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Abstract

The purpose of this study is to investigate the hybrid parallelization of the Stochastic Gradient Descent (SGD) algorithm for solving

the matrix completion problem on a high-performance computing platform. We propose a hybrid parallel decentralized SGD

framework with asynchronous inter-process communication and a novel flexible partitioning scheme to attain scalability up to

hundreds of processors. We utilize Message Passing Interface (MPI) for inter-node communication and POSIX threads for intra-

node parallelism. We tested our method by using different real-world benchmark datasets. Experimental results on a hybrid parallel

architecture showed that, compared to the state-of-the-art, the proposed algorithm achieves 6× higher throughput on sparse datasets,

while it achieves comparable throughput on relatively dense datasets.
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1. Introduction

Recommendation systems (Chen & Wang, 2022). play a

fundamental role in the success of e-commerce companies such

as Amazon (Linden et al., 2003) and Netflix (Koren et al., 2009).

Such companies offer a huge number of products for their cus-5

tomers in different categories to meet various interests. How-

ever, many customers are overwhelmed with the numerous se-

lection of products offered by e-commerce websites. Recom-

mendation systems help customers to find products that suit

their needs. Therefore, many e-commerce companies use rec-10

ommendation systems to provide a personalized online store

experience so that they can maximize customer satisfaction.

Recommendation systems rely on input data called a rat-
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ing matrix, where one dimension represents a set of users, and

the other dimension represents a set of products (e.g., books,15

movies, songs, etc.). The nonzero values of this rating matrix

denote preferences expressed by users on products and zero val-

ues denote missing preferences. Since users indicate their pref-

erences for a limited number of products, the rating matrices

are quite sparse. Essentially, a recommendation system aims to20

estimate all the missing values in the given rating matrix. In

other words, it intends to solve the matrix completion problem.

The prior research in this field showed that collaborative

filtering approaches based on latent factors are highly useful

to solve the matrix completion problem (Mongia & Majumdar,25

2021; Ramlatchan et al., 2018; Dror et al., 2012; Bennett et al.,

2007; Takács et al., 2009). These approaches try to map users

and items to a latent factor space and define the affinity between

a user and an item as the inner product of their latent factor

vectors. A latent factor, albeit not directly definable, contains30

useful information on user and product similarity. Hence, it can

be used to estimate missing values in the rating matrix.
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There are different prominent algorithms to achieve matrix

completion in the literature, including stochastic gradient de-

scent (SGD) (Shi et al., 2022; Gemulla et al., 2011), alternating35

least squares (ALS) (Priyati et al., 2022; Pilászy et al., 2010),

and cyclic coordinate descent (CCD) (Chorobura et al., 2022;

Yu et al., 2012). Nonnegative matrix factorization may be also

used for latent factor analysis (Luo et al., 2016, 2021; Wu et al.,

2022; Luo et al., 2022). However, SGD is considered superior40

to others since it can achieve high completion accuracy while

scaling to large-scale rating matrices. For this reason, we focus

our research on the efficient parallelization of the SGD algo-

rithm for matrix completion on a high performance comput-

ing (HPC) platform in distributed memory setting. We should45

note here that SGD is also utilized for sparse tensor comple-

tion (Singh et al., 2022).

We propose a new distributed (i.e., shared-nothing) SGD

algorithm with non-blocking communication between proces-

sors and fully asynchronous computation in individual proces-50

sors. We introduce a flexible partitioning scheme and a three-

layered hybrid parallel architecture to exploit the full potential

of modern HPC platforms by utilizing thread-level parallelism.

Our contributions in this work are towards improving the par-

allel performance of the SGD algorithm. That is, our goal is55

to develop scalable SGD algorithm while keeping its accuracy

at the state-of-the-art level. For this purpose, we compare our

algorithm with an available state-of-the-art algorithm on a real-

benchmark dataset that contains one small, two medium, and

one large real-world rating matrices. Experimental results on a60

hybrid parallel architecture showed that, compared to the state-

of-the-art, the proposed algorithm achieves 6× higher through-

put on sparse datasets, while it achieves comparable throughput

on relatively dense datasets.

The rest of this paper is organized as follows: Section 265

formally defines the matrix completion problem with the nec-

essary notations and gives background information about the

SGD algorithm. Section 3 presents an analysis of the related

work. Section 4 describes Hybrid Parallel Stochastic Gradient

(HPSGD) algorithm in detail. The experimental setup, datasets,70

and results are discussed in Section 5. Lastly, Section 6 con-

cludes the paper with possible future work and final remarks.

