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Assessing a Bayesian account of human gaze perception
Peter C. Pantelis (PCPANTEL@indiana.edu)

Daniel P. Kennedy (DPK@indiana.edu)
Indiana University–Bloomington, Department of Psychological and Brain Sciences

1101 E. 10th Street, Bloomington, IN 47405 USA

Abstract

Although gaze can be directed at any location, different lo-
cations in the visual environment vary in terms of how likely
they are to draw another person’s attention. One could there-
fore weigh incoming perceptual signals (e.g., eye cues) against
this prior knowledge (the relative visual saliency of locations
in the scene) in order to infer the true target of another person’s
gaze. This Bayesian approach to modeling gaze perception has
informed computer vision techniques, but we assess whether
it is a good model for human performance. We present sub-
jects with a “gazer” fixating his eyes on various locations on
a 2-dimensional surface, and project an arbitrary photographic
image onto that surface. Subjects judge where the gazer is
looking in the image. A full Bayesian model, which takes im-
age saliency information into account, fits subjects’ gaze judg-
ments better than a reduced model that only considers the per-
ceived direction of the gazer’s eyes.

Keywords: gaze; Bayesian modeling; social perception; so-
cial attention; visual saliency

Introduction
Another person’s gaze direction is a strong cue for where this
person may be directing his or her visual attention, and there-
fore helps one to infer what may be on his or her mind. Ad-
ditionally, because people (and other animals) tend to direct
their visual attention to the informative and behaviorally rele-
vant areas of the environment (Mackworth & Morandi, 1967),
the ability to infer attention also provides hints as to the im-
portant things that may be happening in the immediate envi-
ronment (Byrne & Whiten, 1991). Given that the direction
of another person’s eye fixation is a basic cue for tracking
gaze (and therefore, attention), the human visual system has
evolved to process this perceptual signal with remarkable ac-
curacy and efficiency (Cline, 1967).

Nevertheless, the perceptual signal extracted from another
person’s eyes is noisy and ambiguous. As such, other cues
like head position (Wallaston, 1824; Ken, 1990; Langton,
2000) also inform the judgment of gaze direction. But ad-
ditionally, if one has reliable intuitions about where in the vi-
sual scene another person is likely to direct his or her gaze—a
priori of perceiving the signal from his or her eyes—then this
prior information could potentially be integrated with the eye
cue to improve the inference of gaze direction.

This basic approach—combining perceptual cues from the
target person’s eyes (or head position, etc.) with the visual
saliency of the scene—has been exploited in computer vi-
sion to improve machine performance both in the discrim-
ination of gaze direction (Hoffman, Grimes, Shon, & Rao,
2006; Yücel et al., 2013) and in the related task of identify-
ing where another person is pointing (Schauerte, Richarz, &
Fink, 2010). And although it has been speculated that human

gaze perception may employ a similar mechanism, this re-
mains untested. Thus, we here ask whether a Bayesian model
that incorporates a visual saliency map as a prior can account
for actual human subjects’ performance better than one which
ignores this information, and uses only the eye cues.

Our experimental subjects view photographs of another
person gazing at various locations on a partially transparent
surface situated between him and the camera. The subjects
are instructed to indicate where on this surface this other per-
son is looking; we define this task computationally as the
inference of the location [x,y] where the photographed indi-
vidual is gazing within the continuous 2-dimensional plane
(Gx,y) given the gaze directional cue from the eyes of the per-
son (D) and the image presented in that plane (I). Bayes’ rule
yields the posterior probability distribution, continuous over
the 2-dimensional hypothesis space:

p(Gx,y|D) ∝ p(D|Gx,y)p(Gx,y). (1)

In our treatment, the prior—p(Gx,y)—is equivalent to the
relative visual saliency of location [x,y] within image I, where
saliency is some model of where people are a priori likely to
direct their visual attention and fixation.

One example of how human gaze perception incorporates
prior information under conditions of uncertainty is that peo-
ple show a prior bias that another person’s gaze is directed to-
ward them (Ken, 1990; Mareschal, Calder, & Clifford, 2013).
This empirical finding makes sense given basic intuitions
about human nature. That is, other people’s faces (including
one’s own) would naturally be regions of interest in a coun-
terpart’s visual scene (Yarbus, 1967), and even the most mun-
dane face is surely more interesting than, say, the empty space
immediately to the left and right of it.

