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Abstract of the Dissertation 

Leibniz’s Philosophy of Infinity: Comparisons within and across Taxonomies 

By 

Samuel Henry Eklund 

Doctor of Philosophy in Philosophy 

University of California, Irvine, 2020 

Professor Jeremy Heis, Chair 

In this dissertation, I analyze the distinction between different types of infinity that Leibniz 

identifies throughout his philosophical and mathematical works. By attending to these 

differences, I show how Leibniz’s rejection of infinite number as a contradictory notion does not 

entail the impossibility of infinitely small lines. Chapter 1 explains the differences between three 

grades of infinity that Leibniz identifies in a 1676 taxonomy on the infinite and how this 

taxonomy was an attempt to avoid paradoxes of the infinite. It also contains a description of a 

separate taxonomy of the infinite that Leibniz gave in 1706, in which Leibniz explicitly bans any 

type of infinity that is a whole composed of infinity many distinct parts. Chapter 2 treats five 

places where infinity lines arise in Leibniz’s mathematics: infinite number, the composition of the 

continuum, infinite series, infinitesimals and their bounded infinite counterparts, and unbounded 

infinite lines. Looking at the different ways Leibniz evaluates each of these concepts, we see 

that infinitesimals and bounded infinite lines stand on firmer conceptual footing then the others 

from Leibniz’s point of view. Chapter 3 argues that Leibniz’s claims that infinitesimals are 

“fictions” or “impossible,” this is in reference to a specific type of impossibility that he calls the 

impossible per accidens. Unlike the absolutely impossible, this type of impossibility is not rooted 

in contradiction, but conflict with metaphysical principles that bar their existence in the order of 

created things. Hence, Leibniz’s stance towards infinitesimals allows them to be perfectly 

coherent entities for the purposes of geometric reasoning, despite his ban on their existence 

within the physical world. 
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Introduction 

Examining the role of the infinite within any philosopher’s system is a formidable task, 

and the sheer quantity of ink Leibniz spilled on the topic of infinity makes analyzing his thoughts 

in this area particularly difficult. One difficulty is that the immense volume of Leibniz’s writings on 

the infinite is not just a repetition of the exact same tropes and arguments ad nauseam. To 

slightly literalize the metaphor, we can speak of three axes that make Leibniz’s work on the 

subject voluminous. Set on one axis are the pages upon pages Leibniz devoted to the subject. 

But the sheer quantity of Leibniz’s writing alone is just one aspect of this immense volume. For 

another axis in Leibniz’s work on the infinite is the number of diverse subjects that inform and 

are informed by Leibniz’s attitude towards this concept. Examples of subjects alongside a brief 

reference to just one of ways in which the infinite arises are: logic (in which contingent truths 

require an infinite analysis); mathematics (where various finite concepts are extended to the 

domain of the infinite); physics (where the relationship between “dead” and “living” forces is 

often compared to the difference between an infinitely small motion and a finite one, 

respectively), biology (where organic bodies are characterized as machines whose parts are 

smaller organic machines, which are in turn composed of smaller machines, ad infinitum), 

theology (the “omni-” adjectives traditionally ascribed to God all clearly involve an element of 

transcending the finite), metaphysics (the most famous example being the harmony between 

the infinitely many monads and their perceptions of one another), and even ethics (where finite 

humans must reckon with the difficulties in mimicking the infinite benevolence of God), and it is 

possible to give more examples for each of these domains of inquiry. It would be one thing if the 

infinite only made an appearance as an ornamentation or a mere afterthought coming from 

musing on limiting cases or trivial hypotheses in these subjects. But Leibniz does not make such 

shallow gestures towards the infinite for the sake of simple superficial embellishment; he instead 



 

 2 

presents an intricate set of thoughts detailing how the infinite plays a foundational role in each of 

these diverse domains of inquiry. The last axis is temporal. As his career unfolds, Leibniz’s 

categorizations of different types of infinity change, as we will see in the first chapter of this 

dissertation. Additionally, the infinite is employed in new ways over time, as developments in 

Leibniz’s physics and metaphysics give rise to novel problems and tensions that the infinite is 

used to help resolve.  

Despite these three dimensions of complexity in Leibniz’s writing on the infinite, there 

remains a consistent topic with which he grappled both publicly and privately: defending his 

newly developed calculus and its apparent reliance on non-finite quantities, also known as 

infinitesimals. The vast majority of this dissertation will focus on Leibniz’s use of the infinite 

within mathematics, paying specific attention to Leibniz’s use of infinitesimals in the foundations 

of his calculus. The reason for this focus is twofold. First, there is the value in understanding a 

historical philosophical issue on its own terms. The development of the calculus was a crucial 

innovation in the history of intellectual achievement and understanding how Leibniz thought of 

its foundations gives us a greater appreciation of this milestone in human thought. Second, a 

narrow focus on one area of Leibniz’s thought helps us better appreciate his nuances as a 

thinker and the difficulty in making generalized statements about his philosophical views. Seeing 

the fine-grained distinctions that Leibniz draws between infinitesimals and various other non-

finite entities that he postulated in his mathematical works brings light to the risks of making 

generalized statements about the role the infinite plays in Leibniz’s mathematics. And once we 

recognize the difficulties with pinning down how the infinite functions in Leibniz’s pure 

mathematics, we see how formidable it is to say something about the use of the infinite across 

all the intellectual projects with which Leibniz was engaged. 

To place the importance of the calculus in context, it is useful to remember that one of 

the distinctive features of European approaches to natural philosophy during the Early Modern 



 

 3 

Era was a growing reliance on increasingly complex mathematical theories to describe and 

predict phenomena. Galileo, an early proponent of this approach, succinctly captured the spirit 

of this approach in The Assayer, where he states: 

“Philosophy is written in this all-encompassing book that is constantly open before our 

eyes, that is the universe; but it cannot be understood unless one first learns to 

understand the language and knows the characters in which it is written. It is written in 

the mathematical language, and its characters are triangles, circles, and other geometric 

figures; without these it is humanly impossible to understand a word of it, and one 

wanders around pointlessly in a dark labyrinth.”1 

In the decades and centuries that followed, natural philosophers took up Galileo’s call and 

studied increasingly diverse chapters of the “book of nature.” Luminaries such as Descartes 

advanced a biology in which the functions of organic body were conceived of as nothing more 

than the output of a highly complex machine whose parts could in theory be described in purely 

mathematical terms. Meanwhile, Boyle developed a chemistry that emphasized the importance 

of quantitative measurements and laws.  

Using mathematics to translate new types of phenomena from the book of nature into 

the realm of human understanding was not the only innovation in natural philosophy following 

Galileo’s description of this approach. Perhaps more significant were a series of mathematical 

developments that inserted new characters into the language of mathematics. The infinitesimal 

calculus served as one of these innovations, and enriched mathematics with characters that 

allowed philosophers to translate the book of nature’s passages on motion and rest with greater 

detail than Galileo was able to achieve with the mathematical language of his era. Despite the 

utility of the calculus, its introduction to the European academic community was fraught with 

controversy. Even setting aside the acrimonious dispute between Newtonian and Leibnizian 

partisans over who had priority in developing the tools of the calculus, one finds a large amount 

 
1 Quoted in translation from Finocchiaro, The Essential Galileo, p. 183.  
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of ink spilled in the late Seventeenth and early Eighteenth Century in service of defending or 

criticizing the foundations of the newly-established calculus, and its apparent reliance on 

infinitely small quantities, commonly known as infinitesimals. 

 As one of the inventors of the calculus, Leibniz grappled heavily with the foundations of 

his new method; his mathematical and philosophical manuscripts contain a trove of shifting 

positions on the status of these infinitely small objects and their relationship to the calculus. 

Famously derided by George Berkeley in his 1734 book The Analyst, these infinitely small 

quantities possessed many properties deemed to be paradoxical, threatening the reliability of 

any result reached through a method of reasoning that rested its foundations upon them. 

However, recent scholarship following the publication of manuscripts unknown to Leibniz’s 

contemporaries and generations of his successors has shown that Leibniz’s foundations for the 

calculus were more sophisticated than the views criticized in Berkeley’s polemic. Some authors 

have argued that Leibniz’s appeal to infinitesimals is merely apparent and should instead be 

seen as a paraphrase for something akin to a contemporary limit concept. Others have argued 

that Leibniz did appeal to actual infinitely small quantities, but he had careful principles that 

justified the introduction of these elements, as well as a series of rules that prevented him from 

falling into contradiction when using such methods. 

 However, the calculus was not the only area in which Leibniz grappled with the infinite in 

his mathematics. Space seems to be composed of an infinitude of points, there exist infinite 

series that converge towards a single finite value, lines can be extended without limit, and one 

can never specify a number larger than all others. Each of these varied mathematical 

applications of the infinite raises new paradoxes or puzzles that required Leibniz to concoct 

different solutions. Some of these cases, such as infinite number, are brushed off as 

contradictory and hence banished from mathematical considerations. On the other hand, 

Leibniz frequently refers to infinitesimals as “fictions,” signaling a difference between them and 
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ordinary quantities. In this dissertation, I argue that when Leibniz calls infinitesimals “fictions,” he 

does not mean to group them with the types of mathematical reasoning that lead to 

contradiction. Instead, infinitesimal quantities are “fictional” in the sense that there are no bodies 

or motions in nature that are infinitely small, even though such infinitesimals may be useful in 

mathematical models of phenomena. Fully articulating this position requires much groundwork 

in order to separate what Leibniz says about different types of infinite objects in order to speak 

comprehensively about infinitesimals without inappropriately importing the properties of other 

types of infinite entities that Leibniz discusses. 

There are three stages in explaining and defending this interpretation of Leibnizian 

infinitesimals, each of which receives its own chapter. The first is to compare two descriptions 

Leibniz gives about different grades of infinity in general, one in a 1676 series of notes Leibniz 

made while reading Spinoza and developing the fundamentals of his calculus and one in 1706 

in his correspondence to Des Bosses, representing the fruit of three decades of intellectual 

maturation. This is the focus of Chapter 1. This analysis is significant because it allows us to 

situate Leibniz’s remarks about infinitesimals within his overall philosophy. In Chapter 1, we see 

Leibniz's emphasis in classifying the infinite shifts in the 30 years between each taxonomy. 

Leibniz’s characterizations in the earlier taxonomy group the different kinds of infinity by how 

comprehensive each tier of infinity is. The later taxonomy stresses the relationships that parts 

have to their whole, a relationship that Leibniz becomes increasingly concerned with when 

reasoning about the infinite. One major purpose of this chapter is to get a handle on the phrase 

“syncategorematic,” a term from the later taxonomy that frequently arises within the literature of 

Leibniz’s stance towards infinitesimals. 

The second stage is to situate infinitesimals within the rest of Leibniz’s mathematics. As 

mentioned above, there are various places in which the infinite arises within mathematics. In 

Chapter 2, we examine five distinct mathematical applications of the infinite. Through examining 
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the different problems Leibniz encounters with each of these five cases, we again see a concern 

for how wholes relate to their constituent parts. We also see a discrepancy between how Leibniz 

treats infinitesimals and other non-finite objects within his mathematics. Some mathematical 

concepts, such as numbers, become contradictory when extended to the infinite. However, the 

remarks Leibniz makes about infinitesimals seem to be less condemnatory and put them in a 

more stable position than other infinite mathematics entities Leibniz considers. In addition to the 

utility of distinguishing between different aspects of Leibniz’s mathematics that are not always 

treated separately, the work done in this chapter allows us to advance our interpretation of 

infinitesimals without clouding our judgment from remarks Leibniz makes about other kinds of 

infinite entities that do not apply to infinitesimals.  

The final stage in this argument is to show that when Leibniz calls infinitesimals 

“fictions,” he is not impugning their validity in pure mathematics, and as such should be seen as 

logically consistent. This is the focus of Chapter 3. Having laid the groundwork of Leibniz’s 

account of the infinite in general within the two taxonomies and specifically within mathematics, 

this chapter focuses on different interpretations one can have of Leibniz’s stance towards 

infinitesimals. I argue that the concept of an infinitesimal is consistent in and of itself. I then 

appeal to remarks that Leibniz makes about certain algebraic entities (e.g., imaginary numbers) 

to distinguish between two different types of impossibility that Leibniz identifies, only one of 

which involves a contradiction. After showing why any claims about the “impossibility” of 

infinitesimals are best read as the less severe account of infinitesimals, I consider possible 

textual evidence against the feasibility of this interpretation. By using language developed in 

Chapter 1, I show that these damaging quotes only impugn the possibility of infinitesimals 

existing in nature, leaving them safely as mathematical objects in their own right.  

 As a result of these considerations, we see an important feature of Leibniz’s 

mathematical practice. In the domain of pure mathematics, Leibniz allows himself to reason with 
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entities that have no correlates in the created world. Leibniz’s main concern in mathematics is 

freedom from contradiction. Seeing philosophy and mathematics as separate enterprises, 

Leibniz has no interest in letting metaphysical considerations block the free use of consistent 

mathematical entities. In fact, employing entities that cannot be located within the population of 

worldly beings and their properties has beneficial uses, for the use of such objects within 

mathematical reasoning can reveal underlying connections between concepts that were 

previously seen as disunited. As a result, we see that despite Leibniz’s philosophical concerns 

about the infinite, the differences between the subject matter of philosophy and mathematics 

allows him to freely employ “impossible” entities, such as infinitesimals, to the advancement of 

mathematical knowledge. 

After this lengthy treatment of Leibniz’s use of infinity within pure mathematics, the 

afterward briefly introduces some of the ways that the infinite arises in other areas of Leibniz’s 

work. There we see ways in which infinitesimals are used to represent what Leibniz calls “dead 

forces” in physics, and infinite analysis is used in Leibniz’s account of contingent truth. I explain 

the technical ways that these infinite quantities arise, but I do not make any definitive claims 

about how to interpret Leibniz’s use of the infinite in these domains. As we shall see over the 

course of this dissertation, Leibniz’s use of the infinite is highly nuanced even when confined to 

the realm of pure mathematics, and any explanation of Leibniz’s use of the infinite in other areas 

should be given the same level of scrutiny before coming to any conclusions. 
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Chapter 1 : Taxonomies of the Infinite 

 We begin with an analysis of two taxonomies of the infinite that Leibniz constructed in 

order to understand some of the problems that he saw arising in the context of mathematical 

uses of the infinite. The first taxonomy comes from a series of notes Leibniz made on Spinoza’s 

philosophy in 1676, during the same time period in which he was developing the basics of the 

calculus. Here the infinite is divided into three distinct species, each possessing different 

properties: the Omnia, the Maximum, and the mere infinite. Thirty years later, Leibniz gave a 

differing categorization in a letter to Des Bosses, a German Jesuit with whom Leibniz had a 

lengthy correspondence. In this 1706 characterization, Leibniz says that the infinite can be 

thought of as categorematic, syncategorematic, or hypercategorematic, terms that will be 

clarified within this taxonomy. Of these three kinds of infinity, the categorematic is rejected 

completely, leaving only the syncategorematic and the hypercategorematic as viable categories. 

The reason for selecting these two taxonomies in particular is due to the fact that the earlier 

taxonomy was developed during Leibniz’s initial work on the foundations of the calculus and 

thus conveys concerns that he will grapple with for the rest of his mathematical career, and the 

second taxonomy contains terminology that one commonly finds in discussions about Leibniz’s 

stance towards the calculus and infinitesimals. 

This chapter focuses on the two different taxonomies in order to track the changes that 

occurred in Leibniz’s thoughts over the 30 years between the two ways that Leibniz presents the 

distinction between different types of infinity. Ultimately, we see while the 1676 taxonomy is 

concerned with the issue of one infinite object being greater than another, the 1706 taxonomy 

reflects a concern with the relationship an infinite whole has to its diverse parts. This concern 

will resurface in the next chapter, where we will see how Leibniz’s concern for possible 
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violations of the axiom that a whole cannot be equal to one of its parts underpin many of his 

rejections of certain kinds of infinity within pure mathematics. 

1.1: The 1676 Taxonomy 

In 1672, Leibniz encountered a paradox while reading Galileo’s Two New Sciences. 

Galileo noticed that by associating every positive integer with its square, one can say that there 

are an equal number of squares and positive integers.2 But given that the perfect squares form 

a proper subset of the positive integers (i.e. every square number is a positive integer, yet not 

every positive integer is a square), this association between the two groups of numbers violates 

the ancient axiom that a part is less than its whole, an axiom I refer to as the “part-whole axiom” 

in the sequel. Galileo’s response to this correspondence between the two classes of numbers is 

to deny that terms like “equal,” “greater,” or “less” are applicable to the infinite. In his 

commentary on this section of Two New Sciences, Leibniz says that he cannot accept this 

conclusion. Instead, Leibniz tentatively proposes three alternatives to get around this paradox. 

First, one could say that the infinite “is not one and not a whole.”3 That is, one can deny that an 

infinite collection can be spoken of or mathematically operated upon as a completed entity. 

Another option Leibniz puts forth is to say, “distinguishing among infinities, that the most infinite, 

i.e., all the numbers, is something that implies a contradiction.”4 Despite his condemnation of 

infinite numbers, the fact that we are to “distinguish” between different kinds of infinity to find the 

ones that imply contradiction opens the possibility that “an infinite X” will be possible for the right 

kinds of concepts X. The final option is to refrain from any talk of the infinite, “except where 

 
2 The following description is a cursory treatment of Galileo’s paradox and Leibniz’s reaction to it in order 

to show its role in motivating Leibniz’s first taxonomy of the infinite. The paradox itself and Leibniz’s 
reaction are treated in greater detail in Section 2.1.  
3 DLC p. 9 
4 ibid. 
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there is a demonstration of it.”5 However, it is unclear exactly how this last option would avert 

Galileo’s paradox since there is no explanation of why the numerical correspondence Galileo 

noted does not count as a demonstration about the infinite. 

This first option, denying the oneness and wholeness of a completed infinite, is the path 

Leibniz eventually takes, and we will see it reflected in his rejection of the “categorematic” 

infinite in the taxonomy of 1706. However, four years after his initial encounter with Galileo’s 

paradox, it seems that Leibniz was still experimenting with the second option that he proposed: 

distinguishing among infinities and avoiding those that imply a contradiction. In February of 

1676, Leibniz gives three grades of infinity in notes he made in Spinoza’s Ethics and “Letter on 

the Infinite.”6 I will refer to this exposition of the 1676 taxonomy as passage 1: 

I usually say that there are three degrees of infinity. The lowest is, for the sake of 

example, like that of the asymptote of a hyperbola; and this I usually call the mere 

infinite. It is greater than any assignable, as can also be said of all the other degrees. 

The second is that which is greatest in its own kind, as for example the greatest of all 

extended things is the whole of space, the greatest of all successives is eternity. The 

third degree of infinity, and this is the highest degree, is everything, and this kind of 

infinite is in God, since he is all one; for in him are contained the requisites for the 

existing of all the others. I make these comments in passing.7 

In the second half of April 1676, Leibniz wrote a series of notes on a copy of Spinoza’s 

“Letter on the Infinite,” where he gives the same taxonomy, but elaborates further on certain 

concepts. I will refer to the following as passage 2 in the sequel:  

I have always distinguished the Immensum from the Unbounded, i.e., that which has no 

bound. And that to which nothing can be added from that which exceeds an assignable 

number. Briefly, I set in order of degree: Everything [Omnia], Maximum [Maximum], 

Infinity [Infinitum]. Whatever contains everything is maximum in entity; just as a space 

unbounded in every dimension is maximum in extension. Likewise, that which contains 

everything is the most infinite, as I am accustomed to call it, or the absolute infinite. The 

 
5 ibid. 
6 The “Letter on the Infinite” is Spinoza’s April 20 1663 letter to Lodewijk Meyer. Printed as Letter 12 in 

Spinoza’s Opera Posthuma.  
7 DLC pp. 42-43. 
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maximum is everything of its kind, i.e., that to which nothing can be added, for instance a 

line unbounded on both sides, which is obviously also infinite, for it contains every 

length. Finally, those things are infinite the lowest degree whose magnitude is greater 

than we can expound by an assignable ratio to sensible things, even though there exists 

something greater than these things. In just this way, there is the infinite space 

comprised between Apollonius’s Hyperbola and its asymptote, which is one of the most 

moderate of infinities, to which there somehow corresponds in numbers the sum of this 

space: 
1

1
+

1

2
+

1

3
+

1

4
+. .., which is 

1

0
.8 Only let us understand this 0, or nought, or rather 

instead a quantity infinitely or inassignably small, to be greater or smaller according as 

we have assumed the last denominator of this infinite series of fractions, which is itself 

also infinite, smaller or greater. For a maximum does not apply in the case of numbers.9 

We briefly examine the three types of infinity present in the taxonomy of 1676 before explaining 

how the category of the Maximum is a continuation of the second option Leibniz proposed in 

response to his encounter with Galileo’s paradox: distinguishing among infinities to accept only 

those that do not lead to contradiction. We now move to analysis of each of these categories, 

ascending from the lowest grade of infinity to the highest. 

The first category is the mere infinite [tantum infinitum]. This category contains quantities 

that are greater than any finite quantity. Contrary to Galileo, Leibniz believes that “greater” and 

“lesser” can be spoken of with connection to this type of infinity. The examples Leibniz gives of 

instances of this type of infinity are geometric in nature. If we consider a hyperbola [Figure 1.1], 

the area in the section marked by the solid lines [A] will be infinite and the area under the 

dashed lines [B] will be finite. But this infinite section A can be seen as a part of another infinite 

area, such as the area consisting of both the solid and dashed lines [A+B]. Since the former is a 

proper part of the latter, Leibniz’s adherence to the axiom that the whole is greater than any of 

its parts would lead him to conclude that A is less than A+B, even though both A and A+B both 

have an infinite area. This falls into the lowest grade of infinity, for although the areas A and 

 
8 This is known as the “harmonic series,” a series that does not converge to a finite value. 
9 DLC pp. 114-115. Leibniz gives a condensed taxonomy of these three kinds of infinity in a different set 

of notes on Spinoza. Those remarks can be found in A vi.3 pp. 384-385 and in translation in DLC pp. 40-
43. 
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A+B are greater than any finite quantity, we can continue to add finite areas such that we have 

figures that encompasses more space than the previous figures and are thus larger by the part-

whole axiom.  

 

Figure 1.1: The area under a hyperbola as merely infinite  

 The next grade of infinity in this taxonomy is the Maximum.10 A straight line unbounded 

on both sides is the paradigm case Leibniz gives of this kind of infinity in the taxonomy quoted 

above. Leibniz notes that such a line contains every length. In this statement, it is important that 

“any length” refers to both finite and infinite lengths. Suppose we had a line that starts at point B 

and proceeds unbounded in only one direction, call this infinite line BC… [Figure 1.2]. Then for 

any finite length, we could find a point C on the line such that the finite line BC is equal to that 

length. But given that the line is unbounded in only one direction, we could find another line 

unbounded on one side that starts at point A, such that our first line unbounded on one side is a 

proper part of this second line. Call this new line AC…. Because AC… contains BC… as a 

proper part, Leibniz would claim that AC… is longer than BC…. Thus, BC… will not contain all 

infinite lengths, for it does not contain the length corresponding to AC…. So a line unbounded 

on one side is a mere infinite, for one can always obtain a longer line by adding a line segment 

 
10 I capitalize “Maximum” here and in the sequel to make it clear that I’m referring to this specific category 

of infinity. 
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on the bounded side of the line.11 But this is not the case for lines unbounded on both sides. In 

passage 1, Leibniz also lists the whole of space as a Maximum in extension and eternity as the 

maximum of extension. While every object in this second category is the greatest of its kind, not 

all kinds are capable of possessing Maxima, as Leibniz makes clear when he denies the 

existence of a greatest number at the end of passage 2.  

 

 

Figure 1.2: Lines unbounded on one side 

 The final category in Leibniz’s 1676 classification is Omnia (Latin for “all”), also known as 

the absolute infinite. This is the category of infinity that applies to God. Although the description 

of Omnia that Leibniz makes in passage 2 is sparse, Leibniz elaborates his reasoning for using 

“Omnia” to describe this highest grade of infinity in 1. There he says, “for in [God] are contained 

the requisites for existing of all the others.”12 There are strong reasons to hold that the Omnia 

applies only to God, as God is the only perfect substance. This means created substances lack 

something that God possesses, barring them from having all (omnia) positive properties.13  

A Maximum is the greatest infinite with respect to a given kind, and Leibniz’s initial 

phrasing appears to suggest that the Omnia is like a Maximum, only the kind in question is 

“entity.” This may make it seem like the Omnia is just a species of the Maximum, but there are 

compelling reasons to think otherwise. At the beginning of the block passage quoted above, 

Leibniz draws a distinction between the Immensum and the Unbounded [Interminato]. Ohad 

 
11 Much of this reasoning can be found in the April 1676 note “Infinite Lines.” The mathematical 

importance of this passage is treated below in Section 2.5. 
12 DLC pp. 42-43 
13 Nachtomy 2011. pp 957-958.  

A B C 
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Nachtomy argues that this is the distinction between extension as it pertains to Omnia and 

Maxima, respectively. While “unbounded” means a line or space metrically greater than all 

others, “Immensum” surpasses any metric categories.14 Thus, Omnia is a way for Leibniz to 

ascribe infinity to God but in a way that keeps God from being divisible like an infinite line. If a 

line unbounded on both sides is divisible and a Maximum, but the nature of Omnia rules 

divisibility out entirely, then Leibniz’s talk of Omnia as being the Maximum of the category 

“entity” appears to be metaphorical, rather than a claim that the Omnia is a just a species of the 

Maximum.  

 Leibniz ends this 1676 passage by noting that “a maximum does not apply in the case of 

numbers.” This is similar to his remarks on Two New Sciences from 1672, where Leibniz notes 

that there is no greatest number. If the completed set of all positive integers were a possible 

entity, it would have to be a Maximum, for it would contain every entity of a certain kind (namely 

the kind “positive integer”). Presumably we would have to treat the set of all square numbers as 

an impossible Maximum as well. Otherwise, we could easily run another version of Galileo’s 

paradox; if we associate every perfect square with every number that is a fourth power (i.e., n2 

with n4 for all positive integers n), we obtain another bijection between a set of numbers and a 

proper part of that set (since every n4 will be a  n2, but not vice versa). So, when Leibniz says 

that a Maximum does not apply in the case of numbers, any consistent interpretation of this 

position would have to apply to any infinite subset of numbers as well. As mentioned above, one 

of the solutions that Leibniz offered in his analysis of Galileo’s paradox was to allow some kinds 

of infinity but ban others. Thus, we can see the 1676 taxonomy as a continuation of this line of 

thought, for it explicitly notes that only some kinds are capable of possessing Maxima. 

Unfortunately for any practicing mathematician who would want to heed this advice, there 

appear to be no criteria beyond discovering a contradiction during the course of one’s reasoning 

 
14 Ibid. p. 946 
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that could decide in advance whether or not a given concept is capable of maximization. It is 

now time to move on to the 1706 taxonomy, where the concern for which concepts are capable 

of having a greatest of their kind has dropped from the taxonomic structure. 

1.2: The 1706 Taxonomy 

Thirty years later, Leibniz gives a different taxonomy of the infinite in an unsent 

supplement to a September 1, 1706 letter to the German Jesuit Des Bosses. If sent, this 

taxonomy would have been a response to Des Bosses’s August 20, 1706 letter that asked for 

Leibniz’s opinion of various Cartesian positions that had been recently condemned by the 

Jesuits. One of these was the proposition: “our mind, insofar as it is finite, can know nothing 

certain about the infinite; consequently, we should never engage in disputes about it.”15 In the 

letter as sent, Leibniz addresses this proposition by saying that mathematics has already 

revealed many truths about the infinite, but he affirms that “an infinite composed of parts is 

neither one nor a whole.”16 We receive more detail about this claim in the unsent supplement. In 

this taxonomy, the category of the Maximum seems to vanish. Furthermore, the 1676 taxonomy 

is organized according to whether or not a type of infinity is capable of being lesser or greater 

than another; a mere infinite can always be surpassed by another object that contains more 

than itself, a Maximum cannot be exceeded by anything else of the same kind, and as the name 

suggests, the Omnia contains everything and thus surpasses any Maxima. The focus of 

Leibniz’s later taxonomy is structured according to how parts relate to their wholes: 

There is a syncategorematic infinite or passive power having parts, namely, the 

possibility of further progress by dividing, multiplying, subtracting, or adding. In addition, 

there is a hypercategorematic infinite, or potestative infinite, an active power having, as it 

 
15 LDB, p. 49. 
16 Ibid. p. 53. 
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were, parts eminently but not formally or actually. This infinite is God himself. But there 

is not a categorematic infinite or one actually having infinite parts formally.  

There is also an actual infinite in the sense of a distributive whole but not a collective 

one. Thus, something can be stated about all numbers, but not collectively. In this way it 

can be said that for every even number there is a corresponding odd number, and vice 

versa; but it is not therefore accurately said that there is an equal multitude of even and 

odd numbers.17 

“Categorematic” and “syncategorematic” are terms of art in scholastic usage that Leibniz is 

adopting here. “Categorematic” refers to a term that fits into one of the categories given by 

Aristotle. These terms have significance on their own, like “red” and “rose.” Meanwhile, a term is 

used in a syncategorematic way when it only has significance in the context of a complete 

proposition. So, in the sentence “not all roses are red,” the quantifier “not all” and the copula 

“are” are syncategorematic terms, with “roses” and “red” remaining categorematic.18 

“Hypercategorematic” appears to be original to Leibniz.19 Leibniz adopts two other technical 

terms from Scholastic philosophy in describing the part-whole relations that occur within each 

type of infinity: “formal” and “eminent.” Something is formally contained in something else when 

it exists in its usual and proper way of being as flame is contained in heat. One the other hand, 

something is eminently contained in another eminently if (a) it does not exist in its actual form 

but in a form that contains additional perfections, (b) this higher form can produce all the effects 

of the first alongside additional perfections.20 With these terms defined, we can discuss each 

kind of infinity in turn. 

Like the Omnia of 1676, the hypercategorematic infinite of the 1706 taxonomy applies to 

God alone. The description of God as containing parts “eminently, but not formally or actually,” 

implies that the perfections of God are found in God, but in a way that bars them from existing in 

 
17 LDB pp. 52-53. Emphasis in original. 
18 Antognazza 2015, p. 6.  
19 Antognazza 2015, p. 25, footnote 27. 
20 Antognazza 2015, p. 12. 
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divisible states, even conceptually. As mentioned above, God’s simultaneous infinity and 

indivisibility are present in the description of the Omnia in the 1676 taxonomy. Since a special 

grade of indivisible infinity is reserved for God in both taxonomies, and this category is not 

applicable to mathematics, we do not further analyze the category of the hypercategorematic 

here. 

 The next item from this taxonomy to be analyzed is the syncategorematic infinite. This is 

an infinite that always possesses (or can possess) more parts than any finite number, but there 

is no infinite number that represents a gathering of all these parts into one whole. For instance, 

to say that a line is infinitely divisible in a syncategorematic sense is to say that for any finite 

number of parts the line is divided into, we can find another division of the line with a greater 

number of parts, but there is no stage at which we contemplate a complete infinity of distinct 

parts at once. The same is true of numbers: for every number there exists infinitely many 

numbers greater than it, but Leibniz does not believe that there is a number infinitely greater 

than all others. Formally, this is the difference between (∀x∃y y>x) and (∃y∀x y>x).21 There is 

some controversy about whether the second paragraph of this taxonomy describes a distinct 

kind of infinity from the first. The argument for their difference is that the first describes ideal 

objects, such as lines, whose parts exist only when specified in some manner and can be 

increased indefinitely, much like the Aristotelian infinite.22 Meanwhile, the second paragraph 

describes collections whose parts are actual and cannot be gathered into one whole.23 The 

argument that these do not describe two different types of infinity is that the actuality or ideality 

of the parts is immaterial to its classification among the infinite. What is relevant is that in neither 

 
21 Arthur 2001, p. 107. 
22 Section 2.2 below contains a more detailed analysis of Leibniz’s claim that the parts of a line do not 

exist until specified. 
23 Antognazza 2015, p. 9. 
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case there exist no infinite parts that are gathered into one completed whole.24 In this dispute, I 

am inclined to see the second paragraph as referring to another use for the syncategorematic 

infinite, rather than being a wholly different species of infinity. 

 The final category of the 1676 categorization is the categorematic infinite. This is 

described as an infinity “actually having infinite parts formally,” in contrast to the eminent 

containment of parts of the hypercategorematic infinite. As mentioned earlier, formal 

containment means something exists according to its usual way of being. For instance, a (finite) 

flock of sheep contains each individual sheep as a part formally, since each sheep is present in 

its natural form as a member of the flock. Furthermore, these divisions are actual rather than 

potential, for the reality of the flock is formed by aggregating sheep, rather than the sheep 

gaining their individual existences from dividing a pre-existing flock into varying parts. When he 

denies the categorematic infinite, Leibniz denies infinite collections that contain each member in 

its usual form (possessing formal parts and pre-divided (possessing actual parts), e.g., an 

infinite flock of sheep. There are no such unities. On the other hand, God is an infinite unity 

because the varying parts are contained eminently rather than formally; they exist in God as a 

higher way of being that precludes their divisibility.25  

 We have seen two taxonomies of the infinite that Leibniz professed in his life: mere 

infinite, Maximum, and Omnia; categorematic, syncategorematic, and hypercategorematic. We 

can now put each taxonomy against each other in order to see what differences exist. I pass 

over comparisons between the hypercategorematic and the Omnia, for as mentioned above, 

there are compelling reasons to see the former as a continuation of the latter. On the other 

hand, there is not a continuation between the remaining categories of each taxonomy. This is 

because while the 1676 taxonomy was concerned with which categories are capable of having 

 
24 Arthur 2018. 
25 Antognazza 2015 p. 15. 



 

 19 

a greatest of their kind, the 1706 taxonomy is explicitly centered on the relation a whole has to 

its parts. 

 Maria Rosa Angotnazza argues that the syncategorematic infinite of 1706 can be 

identified with the mere infinite of 1676.26 However, there are good reasons to think that this is 

not the case. To see why, we can look to the following example. As mentioned in the discussion 

of the 1676 taxonomy, a line bounded on one side would be a mere infinite because one could 

add more to the line by moving the bounding endpoint, meaning this line is not the greatest of its 

kind. On the other hand, a line unbounded on both sides is a Maximum, for there can exist no 

straight line that is longer. However, both of these would be classified as syncategorematic in 

the 1706 taxonomy. To use the language of this latter taxonomy, the parts of each of these lines 

are various line segments. These are contained formally inside each line because there is no 

change in the segment itself regardless of whether other lines adjoin one or both of its 

endpoints. However, these parts are either potential because the divisions of the line that define 

them have not yet been specified, or they are actual, but finite in number. Since a line 

unbounded on one side and a line unbounded on both sides would be categorized as a mere 

infinite and a Maximum in 1676, but both are syncategorematic, it is clear that there is no 

mapping between these non-God types of infinity across the two taxonomies. The reason these 

two types of lines are no longer distinguished in the 1706 taxonomy is that the nature of the 

relationship between parts and their various wholes is emphasized, rather than under what 

conditions one infinity can be called greater than another, and this part-whole relationship is the 

same for lines unbounded on either one or both sides. 