2. Background

In this section, we formally define the matrix completion

problem, establish the related notations, and give detailed in-75

formation about the SGD algorithm.

2.1. The Matrix Completion Problem

The input is a sparse rating matrix R ∈ Rm×n, where m de-

notes the number of users and n denotes the number of products.

Let Ω ⊆ {1, . . . ,m} × {1, . . . , n} denote the set of observed (i.e.,80

nonzero) entries in R, that is (i, j) ∈ Ω implies that user i rated

product j with rating ri j. Matrix completion problem is defined

as the task of predicting missing entries using observed entries

in Ω.

To predict missing entries, popular collaborative filtering85

approaches based on latent factors apply a method called low-

rank matrix factorization (Gemulla et al., 2011; Teflioudi et al.,

2012; Yun et al., 2014; Makari et al., 2015). This method aims

to find two low-rank matrices W ∈ Rm× f and H ∈ Rn× f , with

f ≪ min(m, n), such that R ≈ WHT .90

The main idea behind low-rank matrix factorization is that a

row wi ∈ R f of W can be considered as the low-rank embedding

of user i in f -dimensional latent factor space. Similarly, a row

h j ∈ R f of H can be considered as the low-rank embedding

of product j in f -dimensional latent factor space. Hence, any95

rating in the rating matrix can be predicted as:

r̂i j = wihT
j . (1)

Figure 1 shows the relationship between a user embedding wi

and a product embedding h j in detail.

The quality of the low-rank approximation is determined

by an application dependent objective function L(W,H), which100

measures the goodness of the fit of the model. For collabora-

tive filtering approaches based on latent factors, the objective

function L(W,H) is mostly defined as the regularized squared
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Figure 1: Rating matrix R ∈ Rm×n and latent factor matrices W ∈ Rm× f and

HT ∈ R f×n.

loss (Koren et al., 2009; Gemulla et al., 2011, 2015; Chin et al.,

2015; Matsushima et al., 2017). That is,105

L(W,H) = argmin
W, H

∑
(i, j)∈Ω

{(ri j − r̂i j)2 + λ(||wi||
2 + ||h j||

2)} (2)

where λ > 0 is a regularization coefficient added to prevent

over-fitting, ||.||2 is the L2 norm of a vector, and r̂i j can be cal-

culated with (1).

2.2. Stochastic Gradient Descent (SGD)

The objective function (2) is a multivariate differentiable110

function, and there are different optimization algorithms to min-

imize multivariate differentiable functions such as stochastic

gradient descent (SGD) (Shi et al., 2022; Gemulla et al., 2011),

alternating least squares (ALS) (Priyati et al., 2022; Pilászy

et al., 2010), and cyclic coordinate descent (CCD) (Chorobura115

et al., 2022; Yu et al., 2012). However, it is shown that SGD can

achieve high completion accuracy while scaling to large scale

rating matrices (Yun et al., 2014). Thus, we focus on the paral-

lelization of the SGD algorithm.

SGD is an iterative algorithm and updates latent factor ma-120

trices W and H, at each step, with values proportional to the

gradient of the objective function. For the matrix completion

problem, the gradient of the objective function (2) at a fixed

point ri j can be defined as:

▽wi L(W,H) = (ri j − r̂i j)h j + λwi, (3)

▽h j L(W,H) = (ri j − r̂i j)wi + λh j. (4)

The key difference between the SGD algorithm and the above-125

mentioned optimization algorithms is that each SGD update

only requires a single uniformly sampled random nonzero entry

ri j of the observed entries Ω.

Therefore, the corresponding update rules for wi and h j rows

can be written as:130

wi ← wi − γ(ri j − r̂i j)h j + λwi, (5)

h j ← h j − γ(ri j − r̂i j)wi + λh j. (6)

where γ is the step size, which can be a predefined constant

value or can be dynamically managed during the execution. The

algorithm continues to perform several iterations through the set

of observed entries Ω until a convergence criterion is satisfied.

A single iteration over the rating matrix R corresponds to an135

epoch.

