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Abstract

The coupled equations of the adiabatic-state expansion method for
quasi-adiabatic transitions in atomic collisions are reduced in the eikonal
approximations to a form which allows straightforward computation. The
multistate eikonal approximation is then applied to the Hev+(ls) + H(ls) -

He +(ls) + H(2p) excitation process. The parfial and total 2p-excitation cross
sections as well as the polarization of the light emitted by the excited H
atoms are calculated. Our results compare favorably with recent experi-

mental measurements. The importance of final-state coupling is dramati-

cally illustrated by the above 2p-excitation process. The qualitative features

of the nonadiabatic effects are also investigated in the eikonal Born approxi-
mation as functions of the position and distance of closest approach of the

two adiabatic states.
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I. INTRODUCTION

, L)

In Paper I of this series, 1 the adiabatic-~state expansion method for
atomic scattering and rearrangement collisions was critically examined.
Several difficulties and ambiguities for rearrangement collisions were

resolved. It was then shown that the use of the eikonal approximation to

“describe the motion of the atoms and/or ions permits the coupled equations

of the adiabatic-state expansion method to be reduced to one-dimensional
equations definea along a classical trajectory. Several practical techniques
for evaluating wave functions and Green's functions in the eikonal approxima-
tion were intrgdﬁced in Paper II of this series. 2 A variational technqiue
based on the "principle of least action' was also develbped i1.1 Paper II for

the calculation of the trajectory. Numerical illustrations of these various

techniques were carried out for the (H+, H) and (He+, He) collision systems

in both the classical limit and the nonclassical regime of the eikonal approxi-

’

mation. In all these applications, we were déaling essentially with
potential-scattering problems. In the present paper we shall consider the
problem of quasi¥ adiabatic transitions in the multistate eikonal approximation.

The eikonal approximation will be valid if (we are using the notation

of Paper I)

<< 1 (1.1)



where p is thé, relative momentum of the colliding particles. Our approxi-
mation scheme is expected to converge rapidly if the adiabatic criterion is

met -

n, =v/(ez/h) << 1 | (1. 2)

Let E be the initial kinetic energy (in a.u. ) of the colliding particles in the
center-of-mass systemm. We shall assume conditions (1.1) and (1. 2) and,
further, that

E> 1 ' '. (1. 3)

which permits us (see Paper II) to calculate the eikonal with the approximation
that the trajecf:ories lie along straight lines. When condition (1. 3) is met,
the adiabatic ‘criterion [Eq. (1.2)] will always be satisfied.

In the ad'iabati_c-state expansion method, the state function xlr: is
re‘presented by the expansion [see Eqgs. (2. 14) and (113, 20)]

DI N ‘ (1. 4)
| A |

with \I’B (R) satisfying the coupled equations [see Egs. (I12.18) and (1I3. 45)]

4 -1 z
\Il = ' \P - 3 - - - .
o 6&.0 cop +(E +in- K Wa 'I,ra) Za JG.BWB (1.5)

where Wa + Ua" are the eigenvalues of the adiabatic states CP(:.’ K 1is the
appropriate kinetic energy of the coiliding system in the c. m. system, and

JO.B are the appropriately modified nonadiabatic interactions [see Eqs. (II2. 16)



L

and (I113. 28)]. In Eq. (l.5) we have labelled the initial state as @ = 0 with
incident relative momentum f). Thus, the coherent state \I’:os represents
elastic scattering. The scattering matrix, for a final state & and relative

BN

-t
momentum k is

L , . B
(a,k|T|o,p) = 8 _ O, U, AR (wcak, Bga JanB) (1.6)

We shall make use of the techniques develol_)ed in Paper II for evalu-
ating wave functions and Green's functions in the___redt;.ction of the tra‘nsition
matrix elements. In Sec. II the matrix elements for éuasi-adiabatic transi-
tions are reduced in the multistate eikonal approximation to a form which
allows straightforward computations. We vthen consider the application of the
multistate eikonal approximation in subsequent sections.

In Sec. III, a model (He+, H) collision system is constructed based
on the adiabatic HeH+ states recently calculated by Michels. 4 The (He +, H)
model is constructed to provide a refxsonably realistic representation of the

Zp-excitatioﬁ process
+ + '
He (1s) + H(1s) - He (1s) + H(2p) (1.7)

In this (He+, H) model, we have included eight adiabatic molecular states.

The nonadiabatic interactions between these adiabatic states are represented

in this model by semiempirical formulae obtained from the exact asymptotic

.

expressions of the nonadiabatic interactions.



A detailéd investigation of quasi-adiabatic transitions is carried out
in Sec. IV in f;he eikonal Born approximation. In this 'invest‘igation we have
studied thé qualifative features of the nonadiabatic effec\ts as functions of the
position and diétaﬁce of closest approach of fhe two adiabatic states. The
saddle-point ;pproximation for the evaluation of the path integra.l5 is then
investigated and compared with the correspon;:ling nu;nerical results. The

error resulting from the eikonal Born approximation is examined in the

two-state eikonal approximation in which the back-and-forth coupling -

. between the two states is explicitly accounted for.

The application of the multistate eikonal approximation to the 2p-
excitafion of H atoms by He+ ion impact is then carried out in Sec. V. We
have calculated both the partial and total excitation cross sections aé well
as the polarization of the light emitted by the excited H atoms. Our results
compare favorably with recent experimental measurements. 6 The impor-
tance of final-state inte;ractions7 is dramatically illustrated by the 2p-
excitation process of Eq. (1.7). A brief account of this wqu was prégented

recently at the Amsterdam Conference.



H, MULTICHANNEL EIKONAL APPROXIMATION

In this sec‘ti.on, we consider the evaluation of the scattering matrix
(a,kK|T|o,p) g.iven by Eq. (1.6) for multichannel quasi-adiabatic atomic
p.rocesses. We shall consider first the simple eikonal Born approximation.
This correspond§ to the well-known Born approximation in which the coupling
of‘ other pa.rticpé,ting states is neglected. The eikonal Born approximation,
hoWever, improves the usual Born approximation by providing a more careful
analysis of the éhase relations between the two states. After derivipg the
éikonal Born ap‘p’roximation, we then investigate the coupling of participating
stateé. In the multistate eikonal ap;;roximations, a set of coupled first-
order differeptial equations is then derived for the eikonal amplitudes as
well as the transition amplitudes. The cross section for the quasi-adiabatic
transitions can then be calculated in terms of the solutions of the coupled

equations for the amplitudes.

A. Eikonal Born Approximation

The Born approximation to Eqs. (1.5) and (1. 6) gives us the scattering

matrix

—_— . 4
= — -iv)w¥ - o . 1
Tczo (\I’c ak’ Jono (R, -1V) cop) (2.1)

The matrix elements may be reduced to path integrals in the eikonal approxi-

. .
mation. We have for the coherent state \I’co'ﬁ and the modified nonadiabatic



interaction Jd.o (R, -iV) [see Eq. (I3. 28)] the forms

+ -
iS, (R)
+ = -3/2 = Pk :
\Ilcal-(o(R) = (2m) Aa. (R) e : (2. 2)
Jao(R’ ~-iv ) == Jao(R’ K(R)) .E-‘ .Tao(R) (2. 3)

The matrix elements in the eikonal Born approximation then take the form

+ = - -

. L L asS®-sn@))
T8 -em B fdra ®a @1 @e P K
ao . a o ao

(2. 4)

The eikonals Sii(f?:) have been evaluated in Paper II.
We shall use a coordinate system with the z-axis parallel to 1-).

In this coordinate system, we shall suppose ch.o to have cylindrical sym-

metry with the form

Jc,o(R) = Jao(z,b) : (2.5)

where b is the distance of a point R from the z axis, i.e. the impact
parameter. The path integrals then, to relative order | Bc |, take the form
i[s tR)- S5 ®)]
B P K

T g = (2m) [pdp dp dz T (2,D) e (2. 6)

where we have taken A(R) = 1 (which is valid to relative order lec |). From

Eqs. (II3.14), we have for the eikonal



sg(ﬁ) = pZ sec B -pb tan B + @o*(z,b)’ .. o (2.7)
SpR) = kzsec B+kbtanB + & (£,b) (2.8)
with
E .

