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Expansion of the laser ablation vapor plume into a background gas:

Part A, Analysis

Sy-Bor Wena), Xianglei Mao a) , Ralph Greif b), Richard E. Russo a)

Abstract

A study of the gas dynamics of the vapor plume generated during laser ablation was

conducted including a counter-propagating internal shockwave. The density, pressure,

and temperature distributions between the external shockwave front and the sample

surface were determined by solving the integrated conservation equations of mass,

momentum, and energy. The positions of the shockwaves and the contact surface

(boundary that separates the compressed ambient gas and the vapor plume) were

obtained when the incident laser energy that is transferred to the vapor plume and to

the background gas, E, and the vaporized sample mass, M, are specified. The values

for E and M were obtained from a comparison of the calculated trajectories of the

external shockwave and the contact surface with experimental results for a copper

sample under different laser fluences. Thus E and M, which are the two dominant

parameters for laser ablation and which cannot be measured directly, can be

determined. In addition, the internal shockwave propagation within the vapor plume

was determined; the interaction of the internal shockwave with the sample may be one
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of the mechanisms inducing liquid sample ejection during laser ablation.
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Introduction

Laser ablation is a viable method for chemical analysis, nanoparticle generation,

micromachining and pulsed laser film deposition. Although empirically utilized for

many years, the dynamics of laser ablation still are not well known. Knowledge of the

density, pressure, and temperature distributions within the plasma during the

expansion stage, laser energy conversion efficiency, and the total vaporized mass

during laser ablation would be beneficial for defining experimental parameters for

specific applications. Simulations have been presented to model the complex

phenomena during laser ablation [1-4]. Simulations using molecular dynamics have

the capability of including non-thermal equilibrium effects during ultrashort pulse

laser ablation. However, since the number of molecules to be considered is very large

for dense samples, it is difficult to perform simulations covering the entire ablation

process due to computational limitations, especially for ablation in high ambient gas

pressure. Hence, simulations with molecular dynamics (MD) and direct simulation by

Monte Carlo (DSMC) tend to focus on laser ablation during the first several hundred

picoseconds to few nanoseconds from the beginning of the laser pulse when the laser

energy converts to thermal and kinetic energy of the vaporized sample. During this

time scale, the absence of thermal equilibrium is important and continuum hypotheses

may not be accurate. Direct numerical simulation (DNS) using governing continuum

equations with appropriate boundary conditions both near the sample surface and

adjacent to the background gas is another way to simulate the laser ablation process.

The gas dynamics during laser ablation are quite complex, which include the

propagation of shockwaves and the subsequent steep gradients within the high

temperature plasma region. Very fine temporal and spatial resolution for a pure 3D

simulation is required for obtaining the gas dynamics during laser ablation by the



4

DNS. Therefore, it is time consuming to perform a 3D simulation of the laser ablation

process by DNS. Often spherically symmetric flow fields are assumed and certain

shockwaves and/or expansion waves are neglected. The DNS with these assumptions

provides good results in the trajectories of shockwaves and contact surface between

the vapor plume and the compressed background gas. This approach (DNS), even

though it is more time efficient compared to other methods (MD and DSMC), still

requires hours to simulate from the beginning to a few microseconds after the laser

pulse ablates a sample in atmospheric background gas pressure. A more time efficient

method is used in the present work to determine the laser energy conversion ratio and

the vaporized sample mass by iterative comparison of the simulated and experimental

trajectories of the external shockwave and contact surface. The present method is to

build an analytical model which is able to predict the main mechanisms during laser

ablation. Predtechensky et al. [1] used the conservation laws to evaluate the terminal

size of the vapor plume during laser ablation. Arnold et al.[2] also used this approach

to calculate the trajectories of the contact surface between the compressed background

gas and the high temperature vapor plume. To expand these studies and to improve the

accuracy in the predicted trajectories of the external shockwave and the contact

surface, the dynamics of the internal shockwave within the vapor plume and the

reflection mechanisms of internal shockwaves are included in this work. In addition,

physical properties are assumed to be linear functions of position in certain regions

rather than uniform property conditions that were used in previous studies. Besides

the trajectories of the external shockwave and the contact surface, our approach

improves the accuracy of the prediction of the temperature and pressure fields within

the thermally affected region due to laser heating. Such knowledge is important in

studies for chemical analysis by spectral line emission and of particle generation

processes; both are sensitive to the temperature evolution of the vapor plume.
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Analysis

An integral method is used in the present study [1,2]; density, pressure, and

temperature distributions are assumed and the resulting governing equations are

solved to determine the trajectories of the shockwaves and contact surfaces. The

ablation process is divided into four consecutive stages. For each stage, specific

density, pressure, and temperature distributions are used based on physical arguments

and/or experimental data. Comparisons of the predicted positions of the contact

surface and the external shockwave front are made with experimental data from

shadowgraphs and ICCD (intensified CCD) images [5]. From the present simulation,

the trajectory of the internal shockwave which propagates back and forth between the

contact surface and the sample surface is also determined. The internal shockwave is a

necessity for satisfying the continuity conditions for pressure and velocity at the

contact surface for a supersonically expanding vapor plume.

- Stage one: from the end of the laser pulse to the time when the internal shock wave

reaches the sample surface (fig. 1a). During this stage, the density, pressure, and

temperature distributions in the unshocked vapor plume are approximated by the free

expansion relation proposed by Kelly et al. [6]. The density, pressure, and temperature

are assumed to be uniform throughout the internal shockwave region, SWi, and

external shockwave region, SWe. The velocity in the unshocked vapor plume, internal

shockwave region, and external shockwave region are approximated by linear

functions.