However, it should be clear that indeed all of the locations
in the counterpart’s visual environment (including one’s own
face) are salient to varying degrees—that is, a priori more
or less likely to capture the other person’s visual attention.
Thus, we predict that that prior considerations with respect to
presumed visual saliency should, in the general case, factor
into human gaze perception.

Methods
Subjects
23 undergraduates at Indiana University received course
credit for their participation in the experiment.

Stimuli
Photographs of the “gazer” We took a set of photographs
of a young man (the “gazer”) seated behind a glass surface.
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Figure 1: After the presentation of a fixation cross for 1400 ms, the scene appeared. After 500 ms, a mouse cursor appeared
as a red square at a random location within the projected image (this image was a photograph in block 1, and uniform gray in
blocks 2-5). The subject indicated with a mouse click where he or she thought the gazer was looking. After the subject clicked,
the next trial began. (Note: The fixation crosses and red mouse cursors are enlarged in this figure to be more visible.)

In each photograph, the gazer fixated his eyes on a differ-
ent location on the glass surface, where a grid of points had
been marked (later, these marks were digitally removed from
the photographs, leaving no observable trace). Though other
cues (such as head position) can also be exploited to infer
the target of gaze, for this experiment we aimed only to vary
the eye cues among these photographs. Therefore, the gazer
maintained minimal head and body movement as he fixated
on the various locations on the glass surface.

The height of the origin of this grid of points, the camera
lens, and the center point between the gazer’s eyes was 125
cm. The glass surface was 115 cm from the gazer’s face, and
the glass surface was 160 cm from the camera. The gazer’s
face was lit from above, both from the left and right, so as to
avoid casting heavy shadows on his face. The photographs
were taken with a Canon EOS Digital Rebel XT camera, a 50
mm lens, 1/125 s exposure time, and no flash. The original
resolution of these photographs was 3456×2304 pixels.

Thirty-three photographs were used in the experiment, cor-
responding to when the gazer had been fixating on 32 respec-
tive points in a lattice spread over 7 rows and 9 columns (the
first row had 5 dots spaced at even 10 cm intervals, the second
row had 4 dots with the same spacing but shifted 5 cm, the
third row had 5 dots, and so on), plus the origin (i.e. straight
ahead, and directly into the camera).

The experiment was presented on a 2560×1440 pixel dis-
play. One of the 33 photographs of the gazer appeared in ev-
ery trial of the experiment, within a 1200×800 pixel window
at the center of the display. The unused, background portion
of the display (falling outside of the edges of the 1200×800
pixel window) was made gray.

For every trial, a rectangular gray frame (inner dimensions:
550×733 pixels; outer dimensions: 570×753 pixels) was su-

perimposed on the photograph. When the gazer had been
photographed, he had always fixated on locations that would
have fallen within this gray frame. Either an image (for block
1) or uniform gray (for blocks 2-5) was presented within the
rectangular gray frame in each presented scene, and alpha
blended (at alpha = 180, where 0 is fully transparent and 255
is fully opaque) with the background photograph of the gazer
(see Fig. 1). For the subject, this created a perceptual effect
akin to the subject and gazer being on opposite sides of a par-
tially transparent surface, with the gazer’s silhouette faintly
visible through it. Only a tight ellipse around the gazer’s eyes
was fully visible through the image, with the area around the
eyes smoothly transitioning to greater opacity. Thus, in either
condition (projected image, or uniform gray), the gazer’s eyes
were made fully visible to the subject, and presented simulta-
neously with the supposed target of his gaze.

Projected images For the first block of trials, images were
projected onto the plane upon which the gazer had fixated.
The 165 color images (provided by Judd, Ehinger, Durand,
& Torralba, 2009) included a wide range of indoor and out-
door scenes, some containing and some not containing peo-
ple. These images were originally 768×1024 pixels, but were
resized to fit the presented 550×733 frame.

Procedure

The experiment consisted of 5 blocks, each consisting of 165
trials. The subject took a 5 minute break after the 3rd block.

Before the first trial of each block, four photographs were
displayed in succession, each for 1 s. In these four pho-
tographs, the gazer was fixated on four respective locations
(marked with 8×8 pixel black squares) near the four respec-
tive corners of the gazed-upon glass surface. This was a “cal-
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ibration” of sorts for the subject, who could get a sense of
how the gazer’s eyes were positioned when he had been pho-
tographed fixating on the extremes of the glass surface.