3. Related Work

In this section, we review the parallel SGD algorithms in the

literature, discuss the methodology that they stand for, and men-

tion their major drawbacks. In the literature, there are works140

involving parallel SGD which use GPU (Xie et al., 2017; Li

et al., 2018; Elahi et al., 2022) as well as heterogeneous multi-

CPU-GPU systems (Yu et al., 2021; Huang et al., 2021), include

hardware level solutions for locks (Wu et al., 2018), utilize par-

allel disk systems (Lee et al., 2018; Oh et al., 2015), works145

on streaming data (Khan et al., 2019; Si et al., 2022), among

many others. Another way of improving the SGD algorithm is

making the updates more effective than the conventional SGD

(updating according to (5) and (6)). Examples of such works
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may be found in (Luo et al., 2013; Khan et al., 2020, 2022b,a).150

These contributions may be applied to our work for further im-

provement. In this work, we focus on parallel SGD algorithms

proposed for shared- and distributed-memory parallel systems

as follows:

3.1. Shared-Memory Parallel SGD Algorithms155

This subsection focuses on studies that solve the matrix

completion problem on multi-core systems with shared mem-

ory.

The SGD is an iterative algorithm, and its sequential im-

plementations do not scale for large rating matrices. Parallel160

SGD algorithms aim to overcome this scalability problem by

distributing the computations among multiple processing units.

A naive method to handle concurrent updates of shared latent

factor matrices W and H is to lock, before sampling a ran-

dom nonzero entry (i, j) ∈ Ω, both row wi of W and row h j165

of H (Recht & Ré, 2013). Nevertheless, lock-based methods

put a limit on the scalability of the algorithm since they come

with a memory locking overhead which adversely affects the

concurrency.

Hogwild algorithm introduced by Recht et al. (2011) intro-170

duces an asynchronous lock-free algorithm assuming that the

updates given in (5) and (6) are likely to be independent since

the rating matrix R is quite sparse. In other words, randomly

sampled nonzero entries to be updated are unlikely to share the

same user i and the same product j, where (i, j) ∈ Ω. Hence,175

the updates given in (5) and (6) can be executed via different

threads in parallel. Even though possible data hazards may oc-

cur during the execution (see Figure 2), HogWild proves that

convergence of the algorithm is inevitable if the rating matrix is

sufficiently sparse. However, HogWild is a non-serializable al-180

gorithm which means there is no equivalent update sequence in

a serial implementation; therefore, it does not guarantee faster

convergence.

Another popular strategy (Chin et al., 2015) to distribute the

computation among multiple processing units is to ensure that185

processing units process on regions of the rating matrix R such

Figure 2: An example update sequence for two threads in HogWild. Black dots

are randomly sampled nonzero entries. Arrows denote the order of the update

sequence. The star indicates the potential data hazard since it is simultaneously

accessed by two threads in their 4th iterations.

that randomly sampled nonzero entries to be updated do not

share the same user i or the same product j, where (i, j) ∈ Ω.

Fast Parallel Stochastic Gradient (FPSGD) algorithm pro-

posed by Chin et al. (2015) partitions the rating matrix R into190

k′ × k′ 2-dimensional (2D) blocks with k′ > k, where k is the

number of worker threads; and uses a task manager thread to

distribute these 2D blocks among the worker threads in such

a way that they share neither any row i nor any column j of

the rating matrix R. Figure 3 shows some examples of mutu-195

ally independent block assignment, where k′ = 4 and k = 3, in

FPSGD. When a worker thread finishes processing on its own

2D block, it requests a new block from the task manager thread.

Nevertheless, FPSGD shifts the overall complexity of the model

to the task manager thread, and it is not straightforward to ex-200

tend this strategy for the distributed-memory parallel systems.

Recently, an alternative asynchronous SGD (A2SGD) (Qin

& Luo, 2022) for shared-memory parallel systems is proposed.

A2SGD avoids the iteration concept during the training and in

that way remove the synchronization requirement of the SGD205

completely. This alternative SGD algorithm still converges and

attain high performance.

3.2. Distributed-memory Parallel SGD Algorithms

This subsection focuses on studies that solve the matrix

completion problem on distributed-memory parallel systems.210

By its nature, the SGD is an iterative algorithm, and the sim-

plest strategy for distributing iterative algorithms among mul-
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Figure 3: Examples of mutually independent block assignment in FPSGD for

4× 4 2D blocks and 3 threads. In each matrix, 2D blocks which are assigned to

threads are shown with shaded blocks. Each matrix shows different assignment

during SGD.