- Stage two: the time from when the internal shock wave reaches the sample surface
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and is reflected to the time when the reflected internal shockwave again reaches the

contact surface (fig. 1b).  

- Stage three: the time from when the internal shock wave reaches the contact surface

and is reflected to the time when this internal shock wave again reaches the sample

surface (fig. 1c). 

- Stage four: The internal shockwave is neglected at this stage because its strength is

weak compared to the sound wave. Only the external shockwave and high

temperature vapor plume exist during stage four. The physical properties within the

vapor plume are assumed to be uniform because the size of the vapor plume only

slightly increases during this stage (fig. 1d). However, density, pressure, and

temperature distributions within the external shockwave region are assumed to be

linear because the external shockwave continues to expand to a much larger distance

compared to the vapor plume.

The sequence for the vapor plume expansion after the laser pulse can be expressed by

recurring stages 1 2 3 2 3... 4→ → → → → when the heat transfer by conduction,

diffusion, and radiation are neglected. This approach is a good approximation during

the first few hundred of nanoseconds after the laser pulse, when most energy loss of

the vapor plume comes from the work done by the vapor plume on the compressed

background gas. The governing equations for each stage are given below and are

integrated with respect to time using Euler’s method.

Stage One
Stage one starts from the end of the laser pulse to the time when the internal

shockwave arrives the sample surface.
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For nanosecond and longer pulsed laser ablation, significant sample evaporation ends

roughly at the end of the laser pulse (≈ two times the full width at half maximum

(FWHM) of the laser pulse in the present work) [7]; for femtosecond laser pulse

durations, evaporation stops within one nanosecond after the laser pulse [8]. Hence,

for this study with time scale larger than a few nanoseconds, it is adequate to assume

that sample evaporation stops just after the end of the laser pulse; the density, pressure,

and temperature distributions are well established within the vapor plume at these

time. In addition, the expansion of the vapor plume with a background gas is similar

to that in a vacuum in this stage [2]; the physical property distributions within the

vapor plume (in this stage) are almost the same with or without background gas. Two

simple models can be used to describe the distributions of these properties for ablation

in a vacuum; the free expansion model [9] which neglects the initial velocity of the

vapor plume at the end of the laser pulse and another simplified model which includes

this velocity derived by Luk’yanchuk et al. [3]. These two models converge with

increasing time as the initial plume velocity effect becomes less important. Results of

the propagation of the vapor plume and the distributions of the physical properties

within the vapor plume from Luk’yanchuk’s model under spherically symmetric

conditions and for ideal monatomic gas are listed below [3]. These results will be

used with the conservation equations for this stage of the plume.

2 2

2
2
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o o

o o o o

u uR E
t t t

R R R MR

    
≡ Ψ = + + +    
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( ) 1 ( ) ,o o
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( )2 1 16
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T t T t

M

µξ −= − Ψ =
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where / ( )r R tξ = is the Lagrangian coordinate ( 0 1ξ≤ ≤ ) with 0ξ = at the origin
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of the spherical symmetric center, ( )R t is the radius of the expanding plume, which

is so far unaffected by the background gas, 0u is the initial velocity of the vapor

plume, pℜ is the gas constant of the vapor, and µ is the atomic weight of the

vapor

The total mass in the unshocked vapor plume behind the internal shockwave front, iR ,

can be evaluated as

2 3/ 2 3
1

0

4 4 ( )
iR

i
p p o

R
M r dr t R F

R
ρ π πρ −  = = Ψ   

⌠

⌡

(1.4) 

where
3/ 22 2

1

0

[ ] 1

x

F x y y dy = − 
⌠

⌡

From (1.1), the velocity of the vapor plume when expanding in a vacuum can be

expressed as

1/ 2( ) / ( )o oR R d t dt R t = Ψ ≡ Φ 
& , (1.5) 

where
1/ 2

2 2

1/ 2 2
2 2

16 16
( ) ( ) / 1 2

3 3
o o o o

o o o o o o

u u E u u E
t d t dt t t t

R R MR R R MR

−
             Φ = Ψ = + + + + +                          

Assuming a linear velocity distribution within this region, the kinetic energy in the

vapor plume is

2
2 3/ 2 2 2 3

2
0

4 2 ( ) ( )
2

iR
p i

pk p o o

V R
E r dr t R t R F

R
ρ π ρ π−  = = Ψ Φ   

⌠

⌡

(1.6) 

 

where
3/ 22 4

2

0

[ ] 1

x

F x y y dy = − 
⌠

⌡

The thermal energy stored in the vapor plume also can be evaluated from the

following integral:
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2 5/ 2 3
3

0

1 1
4 4 ( )

1 1

iR

i
pt p p p o p o

p p

R
E T r dr T t R F

R
π ρ πρ

γ γ
−  = ℜ = ℜ Ψ  − −  

⌠

⌡

(1.7) 

where
5/ 22 2

3

0

[ ] 1

x

F x x x dx = − 
⌠

⌡

In the internal shockwave region (cf. figure 1a), a first order approximation is that

density and pressure are uniform. The velocity is approximated by a linear function in

order to satisfy both the boundary velocities at the contact surface and just behind the

internal shockwave. Pressure and density are approximated as uniform in the external

shockwave region (cf. figure 1a and 2) since the size of this region is very small

during stage one (cf. fig. 6). These values are obtained from the jump conditions

behind the external shockwave. The integral forms of the conservation relations of

mass, momentum, and energy in all three regions are listed below. Six equations with

six jump conditions across the internal and the external shockwaves (cf. Appendix A)

are used to determine the variables within the three regions. The integral form for

mass, momentum, and energy in each region is listed in Appendix A.

