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ABSTRACT	OF	THE	DISSERTATION	
	

	
Characterizing	breast	cancer	invasive	potential	using	combined	label-free	multiphoton	

metabolic	imaging	of	cellular	lipids	and	redox	state	
	
By	
	

Jue	Hou	
	

Doctor	of	Philosophy	in	Biomedical	Engineering	
	

	University	of	California,	Irvine,	2017	
	

Professor	Bruce	J.	Tromberg,	Chair	
	
	
	

Aerobic	glycolysis	(Warburg	effect)	is	accompanied	by	significant	alterations	in	cellular	

redox	state	and	constitutes	one	of	the	hallmarks	of	cancer	cell	metabolism.		Label-free	

multi-photon	microscopy	(MPM)	methods	based	on	two-photon	excited	fluorescence	

(TPEF)	have	been	used	extensively	to	form	high-resolution	images	of	redox	state	in	cells	

and	tissues	based	on	intrinsic	NADH	and	FAD+	fluorescence.		However,	changes	in	cellular	

redox	alone	are	insufficient	to	fully	characterize	cancer	metabolism	and	predict	invasive	

potential.		We	demonstrate	that	label-free	MPM	measurements	of	TPEF-derived	redox	state	

(optical	redox	ratio,	ORR	=	FAD+/(FAD	+	NADH))	combined	with	coherent	Raman	imaging	

of	lipid	formation	can	be	used	to	quantitatively	characterize	cancer	cells	and	their	relative	

invasive	potential.		In	addition,	we	confirm,	using	coherent	Raman	and	deuterium	labeling	

methods,	that	glucose	is	a	significant	source	for	the	cellular	synthesis	of	lipid	biomass	in	

glycolytic	breast	cancer	cells.		Live	cell	metabolism	was	imaged	in	3D	models	of	primary	

mammary	epithelial	cells	(PME)	and	2	cancer	cell	lines,	T47D	and	MDA-MB-231.	While	we	



	 x	

observed	overlap	in	the	distribution	of	the	optical	redox	ratio	between	these	different	cell	

lines,	the	combination	of	ORR	and	lipid	volume	fraction	derived	from	coherent	Raman	

signals	provided	complementary	independent	measures	and	clear	separation.	Furthermore,	

we	observed	an	increase	in	both	lipid	synthesis	and	consumption	rates	in	E2-treated	T47D	

cancer	cells	cultured	in	deuterated	glucose	by	tracking	the	formation	and	disappearance	of	

deuterated	lipids.		These	results	suggest	that	due	to	the	relatively	wide	range	of	ORR	values	

that	reflect	the	natural	diversity	of	breast	cancer	cellular	redox	states,	the	addition	of	lipid	

signatures	obtained	from	coherent	Raman	imaging	can	improve	our	ability	to	characterize	

and	understand	key	metabolic	features	that	are	hallmarks	of	the	disease.	
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Chapter	1		
 

Cancer	Metabolism	
	

“One general law, leading to the advancement of all organic beings, namely, multiply, 

vary, let the strongest live and the weakest die.”  

― Charles Darwin, The Origin of Species 

	

1.1 Glucose	–	the	key	player	of	cell	metabolism	

	

1.1.1	Fuel	the	energy	production	

All the human behaviors, including growth, muscle contraction and reproduction, 

requires energy. Therefore, we must have a constant intake of food to maintain the 

biological order and keep us alive. The nutrients can come in different forms, however, 

glucose is particularly important. It is the major source of energy for all the cells in 

human body and supplies almost all for the neurons, fibroblasts and blood cells [1-3]. 

Moreover, alterations of glucose kinetics can be correlated with critical illness [4]. Thus, 

the delivering of glucose molecules to each individual cell are crucial and are constantly 

done by our digestive and cardiovascular systems throughout our life. Within each cell, 

the chemical bonds of glucose are continuously broken down to produce the energy and 

the rate is strongly related with cell functions. Unlike burning, the cells release the energy 
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in the glucose through a series of reactions and store them in the adenosine triphosphate 

(ATP) molecules which are used to fuel other processes. The main pathways of glucose 

catabolism are known to be glycolysis and oxidative phosphorylation (OxPhos) which 

have been studied and fully established for more than 100 years [5]. 

 

Figure 1.1. Metabolic pathways of glycolysis, OxPhos and biosynthesis. 

 

The study of glycolysis was first started in the 19th century inspired by wine 

industry. It was found that the yeasts have a reduced glucose consumption rate in aerobic 

conditions and inappropriate control of the oxygen level would turn the wine distasteful 

[6]. From there, the entire glycolytic pathways, its regulation and integration of other 

metabolic pathways were understood piece by piece (figure 1.1). Glycolysis initiates 

from the phosphorylation of a glucose molecule which takes two ATPs as the seeding 

energy. The end-product is a fructose-1,6-biphosphate which is very unstable and can be 

degraded into two interconvertible three carbon molecules. Both triose sugars enter the 

pay-off phase and ultimately generate 2 pyruvates, 4 ATPs and 2 NADH in total. The 
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pyruvate is then fermented into ethanol and secreted by the yeast as a waste. The entire 

process does not require the existence of oxygen and happens in the cell cytosol. In 

human, the glucose is following a similar pathway but fermented into lactate acid instead 

of ethanol. 

The finding of OxPhos greatly benefited from the studies on glycolysis, especially 

the investigation of the disappearance of lactate acid under aerobic condition. It was 

found that OxPhos initiated from glycolysis but the end-product was further oxidized into 

carbon dioxide and water instead of fermentation. The two processes are linked by 

pyruvate dehydrogenase complex on the membrane of an organelle called mitochondria. 

It transfers the two pyruvates, created by glycolysis, into mitochondria and convert them 

into acetyl coenzyme A (acetyl-CoA) and produce two molecules of CO2 and NADH. 

The acetyl-CoA enter the tricarboxylic acid (TCA) cycle, also known as Krebs cycle, to 

be fully oxidized to 4 CO2 molecules and reducing six NAD+ molecules to NADH. The 

TCA cycle also produces 2 FADH2 and 2 ATPs. The final step comprises the secretion of 

protons in NADH and FADH2 from the protein complex out of the inner membrane of 

mitochondria. It establishes a proton gradient across the inner membrane and create an 

electrochemical potential which is used by a protein complex to drive the 

phosphorylation of ADPs to produce ATPs. At the same time, the electrons are 

transferred to oxygen molecules on the electron transport chain to form water molecules. 

Compared to glycolysis, oxidative phosphorylation is 18 times more efficient in 

generating ATPs from one glucose molecule. However, this process only happens inside 

the mitochondrion in eukaryotic cells and requires the existence of oxygen.  
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1.1.2	Supply	of	biomass	synthesis	

To maintain homeostasis, a subpopulation of cells remains the capability of proliferation 

which requires more than just energy. As they divide, a constant supply of basic building 

blocks is needed which includes cell nucleotides (DNA/RNA), lipids (cell membrane) 

and amino acids (proteins). Although these nutrients can be acquired from the 

microenvironment, all the fast proliferating cells prefer de novo synthesis. The major 

donor of the carbon source is, again, glucose [7]! 

Despite the large varieties of the sizes and functions of cells, all the cells in our 

body share the same genetic information encoded in DNA. To enable mitosis, the cells 

must provide ~6.5pg nucleotides for DNA replication [8]. The synthesis of most 

nucleotides requires the assembly of 9 to 10 carbon atoms. Half of the carbons come from 

5-phosphoribosyl-α-pyrophosphate (PRPP) which can be derived from phosphorylated 

glucose at the beginning of glycolysis. The pathway that convert glucose to PRPP to 

enable to nucleotide synthesis is known as pentose phosphate pathway (PPP). 

In addition to cell nucleus and RNA, human cells also have complex membrane 

system including plasm membrane, mitochondria, endoplasmic reticulum and Golgi 

apparatus. Whether the organelle has one layer or two layers of membrane, it all consists 

of a phospholipid bilayer embedded with glycolipid and cholesterol. Thus, the doubling 

of a cell has extensive demands of lipid content and the cells use glucose to generate lipid 

precursor – acetyl-CoA. Acetyl-CoA is produced at the beginning of oxidative 

phosphorylation inside mitochondria, however, it cannot be utilized for lipid biosynthesis 

which happens in cytosol. Instead, the acetyl-CoA enters the TCA cycle and be 
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metabolized into citrate which can be exported to cell cytosol and converted back to 

acetyl-CoA by ATP citrate lyase. With additional ATPs, the acetyl-CoA can be further 

metabolized into malonyl-CoA which acts together with acetyl-CoA for lipid synthesis 

which is catalyzed by fatty acid synthase (FASN). 

Lastly, the requirement for protein, which takes up to 50% of dry cell mass, 

imposes the largest stress for proliferation cells. However, the fast up-taking glucose rate 

and precursors produced by the intermediates of glycolysis offers a solution. 3-

phosphoglycerate and pyruvate act as carbon donors and can be directly used for 

synthesis of most nonessential amino acid. The synthesis of some other amino acids 

prefers a different source of carbon which relies more on the glutamine. The prostate 

cancer cells have demonstrated a specific glutamine dependence rather than glucose. 

	

1.2 The	famous	Warburg	effect	

	

From the above, OxPhos is much more efficient in generating energy than glycolysis. It 

would be more beneficial for cancer cells to have enhanced OxPhos rate to meet the high 

demand of ATPs during cell proliferation and migration. However, it was observed that 

the cancer cells prefer glycolysis even in an oxygen rich environment. The aerobic 

glycolysis of cancer cells is well known as the famous Warburg effect and was first 

reported by Otto Warburg in 1926. In the paper, he wrote “It could be said of tumors, 

with their varying cancer cell content, that they ferment more strongly the more cancer 

cells they contain” [9]. 
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At first glance, it was confusing. Why and how cancer cells reprogram to a less 

efficient pathway of energy production was elusive. Otto Warburg originally 

hypothesized that cancer cells have impaired mitochondria functions that leads to defect 

aerobic respiration. Hence, the production of ATPs fully relies on glycolysis. However, 

further studies demonstrated that isolated tumor mitochondria are as efficient as normal 

mitochondria for aerobic respiration. Now, more and more researchers believe that such 

metabolic adaptation is beneficial for fast cell proliferation, a notion supported by 

observations that 1) several mutations that affect cancer proliferation also regulate 

metabolic pathways [10, 11]; and 2) normal cells display higher rates of glycolysis when 

treated with growth factors to stimulate cell proliferation [7, 12, 13].  

Let’s take a closer look at fast proliferating cells. It is not hard to find that there 

are not only energy requirements but also functional needs during mitosis. The most 

prominent one is the doubling of the cell’s biomass which includes amino acid, fatty acid 

and nucleotides. The biosynthetic flux of a palmitate molecule, for example, requires 7 

ATPs, 16 carbons and 14 NADPH in total. For a single glucose molecule, it can be 

metabolized to generate 36 ATPs (OxPhos) or 30 ATPs and two NADPHs (pentose 

phosphate pathway, PPP) or 2 ATPs plus 6 carbons (glycolysis) (figure 1.2). With some 

simple calculations, we can tell that the demand for carbons and NADPH are the real 

bottleneck of the macromolecule biosynthesis rather than energy. From this perspective, 

even though fully catabolize the glucose molecule into CO2 and H2O is efficient in ATP 

production, it is a waste of carbons and reducing capabilities which are more crucial for 

cell proliferation. The fast dividing cells must reprogram in a way to meet the demand of 

carbon sources and reducing equivalents. Moreover, the glucose utilization rate of 
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glycolysis is 10-100 times faster than oxidative phosphorylation which enables 

continuous uptake of nutrient. This metabolic reprogramming gives cancer cells clear 

advantage over adjacent stromal cells when competing for limited glucose and nutrient in 

their microenvironment. Thus, the switching from oxidative phosphorylation to 

glycolysis is an adaptation to maximize the rapid uptake and incorporation of nutrients 

for biosynthesis [14] 

 

Figure 1.2. the biochemical demand for palmitate synthesis. The red parts represent the ATPs the process 

can produce/utilize; the yellow parts represent the number of carbons the process can produce/utilize; and 

the green parts represent the NAD(P)H the process can produce/utilize. 

 
 

1.3 Cancer	metabolism	in	biomedical	application	

1.3.1	Biomakers	for	cancer	diagnosis	

Currently, Warburg effect is considered an important biomarker for all types of cancers. 

It is treated as one of the hottest topics in cancer society and the genetic origin of the 
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metabolic adaptation and its influence on cancer survival has been intensively studied. 