Q:(E,b‘)': 3 [ {.;_[sz-sz(z')] +U°(§)} az’ | (2.9)
3 b)) =k | {—1—[83- 8%z")]+U (ﬁ)} az’ (2. 10)
a C o, 2" a )
8=20_= lim B(2) | (2.11)

[od
Z o
> ‘ 1/2
U ) =1 - [1-V (R)/e ] (2. 12)

where B (z) and U(ﬁ) are defined by Eqs\. (112, 2) and (I2. 9), respectively.
The coordinate Z which was defined in Fig. 2 of Paper II is related to z by a
plane rotation through an angle 8.

‘ We shall use the straight-line approximation for the evaluation of

the eikonal. This is valid when [see Eq. (IIl1. 22)]

3z __ (2.13)

1']es = (920 Aeff/E

where Ae is the value of the reduced mass Mr expressed in units of the

ff

proton mass. We then have



+ - .\ -t - -d ’ ’ - v
tosi=m- . R - Z .
SP SE = (p kin) R - kb ec + A@ao( ,b) .z < 0 (2. 14a)

+ - i_ - — - -
S5 -Sg=(,-K-R-pbo_+ae (25 z>0 (2. 14b) }
with : . ‘ ' » z
Z @ 7
= = . =7 _ : =t
2% (2,b) = -p _{ U_(R,) dz k_zf U_(R ) dz (2. 15)
R =@ +p))!/? “ (2.16)

where Bo and ﬁin are the asymptotic relative momenta in the bost and
prior regions, respectively.

Let k lie in the x-z plane and ;o be radial. It then follows

R.in.ﬁ =k cos ec' [z cos 8 +p sin 6 cos ®] - k sin e(':[p-z cos 8 sin § cos ]

5- ﬁ=pz cos 8’
\ - ¢ (2.17)

R =pcos ecz +p p sin ec

Tl

(o]

k-R =k cos 8z +k psin 8 cos @

where 0 is the scattering angle, 6 = cos-l(ﬁ - k). To relative order IGCI,

we then have for all values of 2z

+ - - - ny
- - S~ 2= (p- - i ® Z .
Sp Sk (p-k)z-kpsinfcos® + A@ao(Z,b) (2.18)

7/

After integrating over &, the path integrals given by Eq. (2.6) reduce to the

form

10



[- ] W
T8 = (2m2 fbde (kb sin ) fdz J (z;b)e
ao . o ° . - ao

where we have made use of the approximation
pdpdz = bdbdz

which is valid to relative order | ecl .

The identity
, 1 .
Aan(Z,b) = -Etbao(b) + 5%0(2']’)
with
=3 (b) +d (b) = -
an(b) 4‘<I>a( ) @o( ) -{ [kUa(Ro)‘+on(Ro)] dz
and
z
- = - - - 7
56_ (3,b) of [pU, - kU_]dz

permits Eq. (2. 19) to be rewritten as

8 - 2m % [bab T (kb sin 8) Q5 () e
Qo o (o] Qo

with

> i[z(p-k) +6& (Z,b)]
a2 ®) - [d'z' J (z,b) e ao
ao co Qo

11

i[ (P-k).z tae (Z,D) ]

(2.

(2.

(2.

(2.

(2.

(2.

(2.

19)

20)

21)

22)

23)

24)

25)



The local phase difference ”a.o(z’b) can be rewritten as

Z

5 c‘(2,'1.).) = [ [;—l—-lr -;—1—1:0] dz’ ' (2. 26)
ao. _ o k ¢ P '

where we have ;.s_sumed that l:a and Uo are small 1n comparison with the
total energy E. ? The transition amplitude given by Eq. (2. 24) may be
solved by the ététionary-phase approximation in the classical limit. This
is shown in Apééndbc A..

The différential cross sgction in the eikonal Born approximation may

be obtained from TB
ao

B v 2
4 2
9 - em*m® X TP | (2. 27)
dQ r v ao
P
The total cross section
- (49
v = fdeQ | - (2. 28)
can then be obtained from Eq. (2.27) in the simple form -
B _ 2; B 2 " .
o = —-TZ-'- f bdb |Q ' ()] ‘ (2. 29)
Vi © ,

where we have made use of the approximation given by Eq. (II5. 23).

12



B. Multistate Eikonal Approximatidn

In atomi;:'collisions, a number of adiabatgic states which are closely
spaced would pa;ticipate in the interaction simultaneously. To provide an
adequate description of such collisions, one must acc°q\;nt for the dynamic
coupling of these states. For such collisions, Eq. (1.5) may be solved
directly. We consider theicase that only a fin.ite number of adiabatic states

o need be included and that the energy E is large compared with the

i

spacings of these ‘states.

We rewrite Eq. (1.5) as

v =5 vt .+ DO a1

a ao cop 8 (Za) © aB‘I’B (2.30)

where in our eikonal approximation the Green's function takes the form

M
— - I | — -
G R R') = -—=|R-R iS (R.R’ .31
a(' ) 5 |R-R| exp[la(,R)] | (2. 31)
Here
S (R,R') = f % (R)ds \ (2.32)
a =, Q
R
with
X = [.ZIM (E-W - vy )]1/2 ‘ (2. 33)
a : r [o 4 Q

and the path of integration runs over that trajectory which passes through

R’ and R.

13



We atte‘mbt- to solve Eq. (2-30) with the ansatz

1S_(R’)

/2 B

~

Vg R’) = (2m™? (2. 34)

-

where it is sdpposed that the eikonal amplitude Y 8 is a .relatively slowly

varying function of position and SB (R) is the eikonal function
R
S, = [ ngas | (2.35)

Here, in the straight-line approximation, the path integral is taken parallel

-

to p and

Bm S (R) = [2 Mr‘E'Ws’]”zf" r (2. 36)

- -

pP-r- -®

See Secs. II and III of Paper II for. a discussion of boundary conditions for
_the eikonal.

Now, let us define

'

r = R’- R ' - (2.37)

and write

- -

Sa(R’R ) = na(R)r | (2. 38)

Sq(R') = x (R) - T + S (R) (2.39)

where ;B = nsﬁ. When Eqgs. (2.31), (2.34) and (2. 37) through (2. 39) are

used, the qgéntity GaJaB \IrB takes the form

14



. Mr iSB (fi.) f i (R)r -
qGJG'B _\'I‘B = --(;:T—)g-/-é- e J rdr' e IaB(R,r) - (2. 40)
with
1 g, x) = [af e Tup R+T) g (R +7) (2.41)

where the angular integral can be approximately evaluated to give

in,r aB

. ZTT inBr - -~ - PS
I R )= {e J _(R+pr) vy, (R +pr)
aB 8 _ B

-inBr - . - . o
-e JGB(R-pr) Vg (R - pr)} (2. 42)

Then for "o T >> 1, the conventional asymptotic evaluation gives us

iSg (R)
Mr e

GJ ¥ = /er (R-pr) v (R-pr) e
a aB B ix8(2n)3/2 B’ B

i[ na(R) - nB(R) Ir

(2.43)

Because of the assumed cylindrical symmetry of JO. we have

.
Jaa(ﬁ'-ﬁr) =7 _g(z-x, b) (2. 44)
Yo (R- pr) = YB(Z -r, b) | \ (2. 45)‘
Let us define

z' = z-r (2. 46)

15



we then have

-~ .

‘ _ a _ ‘ | - ry _ ’
[na(R...)r vnB(R)]r o= Sa(Z) SB (Z)v [Su.(z ) SB(Z )] (2. 47)
This together with Eq. (2.43) let us write_, finally, o *"
. 5 A -18_g(z’,b)
¥ R)=8_ ¥ (R)- z == | 42’7 _(z",b)y_(z',b)e ©
a ao cop - 8Fa v (211)3/2 aB B -
8 -
(2.48)
Here we have set
% _ y
Ve T W T Vrel - | (2. 49)
R - ' - _
and
Pygl'sb) =S (R) -5 R | - (2.50)

- 'Equation (2. 48) can be further simplified. Substitution of Eq. (2. 2)
+ - -
for '\I’caﬁ (R) and Eq. (2. 34) for \Ila (R) into Eq. (2.48) yields the set of

coupled equations for the eikonal amplitudes Ya.