A similarity between the two taxonomies does occur within the categorematic infinite: the 

denial of a type of infinity that applies to numbers. In 1676, Leibniz was concerned with blocking 

 
26 Antognazza 2015, p. 18. 
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Galileo’s paradox, and the way he eventually blocked this paradox was by denying that any 

infinite whole can be composed of distinct parts. Because numbers are understood as unities 

(or wholes) that are composed of distinct parts, this means there are no infinite numbers, for 

such an entity would have to be both a whole/unity and composed of infinitely many distinct 

parts. And Leibniz explicitly denies the possibility of an infinite number when elaborating on the 

1676 taxonomy. And as we shall see in Chapter 2.1, Leibniz ties the impossibility of infinite 

number to the impossibility of any infinite collection composed of distinct parts. For this reason, 

the denial of infinite number in 1676 resurfaces as the denial of the categorematic infinite in 

1706, for both are concerned with the denial of infinite wholes. This is another case where the 

1706 taxonomy focuses more specifically on the nature of the relation between parts that 

compose wholes.  

Despite Leibniz’s stern denial of infinite numbers, he has a more permissive attitude 

towards other non-finite objects within his mathematics. Examining his taxonomies of the infinite 

is instructive in understanding his mathematical work, for it tells us to avoid dealing with wholes 

composed of infinitely many actual and formal parts. But as we saw in the case of lines bounded 

on one or both sides, the mathematical features of certain infinite objects are not always 

distinguished in Leibniz’s philosophical discussion of the infinite. For this reason, the next 

chapter examines case studies to show exactly how Leibniz applies the infinite to his 

mathematics, and the nuanced ways various results and concerns emerge from extending 

different kinds of mathematical objects to the realm of the infinite. As we will see, Leibniz sees 

logical impossibilities in extending some types of mathematical objects to the domain of the 

infinite, but infinitesimals do not give rise to these same problems and are spoken of in more 

laudable terms than infinite numbers and other mathematically impossible entities. 
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Chapter 2 : Applications of the Infinite in Leibniz’s 

Mathematics 

 The phrase “the infinite in Leibniz’s mathematics” has a tidy ring to it, but one purpose of 

this chapter is to show that there is not a unified application of infinity that neatly captures all of 

Leibniz’s mathematical work. Instead of a single kind of infinite object or singular use for such 

objects, one finds a broad variety of non-finite entities within Leibniz’s mathematics, each with 

different properties, applications, and philosophical entanglements. There are of course some 

common characteristics among these different uses of the infinite, such as the requirement that 

any posited entity still respects the maxim that a whole must be greater than its parts. For some 

proposed infinite entities, this axiom is used to deny the coherence of the mathematical object in 

question. However, this same axiom is also used for other proposed infinite entities to derive the 

properties they would have, even if Leibniz is agnostic or denialist about the existence of such 

objects in the created world. Thus, while there are commonalities among infinite entities in 

Leibniz’s mathematics, accounts of this area of Leibniz’s work must be careful to not to impose 

a faulty sense of unity onto Leibniz’s multifaceted approach to the infinite within his 

mathematics.  

To take one concrete example of how Leibniz’s mathematical treatment of the infinite is 

relatively disunited, this chapter shows how he takes a much firmer stance against the very 

coherence of infinite numbers than he does against infinitely long lines. Furthermore, Leibniz 

sometimes distinguishes between “bounded” and “unbounded” infinite lines, and each of these 

receive distinct treatments, with the former type of infinitely long line giving rise to a proposed 

arithmetic of the infinite to which the latter cannot be subjected. In this section, I go through the 

properties of five distinct applications of the infinite within Leibniz’s pure mathematics, noting the 

similarities and differences among each area. These five applications are: (1) infinite 
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totalities/numbers; (2) the composition of the continuum; (3) infinite series; (4) unbounded 

infinite lines; and (5) bounded infinite lines as well as infinitesimals. This taxonomy is not meant 

to be exhaustive (e.g., it does not include Leibniz’s discussion of points “at infinity”), and much 

of it centers around Leibniz’s early work in mathematics in the 1670s, when he was developing 

the rudiments of the infinitesimal calculus. When constructing this list, I chose to focus primarily 

on this early period of Leibniz’s career because this is where one sees Leibniz freely postulating 

the existence of new types of infinitary mathematical entities and then speculatively deriving 

facts about these proposed objects. In some cases, such as unbounded infinite lines, the 

objects in question have properties that are in stark contrast to their finite counterparts, but 

these differences are initially treated as oddities, rather than absolute contradictions that 

demonstrate their utter impossibility. In other cases, logical contradictions are immediately 

derived from an infinitary object’s supposed existence, with infinite number serving as the 

paradigm case of an absolutely impossible infinite entity. After proceeding through these five 

cases, I present difficulties in interpreting Leibniz’s treatment of bounded infinite lines and 

infinitesimals.  

On its own, the analysis of each of these different types serves as a study in 

mathematical practice. We see how Leibniz posits new kinds of mathematical objects and then 

derives various propositions in order to find which kinds of objects can be projected into the 

realm of the infinite without contradicting logical truths. We also see how he uses heuristic 

principles like The Law of Continuity to experiment with transferring as many properties as 

possible from finite objects to their infinitely large or small counterparts (Section 2.4.4). Although 

they share some commonalities, the manuscripts where Leibniz treats infinite number, the 

composition of the continuum, infinite series, unbounded lines, and infinite bounded lines are for 

the most part separate from one another. And in texts where different types of infinite 

mathematical objects are posited and reasoned about, Leibniz does not automatically transfer 
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properties from one kind of infinite entity to another. Because they are all treated separately, we 

can see ways in which Leibniz gives a more favorable appraisal of unbounded infinite lines, 

bounded infinite lines, and infinitesimals than he does infinite number and infinite series 

conceived of as completed totalities. A large reason for this discrepancy comes from his solution 

to the Labyrinth of the Continuum (Section 2.2), where Leibniz develops a theory of the way 

points relate to their line that does not require the line to be conceived of as an infinite 

aggregate of actually existing points, but rather as an ideal whole that only has the potentially to 

have infinitely many points. Understanding the distinction between an infinite which is posterior 

to its actual parts (infinite number and series) and wholes that are prior to their infinitely many 

potential parts (the two kinds of infinite lines and the relationship between finite lines and points) 

allows us to track how Leibniz’s attitude towards different kinds of infinity arose from his 

experience of postulating different properties of infinite objects and seeing if any useful and non-

contradictory conclusions can be drawn. 

In addition to the value of understanding mathematical practice on its own terms, this 

chapter sets the stage for the progression of this dissertation’s overall argument: Leibniz’s 

remarks about the fictionality of infinitesimals does not impugn their status within pure 

mathematics. The differences in Leibniz’s mathematical work on infinite number and infinite and 

infinitesimal lines show that Leibniz is much more critical of the former than the latter. Their 

distinction in mathematical practice help us understand the rhetoric Leibniz gives when 

describing the status of infinitesimals and allows us to contrast them with the kinds of infinity 

that Leibniz condemns as logically contradictory, the subject of Chapter 3. 

There is one issue worth mentioning before moving on to the five case studies. In the 

previous chapter, I discussed the two different taxonomies of the infinite that Leibniz presented 

near the beginning and end of his philosophical career. The various applications of the infinite to 

Leibniz’s mathematics are adjacent to, but distinct from, these taxonomies. For instance, the 
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differences between bounded and unbounded lines matches the distinction between the mere 

infinite and the Maxima of Leibniz’s earlier taxonomy. Another connection with these 

taxonomies comes from what is lacking; there appears to be no infinite mathematical entities 

that Leibniz would categorize as an instance of Omnia or the hypercategorematic, the highest 

levels of the infinite in the earlier and later taxonomies, respectively. But the taxonomies 

presented in the previous chapter differ from this collection of infinite mathematical entities in 

the following regards. First, the list in this chapter is one I compiled from the different ways 

Leibniz uses the infinite within his mathematics, rather than an analysis of taxonomies Leibniz 

himself presented. Second, the taxonomies of the last chapter were intended by Leibniz to 

represent an ascent from lower grades of the infinite to the higher grades of infinite that describe 

the nature of God. On the other hand, the different uses of the infinite presented in the sequel 

are not intended to be ranked hierarchically, even though Leibniz has a more permissive 

attitude towards some mathematical uses of infinity than others. Lastly, the taxonomies from the 

previous chapter were rooted in the ways that one kind of infinity surpassed others (for the 

earlier taxonomy) and the way parts factor into some infinite whole (in the case of the later 

taxonomy). However, the categorization in this chapter is based on which type of entity is being 

extended into the domain of the infinite and focuses on the mathematical consequences of such 

extensions. Thus, while some overlap exists between the categorizations of the infinite in these 

two chapters, enough difference exists in aim and content to justify treating them as separate 

projects. It is now time to turn to these distinct kinds of infinite mathematical objects in Leibniz’s 

thought. 

2.1: Infinite Number 

The first instance of infinity in Leibniz’s mathematics that is worth noting is the type that 

applies to infinite totalities and the infinite numbers that would be associated with such infinite 
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collections. As mentioned in the previous chapter, Leibniz’s early thoughts on the infinite were 

strongly influenced by Galileo’s Two New Sciences, a book which Leibniz read and commented 

upon in 1672. The previous chapter’s discussion of Leibniz’s reaction to this text focused on 

Leibniz’s comment that we distinguish among infinities in order to see which concepts were 

capable of maximization, a proposal that motivates the taxonomy Leibniz made in his 1676 

comments on Spinoza’s “Letter on the Infinite.” Leibniz adopts the position that “infinite number” 

and “infinite totality” are inconsistent concepts, due to their violation of the axiom that the whole 

is greater than its parts. In this section, I trace the influence that Galileo’s writings on infinite 

numbers had on Leibniz, Leibniz’s response to the paradoxes Galileo describes, and the ways 

that Leibniz bars infinite numbers from his mathematics. 

Let us begin by covering Galileo’s paradox regarding the square numbers and the 

integers in greater detail than the description given in the previous chapter. Galileo shows that 

there are compelling reasons to believe that there are more positive integers than square 

numbers, but that we are also pulled to accept that there are just as many positive integers as 

there are square numbers (square numbers those of the form n2, where n is an integer).27 

Galileo, through his dialogue spokesman Salviati, first argues that there are more positive 

integers than squares. The reasoning behind this claim is best spelled out through traditional 

conceptions of wholes and their parts. When it comes to collections of objects, the following is a 

natural way to define the terms “part” and “whole”: if some collection A contains everything that 

is in the collection B, and A has some additional element(s) that B lacks, then B is a part of the 

whole A. Under this definition, one can see that the square numbers form a part of the positive 

integers, for there are positive integers that are not squares (e.g., 2, 3, 5, etc.). And since all 

squares are positive integers, but not all positive integers are squares, the squares form a part 

 
27 Two New Sciences, pp. 77-80. I will occasionally follow Galileo and refer to square numbers simply as 

“squares” throughout this section.  
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of the positive integers. And a fundamental supposition about the relationships between parts 

and wholes, dating back to Euclid, is that “the whole is greater than the part,” a principle I shall 

refer to as the part-whole axiom/principle in the sequel.28 Given this definition of parthood, the 

part-whole relationship between the squares and positive integers, and the axiom that wholes 

are greater than their parts, the collection of all positive integers can reasonably be said to be 

greater than the collection of all squares.29 

After arguing that the two collections are not equal due to the above-mentioned 

reasoning, Salviati goes on to give a reason for saying the two collections are in fact equal:  

If I should ask further how many squares there are one might reply truly that there are as 

many as the corresponding number of roots, since every square has its own root and 

every root its own square, while no square has more than one root and no root more 

than one square.30 

Or, to use contemporary terminology, there exists a bijection between the numbers and the 

squares that assigns each positive integer n to n2 and each n2 to its positive root n. A tacit 

principle underlying this conclusion is that there are “just as many” elements of collection A and 

collection B just in case one can assign every element from A to exactly one element of B and 

vice versa. Although this principle (now often given as a definition of equinumerosity) is not 

explicitly asserted or argued for by Salviati, its intuitive appeal means its exclusion should not be 

treated as a mark against Salviati’s argument. 

 
28 De Risi, 2016, notes that there is a controversy among scholars about whether or not this principle was 

explicitly given by Euclid himself, or if it was an interpolation added in later editions (p. 596). In that article, 
De Risi lists the principles employed by many historical editions of the Elements, and this part/whole 
principle is present in all but a few editions. Crucially, it is present in Christopher Clavius’s 1589 edition of 
the Elements, and this work was arguably the most influential edition of Euclid in the Early Modern Age.  
29 Or to hedge for those who have a Cantorian bent, “reasonable” from the standpoint of pre-set-theoretic 

intuitions.  
30 Galileo, Two New Sciences p. 79. Quoted from page 32 of Crew and de Salvio’s translation. 

Additionally, by “root,” Galileo is referring only to the positive root of a perfect square. 
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We are thus faced with the competing and incompatible claims: (1) that there are more 

positive integers than squares; and (2) that there are just as many positive integers as squares. 

Salviati infers from this that: 

So far as I see we can only infer that the totality of all numbers is infinite, and that the 

number of their roots is infinite; neither is the number of squares less than the totality of 

all numbers, nor the latter greater than the former; and finally the attributes “equal,” 

“greater,” and “less,” are not applicable to infinite, but only to finite, quantities.31  

By withholding the comparative attributes of “greater,” “less,” and “equal” from the domain of the 

infinite, the dilemma is resolved by restricting the scope of both the part-whole axiom and the 

definition of equinumerosity to finite quantities. Even if the squares are part of the positive 

integers, one cannot use the part-whole axiom to derive a comparison of magnitude from the 

initial mereological fact that there are some integers that are not squares. Similarly, even if what 

we now call a bijection exists between the squares and positive integers, it would not be licit to 

then infer equality given Galileo’s proposed restriction of this equinumerosity principle to finite 

collections. 

Galileo’s restriction of the part-whole axiom may superficially suggest a similarity to 

contemporary set theory, where some infinite sets have proper subsets which are not smaller 

than the initial set.32 However, this usage is distinct from the proposal that Galileo is offering, for 

contemporary set theory still allows some infinite sets to be greater than, equal to, or less than 

others.33 That is, Galileo is putting forth the claim that the part-whole axiom fails to apply to 

infinite sets not because there exist some infinite sets that are in fact equal to some of their 

 
31 Galileo, ibid. p. 79. Quoted from pp. 32-33 of Crew and de Salvio’s translation.  Prior to this remark on 

the paradox, Galileo does not make reference to “the number of” either the infinite collections in question.  
32 I say “some” infinite sets have this property rather than “all” because this is technically a definition of 

Dedekind-infinite sets, rather than infinite sets in general. In systems of set theory with the Axiom of 
Choice (as well as weaker axioms), this definition is provably equivalent to other standard definitions of 
infinite sets, but not every axiomatization will have this equivalence.  
33 The caveat “some” refers to the fact that in axiomatization of set theory without the Axiom of Choice, 

there can be two sets which are neither greater, lesser, nor equal to one another.   
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proper parts; the failure of traditional part-whole relationships comes from terms like “equal” 

failing to have meaning in the case of the infinite. 

After Salviati gives the remark from the block quote above, Sagredo notes the scope of 

this denial is larger than it initially seems. Not only is any infinite quantity unable to be called 

greater than, less than, or equal to another infinite quantity, but one cannot even claim that an 

infinite quantity is greater than a finite one. Sagredo’s reasoning is that in the infinite, the ratio of 

positive integers to squares seems to be 1, by the mapping of each integer n to n2. But as one 

considers finite collections of the first n integers, there is a progressively lower ratio of squares 

to integers as n increases. For example, three of the first ten positive integers are squares (i.e., 

1, 4 and 9) making the ratio of squares to non-squares of 3:10. But only ten of the first hundred 

positive integers are squares (i.e., 1, 4, …, 81, 100), making the ratio 1:10, a ratio smaller than 

when one considers only the first 10 positive integers. This leads to the conclusion that “the 

approach to greater and greater numbers means a departure from infinity.”34 When one 

considers the first positive integer alone, the ratio of squares to non-squares is 1:1, with this 

ratio decreasing significantly as one considers increasingly larger sets of the first n positive 

integers. Since the ratio is equal in the case of the number one and infinitely many numbers but 

becomes increasingly small as one reaches progressively greater numbers, these larger 

numbers are then said to be “farther” away from infinity than the number one is. Salviati then 

approves of this argument from Sagredo, and this nod from Galileo’s personal representative in 

the dialogue shows that it is an argument of which he himself approves. 

 Leibniz encountered this paradox in 1672, and gave a condensed summary of Galileo’s 

result: 

He [Galileo] thinks that that one infinity is not only not greater than another infinity, but 
not greater than a finite quantity. And the demonstration is worth noting: Among 

 
34 Galileo, ibid. p. 79. Quoted from p. 33 of Crew and de Salvio’s translation. 
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numbers there are infinite roots, infinite squares, and infinite cubes. Moreover, there are 
as many roots as numbers. And there are as many squares as roots. Therefore, there 
are as many squares as numbers, that is to say, there are as many square numbers as 
there are numbers in the universe. Which is impossible. Hence it follows either that in 
the infinite the whole is not greater than the part, which is the opinion of Galileo and 
Gregory of St. Vincent, and which I cannot accept; or that infinite itself is nothing, i.e., 
that it is not one and not a whole [non esse Unum nec totum]. Or perhaps we should 
say, distinguishing among infinites, that the most infinite, i.e., all the numbers, is 
something that implies a contradiction, for if it were a whole it could be understood as 
made up of all the numbers continuing to infinity, and would be much greater than all the 
numbers, that is, greater than the greatest number. Or perhaps we should say that one 
ought not to say anything about the infinite, as a whole, except where there is a 
demonstration of it.35 

Leibniz here identifies Galileo’s position as claiming that “in the infinite the whole is not greater 

than the part,” and Leibniz rejects this restriction on the scope of this axiom. Leibniz lists a few 

options in response to this claim. As noted in the previous chapter, the option that we 

“distinguish among infinities” motivates his 1676 taxonomy and the category of “Maximum,” but 

most noteworthy for our purposes here is the proposal that the infinite “is not one and not a 

whole.” Rather than restricting the universality of the part-whole axiom, Leibniz simply denies 

that there are infinite aggregates that form a genuine whole. Thus, the part-whole axiom does 

not fail to apply to infinite wholes as Galileo thought; there simply exist no infinite wholes 

consisting of discrete parts to which the axiom can either be applied or denied. 

Throughout his career, Leibniz continues to give similar arguments that argue for this 

conclusion at greater length, such as Pacidius Philalethi, an unpublished manuscript on motion 

written in the Fall of 1676.36 Before discussing the ways that Leibniz’s later presentation and 

solution of the paradox continues the path set forth in 1672, it is worth noting a shift in Leibniz’s 

presentation of Galileo’s paradox that one sees within the later presentation in Pacidius 

Philalethi.  Leibniz’s initial presentation of the paradox in 1672 is framed through the phrase “as 

many roots as numbers,”37 without explicitly referring to the “number of” such collections. 

 
35 “Notes on Galileo’s Two New Sciences” Quoted from DLC, p. 9 
36 Original and translation are in DLC, pp. 128-221. 
37 “Et tot sunt quadrata quot radices” original and translation in DLC pp. 8-9.  
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Leibniz’s earlier presentation follows Galileo’s own account. Galileo only speaks of comparisons 

among the collections in question, without then assuming that there would exist some number 

corresponding to each collection. But in a few years after his first presentation of Galileo’s 

argument, Leibniz now presents the paradox as a comparison between “the number of all 

squares” and “the number of all numbers,” the latter of which is also referred to as “the number 

of all unities.” Although it is a subtle difference, framing this as a comparison between numbers 

corresponding to each collection represents a shift from directly comparing the collections 

themselves, for the new framing involves an abstraction to an infinite number that would 

correspond to each collection. 

One reason for Leibniz’s shift towards framing Galileo’s paradox as a comparison 

between numbers corresponding to infinite collections of positive integers and squares can be 

inferred from a 1677 note. There Leibniz defines number as a “whole composed from unities.”38 

Since each number is a discrete entity, the collection of n numbers will be a collection of n 

distinct units, corresponding to the number n. That is, in the finite case, “a whole composed of n 

unities,” “the collection of the first n numbers,” and “the number n” can be substituted for each 

other. In the infinite case, Leibniz states that the number of all numbers is the same as the 

number of all unities, for a unit added to any number will lead to a new number. The number of 

all unities is also claimed to be identical to the greatest number. Leibniz is not explicit on why 

these three concepts are equivalent, but my best reconstruction of his reasoning is that if a 

collection has n elements (each conceived of as a unity), then the number corresponding to that 

collection as a whole is n. Extending this feature to the infinite case explains the equivalence 

between the number of all unities and the number of all numbers. And the reason both the 

number of all unities and the number of all numbers are equivalent to the concept “greatest 

 
38 “Numerus est totum ex unitatibus compositum.” A VI, 4, p. 31. Emphasis in original. Here and in the 

sequel, if the Latin original of a quote is in the footnote, the translation is my own unless otherwise noted. 
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number” most likely comes from the fact that any unit added to a collection of n elements yields 

a new number that is greater than the original n, namely n+1. But since we are postulating a 

collection that contains every number, any n+1 must already be in our initial collection. Hence 

the number corresponding to the collection of all numbers must contain as many unities as 

possible, which also makes it the greatest possible number (or would, if such an entity were 

possible). Despite the shift in framing to include concepts such “number of all numbers,” rather 

than bare associations between two types of numbers, the basic paradox remains: there appear 

to be as many squares as positive integers, even though the former are a proper part of the 

latter. 

 Leibniz’s solution to this paradox in Pacidius Philalethi picks up on two of the options he 

presented in his 1672 notes on Galileo’s Two New Sciences: the infinite “is not one and not a 

whole” and “distinguishing among infinites … all the numbers is something that implies a 

contradiction.” The claim that the collection of all numbers “is not one and not a whole” is 

reflected in Leibniz’s claim that there can be no number corresponding to the aggregate 

consisting of all the numbers. For if there were a number corresponding to such a collection, the 

collection would be a whole, given the definition of number as “a whole composed of unities” 

and the fact that each number is a distinct unit. Conversely, treating the aggregate of all 

numbers as a united whole would imply the existence of an infinite number, for the same 

reasons. This also means that the part-whole axiom does not apply to any other infinite 

collections of discrete elements, such as a soul belonging to the entirety of the physical world, 

as there is no whole in question to which some proper part could or could not be equal.39 That 

 
39 The connection between calling an infinite aggregate a “whole”/“totality” and the notion of God as the 

world soul was discussed by Laurence Carlin, Gregory Brown, and Richard Arthur. This exchange centers 
on the ways that the rejection of infinite collections plays a role in Leibniz’s denial of God as the soul of 
the world. Carlin and Arthur take the position that Leibniz’s denial of infinite collections partially explains 
why Leibniz denied God as the soul of the world, for God would then be a unity containing an infinite 
multitude of infinite perceptions. Brown argues that Leibniz’s denial of the unity of infinite collections was 
erroneous in light of contemporary set theory, while Carlin and Arthur emphasize that given Leibniz’s 
other commitments, his argument against God as the soul of the world is consistent. (Carlin 1997, Brown 
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is, rather than taking Galileo’s approach that the axiom does not apply because the comparative 

terms “greater than,” “less than,” and “equal to” have no meaning when applied to infinite 

wholes, Leibniz holds that the axiom does not apply because there are no infinite wholes 

composed of discrete parts whatsoever.  

The second prong of the approach laid out in Leibniz’s comments on Galileo’s paradox, 

that we ought to distinguish among infinities in order to weed out uses of the infinite that give 

rise to contradiction, is also present in the response in Pacidius Philalethi. For in this dialogue, 

Leibniz (via his spokesman Pacidius) asserts “I believe it to be the nature of certain notions that 

they are incapable of perfection and completion, and also of having a greatest of their kind.”40 

He goes on to list the fastest motion as another example of an impossible notion involving the 

infinite. For if we suppose that the rim of a wheel is moving with the fastest motion, we can 

imagine one of the spokes being extended. In that case, any point on the extended length of this 

spoke will be moving faster than any portion of our original wheel, a property that holds for all 

cases of finite rotation that Leibniz drags into the infinite. And this contradicts the hypothesis 

that the rim of the wheel was already moving with the fastest possible motion. This leads Leibniz 

to reject the claim that there can be a fastest possible motion, even conceptually. Similarly, 

Pacidius notes that there is no number of all curves. Since there are as many degrees of 

analytic curves as natural numbers (Leibniz here ignores analytic equations whose powers are 

not natural numbers), then the number of all possible degrees would have to be the same as the 

number of all possible numbers. Since there are multiple curves of any given degree, the 

number of analytic curves would be larger than the number of all numbers, and this doesn’t 

even count transcendental curves.41 This proof relies on two unspoken principles. First, if one 

 
1998, Arthur 1999, Brown 2000, Arthur 2001). See Harmer 2014 for a recent discussion of the connection 
between infinite numbers, infinite wholes, and the possibility of such collections forming genuine unities. 
40 In DLC p. 179. 
41 In DLC pp. 179-181. 
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can establish a bijection between some or all parts of a collection and each positive integer, 

then the former collection cannot be a whole and cannot be assigned a number. This principle is 

used in the claim that the number of different possible degrees of analytic curves is the same as 

the number of all numbers, i.e., for each positive integer n, there will be a class of curves of 

degree n. Second, if there is a part of a collection that is equivalent to the number of all 

numbers, then the original collection itself cannot be taken as a whole that is assigned a specific 

number. This assumption appears in the inference from the impossibility of numbering all the 

possible degrees that an analytic curve could possess to the impossibility of numbering every 

analytic curve. Hence there can be no collection consisting of one analytic curve of each 

possible degree, and because there are infinitely many analytic curves of curves of each 

degree, and there can therefore be no collection of every analytic curve, nor can there be any 

collection of these curves plus the transcendental ones. Notably, these kinds of impossibility 

arguments are specific to the type of maximal entity being refuted; the claim against the 

possibility of a fastest motion does not appeal to bijections between the number of all numbers, 

yet the argument against a number of all curves does. This underscores the need to distinguish 

between the taxonomies Leibniz gives and their mathematical applications, for the nature of the 

entity in question determines whether or not it is capable of infinitude or maximization. And 

Leibniz never develops a procedure to determine whether or not a concept will be contradictory 

when stretched beyond the finite; he simply postulates the existence of such objects and works 

by trial and error to see if any contradictory conclusions arise as a result of their supposition.  

 Before moving to the next type of infinite entity in Leibniz’s mathematics, it is worth 

noting that Leibniz’s arguments against infinite wholes and the numbers associated with them 

remains a stable fixture of his thought as he matures. For instance, in a March 11, 1706 letter to 

Des Bosses, Leibniz says:  
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It must be recognized that an infinite aggregate is in fact not one whole, or endowed with 

magnitude, and that it cannot be enumerated. And, accurately speaking, in place of 

“infinite number,” we should say that more things are present than can be expressed by 

any number. … Consequently, even if the world were infinite in magnitude, it would not 

be one whole, nor could God be imagined to be the soul of the world, as certain ancient 

authors hold, not only because he is the cause of the world, but also because such a 

world would not be one body, nor could it be regarded as an animal, and so it would 

have only a verbal unity. It is therefore a form of shorthand when we say “one” where 

there are more things than can be comprehended in one specifiable whole, and when 

we describe as a magnitude something that does not have its properties.42 

Here Leibniz is reaffirming his view that there is no such thing as an infinite number. He still 

allows that there can be infinitely many objects in some domain. In such cases, there would be 

more objects than any number can specify, but there is no number corresponding to such 

collections because they are unable to be conceived of as a completed whole. That is, there is 

only an infinity of such objects in a syncategorematic sense. Similarly, such collections cannot 

form more than a mere verbal unity. Hence, we see that in his later years not only does Leibniz 

remain opposed to the possibility of infinite numbers, but he continues to tie such opposition to 

the denial that infinite collections form a whole that could then be numbered.  

 There is one last aspect of infinite number that ought to be addressed. One may think 

that problems of the infinite, such as Galilean concerns about square numbers and their roots, 

are only problems because we are finite beings. Perhaps an infinite intellect could comprehend 

an infinite whole without running into any contradiction. But Leibniz is clear that not even God 

can assign a number to the collection of all numbers. When a character in Pacidius Philalethi 

asks “So doesn’t even God understand the number of all unities?” Leibniz’s spokesman 

Pacidius responds “How do you suppose he understands what is impossible? Does he 

comprehend a whole which is equal to its part?”43 For this reason, God is in no better position 

than we are to reason about the “number of all numbers” and equivalent notions. The part-whole 

 
42 In LDB pp. 31-33. 
43 In DLC p. 181. 
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axiom applies not only to the reasoning that we finite beings perform, but to God’s 

understanding as well. And because infinite totalities and their corresponding numbers would 

violate this axiom, they are impossible notions. As we shall see, especially in Chapter 3, 

infinitesimals appear to lack this strong conceptual impossibility, putting them in a relatively 

better position than infinite numbers. 

2.2: The Composition of the Continuum 

 As seen in the above discussion regarding infinite number, Leibniz believed that infinite 

collections could neither form a genuine whole nor be assigned a number, on pain of violating 

the part-whole axiom. But geometry appears to present us with objects that are best understood 

as wholes that are composed of an infinitude of elements. The most obvious example is that for 

any line, no matter how small, one cannot claim that there are only a finite number of points on 

the line.44 The same is true of the relation between surfaces and the lines that lie on them, as 

well as solids and their planar cross-sections. When considering these objects, it feels natural to 

consider every n dimensional object as a whole consisting of an infinitude of n-1 dimensional 

parts, which may in turn be composed of an infinitude of parts of a lower dimension, until one 

arrives at indivisible points. But if this were the case, it would violate Leibniz’s strong 

proscriptions against wholes consisting of an infinitude of elements using principles identified in 

his argument against such collections. One of those principles came about in Leibniz’s rejection 

of the number of all curves: if there are at least as many objects as there are positive integers, 

then these objects cannot form a genuine whole. It is rather simple to show that the number of 

points on any finite line would be at least as many as the number of all positive integers. Let the 

first point identified be the line’s midpoint, the second point be the midpoint of one of the divided 

 
44 Or to be more precise: one cannot claim that a line is composed of a mere finite number of points 

without massively upending traditional conceptions of points and lines. Famously, George Berkeley 
argued for this revisionary approach. 
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segments, the third point be the midpoint of one of the segments created from the previous 

division, and so on. Even though this process will not exhaust each possible point of the line, it 

will never end, and hence there are at least as many points on the line as there are positive 

integers.45 This quick argument for the impossibility of lines being composed of an infinite 

aggregate of points relies on reducing this case to the argument against infinite number. But this 

is not the only argument that poses problems for views of lines as infinite aggregates of points; 

Leibniz presents additional paradoxes that arise from principles germane to geometry itself. 

Leibniz refers to these difficulties in clarifying the relationship between a continuous geometric 

object and its coincident parts of a lower dimension as creating a “Labyrinth of the continuum.”46 

In this section, I briefly summarize some of the paradoxes Leibniz encountered when 

wandering this labyrinth, as well as the path that eventually led him out of its paradoxical twists 

and turns. The exit strategy from this labyrinth is to deny that lines are composed of points, 

planar figures of lines, and solids of planar cross-sections. Instead, lines are posited as wholes 

and the points on them only exist once specified, and similar reasoning applies to higher 

dimension loci and the lower dimensional objects contained within them. This position is subtle, 

and I explain it in greater detail at the end of this section. First, I address the paradoxes Leibniz 

encountered in his initial attempts to characterize the nature of the continuum. 

As with the number of all numbers, the paradoxes that emerge from the composition of 

the continuum are rooted in the part-whole axiom, and Leibniz’s firm adherence to that axiom 

 
45 This argument shows that there are at least as many natural numbers as there are specifiable points 

on a line. As Georg Cantor would go on to show, the principles of set theory show that there are more 
points on a line than positive integers. However, the above presentation follows principles we have 
already seen Leibniz affirm, and hence avoids ahistoricity.  
46 Leibniz uses a metaphor of a labyrinth to describe the continuum in a number of places. It occurs in 

“De Usu Geometriae” in 1676 (A VI.3 p. 449). He later repeats the phrase in both the January 21, 1704 
letter to De Volder (GP II p. 262) and the July 31, 1709 letter to Des Bosses (in LDB, p. 141). Leibniz also 
mentions the Labyrinth of the Continuum in his Theodicy, where he also refers to the problem of human 
freedom as another great labyrinth of philosophy (GP VI p. 29). Leibniz believes that the latter labyrinth is 
a more pressing issue, for all of humanity cares for freedom, whereas only a narrow segment of the 
population worries themselves about the intricacies of mathematical foundations. 
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causes him to search for alternate premises to reject when resolving paradoxes. One clear 

example of the part-whole axiom leading to a paradox in the composition of the continuum 

comes from the previously-mentioned dialogue Pacidius Philalethi, where he presents what is 

sometimes called the Diagonal Paradox.47 In this text, Leibniz ultimately blames the paradox on 

the assumption that lines are infinite aggregates of uniform points, a hypothesis that I dub the 

aggregate-composition principle. In this proof, we will see one additional premise that I shall call 

the aggregate-magnitude hypothesis. The aggregate-magnitude hypothesis holds that two lines 

are composed of the same (infinite) amount of uniform points if and only if the lines in question 

are equal in length. Although Leibniz does not explicitly acknowledge and name this second 

principle, it plays a crucial role in his proof. I follow the spirit of Leibniz’s presentation of the 

paradox in Pacidius Philalethi, but I have numbered each step and explicitly drawn out the 

implicit assumptions that ground this reductio argument.48  

 

Figure 2.1: The Diagonal Paradox 

 

 
47 Not to be confused with Georg Cantor’s argument that there are sets that cannot be put in a bijection 

with the natural numbers, a proof which is commonly known as his Diagonal Argument. 
48 For the original proof, see DLC pp. 174-177 (Latin and English translation) or A VI.3 pp. 549-550 (Latin 

only). 
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The Diagonal Paradox: Proof 

1. Consider the rectangle LNPM [Figure 2.1]. Sides LM and NP are equal in length, so by 

the aggregate-magnitude principle, each line will be composed from an equal aggregate 

of points. 

2. For each point on LM, such as 1, 3, 5, etc. draw a straight line parallel to line LN. Each 

line will intersect line NP at a point corresponding to the points on LM, such as 2, 4, 6, 

etc., respectively.  

3. Each of these lines (labeled 1–2, 3–4, 5–6, etc.) will then intersect the diagonal MN at 

some other point. For the lines 1–2, 3–4, 5–6, these are points 7, 8, and 9, respectively. 

4. Suppose that some point b can be taken on MN that isn’t among the points 7, 8, 9, etc. 

that are intersected by the lines 1–2, 3–4, 5–6 etc.. Draw a straight line passing through 

this point b parallel to LN. It will intersect line LM at point a.  

5. Point a cannot be one of the points 1, 3, 5 etc. on LM. The reason for this is that 

because LM and NP are equal in length, the aggregate-magnitude principle says that 

they must have the same amount of points. Thus, there will be some point c on line NP 

that corresponds to point a on LM. And line a–c will intersect the diagonal MN at point b, 

making b one of the points 7, 8, 9, etc., contrary to our assumption. 

6. Hence, we must reject the assumption made in step 4. That is, if lines are drawn from 

every point of LM to their corresponding points in NP, then there will be no point on the 

diagonal MN that is also not on the lines LM and NP. Leibniz (via the character Charinus 

in the dialogue) infers from this rejection that “It is therefore clear that we must 

understand there to be just as many points in LM and NP as in [MN], so that if these 
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lines are mere aggregates of points, the smaller line will be equal to the greater.”49 This 

is another tacit appeal to the aggregate-magnitude principle, as the equality of these 

lines is said to follow from each being composed of an equal aggregate of points.  