Not surprising, a lot of genes involved in cellular metabolism were found overexpressing 

in tumor cells and, thus, provided potential biomarkers for cancer detection. 

Phosphatidyle inositol 3-kinases (PI3K) are a family of enzymes that regulate 

cellular functions including proliferation, differentiation and motility. The PI3Ks get 

phosphorylated in the cell membrane and can activate protein kinase B (also known as 

AKT) which has a number of downstream effects. Most importantly, the 

PI3K/AKT/mTOR pathway has been identified to be overexpressed in numerous tumor 

cells [15]. The activation of this cascade can increase the synthesis and translocation of 

glucose transporter (GLUT) to the plasma membrane and increase the glucose uptake rate. 

Moreover, the phosphatase and tensin homolog (PTEN), the PI3K inhibitor, is discovered 

to be lost in many tumor cells which further benefit the intensive demand for glucose. 

PGC-1a is another regulator for energy metabolism and was found to affect cancer 

invasiveness. and has been found to be correlated with different cancer invasiveness [16]. 

The PGC-1a increases the cancer metastatic potential by increasing oxidative 

phosphorylation, mitochondria biogenesis and oxygen consumption rate. 11 out of 13 

lesions from patients who had confirmed lung metastases were reported PGC-1a positive.   

Most normal cells prefer replenishing their fatty acid storage from circulating 

lipids. Except for liver, adipose tissue and hormone sensitive cells, fatty acid synthase 

(FASN) is normally inactive in differentiated cells. However, various tumor cells and 

lesions were observed favoring de novo lipid synthesis even in a well-nourished 

environment. Such cancer phenotype is associated with increased activities and 

overexpression of lipogenesis genes including FASN. Although both the normal and 
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cancer cells share identical intracellular signaling downstream pathways, the FASN 

expression in tumor cells seem to be insensitive to nutritional signals. The hyperactivity 

of FASN has been reported in in most of human epithelial cancers and neoplastic lesions 

and is correlated with higher recurrence rate and death rate [17, 18]. With constant high 

expression level of FASN, the cancer cells quickly use the intermediate products of 

glycolysis for fatty production in support of fast cell proliferation. Jin-xin et al reported 

increased cholesterol ester in prostate cancer cells. 

The biochemical and molecular studies on the cancer cells brought us one step 

further closer to understand Warburg effect and provided scientific foundations to use it 

for cancer diagnosis. Currently, positron emission tomography, magnetic resonance 

imaging and mass spectrometry take advantage of isotope labelling and have already 

been used for cancer diagnosis based on their abnormal metabolism [19-21]. Magnetic 

resonance imaging, using time-resolved multiband radio-frequency excitation, revealed 

lactate accumulation in different stages of tumors as derived from hyperpolarized C13 

labelled pyruvate [22]. Liquid chromatography-mass spectrometry and isotope labeling 

(C13 and N15) has been used to observe the atomic contribution of acyl-coenzyme A from 

glucose, glutamine and propionate [23]. Due to the high glucose-based biosynthesis rate, 

the cancer cells also accumulate glucose analogue fluorodeoxyglucose (FDG) which is 

used contrast agen in PET scan [24]. All these observations further prove the potential of 

using metabolism for early and non-invasive cancer detection. 
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1.3.2	Personalized	treatment	

The current treatment regime for cancer is chemotherapy which is a combination of 

different drugs that target fast proliferating cells. Based on the doctor’s experience, the 

recipe of cocktail can vary from patient to patient. However, about 30% of the patients 

will gain no benefit but still have to suffer from the side effects. Moreover, doctors 

receive little input until the completion of the treatment. Thus, there is a significant 

interest in identifying biomarkers that can predict drug response and provide oncologist 

dynamic feedbacks for better decision-making. 

The cancer cells rely heavily on the aerobic glycolysis to support their fast 

proliferation rate. The chemotherapy that limit the cancer mitosis would affect their 

anabolic process at the very early stage. Such alterations of cell metabolism can be 

monitored and used as a predictor for cancer drug response [25-28]. Walsh et al. used 

optical imaging to dynamically monitor the metabolic changes of HER2+ breast cancer 

organoids in response to trastuzumab treatment. The authors observed an increase of free 

NADH in cancer cells that respond to chemotherapy as early as 48 hours [29]. Similar 

findings were found on mice xenograft where the cancer cells demonstrated early 

metabolic response form smaller tumor after 12 days. Albert Cerussi et al. used diffuse 

optical spectroscopic imaging modality to monitor the tumor metabolism before, in the 

middle and after completion of neoadjuvant chemotherapy on 36 patients noninvasively 

[30]. The oxy- and deoxyhaemoglobin, lipid and water in the tumor sites were found to 

be strongly correlated with pathological response. The combining of metabolic 

measurement with microplate reader can push forward personalized treatment and reduce 

the failure rate. 
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1.3.3	Novel	target	for	cancer	treatment	

Cancer metabolism is a direct result of mutations of oncogenes and tumor-suppressor 

genes which facilitate cancer proliferation, malignant transformation and drug resistance. 

This reveals a possible “Achilles heel” which potentially works on all types of cancer and 

can be targeted precisely.  Compromise or inhibit the key metabolic pathways would 

break the homeostasis and deprive cancer cells with metabolites that are essential for 

proliferation or migration. 

Due to the importance of PI3K/AKT/mTOR pathway in cell proliferation and 

growth, it has been investigated for its therapeutic potential since its identification. A 

number of inhibitors has been evaluated in preclinical studies and some have been 

approved by US Food and Drug Administration. It can be categorized as PI3K inhibitor, 

PI3K-mTOR dual inhibitor and mTOR inhibitor. Rapamycin and its analogs 

(temsirolimus, everolimus and ridaforolimus) were among the very first drugs get 

approved by FDA. They can crosslink the FK506 protein through its methoxy group and 

form a complex which further bind to mTOR to inhibit its downstream signaling [31]. 

Rapalogs has demonstrated clear clinical benefits over breast cancer, melanoma, 

lymphoma, small-cell lung cancer and especially for renal cell carcinoma [32-35]. In a 

phase III trial, 209 patients who received 25mg temsirolimus intravenously every week 

demonstrated 49% increase of overall survival [36]. To achieve better therapeutic results, 

rapalogs have been administrated in combination with other chemotherapy drugs and 

were found to be synergetic with paclitaxel, carboplatin, cisplatin, vinorelbine, 

doxorubicin and campthotecin by promoting cancer cell apoptosis both in vivo and in 

vitro [37, 38]. Since then, more than 30 small molecules targeting PI3K entered clinical 
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trials. In 2014, Idellisb, which blocks the p110d of PI3K, was approved for treatment of 

relapsed chronic lymphocytic leukemia, follicular B-cell non-Hodgkin lymphoma and 

relapsed mall lymphocytic lymphoma [39]. 

PTEN is noted to be one of the most frequently deleted or muted tumor 

suppressor gene in prostate, lung, breast and glioblastoma [40]. The loss of PTEN is 

commonly associated with poor drug response and increased cancer metastasis by 

increased activation of PI3K. Moreover, the reactivation of PTEN can activate FoxO 

transcriptional factor and induce cell apoptosis [41]. Knocking down the PTEN was 

observed with increased estrogen receptor transcriptional activity and increased 

resistance of ER positive breast cancer cells to tamoxifen and fulvestrant [42]. Hopkins et 

al. reported an engineered translational variant of PTEN which is membrane-permeable 

and can be secreted from cells [43]. The exogenous agent has been observed to induce 

tumor death both in vitro and in vivo. Seong et al. reported a synthetic sphingolipid (SH-

BC-893) which triggers nutrient transporter internalization and starve the PTEN deficient 

cancer cells to death [44]. 

 

Elevated fatty acid biosynthesis is another hallmark for tumor. The high mitotic 

rate of cancer cells imposes a huge pressure on lipogenesis. To facilitate the production 

of cell membrane and organelles, the FASN is significantly upregulated in many cancer 

types but remains low expression level in normal tissues. Orlistat is FDA approved drug 

which was originally developed to treat obesity by preventing the hydration of 

triglyceride and make it unabsorbable by the GI track. In 2004, Kridel et al. found that 

orlistat can also inhibit FASN on its thioesterase domain and induce tumor cell apoptosis 
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in vitro [45]. However, its low cell permeability, low solubility and side-effects limit its 

usage in cancer treatment [46]. More recently, new synthetic FASN inhibitor (C93 or 

FAS93) was developed to treat lung cancer without anorexia or weight loss. The C93 was 

given orally with 100mg/(Kg*day) on mice bearing H460 and A549 cell lines derived 

lung cancer xenograft [47]. Significant tumor shrinkage was observed in both groups 

without noticeable weight loss or other toxicity. 

Other metabolic related oncogenic mutations in cancer cells has also been 

targeted including sterol regulatory element-binding protein 1 (SREBP-1), pyruvate 

kinase M2 (PKM2), isocitrate dehydrogenase 1/2 (IDH), MYC, glucokinase (HK), 

mitogen-activated protein kinase (MAPK) and etc have also been intensively reviewed 

[48-51]. 
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Chapter	2	

	

Nonlinear	Imaging	Microscope		

	
 

2.1 Two	photon	excited	fluorescence	and	second	harmonic	

generation	

2.1.1 Imaging	mechanism	

TPEF	microscopy	SHG	are	two	members	of	the	big	nonlinear	optical	imaging	family	in	

which	two	or	more	photons	induce	the	electronic	transition	from	ground	state	to	

excited	state.	As	shown	in	figure	2.1,	TPEF	microscope	requires	two	photons,	each	has	

half	of	the	energy	as	one	photon	excitation,	to	arrive	at	the	molecule	at	the	same	time.	

Thus,	we	can	excite	the	fluorophores	with	longer	wavelengths	to	minimize	the	

scattering	in	tissue	and	increase	the	imaging	depth.	With	Olympus	XLUMPlanFl	20x	

0.95NA	and	exogenous	fluorescence	dye,	Kobat	et	al.	were	able	to	perform	in	vivo	

imaging	on	mouse	cortex	at	a	depth	of	1.6	mm	[52].	Other	than	the	increased	

penetration	depth,	the	utilization	of	near-infrared/infrared	light	reduces	photodamage	

to	live	cells	and	tissue.	Moreover,	the	fluorescence	signal	intensity	is	proportional	to	the	

square	of	excitation	power	and,	therefore,	only	the	fluorophores	in	the	small	focal	

volume	can	be	excited.		
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Similarly,	SHG	also	requires	the	absorption	of	two	photons	but	the	electrons	are	

excited	to	a	virtual	state	and	drop	to	the	ground	state	immediately	with	an	emission	of	

photon.	The	physics	of	SHG	determines	that	the	emission	wavelength	to	be	exactly	half	

of	the	excitation	photons	and	the	process	has	extremely	short	lifetime.	The	SHG	follows	

the	same	power	rule	as	TPEF	but	only	allowed	in	noncentrosymmetric	media.	Thus,	the	

biological	molecules	that	can	generate	SHG	signal	are	very	limited	even	though	they	do	

not	need	any	extrinsic	probes.	SHG	microscopy	has	been	mostly	used	to	image	collagen	

structures	and	organizations	in	biological	tissue	which	were	proven	to	be	important	for	

cancer	development	and	would	healing	[53-56].		

	

Figure 2.1. Illustration of different types of light matter interactions. (a) Single photon excited fluorescence 

(SPEF); (b) two photon excited fluorescence (TPEF); (c) second harmonic generation (SHG); (d) coherent 

anti-Stokes Raman scattering (CARS) and (e) stimulated Raman scattering (SRS). (f) the energy transfer 

from pump beam to Stokes beam in SRS microscope. 

	



	16	

However,	there	is	no	free	meal.	The	main	impediment	for	implementing	TPEF	

and	SHG	is	the	cost	of	the	instrumentation	which	mainly	comes	from	the	laser	source.	

Based	on	quantum	mechanics,	the	chances	(susceptibility)	of	TPEF	and	SHG	are	very	

small	and,	thus,	requires	high	photon	influx	to	generate	detectable	signal.	To	achieve	

that,	the	system	need	femtosecond	laser	source	to	efficiently	generate	the	nonlinear	

signal.	