. N z
‘ya(z,b) = 6(10 - i Bzyga _'£ dz AO.B(Z ,b) YB (z",b) (2.51?
or
dy_ (z,b) §
= -i A (z,b) vy, (z,b) (2.52)

16
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with

_ 1 -i¢ae'(z,b)
A b) = J , b ' ]
a.B(z’ ) Vg ae(z ) e (2.53)
The boundary condition for the eikonal amplitudes is
yo(z,b) - 1 as Z - -®
Ya(z,_b) -0 as  z =~-o for g #0 _ : (2.54)

which states s;imply the fact that in the asymptotic prior region the scattering
system is in the |op.) state. |

_ The scattéring matrix (ak | T | 95) given by Eq. (1.6) can also be
evaluated in the multistate eikonal approximation. Considering the case

a # 0, we have

N -t - Besd
_ L ISR -sp®)
T(I:) = (2m) 3 z f a>r A (R) Ja (R) Yg R)ye ° K (2.55)

a e B

This path integral can be evaluated just as before for Eq. (2.4). We obtain

© i '

S _ 52 (b)
T™ - 22 [ bab 5 (b sin 8) @by 02 0° (2. 56)

ao ° o ao
with
e .(b)—q» ®] w7 -ig (', b)
QM) = @ 0 > [ ax 3 gl me Py b
. B#a -

(2.57)

17



where the ¢G.B(z"-b) are given by Eq. (2.50). For the case with 8 = 0,

we have

E .

2

-¢ao(2,b) =z(p-k) + Mao(z’b) + [d?o(b) - Q_a (b) ] (2.58)

It is then clear that Eqs. (2.56) and (2.57) reduce to Eqs. (2. 24) and (2. 25)
in the eikonal Born approximation by setting Yo =1. The total cross section
can again be expressed in the approximate form given by Eq. (2. 29) with
an(b) replaced by an (b).
It is, however, convenient to introduce the modified equations

obtained from Eq. (2.57)

N z
Q (z,b) = 2 f dz’ A __(z’,b) vy, (z’,b) (2.59)
a , ag B
Bfa -o
with
i
_ =[2 (b)-@ (b)]
e b =v oM g e a (2. 60)
a - rel T ao
From the corﬁparison of Eq. (2.59) with Eq. (2.51), it is clear that
Yc.(z’b). = 60,0 - 1Qa(z,b) (2.61)
Consequenfly ‘\
dQ (z,b) &
——= ) Ay gz b) Yglz,b)
B#a
N _
= Aao(l - Bao) - i z AaB QB (2.62)

B#a

18



It is apparent that Qa(z,b) in the limit 2z - » is the transition amplitude.

In terms of Qa(w,b), the total cross section takes the form

o = 2m [bdlea(w,AbHZ -

a0 (2.63)
. o .

III. A MODEL (He', H) COLLISION SYSTEM

In this section, we construct a reasonably realistic multichannell
model system for quasi-adiabatic collisions. In the next section (Sec. IV)
we apply ou? eiki)nal Born approximation -fo this model system and investi-
gate the qualitative features of the quasi-adiabatic (diabatic) transitions.
In Sec. Vv, an application of our multistate eikonal approximation to this
model system is carried out to investigate the final-state interactions in a
quasi-adiabétic excitation process. With these applic;ations in mind, we
construct our model to represent the (He +, H) system. This is the simplest

two-electron hetronuclear molecular system. In addition, experimental

measurement of the
+o + '
He (1s) + H(ls) - He (1s) + H(2p) , (3.1)

2p-excitation process has recently become available.

19



A.  The Adiabatic HeH' States, o _
The nonrelativistic Hamiltonian for the (He +, H) system can be

written as

2
1 2 : 2e
H"?.M vR +ha+ R (3. 2)
r 1
with
2 2 2 2 2
2
ha:(Kl-e—O-’—bze—O )+(K2-—Oe - —oe—i )+ - f Y (3'3)
_ |r1|V |R1+r1| |r2| |R1-r2| |R1+r1-r2| |
where 'Kl and_- K2 are kinetic energy operators of the two electrons
labelled as "1" and "2.'" The adiabatic states are defined to be the
eigenstates of the adiabatic Hamiltonian ha
b, ) wa.( 1 Pa (3. 4)
The eigenvalues wa(ﬁ) give rise to the adiabatic potential Uc. (R)
v (R) = R ) - lim ~ ' ' ]
a.( .1)_ wor.( 1) ﬁ e wa _ (3.5)

1
, + . .
for the He -H interaction.
For a reasonable description of the 2p-excitation process of Eq. (3.1),
we need to consider a number of such adiabatic states. For the 2p-
excitation in the singlet spin multiplicity, we take into consideration the

1 1 1
A Z, C1Il and E I adiabatic HeH+ states. For the triplet 2p-excitation,

20 -



we take the aﬂ3}_‘., e3H and f32 adiabatic HeH+ states into consideration.

The correlation of these adiabatic molecular electronic states with the

separated as well as the united atomic states is summarized in Table I.

These adiabatic HeH+ states have recently been calculate:i by Michels
for several values of the internuclear separation. 4 Based on these calcu-
lated values, .we have constructed a model set of adiabatic HeH+ interaction
potentials by extrapolating the calculated HeH+ molecular bstates to their
appropriate L: united atomic states. This setw of model adiabatic HeH+
potentials are shown in Figs. 1 and 2 with and without the 2/R nuclear

interaction, respectively. Analytic fittings of these potentials are given

in Appendix B.

B. The Nonadiabatic Interaction J aB
In addition to the adiabatic HeH' states, we require in the model the
interactioxi between adiabatic states. Such a nonadiabatic interaction is

essentially given by the Born-Oppenheimer (BO) matrix elements [see

Eq. (I3.22)]

bag " M [(‘pa’ "R, ch) ve (Cpc.VRlch). le] (3.6)

To account for rearrangement collisions, we write this nonadiabatic inter-

action J as

aB

JaB = AG.B - lim AO.B (3.7)
R, «+ o>

1

21



(For a detailed discussion, we refer to Sec. -III of Paper I.) This guarantees

= 0 in the limit R

that I’ - =,
a

B 1

In the eikonal approximation, the nonadiabatic interaction may be

written as [see Eq. (2.3)]

.-
1K

- 1 2
Jas(Rl_) el vink (cpa, VRI ch) “SM (cPc,’ VRI ch) (3.8)
r r
The identity
(wa- WB) (q)o.' VR]_ cpa) = - (ma’ VR1 ha ch) » | (3.9)
permits us to rewrite Eq (3.8) as
. i - (Cpa,(VRl ha)“"e) ,
®,) = ‘ - ( , v co) (3. 10)
aB 1‘ Mr(wa. - WB) v ZMr cpa R1 B

7

The second term on the RHS of Eq. (3.10) is compgraéively,much smaller
and will be negected in the following considerations. It is understood that
if AO.B #0 " in the limit Rl - o, st should be redefined according to
Eq. (3.7).

+
The gradient of the adiabatic Hamiltonian for the (He , H) system

may be written as

with
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’ - 2 R +r,-r .
. 1 t
% ( __ e ) = el 1L .*23 | (3.12)
1\ N

1751 |Ry +x) -1, |
2 R, +r =
VR .(- -—:—2—6-3-_—.—-—) = Zez -—:—1——:1—3 (3.13)
1\ |R;+r ] IR, +r, ]|
2 R -7
YR (‘ ":‘e—:.—) = ez--..—1"—':.2—3‘ (3.14)
1 .|R1-r2| |R1—r2| :

The BO matrix elements in Eq. (3.10) can then be computed if the
adiabatic states are available. It is rather unfortunate that in éhe past such
BO matrix elements were not calculated when the adiabatic states were opti-
mized in the determination of the energy eigenvalues. The inclusion of
BO matrix elements will not greatly increase the computation. This is
particularly true in the straight-line approximation for which we have, for

example,

- -5 d e d ~ ad a el
v ] —
(cpa(r,Rl), R, Pg (r, Rl)) z (cpa(r,b,z), 57 8 (r,b, z ))
=-%—-{(Co (;bz) cp(;bz+Az)) -8 } (3.15)
Az‘ a » ? H B H} ? G,B
where we have taken R1 = (b2 + 22)1/2.