- Mass conservation in the vapor plume

p iM M M= + , (1.8)

which is equal to ( )3 34 3
p

i

c i

M M

R R
ρ

π
−

=
−

under the assumption of uniform iρ .

assumption

- Mass conservation in the external shockwave region

( )3 3 34 4

3 3e e g e c eM R R R
π πρ ρ= = − (1.9)

- Momentum conservation in the external shockwave region
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( ) ( )

2 2

2 2 3 3 2 2

2

1 1
2

3 2

e

c

R
e

c c e g
R

e c e c c e
c c e g e c e c

e c e c

dP
R p R p p rdr

dt

p p R p R p
R p R p R R R R

R R R R

π π π

π π π

= − +

    − −
= − + − + −    − −    

⌠
⌡

(1.10)

- Energy conservation of the whole system

34

3 1
g

p i e laser e
g

p
E E E E R

π
γ

+ + = +
−

(1.11)

with p pk ptE E E= + , i ik itE E E= + , and e et ekE E E= +  (subscript t=thermal energy

and k=kinetic energy)

In addition, the pressures on both sides of the contact surface are the same, i.e.

c ip p= (1.12)

and equal to the pressure behind the external shockwave, i.e.

e cp p= (1.13)

Eleven variables are determined in this stage: iρ , ip , cp , iu , iR , cR , cR& , eρ ep ,

1eu , and eR , for the twelve relations (eq. 1.8-1.13 + six jump conditions). The above

conditions result from the assumption that both density and pressure are uniform

within the internal shockwave region (SWi, cf. figure 1a) and have the same value as

that just behind the internal shockwave. In addition, we also require the pressure

within the internal shockwave region to be the same as that at the contact surface.

Therefore, with the mass conservation in the internal shockwave region, there are four

equations available ( i cp p= , , ( , )i p Jump i ip f R R= & , , ( , )i Jump i if R Rρρ = & and

( )3 34 3
p

i

c i

M M

R R
ρ

π
−

=
−

) to determine three variables, iρ , ip and iR& . In Arnold et al.

[2], the density of the entire internal shockwave region was assumed to be equal to the

density behind the internal shockwave front ( , ( , )i Jump i if R Rρρ = & and
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( )3 34 3
p

i

c i

M M

R R
ρ

π
−

=
−

) and Eq. (1.12) was neglected; which describes the relation

between the pressure above and behind the internal shockwave. The pressure at the

contact surface was used as the characteristically uniform pressure in the entire

internal shockwave region, which is not necessarily equal to the pressure immediately

behind the internal shockwave front. According to Arnold et al [2], this assumption

generates reasonable results until the internal shockwave region becomes large

compared to the size of the vapor plume. An ultra high internal shockwave velocity

will be predicted especially when the internal shockwave approaches the sample

surface. As a result, the velocity in the internal shockwave region will become so

large that the kinetic energy of this region will be greater than the total energy of the

entire system; a non-physical result. Therefore, the approximation for the distribution

of variables should be modified when the internal shockwave approaches the sample

surface. The pressure distribution is more uniform compared to the density

distribution behind a strong shockwave [4], when the internal shockwave approaches

the sample surface with increasingly high Mach number. Therefore, in determining

iρ , ip and iR& from Eqs.(1.8-13), it is better to assume that the pressure is uniform

between the internal shockwave and the contact surface with a value equal to the

pressure just behind the internal shockwave (A.11) rather than assume the density is

uniform between the internal shockwave and the contact surface with a value equal to

the pressure just behind the internal shockwave (A.10) as in Arnold’s work. Therefore,

we use (A.11) and omit (A.10) for the second step simulation when the size of the

internal shockwave region is large. The transition between the first and second steps is

chosen when the pressure at the contact surface is the same as that just after the

internal shockwave front. One consideration might be to omit (A.10) at the beginning
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of the simulation and use the same set of equations throughout this stage. However,

our numerical results show that the internal shock region will become thinner during

the simulation and disappear by this approach; another possible solution of the Euler

equations when the flow field is treated as incompressible. However, this is not a

valid solution for our situation because shockwaves do appear during laser ablation.

To achieve relevant solutions, it is necessary to divide the simulation of this stage into

two steps if uniform property distributions are used in the internal shockwave region.

In the beginning, the density within the internal shockwave can be treated as being

uniform with the same value as that just after the internal shockwave front. When the

pressure at the contact surface becomes the same as that after the internal shockwave

front, (A.11) is then used instead of (A.10) in the simulation.

Stage Two
Stage two starts when the internal shockwave strikes the sample surface and last until

the internal shockwave again strikes the contact surface.

When the internal shockwave strikes the sample, a weak reflected shockwave is

generated from the surface. The density, pressure, and temperature within the two

regions of the vapor plume that are divided by the internal shockwave front (cf. fig.