7. Find the point d on the diagonal MN such that the line Md is equal in length to the lines 

LM and NP. 

8. Since Md was specified as being equal to these sides, there will be as many points in 

LM as there are in Md by the aggregate-magnitude principle.  

9. And since step 6 showed that there are as many points in LM (and hence Md) as there 

are in MN, “MN and Md will also have the same number of points, part and whole alike, 

which is absurd. Whence it is established that lines are not composed of points.”50 That 

is, we reject the aggregate-composition principle. 

One interesting feature of this proof is that Leibniz could have stopped at line 6. It is an 

elementary fact that the diagonal of a rectangle is always larger than any of its sides, so the 

conclusion that these two unequal lines must be equal is sufficiently contradictory to conclude 

the reductio proof. Had Leibniz ended at this stage, he could have held onto the aggregate-

composition principle while rejecting the aggregate-magnitude principle. That is, he could claim 

that while lines are composed of an infinite aggregate of points, the amount of points present 

within a line does not determine a line’s length.51 But the way in which Leibniz continues his 

reasoning shows why this position is untenable. At step 6, Leibniz has established that LM and 

 
49 Translation from DLC, p. 177. The original Latin is on p. 176: “Patet ergo tot necessario intelligi puncta 

in LM, et NP quot in NM adeoque si hae lineae mera sunt aggregata punctorum, esse lineam minorem 
aequalem majori.” It may be possible that the claim of equality in the last clause is only a claim about 
equality between the amount of constituent points, rather than the further claim that they therefore are 
equal in length. But the wording more naturally suggests my reading that this further claim is being 
asserted. Additionally, I changed the “NM” to “MN” for consistency in naming. 
50 DLC p. 177. 
51 This would be the approach taken by contemporary mathematics, which separates the cardinality of a 

set of points from a metric function defined on the set.  
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MN must have the same amount of points, despite the differences in length of these two lines. 

But via the consideration of line Md, Leibniz has transferred this discrepancy-in-length-but-

equality-in-points from the non-overlapping MN and LM to the whole of MN and its proper part 

Md. Since there are points that MN has that Md lacks, the aggregate of points on MN should be 

greater than Md, according to the part-whole axiom. But we have already established that there 

must be the same amount of points on both lines. Hence even if Leibniz were to give up the 

aggregate-magnitude principle as a response to step 6, the conclusion to his proof shows that 

there would still be a conflict with the part-whole axiom. And as we have already seen, rejecting 

this axiom is a line Leibniz refuses to cross. Therefore, Leibniz identifies the culprit of this 

paradox as the aggregate-composition principle. And rejecting this principle causes the 

aggregate-magnitude principle to vanish in a puff of smoke. If lines are not composed through 

an aggregation of points, then any statements about the relationship between such aggregates 

and a line’s length become moot.  

Holding firm to the part-whole axiom, Leibniz rejects the claim that a line is composed of 

an aggregate of uniform and indivisible points, but there are various ways one can reject this 

claim. Leibniz’s position in Pacidius Philalethi is that lines are not composed of uniform and 

indivisible points, a position that remains stable for the rest of his career. Notably, four years 

prior, in a 1672 manuscript titled “On Minimum and Maximum,” Leibniz presents the Diagonal 

Paradox in a substantially similar way as Pacidius Philalethi.52 But here he denies that lines are 

composed of uniform and indivisible points. That is, he holds that lines are composed of points, 

but such points can differ in size and can be divided. After repeating the argument that the 

number of all numbers is an impossible notion because it would have to be equal to one of its 

parts, Leibniz asserts: “We therefore hold that two things are excluded from the realm of 

intelligibles: minimum, and maximum; the indivisible, or what is entirely one, and everything; 

 
52 A VI.3 p. 97-101. Original and translation is also in DLC pp. 8-19. 
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what lacks parts, and what cannot be part of another.”53 Instead of indivisible entities, Leibniz 

holds that the continuum contains infinitely small objects that are each divisible and capable of 

size comparison. For instance, he says that one point can be smaller than another, for the 

vertex of one angle can be smaller than the vertex of another angle. In fact, one point can be 

infinitely smaller than another, which is the case when comparing the angle of contact between 

a line and circle with an angle composed of two straight lines.54 Leibniz does not spell out how 

the denial of minima is meant to block the paradox. One likely option is that if we are dealing 

with infinitely small intervals instead of indivisible points, then the intervals on lines LM and NP 

would not be equal to the corresponding intervals on line MN. That is, referring again to Figure 

2.1, suppose that line 3–5 represents an infinitely small interval on line LM, the kind of infinitely 

small quantity meant to replace points. Drawing parallel lines 3–4 and 5–6 gives the interval 4–6 

on line NP. Then, we no longer consider a single point of intersection on line MN, but the 

interval 8–9. One can clearly see that when the intervals are finite, line 8–9 will be larger than 

the 3–4 and 5–6, and this will also be true when the intervals become infinitely small.55 One 

could still conclude that under this division, there are as many “points” on line LM as NM. But it 

will not follow that these two lines should be equal in length, for the “points” into which each line 

is composed are unequal and thus the lines they compose can be unequal as well.  

Blocking paradoxes regarding the composition of the continuum by positing unequal and 

divisible points that are capable of composing lines is not the path Leibniz took in Pacidius 

Philalethi and later texts. In Pacidius Philalethi, uniform and indivisible points have been 

 
53 DLC pp. 12-13. Emphasis in original. 
54 It ought to be noted that equating points and angles in this way was also a short-lived supposition. For 

instance, in the April 10 1676 text “Infinite Numbers” (A VI.3 pp. 496-504/DLC pp.82-101), Leibniz says 
“an angle is not the quantity of a point” (translation quoted from DLC p.89). One reason for this reversal is 
that in “Infinite Numbers,” Leibniz no longer thinks the notion of an absolute minima (i.e. points as 
traditionally conceived) is unintelligible. In this later text, points are defined as those whose parts are 
nothing, yet one angle can be a part of another. 
55 The justification for this claim would rely on the “Law of Continuity,” which I address in detail in Section 

2.5 and in Chapter 3. 
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rehabilitated as coherent geometric notions. Even though points in their traditional conception 

are now considered to be respectable mathematical entities, Leibniz still denies that such points 

compose the continuum. Similarly, surfaces and solids are not composed of lines and surfaces, 

respectively.  This position is presented by the character Charinus, and met with approval by 

Leibniz’s spokesman Pacidius: 

[W]e will say that there are no points before they are designated. If a sphere touches a 

plane, the locus of contact is a point; if a body is intersected by another body, or a 

surface by another surface, then the locus of intersection is a surface or a line, 

respectively. But there are no points, lines, or surfaces anywhere else, and in general 

the only extrema are those made by an act of dividing: nor are there any parts in the 

continuum before they are produced by a division. But all the divisions that can be made 

are never in fact made. Rather, the number of possible divisions is no more than the 

number of possible entities, which coincides with the number of all numbers.56 

This view is subtle, and it is one that remains relatively stable throughout his career. When 

Leibniz speaks of “an act of dividing,” he is not talking about the divisions that occur when one 

chops wood. The claim that there are no extrema prior to an “act of dividing” means that there 

are no physical entities that lack either breadth, depth, length, or a combination of those 

dimensions. Instead, such entities only come into being during a mental act of division and are 

thus purely ideal. In later writings, Leibniz will go on to explicitly deny that such extrema form 

genuine parts of geometric objects, for his later definition of “part” requires that it be 

homogenous to any claimed whole.57 In the example from Figure 2.1, this priority of the whole 

over any of its possible parts blocks the inference that there are “as many” points on lines LM 

 
56 In DLC p. 181. 
57 This view shows up in the text “Specimen Calculi Coincidentium et Inexistentium,” which the Akademie 

editors date between Spring 1686 and Early 1687 (A VI.6 pp. 830-845. It appears in translation under the 
title “A Study in the Logical Calculus” in L pp. 371-381). There, Leibniz says the relation between 
“container” and “contained” is broader than that of “whole” and “part,” for the latter has the homogeneity 
requirement. He explicitly uses this to say that a point is not a part of a line (L p. 379). The idea that 
points are not strictly “parts” of lines due to their inhomogeneity surfaces again in an important note on 
mathematics, dated sometime after 1714: the “Initia Rerum Mathematicarum Metaphysica” (GM VII pp. 
17-29, translated as “The Metaphysical Foundations of Mathematics” in L pp. 666-673). There the inesse 
is posited as a generalization of the part-whole relation that does not have the homogeneity requirement 
that true parts and wholes have. 
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and MN. If points only result from an “act of dividing,” one could associate points 7, 8, and 9 on 

the diagonal MN with points 1, 3, and 5 on the side LM, respectively. And one could add more 

parallel lines to create new points of intersection. But we will be unable to fully equate all the 

points of the two lines because as finite beings, we never exhaust all possible divisions of the 

lines.  

This passage in the previous block quote contains another important element of 

Leibniz’s beliefs concerning the continuum that appears to originate during the spring of 1676 

and remains with Leibniz throughout his career: “nor are there any parts in the continuum before 

they are produced by a division.” When Leibniz describes the “Labyrinth of the Continuum,” he 

typically emphasizes the relationship between a geometric object and minimum parts of a lower 

dimension that can be found within that object. However, there is still an issue that arises even 

when one considers homogenous parts of a greater continuous whole: a line can still be divided 

into different lines in infinitely many different ways. For instance, a line could be evenly divided 

into halves, thirds, quarters, etc.; it could be divided into an arbitrary amount of even and 

uneven segments that are commensurable with each other; or it could be divided into parts that 

are incommensurable with each other (i.e., those whose proportion cannot be expressed by a 

rational number). And clearly such smaller lines would be parts of the larger line. By claiming 

that such parts do not exist prior to any specifying acts of division, Leibniz avoids the conclusion 

that an infinite number of parts actually exist within a given line.58 Instead, for continuous 

quantity, “the whole is prior to its parts,” a claim that appears in April 1676 and is repeatedly 

 
58 This story becomes more complicated once one takes the physical world into account. In the actual 

world, Leibniz thinks that matter is divided into an infinite number of smaller and smaller parts, based on 
the motion of the parts within parts. But even though actual bodies are divided into infinitely many parts, 
the claim that “all the divisions that can be made are never in fact made” means that there is some 
specific pattern of motion into which matter is divided, and a different division would result if some other 
pattern of motion were to be instituted. 
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referenced throughout the remainder of his career.59 In a note from April 15, 1767, Leibniz 

explicitly contrasts this feature of continuous quantity with numbers, where the parts that are 

numbered exist prior to the whole.60 Although infinitely divisible, the fact that lines are not in fact 

infinitely divided allows one to posit a line without also positing a whole composed of an infinite 

number of parts. For this reason, the nature of the continuum does not consist in a completed 

infinity that has been gathered into a whole. It is instead a whole that precedes any parts but 

contains the potential for indefinitely many parts to be specified. This priority of the whole over 

its parts is not a possible way to salvage the concept of an infinite number; his definition of 

number requires wholes formed from a determinate amount of discrete units, unlike the 

continuous objects of geometry. However, the infinitude of the natural numbers as well as the 

parts of the continuum are both syncategorematic in that there is never a whole consisting of 

infinitely many parts. What marks continuous objects as unique is that the whole is prior to 

indefinitely many parts, rather than being infinitely many existing parts that are unable to be 

considered as a completed totality. 

2.3: Infinite series 

Another part of mathematics in which Leibniz wrestled with difficulties in applying 

infinitary concepts comes from his earliest original work in mathematics: developing techniques 

to sum convergent infinite series.61 In 1672, Huygens gave the 26-year-old Leibniz a problem to 

test his mathematical acuity: to find the sum of an infinite series consisting of the reciprocals of 

 
59 This claim occurs as quoted in “Infinite Numbers” (quoted from DLC p. 97). For an example of Leibniz 

repeating this claim later, see Leibniz’s letter to Des Bosses from July 31, 1709: “In actual things, simples 
are prior to aggregates; in ideal things, the whole is prior to the part. Neglect of this consideration has 
produced the labyrinth of the continuum.” (Quoted from LDB p. 141). In “Infinite Numbers” and other texts 
from 1676, Leibniz uses the priority of the whole over its parts to characterize entities that are maxima. 
Later, this is used to classify the distinction between actual and ideal things, and it becomes an important 
part of his philosophy of mathematics.  
60 From “On Body, Space, and the Continuum” DLC pp. 120-121. 
61 See Hoffman 1974 for an excellent analysis of Leibniz’s work with infinite series from 1672-1676.  
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the so-called “triangular numbers.” That is, the series 
1

1
+

1

3
+

1

6
+

1

10
+. . . +

2

𝑛2+𝑛
+ ⋯, whose sum 

is expressed using contemporary formal notation by: ∑
2

𝑛(𝑛+1)
∞
𝑛=1  . While summation techniques 

for infinite series are not often ranked among Leibniz’s memorable mathematical achievements, 

the procedures Leibniz developed to sum the inverse triangular numbers and other infinite 

series led to insights that lead to the development of his infinitesimal calculus.62  

Leibniz’s early experiments in solving the problem posed to him by Huygens are 

primarily located in Series 7, Volume 3 of the Akademie Edition. One of the first strategies 

Leibniz adopts is to search for ways to express a given series in relation to another series. This 

can mean discovering that one series is generated through adding, subtracting, multiplying, or 

dividing the successive terms of another series. Or it could mean one series is the result of 

multiplying or dividing each term of another series by some constant. Leibniz’s intent in 

performing these manipulations was to find some pattern among these numbers that would 

relate the series to some other series whose sum is either already known or can be 

algebraically manipulated to help find the sum of the original series in question. The notes of 

Leibniz’s earliest attempts at summing the triangular numbers show Leibniz carrying out all sorts 

of transformations in order to reach a solution, writing the terms of each series out horizontally 

or vertically on the page, and then writing the transformed series next to the original. A short 

note from the fall of 1672 shows this experimental method yielding a discovered connection 

between the series of the reciprocal triangular numbers, and what is called the harmonic series: 

1
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1
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1

3
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1

4
+

1

5
+. . . +

1

𝑛
+. .. for every natural number n.63 To explain the relationship Leibniz 

 
62 Bos 1974 presents the technical similarities between the “method of differences” that Leibniz 

developed to sum infinite series and the techniques used in his early presentations of the differential 
calculus. 
63 “Differentiae Numerorum Harmonicorum Et Reciprocorum Triangularium,” A VII.3, n. 2, pp. 10-16. 
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found between these two series, and how this connection led him to find the sum requested by 

Huygens, I use the following abbreviations and contemporary notation: 

For the terms of the various sequences: 

H is the Harmonic Sequence:    

1

1
 ,

1

2
 ,

1

3
 ,

1

4
 , . . . ,

1

𝑛
 , . ..      i.e., 𝑎𝑛 =

1

𝑛
 

ΔH is the difference between successive terms in H:  

1

2
 ,

1

6
 ,

1

12
 ,

1

20
 , . . . ,

1

𝑛
−

1

𝑛+1
 , . ..      i.e., 𝑎𝑛 =

1

𝑛
−

1

𝑛+1
=

1

𝑛(𝑛+1)
 

T is the sequence of reciprocal triangular numbers: 

 
1

1
 ,

1
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1

6
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1
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 , . . . ,

2

𝑛(𝑛+1)
 , . ..     i.e., 𝑎𝑛 =

2
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 For the infinite sums of each series:  

S(H) is the sum of the terms of H:   
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1

5
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∞
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S(ΔH) is the sum of the terms of ΔH:   
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2
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1
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1
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∞
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S(T) is the sum of the terms of T:  
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6
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1
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+. .. =  ∑
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 For partial sums of the first n terms of a series: 

 Pn(H) = The sum of the harmonic series:64  
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Pn(ΔH) = The sum of the series:   
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Pn(T) = The sum of the triangular series:  
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64 As in the case of the infinite series, I listed the first few terms of each series to remind the reader of 

what the first few numbers in each series will look like. Obviously, if n is one of the first few numbers, 
Pn(H) may not have all of the terms listed here. The same is true for the other partial sums. 
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After many false starts, Leibniz’s method of playing around with the series in order to 

find usable patterns lead him to consider ΔH, the sequence generated by subtracting the 

successive terms of the harmonic sequence H from each other. That is, the first term of term of 

ΔH is 
1

2
=

1

1
−

1

2
 (the difference between the first two terms of H), and the second term of ΔH is 

1

6
=

1

2
−

1

3
 (the difference between the second and third terms of H). And it turns out that the 

sequence ΔH can also be obtained by dividing each term of the triangular series T by 2, and T 

is the series that Leibniz originally wanted to sum. Leibniz then notes that subtracting each term 

in H by the corresponding term in ΔH results in a sequence identical to H but starting with the 

second term of H: 
1

2
. Written out, this is: 

 H - ΔH = (
1

1
−

1

2
), (

1

2
−

1

6
), (
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3
−
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), . . . (
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−
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), . ..= 
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4
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𝑛+1
, . .. 

Or to use sequence notation: 

 H - ΔH = the sequence 𝑎𝑛 =
1

𝑛+1
 

Turning to sum of each series, Leibniz shows that: 

 S(H) - S(ΔH) = (
1

1
−

1

2
) +  (

1

2
−

1

6
) +  (

1

3
−

1

12
)+ . . . + (

1

𝑛
−

1

𝑛(𝑛+1)
)+ . ..= S(H) - 1 

Subtracting S(H) from both sides of the equation and dividing both sides of the equation by -1 

yields S(ΔH) = 1. And because ΔH is the result of dividing each term in T by 2: 

S(T) = 2(ΔH) = 2. 

And this is the solution to the problem set forth by Huygens.65 

 
65 A VII.3 contains Leibniz’s work on this subject. Items 1, 2, 11, and 35 in this volume inform my 

presentation here. The first two manuscripts are dated Fall 1672, number 11 comes from early Spring 
1673, and number 35 is thought to be from either August or September of 1674. 



 

 48 

 However, a contemporary reader may immediately notice a crucial flaw in this reasoning. 

The harmonic series that Leibniz appeals to in this demonstration is divergent; S(H) has no finite 

sum and thus cannot be treated as a well-defined value that can be subtracted from both sides 

of an equation. Furthermore, Leibniz himself cannot posit the existence of some infinite number 

that represents the summation S(H) because as we have already seen, Leibniz’s exposure to 

Galileo’s Two New Sciences in the Fall of 1672 solidified his belief that the notion of an infinite 

number is inconsistent. However, an alternate interpretation of these results leads us out of this 

problem and shows us how Leibniz handled the problem of how to interpret convergent infinite 

summations. 

 This interpretation is alluded to in the 1676 note “Infinite Numbers,” where Leibniz says 

“Whenever it is said that a certain infinite series of numbers has a sum, I am of the opinion that 

all that is being said is that any finite series with the same rule has a sum, and that the error 

always diminishes as the series increases, so that it becomes as small as we would like.”66 That 

is, we focus on the partial sums of these series that are represented by Pn (H), Pn(ΔH), and 

Pn(T), rather than the infinite sums of S(H), S(ΔH), and S(T). In this case, the “same rule” is 

referring to the formulas that generate the terms of S(H), S(ΔH), and S(T), such as 𝑎𝑛 =
1

𝑛
. And 

the “error” is the difference between a partial sum of the first n terms and the proposed sum that 

represents the summation of the whole infinite series. In the case of the reciprocal triangular 

numbers, this means that the claim that its sum is 2 reduces to the claim that Pn(T) will be equal 

to 2 - x, and that x becomes as small as one wishes as one picks successively large values for 

n, i.e., adds together more and more of the reciprocal triangular numbers. But before we can 

conclude this, we need some method to establish that the partial sum of the first n triangular 

numbers will be equal to 2 - x, as well as specify how to calculate this x for different values of n.  

 
66 DLC, pp. 98-99. 
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Leibniz does not explicitly show how to do this in the case of the reciprocal triangular 

numbers, but it is not difficult to reconstruct how the argument could go from statements he 

makes elsewhere. First, we make use of what Richard Arthur calls the Difference Principle in his 

review of Volume 3, Series 7 of the Akademie Edition: “the sum of the differences is the 

difference between the first term and the last.”67 In this case, the “differences” refer to Pn(ΔH), 

the sum of the first n terms of ΔH. The “first term and the last” refer to the terms of Pn+1 (H), or 1 

and 
1

𝑛+1
, respectively.68 By the difference principle, the sum of Pn(ΔH) will be 1 −

1

𝑛+1
. Now, 

Leibniz would be able to apply the interpretation of infinite summations set out in “Infinite 

Numbers” to show that any proposed difference between S(ΔH) and 1 is an overestimation. 

Suppose one were to say that S(ΔH) was actually 
999

1000
, meaning there would be an error of 

1

1000
 

between the originally proposed value of 1 and this newly-claimed value. In that case, one 

would note that the sum of the 1000 terms of P1000(ΔH) is equal to 1 −
1

1001
=

1000

1001
, by the 

Difference Principle. This shows that 
1

1000
 was an overestimate of the difference between S(ΔH) 

and 1 because 
1

1001
 is less than the proposed error of 

1

1000
. Taking increasingly large values of 𝑛 

will allow us to find a value smaller than any other other proposed error.69 Hence we can treat 

S(ΔH) as having a value of 1, even if strictly speaking, there is no such thing as a summation of 

an infinitude of terms. And S(T) would then have a value of 2, since each term of S(T) is twice 

that of the corresponding term in S(ΔH). 

 
67 Lebiniz makes this claim in “De Progressionibus et de Arithmetica Infinitorum” A vii. 3, p. 95: “Hinc 

summa differentiarum est differentia inter terminum primum et ultimum.” Arthur discusses it in Arthur 
2006, p. 221. 
68 The reason “n + 1” appears in the index Pn+1 (H) and in the denominator of the corresponding last term 

of that series is that each term n of ΔH is the difference between the n-th and n+1-th terms of the original 
series H. 
69 Strictly speaking, we’ve shown that 1 cannot be an overestimate for the value of S(ΔH), which leaves 

open the possibility that S(ΔH) is greater than 1. But this possibility can be refuted by showing there 
cannot exist a natural number n such that 1 - [1/(n+1)] is greater than 1. 
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This view of infinite series is a type of syncategorematic approach. In the 1706 

taxonomy, a syncategorematic approach to the infinite meant there is never a completed whole 

composed of an infinitude of parts, yet one is always able to specify larger and larger collections 

of finite parts. In the case of infinite series, this means that there is never a stage at which there 

is a complete summation (the whole) of every possible term in the series (the infinitude of parts). 

Instead, the kind of infinitude involved in convergent infinite series means that, for any 

summation of the first n terms of a series, one is able to specify a summation of the first m 

(where m>n) terms that is closer to the convergent sum than the sum of the first n terms was. 

Leibniz’s reason for picking a syncategorematic approach that uses partial sums over a 

categorematic approach in which the sum of a convergent series would be seen as an actually 

completed summation of infinitely many parts is tied to his rejection of infinite number. The 

reasoning is as follows. If one views the sum of an infinite series as the sum of an infinite 

number of terms, Leibniz says that one would have to ascribe a last term to this series. And this 

term would be an for some number n. It cannot be a finite number because then the series 

would not be completed contrary to our hypothesis, so n would have to be an infinite number. 

And as we have previously seen, Leibniz thinks such a notion is contradictory. Therefore, we 

reject the original supposition that the sum of an infinite convergent series is an actual and 

complete summation of infinitely many terms. 

As with Leibniz’s belief that an infinite number is impossible and that the whole is prior to 

the parts for mathematical objects, this syncategorematic interpretation of infinite series is 

present in the April 1676 text “Infinite Numbers,” and remains a fixture of his thought. As an 

example of his later adherence to this position, in a February 21, 1699 letter to Johann 

Bernoulli, Leibniz tells Johann Bernoulli: “I concede the infinite plurality of terms, but this 

plurality itself does not constitute a number or a single whole. It means nothing, in fact, but that 

there are more terms than can be designated by a number. Just so there is a plurality or a 
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complex of all numbers, but this plurality is not a number or a single whole.”70 That is, one can 

continually specify more and more finite terms of an infinite series to one’s heart’s content, but 

one is unable to claim that there exists a sum of an actual infinitude of terms. 

The syncategorematic interpretation of infinite series that Leibniz adopts is similar to that 

of infinite number inasmuch as they are both interpreted such they are never treated as actual 

completed entities consisting of infinitely many parts. However, they differ in that one infinite 

series can be said to be twice another, as in the case of S(ΔH) and S(T), but Leibniz is not 

inclined to say that one infinite collection is twice as large as another. Another way to categorize 

this difference is that even though S(H) is divergent, and S(ΔH) is convergent, they are both 

equally worrisome when considering infinite number, for interpreting them both as completed 

sums of an infinitude of terms invites the same worry about the implications that there is some 

last term. And this worry would persist regardless of whether we consider the sums S(H) and 

S(ΔH) or the unsummed lists of sequences H and ΔH. But series possess the additional 

properties of being convergent or divergent, and Leibniz must develop tools to distinguish the 

one kind of series from another, a task that does not arise when considering these objects 

without performing the operation of addition on them. For this reason, infinite number and 

infinite series are in fact non-finite mathematical concepts that deserve separate analyses. 

Having given overviews of both of these concepts, it is time to move on to yet another type of 

infinite object one encounters in Leibniz’s mathematics, the infinitesimal and the bounded 

infinite line. 

2.4: Infinitesimals and bounded infinite lines 

The infinite mathematical entities that generated the greatest amount of controversy 

during Leibniz’s life and the following centuries come from the foundations of the calculus. In 

 
70 Quoted in L p. 514. 
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Leibniz’s presentation, there appears to be a reliance on infinitely small lines that are used in his 

procedures for constructing tangents and calculating areas; these infinitely small lines also go 

by the name infinitesimals. In this section, I address formal properties of Leibniz’s infinitesimals 

and their reciprocal counterparts: so-called “bounded infinite lines.” In his seminal study of 

Leibniz’s technical use of infinitesimals, Bos groups Leibniz’s approaches to the infinitesimal 

calculus into two methods.71 Sometimes infinitesimals are presented by Leibniz as mere 

abbreviations for an ancient technique known as the Method of Exhaustion. Other times, Leibniz 

treats infinitesimals as the result of applying what he calls the Law of Continuity. I give some of 

Leibniz’s justifications using these methods here. Leibniz frequently refers to these infinitesimals 

as “fictions,” and I postpone my analysis of what this claim entails to the next chapter. In this 

section, the focus is on the mathematical properties of these non-finite lines. I begin with a 

description of the Method of Indivisibles, a procedure that was in many ways a precursor to the 

calculus, and how Leibniz’s infinitesimals have mathematical properties that are distinct from 

indivisibles. I then describe some of the mathematical properties of these infinitely small lines 

and their reciprocal infinitely large counterparts. I end with a description of the Method of 

Exhaustion and the Law of Continuity as supposed grounds for the methods of the calculus. 

2.4.1: Infinitesimals as replacements for indivisibles 

As many commentators have noted, the development of the calculus was heavily 

influenced by the pioneering work of Bonaventura Cavalieri, who developed a technique known 

as the Method of Indivisibles. This method is a way to prove that two figures have the same 

area (or that two solids have the volume). A proof using this method has the following form. One 

starts with two geometric objects and then defines a rectilinear motion such that each point of 

that motion corresponds to a line in both two-dimensional figures (or to planar figures in both 

 
71 Bos, 1974, p. 55. 
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solids). The cross-sections defined by the motion are called the “indivisibles” of the larger 

figures. If it can be established that at every point of the motion, the indivisibles of the two larger 

figures are equal in quantity, then the figures as a whole will be equal.72 

In Two New Sciences, Galileo points to a paradox that results from utilizing this method, 

in an attempt to highlight the dangers of reasoning about the infinite. He takes a cone and a 

bowl-shaped figure of the same height and shows that they have the same volume without 

using the Method of Indivisibles. Galileo then defines a motion in accordance with the Method of 

Indivisibles, so that at every point of the motion, any cross-section of the cone has the same 

area as the corresponding cross-section of the bowl. Or to be more accurate, the two 

corresponding cross-sections will be equal at every instant except for the last point of the 

defined motion; the indivisible section at the apex of the cone is a point, but the indivisible 

corresponding to the bowl at this stage is a circular line. Given the independently-proven 

equality between the two solids and the equality of each indivisible up to the pinnacle, Galileo 

(via his stand-in Salviati) concludes that there are compelling reasons to accept the equality 

between a point and a circular line, a paradoxical result that he sees as casting doubt on the 

Method of Indivisibles.73 In his notes on Two New Sciences from 1672, Leibniz says that “These 

things demonstrate well enough that points are nothing, and that only bodies smaller than any 

given must be used.”74 Points possess no parts and have no extension, whereas “bodies 

smaller than any given,” i.e. infinitesimals, would be understood to still have parts and 

extension, even though they are infinitely smaller than any finite quantity. Leibniz again 

emphasizes this point against points in a 1676 manuscript on the calculus called De Quadratura 

 
72 Mancosu 1996 provides an in-depth account of Cavalieri’s Method of Indivisibles on pp. 39-50. He is 

one of the commentators who highlights the connections between Cavalieri’s method and the 
development of the infinitesimal calculus. 
73 Ibid. pp. 120-122. 
74 DLC p. 7 
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Arithmetica, but this is far from the only place where he is clear on this topic.75 That is, rather 

than using the approach of the Method of Indivisibles (performing a quadrature by summing 

every possible line within a given figure), Leibniz holds that one ought instead to use a method 

of integration wherein one sums a series of (infinitely many) rectangles of infinitely small width.76 

 One important use for infinitesimals is in tangent construction, and I now present a quick 

overview of how they function in the infinitesimal calculus in order to demonstrate their utility. In 

the 1684 text “Nova Methodus pro Maximis et Minimis,” Leibniz’s first actual published work on 

the calculus, he says “in general, to find a tangent is to produce a straight line, which joins two 

points of the curve having an infinitely small distance, or the produced side of an infinitely-

angled polygon, which is equivalent to the curve for us.”77 The meaning of this quote and its 

relation to the infinitesimal method is best illustrated by a quick informal example, and I discuss 

the justifications for the various claims made later in this section. Consider the parabola 

expressed by the equation 𝑦 = 𝑥2 [Figure 2.2]. Using the methods of the infinitesimal calculus, 

𝑑𝑦 = 2𝑥𝑑𝑥 will be the derivative of this equation, where 𝑑𝑥 and 𝑑𝑦 are the differences that two 

infinitely close points have along the 𝑥- and 𝑦- axes, respectively. If one picks the point such 

that 𝑦 = 𝑥2 = 𝑥 = 1, then one has 𝑑𝑦 = 2𝑑𝑥. And 
𝑑𝑦

𝑑𝑥
= 2 represents the slope of the line that 

connects this point and a point infinitely close to it. Since the lines 𝑑𝑥 and 𝑑𝑦 form a right 

triangle, the Pythagorean theorem can be used to calculate the length of 𝑑𝑠, the straight line 

that connects our two points: 𝑑𝑠 = √(𝑑𝑦)2 + (𝑑𝑥)2. Despite stipulating that 𝑑𝑥, 𝑑𝑦, and 𝑑𝑠 are 

infinitely small lines, it is crucially important that they are able to bear different proportions to 

each other. If we pick a different point on the parabola, say 𝑦 = 𝑥2 = 4, then 𝑥 = 2, and 
𝑑𝑦

𝑑𝑥
= 4. 

 
75 A vii 6, pp. 548-549. 
76 See Knobloch 2002 for examples of how Leibniz uses such infinitesimal rectangles to calculate the 

area under a curve.  
77 “In genere, tangentem invenire esse rectam ducere, quae duo curave puncta distantiam infinite parvam 

habentia jungat, seu latus productam polygoni infinitanguli, quod nobis curvae aequivalet.” (GM V p. 223, 
emphases in original). 
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If infinitely small lines were the same as points, we cannot make sense of the difference 

between these two cases because one point cannot be smaller than another point.78 Of course, 

the presentation I just gave does not explain how we arrived at the equation 𝑑𝑦 = 2𝑥𝑑𝑥, does 

not argue for the cogency of operating on infinitely small lines, nor explain how we can treat a 

tangent as an infinitely small line that connects two infinitely close points on a curve. But setting 

these problems aside shows us an upshot from Leibniz’s transition from the Method of 

Indivisibles to the method of infinitesimals, as he crucially makes use of the fact that infinitely 

small lines can stand in different proportions to one another.    

 
Figure 2.2: An infinitely small triangle 

The above considerations show that it is important that we treat an infinitesimal as 

capable of being twice or four times larger than another, or even stand in a more complicated 

proportion to other specified infinitesimals, as in the case of 𝑑𝑠 being equal to the square root of 

the sum of the squares of two other infinitesimals. However, Leibniz also allows that one 

infinitesimal can be infinitely larger or smaller than another infinitesimal. This partly stems from 

 
78 As previously mentioned, Leibniz did experiment with the idea that points can be larger or smaller than 

other points. See “On Minimum and Maximum: On Bodies and Minds” in DLC pp. 8-19, written in 1672 or 
early 1673. But Leibniz abandoned this approach relatively quickly, and for the rest of his career he favors 
infinitesimals as the infinitely small entities that can be larger or smaller than one another.  
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the fact that the operation of differentiation can be applied repeatedly. If 𝑑𝑥is an infinitesimal 

quantity, Leibniz says:  

𝑑𝑑𝑥 is the element of the element, or the difference of the differences, for the quantity 𝑑𝑥 

itself is not always constant, but usually increases or decreases continually. And in the 

same way one may proceed to 𝑑𝑑𝑑𝑥 or 𝑑3𝑥 and so forth.79 

To return to the case of 𝑦 = 𝑥2, the value of 𝑑𝑦 = 2𝑥𝑑𝑥 is not constant, for it changes with the 

values of the variable 𝑥. If one supposes that the values of 𝑑𝑥 in this equation are constant, then 

the rate of change of 𝑑𝑦 is represented by the equation 𝑑𝑑𝑦 = 2(𝑑𝑥)2, where 𝑑𝑑𝑦 is a line 

infinitely small in comparison to the initial 𝑑𝑦.80 This leads to what Bos refers to as different 

orders of infinitesimal, with the first differential of a finite quantity being infinitely larger than the 

second differential, which is infinitely larger than the third, and so on.81 

2.4.2: Infinitely small lines imply infinitely large lines 

Additionally, Leibniz often takes infinitesimal lines to be on the same footing as what he 

calls “bounded infinite lines,” or linea infinita interminata. In an example from a footnote to 

Leibniz’s 1676 masterwork on the calculus, De Quadratura Arithmetica, Leibniz considers a 

rectangular hyperbola and shows how a bounded infinite line can arise as the reciprocal of an 

infinitely small line. By the nature of a hyperbola, any chosen ordinate will have a corresponding 

abscissa such that the rectangle formed from this hyperbola has an area equal to some given 

constant, no matter what initial ordinate is assumed. In the simplest case, if one considers the 

hyperbola 𝑦 =
1

𝑥
, then for any value of 𝑥, we have  𝑥𝑦 = 1. Leibniz then says that if one were to 

take an infinitely small abscissa, i.e., a point on the 𝑥-axis infinitesimally far away from the 

 
79 From “Monitum de characteribus algebraicis.” (GM VII pp. 155-160.) Quoted in translation from Bos 

1974 p. 19.  
80 In the Leibnizian calculus, it is important that one specify which variable remains constant when 

working with higher order derivatives. If one held that dy or ds remain constant, then we would arrive at a 
different equation than the one here. See Bos pp. 29-31 for more on this aspect of Leibniz’s calculus. 
81 Bos 1974 pp. 22-23.  
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origin, the corresponding ordinate would have to be infinitely long in order for the rectangle’s 

area to have the same finite value of all the other rectangles formed from finite abscissae and 

ordinates.82 That is, the infinitely small quantity 𝑥 cannot be multiplied by any finite 𝑦 to yield an 

area of 1, but it can for infinite values of 𝑦. However, this infinite line 𝑦 has a starting point on 

the x-axis and has an endpoint where it touches the hyperbola, and for smaller values of 𝑥, the 

corresponding infinite line will be greater. Hence Leibniz calls this the bounded infinite. This 

hyperbola example is provided to illustrate a claim that finite quantity is the median between 

infinitesimal and bounded infinite quantities, for the reciprocal of an infinitesimal quantity will be 

an infinite quantity, and the product of the two will be a finite quantity.   

