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Cycle Census Statistics for Exponential Random

Graph Models∗†

Carter T. Butts‡

1/17/06

Abstract

Exponential family models for random graphs (ERGs, also known
as p∗ models) are an increasingly popular tool for the analysis of social
networks. ERGs allow for the parameterization of complex dependence
among edges within a likelihood-based framework, and are often used
to model local influences on global structure. This paper introduces a
family of cycle statistics, which allow for the modeling of long-range
dependence within ERGs. These statistics are shown to arise from
a family of partial conditional dependence assumptions based on an
extended form of reciprocity, here called reciprocal path dependence.
Algorithms for computing cycle statistic changescores and the cycle
census are provided, as are analytical expressions for the first and ap-
proximate second moments of the cycle census under a Bernoulli null
model. An illustrative application of ERG modeling using cycle statis-
tics is also provided.

Keywords: exponential family models, cycles, random graphs, partial
conditional dependence models, social networks

1 Introduction

Exponential family models for random graphs (ERGs) are an increasingly
popular tool for the analysis of social networks (see, e.g., Carrington et al.,
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2005, for examples and a review of recent work). Central to the appeal
of ERGs is their ability to parameterize complex dependence among edges,
while still supporting likelihood based inference. Arguably, this combina-
tion allows ERG models to fulfill some of the roles traditionally occupied
by approaches such as agent based modeling (e.g., exploring the global con-
sequences of local organizing principles) as well as conventional statistical
techniques (e.g., estimation and model selection).

Much – if not most – of the existing work on exponential family models
for random graphs is focused on local structure, i.e. structural properties
which depend only on the first or second order neighborhood of a focal ver-
tex. Prominent examples of such properties include reciprocity, transitivity,
clustering, and the degree distribution, as well as covariate-dependent effects
such as homophily and propinquity. While such properties are inarguably
important, it is not clear that they capture all processes of substantive in-
terest. Indeed, it has long been argued that local structure may itself be
affected by large-scale network properties. In negative exchange networks,
for instance, changes to distant edges can affect the balance of even/odd
paths between actors, thereby changing their payoffs (and, hence, incentives
to trade) (Willer, 1999). Long-range cycles have similarly been hypothesized
to be of importance in maintaining reputational and generalized exchange
systems, serving as redundant conduits for the flow of goods and information
(including information about the trustworthiness of one’s local trading part-
ners) (Bearman, 1997; Yamagishi and Cook, 1993). The presence of such
redundant connections is thought to be an important factor in organiza-
tional resilience, particularly within turbulent environments (e.g., disasters)
(Kendra and Wachtendorf, 2003); on the other hand, these same features
may be selected against within contexts such as sexual contact networks,
where they may increase network members’ exposure to communicable dis-
ease.

Here, we take ERG models in a more global direction by introducing
effects for cycles of varying lengths. As we show, these effects can be under-
stood as capturing a form of extended reciprocity, in which potential edges
are affected by the presence or absence of redundant paths between end-
points. While computation for the associated path counts is potentially
expensive, we provide algorithms which allow for the use of cycle effects in
typical empirical settings. These algorithms can also be employed to com-
pute a partial (or, for small graphs, total) cycle census; comparison of the
observed cycle census versus the expected census under a simple null model
of edgewise independence provides a useful exploratory mechanism for iden-
tifying structural biases. Finally, we demonstrate the use of cycle statistics
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for both exploratory and modeling purposes, using four data sets which span
a range of relational types.

1.1 Brief Review of Discrete Exponential Family Models

Before turning to the cycle statistics per se, it is first useful to briefly review
the basic definition of the ERG representation.1 Let G be a random graph
with countable support G, and let t : G 7→ R

m be a vector of sufficient

statistics for G. We may then represent the probability mass function of G
by a discrete exponential family, i.e.

Pr(G = g|θ) =
exp

(

θT t(g)
)

∑

g′∈G exp (θT t(g))
, (1)

where θ ∈ R
m is a vector of parameters. Intuitively, the ERG acts to shift

probability mass towards graphs for which θiti(g) is large, and away from
graphs for which the corresponding statistic is small (or highly negative).
θT t thus acts as a potential function for G, with t indicating the graph
features which are positively/negatively weighted by the model.