These matrix elements at large internuclear separations can be
determined analytically using the separated atom approximation. It can be
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- o, we have, for finite r. and r he

shown that, in the limit R i 2 t

1

asymptotic expressions for the potential gradients [see Eq. (C.1)]

S e R el F,-T)-3R (R, F,-T0]
VR - - 3 "3 1 "2 1'1 1 72
\ 1 \|R, +7, - T, | R, R; | (3.16)
2 2628 2 '
. 2e 1 2e o o
1 IvR1+ r1| R1 Rl ST
eZ ezfil e2 o
R ( R,-7 I) T e MR >
1 "2 1 1
Consequently, we have
Zezﬁl ez - - “ 1
9. h\ = P [T -3R (R-F] + o(—) (3. 19)
( R1 a) R13 Ri’: 1 1 174 R4

In this asymptotic region, the adiabatic molecular states go over to

the atomic states

im ‘¢ =g | (3. 20)
For the 2p-excitation process of Eq. (3.1) including only the adiabatic states

given in Table I, ga are simply the proper antisymmetric product of He+

and H atomic wavefunctions
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He+

_ 0, H m .. SR
g, = a{r}: (r)) YgF ) Ryplry) Y] U 3.21)
' He+ O H 0, -
go =G {Rls (rZ) Yo (rZ) Rls(rl) Yo (rl)} : 3. 22)_

The nonadiabatic interaction between the initial and final states takes,

in this asymptotic region, the form

' - 2 g(ls - 2p )
. v _ de k 0,1
Lim T (1s =2pg ) = Gy (M 3 (3. 23)
R, = ao r R
1 . 1
with
Awa,o = lim [wa (Rl) - wo(Rl)] (3. 24)
Rl-ooo

- »

H m,~ ~ A - H O, A
g(ls*ZPO,:&l)_: (R2p (rl) Y1 (rl), k- [rl-3R1' (R1° 1.'1)]Rls(r1)Y<> (rl))
(3. 25)

where we ha_.ve taken the local tangent % to be in the direction of k parallel’

A

lie in the x-z plane and k- R, = cos y. We then

to the z-axis. Now, let R 1

1

have

k - [?1- 31?{1~ (ﬁl- ;’1)] = z(1 - 3coszy) - 3% sin'y cos vy (3. 26)

Thus, we obtain
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’ .

‘ J15\1/2 , |
g(ls = 2p ) = ;T(T (1-3cos”y) . ' - (3.27)

gls - 2p ) = (—2-;) siny cos y . (3. 28)

3 .

We also need the nonadiabatic interaction Ja 8 between the final
states in the asymptotic region. Frorh parity considerations, it is cle‘ar
that the corresponding n;xatrix. g(2p°-° Zp*) is zero. We must therefore
consider the higher order terms in Eq. (3.19).- We then obtain (see .

Appendix C) the asymptotic expression for the nonadiabatic interaction

between final states

- .2 g(zp,~2p )
R : _ e { k 0 +1

Lim I (pg~2p,)) =5y (M ) — (3. 29)

R.,~+=> aB T R
1 1
with
. 2 1 o '
g(Zpo - Zpil) = = sin vy (cos Y - g-) o (3. 30)
. > . |

This then completes the derivation of the nonadiabatic interactions in the
asymptotic region.

In our model (He+, H) system, we shall adopt semiempirical expres-

sions for the nonadiabatic interaction obtained from the above asymptotic

1
expressions upon replacing Rl by (Rl2 +a2) /2. We have
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iezv’ ‘\/;

I (ls=2p ) =—22t (28) L
cag .o Awao _35 (RZ +a 2)3/2 (R.2+ aZ)S/Z?.
1 o 1 o
(3. 31)
ie v 7
_ rel 2 bz :
Tagle8 = 2Py ) = * 2% ( 4) 2 2572 (3.32)
: ao 3 (R1 +a )
. ™
and
2 .
g P 2,y) = gt ()2 21
mg o 1"~ AW 2. 2 2),2, 2 5
. ao N2 (R1+an2) IRlJraTTl
(3. 33)
where we have made use of the relations
cos_y==z/R1 , 8in y=b/R1 | (3. 34)

The parameters, aI )\ l are to be determined semiempirically. We note
that in Eqs. (3. 31) to (3. 33) we have labelled the nonadiabatic interaction

by their corresponding momentum along the molecular axis.

IV. APPLICATION OF THE EIKONAL BORN APPROXIMATION

As we have already n§ted in Sec. III that from the spacing of the
adiabatic states it is clear that a reasonable treatrﬁent of the 2p excitation
-in the (He +, H) system requires the explicit consideration of the close
couplings of those states given in Table I. Before engaging in such a calcu-

lation, we first examine the qualitative features of quasi-adiabatic transitions
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in the eikonal Born approximation. A comparison of the eikonal Born

approximation with the Glauber apprdxirnation as applied to the e-H
U ¢ S

excitations  is given elsewhere.

To calculate the cross section for the quasi-adiabatic transitions in
the eikonal Born approximation, the quantity Q:o(b) given by Eq. (2. 25)
must be first determined. This can be done numerically using Eq. (2. 23)
[or Eq. (2. 26)] for the local phase difference 5an(z, b) and Eqs. (3. 29)
and (3. 30) for the 0 » ¢ and ¢ - T nonadiabatic interactions, respectively.

- . » E = & - .
At high energies, vp Ve T Vrel’ and consequently 3§ ao(z’b) 1svs1mp1y

given by the pofentlal difference Al.fao = ’Lra' v,

z
s (z,b) =—— [ av_ @ b)az’ (4.1)
ao v ao ,
A rel o - :
A, The Constant-Spacing Model

As a first example of the two-state eikonal é,pproximation we consider
the special case in which the potential difference is zero. In this case M’ao

B
is zero and: an(b) can be evaluated analytically. We have

-z(p- k)

B ‘ _ .
an(b.) = /dz Jao(z,b) e (4. 2)

-0 -

The nonadiabatic interaction Jao; is given by Eq. (3.31) for g-+ 0 transi-

tions and by Eq. (3.32) for o—1 transitions. We have
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iezv 1 9+E ‘ '3(bz+az)' ‘
QB (b,oc=0) = rel |2 dz cos (§ z) g
ao'P NG 5 l 2. .2, 25/2

3 o (z +b +a°)
2 |
- — : (4.3) '
22+02+ 22302 ’
o)
2 < »
Q2 (b,g-m) = = © Vrel (28)/d in (C 2) bz (4.4)
, =) = z 8in ( z (4.
ao . AW 34 (zz+b2+az)5/z
[o] h i
with
AW N

€= (p-k) = = (4.5)
(p+k)/(2M ) ~ v

where we have labelled Q:o acéording' to the type of transition.
The integrals in Eqs. (4.3) and (4.4) can be evaluated in terms of the

modified Hankel functions by making use of the integral

[ cosypray . "1/2 (X )v K_ (cx) | (4.6)
vt ) I‘(v +l) 2¢ v o .
o 2 2 2 2
(y +c)

We obtain from Eq. (4. 3)

: 1
QB (b'o.-* )—fiezv""1 y +?)c2 K. (T ) -2 K (1) 4.7)
oo ' o) = AW 35 [ZTO‘ --17; 1 U] S

with

29



EC(l:>+“/?‘ o | B  (4.8)

Similarly, from Eq. (4.4), we have

fe v
B . rel ) cos(Cz)dz
Q (b,g-m) =% ( —-/
ao" AW % a¢ +b +a 2)5/2§

) ,
ie v 8 ,
4 rel (2 ){_ b - qu' [CZK (C(b +a 2)1/2)]} (4. 9)
The. identity
d [ 2 2mi 2 mi _
Y [x K ( )] =x e Kl(x) (4.10)

reduces Eq. (4. 9) to the form

le Vv
' 1 b o
QP b,o-m) =2 A‘;e (25) TQ K, (T) o (4.11)

oo _ 3 -1 |

with

T = C(bz+a2)1/2

™ 1

The total cross section for the special case of 54)0.0 = 0 in the eikonal
Born approximation can then be obtained from Eq. (2.29). For the oc-o0o |

transition, we have
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4.4 ;.20 .. 2.
B e ( 2 2 \
Q (og-0) = ( ) /bdb [K (1) —K_ (T )] (4.12)
1 .
ao (AW)Z 3 0 / 2 o s
For the o-nm tré.nsition, we have
4.6 ;.17 2 '
1
Q® (g-m) =Tt (210)] vlab [z K )] (4.13)
(AW) 3 4 m

In Fig. 3, we have plotted as an example the cross section for the
o - T transition given by Eq. (4.13) for several values of the constant level
spacing AW, In this calculation we have taken a = 1 a, - It is seen that
the cross section dr'ops rapidly with decreasing energy and the overall
magnitude of the cross section decreases with increésing level spacing.
This is, of course, expected since the nonadiabatic (or &iabatic) effect would
increase with a decreased level spacing. For a more realistic two-stafe
system, th'e'le,.v'eil épacing ié generally not constant. We would then expect
that the nona&iabatic effect depends on the position an_d distance of the closest

approach of the two adiabatic states.

