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Abstract

Deconstructive functionalization involves C–C bond cleavage followed by bond construction on 

one or more of the constituent carbons. For example, ozonolysis1 and olefin metathesis2, 3 have 

allowed each carbon in C–C double bonds to be viewed as a functional group. Despite the 

significant advances in deconstructive functionalizations involving scission of C–C double bonds, 

there are very few methods that achieve C(sp3)–C(sp3) single bond cleavage/functionalization, 

especially in relatively unstrained cyclic systems. Here, we report a deconstructive strategy to 

transform saturated nitrogen heterocycles such as piperidines and pyrrolidines, important moities 

in bioactive molecules, into halogen-containing acyclic amine derivatives through sequential 

C(sp3)–N/C(sp3)–C(sp3) single bond cleavage followed by C(sp3)–halogen bond formation. The 

resulting acyclic haloamines serve as versatile intermediates that are transformed into a variety of 

structural motifs through substitution reactions. In this way, skeletal remodeling of cyclic amines, 

which constitutes a scaffold hop, can be achieved. The value of this deconstructive strategy has 

been demonstrated through the late-stage diversification of proline-containing peptides.

The development of technologies that enable the late-stage diversification of bioactive, 

heterocycle-containing molecules (Fig. 1a) should facilitate access to under-explored 

chemical space4. Over the past two decades, significant effort has been dedicated to the 

development of methods to functionalize C–H bonds at a late stage, which has enabled the 

fine-tuning of substituents on nitrogen heterocycles, enhancing their functional group 

diversity (Fig. 1b)5, 6. In the medicinal chemistry community, there is growing demand for 

methods that modify not only the periphery (as in C–H functionalization) but also, the core 

framework of molecules (i.e., achieve skeletal diversity), a concept referred to as ‘scaffold 
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hopping’7, 8. However, few methods are known that achieve deconstructive 

functionalization, for example with unstrained cyclic amines9–12. One recent example 

generated an aldehyde intermediate that can be further transformed to install C–O, C–C, and 

C–N bonds13.

In this context, ring-opening chlorination/bromination would generate versatile intermediate 

en route to diverse cyclic amines by coupling to a variety of nucleophiles (Fig. 1b). 

Furthermore, deconstructive halogenation of proline-containing peptides would furnish 

versatile intermediates for the late-stage diversification of these medicinally important 

entities14. Although ring-opening chlorination of cyclic amines is known, the existing 

methods to effect this transformation are limited to 3–5-membered, N-alkyl substituted, 

cyclic amines because of competing N-dealkylation15. Recently, our laboratory introduced a 

silver-mediated deconstructive strategy to transform cyclic amine derivatives into fluorine-

containing acyclic amine derivatives using Selectfluor® via homolytic ring-opening of 

hemiaminal intermediates16. On the basis of mechanistic insights gained from our 

deconstructive fluorination protocol, we questioned whether it would be possible to access 

acyclic chloro/bromoamines from cyclic amines using our deconstructive strategy. Upon 

examination of existing reports on silver-catalyzed halogenation reactions, we recognized 

that simple replacement of Selectfluor® with N-halo-reagents such as N-chlorosuccinimide 

(NCS) or N-bromosuccinimide (NBS) would be unproductive presumably due to their lower 

oxidation potential17. Therefore, a distinct approach would be required to oxidize Ag(I) to 

Ag(II) in order to achieve deconstructive bromination/chlorination.

A detailed mechanistic proposal for our envisioned, highly orchestrated, reaction sequence is 

depicted in Fig. 1c. We theorized that consistent with existing precedent18, in the presence of 

persulfate anion, Ag(I) will be oxidized to Ag(II) with concomitant disproportionation of the 

persulfate anion into sulfate dianion and sulfate radical anion. N-acylated cyclic amines 

1would then undergo a hydrogen-atom transfer (HAT) with the resulting sulfate radical 

anion to give an α-amino radical19. Subsequent oxidation by Ag(II) via single electron 

transfer (SET) would lead to iminium ion A. An alternative pathway wherein a Ag(II) 

species [E° (Ag2+/Ag+) = +1.98 V vs SCE]20 oxidizes N-acylated cyclic amines (e.g., 1a: 

[Epa = +2.02 V vs saturated calomel electrode (SCE)]) (see Supplementary Fig. S1) to the 

radical cation via SET followed by HAT using the sulfate radical anion to generate the same 

iminium ion, A, is also possible. The resulting iminium ion A would then be trapped by H2O 

to give hemi-aminal B. The heterolytic cleavage of the C–N bond would then occur through 

an equilibrium between hemi-aminal B and aldehyde C, the latter being subsequently 

oxidized to carboxylic acid D21, setting the stage for a silver-catalyzed decarboxylative 

halogenation17, 22. This strategy would represent a general method for deconstructive 

diversification as the electrophile is independent of the initial redox cycle.