Given an ERG model, simulation of draws from G may be accomplished
via Markov Chain Monte Carlo (MCMC) methods; see, e.g., Crouch et al.
(1998); Snijders (2002). Inference for θ given G is complicated by the pres-
ence of the unknown normalizing factor within the likelihood for G (i.e., the
sum over G above) which depends upon θ but not upon G. Since the cardi-
nality of G (denoted |G|) is typically on the order of 2N2

or greater, direct
computation of the normalizing factor is generally infeasible; simple Monte
Carlo quadrature is also difficult, due to the high variance of the summand.
Current estimation methods thus employ importance sampling for variance
reduction, approximate the likelihood by a product of conditional likelihoods
(the pseudolikelihood method), or dodge the matter entirely by seeking to
solve the likelihood equation,

E
θ̂
t(G) = t(gobs) (2)

(where gobs is the observed graph, and E
θ̂
t(G) is the expectation of t(G)

under the MLE). While efficient techniques for the solution of these problems
remains an area of active research, we will not treat the matter in detail
here. We simply note that workable approaches do exist for many problems

1Properly speaking, the ERG/p∗ framework is a general way of parameterizing prob-
ability models on graphs, rather than being a model per se. We will generally avoid this
distinction here.
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of substantive interest (see Wasserman and Robins, 2005, for a brief review),
and that several software implementations of these methods are currently
available (e.g., Snijders, 2001; Handcock et al., 2003). Our purpose here,
rather, is centered on the definition of t based on cyclical properties of G,
and on the computation for the associated statistics. It is to this problem
that we now turn.

2 Cycle Statistics: Parameterization and Compu-

tation

To model more global properties within an exponential family context, we
here introduce a family of sufficient statistics based on cycle counts. Specif-
ically, let G = (V, E) be a loopless graph on N vertices. We define the ith
cycle statistic, ci, of G by ci(G) ≡ |{g ⊆ G : g ∼= Ci}|, where Ci is the cycle
on i vertices (or directed cycle, if G is directed) and ∼= is the isomorphism
relation. Thus, ci(G) is the number of i-cycles in G. Trivially, ci(G) = 0
forall i 6∈ 2, . . . , N (or i 6∈ 3, . . . , N , if G is undirected); otherwise, ci will
depend upon the structure of G. The set of all cycle statistics for G is
called the cycle census of G, in direct analogy with the well-known dyad
and triad censuses (Holland and Leinhardt, 1976). Cycle statistics are in
general affinely independent of each other, and may be used within an ERG
model in the same manner as other statistics such as k-stars, triad counts,
etc.

As noted above, an exponential family model acts to place probability
mass in log-proportion to the potential θT t. Where cycle statistics are in-
cluded within t, then, the corresponding θ parameters can be interpreted
as promoting or inhibiting cycle formation (depending on the sign of θi).
Further, we can observe from Equation 2 that the maximum likelihood es-
timator for an ERG containing cycle statistic ci corresponds to a model in
which the expected number of i-cycles is equal to the number of i-cycles
in the observed graph. A complete cycle census model, then, which sets
t = c, can be understood as preserving the expected cycle distribution at all
scales. Incomplete cycle census models (for which t ⊂ c) likewise preserve
cycle distributions at some lengths, but not others; these models may be
preferable when structural dependence is believed to be limited to certain
scales.

It should be noted that some cycle statistics arise naturally from other
models, and are already in wide use. In the directed case, the 2-cycle statistic
is identical to the number of mutuals, a statistic which first appears in the
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dyad dependence models (including U |MAN , p1, and p2). 3-cycles (in both
the directed and undirected cases) appear with the Markov graphs (Frank
and Strauss, 1986), wherein dependence is generalized from dyads to edges
sharing at least one endpoint. Pattison and Robins (2002) have further
suggested a family of partial conditional dependence models based on 3-
paths, which include 4-cycle statistics in their full specification. Thus, local
cycle statistics are a familiar component of many ERG models. Longer-range
cycles, on the other hand, have not been employed in past work; similarly,
little is known about the nature of models which are constructed from cycle
statistics per se. Before turning to matters of computation, then, we briefly
explore some of the properties of cycle census models.

2.1 Models from Reciprocal Path Dependence

While cycle statistics may be motivated by direct, substantive considera-
tions, they may also arise as a result of assumptions regarding conditional
dependence among edges. As we have already seen, cycles of length 2 and 3
arise naturally from the Markov graphs (Frank and Strauss, 1986), and cy-
cles of length 4 are implicated in the 3-path models of Pattison and Robins
(2002). It is thus natural to ask whether there is a family of models which
is parameterized through more general cycle statistics, and (if so) whether
this may give us some insight into the properties of the cycle census. As
it happens, it is possible to generate such a family as a partial conditional
dependence model, using the notion of reciprocal path dependence.

The core idea behind reciprocal path dependence is that two possible
edges are conditionally dependent only if their respective endpoints are
joined by (appropriately directed) paths. While this assumption can be
motivated in a number of ways, possibly the most obvious is via an ex-
tended notion of reciprocity. Under dyadic reciprocity, the probability of an
edge from vertex i to vertex j is dependent upon the existence of an edge
from vertex j to vertex i; intuitively, an edge which establishes a mutual
relationship is not the same as an edge which establishes an asymmetric
relationship. A similar argument may be made in the triadic case, wherein
an (i, j) edge may be made more or less likely by the existence of an indirect
relationship from j to i mediated by some third party, k. If we continue
to extend the potential for indirect reciprocity, allowing dependence at ever
greater distances, we eventually arrive at the case in which the potential
for an (i, j) edge to reciprocate a j, i path of any length could (potentially)
prove consequential. This limiting case is the reciprocal path dependence
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model.2

To express this intuition more formally, we define a series of reciprocal

path conditions on the edges of G.