	

 
2.1.2 Endogenous	fluorophores	

There are a lot of biomolecules that can emit light in the visible range when excited at 

proper wavelengths (table 2.1). The quantum yield and spectrum properties of these 

native fluorophores can be affected by the state of the microenvironment and, thus, 

provide functional and morphological information of the living system. Unlike 

conventional staining, the autofluorescence does not require complicated sample 

preparation and can ruled out the complexity induced by exogenous chemicals. When 

combined with optical imaging, tissue beneath the surface can be examined without 

disturbance and provide possibility for noninvasive optical biopsy [57]. 

molecule	 excitation	(nm)	 emission	(nm)	
tryptophan	 280	 300-350	
melanin	 broad	 360-560	
retinol	 330	 500	
Flavins	 380-490	 520-560	
NADH	 340	 400-550	
elastin	 370	 420-510	
collagen	 330	 305-450	

Table 2.1. The excitation and emission wavelengths of endogenous fluorophores. 



	17	

 

Among the endogenous fluorophores, several have been investigated for their 

potential in cancer diagnosis. Increased tryptophan level has been observed to be 

correlated with cancer risks by inhibiting interleukin-10 secretion in breast, lung and 

brain tumors [58, 59]. Sordillo LA et al. observed increased fluorescent intensity rations 

between 340nm over 440nm and 340nm over 460nm using 280nm excitation in breast 

carcinoma biopsies [60]. The changes of the ratios were due to the fluctuations of the 

tryptophan and NADH concentrations which were correlated with histological tumor 

grades determined by pathologist [61]. Reinhold et al. reported a stepwise two-photon 

excited method to specifically excite melanin with 810nm nanosecond laser pulse [62]. 

Without the interference of other endogenous fluorophores, the authors saw a significant 

melanin spectrum difference between malignant melanoma and benign melanocytic 

lesions. Moreover, the eumelanin and pheomelanin can be distinguished based on their 

emission spectrum and fluorescence lifetime [63]. In Beckman Laser Institute, 

melanocytic nevi were evaluated in vivo with the combination of TPEF and SHG. The 

epidermis, epidermal-dermal junction and dermis were imaged to acquire information on 

cell morphology and collagen structures. Common nevi without dysplastic changes, 

dysplastic nevi with structural and architectural atypia, and melanoma were distinguished 

quantitatively [64]. Even with SHG alone, the remodeling of ECM by epithelial cancer 

cells can be evaluated from the collagen polarization with the help of Fourier transform 

or curvelet transform [65, 66]. 
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2.1.3 Optical	redox	ratio	

In the list of endogenous fluorophores, reduced nicotinamide adenine dinucleotide 

(NADH) and oxidized flavin adenine dinucleotide (FAD+) attracted our attention. As 

shown in figure 1, when the cells are more oxidative, the cells will reduce the FADH2 to 

FAD+; and when the cells are more glycolytic, the cells will oxidize the NAD+ to NADH.  

Two photon excited fluorescence (TPEF) microscopy has been investigated for its 

potential in quantify cellular metabolism by assessing the intrinsic fluorescence 

originating from two fluorescent cofactors NADH and FAD+ [67].  

Since the first publication by Chance et al. [68], the ORR has been used in a broad 

range of applications spanning from cancer detection and diagnosis, predicting drug 

response, and monitoring cellular function and stem cell differentiation [69-73]. Unlike 

competing quantitative techniques with which the cells have to be lysed [74-76], TPEF 

microscopy provides a nondestructive, real-time and label-free method for quantifying 

cellular metabolism. It enables the spatial mapping of metabolic rate at the sub-

micrometer scale with minimum interruption to normal cell function [77, 78].   

 

2.2 	Raman	Microscope	

2.2.1 The	Raman	effect	

All the light-matter interaction happens either by absorption or scattering. When the 

incident photon hit a molecule, the photon can be absorbed and the energy will be 

completely transferred to the electrons if the energy matches the energy gap of the 

molecule. Thus, only the photons with specific wavelengths can get absorbed and the 
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absorption spectrum can be used to characterize chemical composition. However, 

scattering is a bit more complicated. When the particle is smaller than the wavelength of 

the photon or the medium is heterogeneous, the emitted photon is of the same energy as 

the incident photons. This is called Rayleigh scattering whose scattering intensity is 

proportional to 𝜆"#. On the other hand, the emitted photons can have different energy as 

the incident photons which is called inelastic scattering. The energy of the emitted 

photons can be either larger (blue-shift) or smaller (red-shift) than the incident photons 

and the energy differences is related to the molecular vibrational states. 

Raman effect is one kind of inelastic scattering and was first observed by C.V. 

Raman and K.S. Krishan in 1928 [79]. They used focused sun light and observed a 

mixture of elastic and inelastic scattering events. Most of the photons preserved their 

energy and only a very small portion presented the energy shift. The Raman signal 

intensity is extremely low and only 1 in 10 million photons would go through 

spontaneous Raman scattering. In order to generated detectable signal, powerful laser 

source was usually used and the integration time was kept high to increase signal to noise 

ratio. 

Different molecules have different vibrational frequencies and enable us to 

examine the chemical composition with the Raman spectroscopy (table 2.2). Moreover, 

spontaneous Raman signal is linearly proportional to the number of oscillators in the 

probing volume and makes it good for quantitative analysis. Haka et al. reported the 

utilization of Raman spectroscopy system for margin assessment during breast surgery 

based on the change of lipid composition and stromal alterations [80]. The use of Raman 

imaging technique has also been found in various cancer types [81-85]. 
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chemical	
bonds	 description	 Raman	peaks	(cm-1)	
OH	 Bonded/unbonded	hydroxyle	groups		 >3400	
C=C	 lipid	saturation	 ~3015	
CH3	 DNA	 ~2956	
CH2	 Protein	 ~2931	
CH2	 lipid	 ~2854	
C=O	 aldehyde,	carboxylic	acid	and	ester	bonds	 ~1730	
C=C	 amide	I	 ~1684	
C=C	 aromatic	componds	 ~1660	
C=C	 tryptophan	 ~1550	
CH	 collagen,	lipid	 ~1447	
CN	 Amide	III,	collagen	 ~1265	
CH	 Tyrosine	 ~1176	
CN	 protein	 ~1084	
	

Table 2.2 Chemical bonds and their corresponding Raman peaks [86, 87]. 

 

2.2.2 Coherent	Raman	Scattering	(CRS)	

Since all the oscillators vibrate independently, spontaneous Raman scattering is rather 

incoherent and makes the collection of the low signal even harder. To compensate for 

that, the system need to use either high laser power or long integration time which neither 

are preferred on a biological sample. 

However, Maker and Terhune demonstrated that coherent Raman signal with 

more than 5 orders of intensity can be obtained by using two coherent laser beams to 

drive a vibrational Raman mode [88]. When the difference of the pump beam (ω%) and 

the Stokes beam (ω&) frequencies matches with the vibrational Raman mode, the nuclear 
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mode can be driven efficiently. Moreover, the coherent summation of the radiating 

polarization makes the emitting photons travels in certain directions only. The gain of 

signal intensity and directionality makes the coherent Raman imaging more applicable 

for biomedical applications. Both laser beams need to be spatially and temporally 

overlapped which is controlled either electronically by a computer or optically by an 

optical parametrical oscillator. 

Coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering 

(SRS) are the two most frequently used CRS (figure). CARS is a four-wave mixing 

process and makes the Raman signal scales quadratically with the pump intensity, 

linearly to Stokes intensity and quadratic to the number of scatters. After the light-matter 

interaction, a photon with 2𝜔(-𝜔) can be detected. On the other hand, SRS is emitted at 

the same frequency as the incoming Stokes beam. It can be considered as an energy 

transfer from the pump beam to the Stokes beam [89]. The signal can be extracted either 

from the pump beam (stimulated Raman loss) or the Stokes beam (stimulated Raman 

gain). For fast imaging, the pump beam is usually amplitude modulated with 100% 

modulation depth (figure 2.1). The phase relation between the incident pump beam and 

output Stokes beam signal can be analyzed with lock-in amplifier to determine the SRS 

signal intensity [90]. Unlike CARS, SRS signal is linear to the molecule concentration 

and does not present a non-resonant background. 

 

2.2.3 Hyperspectral	imaging	

The CRS has a clear advantage over the spontaneous Raman scattering as it has stronger 

signal intensity and coherent emission. However, the CRS can only probe one vibrational 
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frequency with specific pump and Stokes beam combination while spontaneous Raman 

can collect the whole spectrum with single excitation. In order to acquire the full 

spectrum information, different 𝜔(-𝜔) need to be probed in the same location. Fa-Ke et 

al. used a grating based pulse shaper to get multiple wavelengths from a femtosecond 

laser beam (pump) and used a narrowband ps laser (Stokes) to get high spectral resolution 

[91]. If a particular chemical species is of interest, Christian et al. reported a spectrally 

tailored excitation system that probes multiple vibrational bands simultaneously [92].  

 

To achieve the spectra scan capability and avoid system complexity, we swept the 

pump beam across the interested spectrum region by adjusting the crystal temperature, 

lyout filter and cavity length of the OPO. The spectral scan was controlled by a 

customized software following the steps: tuning the pump frequency, adjusting the power, 

acquire an image, calculate the next pump frequency and repeat. As shown in figure 2.2, 

the pump beam can be adjusted to probe the lipid, protein and lipid saturation regions 

discretely to quantitatively evaluate the sample chemical composition. If the wavelength 

of the pump beam is tuned continuously, the molecule spectrums of each individual 

pixels can be plotted in any Raman region. Moreover, the data can be analyzed with 

vertex component analysis to separate different molecules based on their spectrum [93]. 

The image in figure 2.2c demonstrated a live sample with three major components (lipid, 

protein and water). 
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Figure 2.2. Hyperspectral scan. (a) the images taken at three different wavelengths; (b) the pump beam was 

adjusted to probe the lipid, protein and lipid saturation; (c) pseudo color images of liver sample with red 

pixels represent lipid, green pixels represent protein and blue pixels represent water. 

 

2.2.4 Deuterium	labeling	

Advanced	optical	microscopy	methods	offer	a	solution	by	offering	a	direct	view	of	the	

cell	with	high	spatial	resolution	and	at	high	image	acquisition	rates.	Yet,	fluorescent	

labeling,	which	is	the	most	common	contrast	mechanism,	is	not	an	attractive	option	for	

following	carbon	flow,	because	fluorescent	labels	are	not	suitable	for	following	

individual	chemical	groups	as	they	undergo	chemical	conversion	[94,	95].	Label-free	

techniques,	such	as	vibrationally	sensitive	stimulated	Raman	scattering	(SRS),	generate	

contrast	from	endogenous	chemical	groups	[96,	97].	However,	the	palette	of	distinct	

vibrational	modes	is	limited,	and	chemical	units	of	interest	are	difficult	to	discriminate	

from	the	signal	derived	from	other	endogenous	compounds.		Recently,	deuterium	
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labeling	has	regained	popularity	in	Raman	based	imaging	for	singling	out	compounds	of	

interest	against	the	background.	Deuterium	labeling	shifts	the	resonances	of	chemical	

group	vibrations	to	regions	of	the	vibrational	spectrum	devoid	of	overlapping	Raman	

modes,	enabling	a	virtually	background-free	detection	of	the	targeted	chemical	groups.	

Moreover,	the	bioactivity	of	deuterated	compounds	is	often	indistinguishable	from	the	

bioactivity	of	non-deuterated	analogues,	confirming	that	the	cellular	machinery	is	

virtually	unaffected	by	the	additional	neutron	on	the	hydrogen	nuclide.	For	instance,	

deuterated	amino	acids	have	been	used	to	follow	active	protein	synthesis	in	live	cells,	

indicating	that	the	deuterated	amino	acids	analogues	are	incorporated	by	the	cell	in	a	

non-perturbed	fashion	[98].	Previous	Raman	imaging	studies	have	shown	that	the	

movement	and	incorporation	of	small	deuterated	molecules	can	be	monitored	in	live	

cells.		However,	it	is	unclear	if	the	same	strategy	can	be	employed	to	track	chemical	

information	through	a	multi-step	conversion	process,	whereby	the	individual	chemical	

groups	of	supplied	nutrients	are	disrupted	and	incorporated	into	completely	different	

structures.		