1b) are assumed to be uniform as a first order approximation. The corresponding

parameters, excluding density, are assumed to vary linearly with distance within the

external shockwave region for consistency with the first stage. The density within the

external shockwave region (cf. fig. 1b and 3) is approximated as uniform as in stage

one. The velocities within all regions are again assumed as linear functions of distance

(cf. fig. 3). From the integral forms of the conservation laws of mass, momentum, and

energy in each region, with jump conditions after normal shockwaves, relations for

determining the density, pressure, temperature, and velocity distributions in all
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regions can be determined. The integral form of mass, momentum, and energy in each

region along with the jump conditions for the internal and the external shockwaves

are listed in Appendix A.

- Mass conservation in the unshocked plume region

( )3 3 34 4

3 3p i i i p c iM M M M R R R
π πρ ρ= − = − = − (2.1) 

 

- Momentum conservation in the unshocked plume region

( ) ( )2 2p
i i c i i i i i

dP
R p p R u R u

dt
π π ρ= − + − & (2.2)

- Energy conservation in the unshocked plume region

( )2 2 2 21
4 4 4

1 2
p p

p p i p i c p i c c c
p

dE p
u R u R p u R p R R

dt
ρ π π π

γ
 

= − + − + −  − 
& &  (2.2)

with p v i pk ptE E E E E= − = +  

- Mass conservation in the internal shockwave region

( ) 2/ 4i p i p idM dt R u Rρ π= −& (2.4)

- Energy conservation in the internal shockwave region

( )2 2 21
4 4

1 2
pi

p p i p i c p i
p

pdE
u R u R p u R

dt
ρ π π

γ
 

= + − −  − 
& , with i ik itE E E= + (2.5)

- Mass conservation in the external shockwave region

( )3 3 34 4

3 3e e g e e cM R R R
π πρ ρ= = − (2.6)

- Momentum conservation in the external shockwave region
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( ) ( )

2 2

2 2 3 3 2 2

2

1 1
2

3 2

e

c

R
e

c c e g
R

e c e c c e
c c e g e c e c

e c e c

dP
R p R p p rdr

dt

p p R p R p
R p R p R R R R

R R R R

π π π

π π π

= − +

    − −
= − + − + −    − −    

⌠
⌡

(2.7)

- Energy conservation in the external shockwave region

34

3 1
g

e laser e v
g

p
E E R E

π
γ

= + −
−

, with e et ekE E E= +  (2.8)

Stage Three
Stage three begins when the reflected wave is generated at the contact surface and

continues until this wave strikes the sample surface.

When the internal shockwave strikes the contact surface, a reflected wave is generated

again and travels back toward the sample surface. The reflected wave can be either a

shockwave or a rarefaction wave depending upon the relative magnitudes of the

generalized acoustic impedance in the two adjoining media [10]. The temperature in

the vapor plume is much higher than that of the external shockwave region; the

density of the vapor plume must be much lower than that of the external shockwave

region at least in the area near the contact surface. Hence, the effect when the internal

shockwave strikes the contact surface will be similar to that when the internal

shockwave strikes a solid layer, and the reflected wave should be a shockwave rather

than a rarefaction wave.

Density, pressure, and temperature in the two regions of the vapor plume that are

separated by the internal shockwave (cf. fig. 1c and 4) are assumed to be uniform as

in the previous two stages. Velocities, as in every stage of this model, are assumed to

have linear distributions satisfying jump conditions across shockwaves and the
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continuous velocity requirement at the contact surface. The pressure within the

internal shockwave region is taken to be uniform and equal to the value just after the

internal shockwave, which can be evaluated from the jump conditions across a normal

shockwave. However, the density within the internal shockwave region is not

assumed to be equal to the density just after the internal shockwave as was discussed

in the second stage section. Instead, an average density evaluated from the mass

conservation relation is used as the characteristic density in the internal shockwave

region. In contrast to the previous two stages, an additional refracted shockwave

propagating inside the original external shockwave region now appears in this stage

after the internal shockwave strikes the contact surface (cf. fig. 4). The integrated

conservation laws in each region with jump conditions across the shockwaves are

again used to determine the variables in this stage. The integral form of mass,

momentum, and energy in each region along with the jump conditions for the internal

and the external shockwaves are listed in Appendix A.

- Mass conservation in the unshocked vapor plume region

( )24p
i p p i

dM
R u R

dt
π ρ= − − & , with ( )3 3 34 4

3 3p i i c i p iM M M M R R R
π πρ ρ= − = − − =

(3.1)

- Energy conservation in the unshocked vapor plume region

( )2 21
4

1 2
p p

p i p i p p p
p

dE
R u R R T u

dt

γ
πρ

γ
 

= − − + −  
& , with p pk ptE E E= +  (3.2)

- Entropy conservation in the unshocked vapor plume region

p

p s pp C γρ= , with , 2 , 2/( ) p

s p end of stage p end of stageC p γρ= (3.3)

- Mass conservation in the internal shockwave region
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( )3 34

3i i c iM R R
π ρ= − (3.4)

- Energy conservation in the internal shockwave region

( )2 2 21
4 4

1 2
pi

c c c p i p i p p p
p

dE
p R R R u R R T u

dt

γ
π πρ

γ
 

= − + − + −  
& & , with i ik itE E E= + (3.5)

- Mass conservation in the external shockwave region

24e
e e g

dM
R R

dt
π ρ= & ; 1 2e e eM M M= +  (3.6)