Definition 1. Let G = (V, E) be a directed graph, with (i, j), (k, l) being
vertex pairs such that i 6= j, k 6= l, i, j, k, l ∈ V . Let Pab denote a directed
a, b path in G. Then (i, j) and (k, l) are said to satisfy the strong reciprocal

path condition if

1. {i, j} ∩ {k, l} = 2

2. i = l and ∃ Pjk ∈ G;

3. j = k and ∃ Pli ∈ G; or

4. ∃ Pjk, Pli ∈ G : Pjk ∩ Pli = ∅.

We say that (i, j), (k, l) satisfy the weak reciprocal path condition if (1), (2),
or (3) above is true, or if ∃ Pjk, Pli ∈ G. Now, consider the case in which
G is an undirected graph, with vertex pairs {i, j}, {k, l} : i 6= j, k 6= l,
i, j, k, l ∈ V . Let Pab denote an undirected a, b path in G. Then {i, j} and
{k, l} are said to satisfy the strong reciprocal path condition if

1. {i, j} ∩ {k, l} = 2;

2. {i, j} ∩ {k, l} = 1 and ∃ Pab ∈ G : a ∪ b = ({i, j} ∪ {k, l}) \ ({i, j} ∩
{k, l}), ({i, j} ∩ {k, l}) 6∈ Pab; or

3. ∃ Pab, Pcd ∈ G : {a, c} = {i, j}, {b, d} = {k, l}, Pab ∩ Pcd = ∅.

If (1) or (2) above is true, or if ∃ Pab, Pcd ∈ G : {a, c} = {i, j}, {b, d} =
{k, l}, {{i, j}, {k, l}} ∩ (Pab ∪ Pcd) = ∅, then {i, j}, {k, l} are said to satisfy
the weak reciprocal path condition. Given a choice of condition, we use
the expression aRb to denote the statement “a and b satisfy the reciprocal
path condition.” The negation of this statement is written as aRb. R is a
symmetric binary relation, and thus aRb ⇔ bRa, aRb ⇔ bRa. �

The above definitions can be restated as follows. A pair of directed dyads
satisfy the strong reciprocal path condition if they are identical, or if there
is a directed path from the receiver of the first dyad to the sender of the first
dyad which includes the second directed dyad (treating the second directed

2In practice, it is possible (and generally desirable) to limit the range at which depen-
dence can occur. This is demonstrated in Section 3, below.
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edge as being present for purposes of the condition). Such a pair satisfies
the weak reciprocal path condition if it satisfies the strong condition, or if
there are paths connecting the receiver of each directed dyad to the sender
of the other. Thus, the strong and weak conditions differ only in that the
former requires the paths connecting the respective dyads to be independent.
The definitions for the undirected case are exactly analogous to those of the
directed case, save that the orientation of edges (and hence paths) is ignored.

Now, what can be said of an ERG model which treats edges as dependent
only if they satisfy a reciprocal path condition? In particular, what sufficient
statistics are needed to implement such a model? Although the Hammersley-
Clifford Theorem (Besag, 1974) provides a means of identifying the sufficient
statistics associated with a given conditional dependence structure, that is
not adequate here. Let X be the adjacency matrix associated with random
graph G, such that Xij = 1 if (i, j) ∈ E and Xij = 0 otherwise. (In a
slight abuse of notation, we will treat (i, j) as equivalent to {i, j} in the
remainder of this subsection, where G is undirected.) Denote the cells of
X not corresponding to pairs (a, b), (c, d), . . . by Xc

ab,cd,.... Now let E =
{(i, j) : i 6= j, i, j ∈ V }, and let D = (E , E′) be a simple graph such that
{(i, j), (k, l)} ∈ E′ iff Xij 6⊥ Xkl|X

c
ij,kl. D is then the conditional dependence

graph of G. By the Hammersley-Clifford Theorem, a discrete exponential
family model whose sufficient statistics are the products of cells in X whose
associated edges form cliques in D is sufficient to implement the conditional
dependence structure of G. Thus, it would appear, we must merely identify
the D associated with each reciprocal path condition to find the sufficient
statistics of G.