However, just as there are different orders of infinitesimal, there are differing orders of 

bounded infinite lines. The following example from a manuscript reproduced by O. Bradley 

Bassler shows this result.83 In this text, Leibniz starts with a normal finite line and an 

infinitesimal line, and then produces another infinitesimal line and two infinite lines from them. 

He does this by taking 𝐴𝐵 to be an infinitesimal straight line, and 𝐶𝐷 to be a fine straight line 

[Figure 2.3]. Leibniz then gives the mean proportional between these two lines and calls this line 

𝐸𝐹. That is, he presents the line 𝐸𝐹 such that 
𝐴𝐵

𝐸𝐹
=

𝐸𝐹

𝐶𝐷
. This new line 𝐸𝐹 must be infinitely small 

compared to 𝐶𝐷 , yet the infinitesimal line 𝐴𝐵 must be infinitely small with respect to that same 

𝐸𝐹. For if 
𝐴𝐵

𝐸𝐹
 were a finite ratio, then 

𝐸𝐹

𝐶𝐷
 would be a non-finite ratio, and the equality 

𝐴𝐵

𝐸𝐹
=

𝐸𝐹

𝐶𝐷
 

could not hold. Similarly, if 
𝐸𝐹

𝐶𝐷
 were a finite ratio, then 𝐸𝐹 would be finite, the proportion 

𝐴𝐵

𝐸𝐹
 would 

not be finite, and
𝐴𝐵

𝐸𝐹
=

𝐸𝐹

𝐶𝐷
 would fail to be true as well. Hence, 𝐸𝐹 must be a quantity that is both 

 
82 A VII.6 p. 549.  
83 Bassler, 2008. The manuscript in question is LH XXV, VIII, f. 37, and as of this writing has not yet been 

published in the Akademie editions. As Bassler explains, there is some controversy over the dating of the 
text, with André Robinet claiming it was written during around 1702, during the correspondence with 
Varignon. On the other hand, Enrico Pasini claims it comes from Leibniz’s first period of residence in 
Hanover, placing the text somewhere within the years of 1676 to 1687. 
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infinitely smaller than the finite 𝐶𝐷 while also being infinitely larger than the infinitesimal 𝐴𝐵. 

Under this interpretation, neither 
𝐴𝐵

𝐸𝐹
 nor 

𝐸𝐹

𝐶𝐷
 would be finite ratios, but they would still be equal to 

each other. Leibniz then tells us to consider the line 𝐺𝐻 that satisfies the equation 
𝐸𝐹

𝐶𝐷
=

𝐶𝐷

𝐺𝐻
. This 

line 𝐺𝐻 must be infinitely larger than the finite line 𝐶𝐷, for reasoning analogous to why 𝐸𝐹 must 

be infinitely small compared to 𝐶𝐷 and infinitely large compared to 𝐴𝐵. Finally, Leibniz defines 

line 𝐼𝐾 through the proportion 
𝐶𝐷

𝐺𝐻
=

𝐺𝐻

𝐼𝐾
. While both 𝐺𝐻 and 𝐼𝐾 are infinite lines, 𝐺𝐻 and 𝐼𝐾 

cannot be in a finite proportion to each other, since 
𝐶𝐷

𝐺𝐻
 is not a finite ratio. So 𝐼𝐾 must be an 

infinite line that is infinitely longer than the already infinite line 𝐺𝐻. In this way, one has differing 

orders of infinite quantities, each of which can be multiplied by an infinitesimal of a 

corresponding order to yield a finite quantity. 

 

  

Figure 2.3: Differing orders of infinitesimal and infinite lines84 

Now that we have seen the ways infinitesimals are (1) placed in a finite proportion to 

each other (e.g., 
𝑑𝑦

𝑑𝑥
= 2); (2) can be infinitely smaller than one another (e.g., 𝑑𝑥 and 𝑑𝑑𝑥); and 

 
84 This is similar to the diagram presented in Bassler 2008, with one change. In the original diagram AB 

and EF are both labeled “infinitely small.” I chose to label EF as “infinitely small +1” to indicate that it is an 
infinitesimal line segment that is incomparably large with respect to AB, just as GH was already labeled 
“infinite -1” to signify its incompatibility with respect to infinite line IK. 
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(3) can lead to bounded infinite lines, it is time to address Leibniz’s justification for their use 

within the calculus. As mentioned at the start of this section, Leibniz has two general 

approaches to justify the use of infinitesimals. The first is to claim infinitesimals are just a 

shorthand for an older technique known as the Method of Exhaustion. The second is to claim 

that their use is warranted by a principle known as the Law of Continuity. We begin with a 

description of this first line of justification.  

2.4.3: Infinitesimals and the Method of Exhaustion 

 This section deals with Leibniz’s argument concerning the Method of Exhaustion. This 

method dates back to Euclid and Archimedes; both geometers used this method to evaluate the 

areas and volumes of certain geometric objects. Proofs using the method of exhaustion tend to 

follow a particular pattern. First, some method is given for constructing polygons or polyhedrons 

that increasingly approximate the geometric object(s) in question. Then, derived facts about 

these approximations are used to show that the quantity in question cannot be greater than a 

certain quantity. Finally, either the same construction procedure or a new one is used to explain 

how the approximation cannot be less than the quantity proposed in the first half of the proof. 

Since it is shown that the object in question cannot be greater or lesser than the proposed 

quantity, they must be equal to it. Leibniz claims that the 𝑑𝑥’s and 𝑑𝑦’s of the calculus can be 

taken as shorthands for these procedures of taking consistently smaller finite quantities rather 

than standing for lines that are actually infinitely small. To understand what this means and why 

one would want a shorthand for this method, an example of the Method of Exhaustion in action 

is worth examining. 

As an example of this method, consider Proposition 10 of Book XII of Euclid’s Elements. 

This is the proof that the volume of a cone is equal to one third the volume of a cylinder with the 
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same base and height.85 The proof begins with the (to be rejected) hypothesis that the volume 

of the cylinder is greater than thrice the volume of the cone with the same base and height. 

Labeling O as the volume of the cylinder and V the volume of the cone, this hypothesis is the 

assertion that O > 3V. Assuming this inequality means that there will be some remaining value 

R such that O - 3V = R. The point of this first half of the proof is to inscribe a polygon within the 

circle and construct a prism that has this polygon as its base and has the same height as our 

initial cone and cylinder such that the prism’s volume is between O and 3V. Calling the volume 

of this prism P, we want a prism such that O - P < R. Since we do not know the value of 

hypothesized error R, Euclid makes use of Proposition X.1, which says that given some 

magnitude and a magnitude less than it, if at least half of the original magnitude is subtracted, 

and at least half of that remainder is subtracted, and so on, eventually there will be a stage 

where the result of this division yields a magnitude smaller than the original one. In this case, 

the original magnitude is the difference between the volumes of the cylinder and an inscribed 

prism (O - P), and we want it to be less than the hypothesized difference between the volumes 

of the cylinder and thrice the cone (R). Euclid does this by considering a series of inscribed 

polygons that form the bases of prisms of increasingly-many sides, rather than contemplating 

the properties of a polygon with a fixed number of sides. 

The way these polygons are constructed starts with inscribing the square ABCD inside 

the circle ABCD [Figure 2.4]. Notably, the area of the square is greater than half that of the 

circle in which it is inscribed, and if a rectangular prism is constructed on square ABCD, its 

volume will be greater than half the volume of a cylinder with the same height constructed on 

 
85 This example is also presented in Mancosu 1996 pp. 36-38, although my presentation more closely 

follows the one given in Heath’s edition of the Elements. Mancosu’s book also contains an excellent 
discussion of concerns about epistemic status of proofs by contradiction in the Renaissance and the Early 
Modern Era. Mancosu then traces the ways in which proofs using the infinitary techniques developed in 
the Seventeenth Century were said to be of greater epistemic virtues than the same results proven by the 
double reductio present in proofs by exhaustion. 
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the circle ABCD. This fact will be used to ensure the applicability of Proposition X.1. After 

considering this square, Euclid bisects each of the four arcs of the circle between the points A, 

B, C, and D, leading to the points E, F, G, and H, that form the regular octagon AEBFCGDH. 

Then, Euclid shows that the congruent triangles AEB, BFC, CGD, and DHA, are all greater than 

half the area of the segments of the circle that enclose them (i.e., segments, AEB, BFC, etc.). 

Euclid also notes that the triangular prisms constructed on these triangles will be greater than 

half the volume of the portion of the cylinder whose base is the segment of the circle that 

encloses the triangles. The same process that was used to construct the octagon from the 

square would then be used to construct a 16-gon and a 32-gon, continuing to any arbitrary 2𝑛-

gons (where n is an integer greater than 2). When continuing this process of generating new 

polygons, the difference between the additional area covered by the polygon and the remaining 

segments of the circle will always be greater than half the area of the previous uncovered 

segments of the circle, and this property will also apply to the corresponding prisms that we 

erect. This finally allows Euclid to apply Proposition X.1, so that regardless of the value of R, we 

are guaranteed that there will be a stage at which the difference between the volume of the 

cylinder O and the prism P is less than the value R, implying that O > P > 3V. Then, Euclid 

notes that the pyramid with the same base as the prism and the same vertex as the original 

cone will have a volume of ⅓ P. And since P > 3V, ⅓ P > V, i.e., the pyramid’s volume is greater 

than the cone. But the pyramid would be enclosed within the cone, giving the cone a greater 

volume than the pyramid. Having arrived at the contradiction, Euclid concludes that the volume 

of the original cylinder cannot be greater than three times the volume of the cone.  
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Figure 2.4: The diagram for Euclid XII.10 

 But the proof does not end here, for it must still be shown that the volume of the cylinder 

cannot be less than thrice the cone either. This portion of the proof follows a similar strategy. If 

O < 3V, then V < ⅓ O. This implies that there is some remaining volume R such that V - ⅓ O = 

R. And the proof then proceeds in a manner similar to the previous portion of the proof, only 

now pyramids are constructed on the successively constructed polygons instead of prisms. 

Since the difference between each new pyramid and the cone is always greater than half of the 

difference between the previous pyramid and the cone, we eventually will reach a point where 

that difference becomes less than R. Calling the volume of this pyramid Π, we have V > Π > 

⅓O. And since pyramids have one third the volume of prisms of corresponding height, the 

volume of a prism on the same base as the pyramid is 3Π. And because Π > ⅓O, it must be the 

case that 3Π > O. But this inequality says that the volume of the prism is greater than the 
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volume of the cylinder in which it is contained, a contradiction. Hence, we have shown that the 

volume of the cylinder can be neither greater nor lesser than three times the volume of a cone 

with the same base and height. Since both these options have been rejected, Euclid concludes 

that the volumes are in fact equal.86 What is notable about this method, is that the supposed 

error R between the quantities that are compared is never specified. Instead, it is simply shown 

that whatever that error may be, the approximation process will reach a stage where the 

difference between the approximation and the relevant volume becomes less than the supposed 

error. 

 With this exhausting detour through the Method of Exhaustion, we see how the method 

works in practice and why one would be eager to find an alternative proof method. But knowing 

how this method works illuminates what Leibniz means when he justifies infinitesimals through 

the method of exhaustion. This line of defense claims that one can replace instances of 

infinitesimal quantities with a progression of ever-diminishing finite quantities, like the 

increasingly diminishing area of the circle that was not included in the inscribed polygons in the 

previous proof. By representing this progression of shrinking finite lines with a fixed symbol such 

as 𝑑𝑥, one has a more efficient presentation of the method of exhaustion than constantly 

referring to some process that generates this diminishing progression. Leibniz also believes that 

the infinitesimal notation provides a better way to discover new results than the Method of 

Exhaustion.87 The ancient technique may work as a rigorous (although cumbersome) proof 

method, but it requires one to know ahead of time what the quantities being compared are. For 

 
86 It should be noted that this example differs from the method as employed by Archimedes. In the hands 

of Euclid, both hypotheses are rejected by means of increasingly many-sided inscribed polygons. For 
Archimedes, one hypothesis is rejected via inscribing polygons, and the other by a series of 
circumscribing polygons. See Heath’s commentary on Proposition XII.2 for more on the difference 
between both geometers’ methods. 
87 Bos pp. 55-56. 
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if one were asked to find the volume of a cone, Euclid’s proof by Exhaustion would not occur to 

anyone unless they already knew it was one third the volume of a corresponding cylinder.88  

2.4.4: Infinitesimals and the Law of Continuity 

The second line of reasoning Leibniz uses to support his infinitesimal methods comes 

from a principle he calls the Law of Continuity. Leibniz has a few different ways in which he 

phrases this principle. In some cases, it is presented as a claim that if there is some process in 

which an input diminishes to an arbitrary degree, then the outputs will diminish accordingly: 

When the difference between two instances in a given series or that which is 

presupposed can be diminished until it becomes smaller than any given quantity 

whatever, the corresponding difference in what is sought or in their results must of 

necessity also be diminished or become less than any given quantity whatever.89 

At other times, it is presented through general language that makes no mention as to whether 

we are dealing with a process of increments or decrements: “In any supposed continuous 

transition, stopping in any terminus, one is allowed to establish a common reasoning, in which 

the ultimate terminus may also be included.”90 This difference in formulation is important 

because in some cases, Leibniz will invoke the Law of Continuity to justify treating parallel lines 

as those whose point of intersection is located infinitely far away, and it is difficult to see how 

one can justify this claim using the formulation of the principle that references inputs and 

outputs.91 Another characterization is simple: it is a law “excluding a leap in changing.”  After 

formulating the Law in this way in 1695’s Specimen Dynamicum, Leibniz goes on to list some of 

the consequences of the law: one can treat rest as a special case of motion, or equality as a 

 
88 See Hoffmann 1974 p. 63 et passim for remarks about the calculus as an ars invendi, i.e. a method for 

discovering new truths rather than simply a new way to rigorously prove what is already known.  
89 From the 1687 text “A Letter of Mr. Leibniz on a General Principle Useful in Explaining the Laws of 

Nature Through a Consideration of the Divine Wisdom…” in L p. 351.  
90 “Proposito quocunque transitu continuo in aliquem terminum desinente, liceat ratioci rationem 

communem instituere, qua ultimus terminus comprehendatur.” Gerhardt 1846, p 40.  
91 Cum Prodiisset in Gerhardt 1846, pp. 40-41 is one place where this argument occurs.  
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case of “vanishing” inequality.92 Another important way Leibniz characterizes his Law of 

Continuity is as a bridge between finite and infinite cases: “the rules of the finite are found to 

succeed in the infinite… And conversely the rules of the infinite apply to the finite.”93 Regardless 

of how he phrases the Law of Continuity, Leibniz is clear that it is a principle that justifies the 

use of infinitesimal reasoning. The next chapter delves further into Leibniz’s use of this principle 

and its implications for the reality of infinitesimals. But for now, it is worth noting how Leibniz 

uses it to justify the methods of the infinitesimal calculus. To do so, I return to the case of 

constructing a line tangent to a parabola, as well as show an example of how Leibniz sees the 

Law of Continuity as being connected with algebraic reasoning. 

One example of using the Law of Continuity to justify a method for constructing a 

tangent to a parabola comes from the 1710 text Cum Prodiisset.94 In this case 𝐴𝑌is the parabola 

in question, where 𝐴 is the vertex and 𝐴𝑋 is the axis tangent to the parabola at the point 𝐴, and 

we will refer to this as the 𝑥-axis [Figure 2.5].95 For any point 𝑌 on the parabola, let 𝑦 be the 

ordinate; i.e. the line 𝑋𝑌, where 𝑋 is the point of intersection between the 𝑥-axis and the line that 

passes through 𝑌 and is normal to the 𝑥-axis. Similarly, let 𝑥 be the the abscissa corresponding 

to point 𝑌, i.e., the line 𝐴𝑋, where 𝑋 is still the point of intersection described in the previous 

sentence. If 𝑎 stands for the latus rectum96 of the parabola, then the equation 𝑥2 = 𝑎𝑦 describes 

the relationship between the abscissae and ordinates for all points 𝑌on the parabola. 

Leibniz then picks an arbitrary point 𝑌1 on the parabola, and then lets 𝑥 = 𝐴𝑋1 and 𝑦 =

𝑋1 𝑌1. He then picks another point 𝑌2 on the parabola, and this determines the new point 𝑋2as 

 
92 AG p. 133. 
93 Feb 2, 1702 “Letter to Varignon,” in Loemker p. 544. 
94 In Gerhardt 1846, pp 39-50. 
95 I follow Leibniz’s presentation where the x-axis is vertical and the y-axis is horizontal. Additionally, I 

adopt his terminology of using “ordinate” to refer to the length along the x-axis and “abscissa” to refer to 
the length along the y-axis, even though these terms are usually switched in contemporary use. 
96 The latus rectum of a parabola is the line segment that is perpendicular to parabola’s vertex, passes 

through the parabola’s focus, and whose endpoints are the points this line touches on the parabola itself. 



 

 66 

one end of the ordinate and abscissa of 𝑌2. From point 𝑌1, Leibniz draws a line perpendicular to 

the abscissa 𝑋1𝑌1, and uses 𝐷 as the name of the point of intersection between this 

perpendicular and the abscissa 𝑋2𝑌2. He then uses 𝑑𝑥 to refer to the line segment 𝑋1𝑋2, the 

difference between the abcissae of 𝑌1 and 𝑌2. Correspondingly, 𝑑𝑦 refers to the line 𝐷𝑌2, the 

difference between the ordinates of 𝑌1 and 𝑌2 (due to the way the lines are defined, 𝑋1𝑌1= 𝑋2𝐷 

and 𝑋2𝑌2 − 𝑋2𝐷 = 𝑋2𝑌2 − 𝑋1𝑌1 = 𝐷𝑌2). Using these variable assignments, the abscissa and 

ordinate corresponding to point 𝑌2 are 𝑥 + 𝑑𝑥 and 𝑦 + 𝑑𝑦, respectively. Entering these into the 

equation for the parabola results in the equation: 𝑎(𝑦 + 𝑑𝑦) = (𝑥 + 𝑑𝑥)2 = 𝑥2 + 2𝑑𝑥 + 𝑑𝑥𝑑𝑥. 

Dividing both sides by 𝑎 gives us 𝑦 + 𝑑𝑦 =
𝑥2+2𝑑𝑥 +𝑑𝑥𝑑𝑥

𝑎
.  Because 𝑎𝑦 = 𝑥2, 𝑦 =

𝑥2

𝑎
 . Subtracting 

𝑦 from the left side of 𝑦 + 𝑑𝑦 =
𝑥2+2𝑑𝑥 +𝑑𝑥𝑑𝑥

𝑎
 and

𝑥2 

𝑎
from the right and then dividing the whole 

equation by 𝑑𝑥 leads to 
𝑑𝑦

𝑑𝑥
=

2𝑥+𝑑𝑥

𝑎
. This equation expresses what we would now call the slope 

of the secant 𝑌1𝑌2. Leibniz calls it “a general rule, expressing the ratio of the difference of the 

ordinates to the difference of the abscissae,” and he says this will also be the same as the ratio 

between the ordinate 𝑋1𝑌1 and the sub-secant 𝑋1𝑇, where 𝑇 is the point of intersection between 

𝑌1𝑌2and the 𝑥-axis. 
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Figure 2.5: Tangent construction in Cum Prodiisset97  

The equation 
𝑑𝑦

𝑑𝑥
=

2𝑥+𝑑𝑥

𝑎
 describes the slope of any secant, but we were promised a 

method to construct tangents. To transition from secant to tangent, Leibniz invokes the Law of 

Continuity, which he postulates at the beginning of Cum Prodiisset. In this text, the law is 

worded: “In any supposed continuous transition, stopping in any terminus, one is allowed to 

establish a common reasoning, in which the ultimate terminus may also be included.”98 In this 

case, the continuous transition would be points 𝑌1 and 𝑌2 moving closer and closer to each 

other, or as Lebiniz describes it, the ordinate 𝑋2𝑌2 will move towards the ordinate𝑋1𝑌1 . The 

general reasoning is the formula 
𝑑𝑦

𝑑𝑥
=

2𝑥+𝑑𝑥

𝑎
. And the terminus is the case in which the two lines 

coincide, causing 𝑑𝑥 to shrink to 0. But we are able to imagine a moment just before the final 

 
97 This image is similar to the figure as presented in Gerhardt 1846, p. 44, with three notational 

differences added for the sake of legibility. First, I replaced Leibniz’s 1X, 2X, etc. with X1, X2, etc.. Second, 
I added a key to the diagram to remind the reader of the connections between the variable letters and the 
line segments to which they refer. Third, I added small circles to specify the points of intersection.  
98 “Proposito quocunque transitu continuo in aliquem terminum desinente, liceat ratioci rationem 

communem instituere, qua ultimus terminus comprehendatur.” Gerhardt 1846, p 40. 
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vanishing or evanescence of 𝑑𝑥, and in this case, we can discard the 𝑑𝑥 in 
2𝑥+𝑑𝑥

𝑎
, since 

𝑑𝑥

𝑎
 will 

be a quantity infinitely small in comparison with the rest of the equation (since 
𝑑𝑥

𝑑𝑦
 is a proportion 

between two infinitely small quantities of the same order, it will be finite).99 In this way, one 

passes from the finite case, where 𝑑𝑥 and 𝑑𝑦 are finite lines, to the non-finite case, where 𝑑𝑥 

and 𝑑𝑦 are infinitely small. And one uses the same rules for both cases, a move justified by the 

Law of Continuity. 

There is one more justification for Leibniz’s use of infinitesimal reasoning that is 

important to take into consideration. This is Leibniz’s brief note “Justification of the Infinitesimal 

Calculus by that of Ordinary Algebra,” published January 1701 in the Mémoires de Trevoux, as 

well as sent to Leibniz’s correspondents Pinson and Varignon.100 The example is meant to show 

how one can be led to infinitely small quantities by means of a continuous change, and why 

such quantities retain properties that they had throughout earlier moments in the change. 

Consider straight lines 𝐴𝑋 and 𝐸𝑌that meet at point 𝐶, and let 𝐸𝐴 and 𝑋𝑌 be both perpendicular 

to line 𝐴𝑋 [Figure 2.6]. Leibniz then lets 𝑒 be 𝐸𝐴, 𝑐 be 𝐴𝐶, 𝑥 be 𝐴𝑋, and 𝑦 be  𝑋𝑌. Due to their 

constructions, triangles 𝐶𝐴𝐸 and 𝐶𝑋𝑌 are similar, and hence 
𝑥−𝑐

𝑦
=

𝑐

𝑒
. For reasons that will be 

apparent later, Leibniz tells us to assume that angles 𝐸𝐶𝐴 and 𝑋𝐶𝑌are not 45°, i.e., that the ratio 

𝑥−𝑐

𝑦
=

𝑐

𝑒
 is not equal to 1. If one imagines the line 𝐸𝑌 moving parallel to itself towards point 𝐴, the 

points of intersection between the line 𝐸𝑌and the lines 𝐸𝐴, 𝐴𝑋, and 𝑋𝑌change as well, 

represented on the right-hand figure by points 𝐸2, 𝐶2, and 𝑌2, respectively. As the line 𝐸𝑌 moves 

towards point 𝐴 in this manner, the values 𝑒 and 𝑐 continually decrease, and the values of 𝑥 − 𝑐 

and 𝑦 increase. Yet because triangles 𝐸2𝐴𝐶2  and 𝑌2𝑋𝐶2 are similar both to each other and the 

 
99 Katz and Sherry (2013) say that this is justified by the Law of Transcendental Homogeneity: one can 

discard terms in an equation that are infinitely smaller than the rest of the terms in that equation. 
100 In Loemker, pp. 545-546. 
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original triangles 𝐸𝐴𝐶 and 𝑋𝑌𝐶, the equality 
𝑥−𝑐

𝑦
=

𝑐

𝑒
 remains constant. And the ratios of these 

changing quantities are not only equal to each other at any one stage in the transition but 

remain the same throughout the transition. Next, Leibniz considers the case where line 

𝐸𝑌passes through the point 𝐴. In this case, 𝑒 and 𝑐 vanish, so  
𝑥−𝑐

𝑦
=

𝑐

𝑒
 becomes

𝑥

𝑦
=

𝑐

𝑒
. Although 

he does not explicitly cite it, this reasoning is an application of the Transcendental Law of 

Homogeneity, a law that allows one to discard terms infinitely small in comparison to the other 

terms of the equation.101 But at this moment of transition, Leibniz says 𝑒 and 𝑐 don’t become 

“absolutely nothing.” For then 
𝑐

𝑒
 becomes 

0

0
, a value which Leibniz claims is equal to 1. And 

should 
𝑥

𝑦
=

𝑐

𝑒
= 1, that would contradict the earlier hypothesis that angles 𝐸𝐶𝐴 and 𝑋𝐶𝑌 are not 

45°. Hence in this final case, 𝑐 and 𝑒 are distinct from absolute zeros for they bear a proportion 

to each other, and yet they are treated as zero with respect to the finite quantities 𝑥 and 𝑦. 

Thus, 𝑐 and 𝑒 are treated as infinitely small lines that are capable of being in proportion to one 

another. This justification may not be satisfactory for many people, and the amphibolous 

behavior of these infinitely small lines was famously skewered by George Berkeley in The 

Analyst. But it shows how Leibniz uses the Law of Continuity to argue for the validity of 

infinitesimal reasoning.  

  

 
101 See Katz and Sherry 2013 for more on the Transcendental Law of Homogeneity and its use in 

discarding quantities from equations. 
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Figure 2.6: Shrinking triangles102 

 

 The proper way to interpret the difference between Leibniz’s justificational approaches 

stemming from the Method of Exhaustion and the Law of Continuity, and whether or not there 

are indeed different approaches has been the subject of much discussion in the secondary 

literature and will be addressed in the next chapter. Furthermore, there is the topic of exactly 

how one is to interpret infinitesimal lines. It seems that Leibniz rejects their reality, but there is a 

dispute over when and why he did this, as well as what his rejection actually entails. Before 

turning to these matters, there is one more infinite object that Leibniz worked with in texts from 

the mid-1670s: unbounded infinite lines. 

 

 

 
102 Leibniz only has one diagram; the one on the left with a dotted line to represent the movement of line 

EY. For ease of presentation, I added the second line, as well as labeling the new points of intersection 
with subscripts. 
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2.5: Unbounded infinite lines 

 The bounded infinite lines that are posited as the reciprocals of infinitesimal lines are not 

what one usually thinks when they hear the phrase “infinite line.” Typically, one conceives of 

infinite lines as those that proceed without any end whatsoever, as opposed to having a 

supposed endpoint that is an infinite distance away. We have already seen Leibniz’s treatment 

of the bounded infinite lines in conjunction with infinitesimal lines. While Leibniz was reckoning 

with the geometric properties of such lines in the mid-1670s, he also devoted time to 

investigating the properties of unbounded infinite lines. In these texts we once again see how 

the part-whole axiom is at the root of paradoxes of the infinite. These paradoxes are unique to 

unbounded lines, even though offences against the part-whole axiom occur among other uses 

of the infinite in Leibniz’s mathematics, as documented in the previous sections of this chapter. 

In 1676, Leibniz works his way through these paradoxes by positing that an infinite line is 

immovable, but his mature position is to adopt a syncategorematic approach, in which an 

unbounded infinite line is not treated as constituting a whole, much like the position he adopted 

towards infinite number in the early 1670s.  

 An early presentation of problems that arise when considering the properties of 

unbounded infinite lines comes in a brief note from January 3, 1676: “An Infinite Line is 

Immovable.”103 Here, Leibniz posits an infinite straight line unbounded on one side: AB… which 

starts at point A and proceeds in the direction of point B without end, where the ellipses indicate 

the direction in which it infinitely extends [Figure 2.7].104 Suppose AB… is to be rotated about 

the fixed endpoint point A, causing it to coincide with the unbounded line AC… . Let DE… be a 

 
103 In DLC pp. 40-41. 
104 In this text, Leibniz refers to unbounded lines without using ellipses to indicate that it is unbounded on 

one side (i.e. he writes AB). However, in texts from later in 1676, he adds ellipses for this purpose, and I 
use this later notation here. Additionally, when Leibniz refers to unbounded lines in these notes, his 
arguments seem to tacitly assume that such lines are straight. In this section, I also use “line” to mean 
“straight line.”  
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line parallel to AC… and let the distance between the two be finite. When AC… and AB… 

coincide, the entirety of AC… will be below the line DE…. But at any intermediate stage of the 

rotation, such as when the line is in position AF…, the line will intersect DE… at some point, and 

there will remain some portion of the line that remains above DE…. Since there is no last point 

of the unbounded line AB…, there will be no moment in which AB… goes from being partially 

above DE… to fully below it. Leibniz says that even if the angle AFC were infinitely small, there 

would still be an infinite part of the line above the parallel line DE…. Leibniz claims that this 

shows that there must be some point at which the whole of the portion of AB… that is above 

DE… would descend below that line at the same time, which he says is an absurdity. Hence, he 

concludes that an unbounded line is immovable.  

 

Figure 2.7: First proof against the movability of unbounded lines 

There are two aspects of this proof worth noting. First, the contradiction reached in the 

end appears to tacitly refer to some early instinct that will eventually evolve in Leibniz’s Law of 

Continuity, rather than the part-whole axiom. For we have a continuous transition (the rotation of 

line AB… and the corresponding decrease in the portion of the line that is above DE…); a 

terminus (the eventual coincidence of AB… and AC…, as well as the non-existence of a portion 

of the line above DE…); and the supposition that there is a moment in which a decreasing 

quantity vanishes (the moment in which the portion of the line above DE… goes from having 
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some length to having no length). Second, as we will see with the other paradoxes associated 

with unbounded infinite lines, such an argument does not hold if one replaces the unbounded 

infinite line AB… with a bounded infinite line. If one supposes that AB is a bounded infinite line, 

then it would have B as an endpoint, even though the endpoint would be an infinite distance 

away from A. Since AB would have an endpoint, we could suppose some moment at which that 

point passes from above DE… to below it, and since AB would end at point B, the entirety of the 

line would be below DE… after this moment of transition. This inference was not possible in the 

case of unbounded line AB…, for we explicitly posited that it had no endpoint. I mention this fact 

to highlight the distinct features that separate unbounded lines from bounded yet infinite lines. 

A few months later, Leibniz addresses the issue of unbounded lines again in a note from 

April 1676: “Linea Interminata.”105 Here, part-whole reasoning plays a critical role in leading to a 

paradox. Consider the unbounded lines CB… and EB… [Figure 2.8]. There exists a part of the 

line CE… that is not present in EB…, namely the bounded line segment CE.106 This means 

CB… is a whole of which EB… is a proper part, and by the part-whole axiom, CB… must be 

larger than EB…. Now suppose one translated the shorter line EB… so that it would start at 

point C. Then one would have two infinite lines starting at point C and proceeding without end in 

the direction of point B: the original line CB… and some line CB’... that is equal to EB…. 

Implicitly invoking a converse of the part-whole axiom, Leibniz concludes that since CB… is 

longer than CB’..., there must be some part of the former that is not a part of the latter. But both 

lines start at the same point C, and since they are supposed to be unbounded, there exists no 

point at which CB’… stops and CB… continues. So, there can be no portion of CB… that is not 

also a part of CB’…, violating the fact that the former is supposed to be longer than the latter. 

 
105 In DLC pp. 64-75. 
106 Leibniz never explicitly says that CE or any of the other bounded lines mentioned in this note must be 

finite, and it seems that the reasoning of this note would hold in cases where the bounded quantities are 
infinite or infinitesimal.  
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From this, Leibniz concludes that from one point, only one unbounded line can be drawn in a 

given direction. It also follows that an unbounded line cannot be translated laterally along itself 

to a new starting point, for then a line such as EB… would have to change its size during its 

motion to a new point like C, a possibility that Leibniz implicitly rejects. 

 

 

Figure 2.8: Second proof against the movability of unbounded lines 

A separate argument shows that a line unbounded on both sides possesses a unique 

midpoint. Let …AB… be a line unbounded on both sides. Let it be divided into two parts, …AE 

and EB…, each of which is a line unbounded on one side. As seen from his previous argument 

against a certain kind of movement of an unbounded line, Leibniz thinks it is possible for two 

lines unbounded on one side to be unequal in length. Thus, Leibniz is able to suppose that a 

division is possible such that …AE is larger than EB…. Due to this inequality, Leibniz says there 

will exist some bounded line segment that can be subtracted from …AE to make the resulting 

line equal to the smaller EB…. Leibniz calls this segment DE, and the line …AD is the part of 

…AE equal to EB…. Since DE is bounded, we can find its midpoint, C. Since DC = CE and 

…AD = EB…, one has that …AD + DC = CE + EB…, i.e., …AC = CE…. Hence, C divides the 

doubly-unbounded … AB… into two equal lines unbounded on one side. Leibniz then says that 

the rotation of a line unbounded on both sides is impossible unless the rotation is around its 

midpoint. For suppose …AB… were rotated along the non-midpoint E, assuming again that 

EB… < …AE   . After being rotated 180°, EB… would occupy the position of …AE. And since 

there can only be one unbounded line originating in one point and going towards another, EB… 

A B D C E 

 



 

 75 

and …AE would have to be equal when they coincide like this. But it was already supposed that 

the two lines were unequal. Hence, such rotation around a point other than the midpoint is 

impossible. Leibniz then considers the bisection of other unbounded quantities, namely 

unbounded planes and the entire universe, as well as ways in which other unbounded lines 

could complicate the rotation of line unbounded on both sides along its own midpoint.  

These proofs from “Unbounded Lines” rely more explicitly on part-whole relations than 

the proof against motion found in “An Unbounded Line is Immovable.” Specifically, Leibniz 

supposes that if two lines unbounded on one side overlap, save for some bounded segment that 

one has and the other lacks, then the former line must be greater than the larger line. And from 

this fact, Leibniz allows for comparisons of size among these infinite lines. However, unlike finite 

lines, there appears to be no way for us to make these comparisons unless the lines already 

partially coincide. For when Leibniz supposes that when a line unbounded on both sides is 

divided in a point other than its midpoint, some line segment is assumed to exist which is the 

difference between the two unbounded lines, and the midpoint of this bounded line allows one 

to find the midpoint of the original line unbounded on both sides. But Leibniz gives no procedure 

for determining the length of this bounded segment. When a line unbounded on both sides is 

divided, relative sizes of the two resulting lines appear to be a brute fact undiscoverable by us. 