B. A qu-Sta_te Model

' +
Examining Figs. 1 and 2 for the (He , H) system, we have found that

wo- W, of these adiabatic electronic states may .

the level spacings, Aw
' ao. a

be reasonably fitted by an analytic function of the type
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B C
. - - -.- G.O _MA
Awao(Rl) = Awao l+Aua°(R1) AWao > + i (4. 14)
) R R
1 B |
with
Awa,o\ = Rlu:xm [wa (Rl) - wo(Rl)] (4. 15)

where Ba.o and Cc.o are constants. In this subsection, we shall adopt\\ .

Eq. (4. 14) for the level spacihgs as a model and in‘vestigatvevthe qualitative o

features of the qiqss section (for quasi-adiabatic transitivons) as a function of ’,4

the characteristic parameters of the level spacings. We examine the energy A ‘x

dependence of the cross section with the variation in the characteristic

parameters such as the position and distance of closest approach of the iev_els. :
The position and distance of closest approach of the levels for

Eq. (4.14) are given, respectively, by

R =2C /B ' ' (4. 16)
[+ ao Qo
1_2
(Aw ) =AW -—B"~ /C (4.17)
ao ao 4 oo ao !

In Fig. 4, the level spacing Awao(R) is displayed for the case where the
position of closest approach is taken to be Ro =5 a_ and the distance of <
closest approach is takento be Aw_. =0,1a.u.
min
One of the convenient features of the analytic form of AWG.O(R) given

by Eq. (4. 14) lies in the fact that the local phase differences ééao(’z‘, b) given
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Eq. (4.1) can be solved analytically. With the help of the integrals

~ 0

x .
f * z(‘l 2 %tan-l (%) ' . Bt
o y +b .
x :
dy = _X + -12 tan™? (":_) (4.19)

o GZ+vH?  xP+nd) 2

we obtain for §® (z,b)
o

c \ C -b°B

2)+ a0 5 ao .7} (—E) (4. 20)
b b :

Now we are in‘a position ‘to calculate the quantity Q:o and then the total
cross section usipg Eq. (2.29).

We have carried out 2 numerical model study of the total cross section
for the g-1 tra;nsition using Eq. (4. 20) for the local phase difference and
Eq. (3.32) for‘the nonadiabatic interaction (with a_ = 1 ao). The results are
given in Figs‘. 5 ‘and 6. In Fig. 5, we have taken the distance of closest
approach of the fwo states to be Awmin_ = 0.1 a.u. and displayed the energy
dependence of the cross section for several values of the 'position of closest
approach Ro It is seen that the cross section is considerably increased at
thé low-energy side when thg position of closest approach is located at a

smaller internuclear separation. If we fix the position of closest approach at

R =1la and change Aw ., , we again find that the cross section at the
o o - min’ ;
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lower energy side increases when the magnitude of Awmin decreases. This

is shown in Fig, 6.

C. Saddle-Point Approximation
The z-ir}tegrai for Qio(b) given by Eq. (2. 25) can also be evaluated
using the saddle-point ap;;roximation for the two-state model of Sec. IVB,

We rewrite Eq. (2. 25) as

v © iy (z,b) .
B o ao .
an(b) = -“_[ dz Jao(z’b) e, _ (4. 21)
with
z ‘
_ 1 ’
Y,cx.o(z’b) =3 f Awa.o(R) dz (4. 22)
rel o

where we have made use of Eq. (4.5). We assume that the nonadiabatic

interaction Ja.o(z’ b) is a slowly varying function of z so that it can be
removed from the integrand in Eq. (4.21).
iy ao(z’ b)

B
an(b) E Jao(o,b) fdz e | (4. 23)

-0

The integral in Eq. (4. 23) can be evaluated by the method of stee.pest descent.
From Eq. (4.22), we have

dYao(z,b)

Vel s = Awao(z, b) (4.. 24)
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The saddle point for Ya.or(z'b) is therefore the solution of

.

sw_ (z,b) = 0 (4. 25)

To solve Eq. (4.25), we expand Awa.o in a Taylor series around z = z

z2=r%-1b%
(o] [o]

‘ : 1 dZ(Aw )
Aw (z,b) = Aw |, +— (z-2z ) +
o min 2 2 _ o
: - dz zZ=z
o
' ?-[ +a(z-z)2] | (4. 26)
S | 2 o Vrel , :
with
ZBa.o , bZ
a, = Aw_. / rel ' 33° 7 (1 - 2), (4. 27)
v R R~
rel o )

When the approximation for ch.o given by Eq. (4. 26) is used, we

obtain from Eq. (4. 25) the saddle point z,

1/2
a

z =z +(—-1—) elﬂ/‘2 . (4. 28)
s o a,

In the neighborhood of the saddle point z_

(z-zs)2 + e (4. 29)
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with

| 5 102 |
@b = i 2(L) +1 2) 4. 30)
Yao®s' ) T 13 a, %0\%1 73%2% ) S &
2 o
dy . o
S 1 = 20a.a)t/? /2 (4.31)
dz2 z=2z 1-2" ‘

Substitution of Yao(z’ b) given by Eq. (4. 29) into the integral in Eq. (4. 23)

yields
‘ 3 1/2
© ' 2 al +iz (a. +-1-a zz)
iy (z,b) 1/2 "~ 3\a. oll 3720
/dz e 2° , >=-—--'4—T-'-—-—e S '
| a a,)t/4
- 172 (4. 32)

where a facto.r‘ of 2 was introduced to account for the case where the trajectory
passes through the saddle point twice. The condition for validity ovf the .saddle-
point integration is that
3.1/2 _ \

% _:L) > 1 B (4.33)
This implies the transition integral is small. For quasi-adiabatic transitions,
such integrals are indeed small.

The total cross section given by Eq. (2.29) can now be written in the

7

saddle-point approximation as
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1/2

Lo

®
[8)

4
25 2 IJ N b)|? ’?( )
o = bdb - —

ao 1/3 e - ‘ (4. 34)

If we further assume that J o is also a slowly varying function of b,

Eq. (4. 34) reduces5 after changing the variable to uz =1-b /R

, to the
approximate form A ;
4
. /47 Ro 2 | du -Zgo/u
00 ® 350(7?77_') 19 60! 2 ¢ (4. 35)
_ 1 rel u .
} . ° .
161’[2R: .2 e-Zgo o
2a. B v o
1 ao rel :
with
5 1/2 1/2
R? [2alv R% [2aw> .\ :
..o 1 rel _ o min : (4. 37)
o "3 B T 3v B .
: Qo rel ao

A comparison of the saddle-point approximation with the numerical

result is given in Fig. 6 for the case with Aw . =0.3 a.u. It is seen that

the saddle-point integration of the path integral is reasonably adequate in the

‘regime of quasi-adiabatic energies.’
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D. Comparison of the Eikonal Born and Two-StateEikonal Appr‘oximation
We now estimate the error introduced by the eikonal Born approxima-

tion in a two-state model with the level spacing given by

Aw = 0,375 - —2:056 - (4. 38)
ao )

Rr% +1)?

and the nonadiabatic interaction given by Eq. (3. 30). In our estimation, of

the error, we consider the two-state eikonal approximation (obtained from

Eq. (2.62) by taking N = 2)

dQ

@ _ . .
| dz —' AGO 1 AG.O QO V . (4. 393)
on ' .
o - i Aoc. QC!. : v (4. 39b)

to be reasonably accurate. This differs from the eikonal Born approximation
in that it allows for the back-and-forth coupling between the two states. If

we drop the Qo term in Eq. (4. 39) and solve for Qo, , we would obtain the eikonal

Born approximation.

