helobdella robust. GPLPQGWDQGFTPEGEVYFIDHINKRTSWVDPRT GPLPQGWDQGFTPEGEVYFIDHINKRTSWVDPRT

Pomacea canaliculate  EPLPPGWGMARTPQGQ----SHVLQTTTWQDPRK MPLPLGWERAYTPEGEIYFINHIERTTSWFHPSI

Pinctada martensii PPLPPGWEMAKTQDGQRYYLNHDLQVTTWQDPRK GPLPPGWEQACTPEGDVYYINHMERTTSWYDPRI

Octopus bimaculoides ~ QPLPPGWEMAKTNQGHRYYLKSRETDTDRQNREL QPLPPGWEMAKTNQGHRYYL==m=m=mmm—————

— Salpingoeca rosetta

L— Monosiga brevicollis
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Figure C.2: Analyses of the identified 9-amino acid sequence in both control WW
domains and evolution. (This figure is related to Figure 4.2; Appendix Figure
C.6 and C.7; Table S5).

(A) Sequence alignment of the WW domains derived from the control WW domain-
containing proteins that cannot bind the Hippo PY motif-containing proteins. The two
conserved tryptophan restudies were highlighted in purple, and the identified 9 amino acid
residues were highlighted in yellow.

(B) Evolutionary analysis of the YAP WW domains. The identified 9-amino acid sequence
is highlighted in the two YAP WW domains, respectively.

(C) A PY motif is identified in Capsapsora owczarzaki LATS. Schematic illustration of the
Capsapsora owczarzaki LATS protein, where the PY motif is indicated. MBD, MOBI1-
binding domain. The PY motif is underlined in the Capsapsora owczarzaki LATS protein
sequence, where the auto-phosphorylation site (S586) and the phosphorylation site (T750)
in the hydrophobic motif were shown in red.
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Figure EV3
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Figure C.3: Structural analysis of the identified 9-amino acid sequence. (This
figure is related to Appendix Figure C.8)

(A) Illustration of the identified 9-amino acid residues in the average YAP-
WW1/SMADT7-PY structure, the initial structure derived from NMR solution
structure (2LTW). SMADT7-PY peptide was adjusted to 50% transparence to
show the residue details on the binding interface.

(B) Four contact regions within the YAP-WW1/SMAD7-PY complex were shown in details
from the representative top cluster structures with key residues indicated. Residues from
SMADT7-PY motif peptide were labeled in purple. Hydrogen bond is indicated in blue line.
(C) The binding types and the corresponding frequency rates were shown for the indicated
inter- and intra-molecular residue pairs.

(D) Simulation analysis of apo YAP-WW1 domain and its indicated mutants. RMSD value
for each mutant simulation (referenced against the average apo YAP-WW1 domain) was
shown.

(E) Average structures of the indicated the YAP-WW1 mutant/SMAD7-PY complexes.

(F) The average distance between SMAD7-PY motif peptide and the indicated WW domains
was summarized in a table.
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Figure EV4
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Figure C.4: Schematic illustration of the human proteome search for the WW
domain-containing proteins that fit the Hippo WW domain 9-amino acid se-
quence criterion. (This figure is related to Figure 4.3; Table S6).

The identified 9-amino acid sequence was subjected to the 49 WW domain-containing pro-
teins in human proteome. Total 13 WW domain-containing proteins were found to fit the

Hippo WW domain criterion.
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Figure EV5
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Figure C.5: A proposed model for STXBP4-mediated Hippo pathway regulation
in response to actin cytoskeleton tension change. (This figure is related to Fig-
ures 4.4 and 4.5).

Under low actin tension, STXBP4 assembles a protein complex comprising a-catenin,
AMOT, LATS and YAP to promote YAP phosphorylation and cytoplasmic retention. When
actin cytoskeleton tension increases, the STXBP4-centered protein complex is dissembled,
resulting in YAP dephosphorylation and nuclear translocation as well as the cancer devel-
opment.
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Figure C.6: Characterization of Hippo WW domain binding specificity.