tiple machines is to apply a bulk synchronization at the end

of each iteration to resynchronize updated local copies of the

shared data across multiple machines.215

The Distributed Stochastic Gradient Descent (DSGD) algo-

rithm of Gemulla et al. (2011) splits the rating matrix R into

K × K 2D blocks, where K is the number of machines. Then,

DSGD distributes these K2 2D blocks to K machines in such

a way that each machine has K mutually independent blocks.220

Two blocks are said to be mutually independent if they do not

share any row and column of the rating matrix. DSGD defines

this special type of block assignment scheme as stratum. In

other words, mutually independent blocks of a stratum do not

update the same rows of the latent factor matrices W and H.225

In DSGD, each stratum is executed in parallel within a single

sub-epoch. A collection of stratums forms a strata if they cover

the entire rating matrix when each stratum is executed within

different sub-epochs. For example, Figure 4 displays all pos-

sible stratums for 3 × 3 2D blocks, where the upper and the230

lower parts constitute two different strata. At the end of each

sub-epoch, DSGD carries out a bulk synchronization step to

synchronize all the updated rows of the latent factor matrix H.

The main disadvantage of approaches that rely on bulk syn-

chronous processing is that the communication and the com-235

putation steps do not overlap since they are performed sequen-

tially. Therefore, when the CPUs are busy, the network be-

comes idle. Likewise, when the network is busy, the CPUs be-

Figure 4: All possible mutually independent block assignments for a 3 × 3 2D

blocks in DSGD. The first and second rows of the figure form two different

strata.

come idle.

In order to reduce processors’ idle time, the DSGD++ al-240

gorithm of Teflioudi et al. (2012) divides the rating matrix R

into K × 2K 2D blocks (see Figure 5b), where K is the number

of machines. Then, while K machines are processing K mutu-

ally independent blocks, the algorithm ensures that all updated

rows of the latent factor matrix H corresponding to the other245

K mutually independent blocks are sent through the network.

Unfortunately, in this strategy, all machines have to wait till the

slowest machine gets the job done to proceed to the next step.

This is also known as the curse of the last reducer problem (Suri

& Vassilvitskii, 2011).250

(a) DSGD (b) DSGD++

Figure 5: A comparison of data partitioning schemes between DSGD and

DSGD++ for K = 3 machines.

To overcome the curse of the last reducer problem, the NOMAD

algorithm of Yun et al. (2014); Yu et al. (2016) follows the fine-

grained partitioning approach and divides the rating matrix R

into K × n 2D blocks where K is the number of machines and

n is the number columns of the rating matrix R. Then, the al-255
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gorithm assigns these blocks to each machine in a mutually in-

dependent way and keeps track of the ownership of each block

during the execution (see Figure 6).

Nevertheless, this level of fine-grained partitioning moves

the load balancing problem from the partitioning phase to the260

execution phase, and it requires additional procedures to main-

tain a balanced workload among the machines during the exe-

cution.

(a) Initial (b) During the execution

Figure 6: An illustration of block assignments of NOMAD for K = 3 machines

and a rating matrix with n = 12 columns.

Alternating SGD (Luo et al., 2012; Shi et al., 2022) is a

recent distributed asynchronous SGD model. In this model each265

iteration of the SGD algorithm is divided into two. In each of

these two sub-iterations, similar to the ALS, one of the factor

matrices is kept fixed, whereas other one is updated. In this way,

asynchronous updates are limited to one of the factor matrices

in each sub-iteration.270

4. Hybrid Parallel Stochastic Gradient Descent (HPSGD)

In this section, we propose a novel flexible partitioning scheme,

discuss the details of the proposed architecture, and give the

complexity analysis of the HPSGD algorithm.

4.1. Flexible Partitioning Scheme275

The proposed HPSGD algorithm partitions the rating matrix

R into K × c 2D blocks with 2K ≤ c < n, where c is a hyperpa-

rameter and K is the number of machines such that each block

has approximately the same number of nonzero entries. In the

meanwhile, the algorithm also splits the latent factor matrix W280

into K 1D row blocks, and the latent factor matrix H into c 1D

row blocks. Then, the algorithm assigns each row slice of the

rating matrix R and the corresponding row slice of latent fac-

tor matrix W to a single machine and guarantees that they are

never moved during the execution of the algorithm. Lastly, the285

algorithm distributes row slices of the latent factor matrix H to

machines in such a way that each machine holds the ownership

of c/K number of different row slices of latent factor matrix

H. Figure 7 indicates the initial mutually independent block

assignment in HPSGD with K = 3 and c = 12.290

Figure 7: Initial mutually independent block assignment in HPSGD with K = 3

machines and c = 12 column blocks. 2D blocks with different colors/fill-in-

patterns denote different machines.