In	this	study,	we	push	the	principle	of	deuterium	labeling	one	step	further	for	the	

purpose	of	following	the	flow	of	hydro-carbon	chemical	groups	in	a	living	system.	We	

supplied	cells	with	fully	deuterated	glucose	and	followed	glucose	consumption	for	de	

novo	lipid	synthesis	in	an	ER	positive	breast	cancer	cell	line	(MCF7)	and	in	primary	

mammary	epithelial	(PME)	cells.	Using	spontaneous	Raman	and	SRS	spectral	imaging,	

we	observed	the	formation	of	metabolic	products	of	glucose	and	the	accumulation	of	

hydro-carbon	units	derived	from	glucose	inside	lipid	droplets	in	cancer	but	not	normal	
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cells.	SRS microscopy probes different chemical vibrations by adjusting the optical 

frequency difference between two incident laser beams (pump and Stokes). In our 

experiment, we kept the optical frequency of the Stokes beam constant and tuned optical 

frequency of the pump beam to image both natural aliphatic lipids (Raman shift is 2850 

cm-1) and deuterated hydro-carbons (Raman shift is 2175 cm-1). The MCF7 breast cancer 

cells are cultured in medium with either deuterated glucose or regular glucose.	
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Chapter	3		

	

Sample	preparation	and	data	analysis	

	

	
3.1 System	set	up	

The system configuration is illustrated in figure 3.1. CARS and SRS imaging modalities 

are integrated into the Olympus IX71. A 76-MHz mode-locked Nd:Vanadate 

laser(picoTrain, High-Q) was used to deliver a 7-ps pulsed laser beam at 1064nm (Stokes 

beam) and a second harmonic generated beam at 532nm to pump an optical parametric 

oscillator (OPO; Levante, Emerald OPO, Applied Physics &amp; Electronics Inc.).  The 

OPO generated the corresponding pump beam for imaging either the normal lipid 

distribution (817nm) or deuterated signal (864nm) by adjusting the crystal temperature, 

Lyout filter and cavity length. The Stokes beam was modulated by 10MHz with an 

acousto-optic modulator (12465 , Crystal Technology Inc.) and, then, spatially and 

temporally overlapped with the pump beam before sending into a laser scanning 

microscope (IX71, Olympus). The cells were imaged by a 60X water objective (1.2NA, 

UPlanSApo, Olympus) and the stimulated Raman loss of the pump beam was collected in 

the forward direction by a high NA condenser (). The CARS and SRS signals were 

separated with a dichroic mirror. The CARS signal was detected by a Hamamatsu 
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photomultiplier tube (R2658, Hamamatsu) with a 650 +/-50nm bandpass filter in front. 

The Raman loss in the pump beam was detected by a photodiode (FDS1010, Thorlabs) 

and a high O.D. bandpass filter (Semrock) was placed in front of the photodiode to block 

the Stokes beam. The modulated signal from the photodiode was filtered with an 

electronic bandpass filter (BBP-10.7+, Mini-Circuits) to suppress the 76-MHz signal 

from laser pulsing and low frequency signals from scanning. The filtered voltage signal 

was demodulated by a homemade lock-in amplifier and sent to the computer for display.  

 

Figure 3.1. the scheme of multi-modal imaging platform. OPO: optical parametric oscillator; AOM: 

acousto-optic modulator; PD: photodiode; PMT: photomultiplier tube; Obj: objective. 

 

 

For all imaging, 512 by 512 pixels are acquired for one frame with 10 µs pixel 

dwell time. The average laser power on the sample was kept constant at 15mW for the 

Stokes beam. For the pump beam, we used 15mW for imaging normal lipid distribution 
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(817nm) and 20mW for imaging deuterated signals (864nm) to minimize sample 

photodamage. We also took an off-resonant image (pump 890nm, 35mW) for each 

individual measurement. 

The cellular redox states and SHG signals were measured on a commercial Zeiss 

laser scanning microscope (LSM510) equipped with a femtosecond laser source 

(Chameleon, Coherent Inc.). The laser beam was focused onto the cells through a 40X 

water objective. The fluorescent signals and SHG signals were collected in the epi 

direction. The fluorescence of NADH was excited at 740nm and collected with 

480nm±50nm bandpass filters in front of the photomultiplier tube (PMT). Then, we used 

900nm excitation and detected the fluorescence of FAD+ at 530nm±50nm and SHG 

signals of collagen fibers at 450nm±10nm. All the images were taken with 512 by 512 

pixels with 6 µs pixel dwell time. We used 10mW at the sample for NADH imaging and 

15mW for FAD+ imaging. To calibrate the environmental and system vibrations at 

different dates, we acquired images of a freshly-prepared fluorescein solution (0.02 µM at 

pH7) as a reference. 

For hyperspectral SRS Imaging, the region of interest was identified with regular 

SRS imaging. The pump laser wavelength was tuned from 803nm to 820nm (0.3nm 

stepwise) by computer control of the crystal temperature, Lyout filter and cavity length of 

the OPO [99]. The laser power was monitored by a photodiode detecting the reflection 

from a cover glass before the scanner box. The power was kept constant for all the 

wavelengths throughout the experiments. After the scanning process, we obtained an 

imaging stack that contains the Raman spectrum information for each pixel from 

2791cm-1 to 3055cm-1. 
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The spontaneous Raman spectra were acquired with a commercial Raman 

microscope (InVia Confocal, Renishaw) at room temperature. A 532nm diode laser was 

focused onto the sample through the 60X water objective (1.2NA, UPlanSApo, Olympus). 

The laser power was kept at 12mW and the exposure time was 40s in order to get the 

spectrum from 500cm-1 to 3200cm-1. All the spontaneous Raman spectra were smoothed 

with Savitzgy-Golay algorithm and the backgrounds were subtracted with polynomial 

fitting. The data processing was done in Matlab. 

 

3.2 Sample	preparation		

Deuterated glucose (552003), normal glucose (G7021), l-arginine (A5006), l-lysine 

(L5501) and 17β-estradiol (E8875) were purchased from Sigma-Aldrich. SILAC 

Advanced DMEM/F-12 flex media, no glucose, no phenol red (A2494301), TrypLE 

(12604013), charcoal stripped fetal bovine serum (12676011), Hanks buffer (14025092) 

and glutaMAX (35050-061, Life Technologies) were purchased from ThermoFisher 

scientific. Mammary Epithelial Cell Basal Medium (PCS-600-030) and growth kit (PCS-

600-040) were purchased from ATCC. Matrigel (356231) and high concentration rat tail 

collagen I (354249) were purchased from Corning. 

Advance DMEM/F-12 culture medium was made by adding 5% charcoal stripped 

FBS (vol/vol), 1% glutaMAX (vol/vol), 147.5 mg/L l-arginine, 91.25 mg/L l-lysine and 

3151 mg/L normal glucose. Serum free medium was made as advanced DMEM/F-12 

culture medium without FBS. Deuterated culture medium was made by replacing normal 

glucose with 17.5 mM deuterated glucose. 17β-estradiol was dissolved in DMSO with 

10-8 M. 
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PME, T47D, and MDA-MB-231 were obtained from American Type Culture 

Collection (ATCC). The PME cells are cultured with Mammary Epithelial Cell Basal 

Medium added with growth kit. Both MDA-MB-231 and T47D breast cancer cells 

obtained from ATCC were cultured at 37 °C and 5% CO2 in advanced DMEM/F-12 

culture medium. The culture medium was regularly changed every two to three days to 

remove waste and provide the cells with fresh nutrients to grow. The cells were 

monitored on a daily basis and washed and passaged at 80% confluency. For all the 

experiment, cells were washed three times with Hanks buffer and detached from flasks 

using TrypLE. We collected all the cells, centrifuged and resuspended in regular culture 

medium and counted with a hemocytometer. 

To make the 3D breast cancer model, Matrigel was thawed on ice for 12 hours 

before the experiment. The pipet tips and imaging dishes (7160-2, Miltenyi Biotes) are 

chilled in -20 ˚C overnight. The high concentration rat tail collagen I was diluted to 

3.2mg/ml by following the manual provided on the website. Both the matrigel and 

collagen were mixed with 1:1 ratio to match up with the mechanical properties of 

extracellular matrix. Imaging dishes were coated with 50ul matrigel/collagen mixture and 

left in the incubator for 1 hour to become solidify. Cells were detached from plates using 

TripLE, stain with trypan blue and counted with a hemacytometer. The experiment would 

continue only if the cell live rate was above 90%. The cells were collected and gently 

pelleted by centrifugation at 1000rpm for 8 minutes. The medium was aspirated and the 

cells were suspended in 500ul matrigel/collagen mixture and plated onto the coated 

imaging dishes. The plating cell concentrations were 100k/well for PME cells and 

60k/well for T47D and MDA-MB-231 cells. The dishes were put in the incubator for an 
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hour to gel before adding 2ml culture medium. The cells were incubated at 37 ˚C, 5% 

CO2 and the medium is changed every three days. For each cell lines, three identical 

imaging dished are prepared. To introduce cancer invasiveness in T47D cell lines, 10-8 

M 17β-estradiol was added to the culture medium. 

 

3.3 Metabolic	Measurements	

Metabolic measurements of the acini. The power of the laser and the gain on the PMTs 

were kept constant for all the measurements during the experiments. Before the metabolic 

measurements, the fluorescein and olive oil were imaged as reference samples for TPEF 

and CARS respectively. The glucose and lipid metabolic changes were measured every 

other day for 12 days. For glucose metabolism, we first excite NADH with 740nm 

excitation wavelength, then, tuned to 900nm to measure the concentration of FAD+ at the 

same planes. The lipid content was measured with CARS. Same acinus structure was 

identified using the coordinates etched at the bottom of the gridded imaging dish.  

To track the metabolic changes during the acini formation, fifteen different PME 

acini structures were randomly chosen from each imaging dish. The entire 3D volume of 

acinus structure was imaged with 1um step size for both glucose and lipid metabolism. 

To compare the metabolic signatures of PME, T47D and MDA-MB-231 cells, 15 acini 

from each group were imaged after 12 days of culturing. The redox ratio and lipid content 

of each acinus was calculated as described in detail later. To study the metabolic changes 

in response to E2, we added 17β-estradiol (10-8 M) to both PME and T47D 3D culture. 

The metabolisms of 10 randomly chosen acini were measured before adding E2 and 3 

days after adding E2. 
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Lipid synthesis from deuterated glucose. The cells were seeded on round 

coverslips in 24-well plates at 50,000 cells/well with 1mL advanced DMEM culture 

medium. For the first experiment that tested the system’s capability to visualize the 

deuterated carbon flow, 6 wells of the cells were switched to deuterated culture medium 

and another 6 wells of the cells were switched to fresh normal culture medium. The cells 

were cultured at 37°C and 5% CO2 for 24 hours before imaging.  

For lipid dynamic studies, the advanced DMEM culture medium was changed to 

serum free medium for cell cycle synchronization for 12 hours. After synchronization, the 

control groups (6 wells) were replaced with deuterated culture medium and DMSO and 

the experimental groups (6 wells) were replaced with deuterated culture medium and 

17β-estradiol (10-8 M). After 24 hours of culturing, we switched all the wells to normal 

advanced DMEM/F-12 culture medium (considered T=0). We fixed one well of control 

group and experiment group at times T=0h, 3h, 6h, 9h, 12h and 24. For the experiment 

that studied the correlation between glucose metabolism and lipid synthesis rate, 6 

imaging dishes of cells were prepared. All the cells were changed to serum free medium 

for cell cycle synchronization for 12 hours. After synchronization, all the dishes were 

washed. We added deuterated culture medium with vehicle control to 3 imaging dishes 

and deuterated culture medium with 17β-estradiol (10-8 M) to the other 3 dishes. The 

cells were cultured at 37°C and 5% CO2 for 24 hours and imaged with TPEF following 

SRS imaging. The temperature of the culture medium was kept constant at 37°C to get 

accurate measurements on the cellular redox states. In all the experiments, five locations 

were randomly imaged in each well or imaging dish. 
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3.4 Quantitative	analysis	

The fluorescent intensities of NADH and FAD+ were calibrated with the fluorescein 

reference sample as, 

I+,-. = I − I1.2 ∗
I456
I4567

 

in which, I+,-. is the calibrated signal, I is the direct measured signal intensity, I1.2 is the 

minimum intensity in the image,	I456 is the mean intensity of the fluorescein sample 

measured before the experiment and I4567 is the mean intensity of the reference sample 

measured at day 1.  

For TPEF images, the background noise, cytoplasm, and cell nucleus wre 

separated by the three component Otsu algorithm. The redox ratio 

(FAD+/(NADH+FAD+)) was calculated in the cytoplasm regions pixel by pixel. For 3D 

experiments, the redox ratios of all cells in the entire 3D volume were averaged and 

stored as a representative redox ratio for the whole acinus. And for 2D experiments, the 

redox ratios of all cells in the field of view were averaged. Lipids are detected based on 

their CARS intensity. A four component (background, cell nuclei, cytoplasm and lipid 

droplets) Otsu thresholding algorithm was used to get the area of cytoplasm. We use the 

number of pixels of lipid droplets over the number of pixels of cytoplasm to estimate the 

lipid percentage. 