As it happens, the reality of the situation is a bit more complex: since,
in general, any edge pair can satisfy the reciprocal path conditions, it fol-
lows that D is a complete graph for any G implementing a reciprocal path
dependence model. If D is a complete graph, then all subsets of D are
cliques; thus all possible subsets of edges can generate sufficient statistics
for G. To resolve the situation, we note that the statistics generated by the
Hammersley-Clifford construction are always sufficient to implement the as-
sociated model, but are not always necessary. As Pattison and Robins (2002)
have demonstrated, it is often possible to use additional constraints on the
dependence structure to pare down the set of sufficient statistics. Specif-
ically, they show that assumptions of edgewise dependence conditional on
particular realizations of the rest of the graph can serve to generate more
restrictive models. In our case, the reciprocal path dependence assumption
is precisely of this type: we posit conditional dependence of edges given that
the appropriate path condition is satisfied, assuming edges to be otherwise
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independent. Pattison and Robins describe this as “partial conditional de-
pendence,” and provide a theorem for the construction of sufficient statistics
given certain assumptions of this type. Although we cannot use their result
directly (since the reciprocal path dependence conditions do not satisfy the
assumptions of their theorem), we can derive a similar theorem which does
apply in our case.

Theorem 1. Let X be a random adjacency matrix whose pmf is a discrete

exponential family satisfying a reciprocal path dependence assumption under

condition R. Then the sufficient statistics for X are functions of edge sets

S such that (i, j)R(k, l) ∀ {(i, j), (k, l)} ⊆ S.

Proof. Our argument initially shadows that of Pattison and Robins (2002:
332–334), departing from it in the nature of the partial conditional depen-
dence assumed. We begin (as do they) with Besag’s (1974) definition of
Q(x) = ln [Pr (X = x) / Pr (X = 0)], where X is a random adjacency ma-
trix (with realization x), and 0 is a zero-matrix with the same dimensions
as x. Let X−

ij represent the matrix X with Xij set equal to 0. As per Besag
(1974),

Q(x) −Q(x−
ij) = ln





Pr (X = x)

Pr
(

X = x−
ij

)



 (3)

= ln





Pr
(

Xij = xij

∣

∣

∣
Xc

ij = xc
ij

)

Pr
(

Xij = 0
∣

∣

∣
Xc

ij = xc
ij

)



 , (4)

and from the Hammersley-Clifford Theorem,

= xij





∑

A⊆M\{(i,j)}

λA∪{(i,j)}

∏

(k,l)∈A

xkl



 (5)

where M is the set of directed dyads on V , λA∪{(i,j)} ∈ R, and λA∪{(i,j)} = 0
if A ∪ {(i, j)} is not a clique of D.

As noted above, D is a complete graph under the reciprocal path con-
ditions – thus, the Hammersley-Clifford Theorem alone cannot place useful
restrictions on the number of sufficient statistics required to parameterize
such models. Like Pattison and Robins (2002), we thus invoke a form of
partial conditional dependence to force certain λ coefficients to 0. We begin
by noting that, under a reciprocal path dependence model, xij ⊥ xkl unless
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the appropriate reciprocal path condition is met. For some fixed (k, l), let

xc
ij ,x

′c
ij be such that (i, j)R(k, l), with

(

xc
ij

)

kl
= 1 and

(

x′c
ij

)

kl
= 0. By

assumption, (i, j)R(k, l) implies Xij ⊥ Xkl|X
c
ij,kl. It follows, then, that

ln





Pr
(

Xij = xij

∣

∣

∣Xc
ij = xc

ij

)

Pr
(

Xij = 0
∣

∣

∣
Xc

ij = xc
ij

)



 = ln





Pr
(

Xij = xij

∣

∣

∣Xc
ij = x′c

ij

)

Pr
(

Xij = 0
∣

∣

∣
Xc

ij = x′c
ij

)



 , (6)

and hence,

0 = xij









∑

A⊆M\{(i,j)}

λA∪{(i,j)}

∏

(m,n)∈A

xmn



 −





∑

A⊆M\{(i,j)}

λA∪{(i,j)}

∏

(m,n)∈A

x′
mn









(7)

= xij





∑

A⊆M\{(i,j)}

λA∪{(i,j)}





∏

(m,n)∈A

xmn −
∏

(m,n)∈A

x′
mn







 (8)

This condition is satisfied (in general) iff λS = 0 forall S such that (k, l) ∈ S,
(i, j)R(k, l). Note that we do not have to assume that λS = 0 for S such
that (i, j)R(k, l), because (by construction) the sufficient statistics associ-
ated with any such terms in Equation 8 must be 0.

The above deals with the dependency of a single pair of edges; to re-
state, we have shown that a reciprocal path dependency assumption implies
that any sufficient statistic which is a function of edge pair (i, j), (k, l) must
be associated with a zero coefficient unless (i, j)R(k, l). Since this condi-
tion applies to all edge pairs simultaneously, it follows that the only suf-
ficient statistics with nonzero λ values can be those for which all pairs of
included edges satisfy R. Stated more formally, λS 6= 0 only if (i, j)R(k, l)
∀ {(i, j), (k, l)} ⊆ S. Note that this result also extends naturally to the
undirected case, e.g., by restricting attention to the lower triangle of X.