The hyperparameter c enables us to find a unique partition-

ing for any rating matrix R that we can overlap the communica-

tion and the computation during the execution.

4.2. Three-Layered Hybrid Architecture

In HPSGD, we utilize multi-threaded MPI for inter-machine295

communication and POSIX threads for intra-machine parallelism.

This is the reason why our proposed architecture is called hy-

brid parallel. The architecture consists of three different layers

such that each machine Q has |S | different thread groups. Each

thread group S owns |P| different updater threads and a single300

communicator thread (see Figure 8).
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Figure 8: An illustration of the HPSGD architecture where the number of MPI processes, the number of MPI threads per MPI process, and the number of updater

threads per MPI-thread are all equal to 2.

Each thread group S maintains two different concurrent queues;

the first one contains indices of the row slices of the H-matrix

to be updated and the second one contains the indices of the row

slices of the H-matrix to be sent. During the execution of the305

algorithm, each updater thread of the thread group St of the ma-

chine Qp simultaneously dequeues an index from the first queue

(multi-reader and single-writer) and performs the related SGD

updates given in (5) and (6) for each nonzero entry in the corre-

sponding row slice. Then, each updater thread enqueues these310

indices into the second queue (multi-writer and single-reader).

In parallel, the communicator thread of the thread group St

of machine Qp dequeues an index from the second queue and

sends the corresponding rows of the latent factor matrix H to

the communicator thread of the thread group St of the machine315

Q(p+1) mod K . Since this is an asynchronous and non-blocking

communication, the computation and the communication over-

lap with each other as long as both queues of an thread group

St are not empty.

Figure 9 shows how the ownership of the row slices of the320

latent factor matrix H changes after all machines performed re-

lated SGD updates for their initially assigned blocks and sent

the updated row slices of the latent factor matrix H to another

machine. For example, the first three rows of the H-matrix is

initially assigned to Q1, Q2, and Q3, whereas during the execu-325

tion assignment respectively changed to Q2, Q3, and Q1.

Algorithms 1, 2 and 3 show the general structure of the

HPSGD. Algorithm 1 is the main SGD algorithm. Lines 1–6

define the required parameters of the HPSGD. Then, in lines 7

and 8, factor matrices are initialized. In lines 9 and 10, initial330

assignment of the factor matrices are performed. The for-loop

in lines 11–15 initializes the queues for each row slice of the

H-factor matrix. Lastly, the for-loop in lines 16–18 launches

updater and communicator threads.

Algorithm 2 shows the operations performed by the updater335

threads. As seen in the algorithm, the threads continue to run

while the update queue is not empty. In line 3, the H-matrix

row to be updated is dequeued from the queue. Then, in line

4, related SGD updates are performed. Finally, the updated H-

matrix row is enqueued to send queue.340

Algorithm 3 shows the operations performed by the com-

municator threads. As seen in the algorithm, the threads con-

tinue to run while the send queue is not empty. In line 3, the

H-matrix row to be sent is dequeued from the queue. Then, in

line 4, the row is sent to the next machine. In line 6, the rows345

updated by other machines are received and enqueued to the

update queue in line 7.

The use of asynchronous and non-blocking communication

enables the computation and communication to overlap as long

as both queues of a thread group are not empty, thus improv-350

ing the overall performance of the algorithm. On the other

hand, asynchronous nature of the proposed HPSGD necessi-

tates a scheme to ensure complete iteration of data as described

as below.

An epoch is completed when all the nonzero values in the355
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rating matrix R have been processed once. This requires pro-

cessing all the row slices of the latent factor matrix H, which

are distributed across K machines. To achieve this, each ma-

chine communicates its row slices to the other machines, so

that all the machines can update their respective slices of the360

H matrix. Once all the machines have processed all their row

slices, the epoch is completed.

Similarly, to complete x number of epochs, each machine

needs to communicate and update their respective row slices of

the H matrix at least x × K times. To ensure that each row slice365

of the latent factor matrix H is updated the desired number of

times during training, the number of updates that have taken

place on each row slice is stored in its own header section. This

allows each machine to keep track of the progress on the num-

ber of updates on its own row slices and to stop processing them370

once the desired number of updates has been reached. By do-

ing so, the algorithm ensures that each row slice is processed

the same number of times, regardless of its position or size,

which helps to maintain consistency and fairness in the training

process.375

(a) Initial (b) During the execution

Figure 9: An illustration of the HPSGD algorithm with K = 3 machines and

c = 12 column blocks. 2D blocks with different colors/fill-in-patterns denote

different machines.