Pulidown

figure is related to Figure 4.2).

(A) Hippo pathway components TAZ but not SAV1 interacts with AMOT and LATSI.
HEK293T cells were transfected with the indicated SFB-tagged constructs and subjected to

the pulldown assay.

(B) Examination of the conservative substitution mutations for the identified 9-amino acid
sequence. HEK293T cells were transfected with the indicated SFB-tagged constructs and
subjected to the pulldown assay. The tandem tyrosine residues within the 9-amino acid
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sequence of KIBRA were indicated as Y1 and Y2, respectively.
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Yorkie-WWl 1 GALPPGWEQAKTND-GQIYYLNHTTKSTQWEDPRI 34
Yorkie-WW2 1 GPLPDGWEQAVTES-GDLYFINHIDRTTSWNDPRM 34
Salvador-WW 1 LPLPPGWATQYTLH-GRKYYIDHNAHTTHWNHPLE 34

Kibra-wW 1 FPLPDGWDIAKDFD-GKTYYIDHINKKTTWLDPRD 34

==LP-GWE=======c=- YY==H====TeW==P-=
(D) (FF)

Figure C.7: Examination of the identified 9-amino acid sequence for the Drosophila
Hippo pathway components. (This figure is related to Figure 4.2 and Figure C.2).
Sequence alignment of the WW domains derived from the Drosophila Hippo WW domain-
containing proteins. The two conserved tryptophan restudies were highlighted in purple. As
compared with the 9-amino acid sequence, additional conserved amino acid residues were
highlighted in yellow.
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A.  Mutation in binding interface
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Figure C.8: Characterization of the identified 9-amino acid sequence through sim-
ulation analyses. (This figure is related to Figure C.3).

(A) Simulation analysis of the indicated YAP-WW1 mutant/SMAD7-PY complexes. (B) II-
lustration of the identified 9-amino acid sequence in the APBB3-WW /SMADT7-PY complex.
The NMR solution structure of the APBB3-WW domain (2YSC) was used for simulation.
SMAD7-PY peptide was adjusted to 50% transparence to show the residue details on the
binding interface.

211



A. GFP-STXBP4 GFP-STXBP4 GFP-STXBP4 GFP-STXBP4

(ORI ) [OR ] o O o O o O [OR ) o O o O
S82% S8z S5:% 5821 S8 5523 SSES 552
223z 2233 $5%2 23252 sx3izzis $23% 2352
sp. 2285 2233 sB-.2283 22383 s 2282 B33 s 2282 £§83%=
AMOT = + + 4+ =+ + + KDa AT 4+ T 44 KDa SET S b+ -+ KD R L G 4+ LG+ 4+ KDa
GFP wee- = o= _75 GFP e - _75 GFP fs e =~ - _75 GFp b - = —75
-
; T B _150 —150
Flag #  we - Fag! - wa® ' Fag - e Flag | ==a= o
= - -
Input Pulldown Input Pulldown Input Pulldown Input Pulldown
B C. r
. GFP-STXBP4 GFP-STXBP4
= = ~ ~ YAP-WW1
2« 29 =y 2z clusters
855 &of 8os oS
SFB- 5 2 & 5272 5§23 52>
£2E 3%t S23E QI E 0a L
GFP o v = - -—— -— - 100 =
—150
Flag - - ‘ STXBP4-WW
- == clusters
Input Pulldown Input Pulldown
= WwW

B sTXBP4-PY  (C1)

Figure C.9: STXBP4 associates with the Hippo PY motif-containing proteins.

(This figure is related to Figure 4.3).

(A and B) The association between STXBP4 and the indicated Hippo PY motif-containing
proteins is mediated by the WW domain (A) and PY motif (B). HEK293T cells were trans-
fected with the indicated constructs and subjected to the pulldown assay.