In Matlab, we first did fast Fourier transform to all the SRS images to get rid of 

background noises. Then, we removed nonspecific signals by subtracting off-resonant 

SRS images from SRS images of normal lipid distribution and deuterated signals. The 

processed images were exported and saved as TIFF files. The background-subtracted 
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normal lipid SRS images and the matching deuterated lipid SRS images were opened in 

ImageJ. We manually selected out the lipid droplets and used the average intensities 

within the regions of interests to calculate the dLD/LD ratios. Fifteen to twenty different 

droplets were analyzed in each field of view and fifty droplets were included for 

statistical analysis for each group. 

For hyperspectral SRS stacks, we used vertex component analysis (VCA) to 

retrieve the three most prominent spectral features from the images. The VCA algorithm 

was written with Matlab and discussed in detail in [100]. The three main spectral 

components were identified as end members and were assigned different colors (red, 

green and blue in this case). Each hyperspectral cube of each pixel was fitted with linear 

combination of the three components and given a corresponding RGB color. The redox 

ratio and lipid percentage measurements during the acini formation were tested with 

linear mixed model to validate the increasing trend of metabolic rate at different days. 

The metabolic measurements between different cell lines and before and after drug 

treatments were tested with two components ANVOA tests. A significance level less than 

0.05 were used for all statistical analysis. 
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Chapter	4		

Correlating	optical	redox	ratio	with	
normalized	cellular	oxygen	consumption	

	
4.1 Introduction	

Because	of	their	role	in	mitochondrial	electron	transport,	the	relative	fluorescence	

intensity	of	NADH	and	FAD+,	defined	as	the	“optical	redox	ratio	(ORR)”,	can	be	used	to	

estimate	the	contribution	of	oxidative	phosphorylation	versus	glycolysis	in	cellular	ATP	

production	[101,	102].	

 
However, quantifying and interpreting the ORR is challenging. The measured 

fluorescence intensity overlaps with the emission of additional fluorophores. NADPH 

and NADH, in particular, have similar excitation and emission spectra and cannot be 

differentiated easily [103]. Moreover, the fluorescence quantum yields of NADH and 

FAD+ are affected by their binding state to other metabolic enzymes [104, 105]. In order 

to test the robustness of the ORR for measuring cell metabolism, a number of studies 

have attempted to validate the correlation between ORR and the oxidation-reduction ratio 

of NAD+/NADH [29, 106]. Among them, Kyle et al. [107] used liquid 

chromatography/mass spectrometry and found that while the fluorescence intensities of 

FAD+ and NADH are not correlated with their actual intracellular concentrations, the 
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ORR is significantly correlated with NAD+/NADH. However, no work has been reported 

to evaluate the stability and accuracy of ORR in living, dynamic biological samples.  

 

4.2 Experiment	details	

In this work, we use TPEF to measure ORR in living MDA-MB-231 breast cancer cells 

under normal culture conditions and in MCF7 breast cancer cells to dynamically measure 

metabolic changes in response to a series of mitochondrial inhibitors and uncouplers 

(oligomycin, carbonyle cyanide-4-phenylhydrazone (FCCP) and rotenone/antimycin A).  

The ORR, defined as FAD+/(NADH + FAD+), was calculated from dual wavelength 

excitation TPEF images, as discussed below. TPEF results were compared to seahorse 

flux analysis (Seahorse XFe24, Seahorse Bioscience) of the cellular oxygen consumption 

and proton production rates (OCR and PPR, respectively). Seahorse flux analysis is a 

standard metric that directly reflects average cell oxidative phosphorylation and 

glycolysis rates [108]. To compare results from the Seahorse flux analyzer to the ORR, 

we used a normalized oxygen consumption rate (defined as n-OCR = OCR/PPR) for all 

our analyses.  

MDA-MB-231 and MCF7 breast cancer cells were cultured in SILAC DMEM 

flex medium (A2493901, Life Technologies) supplemented with 6mM glucose, 0.85mM 

L-arginine and 0.6mM L-lysine, 5% fetal bovine serum and 1% glutaMAX (35050-061, 

Life Technologies). Cells were detached from plates using 2% EDTA in 1x PBS, counted 

with a hemocytometer and then plated 16 hours prior to experiment. We plated 80,000 

cells/well in XF24 cell culture microplates (#V7-PS, Seahorse Bioscience) for Seahorse 

analysis and 50,000 cells/dish on imaging dishes (fd35-100, World Precision Instrument) 
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for ORR measurements. An hour ahead of the Seahorse experiment, cells were washed 

twice with 1 mL of XF Base Medium (#102353-100, Seahorse Bioscience) before adding 

450 µL XF complete Medium (Base Medium + 25mM glucose + 2mM glutamine + 1mM 

sodium pyruvate) and incubated at 37 °C with 0% CO2.  Standard protocols for Seahorse 

flux assay calibration and analysis were employed. All Seahorse flux data were 

normalized to total protein content measured by BCA Assay (#23225, Thermo Scientific) 

at the end of the experiment, assuming tight correlation between the protein content and 

cell numbers per well. The ORR of the cancer cells was measured with a commercial 

Zesis LSM510 microscope equipped with a tunable ultrafast laser source (Chameleon, 

Coherent Inc.). In each dish, three locations were randomly selected and imaged. The 

fluorescence of NADH (excited at 740nm and collected at 380nm±50nm) and FAD+ 

(excited at 900nm and collected at 530nm+/- 50nm) was excited and collected in the epi 

direction sequentially. Two dishes were prepared for each cell line. We used 1 µM 

Oligomycin, FCCP, and Antimycin A/Rotenone in sequence on live MCF7 cells and 

studied the dynamic changes of cell metabolism by the ORR and Seahorse flux analysis 

on individual cell lines employing the same protocol. Both ORR and normalized oxygen 

consumption rate (n-OCR) were acquired every 5 minutes for a total of ten measurements 

in 45 minutes. Following baseline measurements (T=0), Oligomycin was added and three 

measurements were performed (T=5, 10, 15). FCCP and Antimycin A/Rotenone were 

added in a similar manner, right after T=15 and at T=30, respectively, and following 

completion of three ORR/n-OCR measurements.  Identical image planes and constant 

laser power were maintained for all measurements. We used a freshly-prepared 

fluorescein solution (0.02 uM at pH7) as a reference sample for calibrating all 
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measurements. The image intensities were adjusted based on the fluorescein reference 

images and analyzed with ImageJ. The region of the cytoplasm of each cell was manually 

selected to calculate the ORR and compared to the normalized oxygen consumption rate 

measured by flux analyzer. For statistical analysis, we included the data from 12 wells for 

the flux analyzer (approximately 50,000 cells/well and 3 wells for each cell line) and 25 

cells for optical redox ratio. 

 

4.3 Results	and	discussion	

Figure 4.1 shows typical images of NADH (1a) and FAD+ (1b) of MDA-MB-231 cells in 

the same field. Average intensities within the cytoplasm region of interest (ROI) were 

used to calculate the ORR. Both Seahorse flux analyzer (n-OCR) and ORR showed 

higher oxidative phosphorylation rates for MDA-MB-231 cells vs MCF7 cells (tested 

with two-tailed ANOVA, p<0.05) (Figure 1c). Similar observations for these two cell 

lines were reported by Walsh et al. using fluorescence lifetime based ORR estimates [29].  

Differences in ORR are likely due to the cancer phenotype; highly metastatic MDA-MB-

231 cells have relatively high mitochondrial biogenesis and oxidative phosphorylation 

rates mediated by PGC-1α [16].  
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Figure 4.1. Metabolic measurements of tumor cells under normal culture conditions. (a)  TPEF of MDA-

MB-231 cells, NADH channel; (b) TPEF of MDA-MB-231 cells, FAD+ channel. The outlined region of 

interest (ROI) selects cellular cytoplasm for calculation of the optical redox ratio (ORR). (c) Normalized 

oxygen consumption rate (n-OCR) and the ORR for MCF-7 and MDA-MB-231 cells. The measurements 

from each cell line are compared with two-tailed ANOVA. Both measurements demonstrate statistically 

different metabolic rates for MCF7 cells and MDA-MB-231 cells (p<0.05). The error bars for n-OCR come 

from the standard deviation of 12 different wells (50,000 cells/well) and the error bars for ORR come from 

measurements on 25 different cells. 

	

Figure 4.2 shows the metabolic response of MCF7 cells to the mitochondrial 

inhibitors and uncouplers measured by both TPEF and seahorse flux analysis.  The ORR 

changes are similar to the n-OCR ratio measured independently with Seahorse 

experiments. After adding oligomycin, the cell mitochondrial proton channels are 
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blocked and energy is provided primarily by glycolysis. The inhibition of oxidative 

phosphorylation is reflected by the substantial reduction in n-OCR and ORR. The 

subsequent addition of FCCP uncouples ATP synthesis from electron transport and 

recovers the cells from the effects of oligomycin. Both n-OCR and ORR return to values 

that are close to baseline. Finally, Rotenone/Antimycin A was added to stop the passing 

of protons to Coenzyme Q (CoQ), completely shutting down oxidative phosphorylation 

and dropping n-OCR and ORR to their lowest levels.  

 

Figure 4.2. Dynamic monitoring of MCF7 cell metabolism by TPEF microscopy (circles, dashed line) and 

Seahorse flux analyzer (diamonds, solid line). Cells in regular culture conditions were measured at time 0 

and then treated with Olygomycin, FCCP and Rotenone/Antimycin A at T = 0, 15 and 30 minutes in 

sequence. The n-OCR and ORR were measured every 5 minutes. The error bars for n-OCR come from the 

standard deviation of 12 measurements and the error bars for ORR come from measurements on 25 

different cells. 
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Figure 4.3. The ORR is significantly correlated with the n-OCR (R=0.7901, p<0.001). The circles are from 

the dynamic study of MCF7 cells, the squares and triangles come from the measurements of MDA-MB-231 

and MCF7 cells, respectively, under normal culture conditions. The black line is the general linear fit with 

all the data points. Each data point represents an average value from 12 flux analyzer measurements and 25 

cells from TPEF. The error bars are calculated as the standard deviation of corresponding measurements 

 

To evaluate the correlation between the ORR and n-OCR, we pooled the data 

acquired from measurements of the two cell lines under both static (Figure 4.1) and 

dynamic (Figure 4.2) conditions and evaluated it using a linear regression model (Figure 

4.3). Elevated ORR values are correlated with higher cellular n-OCR.  Under these 

conditions we expect that the relative contribution of oxidative phosphorylation to 

cellular energy production would be higher than that of glycolysis.  A decrease of ORR 
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implies a metabolic shift from oxidative phosphorylation towards aerobic glycolysis in 

cancer cells. And in our experiments pure anaerobic glycolysis under 

Rotenone/Antimycin A treated condition is accompanied by the lowest n-OCR and ORR. 

The overall correlation is highly significant (R=0.7901, p<0.001). 

 

 

4.4 Concluding	remarks	

In summary, we demonstrate that the ORR derived from dual wavelength TPEF of 

intrinsic NADH and FAD+ cofactors strongly correlates with Seahorse flux analysis of 

the cellular metabolic rate of oxygen consumption. Our results, obtained from two 

different breast cancer cell lines under both static conditions and dynamic perturbations 

of mitochondrial function, suggest that the ORR is a simple yet robust imaging index of 

cancer cell metabolism that can be used across a broad range of oxygen consumption 

conditions. 
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Chapter	5	

Monitor	metabolic	response	in	3D	breast	
cancer	model	

	

5.1 Introduction	

Despite the generality of the Warburg effect, determination of the glycolytic rate in cells 

alone is often insufficient to classify cell malignancy. This is because normal cells can 

also present a high rate of glycolysis as regulated by environment, cell function and 

endocrine factors [109, 110]. For example, endothelial cells display a high glycolytic rate 

when phosphofructokinase-2/fructose-2,6-bisphosphatase3 (PFKFB3) activity is high, 

which is known to correlate with its antigenic capacities [111]. Insulin can also affect 

cellular glucose metabolism through sterol responsive element binding protein-1c 

(SREBP-1c) [112].  

To improve the assessment of cellular health in the context of its glycolytic rate, 

glucose metabolism can be correlated with other metabolic observables in the cell. In 

many cancers, including breast cancer, metabolic reprogramming benefits biomolecule 

synthesis to meet the high demand of biomass for mitosis. In mammary epithelial cells, 

an important end product of cellular biosynthesis is milk fat [113]. It is well known that 

breast cancer is associated with altered lipid metabolism, which is manifested in changes 

in intracellular lipid quantities [114]. Correlating the cellular glycolytic rate to lipid 

metabolism in breast cells thus represents an improved strategy for assessing cell 
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malignancy based solely on metabolic observables. Importantly, both glucose and lipid 

metabolism can be monitored with label-free optical microscopy techniques, offering a 

route to assess cellular health in vivo in a potentially non-invasive manner.  