4.3. Complexity Analysis

In the following subsections, it is assumed that problem is

distributed among the K different machines.

Algorithm 1 The overall HPSGD algorithm.

1: R: the rating matrix ,

2: W0, H0: the initial latent factor matrices

3: K: the number of machines,

4: C: the number of row slices

5: S: the number of thread groups

6: P: the number of updater threads per thread group

▷ Initialize the latent factor matrices

7: W ← W0

8: H ← H0

▷ Initial independent block assignment

9: Divide R / W / H into K ×C / K / C number of blocks

10: Assign each row slice Rp of R and each row slice Wp of W

to the machine Qp with 0 ≤ p < K

11: for j ∈ {0, . . . ,C − 1} do

12: p = j mod K

13: t = ( j/K) mod S

14: Qp.St.queue-to-be-updated.enqueue(HT
j )

15: end for

▷ Launch updater and communicator threads

16: for each thread group S of a machine Q do

17: Launch P different updater threads

18: Launch single communicator thread

19: end for

20: Wait until all row slices of H is processed K×epochs times

Algorithm 2 The updater thread of HPSGD.

▷ An updater thread of thread group St of machine Qp

1: while True do

2: if Qp.St.queue-to-be-updated not empty then

3: HT
j = Qp.St.queue-to-be-updated.dequeue()

4: Perform SGD updates (5)-(6) for all nnz( Rp, j)

5: Qp.St.queue-to-be-sent.enqueue(HT
j )

6: end if

7: end while

8



Algorithm 3 The communicator thread of HPSGD.

▷ The communicator thread of the thread group St of the

machine Qp

1: while True do

2: if Qp.St.queue-to-be-sent not empty then

3: HT
j = Qp.St.queue-to-be-sent.dequeue()

4: Send HT
j to Q(p+1) mod K .St

5: end if

6: Receive HT
j′ from Q(p−1+K) mod K .St

7: Qp.St.queue-to-be-updated.enqueue(HT
j′)

8: end while

4.3.1. Space Complexity

Each machine has to store the 1/K portion of the latent fac-380

tor matrix W of size m × f and the 1/K portion of the rating

matrix R that contains |Ω| nonzero entries. Each machine also

stores c/K number of row slices of the latent factor matrix H

each of size approximately (n × f )/c (see Figure 10). Hence,

the total space complexity of a single machine can be written385

as:

O(
(m × f ) + |Ω| + (n × f )

K
). (7)

Figure 10: Space complexity of the nonzeros and factor matrix rows for each

machine.

4.3.2. Total Communication Volume

Since the rating matrix R is partitioned row-wise such that

the corresponding updates of each row slice are performed by

a single machine, the communication is restricted to the row390

slices of the latent factor matrix H. Each row slice of the la-

tent factor matrix H has the size of approximately ((n × f )/c).

There are c different row slices and each of them has to be pro-

cessed by K machines to complete an epoch. Therefore, the

total communication volume for one epoch can be calculated as395

O(n × f × K).

4.4. Discussion

Even though DSGD, DSGD++, NOMAD, and HPSGD ap-

ply different partitioning approaches, there is no difference in

terms of total communication volume. They all cost the same.400

DSGD and DSGD++ are lock-free algorithms; however, they

are not fully asynchronous. On the other hand, NOMAD is

a lock-free and fully asynchronous algorithm; nevertheless, it

suffers from the side-effects of the fine-grained partitioning.

Therefore, it performs additional procedures during the execu-405

tion of the algorithm to minimize the negative effects of fine-

grained partitioning. We emphasize that HPSGD is not only a

lock-free and fully asynchronous algorithm but also provides a

flexible partitioning scheme to find a load-balanced partitioning

for any rating matrix and a three-layered hybrid architecture to410

employ the full potential of a modern HPC platform.