Each trial began with a black fixation cross, presented at
the center of the screen for 1.4 s against a gray background.
The subject was then presented with a static scene. Over the
course of each block, these scenes featured each of the 33
photographs of the gazer (fixating on 33 respective locations)
5 times, with these 165 total trials being randomly shuffled.

For the first block, one of 165 color images (from the Judd
et al., 2009 set) was randomly assigned to each of these 165
trials and projected into the frame in front of the gazer; thus,
the projected image and the direction of the subject’s gaze
in the photograph were randomly paired. For the 2nd-5th
blocks, the frame in front of the gazer was filled with a uni-
form gray.

500 ms after the presentation of this scene, a 10×10 red
square appeared at a random location within the frame, and
could be controlled by the mouse. After the time when this
red cursor appeared, the subject could indicate with a mouse
click where, within the frame, he or she believed that the
gazer was looking. There was no enforced time limit for this
task, and the entire scene remained on the screen until the
subject responded. After the subject clicked, the next trial be-
gan. The experimental procedure for each trial is illustrated
in Figure 1.

Bayesian Model
The likelihood: Using eye cues Computational treatments
of the problem of discriminating the target of another per-
son’s gaze from eye and head cues (e.g., Kim & Ramakrishna,
1999; Hoffman et al., 2006; Yücel et al., 2013; Gao, Harari,
Tenenbaum, & Ullman, 2014) often model gaze as a vector or
blurry cone emanating from the gazer’s face and intersecting
with surfaces in the environment. A complete, self-contained
algorithm for judging another person’s gaze would employ
one of these rigorous computer vision approaches in order
to compute what we here define as the likelihood function:
L(Gx,y|D).

We instead derive the likelihood function empirically from
each subject’s gaze judgments recorded during blocks 2-5
(These were the trials for which the gazer was presented as
viewing a uniform gray surface). We associate each photo-
graph of the gazer—associated with the gazer’s eyes being
fixated in 1 of 33 directions—with a 2-dimensional likeli-
hood function, which we assume to be elliptical (a bivariate
Gaussian distribution). This assumption of an elliptical shape
makes sense if one imagines a cone of gaze emanating from
the gazer’s eyes, because the intersection of this cone with
the gazed-upon planar surface would be elliptical in shape
(indeed, this the geometric definition of an ellipse, one of the
basic types of conic section).

After collecting responses from each subject as he or she
cycled 20 times through the complete set of 33 eye direc-
tions, we estimated the mean (µ) and 2×2 covariance matrix
(Σ) of all 33 Gaussian ellipses comprising a complete set of

personalized likelihood functions. Each of these probabilistic
2-dimensional likelihood maps was renormalized to sum to
1. For an example of a likelihood map derived for one subject
and one of 33 directional cues from the eyes, see Figure 2.

Figure 2: Likelihood. Subjects indicated where they thought
the person in the photo was looking, within a uniform gray
area. The “gazer” was shown fixating on each of 33 target lo-
cations within the frame, 20 times per subject. Here, the white
dots represent the 20 locations selected by one actual subject
(via mouse click) when presented with this same scene. We
fit a Gaussian ellipse to these 20 points (superimposed here
on the scene), and this ellipse enters into the computational
model as the likelihood function with respect to this particu-
lar directional cue from the eyes of the gazer.

The prior: Using saliency information We hypothesized
that it would be expedient for the human visual system to ex-
ploit a model of where people are a priori likely to look in
a scene. Many computer vision models have already been
developed to serve precisely this function—predicting where
human observers are likely to fixate their visual attention in a
given image (e.g., Itti, Koch, & Niebur, 1998; Harel, Koch, &
Perona, 2006; Rezazadegan, Rahtu, & Heikkilä, 2011)—and
the performance of many of these models has been systemat-
ically benchmarked at saliency.mit.edu.

We used the saliency model put forth by Judd et al. (2009),
because they make freely available a.) MATLAB code for
their saliency model, b.) a set of images against which their
saliency algorithm has been validated, and against which
other algorithms have been tested for comparison, and c.)
pre-computed saliency maps corresponding to these images.
The Judd et al. algorithm incorporates low-level visual fea-
tures (e.g., intensity and color contrast), higher-level features
(e.g., face detection), and a prior bias toward the center. We
selected a subset of 165 images they provide, on the basis
that they were all of a consistent size (768 × 1024 pixels).
We incorporate these images’ corresponding, pre-computed
saliency maps as the prior in our Bayesian model of human
gaze perception. See Figure 3 for an example of a saliency
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Figure 3: Prior. During the first block of the experiment,
images were projected into the frame, and subjects indicated
where in the picture they thought the person in the photo was
looking. Here, we superimpose the saliency map correspond-
ing to this particular image, a continuous 2-dimensional func-
tion that enters into the computational model as the prior.

map corresponding to one of these 165 images.