- Momentum conservation in the external shockwave region

( ) ( )

( )

'

'

2 2

2 2 3 3 2 22 ' ' 2 '
' '

' '

3 31 1' 1' ' 1
' '

' '

2 2

1 1
2

3 2

1 1
2

3 2

e e

c e

R R
e

c c e g
R R

e c e c c e
c c e g e c e c

e c e c

e e e e e e
e c e

e e e e

dP
R p R p p rdr p rdr

dt

p p R p R p
R p R p R R R R

R R R R

p p R p R p
R R R

R R R R

π π π π

π π π

π

= − + +

    − −
= − + − + −    − −    

   − −
+ − +   − −   

⌠ ⌠ 
⌡ ⌡

( )2 2
cR

 
− 

 

(3.7)

- Energy conservation in the external shockwave region 1

( )2 2 21
' ' 1' 1' 1'

1
4 4

1 1 2
g g g

e e e e e e e
g g

p pdE
R R R R u u

dt

γ
π π ρ

γ γ
 

= − − + − −  
& & , with 1 1 1e e t e kE E E= +  

(3.8)

- Energy conservation in the external shockwave region 2

( )2 2 22
' ' 1' 1' 1'

1
4 4

1 2
g g

c c c e e e e e
g

pdE
p R R R R u u

dt

γ
π π ρ

γ
 

= + − + −  
& & , with 2 2 2e e t e kE E E= +  

(3.9)

Besides the above nine equations, the pressure within the internal shockwave region is

assumed to be uniform during this stage and is equal to the pressure of external
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shockwave region adjacent to the contact surface as

i cp p= (3.10)

In the present study, the existence of the refracted shockwave inside the external

shockwave region (cf. fig. 1c) is not a dominant mechanism in determining the

evolution of the vapor plume (due to the weakness of the refracted shockwave

compared to the other coexisting shockwaves). An acceptable approximation takes the

rate of change of the density, pressure, and velocity within the two regions separated

by the refracted shockwave to be equal (the three additional relations are given below

for this case). These relations simplify the calculations and also guarantee that the

density, pressure, and velocity inside the external shockwave regions are linear

functions, which is consistent with the simulations in stage 2 and stage 4, even when

the refracted shockwave degenerates into a sound wave.

1 1' 2 '

' '

e e e c

e e e c

u u u R

R R R R

− −
=

− −

&
; 1 1' 2'

' '

e e e c

e e e c

p p p p

R R R R

− −
=

− −
; 1 1' 2 ' 2

' '

e e e e

e e e cR R R R

ρ ρ ρ ρ− −
=

− −
 (3.11a,b,c)

Stage Four
Stage four starts after the internal shockwave disappears in the vapor plume.

In this last stage of the simulation, the strength of the internal shockwave within the

vapor plume is weak and can be neglected. The system is composed of a high

temperature uniform vapor plume and an external shockwave region. The propagation

speed of the external shockwave gradually diminished and approaches the sound

speed in the background gas. Accordingly, the pressure in the external shockwave

region (cf. fig. 1d and 5) is close to atmospheric pressure. Pressure, density, and

temperature are treated to be uniform inside the vapor plume. The corresponding

variables in the external shockwave region (cf. fig. 5) are treated as linear functions
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since this region is large compared to the vapor plume in this stage. Again, the

velocities in both regions are approximated by linear functions (cf. fig. 5).

Conservation laws within the vapor plume and the external shockwave regions are

used to construct the necessary relations in this stage.

- Mass conservation in the vapor plume region

-

34

3v p cM M R
πρ= =  (4.1) 

 

- Energy conservation in the vapor plume

24v
c c c

dE
R R p

dt
π= − & , with v vt vkE E E= +  (4.2) 

 

- Mass conservation in the external shockwave region

34

3e e gM R
π ρ= (4.3)

- Momentum conservation in the external shockwave region

( ) ( )

2 2

2 2 3 3 2 21 1
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1 1
2

3 2

e

c

R
e

c c e g
R

e c e c c e
c c e g e c e c

e c e c

dP
R p R p p rdr
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p p R p R p
R p R p R R R R

R R R R

π π π

π π π

= − +

    − −
= − + − + −    − −    

⌠
⌡

(4.4)

- Energy conservation in the external shockwave region

-

34

3 1
g

e laser e v
g

p
E E R E

π
γ

= + −
−

, with e et ekE E E= +  (4.5)

Results and discussion
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The simulated and experimental results [11] for the trajectories of the contact surface

and the internal and external shockwaves are shown in Figs. 6 and 7. The total laser

energy (E) transferred to the vapor plume (vaporized sample) and to the background

gas and the mass (M) of the sample that is vaporized are determined by the

comparison of the experimental data with the numerical results. The simulated M’s

are qualitatively consistent with the experimental results from the measurement of

crater volumes (which directly relates to the vaporized sample mass) for ablation with

two different laser energies, E=10 and 30mJ (cf. fig. 8). The larger deviation between

the simulated M and the experimental data for E=10mJ results from the difficulty in

determining the contribution of the measured upper volume to the net volume. Part of

the upper volume comes from the residue of the deposition of the vaporized mass

which should be excluded in the vaporized mass measurement but which is difficult to

subtract.