A traditional way of comparing the sizes of lines would be to move them and see whether or not 

their endpoints coincide. But since Leibniz believes motion is in most cases impossible for 

unbounded lines, this method will be of no assistance.107 

 Additionally, comparisons of size seem independent of the concept of number in this 

note. For as we have already seen, Leibniz rejected the notion of infinite number in 1672, and if 

 
107 Strictly speaking, Leibniz believes that an unbounded line can move parallel to itself under specific 

conditions. But this will not help us to compare the sizes of unbounded lines that are not parallel to each 
other. 
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comparisons among unbounded lines requires infinite numbers, Leibniz would not have begun 

such investigations into unbounded lines in the first place. Even though Leibniz holds that there 

is some determinate length that an unbounded line would have to retain during a supposed 

motion, this length would not be associated with a number, on pain of the whole exercise 

collapsing into futility. Here again, the priority of the whole of a line over its parts plays a key 

role, for an unbounded line can be understood as posited without also positing a determinate 

number of discrete parts. But unlike bounded infinite lines, unbounded lines cannot be subjected 

to arithmetic operations. In a footnote to his Summer 1676 masterwork on the calculus, De 

Quadratura Arithmetica, Leibniz notes that finite quantity is a middle between infinitesimals and 

bounded infinite quantities, for an infinitesimal quantity times a bounded infinite quantity will be 

finite when the two non-finite quantities are of the corresponding order. But bounded quantity is 

only the middle of minima (i.e., points) and maxima (i.e., unbounded lines, or “linea interminata”) 

through a loose way of speaking: 

For the magnitude of an unbounded line is in no way subjected to the considerations of 

Geometers, no more than the magnitude of a point.   For, just as it is useless for points 

(let them even be infinite in number108) to be added or subtracted from a bounded line, 

so too a bounded line cannot make or exhaust an unbounded line, no matter how many 

times it is repeated one after another.109 

While Leibniz developed an arithmetic of the infinite in De Quadratura Arithmetica, this note 

makes it clear that this arithmetic is meant to only apply to bounded infinite quantities. The fact 

that one can use algebraic operations that connect infinitesimal, finite, and bounded infinite 

quantities shows that the difference between such quantities is a difference of degree. But since 

 
108 Later remarks in this footnote make it clear that Leibniz is referring to as many points as one wishes, 

rather than the impossible notion of an actual infinite number. 
109 “Nam lineae interminatae magnitudo nullo modo Geometricis considerationibus subdita est, non magis 

quam puncti. Qvemadmodum enim puncta, licet numero infinita, frustra adduntur aut subtrahuntur lineae 
terminatae, ita linea terminata, qvotcunqve licet vicibus repetita interminatam facere aut exhaurire non 
potest.” (A VII.6 p. 549). There are two extant versions of this note, with the differences between the two 
notes marked by the Akademie. I chose to present the second version.  
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one cannot use such operations to move from points to finite quantities to unbounded infinite 

quantities shows that such entities truly differ in kind. 

Additionally, it may seem as if Leibniz’s claim that “the magnitude of an unbounded line 

is in no way subjected to the consideration of Geometers” means that he had abandoned the 

work from “Unbounded Lines.” After all, there Leibniz appears to be a geometer inspecting the 

magnitude of unbounded lines when he judges one to be greater than another. However, I do 

not think we need to posit that Leibniz changed his mind between April 1676 and the 

composition of De Quadratura Arithmetica in the Summer of 1676. Consider the context of the 

remark from De Quadratura Arithmetica. It is a footnote in which Leibniz remarks upon results of 

other geometers that showed certain infinite solids/figures have a finite volume/area, such as 

Evangelista Torricelli’s result that a certain hyperbolic solid is equal to a finite cylinder.110 In this 

note, Leibniz says that such results are not as miraculous as they seem, for one can replace the 

infinities involved with bounded infinite quantities, rather than genuinely unbounded figures. He 

says, “I would be more amazed, if someone were able to reduce the absolutely unbounded 

space between a curve and a completed asymptote to a finite area.”111 Hence Leibniz’s remarks 

about the magnitude of an unbounded line can be read as a claim that there can be no finite 

quadrature of an unbounded infinite region. We can still make comparisons of the magnitudes of 

unbounded lines using congruence, for equal lines unbounded on one end can be 

superimposed, so they originate at the same point and proceed without end.112 And such 

superposition is not possible in the case of unequal unbounded lines. But since one cannot 

 
110 See Mancosu 1996, pp. 129-139 for a presentation of Torricelli’s result and the reaction it received in 

Early Modern Europe.  
111 “Magis mirarer, si qvis ipsum spatium absolute interminatum inter curvam atque perfectam asymptoton 

interjectum; ad finitum spatium re- ducere posset. ”A VII.6 p. 549. Again, I have chosen to reproduce only 
the second version of the footnote. 
112  Such a superimposition would have to be understood as more of a teleportation than the result of 

continuous motion, given the arguments against the motion of an unbounded line. 
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apply the arithmetic of the infinite developed in De Quadratura Arithmetica to such lines, their 

magnitude is inaccessible to geometers. 

After 1676, Leibniz appears to retain the conceptual distinction between unbounded and 

bounded infinite lines. For instance, in his Feb 2, 1702 letter to Varignon, Leibniz says that 

calculus does not depend on the metaphysical existence of infinitesimal lines or infinite lines. 

After mentioning infinite lines, Leibniz adds the following remark that was omitted from the letter 

as sent: “yet with ends; this is important inasmuch as it has seemed to me that the infinite, taken 

in a rigorous sense, must have its source in the unterminated; otherwise, I see no way of finding 

an adequate ground for distinguishing it from the finite.”113 Here, Leibniz notes that the infinite 

lines that are reciprocals of infinitesimals must have ends, i.e., be bounded. The claim that the 

infinite in a “rigorous sense must originate in the unterminated” reflects the trend towards 

treating all infinite entities as unbounded in Leibniz’s later thought, as Bradley O. Bassler has 

noted in various articles.114 This is in part due to difficulties in distinguishing the finite from the 

infinite if the infinite were treated as bounded, an issue I address at the end of Section 3.4. What 

this passage seems to indicate is that the notion of an unbounded infinite line has gained priority 

over the notion of a bounded infinite line as Leibniz’s thought develops.  

However, even if the notion of an unbounded infinite line occupies a more prominent 

position than the bounded but infinite in certain areas of Leibniz’s thought, he still denies that 

the latter can be taken as a genuine whole. For he tells Des Bosses on March 11, 1706 that one 

should say “in place of ‘infinite straight line,’ that a line is extended beyond any specifiable 

magnitude, so that there always remains a longer and longer line. It is of the essence of 

number, of line, and of any whole whatsoever to be bounded.”115 The arguments from 1676 

 
113 In L. p. 543.  
114 Bassler 2008 p. 144 gives this interpretation of the footnote. Bassler 1998 catalogues Leibniz’s 

development towards understanding all infinities as unterminated or indefinite.  
115 LDB p. 33. 
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concerning unbounded lines rely on treating such lines as if they were wholes possessing some 

fixed length that could be greater or lesser than other unbounded lines. But since Leibniz 

eventually says that all lines must be bounded, the arguments against the motion of infinite lines 

fizzle away. 

2.6: Conclusion 

In this chapter, I have presented five distinct appearances of the non-finite in Leibniz’s 

mathematics: (1) infinite number, (2) the composition of the continuum, (3) Infinite series, (4) 

infinitely small lines and their bounded infinite reciprocals, and (5) unbounded infinite lines. 

Leibniz found paradoxes lurking within many of these concepts, leading him to reject a 

categorematic interpretation of infinite wholes composed of distinct parts. This meant rejecting 

infinite number because Leibniz explicitly defines number as a whole composed of parts. Similar 

reasoning also led Leibniz to say that even convergent infinite series cannot be considered as a 

whole whose parts can be summed, for this would then imply the existence of an infinite number 

that marks the supposed last term in the infinite series. 

Leibniz also rejects the idea that any continuous geometric object, such as a line, is 

composed of an infinitude of indivisible parts. Interestingly, Leibniz does not transfer over the 

arguments against infinite number when he makes this rejection. Rather than arguing that the 

problem with such a view is that it would imply the existence of an infinite number of parts, 

Leibniz gives distinctly geometric arguments for why the continuum cannot be composed from 

an infinitude of points. Despite the arguments here having a different structure than the ones 

against infinite number, the axiom that the part must be less than the whole still plays a 

fundamental role. Additionally, paradoxes involving unbounded infinite lines rely on geometric 

assumptions, such as the possibility of rotation and the fact that movement should not alter the 

size of a geometric object. However, the part-whole axiom still played a role in the paradoxes 
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that arise from unbounded infinite lines. In these geometric cases, as well as the arithmetic 

objects listed above, logical contradictions involving the part-whole axiom led Leibniz to banish 

these objects from his mathematics. 

This leaves the infinitesimals and bounded infinite lines. Unlike the other cases, I have 

not been able to find an argument that such objects violate the part-whole axiom. In fact, I am 

not aware of any arguments that infinitesimals lead to a logical contradiction.116 Nevertheless, 

Leibniz often hedges on the status of infinitesimals, leading many to say that in his final years, 

he adopted a “fictionalist” stance in which infinitesimals are merely useful for calculations but 

have no independent status beyond this. The exact details of what Leibniz’s fictionalism entails 

vary from author to author. In the following chapter, I argue that Leibniz held that there are no 

infinitesimals in the physical world. Nevertheless, I believe Leibniz’s position was that 

infinitesimals are perfectly consistent from a logical standpoint, and yet nevertheless are 

impossible in the physical world due to violating metaphysical principles. A focal point of this 

claim is Leibniz’s distinction between two types of impossibility, only one of which involves 

contradiction. Under my reading, even if infinitesimals are fictions, the fact that they are 

consistent, while the other four uses of infinity lead to logical paradoxes, gives infinitesimals a 

privileged position within Leibniz’s mathematical treatment of the infinite.  

  

 
116 Levey, 2008 notes the point that no such proof has yet surfaced in Leibniz’s extant writings (p. 116), 

and I am unaware of any such arguments have surfaced since Levey made that claim. 
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Chapter 3 : Interpreting Infinitesimals 

In the previous chapter, we saw a variety of different ways that Leibniz pushed traditional 

finite mathematical objects into the realm of the infinite and the special considerations that arose 

within each of these extensions beyond the finite. For some objects, such as numbers, 

paradoxes that clashed against the axiom that a whole is always greater than its parts caused 

Leibniz to reject the coherence of such forays into the infinite. In the preceding chapter, 

discussion of infinitesimals and their reciprocal infinite lines was limited to their uses and 

properties within pure mathematics. In this chapter, I wade into the discussion of how to 

interpret Leibniz’s commitment to the reality of infinitesimals. While there is a consensus that 

Leibniz held a “fictionalist” stance in which talk of infinitesimals can (and in some highly rigorous 

contexts should) be replaced by series of diminishing finite quantities, there are many 

interpretations of what Leibniz means when he refers to infinitesimals as “fictions,” and his 

motivation for adopting this position. In this chapter, I present strong evidence that Leibniz’s 

references to infinitesimals as “fictions” does not imply that such entities are contradictory. I 

argue that contrary to some commentators, the concept of an infinitely small is a mathematically 

acceptable notion. Leibniz’s arguments for the impossibility of infinitesimals should thus be read 

as concerning metaphysical considerations that bar them from actual existence, rather than 

their absolute impossibility. Due to the separation between mathematics and metaphysics, 

infinitesimals in and of themselves can be consistently introduced as purely geometric objects 

without entering into a full-blown contradiction.  

Section 3.1 reviews how others have parsed Leibniz’s fictionalism. Here we see many 

different interpretations divided along various fault lines. The section makes clear how little 

agreement there is about what the term “fictionalism” means in relation to Leibniz’s views of 

infinitesimals. I argue that when Leibniz calls infinitesimals “fictions,” this claim should be 
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interpreted such that infinitesimals are consistent in and of themselves, while remaining 

agnostic to many of the other questions that divide interpreters. In Section 3.2, I present four 

texts in chronological order that appear to show Leibniz vacillating on the consistency of 

infinitesimals between each one: “Elementa Nova Matheseos Universalis”; his November 18, 

1698 letter to Johann Bernoulli; the Feb 2, 1702 letter to Varignon; and passages from the New 

Essays on Human Understanding. The remarks in these four texts highlight how difficult it is to 

thread the needle when trying to pin down Leibniz’s views of infinitesimals. In Section 3.3, I 

examine the comparison Leibniz makes between imaginary roots and infinitesimals in the 

“Elementa Nova” and associated texts.117 Much of this distinction rests on the difference 

between two types of impossibility that Leibniz identifies, only one of which involves a 

contradiction. Leibniz says that imaginary numbers are “impossible” in his non-contradictory 

sense of the term, and textual evidence heavily implies that Leibniz thinks infinitesimals ought to 

be viewed in the same way. Section 3.4 contains an explanation of how the remarks in Leibniz’s 

correspondence with Bernoulli that reject the possibility of infinitesimals can be read as an 

argument against the possibility of infinitesimals in the physical world, rather than an argument 

against their logical consistency within pure mathematics. Finally, Section 3.5 explains how 

remarks against infinite space and infinitesimals that Leibniz makes in the New Essays have a 

limited scope that prevents mathematical uses of such concepts from being contradictory. This 

reading hinges on the distinction between real objects (whose parts are prior to any unification 

into a whole) and ideal objects (where the part precedes the whole), a distinction Leibniz used in 

his discussion of the continuum (Section 2.2); I argue that Leibniz’s remarks in the New Essays 

only apply to the notion of a real infinite space united into a whole, rather than an ideal one. In 

the end, we see that whatever reservations lead Leibniz to discount infinitesimals from the 

 
117 Throughout this chapter, I follow Leibniz and use “imaginary roots/numbers” to refer to both pure 

imaginary numbers of the form bi (where b is a nonzero real number and i is the square root of -1) and 
complex numbers of the form a + bi (where both a and b are both nonzero real numbers and i is the same 
as before). 
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physical world are not to be read as marks against their consistency and use within pure 

mathematics. 

3.1: Flavors of Fictionalism 

 As mentioned in Section 2.4, Leibniz was frequently forced to defend the foundations of 

his infinitesimal calculus from critics. In defending his use of infinitesimals, Leibniz repeatedly 

refers to non-finite quantities as fictions throughout his career. For instance, in late 1676, the 

Scholium to Proposition 23 of De Quadratura Arithmetica states that even if infinitesimals and 

infinite quantities do not exist in nature, one can still reason about them, for “it suffices that they 

be introduced by a fiction.”118 And 30 years later in a March 11, 1706 letter to Des Bosses, 

Leibniz says “I consider both [the infinitely large and small] to be fictions of the mind, due to 

abbreviated ways of speaking, which are suitable for calculation, in the way that imaginary roots 

in algebra are.”119 Even though Leibniz asserts that infinitesimals and the corresponding 

reciprocal infinite lines are fictitious, it is not explicitly clear what motivates this position, what it 

means to call a quantity fictitious, and how labeling these quantities as fictitious helps secure 

the foundations of the calculus. Leibniz obviously intends the label of “fiction” to draw some 

distinction between such quantities and their finite counterparts, and various commentators 

have given their interpretation of the work this phrase does for Leibniz. In this section, we 

examine these accounts before I advance my reading of the fictionality of infinitesimals. I will 

argue that this label means that although they cannot be found in the phenomenal world, they 

remain consistent entities to postulate within mathematical contexts. 

 
118 The full quote is: “Quae de infinitis atque infinite parvis huc usque diximus, obscura quibusdam vide- 

buntur, ut omnia nova; sed mediocri meditatione ab unoquoque facile percipientur: qui vero perceperit, 
fructum agnoscet. Nec refert an tales quantitates sint in rerum natura, sufficit enim fictione introduci, cum 
loquendi cogitandique, ac proinde inveniendi pariter ac demonstrandi compendia praebeant, ne semper 
inscriptis vel circumscriptis uti, et ad absurdum ducere, et errorem assignabili quovis minorem ostendere 
necesse sit.” A VII.6 p. 585. 
119 LDB p. 33. 
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As mentioned both above and in the previous chapter, one can group Leibniz’s defenses 

of the calculus into two different categories. The first is to claim that the methods of the 

infinitesimal calculus are simply an improvement upon the ancient Method of Exhaustion, a 

method detailed in Section 2.4.3 of the previous chapter. In place of actual non-finite quantities, 

we use variable quantities that can be taken to be as small (or large) as desired in order to 

construct tangents and quadratures. In his later years, Leibniz refers to this as the “method of 

incomparables.” One prominent place in which Leibniz gives a defense through the method of 

incomparables occurs in the February 2, 1702 letter to Varignon. There, Leibniz gives the ratio 

of a grain of sand to the entirety of our planet and our planet to the entirety of the cosmos as an 

example of incomparable magnitudes. These two quantities are actually “comparable” under the 

traditional definition according to the Archimedean Axiom: two quantities are said to be 

comparable if there exists some finite natural number n such that when repeated n times, the 

smaller quantity will eclipse the larger one. A grain of sand can in theory be multiplied to the 

point where it surpasses Earth’s volume. Although this repetition would literally be astronomical 

in scope, precise mathematical rigor would not allow us to discard such small finite quantities. 

For this reason, Leibniz says that these “incomparable” quantities are not taken to be static and 

fixed; we can take progressively smaller and smaller finite quantities in place of infinitely small 

quantities (or larger and larger quantities in place of the infinitely large). Like the Method of 

Exhaustion, these ever-diminishing or increasing quantities are used to show that for any 

proposed error, there will exist some stage where the diminishing finite quantities show that the 

estimated error is too large. Leibniz says that such incomparable and variable finite quantities 

“have the effect of the infinitely small in the rigorous sense,” and “it follows from this [method of 

incomparables] that even if someone refuses to admit infinite and infinitesimal lines in a rigorous 
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metaphysical sense and as real things, he can still use them with confidence as ideal concepts 

which shorten his reasoning.”120 

 The other type of justification comes from the Law of Continuity, a law that often is 

expressed in highly abstract terms. However, what is common to the different presentations of 

this principle is the belief that one can apply the general law governing some continuous 

transition to the terminus of that transition. Leibniz uses an example from physics, noting that a 

body’s motion can continuously become slower and slower, approaching a state of absolute 

rest. But if this state of rest is approached in a continuous way (and in fact Leibniz believes that 

all changes in motion are continuous processes), Leibniz holds that we can treat a body in rest 

as a special case of our regular laws of motion; only this motion is now treated as infinitely small 

rather than absolutely zero. And if our laws governing motion fail to adequately handle states of 

rest conceived of as being states of infinitely small motions, Leibniz thinks we should take that 

as evidence of the inadequacy of the proposed laws of motion, rather than as evidence against 

the Law of Continuity.121 And while it is not “rigorously true” that when a series approaches a 

terminus, the terminus itself is included in the series, Leibniz says we are warranted in using our 

reasoning to it as if it were included.122 

When it comes to a philosophical analysis of Leibniz’s fictionalism, one helpful 

framework for how to categorize the various attitudes within the secondary literature comes from 

Mikhail Katz and David Sherry. They divide views on fictionalism by the ways commentators 

address the relationship between the Law of Continuity and the Method of 

Exhaustion/Incomparables. One class of views argues that the Law of Continuity provides a 

 
120 Feb 2, 1702 Letter to Varignon. Quoted from Loemker p. 543. 
121 In “Letter of Mr. Leibniz on a General Principle Useful in Explaining the Laws of Nature Through a 

Consideration of the Divine Wisdom…” Published July 1687 in Nouvelles de la République des Lettres. 
Translated In Loemker pp. 351-354. 
122 In the 1701 text, “Justification of the Infinitesimal Calculus by Means of Ordinary Algebra” in Loemker, 

p. 546. 
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distinct justification for the calculus, separate from the method of incomparable finite quantities. 

The other approach sees the Law of Continuity as reducible to the method of variable finite 

quantities.123 Labeling this latter fictionalism as “logical” or “reductive,” Katz and Sherry 

summarize it as a claim that “[p]ropositions that refer apparently to fictions may be reduced to 

propositions that refer only to standard mathematical entities.”124 The reductive nature of these 

interpretations of fictionalism resides in the claim that any apparent references to non-finite 

quantities are illusory. Under this reading, treating infinitesimals and the infinitely large as 

referring to a special type of quantity may aid our calculations, but strictly speaking, any 

seeming reference to a non-finite entity would actually be a reference to a process wherein a 

sequence of diminishing or increasing quantities is used in the manner of Archimedes. Such 

interpretations of non-finite quantities are also called “syncategorematic,” for it implies that non-

finite quantities have no meaning apart from designating these limiting processes that only rely 

on finite quantities.125  

 One proponent of a reading in which Leibniz adopted the purely syncategorematic 

interpretation of infinitesimals is Richard Arthur. Consider the example of tangent construction in 

Cum Prodiisset, presented in Section 2.4.4. In that example, an equation for the slope of a 

secant of a parabola was given. One then moves to consider the case in which the distance 

between the two points becomes infinitely small and applies the same slope equation that 

governed the cases where the distance between the points was finite. Then one passes from 

this secant to the tangent, for the difference between this secant and a genuine tangent is 

infinitely smaller than any of the other relevant quantities. After presenting the justification by the 

Law of Continuity, Leibniz says that one could represent the ratio 
𝑑𝑦

𝑑𝑥
as a ratio of finite lines that 

 
123 Katz and Sherry (2013) pp. 567-568 & 587. 
124 Katz and Sherry (2013). p. 587. 
125 See Section 1.2 for an explanation of the term “syncategorematic.” 



 

 87 

exist in the same ratio as the supposed infinitesimal quantities that form the slope of the secant, 

calling these finite lines (dx) and (dy). In his presentation of this example, Arthur argues that this 

shows that the variables 𝑑𝑥 and 𝑑𝑦 at no point stand for bona fide infinitely small lines, but 

instead always represent variable finite line segments that can be made arbitrarily small. In the 

cases in which 𝑑𝑥 and 𝑑𝑦 seem to vanish (as when a secant becomes a tangent), the auxiliary 

lines (dx) and (dy) serve as “finite surrogates” that express the ratio that is approached as the 

line 𝑑𝑥 becomes arbitrarily small.126 Leibniz introduces this method of finite surrogates in Cum 

Prodiisset with the motivation: “But if it is desired to retain 𝑑𝑦 and 𝑑𝑥 in the calculation, so that 

they may represent non-evanescent quantities even in the ultimate case,” before describing how 

to employ such finite proxies.127  

Under a reading that sees Leibniz having two distinct approaches to the foundations of 

the calculus, Leibniz’s remark before introducing the method of finite proxies would be meant to 

show how one could replace appeals to a ratio between two infinitely small quantities with the 

same ratio between two finite quantities, but such a substitution is unnecessary. However, 

under Arthur’s reading and most other reductive accounts, the method of finite proxies is not just 

a technique that we can invoke should we be struck by the fancy to do so; it represents what is 

actually going on when one appeals to the Law of Continuity. For him and other proponents of 

this reading, the Law of Continuity serves as a convenient way to abbreviate the cumbersome 

process of always specifying the shrinking/increasing finite surrogates. The fictional nature of 

infinitesimal quantities is thus the fiction of taking this shorthand at face-value: “[i]nfinitesimals 

are fictions in the sense that the terms designating them can be treated as if they refer to 

entities incomparably smaller than finite quantities, but really stand for variable finite quantities 

 
126 Arthur 2013b pp. 564-567. 
127 Translation quoted from Child p. 152. Original Latin is: “Quod si velimus in calculo retinere dx et dy, ita 

ut significent quantitates non evanescentes etiam in ultimi casu…” in Gerhardt 1846 p. 45. 
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that can be taken as small as desired.”128 The position that apparent mentions of non-finite 

quantities actually refer to a proposition with a more complex logical value originates with Hidé 

Ishiguro. She compares Leibniz’s approach with Bertrand Russell’s analysis of “the present king 

of France is bald.”129 For Russell, this proposition seems to be a simple attribution of a unary 

predicate to a subject (“baldness” to “present king of France”) but is actually a complex 

expression with existential and universal quantification that asserts the supposed existence and 

uniqueness of the “present king of France,” alongside the prediction of baldness to this 

individual. In this way, we see a difference between the patterns in reductive views that Katz 

and Sherry noted and those presented here. Katz and Sherry seem to be primarily concerned 

with questions of method reductionism, i.e., the possibility of reducing a method that involves 

infinitesimals (the law of continuity) to methods that only involve manipulations of finite 

quantities (the method of exhaustion/incomparables). On the other hand, the positions 

mentioned in this paragraph seem to concern themselves more with a reference reductionism, 

i.e., the position that any use of infinitesimals in a given discourse must be taken as referring to 

an appropriate series of shrinking values rather than a quantity intended to actually be infinitely 

smaller than another. 

But even if a method reductive reading of Leibniz’s fictionalism is a correct reflection of 

Leibniz’s own position, and questions about the consistency of infinitesimals is thus irrelevant to 

mathematical practice, it seems a stretch to say that every appeal Leibniz makes to 

infinitesimals must be syncategorematic (the reference reductive position). It could be the case 

that in the context of mathematical reasoning, we must treat infinitesimal terms as referring only 

to the process of taking variable finite surrogates. But there are cases where Leibniz seems to 

reference non-finite quantities in ways that become meaningless if we are forced to read them 

 
128 Arthur 2013, p. 554. 
129 Ishiguro 1990, pp. 97-99. 
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syncategorematically. For instance, in the opening of the Feb 2, 1702 letter to Varignon, Leibniz 

says that the mathematical use of non-finite quantities is independent from the metaphysical 

question of the existence of lines in nature infinitely smaller (or larger) than ordinary lines in a 

rigorous sense.130 If we read the references to non-finite lines here as merely a paraphrase of 

the process of taking ever-diminishing or increasing lines, the passage loses its obvious 

intended meaning. In this passage and others like it, Leibniz is talking about the possibility of 

genuine non-finite quantities, not the possibility of finding a series of finite lines larger or smaller 

than some given line. Syncategorematic readings of fictionalism may give us reason to suppose 

that non-finite quantities are not intended to be referential in mathematical contexts, but in order 

to retain plausibility, such views should admit that there are contexts where Leibniz treats them 

as at least attempting to refer to genuinely non-finite quantities. Whether or not such phrases 

succeed at referring to non-finite quantities is a further question settled by whether or not such 

entities are possible, but it is a question that must at least be possible to pose. Thus, I think a 

broad and unqualified reference reduction cannot be what Leibniz means when he calls 

infinitesimals “fictions.”  

Arthur’s reductive reading of Leibniz’s fictionalism is similar to that advanced by Samuel 

Levey. Levey argues that Leibniz’s fictional stance towards infinitesimals was firmly established 

in the middle of 1676, when Leibniz discovered methods for finding the areas of various conic 

sections. In these quadrature problems, the curves in question are divided into sections that are 

approximated by rectangles whose sides are allowed to become as narrow as one wishes. 

During this process, the sums of the rectangles become better approximations as one considers 

more and more rectangles with increasingly narrow bases. By treating the area under a curve 

as the sum of these shrinking rectangles, Leibniz derives a technique that often draws 

 
130 In Loemker, pp. 542-543. 
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comparisons with Riemannian integration.131 And just as in the Method of Exhaustion, if one 

believes that the sum arrived at by this method differs from the true quadrature by some 

proposed quantity, one can take the sides of these rectangles to be sufficiently small (but still 

finite) so that the proposed error is shown to be larger than the summation process allows. And 

one can continue this process if an even smaller error is then proposed. Levey argues that the 

infinitesimal calculus is the only reason one would contemplate the existence of non-finite 

quantities.132 Once techniques to replace them with variable finite quantities in the manner of the 

Method of Exhaustion are discovered, that motivation vanishes. According to this interpretation, 

without any reason to suppose their existence, Leibniz defaults to the position that there are no 

infinitely small quantities, and the references to them that appear in the calculus remain as 

convenient abbreviations. While Katz and Sherry present Levey’s account of fictionalism as 

collapsing justifications stemming from the Method of Exhaustion with those that originate in the 

Law of Continuity, Levey actually grants that the Law of Continuity may serve as a separate and 

non-reductive justification for some types of mathematical fictions, such as fictional points at 

infinity that are meant to represent the points of intersection between parallel lines.133 This 

justification would be distinct from the method employed to eliminate references to infinitesimals 

in the calculus. But in the case of infinitesimals and the bounded infinite, justification through a 

reduction to diminishing finite values takes precedence and appeals to the Law of Continuity 

only justify a separate class of fictions for which reductive techniques have not been 

established. For this reason, Levey says it may be more appropriate to speak of Leibniz’s 

“fictionalisms,” rather than a single overarching theory of fictions in his mathematics.134 Despite 

 
131 Levey 2008, pp. 118-119. Knobloch 2002 also draws comparisons between Leibniz’s work in this 

period and Riemannian integration. 
132 It is worth noting that the so-called “horn angle,” or the angle of contact between a circle and straight 

line, could have lead to another source to motivation the introduction of infinitesimal quantities, since one 
cannot compare them with angles between two straight lines using finite ratios.  
133 This example will resurface later in the chapter, in the discussion of Figure 3.2. 
134 Levey 2008, p. 131. The case of parallel lines intersecting at a point at infinity is treated in our next 

section. 
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the separate justification that the Law of Continuity serves in other contexts, Levey’s belief that 

infinitesimals are to always be interpreted syncategorematically places his views in the reductive 

camp.  

Disagreeing with accounts that merge justifications from the Law of Continuity with the 

Method of Exhaustion, Douglas Jesseph argues that these methods must be kept separate. In 

his analysis, claims about the fictional nature of infinitesimals refers to the fact that we do not 

treat them as having “serious ontological import.”135 Jesseph focuses on the fact that Leibniz 

does not call non-finite quantities “fictions” without qualification; Leibniz refers to them “useful” 

or “well-founded” fictions. Jesseph’s disagreement with the above-mentioned positions of Arthur 

and Levey are two-fold. First, Jesseph denies that Leibniz’s position on the fictional nature of 

infinitesimals was firmly in place by mid-1676 and remained a stable position until Leibniz’s 

death. Second, he believes that the Law of Continuity constitutes a separate method for 

justifying infinitesimal techniques. Jesseph notes that the method Leibniz gives in 1676 to 

eliminate infinitesimal quantities is presented within the context of the quadrature of conic 

sections. The method of finite proxies that Leibniz uses to eliminate appeals to non-finite 

quantities relies on our ability to construct tangents to a given curve. In the case of conic 

sections, such constructions are easy to produce. But given that Leibniz wanted a broader 

application for his calculus than these relatively simple conic problems, the arguments of Arthur 

and Levey cannot explain Leibniz’s full stance towards the non-finite quantities in his calculus.136 

While holding that the Law of Continuity is a separate method of justification, Jesseph is 

pessimistic about its ability to serve as a genuine foundation over and above a method of finite 

proxies. Leibniz uses examples of how reasoning rooted in the Law of Continuity can deliver us 

results that we could also attain from independent methods. But he never provides a full-

 
135 Jesseph 2008, p. 215. 
136 Jesseph 2011, pp. 195-200. 
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throated justification that using the Law of Continuity will never lead us into contradiction and 

error.137 A rough analogy that Jesseph provides between these two methods and their role in 

securing the foundations of the calculus is between proof and model theoretic approaches. The 

method of finite proxies is proof theoretic: it tells us that we can replace the steps in a proof that 

appeal to non-finite quantities with reasoning that only appeals to finite quantities. The Law of 

Continuity follows a more model theoretic template, where it is shown that even if the proof 

cannot omit reference to infinitesimal quantities, the results obtained by these methods that 

contain no infinitesimal terms will remain true in models with only geometric objects that are 

finite.138 Fortunately, Jesseph acknowledges that such analogies must remain at a very general 

level, given that proof and model theory postdate Leibniz by about 200 years. While he does not 

think either the reductive approach or the Law of Continuity succeeds in rigorously founding the 

calculus, Jesseph believes that they serve as distinct approaches that cannot be merged into 

each other. 

Mikhail Katz and David Sherry also believe that the Law of Continuity serves a 

foundational role logically distinct from approaches that take finite surrogates or appeal to the 

Method of Exhaustion. They argue that if the Law of Continuity were nothing more than a 

syncategorematic approach in different clothing, we would be left with the unsolved puzzle of 

why Leibniz would bother to formulate the law to begin with. If the Law of Continuity were not 

about actual non-finite cases being governed by the same laws that govern the finite but were 

instead about a sequence of finite terms alone: “then the law of continuity can only be asserting 

a tautology: a sequence of standard entities consists of standard entities arranged in a 

sequence.”139 Unfortunately, they are not clear on exactly why this consequence follows from a 

reductive reading of the Law of Continuity. The best reasoning I can come up with is that under 

 
137 Jesseph 2011, p. 203. 
138 Jesseph 2011, p. 197. 
139 Katz and Sherry 2013, p. 588. 
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a robust reading of the Law of Continuity, we are introducing mathematical objects that have the 

same properties as the finite portions of a continuous transformation that approaches a 

terminus, such as infinitely small lines that are in the proportion that is approached continuously 

during the finite portion of a given transition. But a syncategorematic reading would instead say 

that as the finite portions of the transition approach some terminus continuously, one will always 

be able to find a further finite stage in the transition in which the terminus is closer than before.  

In a separate article, Katz and Sherry argue again that Leibniz’s fictionalism is not 

reductive and say that Leibniz’s approach to infinitesimals bears a close enough analogy with 

Hilbert’s account of infinite sets to make the term “formalist” an appropriate description. Using a 

set of criteria given by Abraham Robinson, the architect of non-standard analysis, Katz and 

Sherry argue that Leibniz’s use of infinitesimals meets the essential features of a formalist 

approach. First, non-finite quantities (as well as imaginary roots) are not themselves the objects 

of mathematical investigation. Second, mathematics is advanced by employing such ideal 

elements in calculations. And third, while some entities have the status of being merely fictional, 

there is a core of mathematical reasoning that is not fictional. For Hilbert, this core was Peano 

Arithmetic and a rudimentary logic, and Katz and Sherry argue that this core for Leibniz are the 

idealized geometric representations of sensible experience.140 While this analogy may match 

some of the ways that Hilbert employed entities he deemed ideal, notably lacking is any mention 

of a finitistic consistency proof, a core desideratum of Hilbert’s formalist program. 