The posterior: Combining the eye cue with image saliency
The posterior distribution outputted by the Bayesian model
(given a photograph of the gazer fixating in a particular direc-
tion, and a particular gazed-upon image with a correspond-
ing saliency map), is the pixel-by-pixel multiplication of the
likelihood map (p[D|Gx,y]) and saliency map (p[Gx,y]). After
this multiplication, the posterior distribution is renormalized
to sum to 1. The resulting map is a hybrid of the two maps
giving rise to it. The full Bayesian model indeed exploits the
saliency map, but typically only within the neighborhood of
locations where the gazer may have plausibly been looking,
given the direction of his eyes.

Results
Validation of the likelihood model
Our model of the likelihood function—33 ellipses fit to gaze
judgments in blocks 2-5—was first validated for each subject.
This approach was cross-validated by fitting ellipses to the
subject’s responses during three of these blocks, and testing
how well they predicted responses on the fourth block. This
leave-one-out cross-validation was done each of the four pos-
sible ways (leaving each of the four blocks out as the test set).
The main diagonals of the covariance matrices Σ of all 33
ellipses were multiplied by one additional parameter, which
was optimized for each subject via this same cross-validation
procedure. This multiplication procedure increased the vari-
ances of the likelihood function ellipses in a manner that in-
creased their predictive power.

The cross-validated performance of the likelihood model
was good and remarkably consistent across subjects. For
most subjects, multiplying the variances of the fit ellipses by

Figure 4: Posterior. The posterior probability outputted by
the Bayesian model (superimposed here on a screenshot from
the experiment) is a multiplication of the likelihood function
(given this gaze direction) and prior (given this image). For
this particular trial, we present one possible location a sub-
ject may have clicked, as a small white bullseye. We assess
the model’s performance on a given trial as the likelihood of
the subject’s gaze judgment given the model’s posterior pre-
diction map.

1.6 proved to be optimal. For only one very atypical subject,
we were unable to validate the likelihood model—that is, no
parameterization of the likelihood model trained on any three
of the subject’s blocks was at all predictive of the subject’s
responses on the remaining test block. We therefore excluded
this subject from subsequent analyses.

Model assessment and comparison
We compared the full Bayesian model (outputting a posterior
distribution over the image) with a more basic model that only
relied on the perceptual signal from the eye cues of the gazer
(i.e., the likelihood model, not multiplied with the saliency
map). We tested the relative performance of these two models
in predicting the gaze judgments of subjects during the first
block of the experiment (These were the trials in which the
gazer was presented with a projected photograph—unlike in
blocks 2-5, in which the gazer was presented with a uniform
gray surface). Because the likelihood function (a component
of both models) was independently validated and optimized
for each subject with respect to the four other blocks of the
experiment, neither the full Bayesian model nor the reduced
model fit any free parameters to the responses of the subjects
in the first block.

The relative performance of these two models was first as-
sessed in terms of log likelihood ratio (LLR). For a given
trial, the gaze judgment made by the subject had a likeli-
hood given the prediction maps of either model (e.g., as in
Fig. 4). Over the subject’s 165 trials, the predictions of the
two models were compared via their cumulative likelihood
ratio. The natural logarithm of this ratio was computed for
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Figure 5: These box plots show the relative performance of the full Bayesian model compared to two other candidate models,
assessed for all 22 subjects via log likelihood ratio (LLR). The red line represents the mean LLR of these 22 subjects, the
blue box represents the 25th and 75th percentiles, and the black whiskers represent the entire range of LLRs. Left: For most
subjects, and for the average subject, the full Bayesian model outperforms the reduced model that only relies on eye cues.
Right: Consistently across subjects, the full Bayesian model outperforms a mismatched Bayesian model, computed with an
inappropriate saliency map.

each subject, with positive values favoring the full Bayesian
model and negative values favoring the reduced “eye cues
only” model. 16 out of 22 subjects’ judgments (73%) favored
the full Bayesian model (see Fig. 5A), and the cumulative
LLR across all subjects very strongly favored the full model
(209.5). For each subject, we also calculated the percentage
of trials for which the full Bayesian model was a better fit.
For 18 out of 22 subjects (82%), the Bayesian model was the
better fit on the majority of trials. And for the average sub-
ject, the full Bayesian model was preferred on significantly
more than half of trials (M = 61%, SD = 14%, t[21] = 3.69,
p = .001).