The practical importance of Theorem 1 lies in the fact that only a small
number of configurations satisfy the various reciprocal path conditions. In
the strong, directed case, S consists entirely of edge variables (which trivially
satisfy R) and directed cycles. Applying the standard assumption of homo-
geneity under isomorphism, we arrive at a model whose sufficient statistics
are the edge count, together with the number of directed cycles of each
length (i.e., the cycle census). The weak directed case is less restrictive: in
addition to edges, various directed closed walks (cycles with repeated edges
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and/or vertices) are also admissible. These statistics are more difficult to
fully characterize, and we will not attempt to do so here. In the undirected
case, the strong condition implies that S consists of all subgraphs of G hav-
ing a spanning cycle; chords are thus permitted here, unlike the directed
case. Statistics for the weak condition in the undirected case are analogous
to the directed case, save that the cycles involved are undirected.

The above suggests a particularly important role for the cycle census:
together with the edge count, the cycle census is sufficient for the (homoge-
neous) strong reciprocal path dependence model in the directed case. Un-
like dyadic, Markov, or three-path models, the RPD model is truly global
in character. Edges within a RPD model can depend on other edges at
geodesic distances of O(N), as compared with distances of 1 to 3 for the
local structure models. At the same time, this long-range dependence is
managed within a small number of sufficient statistics (in the strong case,
at least), greatly facilitating estimation and interpretation.

Of course, these attractive properties do not make the RPD model a
panacea. The specific form of long-range dependence implied by the recip-
rocal path constraint may be reasonable for certain processes (e.g., general-
ized exchange), but is likely insufficient to capture other phenomena (e.g.,
heterogeneity in number of partners). Furthermore, actually computing the
cycle census is itself a substantial challenge. It is to this problem that we
now turn.

2.2 Computation

Practical inference for cycle parameters would seem to pose formidable com-
putational challenges. Since computation of the cycle census is at least NP-
complete (note that it includes the Hamiltonian graph problem as a special
case3), it is not immediately obvious that it is possible to employ cycle statis-
tics for graphs of more than minimal size. While the complexity of cycle
computation does indeed place some limits on what models can be fit, these
limits are less severe than one might expect. With that in mind, we here
provide some simple algorithms for use in computing cycle census statistics
for ERG models; examples of the use of these algorithms may be found in
Section 3.

Although there is no known means of fully circumventing the problem
of NP-completeness, there are several aspects of the ERG context which
allow us to employ cycle census statistics in practice. First, most networks

3A graph is Hamiltonian if it contains a spanning cycle; determining whether a graph
is Hamiltonian is a well-known NP-complete problem (West, 1996).
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of empirical interest are exceedingly sparse. Social actors typically have
upper bounds on the number of relationships they can sustain (Mayhew
and Levinger, 1976), leading to densities which fall approximately as 1/N in
graph size. This limits the number of cycles which are realized in practice,
a fact which can be exploited when designing cycle counting algorithms. A
second useful observation is the fact that we do not have to calculate the
entire cycle census in order to fit or simulate draws from an ERG model –
following Snijders (2002), we need only calculate the changes in the cycle
statistics associated with the addition or deletion of a given edge. Finally, we
note that the phenomena of interest to most researchers imply dependence
over a relatively restricted range of distances. Interdependencies induced by
inbreeding taboos or incentives from generalized exchange are anticipated
to weaken as one moves from relatively short cycles (e.g., length 4-5) to
long cycles (e.g., length 6 or greater). As a result, we may often restrict
our attention to cycles of fixed maximum length. Computation for these
bounded cycles is often feasible even for large graphs, despite the fact that
a complete cycle census may be unavailable. Our approach is thus to focus
on computation for all cycles of length 2, . . . , ℓmax, where ℓmax is some user-
specified upper bound. We provide algorithms for computing changescores
for such statistics, and for computation of the associated (partial) cycle
census.

2.2.1 Changescore Algorithms

Let G = (V, E) be a (possibly directed) graph, and let (v, v′) be a pair of
distinct vertices. We seek to compute the changes in the numbers of cycles of
lengths 2, . . . , ℓmax (respectively) which result from setting E := E∪(v, v′) (if
(v, v′) 6∈ E), or setting E := E \ (v, v′) (if (v, v′) ∈ E). These changescores
are computed by Algorithm 1, such that ci is the change in the number
of cycles of length i + 1 produced by a change in the state of the (v, v′)
edge. (Note that c1 = 0 in the undirected case.) Algorithm 1 works by
counting the numbers of paths of length 1, . . . , ℓmax − 1 from v′ to v in G.
If (v, v′) ∈ E, then each of these paths join with the (v, v′) edge to form
cycles; removal of the (v, v′) edge thus removes exactly these cycles from G.
By turns, if (v, v′) 6∈ E, each path from v′ to v will contribute one cycle
to G ∪ (v, v′). Since no other cycles can be added/removed by a change to
the (v, v′) edge, it follows that the changescore computation reduces to the
problem of counting (v′, v) paths.