In this work, we use multi-modal nonlinear optical microscopy to characterize 

both glucose and lipid metabolism in normal and breast cancer cells. By correlating 

several complementary NLOM intrinsic signals, we show that diseased cells can be 

differentiated from normal cells, and that their level of invasiveness can be charted. 

Specifically, we employ two-photon excitation fluorescence (TPEF) to determine the 

cell’s glycolytic rate as reported by the ratios of metabolic coenzymes (FAD+ /(NADH+ 

FAD+)) [115-117], and coherent Raman scattering (CRS) microscopy [99, 118-120] to 

probe intracellular lipid content and de novo lipid synthesis.  In addition, we map the 

extracellular matrix (ECM) in 3D organotypic tissues by visualizing second harmonic 

generation (SHG) signals from collagen, a major component of ECM [121].  

The combination of these imaging techniques enables the evaluation of glucose 

and lipid metabolism in live cells with minimum interruption.  We examine metabolism 

in primary mammary epithelial (PME) cells, and in two lines of breast cancer cells, T47D 

and MDA-MB-231 cells. To mimic the conditions in tissue, the cells are cultured in 3D 

in a matrigel/collagen mixture, displaying gene expression that is similar to what is seen 

in the body [122]. Under these conditions, the cells form physiologically-relevant acini 

structures. Using this platform, we show that label-free metabolic signatures can be used 

to fully distinguish between mature PME, T47D and MDA-MB-231 acini. We further 

confirm the sensitivity of the combined glycolysis/lipid metabolism metric by observing 

the cellular response after treatment with 17β-estradiol (E2), showing clear changes in 
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both cellular metabolism and ECM interactions that correlate with invasiveness. Finally, 

we use deuterated glucose and CRS detection [98, 123, 124] to track the flow of carbon-

hydrogen units in individual cells and establish a direct link between glycolytic activity, 

lipid synthesis and lipid consumption. By correlating these observables, we show 

evidence that cancer cells respond to invasiveness stimuli with adapted metabolism, 

increasing both lipid synthesis and lipid consumption.  

	

5.2 Experiment	details	

We used NLOM imaging to monitor the metabolic changes of PME cells during acini 

formation and measured the changes of redox ratio and lipid content of ten randomly 

chosen acini every other day for 12 days. We picked three different cell lines (PME, 

T47D and MDA-MB-231 cells) and cultured in 3D for 12 days. Different cell lines 

displayed varying morphologic features determined by their pathologic characteristics. 

We also measured the metabolic signatures in 3D spheroids for different breast cell lines 

a day 12.  

 

5.3 Results	 

We used NLOM imaging to monitor the metabolic changes of PME cells during the 

formation of acini (fig. 5.1). Two-photon excited fluoresce (TPEF) was used to measure 

the optical redox ratio (ORR = FAD+/(NADH + FAD+)) while lipid content was 

measured using coherent anti-Stokes Raman scattering (CARS). Fifteen randomly chosen 
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acini were followed every other day for 12 days. Figure 5.1a-i shows ORR distributions 

and CARS images of cross sections of one representative PME acinus at days 4, 8 and 12.  

PME cells had low optical redox ratios when first seeded into the matrigel/collagen 

mixture. Average ORRs started to increase but were not significantly different over the 

first three days. On day 4, we observed early formation of spheroids by multiple PME 

cells with homogeneous ORR values. From day 4 to day 10, the spheroids grew larger 

and the average ORR surged from 0.15 to 0.19 (p<0.01). Cell clusters started to display 

spatial variations in the metabolic distribution around day 8 (fig 5.1d) with ORR 

increasing from exterior to interior. The two distinct cell populations contributed to the 

observed increase in standard deviation of the mean ORR on day 8. Cell metabolism 

remained on the same level from day 10 to day 12. Moreover, the cells in the center that 

demonstrated abnormally high optical redox ratios disappeared and left a hollowed center 

(fig 5.1g). A single layer of PME cells formed alveolar structures that strongly mimicked 

normal mammary glands. ORR values in the remaining cells increased by ~50% 

compared to initial seeding cells.  

We also observed an increase in cytoplasmic lipid content during acinus formation. 

Typical CARS cross-sectional images are shown in fig 5.1b, e and h. The bright spots are 

CARS signals from lipid droplets while the overall cell morphology can be visualized by 

the non-resonant CARS background. We observed near-zero lipid content in cells first 

seeded into the gel. However, the cells started to accumulate lipid at day 4 and the total 

amount of lipid droplets increased ~10 fold after another 6 days of culturing. The total 

lipid content reached a plateau and became stabilized after 12 days of culturing. 
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NLOM provided sufficiently high spatial and temporal resolution to observe 

coordinated changes in glucose and lipid metabolism in single cells during the process of 

acinus formation. A linear mixed model was used to show that both the ORR and lipid 

content increased significantly over time (p<0.01). Multiple stages of development were 

observed, suggesting that a minimum time is required for each acinus to become mature. 

For this purpose, all of the subsequent experiments were conducted on acini cultured for 

12 days. 

 

Figure 5.1. The cellular metabolic changes during acini formation. Representative TPEF (a, c, e) 

and CARS (b, d, f) images of the acini acquired at days 4, 8 and 12. TPEF images provide 

information about the redox ratio distribution inside the acini. Redox ratio of the acini structure is 

color coded based on the color bar on the left side. CARS images show the lipid distribution inside 

the acini structure (g) The redox ratio and lipid content of 15 randomly chosen acini structures are 

studied for 12 days. Each data point in the plot is an average of the 15 acini structures. The 

average redox ratios (diamond blue line) and lipid contents (square red line) were plot with respect 

to time. The error bars represent standard deviation of 15 independent measurements. 



	48	

 

We also measured the metabolic signatures in 3D spheroids for different breast 

cell lines. Figure 5.2 shows TPEF images (a-c) and CARS images (d-f) corresponding to 

the cross sections of PME, T47D and MDA-MB-231 cells cultured in 3D on day 12. 

Different cell lines displayed varying morphologic features determined by their 

pathologic characteristics. As described above, normal cells form spheroids with a hollow 

center that mimic normal mammary alveolar structures (fig. 5.2a and d). However, the 

highly proliferative T47D ER+ breast cancer cells formed spheroid structures but with a 

solid center filled with cells (fig. 5.2b and e). The highly metastatic triple negative MDA-

MB-231 cancer cells did not form any growth-arrested structures and spread out through 

the entire matrix (fig 5.2c and f). 

Aside from these morphological differences, the three different cell lines had 

different metabolic signatures corresponding to their phenotypes. In figure 5.2g, the 

average ORR and lipid content of each cell line are compared. The ORR for normal 

breast epithelial cells (PME) was significantly higher than for the two malignant cancer 

cell lines (p<0.01). The ER+ T47D cell lines were the most glycolytic (lowest ORR), 

while the ORR for MDA-MB-231 was significantly higher than for T47D cells (p=0.013) 

but lower than normal. Our observations not only show that the cancer cells are more 

glycolytic compared with normal cells (Warburg effect) but also demonstrate that glucose 

metabolism can vary between breast cancer subtypes. Lipid content from the same acini 

was measured using CARS. All the breast cancer cell lines exhibited much lower lipid 

storage compared with normal breast cells. The lipid content in the PME cells was 2.5 

times higher than in the T47D cell lines; and the triple negative breast cancer cells had a 
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lipid storage fraction close to 0 (fig. 5.2d-f). The three cell lines demonstrated dramatic 

differences in lipid droplet content and were well-separated with this parameter (fig. 

5.2g). 

 

 

Figure 5.2. The cellular metabolic signatures of three cell lines. TPEF images of the acini cross sections of 

PME (a), T47D (b) and MDA-MB-231 (c) cell lines. CARS images of the acini cross sections of PME (a), 

T47D (b) and MDA-MB-231 (c) cell lines. (g) The redox ratio (blue) and lipid content (red) of three 

different cell lines are compared. Both the redox ratio and lipid content of the three cell lines were 

significantly different from each other. (h) The metabolic map of three different breast cell lines. PME, 

T47D and MDA-MB-231 cells are plot based on their redox ratio and lipid content. Each point in the 

metabolic map represents an average of all the cells in an acini structure. The error bars represent standard 

error calculated from 15 independent measurements. The scale bar 10um. 
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After combining the glucose and lipid metabolism of each acinus, we constructed 

a metabolic “map” with axes representing ORR and lipid content (fig 5.2h). Each dot in 

the scatterplot is derived from measurements of one acinus on day 12 (~50-200 cells per 

acinus). As shown in the figure, PME, T47D and MDA-MB-231 cells were clearly 

distinguishable in the 2D scatterplot based on their metabolic signatures. 

 

5.4 Discussion	

We report that multiple metabolic changes at the single cell level can be visualized during 

normal acinus formation, tumor spheroid growth, and cancer cell proliferation using 

multi-modal NLOM. Using CRS and TPEF microscopy, we captured glucose and lipid 

metabolic differences between normal primary mammary epithelial cells and two 

different cancer cell lines.  In addition, we observed the differential impact of hormonal 

stimulation on normal vs cancer cells grown in a 3D collagen-rich matrix.  Making use of 

deuterium labeling of glucose, we observed a correlation between cancer cell metabolism 

and cancer invasiveness, which originated from the utilization of glucose-derived carbons 

in support of cellular biosynthesis.   

Normal mammary epithelial cells exhibit three distinct metabolic phases during 

acinus formation, characterized by gradually increasing lipid accumulation and 

progressive redox state changes from glycolysis to oxidative phosphorylation (Fig. 1). 

Early in the process (days 1-4), cells have lower optical redox ratios and low lipid 

accumulation. At this stage, acini are composed of 1-8 cells each with significant cell-

ECM contact but little cell-cell interaction. Interactions with the ECM and the low 
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activation of focal adhesion kinase (FAK) promotes cell cycle progression [38]. Under 

these conditions, cells start to prepare for proliferation by increasing biosynthesis of 

DNA, organelles, membranes, etc. To meet the high demand for biomass, glucose is 

utilized not only for providing energy but also as a source of carbon-based biomass. The 

metabolite of glucose, citrate, is converted to acetyl-CoA and used for lipid and 

nucleotide production [39]. The amount of lipid droplets stored in the cytoplasm is seen 

to decrease, either to fuel biological activities or to synthesize cell membranes. As the 

acini grow, cell-cell contact arrests/inhibits proliferation rates through the Hippo/YAP 

pathway [40]. At this time point, the cells no longer need large amounts of biomolecule 

synthesis and switch back to oxidative phosphorylation to more efficiently produce ATP. 

Due to the low usage of lipid, the lipid droplets reappear in the cytosol. This stage of the 

acinus growth process gives rise to an increase in the optical redox ratio and lipid content 

from day 4 to day 8, when the acini generally grow to a size of 18-24 cells. Finally, by 

day 10-12, both the ORR and lipid content are stabilized, indicating the formation of a 

mature acinus. 

Interestingly, we observe spatial variations in metabolism in the polarized acinus 

around day 8. The ORR images reveal that apical cells in the center have a higher 

oxidative rate while the peripheral basal cells are more glycolytic. This is likely due to 

gradients that drive nutrient and signaling differences. Tissue polarity has been shown to 

be essential for mammary epithelial cells to form healthy alveolar structures and maintain 

normal breast function [41]. Only basal cells are directly exposed to signaling from the 

ECM, especially from the binding of β4 integrin and laminin I [42]. The cells in the 

center of the acinus have high cell contact inhibition and lack hemidesmosome formation 
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and NFκB activation which promotes cell apoptosis [43]. These cells exhibit increased 

ORR levels and disappear in 2-4 days, leaving a hollow center in the acinus. Indeed, the 

increase of ORR is a predictor for cell apoptosis [44]. The increase of ORR as a predictor 

for cell apoptosis has been reported [130]. Moreover, the availability of glucose and 

oxygen is location sensitive in polarized acini structures. The high polarity of exposure to 

nutrients and signaling has been shown to be essential for mammary epithelial cells to 

form healthy alveoli structures and maintain normal breast function [131]. All these 

observations were enabled by the high resolution of NLOM as two populations of PME 

cells with distinctive redox ratios and cell fate were identified.   