The value of E evaluated from these simulations is larger than the value obtained

using Sedov’s ( sedovE ) similarity solution:

1/ 5

2 /5sedov
external

gas

E
R t

ρ
 

=   
 

 (5.1)

sedovE is not equal to the total laser energy transferred to the vapor plume and to the

background gas. The density, pressure, temperature, and velocity distributions for a

real laser ablation system differ from Sedov’s solution. Also, the kinetic and thermal

energies in the vapor plume are not included in sedovE . The presence of a vapor plume

and a significant interaction between the vapor plume and the background gas are not

considered in Sedov’s solution. Based on our simulation, when the external

shockwave is far from the vapor plume (~50ns after laser pulse), ~80% of the energy

of the gas is in the compressed background gas region behind the external shockwave,

and ~20% of the absorbed laser energy is in the vapor plume. In addition, rather than
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0.4 in the exponent of time in Eq. (5.1), the present analysis shows that the time

exponent in Eq. (5.1) should be slightly larger at ~0.42, which shows better agreement

with the experimental data (Table 1).

In addition to the external shockwave formed when the vapor plume expands into the

background gas, an internal shockwave also is formed in the vapor plume. This

shockwave balances the velocity and high backpressure generated by the external

shockwave when the vapor plume expands supersonically. This internal shockwave

reflects back and forth within the vapor plume until the vapor plume expansion slows

down. This effect is manifested in the line emission images [11], where a high

emission region of the vapor plume moves back and forth inside the vapor plume.

From both the current simulation and the experimental data, only two internal

shockwave reflections can be observed. From the simulation, the first time when the

internal shockwave strikes the sample is ~10 ns after the end of the laser pulse. The

second internal shockwave hits the surface at ~50 ns after laser pulse. These times

depend on the background gas and the laser energy.

The Mach number of the reflected shockwave, RM , is related to the Mach number of

the incident shockwave, SM , according to [12] 

2
2 2 2 2

2( 1) 1
1 ( 1)

1 1 ( 1)
R S v

s v
R S v s

M M
M

M M M

γ γ
γ

 −
= + − + − − +  

(5.2)

where vγ is the specific heat ratio of the vapor plume, which is 5/ 3 in our

experiments. The maximum possible value of RM (with SM →∞ ) is 2.236RM = .

This means the strength of the shockwave is reduced significantly after each reflection

and may be the reason why there are only two internal shockwave reflections obtained

in the present analysis.

Density and pressure vary with position within the vapor plume. These two physical

properties at the contact surface are plotted as functions of time after the laser pulse
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(cf. Fig. 9 and 10). The temperature and electron number density of the vapor plume

are not explicitly modeled in the analysis. They are evaluated from the pressure and

density by the following relations

(1 )
c

c
c p

p
T

ρ α
=

+ ℜ
(5.3)

with

a e

a

n n

n
α +
= ,

0
a i

i

n n
∞

=

=∑ , and
0

e i
i

n in
∞

=

=∑ (5.4)

The electron density can be evaluated from Saha’s equation by the assumption of a

local thermal equilibrium (LTE),

1

3/ 2
/1

2

2 2
i kTe i i e

i i

n n Q m kT
e

n Q h
επ
+−+  =  

 
 (5.5)

The simulated values of cT , cρ , and cp are shown in Fig. 9-12.

The simulated density, pressure, and electron number density of the vapor plume

change almost linearly on the log-log plots (cf. figs. 9-12), which is qualitatively

consistent with experimental results for silicon [13]. The pressure of the vapor plume

decreases to the same magnitude as the background gas for times greater than 1 sµ

after the laser pulse for both laser energies. From these data, we can assume that the

vapor plume reaches a gas dynamic equilibrium with the ambient gas at these times.

This conclusion greatly simplifies the analysis of plasma emission from the vapor

plume at times greater than 1 sµ after the laser pulse since the pressure can be

assumed to be the same as the background gas pressure based on the present study

[11]; this is especially important for the chemical analysis (e.g. laser induced

breakdown spectroscopy, LIBS) which depends on the longtime spectral line emission

which is a strong function of the temperature and pressure of the vapor plume. The

temperature of the vapor plume does not decrease monotonically as a function of time

during the first 100ns. Instead, the deceleration of the rapidly expanding vapor plume
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converts kinetic energy to thermal energy of the vapor plume during this time [14].

After this time, most of the kinetic energy has been converted to thermal energy of the

vapor plume and the temperature, density, pressure, and electron number density of

the vapor plume start to decrease with time accompanied with the expansion of the

vapor plume. At 1 sµ , temperatures predicted in the simulations are about three times

greater than the experimental results [11]. This discrepancy could be due to the

shockwave jump conditions used in this work which are valid for ideal gases but do

not include the ionization energy of the vapor plume. A closed form solution of the

jump conditions as a function of the upstream conditions can not be achieved for

shockwave propagation in the highly ionized vapor plume [15]. Therefore, an iterative

algorithm should be used in the calculation of the jump conditions after the

shockwave for a highly ionized vapor plume. Another possible reason for the

overestimate of the simulated value of the temperature of the vapor plume is the

exclusion of the thermal radiation in the present study [11]. This simplification is

valid as long as the thermal radiation is not the dominate source of energy loss from

the vapor plume [16]. Besides, there are discontinuities in pressure, density, electron

number density, and temperature at ~10ns and at ~100ns after the laser pulse. These

times correspond to when the internal shockwave strikes the contact surface and

induces a sudden increase in all these physical properties.