Counting the (v′, v) paths at each length is fairly straightforward. One
approach is provided in Algorithms 2 and 3. Algorithm 2 begins in lines 3–5
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Algorithm 1 Routine to Compute Changescores for Cycle Terms

1: procedure CycleChangescore(G, v, v′, ℓmax)
2: p :=PathCount(G, v′, v, ℓmax − 1)
3: if (v, v′) ∈ E then

4: c := −p

5: else

6: c := p

7: end if

8: return c

by checking for adjacency (a 1-path) in the directed case; this is handled
here (rather than in the subsequent recursive step) due to the fact that
directedness of G affects only the initial adjacency. Algorithm 2 next creates
A (the set of potentially available internal vertices) in line 6. Each member
of A adjacent to the initial vertex is then used as a seed for a depth-first
recursion (lines 7–11). Upon termination, the vector of path counts (p) is
returned.

Algorithm 2 Path Counting Routine

1: procedure PathCount(G, v, v′, ℓmax)
2: p := {0}ℓ

max

3: if (G is directed) ∧ ((v, v′) ∈ E) then

4: p1 := 1
5: end if

6: A := V \ {v, v′}
7: for vc ∈ A do

8: if (v, vc) ∈ E then

9: PathCountRecurse(G, vc, 2, v′, A,p, ℓmax)
10: end if

11: end for

12: return p

The recursive step (Algorithm 3) proceeds as follows. Given that we
have arrived at vertex vc, we check for adjacency to the destination vertex
(vd), incrementing the path count if such an adjacency is found (lines 2-4).
Assuming that we have neither exhausted the available vertices nor reached
the maximum path length (line 5), we update A by removing the current
vertex (line 6). For each neighbor of vc remaining in A, we further recurse
using the updated available set and incremented path length (lines 7-11).
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Algorithm 3 Recursive Subroutine for Path Counting Algorithm

1: procedure PathCountRecurse(G, vc, ℓ, vd, A,p, ℓmax)
2: if (vc, vd) ∈ E) then

3: pℓ := pℓ + 1
4: end if

5: if (|A| > 0) ∧ (ℓ < ℓmax) then

6: A := A \ vc

7: for v ∈ A do

8: if (vc, v) ∈ E then

9: PathCountRecurse(G, v, ℓ + 1, vd, A,p, ℓmax)
10: end if

11: end for

12: end if

Recursive subtraction from the initial set of available vertices in these
two algorithms guarantees that no vertices are visited twice in any sequence
of recursions, and recursion on each element of the set at each iteration
guarantees that all permissible sequences of vertices are employed. The
maximum depth of recursion is bounded by the maximum path length (two
less than the initial ℓmax), and the depth-first structure further guarantees
that at most ℓmax − 2 instances of the subroutine will be active at any
given time. This is important, since the total number of paths to be traced
may be quite large. Worst case performance for Algorithms 2 and 3 clearly
occurs on the complete graph, where all vertices are adjacent. In that case,
N − 1 − i branches must be explored at each depth-i branch, for a total
number of

∏ℓmax−2
i=1 (N −1− i) calls to PathCountRecurse. This is obviously

bounded above by N ℓmax−2, which provides a conservative sense of the time
complexity involved. A somewhat more reasonable approximation to the
average time is given by d̄ℓmax−2, where d̄ is the mean degree of G. As this
suggests, it may be possible to consider reasonably long cycles where d̄ is
small, so long as G does not contain too many large cliques.

2.2.2 The Cycle Census

While the above algorithms are obviously designed for changescore com-
putation, they can also be used to obtain exact cycle census statistics. A
simple method proceeds as follows. Given target graph G = (V, E), let
G′ = (V, ∅) and let c = {0}ℓmax−1. Then, for each (v, v′) ∈ E, add
CycleChangescore(G′, v, v′, ℓmax) to c and let G′ = G′∪(v, v′). This method
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is somewhat slow (it requires |E| calls to the changescore routine), but is
often adequate for sparse G.