These data confirmed our hypothesis that subjects would
exploit prior information about the relative saliency of loca-
tions in the gazed-upon image, in addition to using the direc-
tional signal computed from the gazer’s eye cue.

To provide additional context for the assessment of these
two models, we reran the full Bayesian model, but instead of
feeding the model the appropriate saliency map correspond-
ing to the gazed-upon image in a given trial, we mismatched
each image with a saliency map corresponding to one of the
other 164 images in the set. The motivation for the assess-
ment of this mismatched Bayesian model was to examine
whether the true Bayesian model had improved the perfor-
mance of the reduced “eye cues only” model for some su-
perficial reason that was not specific to features of the par-
ticular image. If the true Bayesian model were a truly better
model of subjects’ performance, it would systematically out-
perform the mismatched Bayesian model. And indeed, the

true Bayesian model was a better fit for 18 out of 22 subjects
(cumulative LLR = 161.2; see Fig. 5B),

Finally, although most subjects (and the average sub-
ject) showed the predicted effect, we by no means wish
to gloss over the individual differences we observed (see
Fig. 5A). Not all subjects incorporated saliency informa-
tion into their strategy; indeed, 5 (out of 22) subjects ap-
parently ignored this cue such that the reduced model pro-
vided a far better fit to their gaze judgments (individ-
ual LLRs = [−23.7,−14.5,−12.8,−11.1,−8.1]). The full
Bayesian model accounted poorly for the performance of
these 5 subjects, and fit their judgments hardly any better than
a mismatched Bayesian model would have (mean LLR= 1.5).

Discussion and Conclusions
In this paper, we developed a Bayesian model for gaze per-
ception, which takes into account both cues from the gazer’s
eyes and prior saliency information present in the visual
scene. Via a quantitative model comparison, we demon-
strated that the performance of most subjects is better ex-
plained by this full Bayesian model than a reduced model
that only takes the eye cues into account. The full Bayesian
model also easily outperforms a model that incorporates in-
correct saliency information. We consider these data to be
strong preliminary support for a Bayesian account of gaze
perception, and of closely related social processes like shared
attention, gaze following and joint attention.

We emphasize that we do not mean to present this paper as
a study of how gaze perception relates to “saliency” (defined
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in any one particular way, via a specific algorithm), as a visual
feature in itself. Rather, we use computed saliency (according
to one algorithmic approach) as a simplified stand-in (that is,
a model) for the predictive computation of which locations in
a scene are expected to draw another person’s visual attention.
Most subjects’ judgments revealed that they were at least im-
plicitly sensitive to these a priori expectations, which were
apparently correlated with the output of the saliency model
we employed.

The data also appear to indicate that a subset of subjects
(20-25%) utilized only the cues from the eyes of the gazer.
These individual differences in strategy raise many questions
to be addressed in future experiments: Is the tendency to
use one strategy over the other relatively stable to the indi-
vidual? Was this saliency algorithm we used a poor model
for where some subjects expect other people will look in the
scene? What experimental conditions would favor the use of
one strategy over the other?

A Bayesian account of this social perceptual process makes
several specific predictions. For example, the noisier the per-
ceptual signal, the more the observer should rely on prior
information. This was indeed the result Mareschal, Calder,
Dadds, and Clifford (2013) observed in their study of gaze
perception; subjects’ prior bias toward direct eye contact was
modulated by the amount of noise the experimenters added
to the observed eyes. We expect that manipulations like
this could also be applied to the basic experimental frame-
work presented in this paper, with analogous results. Besides
adding noise to the gazer’s eyes (e.g., via blurring), one could
manipulate the amount of time the observer is given to view
the stimulus, the amount of time the observer is given to re-
spond, the size or contrast of the stimulus, or the distance
between the gazer and the gazed-upon surface in the scene.
The perceptual consequences of each of these manipulations
could then be interpreted within the context of this Bayesian
treatment, providing additional insight into the nature of hu-
man gaze perception.
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