Katz and Sherry argue that what the Law of Continuity enables is a type of “concept-

stretching,” through which rules for existing mathematical concepts are applied to new species 

of concepts. An example of concept-stretching outside of the calculus that they give is the case 

of negative quantities. Despite differing from the properties of finite quantities, old axioms such 

 
140 Katz and Sherry 2012, p. 190. 
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as “equals added to equals gives equals” still apply.141 The utility of these stretched concepts 

resides in their ability to systematize existing knowledge about the original un-stretched domain 

within mathematics. For example, Gerolamo Cardano’s 1545 text on algebra, Ars Magna, gives 

an equation for finding roots from cubics of the form 𝑥3 = 𝑝𝑥 + 𝑞: 

𝑥 = √𝑞

2
+ √

𝑞2

4
−

𝑝3

27

3

+ √𝑞

2
− √

𝑞2

4
−

𝑝3

27

3

 

If we only allow real quantities in our algebraic manipulations, this formula ceases to apply when 

𝑝3

27
>

𝑞2

4
, but allowing imaginary roots allows this rule to apply for all real values of 𝑝 and 𝑞.142 

Additionally, in his own work on algebra, Leibniz says that introducing imaginary roots gives all 

equations of the same degree the same number of roots, which is useful in making general 

claims about algebraic formulas.143 And just as imaginary roots provide unity to equations that 

would otherwise be grouped and treated separately, the infinitesimals allow a common method 

for solving the quadratures of both conic sections (which could already be achieved by the 

method of exhaustion), and “transcendental” curves (ones that cannot be expressed by 

polynomial equations, such as logarithms). For this reason, Katz and Sherry see Leibniz’s 

appeal to finite surrogates as superfluous. Just as imaginary roots are accepted without an 

explicit procedure for replacing them with ordinary real quantities, infinitesimals would have 

been justified even if Leibniz had not discovered a method for replacing them with series of finite 

proxy values.144 While they disagree with reductive accounts that claim infinitesimals in logical 

actuality refer to certain processes of taking diminishing finite values, Katz and Sherry wind up 

arguing that Leibniz’s use of fictions is non-referential as well, concluding that “Leibniz's best 

 
141 Katz and Sherry 2012, p. 186. 
142 Katz and Sherry 2012, pp. 168 & 187. 
143 One place where this occurs is in the 1683 text Elementa Nova Matheseos Universalis, A.VI p. 520. 
144 Katz and Sherry (2012), p. 189. 
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thinking about mathematical fictions is closer to Robinson's idea that infinitary concepts are 

literally meaningless, in the sense that they ultimately lack referents.”145 

The debate about the independence of the Law of Continuity from the method of finite 

surrogates and the role that both play in Leibniz's fictionalism is an important one. But I think 

they detract from an alternate question that I will explore in the rest of this chapter: are 

infinitesimals in and of themselves consistent? In purely reductive accounts of fictionalism, the 

question of the consistency of non-finite quantities need not be decided. If the notion of an 

actual non-finite quantity entails a logical contradiction, there will be no damage done to 

Leibniz’s calculus, since references to such entities are only illusory. In fact, if infinitesimals 

were inconsistent, Leibniz would have had all the more motivation to eliminate actual references 

to them in the calculus. Although this view is compatible with the inconsistency of non-finite 

quantities, it does not entail it. Perhaps non-finite quantities are consistent, and the motivation to 

replace them with finite proxies has a different origin, perhaps to satisfy an epistemic demand, 

such as some traditional conception of rigor.  

 One could also believe that the Law of Continuity serves as a separate, but consistent, 

foundation for the calculus while still believing that infinitesimals themselves are inconsistent. 

This is the approach that Katz and Sherry themselves take. In 2013, they present the view that 

“Leibniz’s system for the calculus was free of contradiction.”146 But a year earlier, they argued 

that “These concepts [of imaginary roots and non-finite quantities], because they contain a 

contradiction, prevent us from imagining objects in accordance with their definition.”147 They 

argue that because we can represent such impossible quantities symbolically, we can still 

reason with them via symbolic manipulation. While they are not clear on how this process is 

 
145 Katz and Sherry (2012), p. 191. 
146 Katz and Sherry (2013), p. 572. 
147 Katz and Sherry (2012), p. 179. 
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supposed to work, it appears as if this symbolic representation mixed with their belief that such 

objects are not themselves the proper objects of mathematics stops the contradictory nature of 

these concepts from throwing the entirety of Leibniz’s calculus into contradiction. 

In the remainder of this chapter, I argue that contrary to Katz and Sherry, as well as 

other commentators, Leibniz did not consider non-finite quantities to be contradictory, even 

though he occasionally calls them impossible.148 I begin by presenting a series of passages that 

appear to show Leibniz repeatedly altering his position back and forth on this issue over time in 

the next section. I then use Section 3.3 to advance my positive account for why infinitesimals 

should be seen as consistent, using analogies Leibniz makes between the calculus and algebra. 

I use these analogies to argue that when Leibniz says infinitesimals are fictions, he means that 

they have no place in the created world but can still be consistently employed as respectable 

entities within mathematics. I then spend Sections 3.4 and 3.5 showing how two seemingly 

troubling passages for this reading can be interpreted in ways that do not damage my reading of 

Leibniz’s fictionalism. 

3.2 Conflicting Comments 

Looking directly at some Leibnizian texts to settle the question of the consistency of 

infinitesimals, we see a collection of opinions that are difficult to interpret consistently. I choose 

these texts specifically in part because of the fact that when placed in chronological order, they 

alternate between support for and against the position that infinitesimals are logically consistent. 

That is, after highlighting a text in which there is clear evidence that Leibniz argues for the 

consistency of infinitesimals, I pass over other chronologically-ordered texts that may also 

 
148 Rabouin 2015b claims that the notion of an infinitesimal is the same as a minimal quantity and hence 

implies a contradiction (p. 362-363). However, by 1676, Leibniz asserts that minima, i.e. points, are 
distinct from the idea of an infinitely small line, as this formed his rejection of the method of indivisibles in 
favor of his own conception of the calculus. 
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support the consistency of infinitesimals until reaching a text that appears to support the view 

that infinitesimals are logically inconsistent (and vice versa). By cultivating the collection of texts 

in this way, I hope to stave off an interpretation in which we resolve the tensions between the 

texts by claiming that Leibniz simply changed his mind about the consistency of infinitesimals, 

as this requires attributing a large number of changes to Leibniz’s thought that he himself does 

not explicitly acknowledge.  

Let us begin with a list of these four texts, with a (+) indicating one in which there is 

evidence for Leibniz believing that infinitesimals are consistent and (-) indicating one in which 

Leibniz seems to claim that infinitesimals are logically inconsistent. The first of these texts is 

1683’s Elementa Nova Matheseos Universalis (+), a treatise on technical and philosophical 

foundations of algebra.149 Next, is Leibniz’s November 18, 1698 letter to Johann Bernoulli (-), a 

correspondence that is frequently cited in connection with Leibniz’s thoughts on the foundations 

of the infinitesimal calculus.150 The next positive text is Leibniz’s Feb 2, 1702 letter to Varignon 

(+), a letter frequently cited in connection with Leibniz’s beliefs on the foundations of the 

calculus.151 Next are passages from the New Essays on Human Understanding (-), Leibniz’s 

response to Locke’s work of a similar title. In the remainder of this section, I present the relevant 

evidence from each text, and devote the remaining sections to massaging these tensions into a 

consistent position that speaks in favor of the consistency of infinitesimals and their 

corresponding infinite lines within pure mathematics.  

 Let us begin with a very brief overview of how Elementa Nova Matheseos Universalis 

supports the position that infinitesimals are consistent, with a richer analysis appearing in the 

 
149 In A VI.4, pp. 513-524. A translation of page 521 appears in De Risi 2016, p. 135. 
150 The correspondence stretches across a few volumes of Series III of the Akademie Edition. This letter 

in particular can be found in A III.7 pp. 942-947. A partial translation of this letter appears in L, pp. 511-
513. 
151 In GM IV, pp 91-95 and in translation in L, pp. 542-544. The letter itself will appear in A III.9, which has 

not yet been published, although pre-prints are available on the Akademie Edition website. 
(https://leibnizedition.de/) 

https://leibnizedition.de/
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next section. In one portion of this text, Leibniz discusses negative numbers and imaginary 

roots. He says that while these entities are “impossible by accident” (per accidens impossibiles), 

they differ from the absolutely impossible (impossibiles absolute). The defining feature of the 

absolutely impossible is containing a logical contradiction, such as a claim that a whole is equal 

to one of its parts.152 Leibniz is very clear in this text that while some may consider concepts like 

imaginary roots to be contradictory, one who is knowledgeable about mathematics will 

recognize that this contradiction is only apparent. After clearly defending the view that these 

other types of mathematical concepts are consistent, Leibniz goes on to say that infinitesimals 

and infinite quantities arise in the same way, strongly implying that these non-finite quantities 

are also free from contradiction.  

However, in 1698, Leibniz seems to deny the consistency of infinitesimals, telling 

Johann Bernoulli in a letter from November 18 of that year:  

As concerns infinitesimal terms, it seems to me not only that we cannot penetrate to 

them but that there are none in nature, that is, that they are not possible. Otherwise, as I 

have already said, I admit that if I could concede their possibility, I should concede their 

being.153 

This appears to be a heavy blow to any interpretation in which infinitesimals are seen as 

consistent, for Leibniz frequently equates “possibility” with “freedom from contradiction.” 

Additionally, this is a very puzzling claim coming from Leibniz, for it appears to imply that the 

non-existence of infinitesimals implies their impossibility, rather than saying that their 

impossibility is what implies their absence from nature. As we will see in Section 3.4, Leibniz is 

very clear in other texts that it is not licit to infer impossibility from non-existence. But the fact 

 
152 To see that Leibniz considers violations of the part-whole axiom as logically contradictory, see 1689’s 

“Principia Logico-Metaphysica” where Leibniz shows how the definitions of “part” and “whole” can be 
analyzed to establish this axiom (A VI.4 pp 1643-1649 and in translation as “Primary Truths” in AG pp. 
30-35). 
153 In L, p. 511. 
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remains that this exchange seems to be evidence that Leibniz thought infinitesimals were 

contradictory. 

We see Leibniz return to making favorable claims about the consistency of infinitesimals 

in the Feb 2, 1702 letter to Varignon. There, Leibniz gives remarks that appear to contradict 

what he said to Bernoulli: 

So it can also be said that infinites and infinitesimals are grounded in such a way that 

everything in geometry, and even in nature, takes place as if they were perfect 

realities… And conversely the rules of the infinite apply to the finite, as if there were 

infinitely small metaphysical beings, although we have no need of them, and the division 

of matter never does proceed to infinitely small particles. This is because everything is 

governed by reason; otherwise, there could be no science and no rule, and this would 

not at all conform with the nature of the sovereign principle.154 

The language in the first portion of this quote is highly suggestive of the view that non-finite 

quantities are consistent, for it is difficult to make sense of the claim that nature proceeds “as if” 

non-finite quantities were “perfect realities” if such entities were in fact contradictory. In addition 

to being able to act as if these concepts were “perfect realities,” the second half of this quote 

implies that the principles we rely upon to rationally comprehend the world would fail if we were 

unable to reason “as if” infinitesimals existed. And it would be strange to say the least if the 

rationality that God instilled in us obliges us to operate in accordance with contradictory 

hypotheses. 

But a reading in which infinitesimals are consistent reading runs into trouble yet again 

when we look at the following passage from Leibniz’s New Essays, written in 1703-1705: 

But it would be a mistake to try to suppose an absolute space which is an infinite whole 

made up of parts. There is no such thing: it is a notion which implies a contradiction; and 

these infinite wholes, and their opposites the infinitesimals, have no place except in 

geometrical calculations, just like the imaginary roots of algebra.155 

 
154 In L, p. 544.  
155 New Essays II.vii.3 



 

 100 

Here we explicitly see the phrase “notion which implies a contradiction” mentioned in connection 

with non-finite quantities.  

One way to account for these different remarks is to say that Leibniz changed his mind 

about the status of infinitesimals. But as mentioned at the start of this section, the difficulty in 

this view is that it requires an explanation of not only why Leibniz would change his mind from 

1683(+) to 1698(-), but why he then changed his mind again in 1702(+), only to revert once 

more to the view that infinitesimals are impossible in 1703-1705(-). The next section is devoted 

to drawing out the position Leibniz stakes in the “Elementa Nova” and the comparisons he 

makes between infinitesimals and imaginary roots in which infinitesimals fall into the category of 

concepts that are impossible but still consistent. In the section after that, I explain how to 

interpret Leibniz’s remarks to Bernoulli as consistent with the position identified in the “Elementa 

Nova.” I then briefly describe how distinguishing between mathematical and physical space 

allows us to read Leibniz’s remarks in the New Essays as consistent with my proposed reading 

of the consistency of infinitesimals.  

3.3: A Consistent Reading on Consistency 

 In this section, I argue that infinitesimals and the kinds of infinite quantity that arise from 

taking their reciprocals were taken to be consistent by Leibniz. In order to do this, I take 

seriously the comparisons Leibniz makes between these non-finite quantities and other 

“imaginary” entities such as the square roots of negative numbers. In his discussion of these 

imaginary entities, Leibniz is clear that such entities are free of contradiction, and any supposed 

impossibility that arises from considering their properties is only apparent. Instead, such entities 

violate either metaphysical principles or conditions of phenomenal experience, rather than the 

logical principle of non-contradiction. To make sense of this distinction, I appeal to remarks 

Leibniz makes where he distinguishes between two different types of impossibility. This first is 
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an absolute impossibility, and it reduces to logical contradiction. The other kind is a qualified 

notion, a notion which Leibniz refers to as per accidens impossibility. This kind of impossibility 

involves violations of metaphysical principles but can be employed safely in mathematical 

reasoning. I argue that this latter type of impossibility is what applies to infinitesimals. Such a 

reading can also resolve the tension between Leibniz’s statements in favor of the consistency of 

infinitesimals and his remarks to Bernoulli mentioned in the previous section. Furthermore, I 

resolve the apparent conflict between my proposed reading and the remarks from the New 

Essays by distinguishing between the role of the infinite in accounts of mathematics and in the 

physical world. I argue that Leibniz’s claim that parts are prior to their whole in physical objects 

underpins the remarks in the New Essays, and that the priority of the whole over its parts in 

ideal objects allow non-finite quantities to be consistent within pure mathematics. Before 

showing how to use Leibniz’s comparisons between imaginary quantities in algebra with 

infinitesimals to interpret the remarks he makes elsewhere, we must turn to those comparisons 

themselves. 

 To make this argument, I present the distinction between the two types of impossibility 

that Leibniz presents in the text “Elementa Nova Matheseos Universalis.” I then present an 

example from another Leibnizian text in algebra “Mathesis Universalis” in order to clarify an 

analogy Leibniz makes in the “Elementa Nova” regarding imaginary numbers. I then present 

passages from the text “On Freedom and Impossibility” to link remarks Leibniz makes about 

imaginary numbers with metaphysical considerations about possibility. The chapter ends with 

an attempt to trace how per accidens impossibility arises in the case of infinitesimals and 

bounded infinite lines. 

The first text I identified in the previous section as supporting the view that infinitesimals 

are consistent is 1683’s “Elementa Nova Matheseos Universalis.” This treatise is devoted 

specifically to the foundational uses of algebra, and Leibniz believes his presentation of algebra 
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will have a wider range of applicability than the algebra developed by his predecessors. The 

importance of this text for our purposes is that it presents the two types of impossibility and 

presents arguments that highly suggest that infinitesimals belong to the non-contradictory type 

of impossibility. Here Leibniz says that a truly universal mathematics ought to apply to all 

possible objects of the imagination, and when properly developed in this way, algebra will 

become a logic of the imagination.156 Leibniz says that this implies that metaphysics concerning 

purely intelligible things such as thought, and action is to be excluded from the development of a 

universal mathematics. This accords with a classification of the sciences given in a brief note 

written in the same time period as the “Elementa Nova.”157 In the classificatory scheme of this 

other text, logic is listed as the general science, mathematics is presented as the science of 

imaginable things, metaphysics is referred to as the science of intellectual things, and morals is 

considered to be the science of affects. Leibniz frequently defends the independence of 

mathematics from metaphysical controversies, and this note explains why; the two sciences 

have different domains of inquiry.158  

To further explain this independence afforded to mathematics, we must understand what 

it means to call something a science of the imagination. In the “Elementa Nova,” Leibniz claims 

imagination is primarily concerned with two notions: quality and quantity. After discussing 

similarity, congruence, equality, correspondence, and different operations as notions proper to 

the domain of mathematics, Leibniz notes that some operations cannot actually be carried out 

under certain conditions. Despite these failures, it is sometimes possible to give an 

interpretation of these operations in the symbolism of a formal language, or even exhibit natural 

processes that can be interpreted as alternative representations of such operations. One 

 
156 “Mathesis Universalis tradere debet Methodum aliquid exacte determinandi per ea quae sub 

imaginationem cadunt, sive ut ita dicam Logicam imaginationis.” A VI.4 p. 513. 
157 “De Artis Combinatoriae Usu in Scientia Generali” A VI.4 pp. 510-512. 
158 The start of the Feb 2, 1702 letter to Varignon is another prominent text in which the independence of 

mathematics from metaphysics is defended.  
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example Leibniz gives is subtraction from zero. He claims that this is impossible to subtract from 

nothing, yet this can be exhibited in nature when one owes more than they have.159 Other such 

impossibilities are imaginary roots, as well as the division of prime numbers by another integer. 

But as noted in the previous section, these cases only constitute one type of impossibility. The 

first kind of impossibility is only a seeming impossibility (in speciem impossibiles), and Leibniz’s 

language strongly implies should be read as being equivalent to what he calls in a subsequent 

sentence the per accidens impossibiles.160 It is difficult to pin down exactly what causes 

something to be impossible in this way. In the case of imaginary roots, Leibniz says that the 

impossibility is due to “a lack of the sufficient constitution that is necessary for an intersection,” 

presumably a reference to a claim in the previous paragraph that imaginary roots occur when 

there is no intersection between a given line and circle.161 In this passage Leibniz is referring to 

one particular way of representing roots that can be found in a later text on algebra with a 

similar name to “Elementa Nova Matheseos Universalis”: “Mathesis Universalis.”162 It is worth 

presenting this procedure of representing root extraction, for the details of this method provide a 

greater insight into the frequent comparisons Leibniz makes between imaginary roots and non-

finite quantities. 

 
159 “Ita impossibile est subtrahi cum nihil adest, et tamen hoc in natura repraesentatur, cum quis plus 

debet, quam habet in bonis.” A VI.4 p. 520. 
160 One paragraph ends with the following characterization of in speciem impossibiles: “Et has quantitates 

appello in speciem impossibiles; cum reapse sint reales, praeceptaque trado, quibus id agnosci possit” A 
VI. 4 p. 520. Emphasis in original. The next paragraph begins with “Multum autem interest inter 
quantitates imaginarias, seu impossibiles per accidens, et impossibiles absolute quae involvunt 
contradictionem.” Given that in speciem impossibles quantities are also called imaginariae in former 
paragraph, it seems that in speciem and per accidens are supposed to be equivalent characterizations of 
the same kind of impossibility. 
161 Translation from De Risi 2016, p. 135. The full quote is: “Imaginariae vero seu per accidens 

impossibiles, quae scilicet non possunt exhiberi ob defectum sufficientis constitutionis ad intersectionem 
necessariae, possunt comparari cum Quantitatibus infinitis et infinite parvis, quae eodem modo oriuntur.” 
VI. 4 p. 521. 
162 “Mathesis Universalis,” GM vii pp. 53-76. Although undated in the Gerhardt edition, the date of 1695 is 

given to this manuscript in De Risi 2008. 
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The method of representing roots of quadratic equations as explained in “Mathesis 

Universalis” is as follows. Consider a circle with center 𝐾 and radius 𝐾𝐴 [Figure 3.1]. Produce a 

line segment tangent to the circle with one endpoint being the point of contact between the line 

segment and the circle and call this line 𝐴(𝐹). Produce a line segment perpendicular to 𝐴𝐹 at 

point 𝛷, call it 𝛷𝐺, and call its points of intersection with the circle points 𝐻 and 𝐿 (it is crucial at 

this stage that the point 𝛷 is chosen such that 𝐴𝛷 is smaller than the radius 𝐾𝐴). Leibniz then 

uses variables to specify the lengths of these line segments: 𝑟 = 𝐴𝐾,𝑥 = 𝐴𝛷, and 𝑦 = 𝛷𝐻 (or 

𝑦 = 𝛷𝐿, depending on which root of the quadratic equation/point of intersection one wishes to 

find). Next, he draws the radius 𝐾𝜆 parallel to 𝐴𝐹, and the point of intersection between this 

radius and the line 𝛷𝐺 is called 𝑀. Point 𝑀divides the line segment 𝐻𝐿 into equal halves 𝐻𝑀 =

𝑀𝐿. Since 𝐾𝐻 and 𝐾𝐿 are both radii, each is equal to r. Additionally, one can see that 𝛷𝑀 =

𝐴𝐾 = 𝑟 and 𝐴𝛷 = 𝐾𝑀 = 𝑥. The triangle 𝐻𝐾𝑀 is a right triangle with hypotenuse 𝐻𝑀, so by the 

Pythagorean Theorem, 𝐻𝑀 = √𝐾𝐻2 − 𝐾𝑀2, and one can substitute the previously-specified 

variables to arrive at the equation 𝐻𝑀 = √𝑟2 − 𝑥2. Since 𝛷𝐻 = 𝛷𝑀 − 𝐻𝑀, and 𝑦 = 𝛷𝐻, 𝑦 = 𝑟 −

√𝑟2 − 𝑥2. For the other value of 𝑦, i.e., 𝛷𝐿, one has that 𝑦 = 𝑟 + √𝑟2 − 𝑥2, using essentially the 

same reasoning that identified the value of 𝛷𝐻. Even though Leibniz does not write out the 

quadratic equation for which these values are roots, one can work backwards and see that this 

figure represents the solutions for 𝑦 in the quadratic equation 0 =
1

2
𝑦2 − 𝑟𝑦 +

1

2
𝑥2, where 𝑟 and 

𝑥 are positive constant quantities.  
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Figure 3.1: Imaginary Roots in "Mathesis Universalis"163 

Leibniz notes that under most conditions, the equation 𝑦 = 𝑟 ± √𝑟2 − 𝑥2 ambiguously 

represents two values, corresponding to the two roots of a quadratic equation. But when 𝑟 = 𝑥, 

we have the situation represented in the diagram in which the normal produced from point 𝐶 

intersects the circle in the single point 𝜆 rather than the two points 𝐻 and 𝐿 (where the distance 

𝐴𝐶 is equal to the circle’s radius). Leibniz further notes that when 𝑥 > 𝑟 (indicated in the 

diagram by letting 𝑥 equal the line segment 𝐴(𝐹), where 𝐴(𝐹) is greater than the circle’s radius), 

there will be no points of intersection between the circle and the normal produced from the 

relevant endpoint. Leibniz pairs the geometric impossibility of the line and circle intersecting with 

the impossibility of finding real values for the term √𝑟2 − 𝑥2 when 𝑥2 > 𝑟2. In cases where the 

line segment from which the normal is produced exceeds the length of the circle’s radius, 

Leibniz claims “Whence we learn that this question is not well constituted. And either circle 𝐴𝐵𝐶 

 
163 Diagram from the appendix to GM VII. Modified to replace the C from this diagram with the Φ that is 

mentioned in the body of Leibniz’s proof. 
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whose radius is 𝑟 ought to be assumed greater, or with the same circle remaining, 𝑥 or 𝐴𝐹ought 

to be assumed less, so that what is sought for is able to be obtained.”164 Presumably, what is 

“sought-for” here are the lengths between the endpoint of the normal and the points intersection 

with the circle: 𝐻 and 𝐿. This remark is best read as referring to the problem of specifying points 

of intersection between a line and a circle under the problem’s conditions, rather than extracting 

the roots of a quadratic equation. For if the problem is conceived of as extracting roots from an 

equation, altering the values of 𝑟 or 𝑥 would mean finding roots to an equation other than the 

one initially specified. And the claim that the problem is not “well constituted” (non esse bene 

constitutam) can be read as equivalent to the claim from the “Elementa Nova” that the per 

accidens impossibility of imaginary numbers is a consequence of a “lack of constitution 

necessary for an intersection” (ob defectum sufficientis constitutionis ad intersectionem 

necessariae). Additionally, the fact that Leibniz refers to this problem as poorly constituted in 

“Mathesis Universalis” means that the “lack of constitution” has to do with the way the problem 

is constituted, rather than some kind of deficit that resides in our mathematical or perceptual 

abilities. 

Immediately following the remark about modifying the variables to cause the problem to 

yield real points of intersection, Leibniz remarks upon the importance of allowing such imaginary 

quantities in cases where the initial conditions do not allow for real solutions: “And if such 

imaginary quantities were not given in the calculus, it would be impossible for general 

calculations to be instituted, or common values to be found by possible and impossible [values], 

which differ only through the explication of the letters.”165 That is, if one is given an equation 

 
164 “Unde discimus, quaestionem non esse bene constitutam, et vel debere circulum ABC sive radium 

ejus r assumi majorem, vel eodem manente circulo, ipsam x vel AF assumendam minorem, ut quaesitum 
obtineri possit.” GM vii p. 74 
165 “Et nisi darentur tales quantitates imaginariae in calculo, impossibile foret institui calculos generales, 

seu valores reperiri possibilibus et impossibilibus communes, qui sola differunt explicatione literarum.” 
GM vii. pp. 74-75. “Calculos” in this quote should be read as a generic term for a symbolic system, rather 
than the infinitesimal calculus in particular. The paragraph after this quote is an explanation of how non-
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such as 0 =
1

2
𝑦2 − 𝑟𝑦 +

1

2
𝑥2, then the equation 𝑦 = 𝑟 ± √𝑟2 − 𝑥2 will represent the roots 

regardless of whether 𝑟 is “explicated” as a value less than 𝑥.  

Now that we know the technical details of the connection between imaginary roots and 

non-existent points of intersection that Leibniz makes in “Elementa Nova,” we return to that text 

with a greater understanding of the analogy Leibniz presents between such imaginary quantities 

and non-finite quantities. Although he only mentions explicitly mentions per accidens 

impossibility as arising from the lack of an intersection, we should not read Leibniz as saying 

this is the origin of all cases of this type of impossibility, for this mode of representation through 

intersections of lines and circles is not relevant to Leibniz’s above-mentioned example of 

negative numbers as being represented by one’s debt exceeding their wealth.166 Instead, we 

should read Leibniz’s remark that a lack of an intersection is the source of impossibility per 

accidens as applying only to square roots of negative numbers, rather than all entities that are 

impossible in this limited sense. However, it is easy to imagine how Leibniz would treat other 

cases of impossible representations. If addition and subtraction of quantities are interpreted as 

adjoining or removing undirected line segments of specified lengths, then one cannot represent 

the subtraction of a larger quantity from a smaller one. But by introducing negative quantities 

through the properties that they have in symbolic calculations, equations such as 𝑎 − 𝑏 retain 

significance in the cases where 𝑎 < 𝑏. In this way, quantities that are impossible per accidens 

can be used to systematically “fill in” gaps where an equation would otherwise fail to apply when 

 
finite quantities can be introduced using similar symbolic methods in the infinitesimal calculus, highlighting 
the close connection between such quantities and imaginary numbers that also appears in the “Elementa 
Nova.” 
166 Recall that in the Elementa Nova, negative numbers are considered to be impossible per accidens as 

well. 
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certain conditions are no longer met, even if such quantities can only be represented through 

the symbolism of mathematical notation.167 

The second kind of impossibility mentioned in the “Elementa Nova” is the more familiar 

notion: that which involves a contradiction. This text is not the only place where Leibniz makes 

the distinction between these two types of impossibility, for in another work from the early 

1680s, “On Freedom and Possibility,” Leibniz again mentions the impossibility of representing 

imaginary roots as the intersection of a line and circle and distinguishes this kind of impossibility 

from the that which involves an absolute absurdity.168 Notably, Leibniz uses the difference 

between these types of impossibility to draw a contrast between possible but nonexistent 

entities in the physical world and entities whose existence is absolutely impossible. In the 

“Elementa Nova,” Leibniz simply gives the equation 3 = 4 as an example of an absolutely 

impossible claim, but “On Freedom and Possibility” elaborates on this example and how it 

highlights the difference between the two types of impossibility. If one is asked to solve for 𝑥 

where 𝑥2 = 9 and 𝑥 + 5 = 9, one must claim both that 𝑥 = 3 and 𝑥 = 4 (Leibniz omits the 

possibility that 𝑥 = −3 in the first case). And in this text, Leibniz explains how the contradiction 

between equating 3 and 4 arises; if 3 and 4 were equal, then a whole would equal one if its 

parts, the same principle that Leibniz used to rule out the possibility of infinite numbers in the 

1670s. Presumably, this stems from treating a number n as just a collection of n units, for then 

the number 4 would contain the number 3 as a proper part. Continuing, Leibniz says that this 

type of contradiction is distinct from the case where one is to solve for x in the equation         

𝑥2 − 3𝑥 + 9 = 0. The roots of this equation are 
3±3√−3

2
, a solution which contains the imaginary 

 
167 For more on the importance Leibniz sees in allowing equations to apply even in situations where they 

traditionally would not, see Grosholz 2008. 
168 “On Freedom and Possibility” appears in translation in AG pp. 19-23, and in Latin in A VI.4 pp. 1444-

1449. AG dates it between 1680-1682, while the Akademie editors date it between 1680-1684. 
Regardless of the exact dating, this piece is from the same general period as 1683’s “Elementa Nova 
Matheseos Universalis.” 
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quantity √−3. Acknowledging that one cannot “designate” (non posse designari) a number that 

satisfies this equation, Leibniz maintains that even if one were to admit this number, one would 

not be able to show that a part is greater than its whole or establish any other mathematical 

contradiction. While both cases involve finding the solution to equations that cannot have real 

numbers as their solutions, it is only the case where it is claimed that 𝑥 = 3 = 4 that leads to 

contradiction.  

In “On Freedom and Impossibility,” the distinction between equations that are absolutely 

impossible to satisfy and ones that are only impossible to satisfy when restricting ourselves to 

real numbers is presented as an analogy for the difference between necessary and contingent 

truths, respectively. Some things may not exist due to their incompatibility with other events in 

the actual world, yet this does not mean that they are in and of themselves impossible. The 

example Leibniz gives to illustrate this point in this text is a pentagon. Even if no perfect 

pentagon were to exist in nature, it would still remain a possible notion, for there is no 

contradiction within the mere concept of a pentagon. So, if there were no pentagons to be found 

in nature, the reason for this pentagon-less world would have to be some incompatibility 

between pentagons and the series of objects and events present in the best of all possible 

worlds. I take the analogy between the examples of the different equations and the possibility of 

a pentagon-less world to be that just as the reason for the supposed non-existence of a 

pentagon would have to be located in a principle other than non-contradiction, so to the reason 

for the non-existence of imaginary roots must be located outside of non-contradiction, such as 

the inability to spatially locate such roots.169 While he does not use the terminology of the 

impossible per accidens and the absolutely impossible in “On Freedom and Possibility,” Leibniz 

 
169 Two years after the “Elementa Nova,” John Wallis gives a geometric interpretation of imaginary roots 

in his Algebra, but the historian of mathematics Morris Kline claims his method was “not a useful 
representation” for most purposes (Kline, p. 595). The contemporary representation using the complex 
plane was not developed until the early 19th Century.  
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is clear that there is a stark difference between equations whose solutions involve imaginary 

roots and those that lead to outright logical contradiction. 

The contrast between equations with only imaginary roots and those that have no 

solution whatsoever is used in “On Freedom and Possibility” as an analogy between non-

existent possible physical objects and absolutely impossible ones, respectively. However, in the 

“Elementa Nova,” Leibniz uses the difference between these two types of impossibility to make 

a point about infinitesimals and their reciprocal infinites, saying such entities arise “in the same 

way” as the other mathematical entities that are specified as impossible per accidens. As an 

example of how such quantities can arise, Leibniz gives the following example (it also occurs 

almost two decades later in 1701’s important text on the infinitesimal calculus, Cum Prodiisset.) 

Let 𝐴𝐵 be a straight line segment in which the location of point 𝐵 is allowed to vary, and let line 

𝐴𝐶 be a line perpendicular to 𝐴𝐵 [Figure 3.2]. The precise location of point 𝐵 is determined as 

the intersection of a straight line that passes through point 𝐶 and the line 𝐴𝐵. In the diagram, 

these positions for the different determinate locations of the point 𝐵 are represented by the 

points 𝐵1, 𝐵2 etc. Leibniz notes that the closer angle 𝐶𝐵𝐴 is to a right angle, the smaller the line 

𝐴𝐵becomes. Leibniz then says that in the case where 𝐶𝐵𝐴 is actually a right angle, the line 

𝐴𝐵1becomes infinitely small. Additionally, as the angle 𝐶𝐵𝐴 becomes smaller and smaller, the 

point of intersection, 𝐵, moves farther and farther away from the point 𝐴. In the ultimate case, 

where line 𝐶𝐵is parallel to line 𝐴𝐵, the common point 𝐵 becomes imaginary, a point standing 

infinitely distant. Furthermore, the straight line 𝐴𝐵 (and presumably 𝐶𝐵 as well) become 

infinite.170 While the Law of Continuity is not expressly used to justify these considerations in 

“Elementa Nova,” this principle can be reasonably said to be implicitly invoked. For, just as there 

is always a straight line between points 𝐴 and 𝐵 as the point 𝐵 approaches point 𝐴, there 

continues to be a line when the points are on the verge of coinciding– albeit an infinitely small 

 
170 A VI.4 p. 521. 
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one. And just as there always exists a point of intersection that recedes farther from point 𝐴 as 

the angle of intersection decreases, in the case where the lines are parallel, the point of 

intersection becomes located infinitely far away.171 Returning to the question of possibility, 

Leibniz says that those lacking in mathematical prowess may believe that these quantities lead 

to absurdity, i.e. a contradiction, but those who are skilled know that this “apparent impossibility” 

(apparentem illam impossibilitatem) is illusory. Instead, Leibniz says that those who have an 

adequate grasp on this issue see that the apparent impossibility “only means that a parallel is 

drawn making a sought angle to a straight line; and thus parallelism is that sought angle, or 

better a quasi-angle.”172 Presumably the reference to the “sought angle” means that one can 

think of this example as reflecting some construction problem, such as: given the line 𝐴𝐵 and 

line 𝐴𝐶 perpendicular to it, find a point 𝐵𝑛, such that angle 𝐴𝐵𝑛𝐶 is equal to some specified 

value. For 0° < 𝐴𝐵𝑛𝐶 < 90°, one draws straight line 𝐶𝐵𝑛 so that the 𝐴𝐵𝑛𝐶 is equal to the angle 

specified in the problem. Moreover, there is a continuous movement of point 𝐵𝑛 away from point 

𝐴 as the sought angle approaches 0°, and as this occurs, line 𝐶𝐵𝑛 approaches parallelism 

towards line 𝐴𝐵. So, if one were to set the “sought angle” in the problem to 0°, one could obtain 

the construction by drawing a parallel line. However, such a solution is imaginary, for parallel 

lines do not make an angle, just as there is no actual intersection between the circle and the 

straight line from the example concerning square roots of negative numbers. Similarly, when the 

sought-for angle is specified as a right angle, the straight line 𝐴𝐵 will be infinitesimal.  

 

 
171 As further evidence that some form of the Law of Continuity is being invoked to introduce the 

infinitesimal and infinite lines in Elementa Nova, see 1701’s Cum Prodiisset (Gerhardt 1846 p. 40-41) 
where a substantially similar version of this example is given as an explicit illustration of the Law of 
Continuity. 
172 Translation quoted from De Risi p. 135. Original Latin is: “ut loco rectae angulum quaesitum facientis 

ducatur parallela; hunc parallelismum esse angulum illum seu quasi angulum quaesitum.” In A VI.4 p. 
521. 
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Figure 3.2: Passing from finite to infinite points of intersection173 

 Although the only remarks Leibniz makes about the origin of impossibility per accidens in 

the “Elementa Nova” refers specifically to imaginary roots of quadratic equations and the 

inability to represent them as real points of intersection between a line and circle, it is clear that 

mathematical objects that are impossible per accidens differ from the absolutely impossible, and 

that the absolutely impossible is the only of these two types of impossibility that involves a direct 

contradiction. In his explanation of the distinction between these two types of impossibility, 

Vincenzo De Risi says that perspectival geometry is the only type of non-Euclidean geometry 

that Leibniz would have been able to conceive of at this stage in history. But for Leibniz, this 

geometry would not strictly be “true” of the physical world, for it “does not obey the Principle of 

Determinant Reason and thus cannot exist.”174 At the same time, citing the distinction between 

the absolutely impossible and the impossible per accidens from, De Risi claims that an 

alternative geometry of this form would still be seen as non-contradictory by Leibniz, even if it 

 
173 Figure modified from the one present in A VI.6 p. 521, such that the subscripted indices come after 

each letter, rather than before. 
174 De Risi 2016, p. 101.  
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was not physically instantiated. This explanation helps us to determine more about the space 

between what is absolutely impossible and what is impossible per accidens.  