Compared to normal epithelial breast cells, acini formed from cancer cells display 

altered morphologies. The T47D acinus has a solid core whereas acini grown from MDA-

MB-231 cells feature irregular shapes. The appearance of cells in our 3D cultures 

strongly mimics observations from patient biopsies; normal breast tissue features tubular 

alveolar structures, ductal carcinoma in situ presents cell proliferation towards the lumen, 

and the cancer cells in invasive ductal carcinoma infiltrate into the stromal tissue [45]. 

We observe that each cell line examined here has distinctive NLOM-derived metabolic 

signatures. As predicted by the Warburg effect, T47D and MDA-MB-231 cancer cells are 

found to be more glycolytic compared to normal breast cells. The two malignant cancer 

cell lines are also characterized by significantly different optical redox ratios. Previous 

studies reported similar observations by monitoring glucose metabolism alone to separate 

distinct breast cancer subtypes [13, 23, 46, 47]. Our study expands on previous work by 

adding lipid content as an additional defining feature, motivated by recent work that 

suggests that abnormal lipid metabolism can be another hallmark for various cancers [48]. 
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Cancer cells prefer de novo lipid synthesis and have been observed to upregulate fatty 

acid synthesis (FASN) enzyme expression. ERBB2, PI3K, ATP citrate lyase and various 

reported mutations in cancers are also known to affect lipid metabolism [20]. Thus, the 

combination of lipid content and ORR provides additional quantitative information that 

refines our ability to characterize cancer cell metabolism beyond what can be determined 

from each parameter separately.This is the first time that lipid content has been added as 

an additional defining feature. In fact, the lipid content in the three cell lines varies more 

dramatically (27-fold range) than the optical redox ratio (~1.2X). More and more 

researches pointed out that the abnormal lipid metabolism can be another hallmark for 

cancers [135].  
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Chapter	6		

Cancer	metastasis	and	their	metabolic	
signatures	

	
6.1 	Introduction	

Breast tissue is known to be a dynamic site of lipid metabolism[136] and LD abundance 

changes dramatically during development[137, 138], menstruation, pregnancy, and 

lactation[139]. LDs are formed by budding off the endoplasmic reticulum (ER) and store 

fatty acids (FAs) in the form of diacyl- and triacylglycerol (DAG and TAG, respectively) 

and cholesterol in the form of cholesteryl esters. LDs interact with a multitude of 

organelles (i.e. peroxisomes, autophagosomes, and mitochondria) to shuttle FAs for 

incorporation into cell membranes, post-translational modifications, and FAO[140]. In 

order for long chain FAs to enter any of these pathways they must first be activated to 

become acyl-CoAs. Long-chain (12-20 carbons) FAs are activated by typical acyl-CoA 

synthetase ligase (ACSL) enzyme family, including members 1, 3, 4, and 5[141]. Acyl-

CoAs may enter FAO, which yields acetyl-CoAs utilized in the tricarboxylic acid cycle 

(TCA), generating nicotinamide adenine dinucleotide (NADH) utilized for oxidative 

phosphorylation (OxPhos) to ultimately produce adenosine triphosphate (ATP).  

Dysregulated lipid metabolism and FAO have recently been linked to breast 

cancer progression. Photoacoustic imaging of the MMTV-PyMT-driven breast cancer 
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model demonstrated that transformation of normal breast tissue to invasive carcinoma 

resulted in a progressive decrease of cytoplasmic LD abundance[142]. In line with this, 

pharmacological activation of peroxisome proliferator-activated receptor γ (PPARγ) 

caused accumulation of LDs in breast cancer cells and decreased their proliferation[143]. 

Furthermore, Src[144] and Myc[145] oncogenes were recently reported to contribute to 

lipid metabolism dysregulation in TNBC. Src kinase has been reported to stimulate FAO 

in a positive feedback loop, and pharmacological and genetic inhibition of FAO blocked 

TNBC metastasis in vivo[144]. Myc has also been reported to stimulate FAO and 

pharmacological inhibition of FAO blocked tumor growth of Myc-driven TNBC 

tumors[145]. These data indicate that lipid metabolism represents a potential therapeutic 

target in TNBC.  

	

6.2 	Experiment	details	

We observed that tumor cells that had different levels of invasiveness presented different 

metabolic signatures. Thus, we tested whether the metabolic differences were due to 

different levels of cancer invasiveness. 17β-estradiol was known to increases the cancer 

invasiveness in ER+ breast cancers and affects the cancer response to chemotherapy 

[146]. However, the presence of E2 is crucial for normal organ development and 

functions including breast milk secretion [147, 148]. We added 17β-estradiol to both 

matured T47D (ER+ breast cancer cell lines) and PME (normal) acini at physiologically 

relevant concentrations (10-8 M) and monitored the acini morphological and metabolic 

responses after 3 days. 
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6.3  Results  

We observed that tumor cells that had different levels of invasiveness presented different 

metabolic signatures. Thus, we tested whether the metabolic differences were due to 

different levels of cancer invasiveness. 17β-estradiol was known to increases the cancer 

invasiveness in ER+ breast cancers and affects the cancer response to chemotherapy 

[146]. However, the presence of E2 is crucial for normal organ development and 

functions including breast milk secretion [147, 148]. We added 17β-estradiol to both 

matured T47D (ER+ breast cancer cell lines) and PME (normal) acini at physiologically 

relevant concentrations (10-8 M) and monitored the acini morphological and metabolic 

responses after 3 days. 

The PME cells did not show any morphology change with or without E2. 

However, the T47D breast cancer cells demonstrated higher numbers of broken acini 

(p<0.01) and a remodeling of the collagen fibers. In the control group (untreated with E2), 

78% of the T47D cell clusters remained as spheroids which were wrapped with arbitrarily 

oriented collagen fibers (fig. 6.1a). However, 84% of the acini were no longer growth 

arrested and showed one or more extrusions of cancer cells after E2 treatment (fig. 6.1b). 

All the treated spheroids exhibited a visible remodeling of the ECM at the broken sites. 

Instead of organizing in a direction normal to the spheroid surface, the collagen fibers 

were highly polarized and aligned in the direction of extruded cancer cells, a structural 

feature that can benefit invasion [149].  

Glucose and lipid metabolism were recorded for both PME and T47D cells treated 

with either DMSO (control) or E2 (fig 6.1c). The optical redox ratio of E2-treated PME 

cells decreased slightly from 0.34 to 0.32 (p=0.04), however the ORR of T47D cancer 
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cells dropped about 30% (p<0.01) when treated with E2. In contrast, lipid droplet content 

increased significantly in E2-treated PME cells (p=0.02) while the lipid content of T47D 

cells diminished by half (p=0.03).  The effects of E2 on cell metabolism are shown in a 

metabolic scatter map and trends denoted with arrows (fig 6.1d).  An increase in cancer 

invasiveness is observed to accompany metabolic adaptations to E2, wherein cancer cells 

become more glycolytic and have lower lipid content. Despite E2 stimulation, PME cells 

preserve acini structural integrity and demonstrate significant lipid accumulation that 

matches normal mammary epithelial cell function. 

An increase in cancer invasiveness is observed to accompany metabolic 

adaptations to E2 wherein cancer cells become more glycolytic and have lower lipid 

content. Despite E2 stimulation, PME cells preserve acini structural integrity and 

demonstrate significant lipid accumulation that matches normal mammary epithelial cell 

function. 

Our NLOM redox measurements are consistent with cancer cell Warburg 

metabolism and have been observed extensively in previous studies [7]. However, it is 

unclear from our lipid imaging results whether the inverse relationship between lipid 

accumulation and invasiveness is a consequence of impaired storage/synthesis or 

enhanced lipid utilization.  In order to further explore these redox/lipid signatures, we 

used deuterium labeling and stimulated Raman scattering (SRS) microscopy to track 

carbon flow starting from glucose [123]. SRS microscopy probes different chemical 

vibrations by adjusting the optical frequency difference between two incident laser beams 

(pump and Stokes). In our experiment, we kept the optical frequency of the Stokes beam 

constant and tuned the optical frequency of the pump beam to image both natural 
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aliphatic lipids (Raman shift is 2850 cm-1) and deuterated hydro-carbons (Raman shift is 

2175 cm-1). 

 

Figure 6.1. The morphological and metabolic changes with different cancer invasiveness. (a) the cross 

section of T47D acini before treated with E2; (b) the cross section of T47D acini after treated with E2. In 

both images, the NADH (green) is excited with TPEF, the collagen (blue) measured with SHG and the lipid 

droplets (red) are imaged with CARS. The scale bar is 10um. (c) The glucose and lipid metabolic response 

of T47D breast cancer cells and PME cells to E2. Both cell lines show statistically significantly different 

redox ratio and lipid content. (d) The combination of glucose and lipid metabolism of PME cells and T47D 

cells before and after adding E2. The solid circles and squares are the PME cells and T47D measurements 

before the adding the E2. The hollowed circles and squares are the cell metabolic measurements after 

treated with E2. Each single data points represent an average of all the cells in a whole acini structure. The 

purple arrows indicate the metabolic changing trend induced by adding E2. 
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Figure 6.2. the SRS images of cells cultured in normal (a and b) and deuterated (d and e) glucose medium. 

(c) Normalized representative Raman spectrum of the pure deuterated glucose solution and the droplet 

structure pointed out by the arrow. The spectrum is acquired with confocal Raman microscopy and the data 

from 2000 cm-1 to 2250 cm-1 was normalized and shown here. (f) Pseudo color image of lipid (red), water 

(blue) and protein (green) for (e) based on vertex component analysis. (g) Representative spectrum of lipid 

that correspond to red pixels in (f). (h) Representative spectrum of water that correspond to blue pixels in 

(f). (i) Representative 
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We first tested the system sensitivity by imaging the T47D cancer cells cultured 

in normal and deuterated glucose medium.  The SRS images of cells cultured under both 

conditions exhibited similar levels of normal lipid droplet formation (fig. 6.2.a and d) but 

only the cells cultured with deuterated glucose exhibited signals at the Raman shift of 

2175 cm-1 (fig. 6.2.b and e). The Raman spectrum of droplets with deuterated material 

(pointed out by the arrow) was distinct from the Raman spectrum of deuterated glucose 

(fig. 6.2.c), underscoring that the hydrocarbon units originally derived from glucose were 

incorporated in newly synthesized and chemically distinct compounds in the droplets. We 

also collected hyperspectral SRS images in the 2800 cm-1 to 3050 cm-1 range and 

identified three major chemicals (lipid, water and protein) by vertex component analysis. 

The deuterated compounds were found to co-localize only with lipid droplets (red) (fig. 

6.2.f) and confirmed the system capability to track the carbon flow in live cells for lipid 

synthesis.  

 

PME, T47D and T47D breast cancer cells treated with E2 were cultured in 2D 

with deuterated glucose medium. After incubation for 12 hours, we measured the ORR, 

normal lipid droplet fraction (LD), and deuterated lipid droplet fraction (dLD) in the three 

groups (fig. 6.3). The amount of glucose-derived lipid was evaluated with the ratios of 

dLD/LD. Figure 4 a-c shows representative SRS images of normal lipid distribution for 

each group. The glucose-derived lipid droplets were visualized in the deuterium region 

(fig. 6.3d-f). Moreover, we observed newly synthesized lipid deposited at the outside of 

existing lipid droplets which formed donut-shaped dLDs (fig. 6.3f inset). PME cells 

exhibited ~3-fold greater levels of normal lipid accumulation compared with T47D cells 
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(p<0.01). The normal lipid content further decreased by 58% in the T47D cells treated 

with E2. However, T47D cells had elevated levels of deuterated lipids and the dLD/LD 

ratios were 5 times higher compared with PME cells (fig. 6.3 d and e). ER activated 

cancer cells exhibited stronger deuterated lipid signal intensities and the average dLD/LD 

ratio was 1.4 times higher (p=0.03), indicating increased lipid synthesis rates (fig.6.3 e 

and f). 