2.3 Cycle Statistics in the Homogeneous Bernoulli Case

While our focus here is on the use of cycle terms in more general exponential
family models, it is also worth noting some simple results regarding the
distribution of cycle census statistics under a common null model – the
homogeneous Bernoulli graph (Erdös and Rényi, 1960). For random graph
G, the homogeneous Bernoulli pmf is given by

Pr(G = g|θ) =

{

θ|E(g)|(1 − θ)2(
N

2
)−|E(g)| if G directed

θ|E(g)|(1 − θ)(
N

2
)−|E(g)| if G undirected

(9)

where N = |V |. Since all edges of G are (by definition) iid Bernoulli, it
follows that the expected number of k-cycles is equal to the number of k-
subsets of V , multiplied by θk (the probability of observing k edges) times
the number of distinct cycles per k-set. If ti(G) is the number of length-i
cycles in G, it thus follows that

Eθ

(

ti (G)
)

=







Qi−1

j=0
(N−j)

i
θi if G directed

Qi−1

j=0
(N−j)

2i
θi if G undirected

(10)

(see Bollobás (1998)). While the exact variance of ti under the Bernoulli
graph model is nontrivial to compute, a rough approximation may be ob-
tained by treating all potential cycles as independent; this implies that ti is
approximately binomial, and hence that

Vθ

(

ti (G)
)

≈







Qi−1

j=0
(N−j)

i
θi(1 − θi) if G directed

Qi−1

j=0
(N−j)

2i
θi(1 − θi) if G undirected

. (11)

Although crude, this approximation provides a quickly calculated heuristic
which may be used to flag census statistics (e.g., using z-scores) which de-
viate greatly from a random baseline. More accurate estimation/testing of
cycle effects can then be performed using the appropriate ERG model. It
should be noted, in any event, that cycle census statistics become extremely
right-skewed for longer cycles; thus, z-scores will only serve as reasonable
approximations for cycles of fairly short length.
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3 Application

To illustrate the use of cycle census statistics in practice, we here apply these
measures to sample networks taken from a variety of settings. Specifically,
we employ data on the gift-exchange of taro root among households in a
Papuan village (Schwimmer, 1973); reciprocal communication among orga-
nizations conducting search and rescue operations following the flooding in
the Texas hill country (Drabek et al., 1981); friendship nominations among
adolescents (Coleman, 1964); and militarized interstate disputes among na-
tions during the year 2000 (Ghosen et al., 2004). Sociograms for the four
sample networks are provided in Figure 1. As the figure shows, these net-
works vary substantially in size and structure. (The friendship and MID
relations are also directed, unlike the taro exchange and Texas organiza-
tional network.)

3.1 Cycle Census Comparison

We begin with a comparison of observed cycle census statistics with those ex-
pected under the Bernoulli null model. Using the algorithms of Section 2.2,
we may calculate the cycle census for each network. These are shown (up
to length 12) in Table 1. As the table illustrates, very different cycle distri-
butions are observed across networks. In the taro exchange and the Texas
emergent multiorganizational network (EMON), we see an increasing num-
ber of cycles at longer lengths. This is consistent with the observation that
(per Figure 1) these two networks are heavily triangulated, and only weakly
clustered. By contrast, the friendship and MID relations show a preponder-
ance of cycles at short lengths, with counts dying out (quite abruptly, for
the MIDs) as one approaches the 6-7 range. As this would suggest, both net-
works are poorly connected, and their larger components are either tree-like
or weakly triangulated. Such structures generate few long cycles, suggesting
that dependence may remain relatively localized in these networks.

A somewhat different view of these statistics is obtained when we con-
sider the expected cycle counts. Figure 2 shows the log ratio of observed
versus expected counts (under the Bernoulli model) for each graph. Con-
trary to what might be expected, each network shows the same general
pattern of above-average local clustering, accompanied by a tendency to-
wards underrepresentation of long cycles. As this illustrates, it is somewhat
hazardous to evaluate the cycle census without controlling for the effects of
size and density; even where cycle counts seem to be growing rapidly (as
in the Texas EMON), this growth may be below that expected by chance.
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Taro Exchange Texas SAR EMON

Coleman Friendship Network Year 2000 MIDs

Figure 1: Sociograms for Sample Networks

Taro Exchange Texas EMON Friendship MIDs

2-Cycles 0 0 62 24
3-Cycles 10 40 88 4
4-Cycles 4 89 136 2
5-Cycles 7 226 202 1
6-Cycles 20 592 240 0
7-Cycles 48 1411 164 0
8-Cycles 94 3068 19 0
9-Cycles 152 6078 20 0
10-Cycles 247 11059 15 0
11-Cycles 430 18889 8 0
12-Cycles 697 30403 2 0

Table 1: Cycle Counts for Four Sample Networks
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Figure 2: Logged Cycle Census Ratios (Observed versus Expected), by Cycle
Length

Of course, even this yardstick does not take into account the dependence
among cycles of varying order. For this, we must turn to the ERG models.