(C) Simulation of the STXBP4-WW and SMAD7-PY complex structure. The top five
WW-PY structure clusters were shown for both YAP-WW1/SMAD7-PY and STXBP4-

WW/SMAD7-PY complexes. The frequency rate was shown for each cluster. C, cluster.
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Chromosome 17: 54,990,799-54,991,025 Exon 3 gRNA4 gRNAS5 PAM

CTCTAGATCTCAGATTTTGATTTAATAAGTAGTTTAAAGAAAAAAATAGGTGCAGATCTCTAGACTAACCTGTG
TGTGCTAATTTACTTTATCTTAGGGATCCTGCCTTTCAGATGATTACAATTGCCAAGGAAACAGGCCTTGGCCT
GAAGGTACTAGGAGGAATTAACCGGAATGAAGGCCCATTGGTATATATTCAGGAAATTATTCCTGGAGGAGACT
GTTATAAGGTAAAAATATGTCCCATGCCCACCAAAAATACAAACAAAAAGACCCACCAGTGGTAAAGTTTATTT
TTTCTTCTTTATTAGTGAATTTATATCCACTGTGACCATACCTCAGT

STXBP4-KO1# 1bp deletion

C’NITAGATCTCAGATTTTCATTTMTMGTAGTTTMAGN\MMATAGGTG‘#GATC TCTAGACTAACCTGTG
TGTGCTAATTTACTTTATCTTAGGGATCCTGCCTTTCAGATGATTACAATTG-CAAGGAAACAGGCCTTGGCCT
GAAGGTACTAGGAGGAA T T A~ = = = = = e e e e e e e e e e e e ————— 58bp deletion
=== ~TAAGGTAAAAATATGTCCCATGCCCACCAAAAATACAAACAAAAAGACCCACCAGTGGTAAAGTTTATTT
TTTCTTCTTTATTAGTGAATTTATATCCACTGTGACCATACCTCAGT

STXBP4-KO2#

CTCTAGATCTCAGATTTTGATTTAATAAGTAGTTTAAAGAAAAAAATAGGTGCAGATCTCTAGACTAACCTGTG
TGTGCTAATTTACTTTATCTTAGGGATCCTGCCTTTCAGATGATTACAATTG = = = = o o e o e e 41bp deletion
——————————————————— AACCGGAATGAAGGCCCATTGGTATATATTCAGGAAATTATTCCTGGAGGAGACT
GTTATAAGGTAAAAATATGTCCCATGCCCACCAAAAATACAAACAAAAAGACCCACCAGTGGTAAAGTTTATTT
TTTCTTCTTTATTAGTGAATTTATATCCACTGTGACCATACCTCAGT

STXBP4-KO3# 13bp deletion
CTCTAGATCTCAGATTTTGATTTAATAAGTAGTTTAAAGAAAAAAATAGGTGCAGATCTCIAGACTAACCTGTG
TGTGCTAATTTACTTTATCTTAGGGATCCTGCCTTTCAGATGATTACAATTGCC -~~~ e e TTGGCCT

GAAGGTACTAGGAGGAATTAACCGGAATGAAGGCCCATTGGTATATATTCAGGAAATTATTCCTGGAGGAGACT
GTTATAAGGTAAAAATATGTCCCATGCCCACCAAAAATACAAACAAAAAGACCCACCAGTGGTAAAGTTTATTT
TTTCTTCTTTATTAGTGAATTTATATCCACTGTGACCATACCTCAGT

Figure C.10: Genomic DNA sequencing results for the STXBP4 knockout (KO)
cell lines as generated via CRISPR/Cas9. (This figure is related to Figure C.3).
Among the five designed guide RNAs (gRNAs), only the gRNA4 and gRNA5-targeted region
shows genomic editing for all the three STXBP4 KO cell lines. The genomic editing details
for each STXBP4 KO cell line were indicated.
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Figure C.11: STXBP4 interacts with a-catenin. (This figure is related to Figure
4.4).