5. Experiments and Results

5.1. Datasets

In our experiments, we used four benchmark datasets ob-

tained from real-world data: Movielens (Harper & Konstan,415

2015), Netflix (Bennett et al., 2007), Yahoo-medium (Dror

et al., 2012), and Yahoo-large (Dror et al., 2012). Table 1 in-

dicates the number of rows, columns, nonzeros, and the density

for each dataset, where the density d is defined as:

d =
|Ω|

m × n
. (8)
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Table 1: Statistics for each dataset.

number of

Dataset rows(m) columns(n) nonzeros(|Ω|) density(d)

Movielens 138,493 26,744 20,000,263 5.3 e-03

Netflix 480,189 17,770 100,480,507 1.1 e-02

Yahoo-medium 249,012 296,111 61,944,406 8.4 e-04

Yahoo-large 1,000,990 624,961 252,800,275 4.0 e-04

5.2. Experimental Setup420

We partitioned nonzero entries of each dataset into two sets

as 90% for training and 10% for testing. Ωtrain and Ωtest rep-

resent the nonzero entries in the training set and the test set,

respectively. We used the same training and test partition for all

experiments. The initial values of the latent factor matrix W and425

H are determined by sampling independent random values from

an uniform distribution in the range (−1/
√

f , +1/
√

f ) (Glorot

& Bengio, 2010).

To evaluate the matrix completion accuracy of the algo-

rithms, we used Root Mean Square Error (RMSE) as a com-430

parison metric. That is,

RMS E =

√∑
(i, j)∈Ωtest (ri j − r̂i j)2

|Ωtest |
. (9)

In HPSGD, we used a time-based decay function to sched-

ule the step size γ during the execution and it is defined as:

γ =
γi

(1 + βu)
, (10)

where γi is the initial step size, β is the decay rate and u de-435

notes the number of SGD updates that were performed using a

nonzero entry (i, j) ∈ Ωtrain.

In HPSGD, the hyperparameter c represents the number of

row slices of the latent factor matrix H assigned to each ma-

chine. By varying the value of c, the algorithm can be tuned to440

find the optimal balance between computation and communica-

tion efficiency.

Grid search is a common technique used to find the opti-

mal hyperparameters for a given machine learning model. To

determine the optimal value of c for each dataset, we started445

Table 2: Parameters for each dataset.

Dataset

Movielens Netflix Yahoo-medium Yahoo-large

|Ωtrain | 18,000,236 90,432,456 55,749,965 227,520,247

|Ωtest | 2,000,027 10,048,051 6,194,441 25,280,028

c 105 280 1157 610

f 50 50 50 50

γi 0.015 0.015 0.00075 0.00075

β 0.03 0.03 0.65 0.65

λ 0.05 0.05 1.00 1.00

with an intuition that each row slice of the H-matrix may have

1024 rows. Then, we determined the c values for each data that

makes the number of rows in a row slice 128, 256, 512, 2048,

and 5096 approximately. The optimal value of c was deter-

mined by evaluating the performance of the HPSGD algorithm450

on a validation set for each value of c. Table 2 lists the parame-

ters used in the experiments for each dataset.

We conducted our experiments on a distributed-memory high-

performance computing platform. Each node of the platform

has equipped with 2 AMD EPYC 7742 (Zen 2) processors and455

256GB of RAM.

In each experiment, 4, 8, and 16 machines are used for

Movielens dataset, whereas 4, 8, 16, and 32 machines are used

for Netflix and Yahoo-medium datasets. Lastly, 4, 8, 16, 32,

and 64 machines are used for Yahoo-large dataset. Note that460

the increasing number of machines relates to increasing size of

the dataset as well as density and sparsity pattern.

5.3. Results

In the following subsections, we report the outcomes of our

experiments. For all experiments, we fixed the number of MPI465

threads per machine to one and the number of updater threads

per MPI thread to four in HPSGD. Similarly, we also fixed the

number of updater threads per machine to four in NOMAD.

5.3.1. Matrix Completion Accuracy

To compare the matrix completion accuracy of HPSGD and470

NOMAD, we plotted the decrease in the training and test RMSE

(see Equation (9)) of both algorithms as a function of time for

each dataset when the number of machines is varied. Figures 11
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and 12 display the training and test RMSE values respectively

for Movielens and Netflix on different number of machines.475

From Figures 11 and 12, we observe that HPSGD obtains better

training RMSE on Movielens and Netflix, while both algo-

rithms produce almost the same test RMSE. This finding shows

that the proposed HPSGD algorithm achieves better training

RMSE compared to NOMAD at a given running time, or it480

achieves the same training RMSE in shorter running time. In

other words, the advantage of the proposed algorithm is that it

improves the running time of the SGD algorithm, which is our

aim in this work.
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Figure 11: Train and Test RMSE comparisons of HPSGD and NOMAD on

Movielens dataset on 4, 8, and 16 machines.
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Figure 12: Train and Test RMSE comparisons of HPSGD and NOMAD on

Netflix dataset on 4, 8, 16, and 32 machines.
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Figure 13: Train and Test RMSE comparisons of HPSGD and NOMAD on

Yahoo-medium dataset on 4, 8, 16, and 32 machines.