In saying that perspectival geometry does not obey the Principle of Determinant Reason 

(also known as the Principle of Sufficient Reason), yet still remains consistent, De Risi is making 

a claim that is different from the example of the non-existent pentagon that Leibniz mentioned 

earlier. In that example, the pentagon’s existence or non-existence is determined by the series 

of events in the world with the greatest possible perfection, i.e., the world God chooses to 

create. If the pentagon were included in that infinite series of events, it would exist. If not, it 

would not. But even if the pentagon’s existence were ruled out by its incompatibility with the 

best of all possible worlds, there would still be suboptimal possible worlds that obey the principle 

of Determinate Reason in which that pentagon would exist.175 That is, there will be possible 

worlds in which every effect has a traceable and determinate cause (satisfying the Principle of 

Sufficient Reason), but when all of these causes and effects are taken together, the degree of 

perfection is less than that of other possible worlds (which is why God would not choose to 

actualize these suboptimal worlds). Because comparisons of the total perfection of a possible 

world involves analyzing an infinitude of causes and effects, there is no a priori way for our finite 

minds to know that some existing being will lead to more or less perfection for the world as a 

whole, and thus we cannot make a priori determinations about the existence of such objects.176  

Simply put, there is no way for us to make existence claims between competing possible 

worlds and their constituent objects/events when both satisfy the Principle of Sufficient Reason. 

On the other hand, Leibniz appears to believe that human minds are able to know a priori that 

 
175 Here I am setting aside concerns Leibniz believes no precise geometric objects exist in the physical 

world due to the ever-shifting nature of bodies that are constantly in motion. See Garber 2015 for more on 
Leibniz’s denial of precise geometric objects within the physical world.  
176 “On Contingency,” a 1686 text translated in AG pp. 28-30 is just one of many places where this claim 

occurs. The belief that contingent truths cannot be known a priori to finite minds due to them requiring an 
infinite analysis is a recurrent theme in Leibniz’s thought. 



 

 114 

worlds that contain some violation of the Principle of Sufficient Reason will fail to exist, even if 

such worlds are free from logical contradiction. That is, we are able to confidently assert the 

non-existence of events/objects that come into being for no reason whatsoever, even if such 

events/events are non-contradictory (and hence possible). One of the most famous instances of 

this kind of reasoning comes from Leibniz’s correspondence with Clarke concerning the nature 

of space. In the Postscript to his Fourth Letter, Leibniz says should there be portions of space 

that contain a vacuum, there would have to be a reason for why some specific proportion of 

unoccupied to occupied space obtains in the world. But Leibniz says, “It is impossible that there 

should be any principle to determine what proportion of matter there ought to be, out of all the 

possible degrees from a plenum to a vacuum, or from a vacuum to a plenum.”177 Leibniz then 

argues that a 50/50 split between occupied and empty space is too arbitrary, and the proportion 

should then be equivalent to the degrees of perfection present in matter and vacuum. But since 

by definition, there are no objects in a vacuum, there would be nothing in this unoccupied 

space, which is capable of perfection, and hence God would not create a world in which vacua 

exist. One would not arrive at a logical contradiction by positing a vacuum, but one would have 

to say that God acted without any possible reason by creating a vacuum. Since the existence of 

vacua would violate the Principle of Sufficient Reason, we know that the world must be filled 

with matter in all places. The specifics of how this space is filled remains unknowable a priori 

because it would require an infinite analysis, but we are able to confidently assert that there is 

no portion of matter, for there would be a violation of the Principle of Sufficient Reason if not.178 

In my reading of these texts, we see that an equivalence between “impossible per 

accidens” and “that which violates the Principle of Sufficient Reason” provides a tidy explanation 

of why it is that some things are possible in mathematics, but not in the created physical world. 

 
177 LC p. 28. 
178 Similar arguments rule out the existence of indivisible atoms in favor of matter that is divided into 

smaller and smaller parts, each endowed with their own motions. 
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We already saw that Leibniz distinguishes mathematics from metaphysics based on the subject 

matter of imaginary things or purely intelligible things, respectively. And in his Fourth Letter to 

Clarke, Leibniz lists the Principle of Sufficient Reason and the Identity of Indiscernibles as great 

principles of metaphysics, as opposed to some other structured domain of knowledge.179 

Additionally, in his Fifth Letter to Clarke, Leibniz says that indivisible bodies and bodies that are 

perfectly similar are both consequences of a lazy philosophy that is overly reliant on the 

imagination, as opposed to true metaphysical principles. He again notes that while such entities 

are not absolute impossibilities, their existence would be contrary to the divine wisdom, and 

hence would not exist.180 A few paragraphs later speaking of the concept of motion relative to 

absolute space alone, Leibniz declares “Mere mathematicians who are only taken up with the 

conceits of imagination are apt to forge such notions, but they are destroyed by superior 

reasons.”181 Thus we see that even in his late years, Leibniz distinguishes between what is 

impossible in virtue of contradiction, and what we know cannot happen due to our knowledge of 

metaphysical principles. And these additional principles are not reducible to the Law of 

Contradiction alone. Additionally, the link between mathematics and the imagination as well as 

metaphysics and understanding mirrors the taxonomy of the sciences from 1683 discussed 

above. Hence, some things can be possible within imagination, such as two indiscernible but 

distinct bodies, a vacuum in the physical world, and non-finite quantities. But when one reasons 

about God’s creation, one must account for metaphysical principles, such as the Principle of 

Sufficient Reason, that further winnow the candidates for the actually existent world beyond a 

consideration of non-contradiction alone. 

In this section, we saw that Leibniz draws a distinction between two kinds of 

impossibility: per accidens and absolute. Per accidens impossibility involves no contradiction 

 
179 Letter Four, Paragraph 5. In LC p. 22. 
180 Letter Five, Pagraphs 21-25. In LC pp. 40-41. 
181 Letter Five, Paragraph 29. In LC p. 42. 
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and is compared with imaginary roots. Absolute impossibility is that which involves a 

contradiction, and Leibniz offers “3 = 4” as the paradigm example of this type of impossibility. In 

some cases, the contrast between these two mathematical examples is used to illuminate the 

difference between non-existent possibles and absolutely impossible entities, as seen in “On 

Freedom and Possibility.” In the Elementa Nova, the difference between these two equations is 

used to claim that non-finite quantities are as consistent as these imaginary roots. Developing 

the line that some kinds of geometry may be consistent yet fail to be physically instantiated 

because they violate metaphysical principles, we saw similar remarks that Leibniz makes about 

voids and atoms. I believe that this status that infinitesimals possess as legitimate entities to use 

in mathematics (as opposed to contradictory notions like infinite number) while simultaneously 

being barred from the physical world explains why Leibniz refers to them as “fictions.” Armed 

with this distinction and the conceptual space between claims that violate the Law of 

Contradiction, the Principle of Sufficient Reason, and the Principle of Perfection, we can 

address the tension between holding infinitesimals to be consistent and Leibniz’s remarks to 

Johann Bernoulli that seem to indicate otherwise.  

3.4 Accounting for the Bernoulli Correspondence 

Armed with a fuller understanding of the distinction between the two different types of 

impossibility that Leibniz identifies, we can return to the correspondence with Johann Bernoulli. 

In this section, I argue that although Leibniz does not explicitly draw the distinction between the 

two types of impossibility in his correspondence with Bernoulli, his remarks on the impossibility 

of infinitesimals are best read as referring to per accidens impossibility rather than absolute 

impossibility. Under this reading, there is no tension between these remarks and the 

consistency of infinitesimals. 
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Recall the problematic passage for the reading where infinitesimals are consistent is the 

following passage from Leibniz’s November 18, 1698 letter: 

As concerns infinitesimal terms, it seems to me not only that we cannot penetrate to 

them but that there are none in nature, that is, that they are not possible. Otherwise, as I 

have already said [in a letter dated July 29 of the same year], I admit that if I could 

concede their possibility, I should concede their being.182 

The first notable feature of this argument is its conflict with what Leibniz says elsewhere about 

possibility. Here Leibniz starts by saying that there are no infinitesimals in nature and uses this 

fact to justify their impossibility. But elsewhere, including his correspondence with Johann 

Bernoulli, Leibniz is very careful in emphasizing that just because something does not exist 

does not mean that it must be impossible.183 In fact, this was the whole point of the pentagon 

example described above was that non-existence is not sufficient to indicate impossibility. 

Despite his emphatic defense of this position, this quote in his letter to Bernoulli seems to be an 

argument from the non-existence of infinitesimals to their impossibility.  

  However, the second sentence of this quote shows that the argument rests on the 

premise that if infinitesimals were possible, they would be actual. This is a premise that is 

lacking from the pentagon example and other discussions of non-actual possibles. The letter to 

Bernoulli from July 29, 1698 contains the line where Leibniz gives this uncharacteristic link 

between possibility and existence referred to in the November 18 letter, but he does not give 

evidence for his claim, other than simply saying that should non-finite quantities be possible, 

 
182 Translation from Loemker, p. 511. Original Latin is: “Quod terminos infinitesimos attinet, videtur mihi 

non tantum ad eos non posse a nobis perveniri, sed etiam eos non esse in natura id est non esse 
possibiles alioqui fateor ut jam dixi si concederem esse posse, concederem esse.” In A III.7 p. 943.  
183 One place where this occurs is in the January 13, 1699 letter to Bernoulli, where Leibniz denies the 

existence of atoms and vacua, but does not say they are therefore impossible, only contrary to divine 
wisdom (“non esse divinae sapientiae consentanea”) (in A III.8 p. 38). And in another letter in this 
correspondence, from February 24 of the same year, Leibniz says that actual things are just the best 
possible things, and there are hence many non-existent possibles (in A III.8 p. 64). 
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they would exist.184 And one month later, Leibniz tells Bernoulli that this earlier hypothetical was 

not a declaration of the impossibility of infinitesimals, but simply a way to leave the matter in the 

middle.185  

This justification for the additional premise that if infinitesimals were possible, they would 

actually exist becomes even harder to understand when one considers that Leibniz frequently 

says that God is the only entity whose existence follows from its possibility.186 However, this 

argument becomes easier to square with Leibniz’s statements about this unique property of God 

if one reads it as analogous to his arguments against empty space and invisible atoms rather 

than reading them as on par with his statements about God’s necessary existence. Prior to 

delivering the line in the July 29, 1698 letter that if infinitesimals were possible, they would be 

actual, Leibniz repeats claims that we have seen him make elsewhere about infinitesimals being 

similar to imaginary roots in algebra and replaceable with a series of continually diminishing 

finite quantities. Leibniz then states another doctrine that appears in numerous other texts; there 

is no portion of matter that is not divided into other portions of matter. But this does not mean 

that matter is divided into infinitely small parts; the divisions are always into finite parts that 

continually become smaller. Switching from bare matter itself to organic bodies, Leibniz says 

that even conceding that every animal is always composed of smaller animals does not force 

one into accepting infinitely small animals, let alone animals that are the ultimate constituents of 

other animals. In a letter to Bernoulli from a year later, Leibniz explicitly draws an analogy 

between vacua and atoms, saying that while there is no contradiction in a world with empty 

space or undivided bodies, such worlds are less than perfect: “However it is manifest that a 

 
184 “Si talia de quibus inter nos agitur infinita et infinite parva, possibilia esse concederem, etiam 

crederem esse.” A III.7 p. 858. 
185 “Cum dixi si infinite parva et possibilia crederem, me concessurum ea esse; non ideo dixi ea esse 

impossibilia, sed rem in medio adhuc reliqui.” August 22, 1698. A III.7 p. 884. 
186 “On Freedom and Possibility” is one place in which this unique aspect of God is listed (AG p. 19). 

Bassler 1998 argues that there is a structural analogy between arguments for God’s existence and the 
existence of infinitesimals here (p. 860, footnote 34). 
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vacuum (and equally atoms) leave places sterile and uncultivated, in which another thing could 

have been produced, yet with all remaining things preserved.”187 Thus, we can use the Principle 

of Sufficient Reason to confidently know that there will be no undivided portions of matter, even 

if we cannot a priori determine which possible divisions will lead to the greatest possible 

perfection, and hence be actual.  

This later message to Bernoulli concerning the infinitely-nested division of matter tells us 

why Leibniz believes that the possibility of infinitesimals entails their existence. If it were 

possible to divide matter into infinitely small bodies with differing motions, then there would be a 

layer of diversity that would not be present in a world where there are only finitely small beings. 

To use Leibniz’s phrase, God would not allow such a “sterile and uncultivated” realm to remain 

without infinitely small bodies, although allowing them to remain would only violate the Principle 

of Sufficient Reason, not the Law of Contradiction. In this way, God’s existence and the 

existence of infinitesimals are not on even footing, for Leibniz believes that if a definition of God 

were possible, God would exist by necessity. Whereas the existence of infinitesimals would only 

follow from their possibility with the additional consideration that God decides to only create the 

world with maximal diversity/perfection. And it is crucial to Leibniz’s account of God’s that this 

choice is made freely, rather than by necessity.188 Hence, when Leibniz says of infinitesimals “if 

I could concede their possibility, I should concede their being,” this claim only holds under 

additional suppositions about the nature of God’s creative act. This is a strange conclusion 

since other objects cannot be inferred based on their possibility alone, and we are unable to say 

 
187 “Vacuum autem (perinde ac Atomos) relinquere loca sterilia atque inculta manifestum est, in quibus 

tamen salvis caeteris omnibus aliquid adhuc produci potuisset. Talia vero relinqui cum sapientia pugnat.” 
From January 13, 1699. A III.8 p. 38. 
188 This is an early belief of Leibniz that persists throughout his thought. One can find it in early on in 1678 

notes on Spinoza’s Ethics, where he says that Spinoza’s claim that God necessarily created the world in 
the only possible way it could be created is only true under the hypothesis that God chooses the best, 
rather than necessary in an unqualified sense. (Note to Proposition 33, in L p. 204). As evidence that it 
remains a stable element of Leibniz’s thought, one can find the claim in 1714 in “The Principles of Nature 
and Grace, Based on Reason,” §11 (translated in L p. 639-640). 
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that any particular object would bring more good into the world than another because we need 

to take account of how each would or would not be compatible with infinitely many other 

possible events that could lead to a world with greater perfection. Part of the strangeness of this 

reading is the fact that rejecting something's possibility on account of its non-existence is a 

strange claim for Leibniz to be making in the first place. However, we can reduce this tension by 

realizing that Leibniz is not saying if some individual infinitesimal body is possible, it would be 

actual. Instead, this is a claim about the existence of infinitesimal-sized bodies in general, rather 

than the existence of some determinate configuration of such bodies in particular. And for 

whatever reason, Leibniz seems to believe that infinitesimals are impossible, but the reason for 

their non-existence could come from metaphysical, rather than logical, principles. Thus, we can 

read the reference to infinitesimals as not being possible as a claim that they are impossible per 

accidens, rather than absolutely impossible.  

 If we interpret this line of argument with Bernoulli as claiming that non-finite quantities 

are impossible in nature, but not absolutely impossible, we have a way to preserve the logical 

consistency of infinitesimals. But we still need a reason for their metaphysical impossibility. 

Unfortunately, Leibniz never explicitly gives such a proof.189 In the remainder of this section, I 

construct an argument for exactly why non-finite quantities would violate metaphysical 

principles, in particular the Identity of Indiscernibles. My reading of Leibniz’s remarks to 

Bernoulli requires there to be a reason that rules out non-finite quantities that does not reduce to 

the Law of Noncontradiction. I am not committed to this being Leibniz’s actual argument, but 

merely one that he could have given. While such speculation is always fraught with danger, 

Leibniz’s failure to actually provide his reasons for ruling out infinitesimals in nature puts my 

 
189 Levey, 2008 notes the point that no such proof has yet surfaced in Leibniz’s extant writings (p. 116). 

Although he appears to be looking for a proof of absolute impossibility rather than impossibility per 
accidens, the point remains that there appears to be no clearly labeled proof in support of the claim to 
Bernoulli that non-finite quantities are not possible.  
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reading in no worse a position than one that seeks to ascribe absolute impossibility to 

infinitesimals, for he does not give a definitive proof of absolute impossibility either. The upshot 

of the argument I develop here is that if organisms of an infinitesimal size were to exist, there 

would be no way to distinguish between them and finite bodies. 

The following argument shows that if infinitesimals or bounded infinite bodies were real, 

we would be unable to tell whether our bodies were finite quantities, infinitesimal ones of any 

given degree, or a bounded infinite corresponding to reciprocal of an infinitesimal quantity. This 

supposition is not a reductio ad absurdum argument per se, for no logical contradiction results 

for the supposition of infinitesimal quantities. Instead, we will see that a world in which our 

bodies are finitely sized would be indistinguishable from ones where they were on some level of 

non-finite quantity, a case in which things go haywire, but not because of absolute impossibility. 

Suppose our own bodies were finite in extension, and let 𝑥 stand for our height. Then if we 

consider some other quantity 𝑦, it is possible to deduce whether or not 𝑦is finite by using the 

Archimedean property: if 𝑥 < 𝑦, then there should be some natural number 𝑛 such that 𝑛𝑥 > 𝑦, 

and if 𝑥 > 𝑦, there should be some natural number 𝑛 such that 𝑥 < 𝑛𝑦. If there is no such 

natural number 𝑛 for either of these possibilities, then 𝑦 is either infinitely long in the case where 

𝑥 < 𝑦, or 𝑦 is infinitesimal in the case where 𝑥 > 𝑦. But if there were no such natural number 𝑛, 

any conclusion that 𝑦 is either infinitely long or infinitesimal only holds under the supposition that 

we already know that our own bodies are finite. For suppose our own bodies were actually at 

the infinitesimal level, with a length of 𝑑𝑥. Then if we consider a quantity 𝑦 that is actually finite, 

there will be no finite number 𝑛 such that 𝑛𝑑𝑥 > 𝑦, so finite quantities will appear to us as if they 

were infinite. Additionally, any quantity 𝑑𝑦 that does satisfy Archimedes’ Axiom with respect to 

𝑑𝑥 will also be infinitesimal. In this case, infinitesimals of the second order, such as 𝑑𝑑𝑥 and 

𝑑𝑑𝑦 would appear as infinitesimal. And if our bodies were actually infinitely extended, finite 

quantities would appear as infinitesimal, and only infinities of a higher order would be 



 

 122 

considered as infinite. Thus, using the Archimedean property, we can only tell if a quantity is 

infinitely smaller or larger relative to another quantity.  

 One other possible attempt to discern finite quantities from non-finite ones is by 

considering a quantity’s reciprocal. If the quantity 𝑥 is finite, then 𝑥−1will also be finite. However, 

should 𝑥 be infinitely small, then 𝑥−1would be infinitely large. And 𝑥−1would be infinitely small 

should 𝑥 be infinitely large.190 Given this assumption, we can simply classify finite lengths as 

those whose inverses can be compared using the Archimedean property; there will exist some 

number 𝑛 such that 𝑛𝑥−1 > 𝑥 or 𝑛𝑥 > 𝑥−1, in cases where 𝑥−1 < 𝑥 and 𝑥 < 𝑥−1, respectively. 

While this may seem promising, any attempt to implement it to bodies in the world would fall into 

trouble. Taking the inverse of 𝑥 means finding some value 𝑦 such that 𝑥𝑦 = 1. But since 

quantities in the world do not come with a pre-established metric attached to them, we must 

stipulate a quantity that serves as a unit length. A traditional way to construct this would be to 

use the construction in Euclid VI.8. This proposition tells us how to construct the fourth 

proportional between three given quantities, i.e., is to find 𝑥 such that 
𝑎

𝑏
=

𝑐

𝑥
 (where 𝑎, 𝑏, and 𝑐 

are given quantities). If one lets 𝑏 = 𝑐 = 1, then the proportion becomes 𝑎/1 = 1/𝑥, equivalent 

to 1 = 𝑎𝑥, making 𝑥 the inverse of 𝑎. The general method of finding a fourth proportional is to 

represent the original three quantities as lines 𝐴, 𝐵, and 𝐶 [Figure 3.3]. Then one draws two 

lines 𝐷𝐸 and 𝐸𝐹 at any angle (other than 180°) that meet at some point 𝐷. Then, one specifies 

points 𝐺, 𝐸, and 𝐻 such that 𝐷𝐺 = 𝐴, 𝐺𝐸 = 𝐵, and 𝐷𝐻 = 𝐶. One then draws a straight line 

segment 𝐺𝐻, and the line segment 𝐸𝐹 parallel to 𝐺𝐻. Since line 𝐺𝐻 is parallel to the base of 

triangle 𝐷𝐸𝐹, the proportion 
𝐷𝐺

𝐺𝐸
=

𝐷𝐻

𝐻𝐹
 holds. And by the earlier equalities, 

𝐴

𝐵
=

𝐶

𝐻𝐹
, meaning 𝐻𝐹 is 

the fourth proportional we originally wished to construct. Stipulating some element as our unit 

 
190 According to Rules 10 and 11 of Knboloch’s reconstruction of Leibniz’s arithmetic of the infinite in the 

early 1760’s text De Quadratura Arithmetica. Knobloch 2002, p. 67. 
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length and setting the two middle terms in the proportion equal to that unit gives us a way to 

represent the algebraic concept of taking a reciprocal quantity.191 

 

Figure 3.3: The construction of a fourth proportional 

However, this inverse construction procedure also fails to allow us to distinguish the 

finite from the infinite in the physical world. For we must first stipulate some line to serve as 1. If 

we stipulate a finite line, then we do get the desired result that a quantity 𝑥 is finite if and only if 

𝑥 and 𝑥−1are comparable by the Archimedean property. But if we allowed some infinitesimal 

line 𝑑𝑦 to serve as our stand-in for the unit length, then the proportion would be 
𝑥

𝑑𝑦
=

𝑑𝑦

𝑧
 (where 

𝑧is written in place of the earlier-used 𝑥−1, for as we will see, there are reasons to be wary of 

calling this 𝑧 the “actual” inverse of 𝑥). In this case, if 𝑥 is finite, then 
𝑥

𝑑𝑦
 will be infinitely large, 

since 𝑑𝑦 is infinitely small.192 And if 𝑧is finite, 
𝑑𝑦

𝑧
 will be an infinitely small quantity divided by a 

finite quantity, which is another infinitely small quantity. Since 
𝑥

𝑑𝑦
 is infinitely large and 

𝑑𝑦

𝑧
 is 

 
191 Note that this is similar to the construction Descartes used to construct the product of two lines without 

representing it as a rectangle. There, Descartes picks an arbitrary line to serve as 1, and gets the product 
ab by the proportion 1:a :: b:ab. Both techniques involve using Euclid’s construction with a privileged unit 
element, the only difference is where in the equation that element occurs. 
192 By Rule 10 in Knobloch 2002. p. 67. 
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infinitely small, the two patently cannot be equal. Hence the supposition that 𝑧 is finite must be 

false. The only option is for 𝑧 to be an infinitesimal of a lower order that is infinitely small with 

respect to 𝑑𝑦, which would allow 
𝑑𝑦

𝑧
 to be equal to 

𝑥

𝑑𝑦
. And under the supposition that we chose 

infinitesimal 𝑑𝑦as our unit element, if we take an infinitesimal quantity of the same order, say 𝑑𝑥, 

and construct its inverse, the ratio 
𝑑𝑥

𝑑𝑦
 will be finite, and so will 

𝑑𝑦

𝑧
. This means 𝑧 will be an 

infinitesimal quantity of the same rank as the initial 𝑑𝑥. Similar problems will occur if we choose 

an infinitely long line as our initial unit length. If we select a finite line as our unit element, the 

procedure for constructing inverses will tell us that the inverse of a finite quantity is another finite 

quantity. But if we originally pick a non-finite quantity, the quantities whose inverses are 

comparable via the Archimedean property will be quantities of the same non-finite rank as the 

unit element. And an attempted definition of finite quantities as those whose inverse is also finite 

only works under the condition that the line, we use to construct inverses is itself finite. But 

assuming that we can select such a line simply begs the question. 

 Hence, it seems that there is no way to determine whether or not a quantity is finite or 

infinite. This means that if there were actually infinitesimal beings, they would be unable to tell 

that they were infinitely small. From their perspective, they would be finite, and we would be 

infinitely large. And given Leibniz’s earlier-mentioned thoughts on infinite divisibility, these 

infinitely small bodies would themselves be divided into smaller and smaller portions. And since 

division of our finite matter proceeds into infinitely small parts, there seems to be nothing 

stopping the possibility of the matter in this infinitesimal realm as being divided into parts 

infinitely small with respect to it. And in this new doubly infinitely small realm, everything will 

seem finite, and it will also be subdivided into parts infinitely smaller than it. And I cannot think of 

any reason why this process should stop at any particular level, and so there will be an infinitely 

descending chain of infinitely smaller and infinitely smaller active levels of the universe. In this 

originally stipulated infinitely smaller world, our own world would be infinitely large with respect 
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to it. For this reason, there seems to be nothing stopping there from being a world infinitely 

larger than our own, of which our bodies are the divisions into infinitely small parts. And if this is 

possible, what possible reason could prevent God from creating organic bodies infinitely greater 

than those, and so on? This supposition leads to a problem, however. What if God shifted these 

levels? So instead of being finite, we become the first infinitely small level, and what was 

formerly the first infinitely large level becomes finite. There would be no way for us to discern 

that we are no longer the finite level, for there was no way to tell whether or not we had this 

property to begin with. Since this would mean a change without a difference, God would have 

no reason to designate one level as finite over another, and Leibniz firmly believes that changes 

in name only are no changes at all. Hence, we can be metaphysically certain that there will be 

no infinitesimals, since their existence would force God into a choice (about which quantities will 

really be finite) without any possible reason for the basis of that choice. And the Principle of 

Sufficient Reason guarantees that this will never happen. Hence, while infinitesimals are not 

themselves contradictory, their existence would be a violation of the Principle of Sufficient 

Reason and can be deemed “impossible” in the per accidens sense of the term. 

Given these considerations, we can construct a hierarchy of possibilities [Table 1]. First, 

there is what necessarily exists. For Leibniz, this is God alone, and all else is contingent.193 

Next, there is the actual world and all of the individual objects that compose it. The existence of 

our world is contingent, and it is selected because according to Leibniz, famously and 

infamously, it is the best of all possible worlds. We are unable to a priori specify the existence of 

any particular individual within this world because we would have to do an infinite comparison 

between all of the worlds and their constituent individuals (save for atoms, voids, and other 

violations of the PSR, which fall within the penultimate category). The next category is the 

unactualized possible worlds that contain fully determinate series of events but are not selected 

 
193 In “On Freedom and Possibility” AG p. 19. 
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for creation by God due to their inferiority in comparison to the actual world. Their non-existence 

is contingent in the sense that God has the power to actualize them should he be so inclined 

(but the nature of God’s wisdom and benevolence means he never will have such an 

inclination). Next is the category of worlds and objects that are still possible in the sense that 

God could actualize them but violate the PSR. Unfortunately, Leibniz never schematically 

expounds upon, or even explicitly recognizes, this category. But his remarks about atoms and 

voids make it clear that such worlds are possible in the sense that they are free from 

contradiction yet are distinct from the previous class of possible worlds because we can rule out 

their existence a priori. I believe that worlds with infinitesimal bodies fall into this category, for 

infinitesimals are possible in and of themselves, and Leibniz’s banishment of them from the real 

world must have a source in a principle beyond logic alone. Finally, is that which by necessity 

does not and cannot exist. In this category falls everything that contains logical contradiction, 

and not even God could actualize the denizens of this category.  

Although the argument from the impossibility of distinguishing the finite from the infinite 

is a speculative reconstruction of a possible reason for why Leibniz believed in the metaphysical 

impossibility of infinitesimals, the lack of a smoking gun is an evidentiary gap that all 

interpretations of Leibniz’s fictionalism must reckon with. Building any case that accounts for 

Leibniz’s statements about the impossibility of non-finite quantities with evidence that he 

regards them as free from contradiction requires a good deal of circumstantial evidence to 

explain either how the two views fit together, or why Leibniz changes his mind in a relatively 

short time span. For this reason, while I can only offer a tentative source for Leibniz’s denial of 

infinitesimals, I am not in a uniquely problematic position in doing so.  

 

  



 

 127 

Table 1: Ranges of (im)possibility. 

 

Necessarily 

existent 

objects. 

The actual 

world and its 

inhabitants. 

Possible 

worlds that 

uphold PSR. 

Possible 

worlds and 

objects in 

which the PSR 

fails. 

Necessarily 

non-existent / 

contradictory 

objects. 

God is the only 

being Leibniz 

believes exists 

by necessity. 

The best of all 

possible worlds. 

Obeys the PSR 

and when taken 

as a whole, as 

the most 

diversity and 

perfection in 

comparison to 

other possible 

worlds. 

 

Possible worlds 

in which every 

event has a 

cause. Not 

actualized by 

God due to 

being suboptimal 

relative to the 

actual world. 

Possible worlds 

that are not only 

suboptimal, but 

also violate the 

PSR. Includes 

worlds with 

vacuums and 

atoms, as well 

as worlds with 

infinitesimals 

and concepts 

impossible per 

accidens. 

Square circles, 

wholes equal to 

some of their 

parts, etc. 

Logically 

contradictory 

and not even 

God has the 

power to create 

them. 

Existence is 

necessary. 

Existence is 

contingent. 

(Depends on 

Principle of 

Perfection) 

Existence is 

contingent. 

(Depends on 

Principle of 

Perfection) 

Existence is 

contingent 

(Depends on 

Principle of 

Sufficient 

Reason) 

Non-existence is 

necessary. 

Existence can 

be argued for a 

priori. 

No a priori way 

to specify what 

particular 

individuals are 

included / 

excluded. 

No a priori way 

to specify what 

particular 

individuals are 

included / 

excluded. 

Can a priori 

know that worlds 

with these 

violations of the 

PSR will not be 

created. 

Can a priori 

know that such 

contradictory 

concepts have 

no place in the 

created world. 
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It is also worth mentioning an additional difficulty in the argument for this position.194 In 

Section 3.3, I used the comparison between imaginary roots and infinitesimals to show how 

infinitely small lines and their infinitely large reciprocals are only impossible per accidens, 

meaning there is no contradiction involved in positing them as objects in the course of 

mathematics. In this chapter, I used the fact that infinitesimals were only impossible per 

accidens to read Leibniz’s remarks to Bernoulli where Leibniz reasons from infinitesimals not 

being actual to their being impossible as an indicator of metaphysical impossibility rather than 

logical impossibility. This metaphysical impossibility was then said to be rooted in violations of 

the Principle of Sufficient Reason. This puts infinitesimals in the same category as voids and 

atoms, objects that God could create without contradiction, although we can a priori rule them 

out of the order of existing things because of their violations of divine wisdom. The problem is 

that reading impossible per accidens as “something God could create in virtue of His power yet 

is deficient in ways that allow us to a priori deny their existence from metaphysical 

considerations” works much better for infinitesimals than for imaginary numbers. But can we say 

that God could create a world where imaginary roots are real? Part of the difficulty in answering 

this question is that while we could be able to give at least a vague description of what it would 

look like if infinitesimals were real, it is much harder to give a story about what a world where 

imaginary numbers are actually instantiated even means. Any answer that mentions the 

complex plane would only be of use to anyone who was defending this position on their own 

behalf rather than actually thinking about how Leibniz would have answered this question, for 

the complex plane was not used as a representation for imaginary numbers until long after 

Leibniz’s death.  

Despite this difficulty in imagining what such a world would look like, I will do my best to 

explain how it would violate principles of intelligibility that would rule out the existence of 

 
194 My thanks to Jeremy Heis for pressing me on this topic. 
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imaginary roots, while trying to avoid using mathematical tools that would have been 

unavailable to Leibniz. Recall how Leibniz motivated imaginary numbers as an intelligible 

concept: he used geometric reasoning to extract an algebraic formula that represented the 

relationship between a circle, a straight line tangent to the circle, and the points of intersection 

between the circle and lines normal to the tangent line: 𝑦 = 𝑟 ±  √𝑟2 − 𝑥2 (the above discussion 

of Figure 3.1 was where this formula was derived). Leibniz remarks that even though there are 

no real points of intersection when 𝑥 > 𝑟, there is no contradiction with using symbolic and 

algebraic reasoning to act as if there were points of intersection that are not present on the 

normal geometric plane. The trouble with saying what it would be like if such points of 

intersection were created by God in our real world is that Leibniz only reasons with such entities 

via their symbolic representation in algebraic reasoning; he does not have a fully-developed 

geometric theory of such objects in the same way as he does with infinitesimals. Faced with the 

question of what it would mean to physically reify imaginary quantities, the answer that strikes 

me as involving the least amount of speculation is to say that it would mean bodies that do not 

intersect phenomenally could nevertheless have common borders that were in principle 

unobservable phenomenally, for this seems to capture the essence of Leibniz’s introduction of 

imaginary quantities as representing points of intersection of otherwise non-intersecting objects. 

One meaning of these imaginary points of intersection being real is that bodies could exert force 

on one another without touching phenomenally, for the imaginary point of intersection is the 

“place” where these two objects touch outside of phenomenal space. Leibniz was notoriously 

harsh on the Newtonian conception of gravity being a revision of inexplicable occult forces, 

reflecting his belief that Pre-Established Harmony ensures that God’s divine wisdom will ensure 

that we live in a world explicable through mechanistic laws that involve contact action alone. If 

Clarke had responded to Leibniz that gravity was not action at a distance but was in fact the 

result of contact between bodies that only seemed to be distant because the points of 
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intersection were real but phenomenally inaccessible, it is far more likely than not that Leibniz 

would have ridiculed this view rather than entertain it as a viable explanation of natural 

phenomena. The problem with worlds that have phenomena that cannot be explained using the 

principles of mechanism alone is that they violate intelligibility criteria imposed by God, rather 

than being worlds that are absolutely beyond his power. Therefore, if we can think of a world 

where imaginary points of intersection are real as one in which bodies are able to act on each 

other in ways that appear to be at a distance, then Leibniz would reject such a world because it 

violates metaphysical criteria imposed by God’s wisdom. Obviously, I cannot claim that Leibniz 

would have viewed the reification of imaginary points of intersection as being represented by 

apparent action at a distance, or even that descriptions of a world with imaginary points would 

have been recognized as an intelligible question in the first place. But this is one way to see 

how Leibniz would have a priori rejected such a possibility without declaring it an absolute 

impossibility, meaning it would be in the same ontological category as atoms and voids. And this 

category is where I argued infinitesimals and their reciprocals belong.   

 While the interpretation that helps us see how Leibniz could assert that infinitesimals are 

impossible in nature while still believing that they are free from contradiction (by being 

impossible per accidens), the passages from the New Essays still must be accounted for, which 

leads us to the final section of this chapter. This evidence is especially concerning because the 

reading given here still requires them to be free from contradiction, yet contradiction is explicitly 

mentioned in the New Essays. 