Heat losses by conduction or radiation are not considered in the analysis. In the first 1

μs after the laser pulse, conductive and diffusive heat transfer are not significant

compared to the total thermal energy in the vapor plume in the first 1μs after laser

pulse [13]. For thermal radiation, continuum emission is small compared to the total

thermal energy and line emission is not fully developed during the first few 100ns

after the laser pulse; the transition probabilities of most lines are small ~ 7 110 ( )s−≤ .
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Thus, radiative heat transfer also can be neglected and the vapor plume can be

considered as undergoing an adiabatic expansion ~ 100’s ns after the laser pulse.

Radiative heat loss primarily influences the expansion and temperature of the vapor

plume (which caused the discrepancy between the simulated and experimental

temperature at 1 sµ as discussed above), but not the propagation of the shockwaves.

The external shockwave detaches from the vapor plume before ~100 ns when

radiative heat loss from the vapor plume is not important and the temperature of the

compressed gas layer is not high enough to produce significant radiative heat loss

(compared to the p-v work by the vapor plume on the background gas).

Conclusion

An analysis was made to describe the laser energy coupling to a gas and the amount

of vaporized mass in the vapor plume during ablation. Mass, momentum, and energy

conservation equations were solved in all regions affected by the laser energy

transport. The integrated conservation equations were used and linear variations of the

variables were assumed. The present simulation is time efficient and is demonstrated

to be a useful, tractable approach to determine the propagation of the internal

shockwave, contact surface, and the external shockwave along with the variables in

all of the regions. The analysis permits the determinations of the laser energy

conversion efficiency and the amount of sample vaporized (both are dominant

parameters of the laser ablation process and are difficult to obtain from the previous

studies) by comparing the simulated trajectories of the external shockwave and the

contact surface with the experimental results. For the present conditions ( 1064nmλ = ,

spot size ~ 300 mµ , pulse length ~ 4ns), the laser energy conversion efficiency for

ablation in Ar [3] is 30-40%, and the vaporized mass is 125.5 10 kg−× for E=10mJ
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and is 111.3 10 kg−× for E=30mJ for each laser pulse. These values correspond to the

same order as the crater volume measured after each laser ablation for both laser

energies [3]. The laser energy conversion efficiency evaluated was greater than that

evaluated from Sedov’s law. Sedov’s law only describes the energy of the external

shockwave, which is less than the total energy stored in the vapor plume and

shockwave regions.  

The density, pressure, temperature, and electron density within the vapor plume were

determined as functions of time as along as the laser energy conversion efficiency and

the amount of sample mass vaporized are known. The four physical properties show

linear decreases with respect to time in log-log plots after the vapor plume detaches

from the external shockwave, in qualitative agreement with experiments. The

information about the time evolution of the density, pressure, temperature, and

electron density within the vapor plume is important for phenomena sensitive to the

early expansion of the vapor plume. These include production of soft x-rays from the

laser plasma, laser propulsion and laser ultrasonic generation.
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Nomenclature

pc Specific heat with constant pressure
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vc Specific heat with constant volume

E Total energy in the vapor plume

eE Total energy in the external shockwave region

ekE Kinetic energy in the external shockwave region

etE Thermal energy in the external shockwave region

1e kE Kinetic energy in the external shockwave region 1

1e tE Thermal energy in the external shockwave region 1

2e kE Kinetic energy in the external shockwave region 2

2e tE Thermal energy in the external shockwave region 2

iE Total energy in the internal shockwave region

ikE Kinetic energy in the internal shockwave region

itE Thermal energy in the internal shockwave region

pE Total energy in the unshocked vapor plume

pkE Kinetic energy in the unshocked region

ptE Thermal energy in the unshocked region

vE Total energy in the vapor plume

iF 1 5i = − , defined infinite integral functions

eM Compressed air mass in the external shockwave region

1eM Compressed air mass in the external shockwave region 1

2eM Compressed air mass in the external shockwave region 2

iM Vaporized sample mass in the internal shockwave region

pM Vaporized sample mass in the unshocked plume region

en Electron density of the vapor plume at the contact surface

in ith order ionized atom density

cp Pressure of the vapor plume at the contact surface

eP Momentum in the external shockwave region

ep Pressure after the external shockwave

iP Momentum in the internal shockwave region

ip Pressure after the internal shockwave

pP Momentum in the unshocked region

iQ Partition function at ith ionized stage

R Radius of plume neglecting the ambient gas

cR Position of the contact surface

eR Position of the external shockwave front

'eR Position of the refracted shockwave in the external shockwave region

iR Position of the internal shockwave front

oR Initial plume radius (Taken as focal radius in the calculation)

cR& Velocity of the contact surface
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eR& Velocity of the external shockwave front

'eR& Velocity of the refracted shockwave in the external shockwave region

iR& Velocity of the internal shockwave front

cT Temperature of the vapor plume at the contact surface

gT Temperature of the background air

eu Velocity after the external shockwave

iu Velocity after the internal shockwave

ou Initial plume expansion speed after the laser supplies energy

( )eV r Velocity in the external shockwave region

iε Ionization potential of ith ionized stage of the vapor

gγ Specific heat ratio of the background air

pγ Specific heat ratio of the plume

cρ Density of the vapor plume at the contact surface

eρ Density after the external shockwave

gρ Background air density

/r Rξ = Dimensionless Lagrange position in the vapor plume

pℜ Gas constant of vapor plume

gℜ Gas constant of background gas
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- Jump conditions across the internal shockwave [7] 
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with the subscript iR indicating the position just before the internal shockwave

where
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- Jump conditions across the external shockwave
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- Jump conditions across the internal shockwave
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- Jump conditions across the external shockwave
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Stage three:
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- Jump condition across the internal shockwave
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- Jump condition across the external shockwave front 1
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- Jump condition across the external shockwave from 2
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Stage four:
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- Jump conditions after the external shockwave