We commenced our investigations of the proposed deconstructive halogenation by 

evaluating a broad range of silver salts, halogenating reagents, and solvent combinations. 

After extensive screening, we identified the optimized conditions shown in Fig. 1c that 

employs cheap and commercially available AgNO3, (NH4)2S2O8, and NCS in a 1:9 (v/v) 

mixture of acetone/H2O at room temperature. Upon subjecting N-pivaloyl piperidine (1a) to 

the optimized conditions, we obtained 81% yield of the desired acyclic chlorinated product 
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2a. Likewise, a bromine-atom could be readily incorporated to afford 4a in 54% yield by 

switching the electrophilic halogenating reagent to NBS. It is worth noting that this method 

can be performed without the strict exclusion of air. Control experiments established the 

importance of both silver and persulfate, as no formation of the desired chlorinated product 

was observed in the absence of the silver salt or persulfate additive. The optimized 

conditions employ 4 equivalents of AgNO3, whereas lower amounts led to diminished yields 

presumably due to substrate/product inhibition by binding to the silver salt (see 

Supplementary Table 1 for details).

With the optimized conditions in hand, we proceeded to investigate the scope of the 

deconstructive halogenation process (Fig. 2). An N-substituted piperidine derivative bearing 

a tert-butoxycarbonyl group (Boc, 1b), gave the desired chlorinated products in a combined 

52% yield of 2b, along with formimide product 3b, which results from homolytic C–C bond 

cleavage of hemi-aminal B16. Unlike the bulky pivaloyl group which favors linear aldehyde 

C over hemiaminal B in the equilibration of the two species, the less sterically congested 

Boc group presumably favors B (see Fig. 1c). Bromination using NBS led to a mixture of 

mono and dibrominated products 5b and 6b in 65% combined yield. Upon switching the 

group on nitrogen to benzoyl (Bz, 1c), secondary amide products 2c and 4c were obtained as 

the major products along with formimide products 3c and 5c. In all cases, the secondary 

amide product and corresponding formimide are easily separated. Saturated heterocycles 

with various ring sizes (1d−1f) underwent deconstructive halogenation in moderate to good 

yields (55%−77% combined yield), whereas the deconstructive bromination of 1d led to 5,6-

dihydro-4H-1,3-oxazine through autocyclization of desired alkyl bromide 4d (see the 

Supplementary Information for details)23. Substituents at the 2- and 4-position on 

piperidines are also well tolerated (1g−1i, 53%−80%). Polycyclic compounds such as 1j are 

also readily functionalized, paving the way for late-stage derivatization in more complex 

polycyclic frameworks. Halogenated amino acid derivatives (2k, 2l and 4k) are accessed in 3 

steps from L-proline and L-pipecolic acid, which may serve as versatile intermediates to 

other unnatural amino acids.

Next, the skeletal remodeling of piperidine scaffolds bearing other reactive groups was 

examined (Fig. 3a). Oxidative ring-opening of 7 and engaging the pendant 2-

nitrobenzenesulfonamide (NsNH) nucleophile with the incipient aldehyde group in 8 
ultimately yielded corresponding lactam 9. The choice of halogenating reagent led to 

divergence in the products that were formed. For example, when carboxylic acid 10 was 

subjected to the deconstructive chlorination conditions, dichloro compound 11 was obtained 

through decarboxylative17 and deconstructive chlorination, and was directly transformed to 

azetidine 12 via double nucleophilic displacement with NsNH2. Alternatively, when NBS 

was used as the halogenating agent, in situ generated alkyl bromide 13 was engaged by the 

carboxylic acid group to form the corresponding lactone 14 in 44% yield.

Given the aforementioned importance of scaffold hopping in cyclic systems7, 8, we have also 

pursued the ring contraction of piperidines (Fig. 3b). Few reports exist that detail the ring 

contraction of piperidines to pyrrolidines24–26. Deconstructive bromination of N-benzoyl 

piperidine (1c) with dibromohydantoin followed by cyclization of the resulting bromoamine 
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with NaOtBu furnished N-benzoyl pyrrolidine (15) in 89% (94% average yield per step) in 

just two steps with only one chromatographic purification step. Notably, this process can 

also be conducted in one-pot, albeit in lower yield (unoptimized) due to the competing 

displacement of the newly installed halogen group by the imide byproduct from the 

halogenating reagent. This ring contraction process also proceeds for a series of simple 

cyclic amines such as 2- and 4-methyl substituted piperidines and azepane (16, 18 and 20, 

35%−60% yield over 2 steps). These results demonstrate a powerfully direct approach to 

achieving deep-seated structural modifications.