Figures 13 and 14 display the training and test RMSE values485

respectively for Yahoo-medium and Yahoo-large on different

number of machines. As seen in the Figures 13 and 14, in con-

trast to Movielens and Netflix datasets, NOMAD obtains

better training RMSE on Yahoo-medium and Yahoo-large,

while both algorithms yield almost the same test RMSE. The490

reason for this may be the order of SGD updates that are not the

same for HPSGD and NOMAD.

5.3.2. Scalability and Speedup

To investigate the scalability of HPSGD, we plotted the train-

ing and test RMSE as a function of the cost of HPC (time in sec-495

onds × number of machines × number of cores per machine).

Figure 15 displays the cost values for Movielens, Netflix,

Yahoo-medium and Yahoo-large datasets. As seen in the fig-

ures, we observe that all lines coincide with each other, which

means that HPSGD linearly scales with almost no degradation500

in the matrix completion accuracy. We only observe a slight

slowdown on the Netflix dataset when the number of ma-

chines is 32.

In addition, Figure 16 shows the strong scaling values in

terms of parallel runtime for the HPSGD algorithm for each505

dataset when the number of machines is varied. We define

the speedup as T4/Tk, where Tk is the time taken on k ma-

chines per epoch. As seen in the figure, the proposed HPSGD

achieves slightly super linear speedup on 8-machines on all

datasets. Furthermore, HPSGD continues to achieve super lin-510

ear speedup on Yahoo-large up to 32 machines as well. As

seen in the figure, the HPSGD algorithm almost linearly scales

up to 16 machines on all datasets. Furthermore, HPSGD con-

tinues to scale on Netflix and Yahoo-medium datasets on 32

machines with speedup values 6.37× and 5.49×, respectively,515

for an ideal speedup value of 8×. Finally, the HPSGD algo-

rithm continues to scale on Yahoo-medium dataset on 64 ma-

chines almost linearly.

5.3.3. Throughput

To examine the throughput of HPSGD and NOMAD, we520

plotted the total number of SGD updates as a function of time
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Figure 14: Train and Test RMSE comparisons of HPSGD and NOMAD on Yahoo-large dataset on 4, 8, 16, 32, and 64 machines.
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Figure 15: Train and Test RMSE of HPSGD as a function of the cost of HPC, when the number of machines is varied.
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Figure 16: The strong scaling values in terms of parallel runtime for the HPSGD algorithm for each dataset when the number of machines is varied.

for both algorithms. Figure 17 shows this throughput values

for each dataset. As seen in Figure 17, both HPSGD and NO-

MAD display similar performances on Movielens and Net-

flix datasets. However, in comparison to NOMAD, HPSGD525

achieves 5× and 6× higher throughput on Yahoo-medium and

Yahoo-large datasets, respectively. This is due to the fact that

NOMAD suffers from the overhead of the fine-grained parti-

tioning scheme more in Yahoo datasets, since they are rela-

tively sparse, and have substantially larger number of columns530

in comparison to Movielens and Netflix datasets (see Ta-

ble 1).

6. Conclusion and Future Work

We focused on the hybrid parallelization which utilizes both

shared- and distributed-memory parallelization for scaling the535

SGD algorithm for matrix completion on a high-performance

computing platform. We proposed a new distributed SGD al-

gorithm with non-blocking communication between processors

and asynchronous computation in individual processors. We

utilized MPI for communications between nodes, whereas we540

utilized POSIX threads for shared-memory parallelism. We

presented a flexible partitioning scheme to overlap the com-

munication and the computation during the execution. We in-

troduced a three-layered hybrid parallel architecture to exploit

the full potential of modern high-performance computing plat-545

forms by utilizing thread-level parallelism. We showed the ma-

trix completion accuracy, the scalability, and the throughput of

our algorithm on four different real-world benchmark datasets.

Overall, our algorithm achieves the state-of-the-art in accuracy

while increasing the scalability and the throughput.550

Lastly, the exponential growth of web-scale data is an in-

evitable fact. Therefore, as future work, we are planning to

show the validity of our proposed algorithm on much larger

synthetic datasets with millions of rows, millions of columns,

and billions of nonzero entries.555
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