1

1 2

1 2
1

1 1
g g g g

e g
g g e

R T

R

γ γ
ρ ρ

γ γ

−
 +

= + − −  
&

(A.55)

2
1 2

12
1

1 2
g g g g

e g e
g g e

R T
p R

R

γ γ
ρ

γ γ
 −

= − +   
&

&
(A.56)

1 2

2
1

1
g g g

e e
g e

R T
u R

R

γ
γ

 
= − +  

&
&

(A.57)



34

Reference

[1] M. R. Predtechensky and A. P. Mayorov, Applied Superconductivity 1(10-12),

2011 (1993).

[2] N. Arnold, J. Gruber, and J. Heitz, Applied Physics A-Materials Science &

Processing 69, S87-S93 (1999).

[3] S. I. Anisimov, B. S. Lukyanchuk, and A. Luches, Applied Surface Science 96-8,

24 (1996).

[4] L. I. Sedov, Similarity and Dimensional Methods in Mechanics, 10th edition (CRC press,

Ann Arbor, 1993)

[5] S. B. Wen, X. Mao, R. Greif, and R. E. Russo, Study of the expansion of the vapor

plume generated by laser ablation with a background gas – Part B. Experimental

Analysis (submitted).

[6] R. Kelly and A. Miotello, Nuclear Instruments & Methods in Physics Research

Section B-Beam Interactions with Materials and Atoms 122(3), 374 (1997).

[7] B. Xu and Y. C. Shin, Journal of Applied Physics 99(8), 084310 (2006).

[8] S. I. Anisimov, V. V. Zhakhovski, N. A. Inogamov, K. Nishihara, Y. V. Petrov, and

V. A. Khokhlov, Journal of Experimental and Theoretical Physics 103(2), 183 (2006).

[9] Y. B. Zel'dovich and Yu. P. Raizer, in Physics of Shock Waves and

High-Temperature Hydrodynamic Phenomena, edited by W. D. Hayes and R. F.



35

Probstein (Academic, London, 1966).

[10] H. Polachek and R. J. Seeger, Physical Review 84(5), 922 (1951).

[11] S. B. Wen, X. L. Mao, R. Greif, and R. F. Russo, Journal of Applied Physics

100(5), 053104 (2006).

[12] John D. Anderson, Modern Compressible flow with historical perspective, 3rd edition

(Mc Graw Hill, New York, 2002)

[13] X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, Applied Physics A-Materials

Science & Processing 80(2), 237 (2005).

[14] E. M. Lifshitz and L. D. Landau, Fluid Mechanics, 2nd edition (Butterworh-Heinemann,

1987)

[15] C. Michaut, C. Stehle, S. Leygnac, T. Lanz, and L. Boireau, European Physical

Journal D 28(3), 381 (2004).

[16] T. E. Itina, J. Hermann, P. Delaporte, and M. Sentis, Physical Review e 66(6),

066406 (2002).



36

Table I. The exponent b of b
eR t∝ measured from experiment and predicted by

Sedov’s law and the present analysis

E=10mJ Experiment Sedov’s law Present analysis

Exponent b for

b
eR t∝ (t>100ns)

0.427 ( 0.001± ) 0.4 0.423

Error ― 0.027 (6.32%) 0.004 (0.94%)

E=30mJ Experiment Sedov’s law Present analysis

Exponent b for

b
eR t∝ (t>100ns)

0.419 ( 0.001± ) 0.4 0.421

Error ― 0.019 (4.75%) -0.002 (-0.48%)

.
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Figure 1. The structure of the simulated model (a) in stage one, (b) in stage two, (c) in

stage three, and (d) in stage four

Figure 2. Schematic density, pressure, and velocity distributions

within each region in stage one

Figure 3. Schematic density, pressure, and velocity distributions

within each region in stage two

Figure 4. Schematic density, pressure, and velocity distributions

within each region in stage three
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within each region in stage four

Figure 6. Trajectories in Ar for E=10mJ. / 35%laserE E = ; 125.5 10M kg−= ×  

(fluence 214 /J cm≈ )

Figure 7. Trajectories in Ar for E=30mJ. / 31%laserE E = ; 111.3 10M kg−= ×  

(fluence 242 /J cm≈ )

Figure 8. (a) Crater volumes of laser ablations after 200 pulses in different

background gas and laser energy. (b) Sketch of the determination of crater volume

(typical crater profile of the 200 times ablation at same spot in helium for E=30mJ).

Figure 9. Density of the vapor plume at the contact surface for E=10 and 30mJ

(fluence 214 and 42 /J cm≈ ).
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Figure 10. Pressure of the vapor plume at the contact surface for E=10 and 30mJ

(fluence 214 and 42 /J cm≈ ). 

Figure 11. Electron number density of the vapor plume at the contact surface for E=10

and 30mJ (fluence 214 and 42 /J cm≈ ). 

Figure 12. Temperature of the vapor plume at the contact surface for E=10 and 30mJ

(fluence 214 and 42 /J cm≈ ). 
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