 

To probe the lipid utilization rate with and without ER activation, we performed a 

pulse-chase experiment. T47D cells were first exposed to deuterated glucose medium for 

~12 hours before switching to normal glucose medium. The SRS images of normal 

cellular lipid content and deuterated lipids were acquired at different time points to 

determine the average intensity ratios of dLD/LD. Figure 6.3.i-j shows representative 

images of deuterated signals measured at T = 0h, 6h and 12h. The deuterated signals 

exhibited exponential decays among which the E2 treatment increased lipid turnover rate 

by 3 hours (fig. 6.3.l). The lipid decay rate in cancer cells treated with E2 was 68% faster 

than in cells treated with DMSO, corresponding to a lipid turnover rate that is shorter by 

~3 hours. The dLD/LD ratios of the two groups were log-transformed and the decay rates 

tested with one-way analysis of covariance revealing significant differences (p=0.04). 
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Figure 6.3. SRS images of normal lipid accumulation from (a) PME cells, (b) T47D cells and (c) T47D 

cells treated with estradiol. (d) The SRS images of deuterated lipid accumulation from PME cells, (e) T47D 

cells and (f) T47D cells treated with estradiol. Inset of image: zoom-in image of marked area showing the 

donut-shaped dLD as an indicator for newly synthesized LD. (g) The redox ratio and normal lipid 

accumulation between PME cells, T47D cells and T47D cells treated with estradiol. The error bars 

represent the standard deviation from 25 measurements. (h) the average intensity ratios of deuterated lipid 

and normal lipid from PME cells, T47D cells and T47D cells treated with estradiol. (i-k) representative 

images of deuterated lipids at T=0h, 6h, and 12h.  (l) The dLD/LD decay for T47D cells treated with 

DMSO (blue square) and 17β-estradiol (red circle) over 24 hours. The data points represent deuterated 

signals were measured at time T=0h, 3h, 6h, 9h, and 12h. The solid lines represent exponential decay fitting 

of the data, dLD/LD=exp(-kt), where k corresponds to the rate at which the lipid signal disappears. The 

lipid decay rate in cancer cells treated with E2 was k=0.26 ± 0.02 vs cells treated with DMSO k=0.18 ± 

0.01. At each time point, the deuterated signal and normal lipid signal are manually measured from 50 

different lipid droplets in 25 cells on average. The error bars represent the standard deviation from 50 LDs. 
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ORR measurements were consistent with results obtained from our measurements 

of 3D acini. PME cells have ~20% higher optical redox ratios (greater oxidative 

phosphorylation) compared to the more glycolytic T47D cancer cells and the ORR 

further decreased by 28% (p<0.01) in T47D cells treated with E2 (fig. 6.3g). Furthermore, 

the higher the ORR, the lower the dLD/LD. Thus, the increased glycolytic rate is 

positively correlated with de novo lipid synthesis. When exogenously stimulated with E2, 

cancer cells adapted with increased aerobic glycolysis to benefit biosynthesis. Normal 

cells, in contrast, mainly relied on fatty acid uptake from the environment rather than the 

de novo lipid synthesis observed in cancer cells. 

 

6.4 	Discussion 

Metabolic and ECM changes in response to 17β-estradiol (E2) stimulation further reveal 

key differences between normal and breast cancer cells. The disruptions of T47D 

spheroid structures and remodeled collagen polarization upon treatment of E2 have been 

linked to increased cancer invasiveness both in vitro and in vivo [150, 151]. Additionally, 

the T47D cancer cells became more glycolytic and demonstrated decreased level of lipid 

content. We know that a change in cancer invasiveness began by turning on/off multiple 

gene expressions which affected the metastatic potential and cell proliferation rate. Thus, 

the downstream of these alterations in cancer cell phenotypes took effect through 

adaptations in cellular metabolism which provided energy and biomass support. We 

observe that T47D cancer cells grow more glycolytic and display a decreased level of 

lipid content after E2 treatment. Our observation matches Ostrander et al’s experiments 
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that the expression and blocking of the estrogen receptor in ER+ cancer cells decreases 

the redox ratio, a metric that may serve as a biomarker for cancer invasiveness.[71]. 

However, the ORR alone is insufficient for separating breast cancer from normal 

epithelial cells since both cell lines become more glycolytic in response to E2 treatment. 

Only by considering lipid storage of the two cell lines as an additional differentiator 

could the two populations be seen moving in different directions on the 2D-metabolic 

map (figure 3d). Our observations support the notion that with increased glycolysis, more 

glucose is used for de novo fatty acid synthesis in both cancer and normal cell line [152]. 

Nonetheless, whereas the PME cells preserve the lipid and prepare for milk secretion, 

cancer cells utilize lipids to prepare for cell proliferation (i.e. producing cell membrane) 

[153].  This is consistent with previous magnetic resonance spectroscopy studies showing 

that a decrease in neutral lipid accumulation in the cytoplasm is correlated with increased 

cell proliferation and malignancy [54, 55]. The results, again, demonstrated the 

importance to include lipid into metabolic analysis. Thus, the cancer invasiveness is 

strongly related to cell metabolism. 

The correlation between lipid metabolism and cancer invasiveness is further 

explored in  CRS imaging studies in which deuterated glucose is used to track carbon 

flow. Low deuterium signals in PME cell lipid droplets and higher dLD/LD values in 

T47D cells imply that cancer cells actively utilize deuterium-labeled carbons from 

glucose for de novo lipid synthesis. These results are in agreement with previous studies 

showing that normal cells preferentially take up circulating fatty acids while >90% of 

lipid in cancer cells is synthesized from glucose and intermediate products of glycolysis 

[154].  
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While untreated T47D breast cancer cells show moderate levels of dLD/LD and 

an intermediate optical redox ratio, E2-treated T47D cells display the highest dLD/LD, 

lowest ORR, and lowest unlabeled lipid droplet accumulation. Furthermore, in our pulse-

chase study, the rate of disappearance of deuterated lipid following unlabeled glucose 

exposure is significantly higher for E2-treated cells (k=0.26 ± 0.02) vs cells treated with 

DMSO (k=0.18 ± 0.01).  We conclude that cancer cells treated with E2 have increased 

lipid synthesis rates (elevated dLD/LD), faster lipid utilization rates (k = 0.26 ± 0.02), 

and higher glycolytic activity (lower ORR) compared to PME and untreated T47D cells. 

The decrease in neutral lipid accumulation in the cytoplasm has been correlated with 

increased cell proliferation and malignancy by magnetic resonance spectroscopy [155, 

156]. Moreover, T47D cancer cells treated with E2 had higher dLD/LD ratios than 

untreated cells indicating an increase of lipid synthesis rate. The neutral lipid 

accumulation in cytoplasm reflected the joint effect of lipid synthesis rate and lipid 

utilization. To achieve a decrease in neutral lipid accumulation with increased lipid 

synthesis rate, the lipid utilization rate had to increase as well. Thus, the cancer cells 

increased both lipid synthesis and utilization rate to meet the demand for biomass and 

energy. The pulse chase experiment double proved the dynamics of the lipid metabolism. 

The exponential decay reflected the combined effect of lipid utilization of deuterated 

lipids and newly synthesized normal lipids. With E2 activation, the cancer cells presented 

faster decay compared with control group originated from an increase of lipid 

consumption. 

More interestingly, the redox ratios decreased as the dLD/LD ratios increased. 

PME cells had highest redox ratio (high oxidative phosphorylation) but negligible 
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deuterated lipid, T47D breast cancer cells treated with E2 had lowest redox ratio (highest 

glycolytic rate) but highest levels of deuterated lipids and T47D breast cancer cells 

demonstrated moderate level of dLD/LD and a redox ratio in between. These 

observations supported the backbone of Warburg effect that the aerobic glycolysis is 

beneficial for glucose-based synthesis of biomolecules necessary for supporting cancer 

cell proliferation. More than 93% of lipid supply in cancer cells came from the 

intermediate product of glycolysis which was fully oxidized in normal cells [157]. Thus, 

the changes of glucose and lipid metabolism were correlated and both would adapt to a 

change of cancer invasiveness. In our cases, an increase in cancer invasiveness leaded to 

increased proliferation rate which required doubling of cell membrane, proteins and DNA. 

To meet the high demand of for biomass and energy, the cells adapted in two ways. On 

one hand, the cancer cells became more glycolytic to provide carbon sources for 

biosynthesis. On the other hand, they increased the utilization rate of lipid storage to get 

materials for either beta oxidation or building blocks for cell organelles. The level of the 

metabolic adaptation is determined by the need which is correlated with cancer 

invasiveness. Thus, the abnormal metabolic activity (Warburg effect) is more than a 

biomarker to differentiate cancer and normal cancer cells but an indicator for cancer 

metastatic stages. 

 

6.5 	Concluding	remarks	

In conclusion, the combining of glucose and lipid metabolism can better characterize 

cancer cell behaviors.  By combining of glucose and lipid metabolism, we quantified the 

biomass synthesis rate and utilization rate together and identified a correlation of 
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increased lipid synthesizing and utilization rate with cancer invasiveness.  The combining 

of the two can greatly advance our knowledge about the mechanism of the cancer 

metastasis, their drug response and, potentially, to be used for developing personalized 

treatment. 
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Chapter 7 

 

Conclusion	
 

Cancer has a long history and was first described around 1600 B.C.; however, the 

mechanism of cancer development and an efficient treatment remains elusive. Right now, 

it affects about 7.6 million people every year around the world and only one third of them 

can survive the disease. Despite the development of modern technology, the most popular 

treatment regime remains the same, chemotherapy, radiotherapy and surgery. First, the 

doctors design the treatment by mixing different chemotherapy drugs based on the 

histological information extracted from the biopsy. The working mechanism is to either 

target cancer cells’ surface biomarkers or simply just all fast proliferating cells. The 

patients would either take the drug before the surgery (neoadjuvant chemotherapy) or 

after (adjuvant chemotherapy). However, 30% of the patients will not benefit from it but 

still have to suffer from the side effects.  

Instead of looking for different types of biomarkers for different types of cancer, 

abnormal metabolism is a common feature that shares by all cancer types. The most 

famous observation on cancer metabolism would be the “Warburg effect”, which 

describes the aerobic glycolysis in cancer cells. The main idea behind the concept is that 

cancer cells prefer glycolysis to better fuel their fast proliferation. The intermediate 
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products of glycolysis serves as precursors for de novo biosynthesis of nucleotides, amino 

acid and fatty acid which are the basic building blocks for cells.  Since the finding of such 

phenomenon, numerous studies are conducted to search for potential applications on 

cancer diagnosis and treatment. However, stem cells, endothelial cells and insulin-

activated cells all present Warburg-effect-similar metabolic signatures. The biological 

system of our body is too complicated to be described with just parameter. Moreover, to 

be able to observe metabolic changes in live cells with high spatial and temporal 

resolution would greatly benefit researches.  

In our work, label-free non-linear optical microscopy (NLOM) methods based on 

two-photon excited fluorescence (TPEF) have been used to form high-resolution images 

of redox state in cells and tissues based on intrinsic NADH and FAD+ fluorescence. We 

demonstrate that label-free NLOM measurements of TPEF-derived redox state (optical 

redox ratio, ORR = FAD+/(NADH + FAD+)) can give comparable measurements to 

conventional flux analyzer. Both measurements have a linear correlation under a range of 

oxygen consumption conditions relevant for cancer imaging. Moreover, we combined 

ORR with coherent Raman imaging of lipid formation and second harmonic generation 

of extracellular matrix (ECM) collagen to quantitatively characterize cancer cells and 

their relative invasive potential. In addition, we confirm, using coherent Raman and 

deuterium labeling methods, that glucose is a significant source for the cellular synthesis 

of lipid in glycolytic breast cancer cells.  Live cell metabolism was imaged in 3D models 

of primary mammary epithelial cells (PME) and 2 cancer cell lines, T47D and MDA-

MB-231. The combination of ORR and lipid volume fraction was unique for each line. 

Upon treating cells with 17β-estradiol (E2), both normal (PME) cells and ER-positive 
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breast cancer cells (T47D) exhibited an increased glycolysis rate with significant 

reorganization of ECM collagen in 3D T47D models.  Importantly, PME cells displayed 

increased lipid content while the lipid storage in cancer cells decreased (p<0.001) with E2 

stimulation. Furthermore, we observed an increase in both lipid synthesis and 

consumption rates in E2-treated T47D cancer cells cultured in deuterated glucose by 

tracking the formation and disappearance of deuterated lipids. These results suggest that 

the combination of multiple NLOM imaging endpoints, including ORR, lipid content, 

and SHG, can be used to characterize and understand key metabolic features that are 

hallmarks of disease.  

To our knowledge, it is the first time the glucose metabolism and lipid 

metabolism are combined to characterize cancer cells. The two processes describe both 

the catabolism and anabolism in cancer metabolism and can separate the cell 

subpopulations that cannot if merely rely on glucose metabolism. Furthermore, the 

dynamic metabolic changes we observed illustrated the potential of label-free nonlinear 

optical imaging microscopy. Complex physiological processes can be directly visualized 

without the interference of exogenous chemicals. The high spatial and temporal 

resolution makes the technology an idea tool to study cancer heterogeneity with 

metabolic responses happening from seconds to weeks. The non-invasive nature and 3D 

sectioning effect would even allow in vivo studies on patient or animal models 

conveniently. 
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