(A) Schematic illustration of a series of STXBP4 protein truncation and deletion mutants
used in this study.

(B and C) Mapping the a-catenin binding region in STXBP4. An internal region (300 500
residues) of STXBP4 is required to associate with a-catenin (B), and we failed to further
narrow down the binding region within the 300500 residues (C).
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2018 cBioportal  Total (n = 260; 100%) g;.f 100
! Frame shift deletion (n = 5; 1.92%) 3% 8 YAP
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Figure C.12: STXBP4 binds a-catenin and AMOT to regulate YAP. (This figure
is related to Figure 4.4).

(A)  Summary of STXBP4  mutations in  cBioportal web  database
(http://www.cbioportal.org).

(B) Interactions with a-catenin and the Hippo PY motif-containing proteins are both
required for the STXBP4-mediated YAP suppression. The indicated STXBP4 mutants
were expressed in the STXBP4 KO cells and immunofluorescent staining was performed.
HA-positive cells from 30 different views ( 200 cells in total) were randomly selected and
quantified for YAP localization.
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Figure C.13: STXBP4 is a potential tumor suppressor in kidney cancer. (This
figure is related to Figure 4.5).

(A) YAP is highly enriched in ccRCC cancer cell lines. YAP cellular localization is detected
by immunofluorescent staining. Scale bar, 20 pm.

(B) STXBP4 protein expression is examined in the 786-O cells overexpressing STXBP4 and
its cancer-derived mutants.
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Table C.1: Simulation Conditions

Structure Number of Simulations PDB ID  Temperature (K) Start - End Time per sim. (Ats) Tons & Waters
(WT) YAP- WW1 & SMAD7 3 2LTW 300 0.4-1 1 Na+, 3147waters
(WT) STXBP4-WW & SMAD7 3 2YSG, 2LTW 300 0.6-1 3 Nat, 4222waters
(WT) APBB3-WW & SMAD7 3 2YSC, 300 0-1 1 Cl-, 3897-5433 waters
(Mutant) YAP-WW1 L173A/P174A & SMAD7 3 2LTW 300 0-1 1 Na+-, 3048-4496 waters
(Mutant) YAP-WW1 G176A & SMAD7 3 2LTW 300 0-1 1 Na-+, 2880-3528 waters
(Mutant) YAP-WW1 W177A & SMAD7 3 2LTW 300 0-1 1 Na+,3235-4118 waters
(Mutant) YAP-WW1 E178A & SMAD7 3 2LTW 300 0-1 3365-3546waters
(Mutant) YAP-WW1 Y188A & SMAD7 3 2LTW 300 0-1 1 Na+, 3292-4430 waters
(Mutant) YAP-WW1 F189A & SMAD7 3 2LTW 300 0-1 1 Na+, 3260-3831 waters
(Mutant) YAP-WW1 H192A & SMAD7 3 2LTW 300 0-1 1 Na+, 2916-4162 waters
(Mutant) YAP-WW1 T197A & SMAD7 3 2LTW 300 0-1 1 Na-+, 2872-3139 waters
(Mutant) YAP-WW1 W199A & SMAD7 3 2LTW 300 0-1 1 Na+, 3608-3974 waters
(Mutant) YAP-WW1 P202A & SMAD7 3 2LTW 300 0-1 1 Na+, 2872-3139 waters
(WT) apo YAP-WW1 3 2LTW 300 0-1 2870 waters
(Mutant) apo YAP-WW1 L173A/P174A 3 2LTW 300 0-1 2669-2739waters
(Mutant) apo YAP-WW1 G176A 3 2LTW 300 0-1 2761-2998 waters
(Mutant) apo YAP-WW1 W177A 3 2LTW 300 0-1 2839-2988 waters
(Mutant) apo YAP-WW1 E178A 3 2LTW 300 0-1 1Cl-, 2813-3088 waters
(Mutant) apo YAP-WW1 Y188A 3 2LTW 300 0-1 2661-3097waters
(Mutant) apo YAP-WW1 F189A 3 2LTW 300 0-1 2882-2996 waters
(Mutant) apo YAP-WW1 H192A 3 2LTW 300 0-1 2834-2974 waters
(Mutant) apo YAP-WW1 T197A 3 2LTW 300 0-1 2822-3022 waters
(Mutant) apo YAP-WW1 W199A 3 2LTW 300 0-1 2788-2934 waters
(Mutant) apo YAP-WW1 P202A 3 2LTW 300 0-1 2773-3008 waters
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D.1 Cumulative Averages of Observables
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Figure D.1: The AdCa-derived cumulative averages per EGAAXAASS peptide and force
field type were calculated and averaged between the 10 simulations. The first/third col-
umn is populated with short peptides simulated using the ff14SB and the second/fourth
column is populated by the corresponding peptide simulated using the ff14IDPSFF. Each