3.5 “A space … made up of parts” 

 I now take up another possible piece of evidence against my reading of infinitesimals as 

consistent fictions. As I have repeatedly emphasized throughout this chapter, Leibniz’s 

descriptions of infinitesimals make them more possible than the logical contradictory but are still 
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barred from existence in the created world. Perhaps the most damning piece of evidence 

against this view is the line from the New Essays that was quoted in Section 3.2 of this chapter. 

There, Leibniz says that a space that is thought of as an infinite whole made up of parts is 

contradictory, groups this concept with infinitesimals, and says that such quantities are only 

useful in mathematics. In this section, I explain how the qualifier “made up of parts” is essential 

to the point of this passage in the New Essays, allowing us to say that infinitesimals in a 

mathematical context remain free of contradiction. The distinction between the ideal space of 

geometry and the real space of the created world is introduced in this section but receives a 

more detailed treatment in the next chapter on the ways infinitude arises in Leibniz’s account of 

the created world. 

 Book 2, Chapter xvii of the New Essays is titled “Of Infinity.” Leibniz’s overall aim in this 

chapter is focused on arguing that, contrary to Locke, we have a positive idea of the infinite, and 

that this idea is innate and is not given to us by sense experience, a consideration that again 

goes against Locke’s account of human understanding. Leibniz uses the first section of this 

chapter to mention the difference between a categorematic and syncategorematic 

understanding of the infinite, and only the latter is actual. He says that it is correct to say that 

there exists an infinity of things but denies that one can collect these into a genuine whole. He 

says that any true infinite is that which is absolute and precedes any composition from parts. He 

goes on to disagree with Locke about whether the infinite is a “modification of expansion and 

duration” or any notion with “magnitude or multiplicity” (with Leibniz settling on the latter) and 

whether or not it is the infinite or the finite that is a modification (with Leibniz again opting for the 

latter).195  

 
195 New Essays p. 158. 
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 Next comes Section 3, in which Leibniz gives the quote that is worrisome for the 

interpretation of infinitesimals I have been advancing. Due to its importance, I quote it in full: 

Philalethes [Locke’s spokesman]: It has been our belief that the mind gets its idea of 

infinite space from the fact that no change occurs in its power to go on enlarging its idea 

of space by further additions. 

Theophilus [Leibniz’s spokesman]: It is worth adding that it is because the same 

principle can be seen to apply at every stage. Let us take a straight line, and extend it to 

double its original length. It is clear that the second line, being perfectly similar to the 

first, can be doubled in its turn to yield a third line which is also similar to the preceding 

ones; and since the same principle is always applicable, it is impossible that we should 

ever be brought to a halt; and so the line can be lengthened to infinity. Accordingly, the 

thought of the infinite comes from the thought of likeness, or of the same principle, and it 

has the same origin as do universal necessary truths. That shows how our ability to 

carry through the conception of this idea comes from something within us, and could not 

come from sense-experience; just as necessary truths could not be proved by induction 

or through the senses. The idea of the absolute is internal to us, as is that of being: 

these absolutes are nothing but the attributes of God; and they may be said to be as 

much the source of ideas as God himself is the principle of beings. The idea of the 

absolute, with reference to space, is just the idea of the immensity of God and thus of 

other things. But it would be a mistake to try and suppose an absolute space which is an 

infinite whole made up of parts. There is no such thing: it is a notion which implies a 

contradiction; and these infinite wholes, and their opposites the infinitesimals have no 

place except in geometrical calculations, just like the use of imaginary roots in 

algebra.196   

 

The first portion of Theophilus’s reply mimics the reasoning Locke sets out in the corresponding 

passage of the “Old” Essay Concerning Human Understanding, in which he says that our power 

to continually add or multiply any given length without having a reason to stop is the origin of our 

idea of infinite space. In his recasting, however, Leibniz emphasizes the importance of 

continuing the same operation, rather than continuing with any arbitrary chain of different 

operations that increase the magnitude in question. It seems that under Locke’s presentation, 

one could gain the idea of infinite extension by taking a quantity x, doubling it, adding x again to 

 
196 New Essays p. 158. 
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this quantity, doubling the result, adding another arbitrary quantity, quintupling that result, and 

continuing these operations without rhyme or reason. Instead, Leibniz thinks it is important that 

we apply one and the same operation without limit (with the tacit assumption that the operation 

is one that will increase the quantity without limit, rather than continually applying an operation 

that results in a convergent infinite series). However, it is also possible that this disagreement is 

superficial, as “increase this line segment by an arbitrary length” would be a principle that also 

yields a line segment similar to the original, and adding any other arbitrary line segment to the 

resulting one would create yet another similar segment. If this were the case, Leibniz would not 

so much be disagreeing with Locke in the first portion of Theophilus’s response but drawing out 

something he sees as implicit in Locke’s argument. 

 Regardless of whether or not this part of Theophilus’s reply is a genuine disagreement 

with Locke, it is clear that the remainder of his response is a critique of Locke’s viewpoint. 

Leibniz compares our idea of the infinite with necessary truths. This point of comparison 

revolves around neither being something that Leibniz sees as obtainable through empirical 

sources. In the preface to the New Essays, Leibniz says that our understanding of necessary 

truths are the result of innate ideas and principles without our own mind. Leibniz agrees with 

Locke that sensory experience is necessary for all of our knowledge, but he points to the truths 

of mathematics and logic as showing that such empirical sensations are not sufficient for all 

instances of knowledge, for “we must contribute something from our side.”197 The necessity of 

sense experience comes from the fact that these innate ideas are not immediately transparent 

to us but arise from our careful introspection and prompting from sensory experience. Hence, 

the process of repeating one and the same operation does not generate the concept of the 

infinite, but instead illuminates an already existing idea within us. Leibniz makes this point 

earlier in his discussion of eternity, where he says, “the idea of the absolute is, in the nature of 

 
197 New Essays, p. 49. Emphases in original. 
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things, prior to that of the limits which we contribute, but we come to notice the former only by 

starting with whatever is limited and strikes our senses.”198 

 We now arrive at the problematic passage: Leibniz’s declaration that an infinite space is 

contradictory, and so are infinitesimals, by extension. The way out of this is to note that Leibniz 

here is specifically warning us to not dabble in an infinite space that is “composed of parts.” This 

naturally raises the question of whether we can think of an infinite space that is not composed of 

parts, and answer that has a resounding “yes!” As Vincenzo De Risi makes clear in his work on 

Leibniz’s analysis situs, Leibniz’s mature position is that space is constituted by points, but is 

not composed of them.199 In the case of the ideal space of geometry, this is because no parts 

exist unless specified, a reflection of Leibniz’s principle that the mark of an ideal object is the 

priority of the whole to its parts.200 Thus, while we can specify an infinitude of points within 

geometric space, or an infinitude of finite shapes, we can think of an infinite space without 

thinking of it as being composed of parts. This is an incomplete notion, for such a space leaves 

open the possibility of an infinitude of divisions. And it is precisely because it is an ideal and 

incomplete notion that does not already presuppose the existence of infinitely many parts that 

we are able to think of it as one whole without contradiction. So long as we remain in the realm 

of the geometric where parts are merely possible, we remain free to reason with notions that 

would suddenly become contradictory if we were forced to think of them as actuals composed 

from an infinitude of parts. And since we have seen how we can have a concept of space that is 

infinite, ideal, not composed of parts, and free of contradiction, we can say that the consistency 

of infinitesimals within pure geometry is not a target of this quote from the New Essays. 

 
198 New Essays, p. 154. 
199 De Risi 2007, pp. 173ff.  
200 This is a claim that resurfaces through Leibniz’s career. One sees it in 1676’s “Infinite Number” (in 

DLC p. 97), 1695’s “Note on Foucher's Objection” (AG p. 147) and the July 31, 1709 letter to Des Bosses.  
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 Admittedly, this reading of the passage is somewhat contorted, but it is the best way to 

tie this passage together with other themes of Leibniz’s thought that we have already seen. 

When we look at the passage in question, there may be some equivocation on the meaning of 

“these infinite wholes”: 

But it would be a mistake to try and suppose an absolute space which is an infinite 

whole made up of parts. There is no such thing: it is a notion which implies a 

contradiction; and these infinite wholes, and their opposites the infinitesimals have no 

place except in geometrical calculations, just like the use of imaginary roots in algebra. 

On the one hand, it seems that “these infinite wholes” mentioned in the last sentence must be 

those that are “made up of parts,” given the first sentence. On the other hand, we saw in 

Section 2.1 that infinite wholes made up of parts are not admissible in mathematical contexts. 

So, if they have a place in “geometrical calculations,” they must be infinite wholes whose parts 

are not actual and do not compose them. And the fact that they are employed in geometry as 

imaginary roots are in algebra is also evidence that these must be infinite wholes without parts. 

Imaginary roots are consistent, infinite wholes composed of actual distinct parts are not, 

therefore the infinite wholes must be those that are not composed of parts, like the ideal space 

of geometry in which the whole precedes its potential parts.  

3.6 Conclusion 

 In this chapter, we have built upon the groundwork of the previous chapters to develop a 

reading of infinitesimals in which they are logically possible but barred from existence for 

metaphysical principles. In Chapter 1, we saw how the relationship that parts have to their 

whole becomes central to Leibniz’s classifications of the infinite, being at the forefront of 

Leibniz’s 1706 taxonomy of the infinite. This involved a strong denial against the existence of 

any infinite wholes that are composed of actual distinct and separate parts. Or to use Leibniz’s 

technical language, he denies the existence of a categorematic infinite in which there are parts 
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that are contained formally and actually. While the 1676 taxonomy involved a distinction 

between lines that were “merely” infinite and unbounded lines that were maximally infinite, these 

two types of infinite lines would no longer be placed in different categories in the 1706 

taxonomy, for they do not differ with regards to the relationship that the whole of each kind of 

line would bear to its possible parts. 

In Chapter 2, we saw a variety of non-finite entities that Leibniz treats within his 

mathematics. There we again witnessed part-whole relations playing a central role. When some 

mathematical concepts, such as number, are extended into the infinite, they lead to conflict with 

the axiom that a whole is greater than any of its parts. Unlike a modern set theorist, Leibniz is 

not willing to sacrifice this principle and promptly rejects the very coherence of infinite number. 

Instead, his conception of the infinitude of numbers means that one cannot speak of all the 

numbers as a completed totality. This is a syncategorematic account because it involves the 

possibility of continually specifying new numbers without there being some further whole 

containing every single one of those indefinitely many numbers as parts (Section 2.1). 

Abandoning the concept of an infinite totality also raises problems with viewing the limit of a 

convergent series as a completed sum of infinitely many parts (Section 2.3). Unlike infinite 

number, Leibniz is inclined to say that one convergent series is twice another and also add, 

subtract, and multiply different series by one another. Leibniz speaks of the sum of convergent 

infinite series as a limit the series approaches as one considers more and more terms of the 

series because his block against the very logical coherence of the categorematic infinite 

prevents him from viewing the series as a completed summation of infinitely many terms. We 

again see a concern with wholes consisting of infinitely many parts in Leibniz’s treatment of the 

continuum. Leibniz’s ban on wholes consisting of infinitely many parts did not jeopardize the 

relationship between lines and points because Leibniz holds that the continuous objects of 

geometry are posited as wholes first, with the potential to be divided in infinitely many ways 
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(Section 2.2). Points are the minimum elements of the continuum and their inhomogeneity with 

lines means that Leibniz never speaks of a geometric proportion between points and lines. 

Opposite points as minima, are the unbounded lines that are treated as maxima. Here we see 

Leibniz try and compare the sizes of infinite lines by using geometric part-whole relations but 

wound up finding that he was unable to treat such lines as having a determinate length while 

still being able to freely rotate them or superpose them onto other lines while maintaining the 

same quantity in length (Section 2.5). For this reason, Leibniz says that bounded quantities are 

the median between points and the unbounded infinite by analogy only, for the latter are 

incapable of being subjected to the algebraic operations that proportions between homogenous 

quantities can undergo. 

In Section 2.4 and its subsections, we saw some of the mathematical properties of 

infinitesimals. Many of these properties hinged on them being subjected to the same operations 

that are used on finite quantities, including the ability to put a finite line in geometric proportion 

to an infinitely small line and an infinitely long (but bounded) one. Unlike points, infinitesimals 

are still lines, allowing them to be further divided into smaller parts, even infinitely small ones. 

Infinitesimals and their infinitely bounded counterparts have an advantage over numbers and 

the terms of discrete series because like other continuous geometric objects, they are 

postulated as wholes whose parts can later be freely specified. And unlike points and 

unbounded lines, we can use the Law of Continuity to extend our reasoning about finite 

quantities to infinitesimals and bounded infinite lines. 

In this chapter, I have argued that contrary to what some commentators have said, 

Leibniz’s fictionalism does not imply logical contradiction in the concept of an infinitesimal, and 

references to infinitesimals do not have a hidden logical structure that reduces to a 

syncategorematic process. While references to infinitesimals may be replaced by a series of 

quantities that become arbitrarily small, they remain perfectly consistent if interpreted at face 
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value. Leibniz’s remarks about imaginary roots in algebra show his belief that something can be 

logically and mathematically consistent, while still having no place in the realm of created 

beings. And his frequent comparison between imaginary roots and infinitesimals show that he 

believes that infinitesimals and their reciprocal infinities fall into this category of per accidens 

impossibility. And this simultaneous freedom from contradiction and impossibility of physical 

instantiation is how we should interpret Leibniz’s remarks about the fictionality of infin itesimals. 

 We thus see that Leibniz’s fictionalism about certain types of mathematical entities 

reflects his professed attitude that mathematics and metaphysics are separate enterprises. 

While within the realm of pure mathematics, there is no need to worry about the ontological 

counterparts of the entities being symbolically manipulated and reasoned about. Instead, it is 

freedom from contradiction that underpins the mathematician’s concerns when introducing new 

types of objects into one’s reasoning.  
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Afterward: Leibnizian Infinities Outside of Mathematics 

In the preceding pages, we saw how highly nuanced Leibniz’s treatment of the infinite is 

within his pure mathematics. Infinitesimals have a place within the calculations performed by 

pure mathematics, even though their utility in mathematics should be given no weight when it 

comes to what kinds of beings exist in the created physical world. Additionally, unlike 

infinitesimals, any supposed whole that is composed from infinitely many distinct parts can only 

enter into mathematics for the purposes of proofs by contradiction. And as seen in Chapter 2, 

there are numerous other uses of the infinite in Leibniz’s mathematics that are not reducible to 

each other. Understanding the nuanced ways that these distinct types of infinity are used in 

mathematics requires a careful approach that attends to the differences in their properties. In 

this afterward, I examine locations in which Leibniz uses the infinite that reaches beyond pure 

mathematics. Unfortunately, we do not have the space to fully treat each of these subjects with 

the depth that they require, which is why they are presented here as sketches for possible 

avenues that one can take when studying how the infinite functions in these diverse areas. In 

this afterward, I explain some of the ways that the infinite arises in Leibniz’s physics and his 

logic.  

The infinite in Leibniz’s physics 

In Leibniz’s physics, one way that the infinite arises is in so-called “dead force.” Leibniz 

tends to represent the effect of this force as infinitesimal in comparison to “living force.” One 

place where Leibniz does this is in his Specimen Dynamicum, Suppose that a tube 𝐴𝐶is rotating 

clockwise around the stationary point 𝐶at a uniform rate [Figure 4.1]. Let 𝐵 represent a ball 

within the tube that was held in position by a string during the early portion of the tube’s rotation 

about point 𝐶, but has just been cut when the tube is in the position on the left-hand side of the 
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diagram. Had the ball remained attached to the string, it would have been in position (𝐷) as the 

tube rotated from 𝐴 to (𝐴). However, once the ball is no longer held in place by the string, it will 

recede from the center of rotation (i.e., point (𝐶)) due to centrifugal force. Thus, the ball will be 

in position (𝐵), rather than (𝐷) when the tube is in position (𝐴). Leibniz then says that the ball’s 

impetus (the term he uses for an object’s speed201 multiplied by its mass) can be decomposed 

into the movement from 𝐷 to (𝐷) and (𝐷) to (𝐵), and one can “compare” (that is, form a ratio 

between) these two impetuses when the tube is in position (𝐴)𝐶. But Leibniz claims that at the 

initial moment in which the ball was released from the string, its tendency to recede away from 

the center of rotation is infinitely small in comparison to the rotational impetus, for its motion 

away from point 𝐶 has not yet begun. Leibniz calls these infinitely small tendencies to move in a 

given direction “solicitations,” and these solicitations are best understood as referr ing to what we 

now call acceleration.  

 

Figure 4.1 A diagram from Specimen Dynamicum 

 Leibniz uses the distinction between an infinitely small solicitation and a finite impetus to 

describe the effects of two different types of force. At first, Leibniz simply defines “Living force” 

 
201 Leibniz uses the term “velocitas” in defining impetus (GM VI p. 237), which is rendered as “velocity” in 

the translation given in AG. This quantity only refers to the amount of space an object can cover over a 
given time, without taking direction into account. Instead, he uses the term “conatus” to refer to velocitas 
in conjunction with a direction. In contemporary physics, “speed” correlates to Leibniz’s “velocitas,” and 
“velocity” with his “conatus.”  For the purposes of this afterward, I have chosen to use the contemporary 
names for these quantities.  
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(vis viva) as “an ordinary force, joined with actual motion.”202 While this description alone is far 

from enlightening, Leibniz goes on to say that the living force between two separate bodies is 

proportional to their mass multiplied by their velocity squared.203 In the rotating tube example, 

living forces are responsible for the rotational motion of the ball and tube along the center 𝐶, as 

well as the ball’s motion away from that center point once it is in motion. In addition to these 

living forces, Leibniz also says that this example shows the presence of a “dead force” (vis 

mortua). In dead force, “motion does not yet exist in it, but only a solicitation to motion,” yet 

motion can arise as the result of an infinite repetition of dead forces.204 Although sometimes 

Leibniz’s wording appears to equate actual motion with living force and “solicitations" with dead 

force, the forces are metaphysical causes that are inferred, and the motions they cause are 

merely their observable effects.205 

When discussing the connection between living and dead forces, Leibniz says that it 

takes an infinite repetition of dead force to produce a living force, and he mathematically 

represents the solicitation to motion that is produced by dead force as infinitely small in 

comparison to an already existing motion. He cautions against making any ontological 

inferences from these mathematical representations: 

From [the example of the rotating tube], it is obvious that the nisus206 is twofold, that is, 

elementary or infinitely small, which I also call solicitation, and that which is formed from 

the continuation or repetition of elementary nisus, that is, impetus itself. Nevertheless, I 

wouldn’t want to claim on these grounds that these mathematical entities are really 

found in nature, but I only wish to advance them for making careful calculations through 

mental abstraction.207 

 

 
202 From Specimen Dynamicum, in AG p. 121. 
203 In AG p. 128. This shows that Leibniz’s vis viva is equivalent what we now call kinetic energy, which is 

measured as ½mv2.  
204 In AG pp. 121-122. 
205 Garber 2009, p. 136. 
206 “Nisus” is a term Leibniz leaves undefined in the Specimen Dynamicum, but from context, it appears 

to mean the tendency of a body to move in a given direction. 
207 In AG p. 121. Emphases in the original. 
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This presents a level of agnosticism about the existence of infinitesimals, for Leibniz simply says 

that this example does not establish their existence in the natural order of things, but he does 

not explicitly rule out the existence of infinitely small objects in the Specimen Dynamicum either.  

 Despite the independence of metaphysics from pure mathematics, Leibniz says that a 

mathematical understanding of nature will require one to deduce laws from metaphysical 

principles. One of the arguments that Leibniz advances in Specimen Dynamicum is that 

Cartesian laws of motion are false, for they only consider bodies as following purely geometric 

laws.208 Instead, Leibniz argues that one must add something above and beyond purely 

geometric determinations to bodies, namely the concept of force. With this concept, Leibniz 

deduces a few mechanical laws a priori, such as the law that the amount of force produced in 

an effect is equal to the amount of force expended by a given cause. Leibniz shows that if 

nature did not obey this law, one would have a false conclusion: perpetual motion. Perpetual 

motion is not an absolute impossibility, but one that contradicts the “order of things.”209 Laws 

such as these are not grounded in the Law of Contradiction, but considerations of “the divine 

wisdom,” that is by the consideration that God decreed that everything happen for a determinate 

reason and chose to create only the best of all possible worlds.210 The role that final causes (i.e. 

considerations stemming from God creating the most perfect universe) play in Leibniz’s physics 

is subtle; we cannot use them to explain any particular cause or effect, presumably because 

elsewhere Leibniz says that such considerations would involve an infinite comparison of 

possibilities in order to determine which truly contributes to the best of all possible worlds, the 

subject of the next section of this afterward.  

 
208 The details of Leibniz’s arguments against these laws of motion need not concern us. He essentially 

argues that Descartes was wrong to think that momentum (i.e. mv) is conserved in collisions, and instead 
argues that vis viva (i.e. mv2) is the conserved quantity. 
209 From a 1691 note that contains preliminary demonstrations of the work presented in Specimen 

Dynamicum, in AG p. 106. 
210 In Specimen Dynamicum, p. 126. 
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Despite our inability to appeal to final causes when treating particular causes and effects, 

Leibniz tells us in the Specimen Dynamicum we can, and indeed must, consider final causes 

when “establishing general and efficient principles” in an a priori way.211 Once these laws are in 

place, we can return to a purely mathematical description of physical phenomena that includes 

the laws derived from metaphysical considerations as axioms. That is, we cannot explain a 

particular event like a glass falling to the ground by arguing that more good has been produced 

from it falling than a possible world where it remained on the table. But we can say that during its 

fall, the forces and motions involved will conform to the general laws of physics that are 

established through considerations of final causes. And although such causes are not necessary 

in the sense that a violation of them would entail a logical contradiction, they have what Leibniz 

refers to as a “moral certainty,” for they follow from God’s omnibenevolence.212 

In addition to the laws that maintain that the equality of force between cause and effect, 

Leibniz refers to the Law of Continuity in the context of physics as an architectonic law, meaning 

it is knowable a priori from considerations of final causes, rather than logical necessity. Notably, 

the Law of Continuity is only architectonic when applied to physics; it is “absolutely necessary” in 

geometry.213 The geometric use of the Law of Continuity is to treat infinitesimal cases using the 

same laws as finite cases; its physical interpretation is that rest can be treated as an infinitely 

small motion, and it allows one to reason mathematically about nature in the first place. Were the 

Law of Continuity false in physics, there would be discontinuous jumps in the motions of bodies, 

and there is nothing logically contradictory about this. But Leibniz believes that if bodies were to 

move from one position to another, then the only way to account for such motions would be 

 
211 In Specimen Dynamicum, p. 126. 
212 This is a crucial point of dispute in the Leibniz-Clarke correspondence, and shows up specifically in 

Paragraphs 9, 73, and 76 of Leibniz’s Fifth Letter in this exchange. 
213 From “Letter of Mr. Leibniz on a General Principle Useful in Explaining the Laws of Nature Through a 

Consideration of the Divine Wisdom…” in L. p. 352. This paper was published in 1687 in Nouvelles de la 
republique des lettres and is Leibniz’s first public presentation of the Law of Continuity. 



 

 144 

through the inscrutable actions of God, for the body would not move through its own power.214 

Leibniz does not elaborate on why a violation in the Law of Continuity would lead to this 

conclusion. However, he asserts that if nature did not obey the Law of Continuity, the very 

possibility of understanding it through mathematical laws would be demolished. This explains the 

puzzling remarks mentioned at the start of this paragraph in Leibniz’s letter to Varignon, where 

he claims we could establish no science of motion if the hypothesis of infinitesimals contradicted 

the observed behavior of bodies. While infinitesimals may not exist in nature, we can be confident 

that nature will act as if there were such entities. And our ability to do this is guaranteed by the 

knowledge that God would not create a world in which we could not formulate a scientific 

understanding of bodies.215 

 In this dissertation, I have defended the view that the logical consistency of infinitesimals 

allows them to be freely deploying in mathematical reasoning without contradiction. I argued 

that the reasons that bar infinitesimally-sized bodies from existence in the real world is that they 

would violate the principles that guide, but do not force, God’s decision in which possible world 

to create. These architectonic considerations that bar the real existence of infinitesimals at the 

same time justify the legitimacy of applying the Law of Continuity to nature and as reasoning as 

if there were infinitesimal relations between forces. There is nothing logically necessary about 

bodies moving in ways that comport to the Law of Continuity, so the reasons that give us a priori 

certainty that this law is applicable are distinct from the law of noncontradiction alone, just as the 

law of noncontradiction alone does not explain why infinitesimals are not present in our created 

world. This connection between metaphysical reasoning telling us that there cannot be infinitely 

small bodies or motions, while also telling us that we are warranted in behaving as if there were 

is a tension worthy of further analysis. 

 
214 From the Sep 11, 1699 letter to De Volder, in L, pp. 521-523. 
215 The letter to Sophia Charlotte, in L, p. 583. 
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The infinite in Leibniz’s logic 

One peculiar Leibnizian doctrine is the claim that all truths can be proven a priori, and as 

we will see in this section, Leibniz makes reference to the infinite when specifying how this 

doctrine works in the case of contingent truths. Leibniz held that a series of logical reasoning will 

reduce all truths to primary truths, defined as “those which assert the same thing of itself or 

deny the opposite of its opposite.”216 Primary truths are identities, broadly construed. In order to 

decompose a truth into a primary truth without the aid of experience, Leibniz relies on 

definitions. As an example of this process, Leibniz shows how to prove the axiom “a part is less 

than the whole,” an axiom that surfaced frequently in the above section on infinite number. With 

assistance from to the definition of less, “The less is that which is equal to the part of another 

(the greater),” Leibniz gives the following analysis: 

 

1. The part is less than the whole. (initial statement). 

2. The part is equal to a part of the whole. (def of “less”) 

3. The part is equal to itself. (It is the “part of the whole” of step 2) 

 

A large part of the theoretical apparatus that underlies this process of analysis is the doctrine of 

concept containment. All humans are rational” is a truth sourced in the containment of the 

predicate “rational” within “animal,” the subject term. In Leibniz’s own words: 

 

“Every true categorical proposition, [affirmative and universal],217 signifies nothing but a 

certain connection between the predicate and the subject - in the direct case, that is, of 

which I am always speaking here. This connection is such that the predicate is said to be 

in the subject, [or to be contained in it, and this either absolutely and viewed in itself, or 

in some particular case.] Or in the same way, the subject is said to contain the predicate; 

that is, the concept of the subject, either in itself or with some addition, involves the 

concept of the predicate. And therefore, the subject and predicate are mutually related to 

 
216 From “Primary Truths” in AG, p. 30. 
217 “Elements of Calculus” in L, p. 236. Loemker’s translation, used here, was based on Couturat’s 

transcription. Couturat notes that “universalem” was a later addition by Leibniz, with “affirmativam” being 
an even later addition. Brackets added to note this feature of the manuscript. 
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each other either as whole and part, or as whole and coinciding whole, or as part to 

whole”218 

 

The containment of the subject within the predicate is not just restricted to logical truths; Leibniz 

believed that all truths whatsoever were grounded in concept containment and could thus be 

proven a priori by analysis. To take an example from Leibniz, “Julius Caesar crossed the 

Rubicon” is true, and hence must be provable through an a priori analysis.219 Because analytic 

truths are grounded in concept containment, the concept “Caesar” must contain the concept 

“crossed the Rubicon” as one of its characteristic marks. But Caesar did a lot more in his life 

than cross the Rubicon, so “became dictator of Rome,” “was killed on the Ides of March,” “is not 

a number,” and every other fact about the famous conqueror of Gaul are all contained in the 

concept “Julius Caesar.” Thus, all individual concepts are fully determined with respect to all 

their properties. Analogous to maximally consistent sets, any marks added to the concept of an 

individual will either already be contained in the concept or will contradict an existing mark within 

the concept.220 The level of detail of the concept of an individual would have to be massive for it 

to contain information about all the events that happen to the individual. But there is even more 

complexity than one might first think, for each concept contains the whole series of its world 

within it.221 That is, the concept of Julius Caesar will contain a record of all of the events that 

happened directly to him during his life, as well as events in the distant parts of the universe 

during that time. Additionally, a restriction to just the events that happened during Caesar’s 

lifespan is invalid, for when Leibniz says the entire series of the world is written within an 

 
218 “Elements of Calculus,” L p. 236 
219 Discourse on Metaphysics § 13, AG p. 45 
220 As Leibniz puts it: “If there is a term BA and B is an individual, A will be superfluous; or if BA = C, then 

B = C.” Leibniz’s marginal note to General Inquiries §72. In P, p. 65. Here it is assumed that “BA” is not a 
self-contradicting concept. 
221 This is a recurring theme: “Monadology” §56; “Primary Truths,” AG p. 32; “Discourse on Metaphysics” 

§13; and even in the title of “Remarks on Arnuald’s Letter about My Proposition That the Individual Notion 
of Each Person Includes Once and for All Everything That Will Even Happen to Him” AG p. 69. 
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individual concept, he means events both spatially and temporally remote from the actual 

individual. 

 This claim that all truths can be proven a priori is frequently presented as a reformulation 

of the Principle of Sufficient Reason. The Principle of Sufficient Reason states that “nothing 

happens without it being possible for someone who knows enough things to give a reason 

sufficient to determine why it is so and not otherwise.”222 The link between these two doctrines is 

revealed by noticing that Leibniz describes the process of a proof as an analysis “through 

reasons for reasons.”223 If every truth can be proven a priori, and proofs just are a chain of 

substituting reasons for reasons, then we arrive at the claim that every truth must have a 

sufficient reason. Conversely, if every truth has a sufficient reason for being one way rather than 

another, a proof just would be an appeal to those determining reasons. 

 

Leibniz notes that his belief in the determination of all things by a sufficient reason led 

him to the brink of some dangerous conclusions: 

When I considered that nothing happens by chance or by accident (unless we are 

considering certain substances taken by themselves), that fortune distinguished from 

fate is an empty name, and that nothing exists unless its own particular conditions are 

present (conditions from whose joint presence it follows, in turn, that the thing exists), I 

was very close to the view of those who think that everything is absolutely necessary, 

who judge that it is enough for freedom that we be uncoerced, even though we might be 

subject to necessity, and close to the view of those who do not distinguish what is 

infallible or certainly known to be true, from that which is necessary.224 

 

Leibniz goes on to say that considerations of self-consistent works of fiction drew him from the 

view this necessitarian view. For there one finds unactualized possibles. However, the 

predicate-in-subject account of truth pulled him back towards the position that all truths are 

necessary: “for if the notion of the predicate is in the notion of the subject at a given time, then 

 
222 “Principles of Nature and Grace Based on Reason” in AG p. 210.  
223 “On Contingency” in AG p. 28. 
224 “On Freedom” in AG p. 94 
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how could the subject lack the predicate without contradiction and impossibility, and without 

changing that notion?”225 Leibniz claims that what released him from these competing tensions 

and allowed him to acknowledge the existence of genuine contingencies was an appeal to the 

role of infinity in logic. 

 

 While he maintains that all truths can be proven a priori, Leibniz claims that this proof 

can either be infinite or finite. For a necessary truth, the analysis from the truth to a primitive 

identity statement will be completed in a finite number of steps. Leibniz also says that necessary 

truths are those that depend on the principle of contradiction and the negation of a necessary 

truth implies a contradiction. Because a necessary statement can be turned into an identity 

statement, the negation of a necessary truth would be tantamount to asserting “A is not A.”  

 

 In a contingent truth, any step in the analysis will contain some unanalyzed component 

that can be further decomposed before an identity statement is reached. The denial of a 

contingent statement is another contingent statement. This is because if the denial of a 

contingency implied an impossibility, then the denial of that impossibility would be a necessary 

statement, contrary to the supposition that the initial statement was a contingency.226 Instead, 

these truths are based on the principle of perfection: the claim that God will choose to create the 

best of all possible worlds. While the negation of a contingent truth will not imply a contradiction, 

it will imply a sub-optimal configuration of the series of events within a world, and the sub-

optimality of such a world gives a sufficient reason for its non-existence. But these assessments 

of the relative perfection of different possible worlds is not something that our finite minds are 

able to perform. 

 

 
225 “On Freedom” in AG p. 95 
226 “On Freedom and Possibility” in AG p. 20 
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As finite minds, we cannot complete an analysis of contingent truths because we cannot 

fully exhaust the infinitude of reasons for such truths. God, according to Leibniz, does possess 

knowledge of such an infinite series through “knowledge by intuition [scientia visionis].” One 

might think that God is able to infinitely run through all the steps of this process and arrive at the 

final step: the resolution to an identity statement. But the way Leibniz frames God’s perception 

of finite truths makes this interpretation unlikely:  

But in contingent truths, even though the predicate is in the subject, this can never be 

demonstrated, nor can a proposition ever be reduced to an equality or to an identity, but 

the resolution proceeds to infinity, God alone seeing, not the end of the resolution, of 

course, which does not exist, but the connection of the terms or the containment of the 

predicate in the subject, since he sees whatever is in the series.227 

 

This seems to imply that God’s faculty of “knowledge by intuition” is able to directly grasp the 

conclusion of an infinite analysis in a way that’s distinct from the completion of the 

syncategorematic series of reasons generated by our finite minds. I need to do more research 

into the concept of this scientia visionis, as well as the “knowledge of simple understanding 

[scientia simplicis intelligentiae]” that it is contrasted with in order to say more about God’s grasp 

of contingent truths. Regardless of how it is that these forms of knowing provide God with a 

priori knowledge about which contingent truths will lead to a better total sum of perfection in the 

world, our finite minds cannot possess such knowledge. We come to know things a priori by 

analyzing concepts. Given how Leibniz describes the process of analysis, it is clear that this 

process is through a sequential examination of reasons. If this sequence of reasons were 

infinite in scope, the infinitude could only be portrayed syncategorematically, owing to Leibniz’s 

denial of the categorematic infinite. That is, we can always extend the analysis to represent 

more and more reasons for a fact to our minds, but there is never a final stage where all of the 

reasons for a fully determinate event are laid before our minds as a completed whole. And since 

 
227 “On Freedom.” AG p. 96 
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a complete reckoning of a contingent truth is required for an a priori ruling on its truth, we can 

never fully analyze such contingent truths. However, God’s comprehension of these truths 

cannot be a whole analysis consisting of infinitely many distinct concepts as its components, for 

early on in this dissertation, we saw Leibniz say that not even God could comprehend a whole 

made up of infinitely many parts. This therefore highlights that the difference between God’s 

cognition of contingent truths and our own cannot be one of degree alone but must be a 

difference in kind.  

 One of the recurring themes of this dissertation is that Leibniz’s treatment of the infinite 

is an exceptionally complex subject, prompting the lengthy analysis of how to understand 

Leibniz’s attitude towards the infinite within pure mathematics. For this reason, I have avoided 

making any definitive claims about how the work of this dissertation affects our understanding of 

the role of the infinite in those areas. The same level of care should be made when comparing 

Leibniz’s use of the infinite in different domains of inquiry as when comparing the differences in 

Leibniz’s use of the infinite within and across the various taxonomies present in the main three 

chapters of this book. However, rigorously understanding Leibniz’s use of the infinite within his 

pure mathematics will certainly equip one to better navigate the nuances of the infinite in 

Leibniz’s other work. 
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