3.2 Cycle Census Models

As a major objective of this paper has been to elucidate the use of cycle
statistics within exponential family models, it is useful to demonstrate the
use of such models in action. Table 2 shows the results for MCMC-MLE
fits of an incomplete cycle census model to each of the four data sets, using
all cycles up to length 6.4 In addition to the MLEs themselves, asymptotic

42-cycle terms are only meaningful for the directed graphs, and were thus not used for
the undirected graphs. Further, the 6-cycle term was dropped for the MIDs data, due to
the fact that the realized count was equal to 0 (and hence the MLE for this parameter
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standard errors and associated p-values are also shown; note that these last
should be used heuristically, since their usual normal-theory justifications
have not been proven for ERGs. Null and residual deviance statistics are
given for each model, which provide some sense of overall fit. In general,
the cycle census models seem to fit quite well: they account for 76%-98%
of the deviance in these networks, despite the small number of parameters
involved. While these models were chosen for illustrative simplicity rather
than fit, it is nonetheless useful to know that they provide a reasonable
characterization of the data.

Table 2 suggests rather different underlying influences across the four
networks. In the case of the taro exchange network, there appears to be a
general tendency to suppress long cycles, particularly those of even length.
This would be compatible with a mechanism such as in-group bias in trading
(as opposed to an out-group bias, which would tend to suppress cycles of odd
length), as well as a “nearest neighbor” phenomenon (which would suppress
long cycles more generally). In the case of the Texas EMON, the strongest
effect by far (other than density suppression) is the tendency towards the
formation of 3-cycles. This is consistent with the high degree of observed
triangulation in this graph, and may reflect a tendency for emergency re-
sponse organizations to seek redundancy amongst their local contacts. For
the friendship network, we see a strong tendency towards creation of short
cycles, which steadily diminishes with cycle length. One suspects that (given
the Bernoulli comparison plots) cycle effects of even longer length would be-
gin to show significant negative effects, although the model fits well without
these terms. Finally, the network of militarized international disputes re-
veals strong suppression of odd cycles, together with a positive effect for
even cycles of short length. Given the negative valence of MID ties, one is
tempted to interpret this in balance theoretic terms; to be sure, such a result
is what would be expected from a signed balance model (see, e.g. Harary,
1959). While the model fits well, some skepticism is still in order: as per
Table 1, many of the estimated effects here are based on very small numbers
of realized cycles in an extremely sparse graph.

4 Conclusion

In this paper, we have explored cycle statistics as a device for capturing
long-range dependence within social networks. As we demonstrated, cy-
cle statistics arise naturally from the assumption that one edge depends

would not exist).
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Taro Exchange Texas EMON Friendship MIDs

θ̂ s.e. Pr(> |Z|) θ̂ s.e. Pr(> |Z|) θ̂ s.e. Pr(> |Z|) θ̂ s.e. Pr(> |Z|)

Edges 2.0526 1.4914 0.1687 −2.5933 0.4064 0.0000 −4.1778 0.0957 0.0000 −6.9336 0.3406 0.0000
Cycle2 1.5615 0.2082 0.0000 7.8360 2.4368 0.0013
Cycle3 1.1489 1.0175 0.2588 2.6117 0.9033 0.0038 0.7222 0.2092 0.0006 −3.0203 0.7638 0.0001
Cycle4 −2.1619 0.8713 0.0131 −0.7302 0.5911 0.2167 0.6866 0.1819 0.0002 43.3479 0.0188 0.0000
Cycle5 −0.0789 0.6297 0.9003 0.1765 0.2081 0.3964 0.1663 0.1062 0.1173 −1.9328 0.0029 0.0000
Cycle6 −0.4999 0.2772 0.0714 −0.0300 0.0316 0.3423 −0.0063 0.0334 0.8508

Null Deviance 320.234 415.89 7286.4 50308.62
Residual Deviance 56.112 97.14 1384.4 988.48
Model df 5 5 6 5
Residual df 226 295 5256 36285

Table 2: Cycle Census Models for Four Sample Networks
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upon another if that edge has the potential to create a secondary “conduit”
between its endpoints. Where this conduit must be a directed path, the
resulting model is fully parameterized by the cycle census, together with the
edge count; weaker conditions imply a larger set of sufficient statistics, but
all involve subgraphs with spanning cycles (and/or unions of non-disjoint
cycles). Computation for cycle statistics can be performed using a recursive
path-counting algorithm, an algorithm which can also be used (albeit ineffi-
ciently) to obtain the cycle census. Although this calculation is exponential
time in the worst case, it is still possible to count reasonably long cycles (e.g.,
10-12) for many data sets of substantive interest. This was illustrated with
the application of cycle counts and associated ERG models to four sample
data sets, taken from a range of substantive domains. While much remains
to be learned about the behavior of cycle census models – and exponential
random graph models more generally – it is hoped that the present work
serves to advance our understanding in this area.
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