row represents an EGAAXAASS (X =D, E, H, K, L, P, Q, W, Y) peptide.
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Figure D.2: The 3Jynpo-derived cumulative averages per EGAAXAASS peptide and force
field type were calculated and averaged between the 10 simulations. The first/third col-
umn is populated with short peptides simulated using the ff14SB and the second/fourth
column is populated by the corresponding peptide simulated using the ff14IDPSFF. Each
row represents an EGAAXAASS (X = D, E, H, K, L, P, Q, W, Y) peptide.
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Figure D.3: The AdCa-derived cumulative averages per apo Rev peptide and force field type
were calculated and averaged between the 10/50 simulations. Two simulations types were
generated: fifty 200ns simulations using (A) ff14SB (B) and {ff14IDPSFF, (C) and ten 1 us
simulations using ff14SB (D) and ff14IDPSFF. Residues are colored according to the legend
with an asterisk (*) indicating non-native residues.
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Figure D.4: The 3Jgngo-derived cumulative averages per apo Rev peptide and force field
type were calculated and averaged between the 10/50 simulations. Two simulations types
were generated: fifty 200ns simulations using (A) ff14SB (B) and ff14IDPSFF, (C) and ten
1 ps simulations using ff14SB (D) and ff14IDPSFF. Residues are colored according to the
legend with an asterisk (*) indicating non-native residues.
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Figure D.5: The AdCa- and 3Jy ygo-derived cumulative averages per RRE-Rev complex and
force field type were calculated and averaged between the 5 simulations. Secondary chemical
shifts occupy the first row from (A) ff14SB-generated simulations and (B) ff14IDPSFF-

generated simulations. Jgyma-coupling constants occupy the second row from (C) ff14SB-

generated simulations and (D) ff14IDPSFF-generated simulations.