The virtue of this methodology is evident in the deconstructive functionalization/

diversification of peptides27. As shown in Fig. 4a, L-proline-containing tripeptide 21 
underwent ring-opening chlorination in 41% yield along with 15% recovered starting 

material (RSM). Importantly, chlorinated peptide 22 is easily transformed into a variety of 

products. For example, treatment of 22 with sodium methylthiolate afforded 23 in 91% 

yield, constituting the conversion of a proline residue into the corresponding methionine 

residue in only two steps. Alternatively, C–N bond formation can be achieved by treatment 

of 22 with sodium azide and in this way convert a proline residue or polypeptides bearing a 

cyclic amine (e.g., L-pipecolic acid) into a site for azide-based biorthogonal click 

chemistry28. In a demonstration of this tactic, 22 was azidated and then subjected to copper-

catalyzed azide-alkyne cycloaddition to afford triazole 24 in 72% yield over the two steps. In 

addition, C–O bond formation is also easily achieved by displacement of the halogen group 

with benzoic acid. Treatment of 22 with NaCN in DMF led to nitrile 26 as the major product 

along with 5,6-dihydro-4H-1,3-oxazine 27 in 36% yield, demonstrating the feasibility of C–

C bond formation. Cyclized product 27 is obtained as the sole product when 22 is treated 

with DBU.

Additionally, we evaluated the functional group tolerance of the deconstructive chlorination 

process. As shown in Fig. 4b, a variety of dipeptides bearing potentially oxidizable amino 

acid residues participate in this deconstructive protocol (29a−29f, 19%−44%). It is worth 

noting that the proline residue can be preferentially oxidized over the benzylic position (29a 
and 29b) and C–H bonds of the activated aliphatic side-chains bearing oxygen heteroatoms 

(29e and 29f). A dipeptide bearing a methionine residue 29g underwent deconstructive 

chlorination with oxidation of the thioether to the corresponding sulfone. Therefore, like 

many other oxidative processes29, 30, deconstructive halogenation leads to competing 

reaction with the sulfur group of methionine. Additionally, deconstructive chlorination of the 

challenging tripeptide substrate 30 proceeded to furnish 16% yield of the ring-opened 

product 31 along with 62% of recovered starting material (Fig. 4c). Given the mechanistic 

change in the current methodology to incorporate a heterolytic C–N cleavage (B C, Fig. 

1c), over-oxidation of the hemiaminal intermediate B is generally avoided as evidenced by 

the ring opening fluorination of 21 to give fluorinated tripeptide 32 using the newly 

developed strategy (Fig. 4d). Despite the lower yields obtained in the presence of these 

reactive residues, the deconstructive protocol provides an expedient approach to a novel 

range of peptides without the need for their de novo synthesis.
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Saturated heterocycles remain a prevalent structural motif that is found in a large percentage 

of bioactive organic molecules such as pharmaceuticals. We anticipate that deconstructive 

functionalization strategies will provide access to wide-ranging structural diversity at a late 

stage in the preparation of bioactive molecules.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Development of a deconstructive halogenation of cyclic amines.
a, Representative bioactive molecules containing saturated nitrogen heterocycles. b, 

Deconstructive halogenation enables diversification of saturated nitrogen heterocycles. c, 

Proposed mechanism for silver-mediated deconstructive halogenation. FG, functional group; 

Nu, nucleophile; Piv, pivaloyl; NCS, N-chlorosuccinimide; NBS, N-bromosuccinimide; 

HAT, hydrogen-atom transfer; SET, single electron transfer.
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Figure 2. Deconstructive halogenation: cyclic amine scope.
Only isolated yields are shown. Reaction conditions: 1 (0.1 mmol), NXS (4 equiv), 

(NH4)2S2O8 (4 equiv), acetone: H2O (1:9), room temperature, 0.5 h. Boc, tert-
butoxycarbonyl; Bz, benzoyl; BRSM, based on recovered starting material. *5,6-

dihydro-4H-1,3-oxazine was obtained (See the Supplementary Information for details).
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Figure 3. Applications of deconstructive halogenation.
a, Skeletal remodeling of cyclic amines. b, Dehomologation of cyclic amines. *Yields in 

bracket represent the average yield per step. Ns, 2-nitrobenzenesulfonamide; DBU, 1,8-

diazabicyclo(5.4.0)undec-7-ene; DMF, N,N-dimethylformamide.
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Figure 4. Deconstructive chlorination of L-proline-containing peptides.
a, Deconstructive diversification of tripeptide 21. b, The tolerance for oxidizable amino acid 

residues. c, Deconstructive chlorination of L-phenylalanine-containing tripeptide 30. d, 
Deconstructive fluorination of tripeptide 21. RSM, recovered starting material; Tf, 

trifluoromethanesulfonyl.
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