From the symmetry of the gradient matrix element in the non-
adiabatic interaction, we have

A =-A = iA (4. 40)

Equations (4. 39) may therefore be decoupled to give
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£ . . | »
—CT;—_ = :i:A.:F 11\9* ‘ » (4. 41)
with
. Q:E = ’QO + IQG. ' | (4. 42)

Equation (4. 41) maLy be solved to give

I

7

. Z Z .
Q, (z,b) = = [ az’ n’p) et [ A" b)az” (4. 43)

-0 z

Thus, we have

’

z z
Qw(z,b') =—le- [Q+ - Q_] = -_1{ dz’ A(z',b)cos l:! Az") bdz"] (4. 44)

The cross section obtained from Eq. (2.63) with Qa (o,b) given in this two-
state eikonal approximation is plotted in Fig. 7 as a function of c. m. energy.
In terms of the cross section g, the fractional error in the eikonal Born

approximation,

can now be estimated. This is also shown in Fig. 7. It is seen from this
figure that the error introduced by the eikonal Born approxima:ation is reason-

ably small in the regime of quasi-adiabatic energies.
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V. MULTISTATE EIKONAL APPROXIMATION FOR Zp-EXCITATION
IN THE (He H) SYSTEM

i 0

In this seétion, we apply the multiétate eikonal approximation discussed
in Sec. IIB to the 2p-excitation in thé (He+, H) collisions. For thé"'"two;electron
system, we may treat the singlet and the friplet spin multiplicities separately. |
For each of the two spin multiplicities, we take into consideration two I -states
and one [I-state. The [I-state is, of course, doubly dég'enerate. These states
are shown in Figs. 1 and 2. To simplify oﬁr notation, we shall label these
states in the numerical order 0, 1, 2, and 3 wht;re "0" and "'1" dénoté the

initial and final Y -states, respectively, and the degenerate final Il -state is

denoted as "2" and "3" for A=+l and 2\ =-1, respectively.

A, Determination of the Excitation Cross Section

In the four-state approximation, we need to solve the following coupled

~ equations [see Eq (2. 62)]

(s) (s) (3) L(s)

ol ' 0 0

0 01 A02 03 QO

) Qis) ﬁ)) | A(lso)' 0 ;.82) “(153) Q§s)
A - 8o |
) )\ e e
(5.1)

where the superscript (s) is introduced to denote the spin multiplicity with

s =1 for singlet and s = 3 for triplet.
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'(s)

Physically it is clear that Qo accounts for the elastic scattering.

&

The 2p-excitation amplitude coming from the three final states is given by

Q(ls), Q(Zs) ‘and Q;s). Thus, for excitation, we need to solve

(s)

d (s) _,(s) (s) (8) (8) ., (s8)(s)
= 2 - Mo ~ihyg Qp - 181,Q; -ihy5Q,
| - (8) (8) ., (8)~(s)
d (s8) _ ,(s) .,(8) ~(8)-3iA" Q" - iA_'Q (5.2)
iz Q2 o= AZO -11\20 Qo 21 ™1 23 73
d (8)  (8) ..(8)(8) . (8) (8) ..(s)~(s)
) A Aol - i) ol®) - il al

dz -3~ "30 "MW30™ e " 'a

Wé have c;bsérved that the spacings between the initial and any of the three
final ;tates are much larger than the spacings among the final states (see
Figs. 1 and 2). This suggests 'thaf the back coupling of the final states wif:h
the initial state should be much smaller than the coupling among the final
states. In sonlvibng Eqgs. (5.2), we shali, therefore, neglect the back coupling

with the initial state. Equations (5. 2) then reduce to the form

d (s)_ . (s) . (8) (8) .. (8) (s)
2% Mo f"‘lz Q, -1iA5 Qg

., (s)

d (s) _,(s) ., (8) ~(s) (s)
-—Q __A -1A21 Ql - iA Q

dz 2 20 23. 3
d () . (s) . (s)(8) .. (8) ~(s)
29, = Ay -ing el - ing Q)

dz 3 ~ 730 7311
From the symmetry of the gradient matrix element in the nonadiabatic

interaction, it follows that
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(s) _ ,(s) (s) _ ,(s)
Moy =Myzr By =-hy
For the degenerate [I-state ""2" and "3", we have

A8 a8 (e (s

30 20 °’ 31 =0y
andv

(6) _ (8 (6) _  (8) _

Q, =-9, . A_zs'Asz'o

(5. 4)

(5.5)

(5.6)

When the relations given by Eqs. (5.4) to (5.6) are used, Eq. (5. 3) reduces

to a pair of coupled equations

d (s) _,(s) (s) (s)
Tz"Ql, =Moo 207 Q;
A l8) _ ale), 4 (8) e)

dz 2 20 1
with

(8)_ .. (8) .. (8) _..(8) _ .. (s)
A = -11\21 —11\12 —1A31 --1/\13

This paii- of coupled equations may be decoupled.. We write
Q(S) - a._Qis) +bQ(28)

then from Eq. (5.7)

(s)
.___dgz - al\iso) +bA(2%)) + A(s)(ngs)-ZaQ(Zs))
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Now, by requiring

(s) (s) _ (s) (s)
bQ, - 2aQ;" = \ (an +bQ, )

we obtain
b = 2iVZ a
Upon setting a =1, we obtain

(8) _ A(8) . ..r (s)
Qi -Ql % 1«/702

Equations (5. 7) are then decoupled to giire

,” @ )
*x 7, (s . s . 8
= (Alo + iv2 AZO) + iVZ AQ |

To solve Eqgs. (5.14), we let

z
| ez [ A a
(s) . (s) -
Q:l: =4, €

Substitution of Qi(s )

aq 3 - F iNZ f A8) gz
= _ (s) . (s) - ‘
dz - (0)5 = WZ Ayg) e
(s)

We then obtain for a,
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from Eq. (5.15) into Eq. (5.14) yields

(5.

(5.

(5.

(5.

(5.

(5.

11)

12)

13)

14)

15)

16)



!

| '*is/;[ A®) " by gz
(") fd ’ [‘“’(z b) £ i FA“”( ’ b)] o
(5.17)

and finally

tiJ—fA '” ,b)dz"

8)z, b) = fd ! [ ‘”)(z b) + «/"A(s’( ’ b)]-'e

(5.18)

The 2p-excitation amplitude coming from the final - and II- states can now

be recovered from Q( )._ We have
0, b) = 1 [, 1) + 2, b) (5.19)
(), - i [4(s) (s) |
Q (z,b) =——1IQ" " (z,b) - Q' '(z,b) : (5. 20)
2 : 2'\/-5_[ - + ] |

The partial cross sections for the ls - Zp0 and ls - 2p=.:-1 excitations
of H atom by H,ef ion impact can now be calculated using Eq. (2.63)
(s) ( )

Q =0 (ls-'2p) Zn[bdb
o

lim Qis)(z b) (5. 21)

z " ®
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a N N
), (s) i o (s), ]2
e = g, (1s Zp*l) = 2m fbdb lim QZ (z, b) (5. 22)
_ Y z-
The 2p-excitation is then given by
(s) _ _(s) (s) '
04 (ls. Zp)-o’c +2crTr - : | (5. 23)
We then obtain for the total cross section
1 1
s(la-2p) =0t + 35 B | (5. 24)
. B 4 4 ,
B. Numerical Results
For the evaluation of the amplitude Q(s)(b) and Q(Zs), we need the

energy differences between every two states. From our model (He , H)
potentials given in Figs. 1 and 2, it is seen that the potential difference

- +
between the -AI)_Z}_ and Elz HeH states is not appreciably different from

1

that between the A ¥ and C_IH states. This is also the case for the

(aZZ, f32) and (a32, e3ﬂ) pairs. In view of the uncertainties in these

model potentials, we shall assume them to be equal

(3) _ ., 3)

10 —AUZO (5. 25)

AR LY

Blig = Aly o

Ay

These potential differences which are shown in Fig. 8 can be fitted analytically

by the forms
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(1) - 2.16  10.94 b 2.21 . ’ (5. 26)

AV :
10 ®%+1.99) ®R®+1.99% (R®+1.06)°
Al 130) o 22. 26 -— 8.0 . + 27. 35 — 5. 27)
- (R +0.83) (R”+0.83) (R +0.94)
This then permits the phases ¢ (s ) in A;so) [see Eq. (2.53)] to be evaluated

analytically as shown in Sec. IVB.

‘The equality assumed in Eq. (5. 25) implies that

(8) _ (s) 4 |
Consequently, we have from Eqs. (5.18) to (5. 20)

(s)

ig 3
. 10
QiS)( v _! dz’ [ cos (5 q;sz)) - EJZO s1n(6 qisz))] e (5. 29)
Z . i¢(8)
(s) 1 , [-1/2 (s) (s) 10
QZ (z,b)-———-——-‘rrel -{ dz [2 JlO (6q12) JZO cos(6q ]
(5. 30)
with
z . .
5q%),2") = 21{/2/’ A a7 by da (5. 31)
oz

where éqgsz) is the local final-state coupling a.mplitudé.