according to the legend with an asterisk (*) indicating non-native residues.
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D.2 Biphasic Exponential Fitting of AA0Ca Datasets
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Figure D.6: Biphasic exponential fittings were generated using AAICa from cumulative
average data in Figure D.1 for EGAAXAASS (X= D, E, H, K) peptides and force field types.
Each average cumulative AAJCa (blue dots) 100-ns increment was plotted per residue.
Datasets were fitted to the following exponential decay function: AASCa = Ale%f +A26%2z +
¢ (red line). Each column represents a peptide and force field, and each row represents a
single residue. Only residues 2G-8S are fitted.
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Figure D.7: Biphasic exponential fittings were generated using AAJICa from cumula-
tive average data in Figure D.1 for EGAAXAASS (X= L, P, Q, W, Y) peptides and
force field types. FEach average cumulative AAJCa (blue dots) 100-ns increment was
plotted per residue. Datasets were fitted to the following exponential decay function:
AAICa = AleTTm + AQeT; + ¢ (red line). Each column represents a peptide and force
field, and each row represents a single residue. Only residues 2G-8S are fitted.
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Figure D.8: To evaluate cumulative average convergence of apo Rev simulations from Figure
D.3, a scatter plot of AAJCa values (blue dots) and corresponding biphasic exponential
fit were generated for each simulation (long, short) and force field (ff14SB, ff14IDPSFF)
types. Datasets were fitted to the following exponential decay function: AAJCa = Aleflx +
Ase™ +c (red line). The above subplot columns are titled according to simulation and force
field type and rows labeled according to residue, with non-native residues marked with an
asterisk (*) on the y-axis.
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Figure D.9: Biphasic exponential fittings were generated using AAJCa from cumulative
average data in Figure D.5 for RRE-Rev complexes and force field types. We applied the
same fitting to the following exponential decay function: AAICa = AleTTx + AgeT; + ¢ (red
line). Each average cumulative AAdCa (blue dots) 1-ns increment was plotted per residue.
Each column represents a peptide and force field, each row is labeled to its corresponding
residue, and non-native residues marked with an asterisk (*).
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D.3 Biphasic Exponential Fitting of A%Jy vy, Datasets
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Figure D.10: Biphasic exponential fittings were generated using A®Jynpa from cumulative
average data in Figure D.2 for EGAAXAASS (X= D, E, H, K) peptides and force field
types. Each average cumulative A3Jynpa (blue dots) 100-ns increment was plotted per
residue. Datasets were fitted to the following exponential decay function: A3Jpnpa =
AleTTz + AQeT; + ¢ (red line). Each column represents a peptide and force field and each row
represents individual residues. Only residues 3A-9S are fitted.
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Figure D.11: Biphasic exponential fittings were generated using A%Jyn o from cumulative
average data in Figure D.2 for EGAAXAASS (X= L, P, Q, W, Y) peptides and force field
types. Each average cumulative A3JynHa (blue dots) 100-ns increment was plotted per
residue. Datasets were fitted to the following exponential decay function: A*Jynpge =
AleTTx + Age% + ¢ (red line). Each column represents a peptide and force field, and each
row represents individual residues. Only residues 3A-9S are fitted.
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Figure D.12: To evaluate cumulative average convergence of apo Rev simulations from Figure

D.4, a scatter plot of A% Jgnge values (blue dots) and corresponding biphasic exponential fit
were generated for each simulation (long, short) and force field (ff14SB, ff14IDPSFF) types

Datasets were fitted to the following exponential decay function A3Jynpe = Aie™ +A26 ) +
c. The above subplots are titled according to simulation and force field type. Each column
represents a peptide and force field, each row is labeled to its corresponding residue, and
non-native residues marked with an asterisk (*).
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Figure D.13: Biphasic exponential fittings were generated using A% Jyn . from cumulative
average data in Figure D.5 for RRE-Rev complexes and force field types. We applied the
same fitting to the following exponential decay function: A3Jynpa = Are™ +Ase™ +c (red
line). Each average cumulative A% Jyngq (blue dots) 1-ns increment was plotted per residue.

Each column represents a peptide and force field, each row is labeled to its corresponding
residue, and non-native residues marked with an asterisk (*).
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D.4 Clustering (apo Rev)
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Figure D.14: Determination of appropriate cluster/mixture number using the Bayesian in-
formation criterion (BIC) for apo Rev simulations. We calculated the BIC score between
1 to 300 mixtures, and the mixture/cluster number with the lowest BIC was selected for
GMM generation. Chosen cluster numbers are indicated in the legend according to sec-
ondary structure categories from DSSP pre-clustering. (A) BIC plot of ten 1us simulations
using the ff14SB force field. (B) BIC of ten 1us simulations using the ff14IDPSFF force field.
(C) BIC plot of fifty 200ns simulations using the ff14SB force field. (D) BIC plot of fifty
200ns simulations using the ff14IDPSFF force field.
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Figure D.15: Top 10 clusters of ff14SB-parameterized simulations (200ns x 50) encompass
19.36% of all frames. Clusters are labeled C1-C10 and colored according to N- to C-termini

sequence (red to blue).
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Figure D.16: Top 10 clusters of ffl4IDPSFF-parameterized simulations (200ns x 50) en-
compass 19.32% of all frames. Clusters are labeled C1-C10 and colored according to N- to

C-termini sequence (red to blue).
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Figure D.17: The average secondary structure propensity of each disordered short peptide.
Colors correspond to force fields: purple — ff14SB, green — ff14IDPSFF. All values were
calculated using the DSSP1 program and MDtraj[187|. Rows indicate peptide (X = D, E,
H, K, L, P, Q, W, Y) and columns indicate one of the three generalized secondary structures

(helical, coiled, beta).
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Figure D.18: The average secondary structure propensity of each apo Rev residue was quan-
tified from long simulation (1us x 10) datasets. Colors correspond to force fields: purple —
ff14SB, green — ffl14IDPSFF. All values were calculated using the DSSP[131] program and
MDtraj.2 (A) The probability of a residue exhibiting helical content. (B) Probability of coil
content per residue. (C) Displays the beta-sheet helical propensity per residue. Non-native
residues are indicated with an asterisk (*).
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Figure D.19: The average secondary structure propensity of each apo Rev residue was quan-
tified from short simulation (200ns x 50) datasets. Colors correspond to force fields: purple
— ff14SB, green — ff14IDPSFF. All values were calculated using the DSSP[131]| program and
MDtraj[187|. (A) The probability of a residue exhibiting helical content. (B) Probabil-

ity of coil content per residue. (C) Displays the beta-sheet helical propensity per residue.
Non-native residues are indicated with an asterisk (*).
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Figure D.20: Average helical propensity of Rev from bound RRE-Rev simulations using the
DSSP|[131] program. Colors indicate force field: purple — ff14SB, green — ff14IDPSFF.

ff14IDPSFF Simulations

—e— Apo Rev (1us x 10)
—eo— Apo Rev (200ns x 50)
—e— RRE-Rev (200ns x 5)

(A) (B)
1 ff14SB Simulations 12
—*— Apo Rev (1us x 10)
10 —=— Apo Rev (200ns x 50) 10 4
[ —=— RRE-Rev (200ns x 5)
—~ 81
=
L
W
=
o
O T T T T T T T T T T T T T T T T T T T T T O T T T T T
OFrgarrzrrrrsrurgr<<<<r o<
B38858833993I59939800058 338853
Residues

Residues

Figure D.21: RMSF analyses of backbone CiAa atoms Rev-related simulations. (A) Av-
erage RMSF of backbone atoms in apo and bound Rev ff14SB-parameterized simulations.

(B) Average RMSF of backbone atoms in apo and bound Rev ff14IDPSFF-parameterized
simulations. Non-native residues contain an asterisk (*).
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Appendix E

Supplement: Neural upscaling from
coarse protein structure networks to

atomistic structures
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Figure E.1: K-fold cross-validation (K=5) results of the test set for each split. The average
root-mean squared error/deviation (RMSD), mean absolute error (MAE), and mean abso-
lute percentage error (MAPE) for each test fold is shown, with 95% confidence intervals
represented in the error bars.
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Figure E.2: Boxplot distribution plot detailing at the best conjugate gradient step each
protein exhibits for each of the following metrics: RMSD, TM-Score, and LDDT. Averages
for each distribution of score types are shown in the legend. Means are represented by a
green line, and median represented via a notch.
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Figure E.3: Boxplot distribution plot detailing “improvement" in metric according to the best
conjugate gradient step each protein exhibits, consisting of RMSD, TM-Score, and LDDT.
Averages for each distribution of score types are shown in the legend. Means are represented
by a green line, and median represented via a notch.
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