In view of the assumed equality given by Eq.. (5. 25), the potential

difference between final states may be taken to be zero.: This together with
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(s)

the fact that these final states are asymptofically degenerate allows quz

to take the approximate form [see Eqs. (2.50), (2.53) and (5. 8)]

6q{52)(z, Z’) - ;/-2—

z
- ” :
— zf, I, 2p, ) dz | (5.32)

When Eq. (3.33) for the nonadiabatic interaction is adopted in Eq. (5. 32),

we obtain, in the z - = limit, the simple results

., 180 bz’ -
5q, . (»,2z") = (5.33)
12" 2, 2 /2,2 .2 2 5/2
1) +a"1) (z'° +b +an1)
) PPN 360 bz’ | -
dq (=, 27) = b2 +a2 172 2% +b2 +a2 )3/2 | (5. 34)
. ml ml
(1) =0.1 and Aw(3) = 0.05.° We note that these

where we haye taken AWI—Z 12
are not the asymptotic values but are reasonable approximations in required
R range [see Figs. 1 and 2].

Calculations were carried out using Eqs. (5.29), (5.30), (5.33) and
(5.34) with the nonadiabatic interaction JIO and JZO approximated by
Eqgs. (3.31) and (3. 32), respectively. In thi\s calculation, we have taken
a =a_<a =1l.2a for the nonadiabatic interactions. The calculated

o] b ml o -

cross sections are not sensitive to variation within 20% of the a's. The
result for the total 2p-excitation cross section [see Eq. (5.24)]is compared

with experimental measurements in Fig, 9. It is seen that the agreement

is remarkable in view of the approximations that we have adopted in the’
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calculation. Forbcomparison, we have also'.included' m F_‘ig. 9 the result
obtained in the eikonal Born approximation without fina.l' state interactions.
It is seen that.‘th‘e' g:.oupling of the final states is extremely important. |

The contributions to the Zp-exCitatio\n cross sectiqn coming from
each of the fou;'_final states are shown in Fig. 10. In general the g-g
transitioﬁs have a larger magnitude than the .o-' L transitions. To test
the senstivity of oui results on the approxirhation a.dbpted for thé local

(s)

final-state coupling amplitude 8q we have repeated our calculation
12° ‘ | peate ‘

for different values of 5q‘1"2’ as shown in Fig. 11.

C.: Polarization of Emitted Radiation
The pfobability of an atom undergoing a tranSitidn from state a to

b and emitting light into a solid angle dQ per unit time is

— b2 N | (| 5-51 2| a0

W (@) an
a 2thmc’ j

‘“”"TZ |-<b|a'.;j|a)|2do (5.35)

with

w, =ck = (W, -W )/ 5. 36)

where c is the velocity of light and d is the dipole vector. The intensity

of the light so emitted is given by
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4

e W, '
| e b2 i-e 2
(0 =—— ; RUEECTCTE 5.37)

The sum in Eqs. (5.36) and (5. 37) sums over the polarization direction éj .
For a 2p ~ ls transition, the intensity is given by a sum of contribu-

tions coming from the 2p° - 1s and‘ Zp'tl - 1s transitions

1(8) = T, 2p_ - 18) +2 T(9, 2p, ~ 1s) . (5. 38)

The intensity of light emitted for a 2p_ -~ ls transition is

2 4 :
e w .
21 - -2 - = 2
1(6,2p '~ 1s) = 37 % {[(zpo|d|1s)-k |¢(2p_|d - k|1s) | }
- 2Tc _ _
2,4 .2
=._____2_!.3_'°__p° {1- cosze} (5.39)

2T ¢
where Po is the probability of the atom being in the Zpo state. Similarly,

the intensity of the light emitted for the Zp:‘:1 - 1ls -transition is

) - -2 - - 2
10, 2p,, ~1e) =—2-P, {[C2p, [d]1a) |21 % |a2p,, [3- K[ 167 %}

’ew4a2
- 21 OP

2 {1 +cos’s) (5.40)
+ .
21 ¢

where P:l: is the probability of the atom being in the 2p state.

Substitution of Eqs. (5.39) and (5.40) into Eq. (5.38) yields for the

intensity
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e ‘”21 do ' 2 ‘ ) ‘ o ‘
1(8) = — {1 - Pcos“s} , .  (5.41)
3 P +9 : :
21 ) *
" with
Po"P; | L L a '
o +

where P is the polarization which éa.n be eiperiméntally meésured.

The polarization of the light emitted from the 2p state of an H atom

(s)

+ ,
excited by He impact can be calculated from the partial cross section %

(s)

and o, for the Zpov and. Zp'i states, respectively. We have for the
probabilities
R UM ¥ (1 ¥ R
P = P o= — (5.43)

o o} . % g

where g is the total cross section given by Eq. (5. 24). This then yields

for the polarization

-(01(1) - oél)) - '3(0?) - 023))
P m 306 (5. 44)
(o'l ta, ) + 3(cr1 +02, ) ,

We \have plotted in Fig. 12 the calculated polarization of Eq. (5.44) using the |
partial cross sections given in Fig. 1.0. f‘or cofnparison wve have also
inclugled in Fig. 12, the polarization based on the éartial cfoss sectic;ns whic_h
are calculated without allowing for the final-state coupling. Thé theoretical
results (including final-state coupling) are larger than the e__xpe.rimentally'. '

estimated magnitude6 by approxinﬁately a factor of two.
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- APPENDIX A. CLASSICAL LIMIT OF THE MULTISTATE EIKONAL
- APPROXIMATION

The inelastic transition amplitude in the multistate eikonal approxima-

tion given by .Equ; (2.56) and (2.57) can be rewritten as

N ®

TOEI:),-__ 2m 2 Bga ofbde (b sin 8) 20 e 7% (A.1)
with

c‘é’ [dz T g b) e 185 (2',0) vg (', b) (A.2)

as(z b) = lo B) o )] -6 B | (A.3)

where Eq. (A.2) reduces to Eq. (2.25) for 8 =0 if yo is set to be unity.
Equation (A.1) resembles the familiar eikonal approximation of Moliére for

potential scattering [see Eq. (II5.11)]. The generalization of the eikonal

(2)
agt

account for transitions between states. A classical limit of Eq. (A.1l) may

a.pprox1mat1on to multichannel scattering give rise to the factors Q

be obtained in a similar manner as for Moliére's expression.
The error resulting from the classical description of the collisions

is of order [Eqs. (II5.19) and (II1. 25)]

. -1
ae d@ 3/2 | 1/2
n N - c k1/2 N ( E ) (A.4)
(class) de db /- 92‘0 Aeff-
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where ®_ is the classical scattering angle defined in terms of the appro-
priate phase. For the present problem, the classical scattering angle is
defined in terms of — 1 @B [see Eq. (2.22)]

K3 Do)+ 2o (t)] (A.5)

| =1 -1
M Vg Oep® = 755%™ =3 [ab a b B

B

On using the asymptotic form for the Bessel function

1/2

Jo(kb sin 9) = (m—i—n—e-) cos (k’be - %) | (A.6)

wé may rewrite Eq. (A.1) as

(b) +ie8_ﬂ/4

B | 172 &2 ;
LM 12 ( 2_ ) ; / b b1/2 NE )e”as
’ [o]

ao g Tkb sin 8 87 a ab
(A.7)
with
eB(b) = @cefb)/l(@ca(}))l - _ (A. 8)
I N o | |
Yas(b) = 2%B(b) es(kbe) A , | (A.9)

The integral of Eq. (A.7) can be evaluated in the stationary-phase approxi-

mation.
The stationary phase point at b = ch is obtained from
dy (b _) ~ '
aB cB . A
= ® - =
h:Ir Vg ( cB(ch) ele) 0 (A.10)

db
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This then defines ch as

8= [0 ,0g) | | (A.11)
In the neighborh;)'od of ch -
R MrvB d@cB(ch) 2 .
Yaﬂ(b) = ya B(ch) + 3 5 b- bcﬁ) + 6 [n(class)] | (A.12)
A étationary-phé.ée evaluation of Eq. (A. ‘_7) leads to the classical limit of T::)
N__ 15 1 [Pcp | 4Pes (2) Yy g) Himeg /4
Tao™ 2. v, \sin6| d® Q. slbcg) e
@m) " M_ Bfa B | cB (A.13)
with
' d@cB SCH , ' ‘
’ _ - ,
eg =egbg)-2 +( dab /l db ) | (A.14)
: cB cB . o : ,

This then leads to the multistate classical approximation for the cross section

N 1/2 ey s 2
do _ Yk ] ch dchl T @ 1Ya8(bcs)+1ne6/4
a9 . X : - Q (b )e :
o~ v 1o T, Ve \®in 8| d® BI aB’ cB
P © (A.15)

For the case with N = 2, Eq. (A.15) reduces to

do _ 'k ‘bco 4 o llQ(Z)(b )2 | (A. 16)

dQ 2 1 sin § | d© ‘ ao co )

Vo co |) :

The classical limit of the eikonal Born approximation is given by Eq. (A. 16)

(2)

. ' B .
with an (bco) replaced by an(bco) [see Eq. (2.25)].
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APPENDIX B. ANALYTIC MODEL HeH ADIABATIC POTENTIALS
The set of model HeH+ adiabatic potentials shown in Fig. 1 can be

represented by the following analytic forms | (in Hartree units)

3 -0.62023R

Als. vm)--2. 5:+.—2R—e-1° 2T36R | 6. 987R% ™2 444K _g 9285 x107%R e
N 125 12t 29TTR | p2 L 2R 5.999 x1077R ™0 22116
Bls: VR) =-2.125 +Z et 2986R | 5 552 ("L 85R | o o 407m o~0- J04IR

a’s: VR)=-2.5 +% e™1:3055R 19 3077R2 e'z',85493-; 1.6254x107 2R o0 68464R
S VR)=-2.125 +2 71302 4 g 625 070 10236R

P5: VR) = -2 125 +2 & 1 30BR o oae -0, 313198,

Ee

These potentials [V(R) = w(R) =W +U(R)] reproduce reasonably well the
calculated values of Michéls4 at intermediate internuclear separations and

L
go over to the exact united and separated atom limits indicated in Table I.
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APPENDIX C. NONADIABATIC INTERACTION BETWEEN
FINAL STATES

The nonadiabatic interaction between the final ‘£ and II states in
R . -3 .
‘the asymptotic region vanishes to order R ~. We must therefore consider

the higher-ordér _terms‘in Eq. (3.19). By utilizing the expansion

C -~ - ~ ...2
; R, -q 2 (R, -q) l
—-,=-3 -3‘ 1 3 (q 15 1
|R +q| =R,%J{1-3 --(-—-) b o —— . (C.1)
1 I R, 2 Rl 2 Rlz ‘

we obtain from Eqs. (3.11) to (3. 14)

2¢“R 2 2
(2 Ry 325 o = 2 1la 22 » =
VR b)) Tt =5l 3R R+ = [Tz'Rl(Rl r)) -5Rr-r(Rer))
1 R% R R
Ry 1
FER - EOR T T (R-T)- PR, ) - LR E “)]+0<R’5)
R RARS B TANIES R B LA s BELD LA Ty Aol R
(C.2)

Because the helium-ion electron 2" is tightly bound to He* , We may neglect
the contributions coming from electron "2." The matrix element in Eq.

(3. 29) then takes the form

_ (rH £l A A T15~ & = 2. 3+ 2
82, ZP*I)"(RZP(rl)Y (ry)y ke [ZRI(RI r) - R
- & o H 0~ |
- 3r1(R rl)] RZp (rZ)Yl(rl)) - (C.3)
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We have

, .

~

20,4 2 fo-lim &
Y (r-l)) =r17[Y1 () [cos Y cos 0

) =1 - A~ . -
(Yl (rl), (R1 rxl)

N

VZI 0, -~ -
+ 8in y cos 91 cos cpl] | _Yl (rl)drl

5 r2 cos Y sin Yy : (C.4)

=1 - -~ - 0 ~ 2 -1 4 %
(Yl (rl), (ﬁ- rl)(Rl- rl) Yl (rl)) =1 le (rI) cos Gl[cos Y cos 91

, . . 0~ -
+ 8in ysin e1 cos cpl] Yl,_(rl) dr

1
2 . .
=X siny ' (C.5)
52 ' |
This then leads to
dan ) = 3 2, 1](gH, 2 H
g(2p, Zpil) = sin v [cos Y 5]_(R2p-(r1)’ T, RZp(rl) ) - (C. 6)

» F3

which is equivalént to Eq. (3. 30).
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Table I. Correlations of Atomic and Molecular States for HeH+

‘ . Molecular
United Atom (R = 0) State -Separated Atoms (R = =)
1 ['s(1e2s)] -5.04715 als He "[%s(1s)] + H[%S(1s)]  -2.500
+1 3 1 4.2 2
. Li [ P(s pn)] -4.720325 cn He [S(1s)] +H]| P(an_)] -2.125
| 3 1 4.2 ‘ 2 ‘
L[ D(s%a )] -4. 7222 E'ET He'[*sts)] +H[*P(2p )] -2.125
Li'Psi1s26)]  -5.111025 2t He'[%ss)] +H[®S(1s)]  -2.500
Li+[3P(153pn)] -4.730573 & He '[*se)] +H[*P(2p )] -2.125
Li+[3P(ls3po)] -4.730573  £% He '[%s(1s)] +H[2P(2pc)] S2.125
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Fig.

Fig.

Fig.

' FIGURE CAPTIONS

.
The adiabatic interaction potentials for He and H. These
pot.e"nt'i‘als which are relevant for the 2p excitation of H atoms by

He ion impact are constructed from the recent calculation of

Michels (Ref. 4).

The electronic energies of adiabatic HeHv+ states. These states
which parﬁcipate in the 2p-excitation of H atoms by He ' ion
impé.ct are constructed from the recent calculation of Michels
(Ref. 4) with particular attention to the united atom limit.
Vériaj:ion of cross section with energy for éuasi-adiabatic
transitions betweeen states with constant level spacings as
predicted by Eq. (4. '13).

Exarﬁple of level spacing vs. distance as gi\fen Ey Eq. (4. 14) with
the position and distance of closest appreech of the two states set
at" -Ro =0.5 ag and wanin =0.1a.u., respectively.

Effect of vafying Ro (the position of closest.a..pproach of the states)
on fhe energy dependence of the cross section for quasi-adiabatic
traﬁsitions between states with a level spacing given by Eq. (4.14),
The distance of closest approaeh of the stetes was fixed at

Aw .= 0.1 a.u. The honadiabatic interaction given by

min

Eq. (3.32) with a_ = 1 a_  was adopted in the calculation.
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Fig.

Fig.

Fig.

Fig.

10

-

Effect of varying Awmin (the distance of closest approach of the
sﬁtes) on the energy _dep;endencé of the cross section for qﬁasi-
adiabatic transitions betwéen states with a level spacing given by
Eq. (4.14). The positioﬁ of closest approa;éh of the stateg was
fixed at R0 =1 a_. The nonadiabatic interaction given by Eq.
(3. 32) with a_ = 1 a, was adopteci in the c'alculation. |
Estimated errors in the eikonal Born approximation. The solid
curve is the cross section o;taixied in the two-state éikonal
appr'oj:imation [Eqs. (4.39) and (4. 44)].

The energy-level difference assumed between the AIZ_ am_i EIE'

+
singlet adiabatic HeH -states and between the a32 and f32

\

. + :
triplet adiabatic HeH states. These energy-level differences
are adopted for the calculation reported in subsequent figures
(Figs. 9 to 12).

Comparison of the energy dependence of the 2p-excitation cross

_ section in the eikonal Born and multistate eikonal app roximation

with experimental measurements (Ref. 6). The dashed curve is

obtained in the eikonal Born approxima.tio.n in which the co{xpling

of final states is not conside'réd.

Energy dependence of the partial 2p-excitation cross sections

comirig from each of tﬁe four final states considered in the .

calculation.

60



Fig. 11

. Fig. 12

The effect ot:' varying the local final-’_stateicvoupli.ng amplitude

6qg31)>between final states on the energy depéndence of

Zp-exéitation cross section.

Co_l__ﬁparison of the energy depemience of the calculated polariza-

tibn.of emitted radiation in the eikonal Born and multistate

eikonal approximations. The dashed curve ig obtained in the
o ,

eikonal Born approximation in which the coupling of final states

is not considered.
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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